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‘It ain’t what you do, it’s the way that you do it.That’s what gets results.’
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Summary

E�ective robot arm motions
stability and e�ciency through natural dynamics

While progress in many fields of robotics has been swift, robot arm movement
in scenarios without contact has changed little in the last decades. This lack of
change is not due a lack of potential for improvement. After all, the human arms
that these robot emulate move in ways that are more robust, energy efficient and
adaptable. This thesis is inspired by human movement skill in these three aspects
to improve the movement of robotic arms in non-contact situations. The six main
contributions of this thesis are divided over those three aspects. The aspects are
studied for two motions, the reaching motion, that is, move from the initial position
to a pre-specified target position and back, and the pick-and-place motion, which
adds picking and placing an object at the initial and target positions respectively.

The first aspect, robustness, is studied from a stability standpoint. The first as-
pect is the topic of the first part of this thesis, which contains four of its six main
contributions. Stability, as understood in this thesis, is the property of returning
to a fixed (desired) motion after an initial disturbance two motions. This form
of stability is a minimal requirement for successful task completion. Most current
robot arms rely on fast sensory feedback for their stability. This contrasts with
humans, who rely on skill at choosing motions that are intrinsically stable. Such
self-stable motions have been used by earlier robotics researchers to make robots
that juggle or walk without the need for sensory feedback. However, these robots
perform tasks involving impacts, which can have a large stabilizing effect. No
such impacts are available in reaching motions. A self-stabilizing reaching mo-
tion instead depends on ingenious use potential energy and centrifugal or Coriolis
effects.

The first contribution of this thesis is to show in simulation that self-stabilizing
motions for a two degree of freedom robot arm performing a reaching task do exist.
The arm has two properties that are required for stabilizing the motion: a spring
on the first joint, and mechanical friction in both joints. These two properties
are not sufficient, as the stability of the motion depends on energy transfer via
convective acceleration terms to stabilize the second joint. When the feedforward
input corresponding to a stable reaching motion was applied to a physical robot
arm, it was found to be stable as well.

While the resulting motion is stable, it does not reach the desired end-positions,
due to difference between the simulation and the physical robot. In investigations
I was part of but were not included in this thesis, it was shown that it is sometimes
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possible to find motions which are insensitive to these model-reality differences.
These motions do not account for all types of model-reality differences and also do
not consider stability. These results suggest self-stabilization alone is not sufficient
to make a robot arm perform an accurate reaching task.

Yet, the second contribution of this thesis is to perform a precise reaching motion
with a controller that almost exclusively depends on self-stabilization. Almost
exclusively, because the proposed control scheme consists of two phases of which
the first one uses some feedback, in the form of repetitive control, which is similar
to iterative learning control. The feedback in repetitive control has a delay of
one cycle of the reaching motion, and is used to learn the feedforward input that
tracks the desired motion. In the second phase, the system exclusively relies on
self-stabilizing effects. I show that these effects depend only on the motion of the
system, and not on the input needed to track that motion.

The third contribution of this thesis with respect to self-stability is to show that
this two phase approach can also be used to perform a pick-and-place task, rather
than the reaching task investigated above. The robot arm uses self-stabilization
to blindly perform this pick-and-place task, after an initial learning phase.

For the fourth contribution, the last on self-stability, I investigated the use of op-
timizing feedforward controller (motion) for self-stability in situations in which
feedback is available. I show that such feedforward controllers, when compared
with unsuitable feedforward controllers, make a significant difference in the ac-
curacy of a robot arm performing a reaching task. However, when comparing
feedforward controllers optimized for self-stability with standard feedforward sig-
nals, the difference is only meaningful when the feedback uses small gains.

The second aspect studied in this thesis is energy efficiency. It is inspired by the
efficiency of human movement, as enabled by muscles. Many previous researchers
were inspired by muscles, most notably by their elastic properties. In this thesis I
am inspired by muscles using a different mechanism to effectively perform negative
work. The research in this aspect therefore focusses on the use of brakes.

The fifth contribution is to pose the design of a plugless robot arm: a robot arm
that performs a pick-and-place task where the pick position is higher than the
place position. The drop in potential energy of the payload can be used to power
the robot arm, hence the name plugless arm. The main task of such an arm is
to steer the end-effector to the right place position, a task that in principle can
be executed without the motor performing positive work. A side effect is that
the motor could thus be replaced by mechanically simpler brakes. This thesis
investigates the possibility of controlling a robot arm with only brakes, and shows
three different approaches to achieve that task.
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The third inspiring aspect of human movement that is studied in this thesis is
its adaptability. For robot motions without impact, adaptability comes from be-
ing able to quickly plan and replan motions. Furthermore, this planning should
account for dynamic quantities such as velocity and torque constraints.

Three techniques were combined in order to plan faster: optimal control, super-
vised learning and sampling-based planning. The latter handles obstacles, and
splits the whole motion planning problem into multiple smaller planning problems
that are easier to solve. Optimal control can handle those smaller planning prob-
lems, but is too slow. Supervised learning generalizes input-output relations from
a dataset, and provides fast output after learning. By learning from a dataset of
precomputed optimal trajectories, the computation time is shifted offline, making
the planning itself much faster.

The last contribution, and the only one related to adaptability, is to improve the
state-of-the-art technique for learning in sampling-based planning. The improve-
ment comes from picking a more suitable optimal control approach. This classic
approach, called indirect optimal control, is not used often any more because of
poor numerical performance in many practical settings. For use in a sampling-
based planner, it carries two benefits. First, the steering input is parameterized
using a small number of parameters, which makes it easier to learn this input.
Second, the dataset of optimal trajectories can be constructed without numerical
optimization. These benefits lead to tenfold speedup in both the offline trajectory
generation phase and the online planning phase.

In conclusion, for this thesis I studied robot arm movement inspired by three
aspects of human motion. First, the self-stability of human movement inspired me
to make a feedforward controlled robot arm perform a pick-and-place task. Second,
human strategies for energy efficient movements caused me to design a controller
for a robot arm only actuated by brakes. Finally, I aimed for more adaptive robot
movement by improving a sampling-based trajectory planning algorithm. This
improvement led to a tenfold reduction of planning times.
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Samenvatting

E�ectieve bewegingen voor robotarmen
stabiliteit en e�ciëntie door natuurlijke dynamica

Hoewel een groot deel van de robotica snel vooruit is gegaan zijn de bewegingen van
robotarmen, in situaties waarin de robot geen contact maakt met de omgeving, in
de laatste decennia weinig veranderd. Dit gebrek aan verandering komt niet door
een gebrek aan potentie voor verbetering. Menselijke armen, die de inspiratie voor
deze robots vormen, bewegen tenslotte op een manier die leidt tot robuustheid,
een hoog (energie) rendement en een groot aanpassingsvermogen. Deze thesis is
geïnspireerd op menselijke vaardigheden in juist deze drie aspecten, met als doel
robotarm-bewegingen zonder contact te verbeteren. De zes belangrijkste bijdragen
van deze thesis zijn verdeeld over deze drie aspecten. Deze aspecten bestudeer ik
voor twee bewegingen: het reiken en het pakken. Reiken is het heen en weer
bewegen naar een vooraf bepaalde positie, pakken is dezelfde beweging waarbij
ook nog een object wordt opgepakt en neergelegd.

Het eerste aspect dat bekeken wordt is robuustheid, specifiek de robuustheid van
stabiliteit. Stabiliteit, zoals het in deze thesis bedoeld wordt, is de eigenschap dat
de robot terugkeert naar een vaste (gewenste) beweging na een initiële verstoring.
Deze vorm van stabiliteit is een minimale eis om een taak te kunnen volbrengen.
De meeste huidige robotarmen gebruiken snelle sensorfeedback om zichzelf te sta-
biliseren. Mensen daarentegen hebben de vaardigheid om bewegingen te kiezen die
uit zichzelf stabiel zijn, en dus geen feedback nodig hebben. Binnen de robotica
zijn zelf-stabiliserende bewegingen al gebruikt om robots te laten jongleren of lopen
zonder gebruik te maken van feedback. Deze zelf-stabiliserende robots maakten
gebruik van botsingen in het contact met de bal of de grond. Deze botsingen
kunnen stabiliserend werken, maar komen niet voor in reikbewegingen. Een zelf-
stabiliserende reikbeweging moet gebruik maken van natuurlijke dynamica, dat
wil zeggen de potentiële energie, en de centrifugaal- of Coriolis effecten die in het
ontwerp van de robotarm zijn opgesloten.

De eerste bijdrage die deze thesis levert, is het in simulatie laten zien dat zelf-
stabiliserende reikbewegingen voor een robotarm met twee graden van vrijheid
bestaan. De bestudeerde robotarm heeft twee eigenschappen die nodig zijn voor
het bestaan van zulke bewegingen: een potentiële energie (veer) aan het eerste
gewricht en wrijving in beide gewrichten. Deze twee eigenschappen zijn echter niet
voldoende: de stabiliteit van de beweging hangt af van centrifugaal- en Coriolis
effecten. De input die de beweging in simulatie veroorzaakt blijkt bij tests op een
fysieke robotarm ook een stabiele beweging te veroorzaken.
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Hoewel de resulterende beweging op de fysieke arm stabiel is, bereikt deze niet de
gewenste eindposities. Dit komt door een verschil tussen de simulatie en de fysieke
robot. In onderzoek waarin ik een bijdrage heb geleverd, maar dat niet in deze
thesis is opgenomen, is laten zien dat het soms mogelijk is bewegingen te vinden
die niet gevoelig zijn voor dit verschil tussen model en werkelijkheid. Het bleek
echter dat die bewegingen niet alle vormen van model-onnauwkeurigheid kunnen
tegengaan. Daarbij hielden deze bewegingen ook geen rekening met stabiliteit.
Dit maakt het onwaarschijnlijk dat het mogelijk is een input te vinden die op een
fysieke robotarm een reikbeweging stabiel en nauwkeurig uitvoert.

Toch is de tweede bijdrage van deze thesis het nauwkeurig uitvoeren van een
reikbeweging die bijna volledig van zelf-stabilisatie afhangt. Bijna volledig, want de
voorgestelde regelaar bestaat uit twee fases, waarvan de eerste fase enige feedback
gebruikt, in de vorm van Repetitive Control, een variant van Iterative Learning
Control. De feedback in Repetitive Control is met een bewegingscyclus vertraagd,
en wordt gebruikt om de input te leren die de gewenste beweging volgt. In de
tweede fase is het systeem volledig afhankelijk van de zelf-stabiliserende effecten
in die beweging. Ik laat zien dat deze effecten alleen afhankelijk zijn van de
beweging, en niet van de input die nodig is om de beweging te volgen.

De derde bijdrage is het laten zien dat deze twee-fase regeling ook gebruikt kan
worden als de robot objecten pakt. Na een initiële inleerperiode is de robotarm in
staat om blind objecten tussen twee posities te verplaatsen.

Voor de vierde bijdrage, de laatste op het aspect van zelf-stabiliteit, heb ik bewegin-
gen die geoptimaliseerd zijn voor zelf-stabiliteit onderzocht in situaties waarin feed-
back ook beschikbaar is. Deze geoptimaliseerde bewegingen blijken de robotarm
een reiktaak nauwkeuriger te laten uitvoeren dan minder geschikte bewegingen.
Echter, in vergelijking met standaard gebruikte bewegingen leidt het optimalis-
eren van de bewegingen voor zelf-stabiliteit alleen tot een betekenisvol verschil als
de gebruikte feedback acties klein zijn.

Het tweede aspect van menselijke bewegingen dat de inspiratie vormt voor deze
thesis is energie efficiëntie. Eerder onderzoek op dit gebied werd geïnspireerd door
de elasticiteit in menselijke spieren. In deze thesis wordt de inspiratie gehaald
uit de verschillende mechanismes die spieren gebruiken om positieve en negatieve
arbeid te leveren. Voor dit aspect wordt dan ook onderzoek gedaan naar het
gebruik van remmen.

De vijfde bijdrage is het voorstellen van de stekkerloze arm, een robot die een pick-
and-place taak uitvoert waarbij de pak-positie hoger is dan de plaats-positie. Het
verschil in potentiële energie kan gebruikt worden om de robotarm van vermogen
te voorzien, zodat er geen stekker meer nodig is. Het sturen van deze robotarm
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kan in principe gedaan worden zonder dat de motoren positieve arbeid hoeven te
leveren. Hierdoor kunnen de motoren vervangen worden door, mechanisch sim-
pelere, remmen. Deze thesis onderzoekt de mogelijkheid om de robot aan te sturen
met alleen maar remmen, en laat drie manieren zien om dit te doen.

Het derde aspect dat onderzocht wordt is het aanpassingsvermogen voor bewegin-
gen. Aanpassingsvermogen komt voort uit het snel kunnen plannen en aanpassen
van bewegingen. Bovendien moet die planning rekening houden met dynamische
aspecten zoals snelheid en limieten van de motoren.

Drie technieken worden gebruikt om deze bewegingen snel te plannen: Optimal
Control, Supervised Learning en Sampling-Based Planning. Sampling-Based Plan-
ning houdt rekening met obstakels en splitst het plannen van grote bewegingen
op in het plannen van meerdere kleine bewegingen, die makkelijker te vinden zijn.
Optimal Control kan gebruikt worden om deze kleine bewegingen te vinden, maar
is te langzaam. Supervised Learning generaliseert de input-output relaties in een
dataset, en werkt snel na het leren. Door te leren van een dataset van met Optimal
Control gevonden bewegingen, wordt de rekentijd naar een offline fase gebracht,
waardoor de online snelheid van het plannen verhoogd wordt.

De zesde en laatste bijdrage is een betere techniek voor het leren binnen Sampling-
Based Planning. De verbetering komt voort uit het kiezen van een geschiktere vorm
van Optimal Control. Het blijkt dat het zogenoemde Indirect Optimal Control,
een klassieke methode die voor veel toepassingen gedateerd is, toch twee voordelen
heeft binnen Sampling-Based Planning. Ten eerste wordt de beweging door een
klein aantal parameters beschreven, wat het leren vereenvoudigd. Ten tweede kan
de dataset gegenereerd worden zonder numerieke optimalisatie. Deze voordelen
leiden tot zowel een snellere offline fase als een snellere planning fase.

Concluderend, in deze thesis heb ik robotarm-bewegingen bestudeerd geïnspireerd
door drie aspecten van menselijke bewegingen: zelf-stabiliteit, energie-efficiëntie
en aanpassingsvermogen. Eerst heeft de zelf-stabiliteit van menselijke bewegingen
mij geïnspireerd tot het maken van een robotarm die op basis van zelf-stabiliteit
een pick-and-place taak uitvoert. Ten tweede heeft het voorbeeld van menselijke
energie efficiëntie geleid tot het onderzoeken van het aansturen van een robotarm
met alleen maar remmen. Ten slotte heb ik, als een stap richting het bereiken
van een menselijk niveau van aanpassingsvermogen, een Sampling-Based plan-
algoritme verbeterd. Deze verbetering leidde tot een tienvoudige vermindering
van de rekentijd voor het plannen.
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This thesis presents a study into the movement of industrial robot arms. Inspired
by human arms, I identified five aspects of these arms that can be improved upon,
as detailed in Section 1.1. Two of these aspects consider contact with other objects,
a field that is already extensively studied. The remaining three, which do not
consider contact, are studied in this thesis from a technical viewpoint. They are:
stability by using natural dynamics, energy efficiency from intelligently applied
actuation and adaptability through fast path planning in state space. While the
way robots execute non-contact motions has remained almost unchanged for 50
years, I believe that there is much potential for better performance by looking at
these aspects. Table 1.1 shows these three topics, the chapters in which they are
investigated, and the techniques used in these chapters.

Table 1.1: Topics in this thesis, and the techniques used for them.

Topic Chapters Techniques

Self stability 2-5 Direct optimal control, LMIs, Iterative learning control,
Gait sensitivity norm, Limit cycle stability

Energy efficiency 6-7 MCTS, Non-linear control, Reinforcement learning
Trajectory planning 8 Indirect optimal control, RRT, Supervised learning

1.1 | Motivation

Within the field of robotics, industrial robot arms are a key area for study due to
the amount of potential applications in society. They promise fast adaptability in
industrial automation, thereby making automation accessible to small and medium
sized enterprises. In a quest to fulfil that promise, various groups throughout
Europe pursue research on industrial robot arms [2, 19, 188] and their software
[73, 105]. The Delft Biorobotics lab is a part of this research, for instance, through
the Factory in a Day project [31], involvement in ROS Industrial [63] and by
winning the Amazon Robotics challenge [64]. This thesis is a part of that effort.
One would expect robot arms to have changed rapidly, especially given the amount
of research devoted to them. Surprisingly, the opposite is true, as industrial robot
arms have changed surprisingly little over the last 50 years. This can be seen in
Figure 1.1, which shows the first microcomputer-controlled robot, a modern car
factory with welding robots, and the robot that was used by the Delft team in
the Amazon Robotics challenge 2016. This lack of change is observable in robot
control as well. While the exact controllers are kept secret, most industrial robots
today stabilize themselves around preplanned motions.
While modern robot arms are similar to arms from 50 years ago, they differ fun-
damentally from human arms. This is surprising, as the robots were developed
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(a) (b) (c)

Figure 1.1: Past and current industrial robots: (a) The ABB IRB 6 from 1974, the first
microcomputer controlled robot, (b) A modern robot arm factory, and (c) the robot of the TU
Delft team for the Amazon Robotics challenge, 2016. For attribution see references [1], [182] and
[43] respectively.

to mimic, and hopefully improve upon, human arms. Current robot arms can lift
heavier weights, move more repeatably and more precisely than humans do. Still,
the natural and proficient way humans move is still a league above the best moving
robots. Inspired by human motion, I identified five aspects of interest.

The first two aspects consider tasks in which contact plays an important role.

• Sensing capability: sensors in human arms detect orientation and contact.
In particular, our skin can sense normal forces, sliding and roughness of the
contact surface, among other things [37, 81].

• The ability to handle collisions: next to being able to sense contact, human
arms are also highly adapted to contact. In everyday life, humans allow con-
tact everywhere along their arms, using it to manipulate objects or stabilize
themselves.

The last three aspects of human motion that are inspiring for robot arms involve
non-contact tasks.

• Self stability: humans select motions that minimize the task-relevant sensi-
tivity to noise [88], likely to cope with noisy and delayed sensors and actua-
tors. Furthermore, in the related field of locomotion, it has been shown that
human-like motions emerge when searching for self-stabilizing motions [34].

• Energy efficiency: human arms are more energy efficient, thanks to the way
they are actuated. For instance, the intrinsic properties of human muscles
allow effective energy dissipation [7]. Furthermore, due to bi-articular mus-
cles, humans can transfer energy between the links of the arm, which is more
effective than dissipating and injecting energy at the same time, as robots
do [74].
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• Adaptive planning: humans can quickly adapt their behavior to different
situations. For arms, this means the capability to move swiftly while not
hitting obstacles in unfamiliar environments, and handling new tools.

Contact tasks have been an important topic of research for decades [39, 140]. In
particularly, in the last decade this research focused on three aspects: 1) handling
of contact for control via planning through contact [87, 115], 2) stiff joint control
using position, force and impedance [3, 25] or by using compliant designs [138],
and 3) the capability robot hands for in-hand manipulation [8, 186]; and into
developing sensor skins to detect (impending) contact [188].

At the same time, very little attention has been paid to the non-contact aspects
of robot arm motion, despite it being clear that the three listed aspects can po-
tentially greatly improve robot arm performance. That is why this thesis studies
the non-contact aspects: self-stability, energy efficiency and adaptive planning.

While these three aspects seem only loosely related, and while they will lead to
separate research questions, they are coherent in a key element, as I will approach
them from an optimal control/trajectory planning perspective. That is, the way to
pick the trajectory is the central question throughout this thesis. This approach
makes it possible to draw upon the past experience in the lab on dynamically
challenging tasks such as energy-efficient bipedal locomotion.

To study robots arms, I focus on the reaching task, moving the end effector from
one known position to another. This task is performed on systems with one or
two degrees of freedom, which were chosen as the simplest systems that could
show off the concepts under study. This task is relevant for almost all robot arms,
although no attempt is made to bridge the gap to full-scale industrial arms. The
main advantage of this task is that it allows us to focus on the motions of the
robot by excluding or greatly simplifying other factors that are also important for
robot arms in general, such as higher level decision making, object recognition and
sensor calibration.

The following sections discuss the three inspirational aspects seperately. They give
a more in-depth overview of the research fields in robotics that are related to each
aspect, and lead to the research questions and goals tackled in this thesis. For an
immediate overview of those research questions and goals, refer to Section 1.5.

1.2 | Self stability

The first striking aspect of the way humans move is their skill at using self-
stabilizing effects. By self-stabilizing effects, I mean effects in the dynamics of
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the system that cause certain trajectories of the system to be stable. In this the-
sis, the term stability is used to describe the property called asymptotic stability,
see [145] for a technical definition. The practical relevance of this type of stability
is that it demands that motions converge towards a desired trajectory, indepen-
dent of the starting condition. This means that the system can recover from an
initial disturbance.

By picking the right motor signal, stability emerges, seemingly without effort,
due to the self-stabilizing effects in the natural dynamics of the arm. The skill
of finding these motions allows humans to perform tasks within a system whose
motions generally are not stable, and to do so without depending on a feedback
controller. Of course, human movement is not only dependent on self-stabilization.
However, it is an important factor, especially for fast motions, for which humans
cannot rely on feedback at all, due to large delays (order of 100 ms [110, 161, 170]).
The delays are partially counteracted by using an internal model, that predicts
behavior [42]. Still, this internal model makes errors, and it is likely that humans
look for motions that minimize this error [51] or at least the variability in the
resulting motion [10].

Motivated by human self-stability and its perceived benefits, such as energy effi-
ciency, researchers have tried to make robots use self-stabilizing effects. The most
famous examples are (nearly) passive bipedal walkers [34] and juggling robots [146].

It is remarkable that the use of self-stability has received virtually no research
attention for industrial robot arms. This lack of attention is despite potential
benefits like energy-efficiency and robustness against sensor delays, noise or failure.

The question arises whether robot arms can even use the self-stabilization ap-
proach when performing tasks. The examples mentioned above all rely on impacts
to help stabilize the system. While, for example, the oscillating inverted pendu-
lum [111, 159], uses non-impact dynamics for stabilization, it does nothing apart
from stabilization. Therefore the overarching question for the chapters in this
thesis inspired by self-stability is Is it possible to make a self-stabilizing robot arm
perform a pick-and-place task? This question will be studied in three steps.

Robot arms can be stabilized in three different ways, or a combination thereof.
In most robots, stability is obtained via feedback: sensors measure the robots po-
sition, and an on-board computer adjust the torque commands to the actuators
in order to recover. As robots are often complex multi-dof systems, choosing the
right torque commands can be a challenging task. Various schemes, e.g. slid-
ing mode, feedback linearization, backstepping [145], have been devised. Most of
these work by suppressing the natural dynamics, thereby avoiding possibly neg-
ative influences of, for instance, the Coriolis or centrifugal effects. However, by
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suppressing these effects, their positive influences are also discarded. Two ap-
proaches aim to address that issue: passivity-based control and model predictive
control. The passivity-based approaches use system properties to find effects that
do not need to be cancelled out [45, 121, 148]. Model predictive control computes
the optimal feedback controller [40, 86], often with model simplifications such as
a limited time horizon or linearized dynamics. In all cases, the controllers rely on
the availability of a timely, reliable feedback signal, [91].
The second approach is the simplest way to stabilize a robot without feedback,
namely to use mechanical constraints, such as end stops. This approach is fre-
quently used, for instance, during a homing phase during the start up of a robot
with relative angle sensing. The use of mechanical constraints has been extended
to allow robots to align objects without knowing their initial position [48]. The
constraint approach however is limited, because even small deviations in the task
of a robot require the design of the robot to be adjusted.
The last approach is to the interplay between the natural dynamics of the system,
and the trajectory being followed. The goal is to find a trajectory that uses the
natural dynamics to ensure that the system is stable around that trajectory being
followed. This approach does not rely on feedback, and can handle deviations in
a robots task without adjusting the robots design. That makes the last approach
interesting to study.
To highlight the difference between the feedback control approach and this tra-
jectory selection approach, I use the term feedforward control for the latter. For
the fully actuated robot studied, the trajectory can be regarded as a function of a
nominal initial state and an input signal, the feedforward controller. The inverse
of this statement is also true, justifying the interchangeable use in this thesis of
the terms feedforward controller design and trajectory selection. Other uses of the
term feedforward controller, such as terms in a feedback controller that do not
directly use an error signal, are avoided.
A question that immediately arises when pursuing a purely feedforward control
approach is how to assess the stability of practically useful robot arm motions. The
stability of a non-linear system around a desired trajectory cannot be assessed for
many trajectories. There are two important classes of trajectories for which it
can be. First, those trajectories that converge towards a steady state. In [106]
the stability of such trajectories is analyzed for port-Hamiltonian systems, a wide
class of systems that includes serial chain manipulators. Unfortunately, steady
state analysis is only sufficient if the robot is allowed to stay in the same state
for an extended amount of time, while robots are typically asked to start moving
again shortly after having reached a desired state. The second class of trajectories
is more relevant to the case of robot arms. This class consist of cyclic or periodic
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trajectories. Robots are often used to perform repetitive tasks, which can be exe-
cuted as periodic motions. Furthermore, periodic motions allow stability analysis
along the same lines as for limit cycles [104, 162].
Limit cycle stability has been used to perform juggling [146] and, perhaps its
most prominent successful application, bipedal walking. First, McGeer et al. [109]
showed that some legged devices are stable when walking down a slope, even
though they are not stable when standing still. His approach was followed in
various research that used limit cycles as a basis of designing controllers for bipedal
robots [34]. While these robots are equipped with sensors, they rely on impact for
stabilization. So although their controllers use some feedback, they still indicate
the potential of limit cycles in a sensorless setting. The first step in answering the
main question on self-stabilizing robot arms is to show that feedforward control by
itself can make robot arms exhibit a stable limit cycle.
It must be noted, that the stability analysis is offline and model based. This means,
that there will inevitably be significant differences between the analyzed system
and the robot. For some motions, such as walking, minor deviations will alter the
motion, but keep a comparable performance [67]. The reaching task is not such a
motion. Errors in positioning larger than a centimeter or so, almost always mean
that the task is not completed. Therefore, the robot feedforward controller must
be robust, i.e., able to counteract the effects of model-robot mismatches.
The effects of model-robot mismatches was investigated in [14] for the context
of differential drive robots. They showed it is possible to steer such a robot to
a desired position, even when the wheel diameter is uncertain. Their approach
centers on the idea that the effects of the uncertainty cancel out for some specific
trajectories. In research not included in this thesis, I followed that idea to show
that for some uncertainties in a robot arm model, such as an unknown Coulomb
friction coefficient, it is possible to find paths that allow accurate positioning of the
robot [128]. It was also shown, that some uncertainties do not allow for accurate
positioning using feedforward control only. Furthermore, the approach taken does
not account for the stability of the motion.
As a result, a sensorless robot arm that is both self-stabilizing and robust is un-
likely to exist. A more promising way to handle the model-robot mismatch is via
learning. While learning is based on sensory feedback, it poses little demands on
this feedback. For instance, the feedback does not need to be real time, or data
can be missing. We can expect the robot to be self-stabilizing and robust without
the data, after a learning period. The second step in answering the main question
on self-stabilizing robot arms uses this approach to make a robustly stable robot
arm, such that a robot with limited sensing can learn to perform a self-stabilizing
motion, despite both model uncertainty and disturbances. To achieve this goal, a
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method is developed to verify the robust stability of the trajectory of the robot
arm. It is shown that the stability of this trajectory does not depend on the feed-
forward controller needed to achieve this trajectory. The feedforward controller
can thus be learned, which is done using a standard Repetitive Control scheme,
a variant of Iterative Learning Control [98]. The experimental goal of performing
a pick and place task is reached in two stages: the first is to develop the method
to perform robustly stable reaching motions, the second is to show the two staged
method can be used to perform a pick-and-place task.

In the first two steps of the self-stability part of this thesis, the capacity of robot
arms to self-stabilize was investigated and improved. This started from the obser-
vation that self-stabilizing behavior is clearly advantageous for humans. However,
humans and robots are not built the same way, so do not necessarily have to be
controlled the same way either. Past research seems to confirm this, as the use
of self-stabilizing effects have resulted in very energy efficient robot walkers [34],
but it has only resulted in reliable gaits for one specific task: walking on level
ground [18]. So, after developing the methods to robustly self-stabilize a robot
arm, the third step looks at the applicability of these methods, by studying the
following question: is optimizing the feedforward controller for self-stability a use-
ful approach to improving the accuracy of robot arm motions?

1.3 | Actuation and energy consumption

The brains and muscles of humans have evolved to be a very energy efficient actu-
ation system. The second part of this thesis is inspired by this energy efficiency,
and investigates how to use properties of human muscles to obtain it for robot
arms. I am not the first to be inspired by human muscles. In fact, it is even
possible to identify three, partially overlapping, branches of robotics research that
aim to mimic some properties of muscles.

The first branch concerns the elasticity of muscles. In the famous Hill-type muscle
model [183], two types of elasticity are identified: series elasticity and parallel
elasticity. The former has the elastic element in parallel with the active, work-
producing, element; the latter has it in series.

In robotic actuation both types of elasticity have been used. Series elastic actua-
tors were used for their benefits in accurate torque control, their ability to improve
safety and shock tolerance by decoupling the reflected inertia of the motor from
the inertia of the link [137]. Furthermore, the same decoupling also allows a series
elastic actuator to effect an impedance controller when the elasticity can be mod-
ulated [173]. Finally, series elastic actuators can reduce the peak power required



Introduction | 9

by the motor, allowing the use of lighter motors [123]. Parallel elasticity is ap-
plied for taking over part of the torque demands on the motor, thereby decreasing
energy loss due to motor heating. The most prominent example is gravity com-
pensation [174, 177, 181]. The characteristics of the parallel elasticity can also be
tuned for a specific task, for example [131]. Recent results show how to do so for
optimal energy efficiency [160].

Elasticity in actuators is a well-developed research field, with many active contrib-
utors. Therefore, while the elasticity in the actuation of the robots is used in this
thesis, it is not the main focus of this research.

The second branch of muscle inspiration for robotic actuators is a more global
property of some type of muscles: they are multiarticular, that is, they actuate
more than one joint at the same time. As such, they empower humans to more
effectively transfer energy between links of their extremities [139], avoid cocon-
traction to produce a desired end effector force direction [149], avoid performing
negative work on one joint, while simultaneously performing positive work on an-
other joint [179]. Especially the last property is inspiring for use in robot arms.

In literature, various biarticular robot actuators were proposed. The paper [74]
gives a good overview of the different designs. That paper also shows that mul-
tiarticular muscles are an active research field, that is not yet well developed.
However, as development in this field relies heavily on novel mechanical design, it
is outside the scope of this thesis, which focuses on the interaction between control
and dynamics.

The third branch of research aimed at incorporating muscle properties in the ac-
tuation of robots looks at the capability of humans to effectively do negative work.
Human muscles use a different (chemical) mechanism for performing negative work
than they do for performing positive work [7, 65]. This suggests using a similar
separation for robots. This idea is the least researched of the three branches, and
therefore the main inspiration for the work in this thesis.

The dissipative actions can be enacted by brakes. In robot literature, brakes
have mainly been used for locking, rather than dissipating energy. Locking al-
lows switching between different actuator modes, such as different transmission
ratios [118] or elasticity characteristics [107]. Most prominently, Collins et al.
[35] relied on clutches in their design of the first exoskeleton that increased the
metabolic efficiency of walking. Recently, research in the use of locking mecha-
nisms has expanded, see [129, 134] for an overview.

In this thesis I focus on the use of dissipative actions, to study their effectiveness.
In principle, this comes in two parts: when only brakes are available, and when
they are used together with an energy supply (motor). For two reasons, I pick
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the former. First, by putting such an extreme limit on the actuators, I hope to
learn about the mechanisms underlying energy efficient movement. After all, if
you cannot inject energy into the system, you have to be very careful with the
energy available. Second, a system that is actuated by brakes only is in some
sense intrinsically safe. This is the reason such systems were studied as haptic
interfaces before [108, 143, 165]. Such intrinsic safety could also be beneficial for
robotic arms.

This leads to the research question that was inspired by human actuation and
energy efficiency: can robot arms perform reaching motions with only dissipative
actions? For this purpose, a robot arm whose actuators do not inject energy in
the system is controlled such that it performs a pick-and-place motion.

1.4 | Adaptive planning

Humans also outperform robot arms in adaptability. In non-contact situations, the
adaptability of a robot comes from its ability to quickly replan motions. The plan-
ning of dynamic motions is done successfully using optimal (feedforward) control
to answer the first research questions of this thesis. Numerous well-tested optimal
control algorithms are available, see [142] for an overview. Recent research also
establishes that optimal control approaches is fast enough for it to be used for
(receding horizon) feedback control in the near future [167].

The use of optimal control as a planning algorithm suffers from three issues. First,
it relies on knowledge of the boundaries of the obstacles to guide the trajectory
between them. Such a description is often difficult to obtain, especially if the robot
moves through new environments, with objects it has not encountered before.
Second, optimal control algorithms often invest significant computation time to
go from a feasible, or good enough, solution to the optimal solution. In some cases
this is necessary, such as in the extreme scenarios studied in the self-stability and
dissipative-action related parts of this thesis. These scenarios were only feasibly
by (nearly) optimal movement. For everyday scenarios, performing a task while
not hitting obstacles nor making overly wasteful or slow movements, is already
satisfactory. The computation time can be reduced, by simply stopping the search
early, but this requires feasible intermediate solutions, which is not always possible.
The feasibility of solutions also relates to the third issue with using optimal control
for planning: the methods search locally, meaning they can get trapped in local
optima or fail to find feasible solutions.

A different approach to planning, so-called sampling-based planning solves these
two issues [47]. Sampling based planners have weaker convergence guarantees
than their non sampling-based counterparts, and often do not provide optimal
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solutions. However, they can be much faster in practice and do not require a
geometric description of the obstacles. The idea behind sampling based planners
is to try randomly selected sequences of inputs (actions), while keeping track of
progress towards the goal state.

The most commonly used method of tracking this progress is building a graph
of nodes in the planning space, that is in the configuration or state space. The
nodes in the graph signify those positions that have been reached without hitting
obstacles by trying the random actions. The difference between various algorithms
is in selecting where and how to expand the graph, and to what extend it is tried
to connect a new node to the other nodes in the tree. The three most used
variations are called Probabilistic Roadmaps (PRM, [77]), and two variations of
Monte Carlo Tree Search (MCTS, [22]) namely Upper Confidence Bound applied
to Trees (UCT, [84]) and Rapidly exploring Random Trees (RRT, [92]).

The difference between PRM and MCTS is the graph structure the algorithms
create. PRMs build a graph structure that allows loops, which allows reuse of the
graph. However, in a changing environment reuse requires efficient recomputation
of the feasibility of the motion segments, as in [187]. Such recomputation has
not been established for planning in state space yet. As such, MCTS approaches,
which creates simpler graphs (trees) for each query are a better fit for planning
dynamic movement in changing environments

The most famous branch of MCTS-algorithms are the UCT algorithms, which are
very generic, and therefore well suited to find high quality plans in domains about
which little insight exists, hence this type of search is particularly known for use
in games [29]. It has also been used for robotics [33], in situations where more
specialized algorithms are not available. One such instance is in Chapter 6 of this
thesis, where a similar algorithm is used.

For robotic trajectory planning however, RRTs are potentially preferable over
UCTs, as they are more specialized for that purpose. In particular, they are
well suited to exploring the solution space for motion planning problems. For its
rapid exploration, RRT algorithms rely on a (pseudo)metric which approximates
the distance between two nodes. The exploration is further enhanced when the
RRT has access to a local planner, i.e., a function that can find the correct steering
input for short motion segments.

The two requirements to make RRT work well are hard to satisfy in trajectory
planning. The distance function associated with an optimal control algorithm is a
sub-Finslerian metric [99], so is not continuous and not symmetrical. Experiments
have shown that using the Euclidean distance to approximate this distance leads
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to poor results [154]. Furthermore, local planning algorithms are often based on
iterative schemes, and therefore not fast enough to use in this setting.

To alleviate the problems with the distance functions, many heuristic approxi-
mations have been devised. A succesful approach is to use the use reachability
to find out whether Euclidean distance is sensible [154]. When it is sensible, the
Euclidean distance is used, otherwise the distance is assumed infinite. While these
approaches are useful, they may not be accurate enough for planning more chal-
lenging dynamic motions.

To obtain a more accurate approximation of the distance function, recently ma-
chine learning has been used [17, 122]. The machine learning generalizes from
a database of trajectories, with associated costs. In principle, the steering func-
tion can also be approximated this way, although this has not yet been shown in
literature.

The main challenge with this learning based approach to planning is to generate
the trajectories. The function approximation needs many samples, so most optimal
control schemes take a long time to compute them. There are two main approaches
to optimal feedforward control: direct and indirect. The most popular approach
first discretizes the functions that are optimized, in order to use more standard
numerical optimization techniques to find a solution. This so called direct approach
is more numerically stable, and is therefore preferred in most current literature,
including in the research on learning RRTs [142]. Examples of approaches and
applications using this direct approach are algorithms such as single shooting,
multiple shooting, various collocation methods and the ILQG/ILQR approach.

The alternative, so-called indirect, approach optimizes analytically, and subse-
quently discretizes the resulting differential equations [117]. The indirect approach
originated from the classic Euler-Lagrange approach, and is now applied as the
maximum principle of Pontryagin [135]. This approach is numerically less stable,
and therefore mostly used in a theoretical setting. However, it has some properties
that might make it well suited for use in RRTs.

Therefore, the part of this thesis that aims to improve adaptability investigates
the following hypothesis: indirect optimal control improves the performance of
learning-type path planners.

1.5 | Research questions and thesis outline

This section summarizes the research questions posed in the previous sections, and
explains what the role of each chapter is in answering them.
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• Is it possible to make a self-stabilizing robot arm perform a pick-and-place
task?

Chapter 2 The goal of this chapter is to show that feedforward control by
itself can make robot arms exhibit a stable limit cycle. To that end,
I develop a feedforward controller for a two degree of freedom robot
arm such that it performs a stable motion without the use of feedback
controllers or potential energy shaping.

Chapter 3 The goal of this chapter is to make a robustly stable robot arm,
such that a robot with limited sensing can learn to perform a self-
stabilizing motion, despite both model uncertainty and disturbances.
To that end, I develop a controller and a learning scheme that robustly
stabilizes a two degree of freedom robotic arm performing a reaching
task without feedback, after an initial learning phase.

Chapter 4 The goal of this chapter is to extend the work of the previous
chapter, such that the robot arm can perform a pick-and-place task.

• Is optimizing the feedforward controller for self-stability a useful approach
to improving the accuracy of robot arm motions?

Chapter 5 In this chapter, a PID-controlled robot arm either maximizes or
minimizes its accuracy by changing the movement it uses. The accuracy
of those motions is studied for different feedback gains.

• Can robot arms perform reaching motions with only dissipative actions?

Chapter 6 In this chapter, a robot arm whose actuators cannot inject en-
ergy in the system is controlled to perform a reaching motion.

• Does indirect optimal control improve the performance of learning-type path
planners?

Chapter 7 In this chapter, the RRT CoLearn algorithm, which combines
supervised learning with indirect optimal control, and shows a tenfold
decrease in planning time compared to earlier learning RRT algorithms.

Chapter 8 In this chapter, two further arguments for the use of indirect
optimal control and learning based RRT are provided. First, it provides
a proof of probabilistic completeness of learning based RRT. Second, it
shows a method to sample optimal trajectories using indirect optimal
control that is valid for an important class of robotic systems.

The final chapter reflects upon the first eight by providing discussion and the main
conclusions.
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Abstract

Most conventional robotic arms depend on sensory feedback to per-
form their tasks. When feedback is inaccurate, slow or otherwise un-
reliable, robots should behave more like humans: rely on feedforward
instead. This chapter presents an approach to perform repetitive tasks
with robotic arms, without the need for feedback (i.e. the control is
open loop). The cyclic motions of the repetitive tasks are analyzed
using an approach similar to limit cycle theory. We optimize open
loop control signals that result in open loop stable motions. This ap-
proach to manipulator control was implemented on a two DOF arm
in the horizontal plane with a spring on the first DOF, of which we
show simulation and hardware results. The results show that both in
simulation and in hardware experiments, it is possible to create open
loop stable cycles. However, the two resulting cycles are different due
to model inaccuracies. We also show simulation and hardware results
for an inverted pendulum, of which we have a more accurate model.
These results show stable cycles that are the same in simulation and
hardware experiments.

2.1 | Introduction

The vast majority of robotic manipulators require sensory feedback in order to
perform their tasks. Humans, on the other hand, use both feedback and feedfor-
ward (or open loop) control when controlling their body [42]. Using feedforward
allows humans to control their body despite having large time delays (typically
150 ms [36, 170]). Although robots have faster feedback loops, feedforward still
has advantages. First, feedforward can anticipate on future states of the system,
second, is can offer cheaper control when the cost is critical, and third, it is suitable
for systems with slow and imprecise feedback, such as camera based feedback.

In a previous study, we showed the remarkable result that sensitivity to some
modeling inaccuracies can be eliminated by choosing the right feedforward con-
troller [133]. This result was similar to observations in humans, who minimize the
influence of uncertainty on the final position of feedforward controlled movements
[62]. Where the previous study only considered short motions (one second), this
chapter takes those ideas a step further by considering long term stability of open
loop controlled robotic arms (see Fig. 2.1), inspired by (human) stable walking
motions.

One of the commonly cited disadvantages of open loop controllers is that they
cannot directly compensate for perturbations, since those perturbations are not
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Figure 2.1: This figure shows the top view of the concept of open loop stable manipulation for
our two DOF robot setup. Since there is no feedback available, the torque signal is a function of
time only. Using numerical optimizations, we find torque signals that result in open loop stable
cycles and allow the robot to perform repetitive tasks. Both the path displayed and the current
signals are obtained from hardware experiments.

fed back into the controller. Since most tasks of robotic arms are repetitive, we
propose to view them as cycles and consider the inherent stability of those cycles.
If the trajectories we perform are stable, perturbations will simply decay over time,
without the need for sensory feedback.

In literature, stability is defined in different ways, depending of the systems and
scenarios studied. In this thesis, stability is taken as assymptotic stability with
respect to a desired nominal trajectory, see [145] for the mathematical definition.
In practice, assymptotic stability means that if the robot starts away from the
nominal trajectory, it will converge to that trajectory, with the distance to that
trajectory at all times bounded.

As such, obtaining assymptotic stability is a first step towards handling distur-
bances: it shows a single disturbance is corrected over time. Key in this study is
that a desired nominal trajectory is stabilized. Many physical systems will con-
verge to some motion given a feedforward input, for instance, a pendulum with
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zero input will converge to its vertical hanging position. However, these motions
will typically not accomplish the desired task, such as reaching a desired position
at a set time.

For task performance, more properties than stability are important: such as the
rate of convergence, and the bounds on the distance from the trajectory after
disturbances. Furthermore, the sensitivity of task performance to errors in the
trajectory, and sensitivity to uncertainty in the model are important factors in
final performance. Due to the, previously stated, difficulty associated with open
loop control and disturbance rejection, this chapter focusses on the first step:
obtaining assymptotic stability.

Other researchers have already used the inherent stability of specific motions in
order to create functional robots. Those robots can be split into two groups: robots
with only limited state feedback and robots without any state feedback.

A well known example of robots with limited state feedback is given by Schaal
and Atkeson [146], who studied open loop stable juggling with a robotic arm. In
their case, open loop means that the state of the ball is not used as an input for
the controller, but the arm itself is position controlled. Other examples include a
timed position controlled swing leg retraction to stabilize running [152] and rope
turning without measuring the state of the rope [80].

The group that is more related to this study is the group of robots without any
state feedback. The most striking result in this group was obtained by McGeer,
who introduced the concept of passive dynamic walking [109].Those walkers do not
have motors and thus they do not use any feedback control, while their walking
motion is stable. The stable walking motions do not rely on the motion being
stable at each point in time, rather they work due to the existence of stable cyclic
motions, called limit cycles. Such cycles were later on used in so called limit cycle
walkers in combination with feedback control [59, 66, 71]. The work most strongly
related to this chapter is that by Mombaur et al. [113, 114]. They found stable
open loop controllers for walking and running robots by optimizing the open loop
controllers for both stability of the motion and energy consumption. These results
on a variety of systems indicate that open loop stable control can be an effective
approach for robotic arms as well.

However, the cited works all perform tasks in which impact plays a central role.
Under the right conditions, impact can have a large stabilizing effect. For the
reaching task the manipulator studied here has to perform, no such impact is
available. This gives rise to the question: can a feedforward controller by itself
stabilize reaching motions? This chapter shows the answer is yes.
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Figure 2.2: The four configurations we studied: (a) a simulation model of a two DOF robotic
arm, (b) a two DOF robotic arm, (c) a simulation model of an inverted pendulum and (d) an
inverted pendulum.

Therefore the goal of this chapter is to introduce a new approach in robot manip-
ulator control: open loop stable manipulation and to show the first results using
this approach. We show results both in simulation studies and in hardware exper-
iments.

The remainder of this chapter is structured as follows. Section 2.2 explains the
configurations we studied and the optimization method we used. Section 2.3 shows
the results for the two DOF robotic arm, including a description of the simulation
model, the simulation results and the hardware results. Section 2.4 shows the
results for the inverted pendulum, including a description of the simulation model,
the simulation results and the hardware results. Finally, the chapter ends with a
discussion in Section 2.5 and a conclusion in Section 2.6, where we will conclude
that it is possible to perform manipulation tasks with an open loop controller by
performing open loop stable cycles.

2.2 | Methods

We studied open loop stable task execution of robotic arms by optimizing the open
loop controller such that the task is performed by a stable cyclic motion. In this
section, we discuss the configurations we studied and the optimization method.

2.2.1 Con�gurations

We studied four configurations, which are also shown in Fig. 2.2:
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(a) A simulation model of a two DOF robotic arm. On this model we
optimized the open loop controller such that the arm makes stable cyclic
motions while performing the specified task.

(b) A prototype of a two DOF robotic arm. We implemented the con-
troller obtained in (a) on a two DOF robotic arm to test how the controller
performs on a real system. The results will show that the open loop con-
troller generates stable cycles on the robot, but does not converge to the
same trajectory as in (a). In Section 2.5.2, we will argue that this is caused
by a bending of the second DOF due to gravity.

(c) A simulation model of an inverted pendulum. We used the same
techniques as used in (a) to obtain open loop stable motions of an inverted
pendulum. We show that on this system, the results have an intuitive ex-
planation.

(d) A prototype of an inverted pendulum. We implemented the controller
obtained in (c) on an inverted pendulum to test how the controller performs
on a real system for which an accurate model is known.

2.2.2 Optimization method

The stability of limit cycles can be assessed with a number of different measures,
such as Lyapunov stability [162] or contraction analysis [97, 103]. We used the
classic notion of Poincaré maps [162] to find the stability of the open loop controlled
motions, which we will now explain.

Consider a non-linear system described by the following differential equation:

ẋ = f(x, u(t)) (2.1)

Since we use open loop control, we can consider the time as an extra state. Us-
ing transverse coordinates [9, 102, 153] with the time as phase variable in this
appended state space is the same as using error dynamics in the original state
space. This means that we can set a Poincaré section at t = tf . We calculated the
error dynamics along the trajectory x∗(t) that results from the input u∗(t). Since
the controller is open loop, the error dynamics are simply given as the difference
between the current state and the trajectory state, both at the same time:

ẋ∗ = f(x∗, u∗(t)) (2.2)
δx = x− x∗ (2.3)
˙δx = f(x, u∗(t))− f(x∗, u∗(t)) (2.4)
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Linearizing the dynamics along the trajectory results in:

˙δx = ∂f(x∗, u∗(t))
∂x

δx (2.5)

= A∗(t)δx (2.6)

Where A∗ is the linearized system matrix, and δx the error-state. We constrained
the motions to be cyclic with period tf (see below), which results in a cyclic A∗(t)
with the same period. Since system (2.6) is linear, we can take the state transition
matrix Ψ from t = t0 = 0 to t = tf . Because we know A∗(t) analytically, we
can find Ψ by numerically computing the solution to the following initial value
problem:

Ψ̇ = A∗(t)Ψ, Ψ(0) = I (2.7)

Similar to the monodromy matrix in Poincaré map analysis of limit cycles, the
motion is stable if the eigenvalues of Ψ have an absolute value smaller than one:

|λ (Ψ(tf )) |max < 1 (2.8)

To find a trajectory, we now use an optimal control approach similar to [113]. We
used the above condition as a constraint rather than to minimize the left hand side
of it, because of two reasons. First, the above condition specifies the convergence
rate of the limit cycle, and does not specify other stability related factors, such
as basin of attraction [67] and robustness against model uncertainties. Second, in
practice other performance issues are also of concern, such as energy consumption
and speed. We chose to use the integral of the squared input as objective, resulting
in the following optimization:

minimize
u(t)

∫ tf

t0

u(t)2dt (2.9)

subject to|λ (Ψ(tf )) |max < 0.9
|u(t)| < umax

x(0) = xpick

x(t1) = xplace

x(tf ) = xpick = x(0)

(2.10)

Where u(t) is the input, umax is the maximum input and xpick and xplace are the
pick and place states (see Section 2.3.2). The constraint that the final state is
equal to the initial state causes the resultant motion to be cyclic.

In case of a setup with multiple motors, we used the integral of the sum of squared
inputs as cost function. We used this cost function because it is often used in
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other control applications. Furthermore, the resulting controllers are relatively
smooth, whereas a time-optimal controller would be bang-bang. Such a bang-
bang controller is undesirable in robot experiments, because it is more likely to
be affected by unmodeled effects such as backlash. The optimization is performed
using the optimal control package GPOPS [141] in Matlab.

2.3 | Two DOF manipulator

We implemented open loop stable manipulation on a SCARA type arm with two
DOFs: two revolute joints moving two links in the horizontal plane (see Fig. 2.2b
and 2.3). Since there is no spring present on the second joint of the arm, an
open loop controlled motion must depend on dynamic effects for stabilization.
Specifically, the zero input does not lead to a stable result. Since the dynamic
effects are highly non-linear, it is not obvious whether stable motions exist. This
section starts with a system description, including a description of the robotic
arm and the simulation model. Next, we explain the task the arm has to perform,
followed by simulation results and hardware results.

2.3.1 System description

Fig. 2.1 shows a picture of the two DOF robotic arm [131]. The DOFs are created
by two 18x1.5mm stainless steel tubes, connected with two revolute joints, with
a spring on the first joint. A mass of 1 kg is connected to the end of the second
tube, which represents the weight of a gripper with product. The motors are placed
on a housing and AT3-gen III 16mm timing belts transfer the torques within the
housing. The joints are actuated by Maxon 60W RE30 motors with gearbox ratios
of respectively 18:1 and 1:66. The timing belts provide an additional transfer ratio
of 3:1 on the first joint and 5:3 on the second joint.
We used the TMT method [96] to obtain the equations of motion of the simulation
model of this arm, which are too long to include in this chapter. The model
includes 19 parameters, which are listed in Table 2.1. We included three types of
frictional losses: Coulomb friction, viscous friction and torque dependent gearbox
friction. Torque dependent gearbox friction is less commonly used than the other
two, however, from the parameter values obtained through a system identification
of the motor it is clear that this type of friction is not negligible (see Table 2.1).
The way we implemented it is similar to the force dependent friction term in [46].
The friction in a joint is equal to:

Tf = −µv · ω − sign(ω) · (µc + µt · |T |) (2.11)

for ω 6= 0
Tf = −min(µc + µt · |T |; |T |) · sign(T ) (2.12)
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Figure 2.3: Top view of the two DOF system with a linear spring on the first joint. The second
joint is actuated through a parallel mechanism (not shown in this figure), such that the angle of
the second arm is an absolute angle. The friction acts on the absolute angles of the joints.

Table 2.1: The model parameters of the two DOF arm.

Parameter Symbol Value Unit
Coulomb friction µc1, µc2 0.0481, 0.0218 Nm
Viscous friction µv1, µv2 0.03, 0.03 Nms/rad
Torque dependent friction µtf1, µtf2 21.87, 31.91 %
Inertia J1, J2 0.0233, 0.0871 kgm2

Mass m1, m2 0.809, 1.599 kg
Length l1, l2 0.410, 0.450 m
Position of COM lg1, lg2 0.070, 0.325 m
Motor constant kt1, kt2 26.7, 28.1 mNm/A
Gearbox ratio n1, n2 1:54, 1:110 rad/rad
Spring stiffness k1 1.6 Nm/rad

for ω = 0.

ω is the velocity of the joint, T is the torque exerted by the motor on the joint,
and µv, µc and µt are the coefficients of viscous, Coulomb and torque dependent
friction respectively.

The simulation model includes a DC motor. The torque applied by the DC motor
on the joint is equal to:

T = n · kt · I (2.13)

Where kt is the motor constant, n is the gearbox ratio and I is the current through
the motor. The current through the motor is constrained to 1 A (see eq. 2.10).
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Coulomb friction and torque dependent friction introduce discontinuities in the
equations of motion, which are difficult for GPOPS to handle. Therefore, we
optimized the open loop controller on a model with only viscous friction, and
added a torque afterwards to compensate for the Coulomb friction and torque
dependent friction. Such a compensation can only be done when it does not effect
the stability of the cycle, so when A∗ is independent of both the compensated
friction and the input. Both the Coulomb friction and the torque dependent
friction depend on the state through a sign function, which is a piecewise constant
function. Since A∗ is the result of linearizing along the state, A∗ does not depend
on those friction terms (neglecting the always stabilizing effect of the discontinuity
in the sign function). To make A∗ independent of the input, we consider momenta
instead of velocities. The equations of motion then become:

ẋ = f(x) +Bu(t) (2.14)

With x, the state consisting of positions and momenta, and B a constant matrix.
Following the definition in eq. (2.6), we see that A∗ is therefore independent of
u. Such a transformation is possible for many mechanical systems. Although
such a transformation is not necessary, our specific optimization was faster with
the transformation. For easier interpretation, we will show the velocities in the
results.

2.3.2 Task

The robotic arm has to perform a pick-and-place task. The important task pa-
rameters are the pick state, the place state and the time per stroke. We show the
results of the optimization for a motion which starts at t = 0 at the pick state
xpick, goes to the place state xplace at t1 and then returns to the pick state at tf
with

xpick =


−0.7 rad
−0.85 rad

0 rad/s
0 rad/s

 ;xplace =


0.7 rad
−0.3 rad
0 rad/s
0 rad/s

 (2.15)

Where x is the vector consisting of the positions of the first and second arm, and
their respective angular velocities. t1 and tf are free parameters in the optimiza-
tion, but bounded as follows:

0.1 s ≤t1 ≤ 1.2 s (2.16)
0.1 s ≤tf − t1 ≤ 1.2 s (2.17)

The goal is to find a path that statisfies the task constraints (that also include
a stability-enforcing constraint) according to eq. (2.10), and then minimize the
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Figure 2.4: This figure shows the plot of the end point of the arm in simulation. The plot
shows the stable cycle from simulation (thick dotted red line) and the motion of the robotic arm
that starts from a perturbed position and converges to the stable cycle (thin blue line).

integral of the square of the current (see eq. (2.9)). Although we only show the re-
sult of one specific task, similar results were obtained using other task constraints.
In none of these cases multi-starts or tuned initial conditions were needed, even
though the optimization is non-convex.

2.3.3 Simulation results

Fig. 2.4 shows the position of the gripper in the workspace. The gripper does not
start at the stable cycle, but converges to it. The sharp corners in the motion are
the pick and place positions. Similar results were obtained for different pick and
place positions.

Fig. 2.5 shows an example motion converging to the stable cycle in state space.
The motion starts at a distance from the pick state xstart = xpick+[0.07;−0.15; 0; 0]
and converges to the open loop stable cycle.

Fig. 2.6 shows the motion and current profile that result from the optimization.
In Fig. 2.6a and 2.6b, we see that the motion starts and ends at the pick state,
while at t ≈ 1.2 s, the arm is at the place state.

2.3.4 Hardware results

Fig. 2.7 shows the position of the gripper in the workspace. It clearly shows
that the gripper does not start at the stable cycle, but converges to the cycle.
Comparing the hardware results (Fig. 2.7) with the simulation results (Fig. 2.5)
leads to the conclusion that although both the simulation and hardware results
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Figure 2.5: This figure shows the state space plot of the simulation data for the two DOF
robotic arm. The plot shows the stable cycle (thick dotted red lines) and a motion that starts
from a perturbed position and converges to the open loop stable cycle (thin lines).
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Figure 2.6: This figure shows the simulation data for the two DOF robotic arm as function
of time. The figure shows the positions of the joints (a), the velocities of the joints (b) and the
torques about the joints (c).
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Figure 2.7: This figure shows the plot of the gripper in hardware experiments. The plot shows
the motion of the robotic arm that starts from a perturbed position and converges to the stable
cycle.

show convergence to a stable cycle, the stable cycles themselves are different. In
Section 2.5.2 we will argue that the difference is probably caused by a bending of
the second DOF due to gravity. In Section 2.4, we will show that for a simpler
system (i.e. an inverted pendulum), our model is accurate enough to predict the
exact cycle.

Fig. 2.8 shows the motion of the arm in state space. We see that the motion
converges to a stable cycle in state space. When comparing Fig. 2.8 with Fig. 2.5,
we see that range of positions of the upper arm is smaller in hardware experiments,
and that the range of positions of the lower arm is larger in hardware experiments.

Fig. 2.9 shows the time series of a typical cycle of the robotic arm in hardware
experiments. Again we see that the hardware results differ from the simulation
results. In Fig. 2.9b, we notice that the velocity signals show a vibration at
approximately 10 Hz. This vibration is caused by the elasticity of the timing belts
between the motors (with encoders) and the joints.

The accompanying video shows a demonstration of the disturbance recovery of the
two DOF arm. This video also indicates that the basin of attraction is large. In
Section 2.5.2, we will show this basin of attraction in more detail.

2.4 | Inverted pendulum

In the previous section, we showed the results of a two DOF SCARA type arm.
These results show that pick and place motions can be performed in an open
loop stable manner. However, there was a difference between simulation and
hardware results due to model inaccuracies. In this section we move to a simpler
system, allowing us to both give an intuitive explanation for how the stabilization
works, and indicate that with a more accurate model hardware experiments and
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Figure 2.8: This figure shows the state space plot of the hardware experiments on the two DOF
robotic arm. The plot shows the motion of the robotic arm that starts from a perturbed state
and converges to the open loop stable cycle. In order to obtain a smooth graph, the velocity
data is filtered with a fifth order Butterworth filter with the cutoff frequency at 10 Hz.
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Figure 2.9: This figure shows the data of a typical motion of the hardware experiments on the
two DOF robotic arm as function of time. The figure shows the positions of the joints (a), the
velocities of the joints (b) and the current through the motors (c).

simulation can be made to match. For this purpose an inverted pendulum is used
(see Fig. 2.10).
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Figure 2.10: Side view of the one DOF system with linear viscous friction and gravity.

Table 2.2: The model parameters of the two DOF arm. The values are obtained through a
system identification of the inverted pendulum.

Parameter Symbol Value Unit
Gravitational term c1 112.9 s−2

Motor parameters term c2 28.0 V −1s−2

Damping term c3 -1.8 s−1

2.4.1 System description

Fig. 2.2d shows a picture of the inverted pendulum setup we used. The pendulum
consists of a disk with an off-centered mass, which is connected to a DC motor
without a gearbox in between. This direct drive actuation results in low friction,
which makes the system easier to model. The DC motor is voltage controlled with
a maximum voltage of 5 V (see eq. 2.10).

The differential equation for this system is[
θ̇

ω̇

]
=
[

ω

c1 sin(θ) + c2U + c3ω

]
(2.18)

Where, U is the input voltage, and c1, c2 and c3 are the model parameters, which
we identified through a system identification and are listed in Table 2.2. In this
model, c1 can be seen as the gravitational term, c2 as the motor parameters term
and c3 as the damping term, which includes the back-emf term of the motor. All
these terms have the inertia of the pendulum included.

We again used GPOPS to optimize an open loop controller such that we obtain
an open loop stable motion for the task described below.
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Figure 2.11: This figure shows the data for the single pendulum in the vertical plane as function
of time. The figure shows the position of the joint (a), the velocity of the joint (b), and the torque
about the joint (c) for both the simulation as the hardware experiments.

2.4.2 Task

The task we will look at is a motion with the initial and final position of the
arm both at 1/5π (nearly upright position). Simply not moving will not result in
stability, since by itself this is an unstable position. So at first, it seems impossible
to find an open loop stable solution. However, this is possible when we allow
the pendulum to swing to the region between 1/2π and 3/2π (around the lower
equilibrium) during the motion. The goal is to find a path that is stable according
to (2.8), and then minimize the integral of the square of the voltage (see eq. (2.9)).
We limit the duration of the motion to 1.2 seconds.

2.4.3 Simulation results

Fig. 2.11 shows the result of the optimization, which can be explained intuitively.
Since eq. (2.18) is linear in the velocity and the input, the A∗-matrix of the
pendulum only depends on the position. That is, being in a state with θ between
−π/2 and π/2 has a destabilizing effect, and being in a state with θ outside that
range has a stabilizing effect. Loosely speaking, a stable motion requires that the
stabilizing effects compensate the destabilizing ones. This means that the system
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Figure 2.12: This figure shows the state space trajectory for the single pendulum in the vertical
plane. The plot shows the stable cycle as determined in simulation (thick dotted line) and a
motion on the hardware setup that starts from a perturbed position and converges to the stable
cycle (thin line).

should spend enough time in sufficiently stabilizing positions to counter the time
it spends in the destabilizing positions. In Fig. 2.11, we see that the pendulum
moves directly from the destabilizing initial position to stabilizing positions, where
it spends most of the time before moving back at the end of the motion. We use
the condition in eq. (2.8) to evaluate if the stabilizing effects are compensating
the destabilizing effects.

2.4.4 Hardware results

Fig. 2.12 shows the results of applying the input signal found in simulation on
the hardware setup. It shows a motion being initialized in a perturbed position,
after which it converges towards a cycle close to the one predicted by simulation.
Fig. 2.11 shows that the motion over time after convergence is the same in sim-
ulation and hardware experiments. This shows that when an accurate model is
available, the method we used finds a controller that performs the desired task
on the real system. Extending the method to allow task performance even when
accurate models are not readily available is an important next step in the research
on open loop stable manipulation.
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2.5 | Discussion

2.5.1 Model mismatch

For the two DOF robotic arm, the results from simulation (see Fig. 2.4, 2.5 and
2.6) are clearly different from those of the hardware experiments (see Fig. 2.7, 2.8
and 2.9). However, both simulation and hardware experiments show convergence
to a stable cycle. These results show that the specific cycle the system converges
to is sensitive to unmodeled behavior. For the inverted pendulum, we showed the
results from simulation and hardware experiments are the same. This is due to
the fact that the inverted pendulum is easier to model accurately.

There are three possible ways to reduce errors due to unmodeled behavior and
thereby improve the control performance. First, the model of the system can be
extended to include more of the unmodeled dynamics. Since modeling inaccuracies
will always exist, a second approach would be to include the sensitivity to modeling
inaccuracies in the optimization as in [133]. However, since sensitivity to modeling
inaccuracies cannot always be reduced [133], we expect the best results from the
third approach: tuning or learning open loop stable cycles online.

2.5.2 Basin of Attraction

In this chapter we focused on the calculation of open loop stability, which is a
minimal requirement for making open loop manipulation work, but it gives little
information about the rejection of realistic (i.e. finite) disturbances. Therefore, we
simulated the arm using a grid of initial positions in order to see if they converge
to the intended stable cycle. Fig. 2.13 shows this data, which is a slice of the
4D basin of attraction. This shows that the majority of initial positions (within
the mechanical limits of the arm) result in convergence to the cycle. This result
means that precise initial positioning of the arm is not required for converging to
the intended cycle.

Interestingly, the basin of attraction analysis shows that all initial positions con-
verge to the same cycle, although in some cycles, the second joint has rotated for
exactly one or multiple revolutions. While implementing several feedforward con-
trollers on the robotic arm, we found that most feedforward controllers (including
the one shown in this chapter) result in two stable cycles: one with negative θ2
and one with positive θ2. We expect that this is caused by a bending of the arm
due to gravity, which is larger around θ2 = ±π2 rad than around θ2 = 0 rad. We
suspect that this difference between the model and the arm is the main cause for
the mismatch of the cycles in simulation and in hardware experiments. In order
to improve the prediction of the cycle by the model, a stiffer arm can be used or
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Figure 2.13: This figure shows the basin of attraction of the open loop stable cycle for different
initial positions. The white region depicts all initial positions that result in convergence to the
cycle. The blue dotted line depicts the mechanical limits of the robotic arm. All initial positions
within the red line result in convergence while staying within the mechanical limits. The non-
converging initial positions are divided into three groups. First, light blue depicts convergence
to the intended cycle with an error in θ2 of 2π rad; second, dark blue depicts an error in θ2 of 4π
rad and third, black depicts an error in θ2 of 6π rad or more. So all initial positions converge to
the same cycle, although in some cycles, the second joint has rotated for exactly one or multiple
revolutions.

this bending can be modeled. A second cause of the model mismatch could be the
friction, which is hard to model in general.

2.5.3 Implications

The idea of using open loop stability of periodic motions to analyze repetitive
manipulation tasks is a new approach in robot manipulator control. It allows for
robotic arms to be controlled when feedback is too slow (e.g. using camera feedback
or control over great distance), too imprecise (e.g. due to cheap, noisy sensors [91])
or even impossible (e.g. in micro-scale applications or due to radiation), or when
the input is limited and planning is required.

There is no fundamental reason why stable cycles would not exist in robotic arms
with more DOFs, or for more complex tasks (e.g. obstacles or interactions with the
environment). However, we expect that it will be more difficult to find such cycles
and maybe impossible to find cycles that include the pick- and place-positions.
Finding trajectories can be made easier by tuning the dynamics of the system,
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such that all trajectories are stable, i.e. the system is contractive. Such tuning
could be done by adding springs on all joints or changing the mass distribution.

2.5.4 Applicability

The concept of open loop stable manipulation as presented in this chapter is
not fully applicable yet, since it consists of finding one stable cycle. In practice,
tasks consist of moving between multiple positions in a certain (not necessarily
predefined) order. Since the computations are too complex to perform online, we
see two approaches to make open loop stable manipulation fully applicable in the
future.

The first approach is to move in a stable periodic motion which covers most of
the task space. Whenever necessary, the controller can make open loop controlled
deviations from this cycle to the specified positions after which the manipulator
returns to the main cycle.

The second approach is to divide the space into a grid and build a library of
feedforward controllers for moving between the grid positions. The controller
can then create various stable cycles by combining multiple trajectories from this
library into a stable cycle that tracks the specified positions.

2.6 | Conclusions

In this chapter we introduced an approach to control robotic arms, without the
need for state feedback. We conclude that this approach is promising for robotic
arms that perform repetitive position tasks without feedback. Small disturbances
on the state of the system will decay over time and the robotic arm will asymptot-
ically return to its original trajectory. Both simulation and hardware experiments
show convergence to an open loop stable cycle, but the cycles they converge to are
not the same, probably caused by a bending of the second DOF due to gravity.
We expect that this problem can be solved by online learning of the stable cycles.
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Abstract

Robotic arms have been shown to be able to perform cyclic tasks with
an open-loop stable controller. However, model errors make it hard to
predict in simulation what cycle the real arm will perform. This makes
it difficult to accurately perform pick and place tasks using an open-
loop stable controller. This chapter presents an approach to make
open-loop controllers follow the desired cycles more accurately. First,
we check if the desired cycle is robustly open-loop stable, meaning that
it is stable even when the model is not accurate. A novel robustness
test using linear matrix inequalities is introduced for this purpose.
Second, using repetitive control we learn the open loop controller that
tracks the desired cycle. Hardware experiments show that using this
method, the accuracy of the task execution is improved to a precision
of 2.5cm, which suffices for many pick and place tasks.

3.1 | Introduction

This research aims at future applications where sensing and feedback are unde-
sirable due to costs or weight; or difficult due to small scale, radiation in the
environment or frequent sensor faults. A recent example of such an application
is the control of a swarm of nano-scale medical robots [12]. These applications
inspire us to investigate an extreme case of feedback limitations: solely open-loop
control on robotic arms. Control without any feedback can only be effective if
two key problems are addressed: disturbances (e.g. noise and perturbations) and
model inaccuracies.

The first problem, handling disturbances on an open-loop controlled robot, has
mainly been addressed by creating open-loop stable cycles. The best known exam-
ples of this are passive dynamic walkers, as introduced by McGeer in 1990 [109].
Since those walkers do not have any actuators, there is no computer feedback
control. The walking cycle of those walkers is stable, which means that small per-
turbations will decay over time. Such stable cyclic motions are called limit cycles.
Limit cycle theory was later used to perform stable walking motions with active
walkers, of which the closest related work is that by Mombaur et al. [113, 114].
They optimized open-loop controllers for both stability and energy consumption
and performed stable walking and running motions with those robots. Open-loop
stable motions have also been used before to perform tasks with robotic arms. In
1993, Schaal and Atkeson showed open loop stable juggling with a robotic arm
[146]. Even though their controller had no information about the position of the
ball, they showed that any perturbation in this position decays over time, as long



Robust open loop stable manipulation | 37

as a specific path of the robotic arm itself can be tracked. In a recent study, we
showed that it is possible to perform repetitive tasks on a robotic arm with solely
an open-loop current controller [132].
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Robust open loop stable 
cycle

Repetitive control
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Learned open loop 
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Figure 3.1: This figure shows the top view of the concept of robust open-loop stable manipu-
lation. We first optimize a cycle that stands still at the pick and place positions for open-loop
stability. Next, we check the cycle for robustness to model uncertainty. Then, using repetitive
control on the robotic arm, we learn an open-loop controller that tracks the cycle. After the
learning, the open-loop controller performs the task without any feedback.

The second key problem with feedforward control (i.e. model inaccuracies) pre-
vents the approach in [132] to be fully applicable: it causes a difference between the
motion as planned in simulation and as performed in hardware experiments. Han-
dling model inaccuracies on open-loop controlled robots has recently become the
subject of research. Singhose, Seering and Singer [155, 156] researched vibration
reducing input shaping of open-loop controllers while being robust to uncertainty
in the natural frequency and damping of the system. Becker and Bretl [11] re-
searched the effect of an inaccurate wheel diameter of unicycles on the performance
of their open-loop velocity controller. In their case, open-loop control means that
the position of the unicycle is not used as an input for the controller, but the
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velocity of the wheels is. In a previous paper, we showed that on a robotic arm,
different open-loop current controllers have different sensitivities to model inaccu-
racies [133]. We found open-loop current controllers of which the end position of
the motion is independent of the friction parameters. However, the motions that
handle the model inaccuracy problem of feedforward control, the stability problem
still exists, i.e., disturbances acting on these motions will grow over time.

Since these two problems of disturbances and model inaccuracies in open-loop con-
trol have only been addressed separately, no applicable purely open-loop control
scheme has been devised. This chapter shows that repetitive tasks can be per-
formed stably by robotic arms with an open-loop voltage controller, even when an
accurate model is not available.

In order to achieve this goal, the problem is split into two phases (see Fig. 3.1). In
the first phase the robustness of the system is analyzed with a novel method based
on linear matrix inequalities (LMI)[150]. In the second phase repetitive control
(RC)[98] is used to learn the exact control input, such that the desired positions
are reached accurately. During this learning phase, very slow feedback is allowed,
this feedback can be removed after the learning has been completed.

The rest of this chapter is structured as follows. Section 3.2 shows why the problem
can be split into two phases, and explains the robustness analysis method and the
repetitive control scheme. Next, Section 3.3 shows the experimental setup we used
to test our approach. Then, Section 3.4 shows the results of both the numerical
and the hardware experiments. Finally, the chapter ends with a discussion in
Section 3.5 and a conclusion in Section 3.6.

3.2 | Methods

In this section we explain our methods. First, in Section 3.2.1 we discuss the basic
concept of the stability analysis. Second, Section 3.2.2 explains our approach to
perform robustly stable open-loop cycles. Then we will describe the two steps of
this approach separately: a robust stability analysis (Section 3.2.3) and learning
of an open-loop controller (Section 3.2.4).

3.2.1 Open-loop stable manipulation

A system described by the differential equation ẋ = f(x, u) can be linearized along
a trajectory x∗ caused by input u∗(t):

dx̄

dt
= A∗(t)x̄ (3.1)
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with

A∗(t) = ∂f

∂x

∣∣∣∣
x∗(t),u∗(t)

(3.2)

where x̄(t) = x(t) − x(t)∗ is the state error. For the ease of notation, the time
dependency of variables is occasionally dropped if it is unambiguous to do so. For
example A∗(t) will be written as A∗.

If both trajectory and input are cyclic with period tf , stability can be assessed
by by discretizing the system using a time step tf . To be able to draw upon the
research in stability of limit cycles, note that such discretization is the same as
a Poincaré map of the system with the time appended to the state vector. The
Poincaré section is then taken as t = tf , and the time is reset to 0 after crossing
this section. Previously (notably in [113] and [132]), verifying stability was done
using the eigenvalues of the linearized discrete system. But that approach does
not allow incorporating model uncertainty in the stability analysis.

To obtain a method that does allow uncertain models, we use a quadratic Lyapunov
function, J = x̄TM(t)x̄, with positive definite M(t). The idea is that for a stable
system, anM(t) can be found such that the norm J is always decreasing over time.
For cyclic systems this means the following two constraints should be satisfied
(cf. [171]):

M(t)A(t)∗ + Ṁ(t) +A(t)∗
T

M(t) ≺ 0, ∀t ∈ [t0, tf ] C1

M(tf )−M(t0) � 0 C2

where ≺ and � are used to indicate negative/positive definiteness respectively, Ṁ
is the time derivative of M and the subscripts 0 and f denote initial/final time.
The first of these constraints ensures that the Lyapunov function is decreasing at
each time instant. The second constraint makes sure that it becomes stricter after
each cycle, i.e., that having the same error (x̄) as a cycle before means that the
Lyapunov function has increased. Note that only one of the two inequalities needs
to be strict in order for stability to hold.

When there are model inaccuracies, two changes occur that make the above condi-
tions invalid. Firstly, A∗(x∗(t)) is no longer accurate when in state x∗(t). Secondly,
when using a fixed open-loop controller on an uncertain system, the trajectory is
not fully predictable, so in general x(t) 6= x∗(t), when using the input u∗(t). In
the next section we will outline our approach to solve these two issues.
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3.2.2 Robust open-loop approach

To find motions that are open-loop stable even when the model is not accurately
known, we will focus on input affine systems with constant input matrix, i.e.,
systems that are described by the following differential equation:

ẋ(t) = f(x(t)) +Bu(t) (3.3)

where B is a constant matrix. The equations of motion of serial chain robots can
be written in this form, by considering phase-space rather than state space (i.e.
using momenta rather than velocities). Systems where the control input enters
the system via a constant matrix have the advantage that the linearized error
dynamics do not depend on u (cf. Eq. (3.2)):

A∗(t) = ∂f

∂x

∣∣∣∣
x∗(t)

(3.4)

Because the local stability of the motion only depends on the linearized error
dynamics, the stability for motions of such a system only depends on the states of
the motion, and not on the inputs used. This is the key insight that allows robust
open-loop control, by splitting the problem into two stages:

1. Finding a trajectory through the phase-space that is stable, even if the (lin-
earized) system dynamics differ from their nominal value by some uncertain
amount.

2. Learning the inputs for that trajectory. When done online, this learning can
take into account the uncertain dynamics.

With this two stage approach, an open-loop controller is found that accurately
controls the robot in a way that is both accurate and stable. These two prop-
erties hold even when facing modeling errors, which is important for hardware
implementation.

There are two important remarks to be made about this approach. Firstly, the
robust trajectory found should be a valid trajectory for the physical system, and
thus for all realizations of the uncertainty in the model. That means there should
exist an input for which the trajectory given is a solution to the differential equa-
tion. In our case this means the inertia matrix has to be known accurately in
order to translate momenta into the velocities that correspond to the time deriva-
tives of the positions in the planned trajectories. Secondly, for the learning step
some feedback is required, which means the robot is no longer purely open-loop
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controlled. However, such feedback can be delayed and can be removed once the
feedforward signal is known. This allows opportunities for external sensing, such
as cameras based feedback during the learning phase.

In Section 3.2.3 the methods used to find a robust trajectory will be explained.
Section 3.2.4 explains how Repetitive Control is used to learn the open-loop con-
troller.

3.2.3 Finding robustly stable trajectories

The first step in our approach is to find trajectories that are stable. To do so, we
use an optimization approach, further explained in Section 3.3. Then we test if the
resulting trajectory is robustly stable. In this section we derive a novel robustness
test, which is summarized in Algorithm 1.

For this section, we assume that we have a known trajectory for which we want
to determine how robust it is. We model the uncertainty of the system through
an integer number of uncertain parameters δj , that enter the linearization affinely
using known state and time dependent matrices ∆j(t), i.e.

A(t) = ∂f

∂x

∣∣∣∣
x=x∗(t)

+
∑
j

∆j(t)δj (3.5)

where we will take A∗(t) = ∂f
∂x

∣∣∣
x∗(t)

as the certain part of the dynamics, and ∆(t) =∑
j ∆j(t)δj as the uncertain part. Here the ∆j are known matrices describing how

the uncertain parameters δj enter the system dynamics. As a result, we have a
time varying uncertain system ˙̄x = A(t,∆)x̄ = (A∗(t) + ∆(t))x̄.

From theory of Linear Matrix Inequalities [150, Prop. 5.3], we know that if each
δj is constrained to some interval δj ∈ [δj , δ̄j ], then the constraint C1 holds for all
∆(t), if it holds for the ∆(t) created by the vertices of the hypercube of allowed
δj . The ∆(t) values connected to these vertices will be called ∆0(t), which is a
finite set. The choice for ∆0(t) depends on the expected model inaccuracies. The
robust stability constraint now becomes:

MA∗ + Ṁ +A∗TM + ∆T
0 M +M∆0 ≺ 0 C3

Note that this constraint is a sufficient, but not necessary condition for robust
stability. Making M a function of ∆ would reduce the conservativeness [150].
However, in implementation this would also result in much greater complexity
and computation time, so we have elected not to do so.
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Furthermore, constraint C3 determines whether the trajectory is robustly stable or
not, but it does not give a continuous measure of robustness. To add this measure,
we try to find the maximal constant εx, such that the following constraint holds:

MA∗ + Ṁ +A∗TM + εx∆T
0 M + εxM∆0 ≺ 0 C4

The value of εx is the robustness measure.

What is left is a way to find an M(t) that satisfies the constraints. Before describ-
ing our approach, we will briefly discuss two approaches that involve optimizing a
paramet rized M(t), and are unsuitable in this case, but at first sight might seem
applicable.

The first of these approaches is the most straightforward conceptually and has
been used in literature [32, 101, 171]. The idea in that research is to parameterize
M(t), and then optimize these parameters. The literature referred to establishes
that this parameter optimization can be cast as a convex problem by using Sum
Of Squares programming. The disadvantage of this approach for our problem is
that the optimization of M(t) requires many (> 1000) decision variables and is
therefore computationally expensive and sensitive to numerical errors.

The second approach is to parameterize M(0) only, and rework equation C1 or
C3 into a differential equation, which can be integrated to find M(t). The basic
example would be

Ṁ = −εsI −A∗
T

M −MA∗ (3.6)

with εs a small positive constant. This allows to optimize M(0), such that M(tf )
found using integration satisfies equation C2. This approach of integrating Ṁ

could potentially be extended to incorporate the uncertain dynamics into the dif-
ferential equations, for instance by viewingM as an ellipsoid, and using a minimum
volume ellipsoid covering algorithm. However, even then the method of searching
forM(0) and using forward integration is troublesome. The number of parameters
is greatly reduced compared to approaches whereM(t) as a whole is approximated
and optimized, but at the cost of losing convexity. This greatly increases the com-
putation time and introduces the risk of finding local minima.

Since these two approaches that involve searching for M(t) do not work, we pro-
pose a method which does not involve such optimization, but rather immediately
computes a (suboptimal) M(t). This method is based on a result from Floquet
theory, which states that all time varying systems with periodic coefficients are
reducible [53, Sec. XIV.3], i.e. can be transformed into a time invariant system.
The idea is to find a Lyapunov function for the certain part of this time invariant
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system and then transform this Lyapunov function back to the time variant system
for the robustness check.

The transformation to the time invariant system is based on the state transition
matrix of the nominal system x̄(t) = Φ(t)x̄(0), which can be found by integrating
the following initial value problem:

Φ̇(t) = A∗(t)Φ(t), Φ(0) = I (3.7)

Now if we define L(t) = Φ(t)Φ(tf )−
t

tf and the transformation x̄ = L(t)y, we get
for the state transition matrix of y:

ẏ = 1
tf

ln(Φ(tf ))y (3.8)

which is a time invariant, but possibly complex-valued system [53, Sec. XIV.1].
For this system we can then find a Lyapunov function yTMyy by solving for the
positive definite matrix My using standard LMI techniques. In principle it would
be possible to incorporate a worst-case transformed ∆(t) in that equation, but
for simplicity we optimize to find a Lyapunov function with the smallest time
derivative, i.e. maximize εy in:

1
tf

ln(Φ(tf ))TMy +My
1
tf

ln(Φ(tf )) + εyI ≺ 0 (3.9)

The resulting My is then transformed back to x̄ coordinates:

M(t) = L(t)−TMyL(t)−1 (3.10)

Finally, the maximum εx that satisfies constraint C4 at all times is found using
a numerical LMI solver. The time derivative of M that is needed for this step is
readily determined analytically. We omit these expressions because they are too
lengthy.

As Eq. (3.7) can only be solved numerically, a natural time sampling approach is
used. That is, the constraint C4 is only tested at the sampling times that are used
by the solver that integrates Eq (3.7). In this case, we used the MATLAB ode45
solver. This time sampling is inspired by [171], which discusses the correctness of
such a sampling procedure for a similar robustness test.

In many cases one or more of the singular values of the state transition matrix
Φ(tf ) are nearly zero [144]. This means that some errors are reduced to nearly
zero after one cycle. This can happen for instance with a high damping constant,
which could arise from using voltage control.
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Figure 3.2: Explanation of the transformations required for model reduction. At time t = 0 or
t = tf , the singular value decomposition can be used to find a basis for the solutions space. In
the left figure it can be seen that this basis has the advantage that the singular directions are
clearly separated. The right figure shows that by using the same basis at other times, the non-
singular dimensions are described using more basis vectors than are required to span the space.
The solution, also indicated in the right figure is to use a projection, in our case by computing
the column echelon form. This particular projection ensures the basis is periodic, which allows
the robustness analysis to be performed.

Such a nearly singular state transition matrix makes the numerics of the above
scheme ill-conditioned. Furthermore, the resulting LMI-test is very sensitive to
small changes in the nearly singular directions. This numerical sensitivity is in
contrast with the fact that in many cases, such near singularity is some intrinsic
property of the system or trajectory, and is not influenced by some small changes
in model parameters. In those cases the above scheme is sensitive to errors that
are irrelevant. Therefore we disregard these near-singular directions by assuming
the error in those directions is always 0.

Since the system is time varying, the relevant directions are also time varying. So
what is needed is to find a time varying basis for the non-singular space of the
error dynamics, see Fig. 3.2. The robustness test described previously requires a
periodically time varying system, therefore the basis for the non-singular dimension
should also be periodically time varying.

First, to disregard the near singular directions, use the singular value decomposi-
tion of the state transition matrix at time tf : Φ(tf ) = UΣV T . Define Uχ as the
columns of U that correspond to the singular values that are not nearly 0. These
columns are an orthonormal basis for the not-nearly-singular space of Φ(tf ). In
particular, define x̃(t) coordinates by the transformation x̄ = Ux̃. Then

Φ̃(t) = U−1Φ(t)[Uχ, 0] (3.11)
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is the state transition matrix for x̃, where the errors in the singular dimensions
are immediately set to zero (by the multiplication with [Uχ, 0]). The columns of
U Φ̃(t) now form a time varying basis for the non-singular space of the x̄-dynamics.
However, this basis is not periodic yet.

This periodicity can be enforced by using the following transformation, which
defines x̂(t):

x̄(t) = Urcef
(
Φ̃(t)

)
x̂(t) (3.12)

where rcef signifies the reduced column echelon form. To see that it works, it is
necessary to realize that after exactly one cycle, the columns of Φ̃ span the same
space. Furthermore, Φ̃(0) is simply the identity matrix with the last diagonal
entries turned into 0. Therefore Φ̃(tf ) also spans this same space, and the reduced
column echelon form then finds the correct basis: the identity matrix with the last
entries turned into 0. As a result rcef(Φ̃(0)) = rcef(Φ̃(tf )). This means that the
transformation in Eq. 3.12 is periodic, and can therefore be used in the robustness
test. The procedure of the robustness test, including this transformation is denoted
in Algorithm 1, in which each step is described and the relevant equations for that
step are then referred to.

This leaves only two remarks on the implementation of this transformation. First,
the reduced column echelon form of a smoothly varying matrix is smoothly varying,
meaning the time derivative of the transformation exists. To speed up computation
we use finite differences to compute this derivative. Second, the transformation as
defined above does not actually reduce the number of states in the computation,
but rather sets the states to zero. By substituting Uχ for [Uχ, 0] in Eq. 3.11, the
size of the state vector is reduced, which again speeds up computation.

Algorithm 1 Robustness test
Compute state transition matrix Φ(tf ), Eq. (3.7)
if nearlySingular(Φ(tf )) then

Reduce system dimension, Eqs. (3.11)-(3.12)
Make system time invariant by transformation, Eq. (3.8)
Find My, the Lyapunov function for that system, Eq. (3.9)
Initialize robustness measure, εx ← 1000
for all t in time discretization do

Find M(t), Lyapunov function of first system, Eq. (3.10)
Numerically find Ṁ(t) as required in constraint C4.
ε̄← maximum εx that satisfies constraint C4 at time t
εx ← min(ε̄,εx)
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3.2.4 Repetitive control

The stability of the trajectories computed by the optimization is independent of
the input and finite modeling errors. The next step is to learn the input that
tracks the trajectory on the robotic arm. When the trajectory is learned, the
feedback is disconnected and the task is performed stably with the learned open-
loop controller.
There are two (similar) learning algorithms which are commonly used for learning
of repetitive motions: Iterative Learning Control (ILC) and Repetitive Control
(RC) [98]. Both algorithms use the input and error from the previous iteration
(cycle) to compute the input in the current iteration. The only difference between
the two is that in ILC every iteration starts at the same state, where in RC every
iteration starts at the final state of the previous iteration. We use RC, because
it allows us to immediately start a new iteration at the end of every movement
cycle, whereas ILC would require a reinitialization after every cycle to start the
new iteration, which would take time and require fast and precise state feedback.
The repetitive control runs on a real time target with a sampling frequency of 500
Hz. Therefore, we will use discrete time notation with time step k.
The repetitive control scheme we used is

u(k) = u(k − p) + α(k) · (∆uP (k) + ∆uD(k)) (3.13)

with

∆uP (k) =
p−1∑
i=0

φ(i) · P · e(k − p+ i) (3.14)

∆uD(k) =
p−1∑
i=0

σ(i) ·D · (e(k − p+ i)− x̄(k − 2p+ i)) (3.15)

x̄(k) = x∗(k)− x(k) (3.16)

where u(k) is the control input, p is the number of time steps in one iteration,
x̄(k) is the error, x∗ is the desired state and x is the actual state. α(k), φ(i), σ(i),
P and D are explained below.
The learning rate α(k) is a function of time and can vary between 0 and 1. A
varying α(k) reduces the chance of converging to a sub-optimal solution.
The filter gains φ(i) and σ(i), for i = 1, . . . , p, determine how much the different
errors in the previous iterations contribute to the change in the input signal. The
filtering accounts for measurement noise and prevents oscillations in the RC. The
sum of the elements of φ(i) and the sum of the elements of σ(i) are both equal to
1, to obtain a (weighted) moving average filter.
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The learning gains P and D are Nu×Ns matrices (with Nu the number of inputs
and Ns the number of states). The P and D we used have the following structures:

P =
[
P11 0 P13 0
0 P22 0 P24

]
(3.17)

D =
[
D11 0 D13 0

0 D22 0 D24

]
(3.18)

Using this structure, errors in the state of one joint have no direct influence on
the control signal in another joint (i.e. there are no cross terms). The ∆uP term
can be seen as the proportional term of the RC, since it leads to a change in u

proportional to the errors in the previous iteration. The ∆uD term can be seen as
the damping term of the RC between two iterations, since it leads to a change in
u proportional to the change in errors between two iterations.

3.3 | Experimental setup

We tested our approach on a two DOF SCARA type arm. This type of arm can
perform industrially relevant tasks with a simple mechanical design. In the exper-
iment, the arm has to perform a rest to rest motion, typical for a pick and place
task. In this section the hardware setup and task description will be addressed,
along with parameters in our approach that were set specifically for the exper-
iments. Note however that the general approach does not depend on the exact
values of the parameters, which were manually tuned.

3.3.1 Hardware setup

Fig. 3.1 shows a picture of the experimental two DOF robotic arm [131]. The arm
consists of two 18x1.5mm stainless steel tubes, connected with two revolute joints,
with a spring on the first joint. A gripper is connected to the end of the second
tube. The motors are placed on a housing and AT3-gen III 16mm timing belts are
used to transfer torques within the housing. The joints are actuated by Maxon
60W RE30 motors with gearbox ratios of respectively 66:1 and 18:1. The timing
belts provide additional transfer ratios of 5:4 on both joints. The parameters of
this robotic arm are listed in Table 3.1.

The large damping terms are caused by the back-emf of the motors (since we use
voltage control and not current control). The viscous and Coulomb friction are
neglected in this chapter since they are small compared to the back-emf induced
damping. The equations of motion and the transformation to momenta can be
derived using standard methods [96, Chap. 3], and are omitted from this chapter
because they are too long. Because the second joint is connected to its motor via
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Table 3.1: The model parameters of the two DOF arm.

Parameter Variable Value Unit
Damping µv1, µv2 7.48, 0.56 Nms/rad
Inertia J1, J2 0.0233, 0.0871 kgm2

Mass m1, m2 0.809, 1.599 kg
Length l1, l2 0.410, 0.450 m
Position of COM lg1, lg2 0.070, 0.325 m
Motor constant kt1, kt2 25.9, 25.9 mNm/A
Gearbox ratio g1, g2 82.5:1, 22.5:1 rad/rad
Spring stiffness k1 1.6 Nm/rad

a parallelogram mechanism (see [131]), the angle of the second arm is taken as the
absolute angle, i.e., relative to the world frame.

The voltage control in the brushed motors is generated as a purely feedforward
signal. For brushless motors, feedback on the angles would be required to commu-
tate the current signal. Similarly, the current signal in the previous chapter uses
feedback of measured current to set the required voltage. In both these cases, the
feedback loop is much faster than the dynamics of the robot arm as a whole. So
it is sensible to consider these robot arms to be controlled feedforwardly.

3.3.2 Task description

We let the manipulator perform a cyclic pick and place motion, with pick and
place positions at [0.4, 0.1] rad and [-0.2, -1.2] rad respectively. At the pick and
place position, the arm has to stand still for 0.2s, which would be required to pick
or place an object. The time to move between the pick and the place position is
1.4s. Hence, the total time of one cycle is 3.2s.

3.3.3 Optimization

To find a robustly stable trajectory an optimization is used. First, the trajectory
is optimized for fast convergence, by minimizing the maximal eigenvalue modulus
of the linearized Poincaré map, see the stability measure in [132]. The input
was taken as a piecewise linear input, consisting of 20 pieces, with an absolute
maximum value of 5V. Then, the robustness of the resulting trajectory is verified
using the approach outlined in Section 3.2. The uncertain dynamics ∆(t) consist
of two uncertainties: uncertainty on the linearized stiffness on the first and second
joint. The bounds on these uncertainties are constant and taken as ±0.3 and ±1.0
Nm/rad respectively.



Robust open loop stable manipulation | 49

Table 3.2: The parameters used in optimization and RC

Symbol Value Symbol Value
tRCfinal 300 s
P11 1.5 V/rad D11 0 V/rad
P22 0.6 V/rad D22 0.4 V/rad
P13 0.3 Vs/rad D13 0 Vs/rad
P24 0.4 Vs/rad D24 0 Vs/rad

3.3.4 Repetitive control parameters

We let the robotic arm learn the cycle from simulation while t < tRCfinal. During
this learning period, the learning gain decreased linearly from α = 1 at t = 0 s to
α = 0 at t = tRCfinal s.

The filter gains we used are equal to

φ(i) = σ(i) = −(i− 1)(i− 50)
| − (i− 1)(i− 50)| ∀i ≤ 50 (3.19)

φ(i) = σ(i) = 0 ∀i > 50 (3.20)

The result of using these filter gains is that the change in input signal depends on
errors in steps k− p to k− p+ 50, see Eq. 3.13. Therefore the RC scheme is non-
causal. This filter has two purposes. First, taking a weighed average over multiple
measurements reduces the influence of sensor noise. Second, the non-causality
takes into account that the input relates to the acceleration, which means it takes
some time to have a measurable effect on the state, which consists of the positions
and the velocities.

The remaining parameters are shown in Table 3.2. All PD and filter gains we
used in the repetitive control algorithm are based on experience rather than on
extensive calculations. Also, note that in this chapter we do not not prove that the
repetitive controller is stable. Experience on the robot shows that the repetitive
controller is stable as long as the gains Pij and Dij are not too high.

3.4 | Results

This section presents the results from both the optimization in simulation and
hardware experiments. First, using the LMI based robustness analysis, we op-
timize the trajectory for both stability and robustness. Second, we learn the
open-loop controller that tracks this trajectory. When the controller is learned,
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Figure 3.3: The cycle of the robotic arm after learning. The red line shows the desired cycle
that was obtained from simulation. The blue solid line shows the cycle of the robotic arm after
300s of learning. (a) The position of the first joint, (b) the position of the second joint, (c) the
velocity of the first joint and (d) the velocity of the second joint.

the feedback is disconnected and the robotic arms can perform its task with solely
open-loop control. The video accompanying this chapter shows the hardware ex-
periments.

3.4.1 Simulation results

The red lines in Figs. 3.3a-d show the cycle obtained from optimization. The cycle
has a maximal eigenvalue modulus of 0.70 and a robustness value of εx= 0.038.
These results are interpreted in Section 3.5.2.

3.4.2 Hardware results

Fig. 3.5 shows the learning curve of the repetitive control. It shows two curves that
correspond to the absolute position error of the end effector at the pick positions
(blue line) and the place position (red line). These errors were calculated by taking
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Figure 3.4: This figure shows the motion of the arm in workspace. The red line shows the
desired cycle that was obtained from optimization. The blue solid line shows the motion of the
robotic arm that does not start on the cycle but converges to the cycle. After approximately two
cycles, the arm returns to tracking the desired cycle with its final accuracy of 2.5 cm.

the errors at the time in the cycle when picking and placing are to take place. The
learning phase takes about 40 cycles, which corresponds to 128s. After the cycle
is learned, the error at the pick position is approximately 1cm and the error at the
place position is approximately 2.5cm. These errors are small enough to perform
many basic pick and place tasks, as found for instance in the food and packaging
industry. Furthermore, these errors are also within the grasping-ranges of modern
robotic grippers [21][89].

The blue solid lines in Figs. 3.3a-d show the cycle after it was learned on the
robotic arm. The graphs show that the cycle on the robotic arm is the same as
the one obtained from simulation.

Fig. 3.4 shows the motion of the gripper in workspace. The red line shows the
cycle that was obtained from simulation and the blue solid line shows the robotic
arm that starts at a perturbed state and converges to the desired cycle. Within
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Figure 3.5: The absolute error in the pick and place positions while learning. This graph shows
that the absolute error decreases to approximately 1 cm for the pick position and 2.5 cm for the
place position.

two cycles, the arm follows the desired cycle.

3.5 | Discussion

3.5.1 Applicability

The techniques presented in this chapter make open-loop stable manipulation ap-
plicable. Previous work showed that model uncertainties lead to a cycle that differs
too much from the intended cycle to be applicable in e.g. pick and place tasks
[132]. With the learning of the open-loop controller, the errors in the position
of the gripper decreased to 1-2.5cm. Furthermore, when the arm is perturbed, it
converges back to the desired cycle within approximately two cycles.

Some applications, however, might require a more accurate controller (i.e. with
errors smaller than 2.5 cm). There are no fundamental problems that limit the
accuracy of our approach. There are however, two problems specific to our robotic
arm and implementation that do limit the accuracy. Firstly, velocity estimation is
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not accurate due to quantization noise due to a coarse encoder. This makes it hard
to learn the desired cycle. Secondly, the state is filtered in our implementation
of repetitive control, leading to a smooth control signal. However, a non-smooth
control signal might be required to track the desired cycle more accurately. In
conclusion, depending on the application, the setup and implementation can be
changed to increase the accuracy to the desired level.

The learned feedforward approach is applicable to many tasks. A new cyclic task
can be handled by the same procedure of learning a feedforward trajectory, testing
the robustness with Algorithm 1, and learning the input signal with repetitive
control. At the moment the learning takes the most time, 300s. The optimization
(1s) and robustness test (5s) take much less time. Reducing the time needed to
learn a new task will further increase the applicability and is therefore an important
part of our future research.

The main drawback of the current approach is that some feedback is required
during the learning phase. However, this feedback can be delayed (almost a whole
cycle) and can be removed after the learning has finished. The (delayed) feedback
could therefore be provided by e.g. cameras. One interesting direction for future
work would be to research repetitive control schemes without full state feedback.
This could mean omitting certain states or reducing the frequency of the feedback.

This feedback requirement also comes up in situations where large disturbances are
expected to occur after learning. In such situations the robot should know whether
it has converged back to the desired cycle. This requirement can be satisfied with
cameras, or even more basically, by using a switch at a certain position that checks
the timing of passing that position.

3.5.2 Interpreting robustness measure

The robustness test depends on the choice of ∆, which is to some degree arbitrary.
In previous experiments on this robotic arm, bending of the second joint was hy-
pothesized to be one of the main causes of model-reality mismatch [132]. Therefore
∆ was chosen to emphasize this error, which depends only on the position of the
second joint.

For the chosen ∆, the resulting robustness measure εx of 0.038 indicates that the
spring stiffness of ±0.038 Nm/rad could be added to the second joint. This seems
insignificant to the effective spring stiffness of around 1.6 Nm/rad that is in place
on the first joint. However, note that adding any negative spring stiffness to the
second joint would make that joint unstable by itself. Therefore low values of εx
should be expected.
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3.5.3 Hybrid systems and Coulomb Friction

Despite the fact that robustness against modeling errors is checked, there are still
two modeling-related issues that are not accounted for in the current approach.
Firstly, when performing an actual pick and place motion, the model will consist
of two phases with different end-point masses with an impact phase in between
to model the grasping. Secondly, a more accurate friction model would include
Coulomb friction. Both these effects can be added by using a hybrid system
model. Such hybrid models are quite generally used in analysis of systems with
limit cycles, mostly to cope with impact in walking, e.g. [180]. Under some
basic transversality conditions, as discussed in [24], the current approach can be
extended to such hybrid models. We see that inclusion as the logical next step in
the research in open-loop control of robotic arms.

3.5.4 Scalability

The experiments were done on a two DOF robotic arm. Such an arm has similar
dynamics to SCARA type arms, which are often used in industry. The current
approach therefore already can be used for realistic industrial situations. However,
there are also many robotic arms which have a larger number of joints and rotate
in 3D. For such a setup the approach remains untested.

There are three possible concerns for this approach for higher DOF robots. Firstly,
there is the possibility that no stable trajectories exist. This is unlikely, and it
can be ensured not to happen if springs are used on all joints to stabilize the sys-
tem. Secondly, the required computation will become more extensive. However,
because only a feedforward signal is required, no full state exploration is necessary.
Furthermore, the number of free parameters in the robustness approach is inde-
pendent of the number of DOFs on the robot. Thirdly, although earlier results on
a two DOF arm suggest that the basin of attraction of our approach is quite large
[132], for multiple degrees of freedom it becomes more likely that the robotic arm
will converge to a different cycle after a large perturbation. Again, this could be
prevented by using springs on all joints to stabilize the system. Combining all of
the above, we expect that our approach scales well to higher DOF robotic arms.

3.6 | Conclusion

In this chapter we showed that repetitive tasks can be performed stably by robotic
arms with an open-loop controller, even when an accurate model is not available.
We used an LMI-based robustness analysis to check the robustness to model in-
accuracies. We then used a repetitive control scheme to track this trajectory with
the robotic arm. Hardware experiments show that using this approach, position



Robust open loop stable manipulation | 55

errors can be reduced to 2.5 cm, making open-loop control applicable in tasks such
as picking and placing objects.
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Abstract

Robotic arms perform their tasks by relying heavily on sensor feed-
back, which can be inaccurate or even unavailable. Furthermore, act-
ing upon feedback is always a delayed and reactive behavior. As such,
this reliance on feedback is not always the desired control strategy.
When it is not, a more human like, feedforward based, control strat-
egy should be used. In order to study these feedforward strategies,
the goal of this chapter is to make a robotic arm perform a basic
pick-and-place task using feedforward control only. Despite their sim-
ple descriptions, pick-and-place tasks should be modeled as hybrid
systems, as the dynamics of the robot arm change when grasping or
releasing its payload. Furthermore, when performing the task without
sensors, two challenges need to be overcome: stability and robustness
against modeling errors. A feedforward control scheme that handles
both these challenges on a hybrid system does not exist yet. In this
chapter we extend a robustly stable feedforward control scheme to hy-
brid systems. We used this scheme to compute robustly open-loop sta-
ble cycles, after which a three-degree-of-freedom robotic arm learned
to follow these cycles using Repetitive Control. The results show that
the cycle was tracked with maximum position errors of 2.5 cm at the
pick and place positions. For as far as we know, this is the first time
that a robotic arm robustly performs a pick and place task by solely
using the most low-level open loop controller possible: a voltage on
the motors that is only a function of time.

4.1 | Introduction

One of the most basic tasks that both humans and robots perform is a pick-
and-place task: in an uncluttered environment an object is to be moved between
a relatively small number of positions. This task is fundamental because of its
simple description, but also because of its potential for automation in industry.
Some of this potential has already been realized, but there is still a large gap in
quality of motion between robots and humans. The difference in motion quality
largely comes about due to the clever motion strategies humans use.

One human strategy is the extensive use of feedforward control [42], which greatly
improves the accuracy and speed of human movements. Incorporating a feedfor-
ward term in robot control is known to reduce sensitivity to sensor noise [91] and to
increase bandwidth. We argue that more human-like feedforward strategies should
be applied (along with feedback) in robotics, to obtain better performance. To
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Figure 4.1: A photograph of the experimental setup. The task is to move the object from its
current position, the pick position, to the indicated place position

focus on understanding the capabilities of feedforward controllers from a robotics
perspective, we take an extreme approach in this chapter: we use no feedback at
all.

Such a study is not only interesting for obtaining insights in feedforward control, it
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also has the potential to directly increase the effectiveness of robots. Specifically, if
a robotic manipulator performs simple tasks in a relatively structured environment
with known pick and place locations, a design without feedback can be beneficial.
No feedback means no need for sensors or high-rate sensing electronics, allowing
the robotic arm to be simpler and cheaper. Furthermore, in situations where
feedback is not reliable or when it is even impossible, for instance due to small
size, vacuum, or radiation, feedforward control is the only solution.
The theoretical interest along with the direct benefits have made purely feed-
forward controlled systems a well appreciated research topic. This research has
focused on two main problems: stability and modeling errors. The stability of
open loop systems has mostly been studied using limit cycles. Within robotics,
examples are the work on passive walking robots by McGeer [109], subsequent feed-
forward controlled walkers by Mombaur et al. [113, 114] and a juggling robotic
arm by Schaal and Atkeson [146]. Plooij et al. [132] showed that pick-and-place
motions can also be performed as a feedforward-controlled stable limit cycle. The
capability of a purely feedforward-controlled robot to handle modeling errors has
also been studied. Firstly, Singhose et al. [155, 156] researched vibration reducing
open-loop controllers while taking into account the robustness to uncertainty in the
natural frequency and damping of the system. Secondly, Becker and Bretl showed
that it is possible to steer a differential drive robot to a desired position, even
when the wheel diameter is uncertain [11]. And finally, Plooij et al. [128] showed
that reaching movements can be performed with feedforward control despite model
inaccuracies.
A purely feedforward controlled robot needs to handle both stability and modeling
errors at the same time, that is, it needs to be robustly stable. One way to achieve
this robust stability is to obtain mechanical feedback, by using very stiff design
elements, such as cam-systems, end-stops or stepper motors. Such stiff design
elements must resist large forces, and therefore come with a downside: they must
be large and heavy.
Such heavy elements can be avoided, if we find a feedforward controller whose
robustness relies on choosing suitable trajectories. A first step in this direction
was made by Wolfslag et al. [185] who proposed a learning approach. With this
approach, the inputs to movements that are stable even with model uncertainties,
were learned online. Very slow feedback was used during learning and it was
removed afterwards. With this approach, it can be ensured that a trajectory that
performs well in simulation is executed stably and accurately on the hardware.
The problem with this approach is that it does not allow for hybrid systems,
whereas for many real world tasks the robot has to be modeled by a hybrid system.
For instance, in a pick-and-place task, the inertia of the robotic arm changes due
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to picking up an object. Furthermore, the picking and placing actions require
a different model, possibly including impact. As a result, open-loop pick-and-
place performance on the robot hardware could not be ensured from planning in
simulation.

Therefore, the main contributions of this chapter are the extension of the approach
from [185] to allow for hybrid systems and to verify that extension by performing
a pick-and-place task on a purely open loop controlled robot.

The rest of this chapter is structured as follows. First, we explain our methods in
Section 4.2. This includes the experimental setup, the robustness analysis, our new
extension of this analysis to hybrid systems and the Repetitive Control scheme we
used. Next, in Section 4.3, we present the results we obtained. We then discuss
these results in Section 4.4 and we conclude this chapter in Section 4.5.

4.2 | Methods

In this section we explain the methods used. We start with explaining the robotic
arm and the task it has to perform. Next, we explain the stability and robustness
analysis, which is the same as in Chapter 3. Then, we extend this analysis to
hybrid models, allowing the robotic arm to actually pick and place objects. And
finally, we explain the Repetitive Control scheme designed to track the desired
trajectory.

4.2.1 Experimental setup

Fig. 4.1 shows a picture of the experimental three DOF robotic arm [131] used
in this research to perform pick-and-place tasks with an open-loop controller. A
schematic drawing of this setup is shown in Fig. 4.2. The arm consists of two
18x1.5mm stainless steel tubes, connected with two revolute joints, with a spring
on the first joint. A Firgelli L16P linear motor is connected to the end of the
second tube and an electro magnet is connected to the linear motor as a gripper.
The motors for the first two DOFs are placed on a housing and AT3-gen III
16mm timing belts are used to transfer torques within the housing. The joints are
actuated by Maxon 60W RE30 motors with gearbox ratio of respectively 66:1 and
18:1. The timing belts provide an additional transfer ratios of 5:4 on both joints.
On both joints, a spring with a stiffness of 1.6 Nm/rad is connected in parallel
with the motor. These springs help to stabilize the robot. In particular, the spring
on the first joint prevents errors on that joint from accumulating, and is necessary
to be able to obtain stable feedforward controllers[132]. The parameters of this
robotic arm are listed in Table 4.1.
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Figure 4.2: A schematic drawing of the experimental setup.

Table 4.1: The model parameters of the two DOF arm.

Parameter Symbol Value Unit
Damping µv1, µv2 7.48, 0.56 Nms/rad
Inertia J1, J2 0.0233, 0.0312 kgm2

Mass m1, m2 0.809, 0.784 kg
Length l1, l2 0.410, 0.450 m
Position of COM lg1, lg2 0.070, 0.194 m
Motor constant kt1, kt2 25.9, 25.9 mNm/A
Gearbox ratio g1, g2 82.5:1, 22.5:1 rad/rad
Spring stiffness k1, k2 1.6, 1.6 Nm/rad

The large damping terms are caused by the back-EMF of the motors (since we use
voltage control and not current control). Friction is neglected in this chapter since
it is small (< 10%) compared to the back-EMF induced damping. The equations of
motion and the transformation to momenta can be derived using standard methods
[96], and are omitted from this chapter because they are too long. Because the
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second joint is connected to its motor via a parallelogram mechanism (see [131]),
the angle of the second arm is taken as the absolute angle (i.e. relative to the
world frame).

The task the arm has to perform is a standard pick-and-place task in which it has
to transfer packages with a weight of 168 g from the pick to the place position.
The pick and the place positions are (in terms of positions of the two rotational
joints) [0.4, 0.2] rad and [-0.4, -0.3] rad respectively. At those positions, the arm
stands still for 0.6 s to pick or place a package.

4.2.2 Robustly stable feedforward control

To perform a pick-and-place task using only feedforward control, the motion needs
to be stable and accurate. To achieve these requirements, an approach described
in [185] is used. This approach is briefly explained in Sections 4.2.2 to 4.2.3, and
summarized in Algorithm 2. In Section 4.2.4, we then show how to extend that
approach to incorporate hybrid systems, allowing us to study a pick and place
task.

A mechanical system using generalized positions and momenta as state space vari-
ables can be described by the differential equation ẋ = f(x) + Bu. It can be
linearized along a trajectory x∗(t) caused by input u∗(t):

dx̄

dt
= A∗(x∗(t))x̄ = A∗(t)x̄ (4.1)

with

A∗(t) = ∂f

∂x

∣∣∣∣
x∗(t)

(4.2)

where x̄(t) = x(t) − x(t)∗ is the state error. For the ease of notation, the time
dependency of variables is occasionally dropped if it is unambiguous to do so. For
example A∗(t) will be written as A∗.

Note that the linearized stability depends on A∗(t) over time, which is indepen-
dent of the input u∗(t). This independence will prove useful and it is the reason
for choosing momenta instead of velocities in the state. When there are model
uncertainties, the above equations become invalid for two reasons. First A∗(x∗(t))
is no longer accurately known when in state x∗(t). Secondly, when using a fixed
open-loop controller on an uncertain system, the trajectory is not fully predictable,
so in general x(t) 6= x∗(t), when using the input u∗(t). To solve these two issues,
a two-step approach is used:

1. Analyze the robust stability of the system defined by A∗(t), i.e. add an
uncertain term to A∗(t) and check whether the system is still stable.
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2. Learn the input that makes sure the system follows the trajectory x∗(t).
Recall that the input does not influence the stability of the linearized system.
Therefore, the stability of the motion, as determined in the first step, is still
valid even for the learned input.

4.2.3 Robust stability analysis

In this section, the robustness test from [185] is briefly explained. The test aims
at finding a Lyapunov function that works for a system with added uncertainty.
To find the Lyapunov function, a transformation into a time invariant system is
used. As the resulting numerical scheme can be sensitive to numerical noise in
highly stable system modes, the system is reduced by assuming the error in those
modes is always 0.

The first step in analyzing the robust stability is to add uncertainty to the system.
We model the uncertainty of the system through an integer number of uncertain
parameters δj , that enter the linearization affinely, using known state-dependent
and possibly time-dependent matrices ∆j(t):

A∗(t) = ∂f

∂x
(t) +

∑
j

∆j(t)δj (4.3)

where we take A(t) = ∂f
∂x (t) as the certain part of the dynamics, and ∆(t) =∑

j ∆j(t)δj as the uncertain part. As a result, we have a time varying uncertain
system ˙̄x = (A(t) + ∆(t))x̄.

Now we aim to find a quadratic Lyapunov function, J = x̄TM(t)x̄, with positive
definite M(t) for this system. For cyclic systems, stability is verified if an M(t)
can be found that satisfies the following constraints:

MA+ Ṁ +ATM + εx∆TM + εxM∆ ≺ 0 C5

Mf −M0 � 0 C6

where ≺ and � are used to indicate negative/positive definiteness respectively, Ṁ
is the time derivative of M , the subscripts 0 and f denote initial/final time and
εx > 0 is used to scale the uncertainty. The largest εx for which these constraints
can be made to hold is a robustness measure, as it indicates how large the uncer-
tainty can be while the quadratic Lyapunov function still guarantees stability.

Testing a specific M(t) for feasibility with respect to the constraints directly is
not computationally tractable. To turn the constraints into a computationally
tractable test, two steps are required. The first step is derived from the theory of
Linear Matrix Inequalities [150]: we know that if each δj is constrained to some
interval δj ∈ [δj , δ̄j ], then constraint C5 holds for all ∆(t), if it holds for the
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∆(t) created by the vertices of the hypercube of the allowed δj . The ∆(t) values
connected to these vertices will be called ∆0(t), and they form a finite set. The
choice for ∆0(t) depends on the expected model inaccuracies. The second step is
a discretization over time. Tobenkin et al. [171] studied the correctness of such a
discretization for a similar stability test. They showed that for a given infeasible
Lyapunov function, there exists a sampling time that is small enough, such that
its sampled analogue is found infeasible as well. As such, if the sampling time
is small enough, a Lyapunov function that is tested to be feasible indeed gives
a proof of stability. Unfortunately, it is unknown how to find a sampling time
that is guaranteed to be sufficiently small. We use a step size of 0.001 s in our
discretization, which we expect to be sufficiently small.

Now that we have a method to verify whether a specific M(t) satisfies the con-
straints, what remains is a way to find M(t). In order to compute a (suboptimal)
M(t), we use a method that is based on the fact that all time varying systems
with periodic coefficients can be transformed into a time invariant system [53].
The transformation to the time invariant system is based on the state transition
matrix Φ of the nominal system description x̄(t) = Φ(t)x̄(0), which can be found
by integrating the following variational equation:

Φ̇(t) = A∗(t)Φ(t), Φ(0) = I (4.4)

Now if we define L(t) = Φ(t)Φ(tf )−
t

tf and the transformation x̄ = L(t)y, we get
for the state transition matrix of y:

ẏ = 1
tf

ln(Φ(tf ))y (4.5)

which is a time invariant, but possibly complex-valued system [53]. For this system
we can then find a Lyapunov function yTMyy by solving for the positive definite
matrix My using standard LMI techniques. For the numerical implementation of
these techniques we use YALMIP [100] which uses SeDuMi [163]. We optimize
My such that the Lyapunov function yTMyy has the smallest time derivative, i.e.
maximize εy in:

1
tf

ln(Φ(tf ))TMy +My
1
tf

ln(Φ(tf )) + εyI ≺ 0 (4.6)

The resulting My is then transformed back to the x̄ coordinates:

M(t) = L(t)−TMyL(t)−1 (4.7)

Since this construction leads to a periodic M(t), constraint C6 holds. To verify
the robustness of the system, the maximal value of εx for which C5 holds is found,
using the discretization over time and the hypercube of allowed uncertainties ∆0.



66 | Chapter 4

In many cases one or more of the singular values of the state transition matrix
Φ(tf ) are nearly zero [144]. This means that some errors are reduced to nearly
zero after one cycle. Unfortunately, the computation of the robustness measure
is numerically sensitive to these near singularities, even though the corresponding
errors are normally insensitive to relatively small parameter changes. Therefore,
we choose to filter (project) out the directions in which these nearly singular errors
occur, reducing the dimensionality of the system. An approach in which the near
singular directions are regularized, for example by modifying ridge regression,
could also be possible. The projection approach was chosen here, as the effect
on the system under study is more easily interpreted.

The filtering process consists of two transformations, which together result in a
lower-dimensional system on which the robustness test can be performed. The first
transformation is based on the singular value decomposition of the final stability
matrix: Φ(tf ) = UΣV T . We set a cut-off ratio for the singular values, meaning we
only look into the directions with singular value higher than that cut-off ratio. This
ratio is set to 10−4 in our experiment. We define Uχ as the columns corresponding
to the singular values higher than the cut off ratio. Uχ forms a basis for the space
of errors with associated singular values higher than the cut-off ratio.

To track only the not nearly singular errors, we consider the system in a coordinate
frame as defined by the columns of U . The error in that coordinate frame will be
called Ū and can be found using the transformation: Ū = U−1Φ(t)Uχ. Note that
this transformation does not reduce the dimension of the system description. To
do so, we want to move the coordinate system along with Ū , such that the only
errors taken into account are the errors in the non-singular directions, while at
the same time the coordinate system is periodic in time. To create such a moving
coordinate system, we use a coordinate system that is spanned by the following
matrix:

R = r.c.e.f.(Ū) (4.8)

with r.c.e.f. denoting the reduced column echelon form operator. This operator
maps a matrix to its reduced column echelon form, that is, it takes the transpose of
the, more familiar, row echelon form of the transpose of a matrix. The coordinate
system found this way defines a lower-dimensional description of the error (which
we call Z) in the non singular directions:

Z = R†Ū (4.9)

where the † symbol is used to indicate a pseudo inverse.

This Z-description of the error can be used in the robustness scheme. This requires
the transformation of the system matrices A and ∆0 matrices to the Z-space.
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Doing so defines the time derivative of Z as Ż = (AZ + ∆Z)Z with

AZ = Ṙ†R+R†U−1AUR (4.10)
∆Z = R†U−1∆0UR (4.11)

Note that the dimension reduction outlined above introduces non-conservativeness
when transforming the error caused by ∆0. When the system dynamics change
from the nominal value, the actual error is no longer in the space spanned by
the non-singular solutions of the nominal system. The actual error is therefore
not in the lower-dimensional space described by Z. The pseudo inverse in the
definition of Z projects this error back, setting the nearly singular errors to 0 at
every time step. The combined effect of all these errors in the singular directions
is not per definition negligible, meaning the robustness measure is an estimate,
not a guarantee. To partially address this issue, we take the worst case effect of
∆0 in all directions, and add that to all the non-singular directions:

∆̃Z = ∆Z + ||R†U−1||∞ · ||∆0UR||∞ · I (4.12)

We use this model error in the final form of the robustness constraint:

Ṁ +ATZM +MAZ + εx∆̃T
ZM + εxM∆̃Z ≺ 0 (4.13)

The above equation requires the computation of the time derivative of the col-
umn echelon form, which we do with a finite difference scheme. The complete
computation is summarized in Algorithm 2.

Algorithm 2 Robustness test
procedure ROBUSTNESSTEST(x∗(t),∆0)

Linearize system around trajectory . Eq.(4.2)
Perform dimension reduction . Eqs.(4.9)-(4.12)
Transform system to time invariant system . Eq. (4.5)
Find Lyap. func. for time invariant system . Eq. (4.6)
Initialize robustness measure, εx ← 1000
for all t in time discretization do

Transform Lyap. func. to reduced system . Eq. (4.7)
ε̄← maximum εx to satisfy Eq. (4.13) at time t
εx ← min(ε̄,εx)

return εx

4.2.4 Extension to hybrid systems

To perform a real world task, interaction with the environment is required. Such
an interactive task can often be described as a system with multiple phases each
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with different dynamics. For instance, in the case of a pick-and-place task, a
motion consists of four phases: moving without object, grasping, moving with
object, releasing; each with different dynamics. A simple model makes grasping
and releasing instantaneous, meaning the dynamics of the robotic arm switch from
no load to carrying the object instantly. Such a switch in general also influences
the state, which means it is modeled as a discrete event, such that the state directly
after the switch is a function of the state directly before the switch.

A system that has multiple phases, switching between them at set points in time
or space, is called a hybrid system. Such systems can be described in many ways.
The description below gives a class of hybrid systems for which the robustness
test can be used. First, the state space, including time, is divided into regions
Di. These regions have boundaries Si. Then the following equations of motion
describe the system.

ẋ = fi(x) +Biu, x ∈ Di∧ /∈ Si (4.14)
x+ = si(x−), x− ∈ Si (4.15)

Where x− and x+ are the states at the beginning and end of the instantaneous
switching step, and fi(x) and si(x−) are the continuous and switching dynamics
of the system at hand.

In order to test for robustness, the system must be linearized around a trajectory.
The variational equation (4.4) can still be used to find the state transition matrix,
by using a discrete step at the switches. For these switches, care must be taken
to take into account that the switches of the perturbed trajectory will not occur
at the same time and state for different values of the error, see [44] for the correct
equations. This linearization is only correct if the order of the phases is preserved
when the trajectory is perturbed. For our description, this occurs when two criteria
are met. First, the functions si(x) should be differentiable at the switching points.
This prevents the system from switching to altogether different phases. Secondly,
the trajectory should be transverse to the switching boundary at the instant of
switching [24]. This prevents a switch from being missed.

The robustness test of the continuous phases of the hybrid system can now be
performed just as before. Note that when analyzing the continuous phase before
the switch, the error at the switching time should be taken as the error the instant
before switching. When analyzing the continuous phase after the switch, we should
take the error the instant after switching. That way, the discrete state transition
at the switch does not influence the analysis of the continuous phases.

The switching function si(x) itself can be uncertain too. In that case, the worst
case switch should be computed, given Φ(tswitch), and those worst cases should
be used in determining the state transition matrix after the switch. However, in
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many applications, including ours, the switching transitions are inelastic collisions,
which do not contain uncertainty.

To apply the robustness test to the pick-and-place robot, the robot must be mod-
eled according to the hybrid system description above. The model consists of two
regions, separated by the boundary t = tswitch. As the system is cyclic, there is
another boundary at t = tf . The continuous dynamics in the phases only differ
in the end-effector mass, which is includes the object mass when tf > t > tswitch.
The first transition models grasping as an inelastic collision, setting the link ve-
locities to zero. Therefore, the switching function is si(x) = S1x, with Si is a
block-diagonal matrix with blocks I and 0. The second transition (at tf ) models
the releasing of the object. This release has no effect on the state of the robot,
hence s2(x) = x.

Combined with the extension to hybrid systems, Algorithm 2 explains a way to
estimate the robustness of a given trajectory. In order to perform a pick-and-place
task, we first determine a trajectory, and then estimate the robustness of that
trajectory. If the robustness estimate is much larger than the expected mismatch
between model and robot, we can assume the feedforward controller will lead to a
stable trajectory on the robot.

4.2.5 Application in experiment

To determine the trajectory for the robot experiment, an optimization with respect
to another goal than robustness is used. Specifically, the trajectory is optimized for
fast convergence by minimizing the maximal absolute eigenvalue of the linearized
Poincaré map, see the stability measure in [132]. Fast convergence is important
for feedforward controlled robotic manipulation, as the robot will fail to perform
its task while it has not converged to its desired trajectory after an error. There-
fore fast convergence is more important than other performance measures such
as energy efficiency or speed. The input was taken as a piecewise linear voltage,
consisting of 20 pieces, with an absolute maximum value of 5V.

For our experiments, the uncertain dynamics ∆(t) consist of two uncertainties:
uncertainty on the linearized stiffness of the second joint and linearized damping
of the first joint. The bounds on these uncertainties are constant and taken as ±1
Nm/rad and ±1 Nm/rads respectively. These bounds are higher than the expected
model mismatch which is in the order of 0.1 Nm/rad or 0.1Nm/rads respectively.

4.2.6 Repetitive control

The optimization and robustness verification scheme combines to be the first step
in the robustly stable feedforward approach. The second step is to learn the input
that tracks the trajectory found in the first step. We use Repetitive Control (RC)
[98] for this learning step. RC teaches the robot to track the cyclic trajectory
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accurately, despite model errors that repeat exactly every cycle. After learning,
the feedback is disconnected and the task is performed stably with the learned
open-loop controller. The Repetitive Control scheme is similar to that in [185]. It
runs on a real time target with a sampling frequency of 250 Hz. Therefore, we will
use discrete time notation with time step k.

The repetitive control scheme we used is

u(k) = u(k − p) + (∆uP (k) + ∆uD(k)) (4.16)

with

∆uP (k) =
p−1∑
i=0

φ(i) · P · x̄(k − p+ i) (4.17)

∆uD(k) =
p−1∑
i=0

σ(i) ·D · (x̄(k − p+ i)− x̄(k − 2p+ i)) (4.18)

where u(k) is the control input, and p is the number of time steps in one cycle.
φ(i), σ(i), P and D are explained below.

The filter gains φ(i) and σ(i), for i = 1, . . . , p, determine how much the different
errors in the previous iterations contribute to the change in the input signal. The
filtering accounts for measurement noise and prevents oscillations in the RC. The
sum of the elements of φ(i) and the sum of the elements of σ(i) are both equal to
1, to obtain a (weighted) moving average filter. The filter gains we used are equal
to

φ(i) = σ(i) = −(i− 1) ∗ (i− 50)
| − (i− 1) ∗ (i− 50)| ∀i ≤ 50 (4.19)

φ(i) = σ(i) = 0 ∀i > 50 (4.20)

The learning gains P and D are Nu×Ns matrices (with Nu the number of inputs
and Ns the number of states). The P and D we used have the following structures:

P =
[
P11 0 P13 0
0 P22 0 P24

]
(4.21)

D =
[
D11 0 D13 0

0 D22 0 D24

]
(4.22)

The values for those gains are listed in Table 4.2.
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Table 4.2: The parameters used in Repetitive Control

Symbol Value Symbol Value
tRCfinal 100 s
P11 1.5 V/rad D11 0 V/rad
P22 0.6 V/rad D22 0.4 V/rad
P13 0.3 Vs/rad D13 0 Vs/rad
P24 0.4 Vs/rad D24 0 Vs/rad

4.3 | Results

In this section we show the results we obtained both from simulation and hard-
ware experiments. The cycle that was obtained from optimization is shown in
Fig. 4.3 (the red dashed line). The maximum eigenvalue of this cycle is 0.56. The
robustness estimate εx is 3.17, which means that the maximum allowable model
uncertainty is 3.17 times as large as the bound we set on the expected model
uncertainties.

Fig. 4.3 also shows the learned cycle on the robotic arm (blue solid line). It shows
that the cycle was learned reasonably well: the maximal deviation from the desired
trajectory is 0.1 rad. This largest errors occurs very briefly, and is found in the
second DOF. At t = 147 s, a manual disturbance is applied to the arm. The
cycles after this disturbance show the convergence of the arm towards the learned
cycle. Although the arm was only fully converged after four cycles, it never missed
picking up an object in this example. Usually with a large disturbance, the arm
misses two or three packages after the disturbance.

Fig. 4.4 shows the convergence of the end effector position due to the Repetitive
Controller. The learning phase lasts 100 s, which corresponds to approximately
26 cycles. After this learning phase, the controller is completely open-loop. The
figure shows that the error at neither the pick nor the place position increases after
the learning phase has ended. Only when manual disturbances are applied at the
38th, 43rd and 50th cycle, the error increases temporarily. The disturbance at the
38th cycle corresponds to the disturbance indicated in Fig. 4.3. The maximum
position error of the end-effector at both the pick and the place position after
convergence is approximately 2.5 cm.

4.4 | Discussion

The extension to hybrid systems allowed the analysis to be used for a task with
physical interaction with the environment. The hybrid extension can also be used
to incorporate Coulomb friction, which would cause a switch in dynamics at zero
velocity. Therefore, this extension is a large step in making the robust feedforward
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Figure 4.3: The position of the first and second DOFs as functions of time, after learning
has completed. Both the desired position and the actual position are displayed. At t=147 s, a
manual disturbance is applied, after which the robotic arm converges back to its cycle using only
feedforward control.

control scheme introduced in [185] applicable for robots performing meaningful
tasks.

After the cycle was learned on the robotic arm, the position errors at the pick
and place positions were smaller than 2.5 cm. This is accurate enough as to
be applicable for many practical pick-and-place tasks, for instance in the food or
packaging industry. After a disturbance, the robotic arm returns to its desired path
within two or three cycles, after which it can perform its task again. Applying this
feedforward scheme to scenarios where an occasional delay of two or three cycles is
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Figure 4.4: The error at the pick and the place position as function of the number of cycles
that have passed. The learning phase lasts 100 s, which corresponds to approximately 26 cycles.
At the 38th, 43rd and 50th cycle, manual disturbances are applied to the arm.

acceptable could reduce costs by leaving out sensors and sensor signal processing
electronics.

There are two ways to make the feedforward scheme more applicable directly. The
first is to decrease the time it takes to learn the feedforward signal. The current
learning time is 100 s. For many applications multiple trajectories are required,
which means that all those trajectories have to be learned. The goal would be
to learn every cycle within a couple of iterations. The second way to improve
applicability is to improve the accuracy. This could be handled by implementing
some basic sensing, such as a coarse encoder. Disregarding feedback, the limitation
on accuracy is caused by errors that do not repeat exactly each cycle. Such
errors arise from backlash and elasticity in the mechanical design, and sensor
noise during learning. These two issues are therefore important in the design of a
purely feedforward controlled robotic manipulator. Finally, if the accuracy is only
important at the pick-and-place positions, the RC could be tuned to emphasize
these positions.

The robustness measure in this chapter has two directions of improvement. First,
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the robustness measure potentially overestimates the robustness of the robot model,
due to the discretization step and the dimension reduction steps. This means that
there are no hard guarantees that the control scheme will work on the physical
robotic arm. The estimate on the robustness gives a large enough margin to as-
sume that the actual model uncertainties will not lead to an unstable system. A
conservative robustness measure would allow this assumption to be guaranteed.
The second direction of research on the robustness measure regards the size of
the disturbance that can be handled. Because the current measure is based on
a linearized system, no information on the basin of attraction of the feedforward
controller is obtained. In practice, the basin of attraction seems quite large, as the
manual disturbances applied gave initial errors of up to 15 cm, which is 6 times
the accuracy range after convergence. A measure that includes the allowable size
of disturbances would give further performance specifications, which would allow
for meaningful testing of the basin of attraction.

4.5 | Conclusion

In this chapter, we extended the state-of-the-art robustness analysis of feedfor-
ward controlled robots to hybrid systems. This analysis method estimates the
largest parameter variation with which the cyclic trajectory of the robot is still
stable. It was applied on a three DOF robotic arm and the robustness estimate
indicated that the expected range of parameter uncertainties would not lead to
instability. Application on a prototype resulted in position errors at the pick and
place positions of less than 2.5 cm, which is small enough to perform an actual
pick-and-place task. After the robotic arm was perturbed heavily, it returned to
performing its task within a couple of cycles. As far as we know, this is the first
time that such a task was performed by a purely feedforward controlled robotic
arm.
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Abstract

High feedback gains cannot be used on all robots due to sensor noise,
time delays or interaction with humans. The problem with low feed-
back gain controlled robots is that the accuracy of the task execution
is potentially low. In this chapter we investigate if trajectory op-
timization of feedback-feedforward controlled robots improves their
accuracy. For rest-to-rest motions, we find the optimal trajectory
indirectly by numerically optimizing the corresponding feedforward
controller for accuracy. A new performance measure called the Ma-
nipulation Sensitivity Norm (MSN) is introduced that determines the
accuracy under most disturbances and modeling errors. We tested
this method on a two DOF robotic arm in the horizontal plane. The
results show that for all feedback gains we tested, the choice for the
trajectory has a significant influence on the accuracy of the arm (viz.
position errors being reduced from 2.5 cm to 0.3 cm). Moreover, to
study which features of feedforward controllers cause high or low ac-
curacy, four more feedforward controllers were tested. Results from
those experiments indicate that a trajectory that is smooth or quickly
approaches the goal position will be accurate.

5.1 | Introduction

High precision in robotics is usually achieved with high feedback gains. However,
there are applications in which such high gains are undesirable or infeasible. For
instance, in the presence of sensor noise or time delays, high feedback gains will
make the robot unstable. A second example of robots in which high gains are
undesirable are robots that interact with humans. In such robots, high feedback
gains increase the risk of injury. These examples show that it is important to
develop alternative techniques to obtain high precisions that work even on robots
with limited feedback.

To that end, multiple researchers have taken the idea of feedback limitations to
an extremum and have focused on executing tasks with robots without any feed-
back. A first example is the concept of passive dynamic walking, as introduced
by McGeer [109]. Those walkers do not have motors and therefore no feedback
control, and still walk with a stable gait. These gaits do not rely on the motion
being stable at each point in time, rather they work due to the existence of stable
cyclic motions, called limit cycles. Such cycles were later on combined with feed-
back control in so called limit cycle walkers [59, 66, 72]. Mombaur et al. [113, 114]
found stable open loop controllers for walking and running robots by optimizing
the open loop controllers for both stability of the motion and energy consumption.
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Figure 5.1: A photograph of the robotic arm we use to test our method: a two DOF SCARA
type arm, which has to move between the pick and the place positions.

Control without feedback has also been applied on robotic arms. A well-known
example is the work of Schaal and Atkeson [146], who studied open loop stable
juggling with a robotic arm. In their case, open loop means that the state of
the ball is not used as an input for the controller, but the arm itself is position
controlled. In previous work, we showed that it is possible to perform open loop
motions with robotic arms that are insensitive to model inaccuracies [128, 133]
and to perform open loop stable cycles in which state errors vanish without any
feedback [132, 185]. In [185], we optimized trajectories for open loop stability, and
used an initial on-line learning approach to improve the precision of the purely
feedforward controlled robot. In these studies, the trajectory itself was effected
by the choice of feedforward controller, which was optimized. In the rest of this
chapter, we consider the feedforward controller and the trajectory to contain the
same information, since they can be translated into each other using the model of
the robot.

Previous examples show that the most common technique to stabilize robots with-
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out feedback is to optimize trajectories for their open loop stability [113, 114, 132,
133]. In practice, a certain amount of feedback will always be available, and
therefore the advantages of both control paradigms should be exploited to achieve
higher precision [91]. However, it is unclear if trajectory optimization is useful for
robots with at least a little feedback.

Therefore, the question we will answer in this chapter is: is optimizing the feedfor-
ward controller for stability a useful approach to improving the accuracy of robotic
arms with (limited) feedback? We will answer this question by studying a two
degree of freedom (DOF) SCARA type robotic arm in the following way. First,
in section 5.2 we explain the methods that we used, including the setup and task
we study. Then, in section 5.3 we introduce the Manipulation Sensitivity Norm
(MSN), which we use to estimate the lower and upper bounds of the accuracy
of the arm given a certain feedback controller. Next, in section 5.4 we show the
results of four alternative controllers that indicate that smooth and goal directed
motions result in high accuracy. These results are discussed in section 5.5. And
finally in section 5.6, we will conclude the chapter.

5.2 | Methods

In this section we explain the methods we used. First, we explain the systems
under consideration, including the controller. Second, we describe the robotic arm
that is used as a test case. Third, we discuss the specific task that is studied. And
finally, we discuss the feedforward term in the controller.

5.2.1 System description

The type of system considered in this chapter is a serial chain robotic arm moving
in the horizontal plane. The equation of motion of such a system is described by
a second order differential equation:

q̈ = f(q, q̇) +M−1(q)τ (5.1)

with q the absolute angles of the links of the robot, q̇ and q̈ the angular velocities
and accelerations, and τ the motor torques, which are used as control inputs. Note
that this system is non-linear due to the Coriolis and centrifugal terms f(q, q̇), and
the configuration dependent mass matrixM . To control the robot, both a feedback
and a feedforward term are used, hence τ = τfb + τff.

Because the goal of this chapter is to investigate the effect of feedback gain limita-
tions, we structure the feedback controller in such a way that it depends on only
one parameter, namely ω, which is the desired natural frequency of the controlled
system. For the purpose of constructing the feedback controller from this ω, the
system is simplified by neglecting f(q, q̇), and decoupling the resulting system by
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considering only the diagonal entries of the mass matrix at position q = 0. In
other words, only considering the simplified system

diag(M(0))q̈ = τ (5.2)

Note that this simplified system is only used to construct the feedback controllers
and that the system we study is the non-linear system in Eq. (5.1). By using
diagonal gain matrices K and C, we obtain the following, second order linear
differential equations:

diag(M(0))q̈i = −Kq − Cq̇ (5.3)

Because all matrices are diagonal, the differential equations are decoupled, which
means that they can be solved separately. Finally, we choose the gains such that
the natural frequency of all decoupled parts are set to a desired value (ω), and the
damping ratio is set to 1, i.e. critically damped. Therefore, the controller gains
are set by solving: √

k

m
= ω (5.4)

c

2
√
km

= 1 (5.5)

for each part. The natural frequency ω is then used as the parameter to vary the
gains. These feedback gains are then used to stabilize the robotic arm around a
desired trajectory:

τfb = −K(q − qdes)− C(q̇ − q̇des) (5.6)

The feedforward term is simply a torque as function of time: τff(t). This term
leads to the desired trajectory: q̈des = f(qdes, q̇des) + M−1(qdes)τff(t). Because of
this relation between feedforward controller and trajectory, we use the two terms
interchangeably in this chapter.

The goal of this chapter is to study the effect of the feedforward controller on the
accuracy of a rest-to-rest motion under disturbance. Our approach to studying
the effect is to optimize the feedforward controller to minimize or maximize this
disturbed accuracy. The optimization is done using single shooting, a basic optimal
control approach.

5.2.2 Hardware setup

To test our approach, we use a two DOF SCARA type arm [131] (see Fig. 5.1).
This type of arm was chosen as it is the simplest that can perform industrially
relevant tasks. The arm consists of two 18x1.5mm stainless steel tubes, connected
with two revolute joints. An end effector is connected to the end of the second
tube. The motors are placed on a housing and AT3-gen III 16mm timing belts are
used to transfer torques within the housing. The joints are actuated by Maxon
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Table 5.1: The model parameters of the two DOF arm.

Parameter Symbol Value Unit
Damping µv1, µv2 0.2, 0.2 Nms/rad
Inertia J1, J2 0.0233, 0.0312 kgm2

Mass m1, m2 0.809, 0.784 kg
Length l1, l2 0.410, 0.450 m
Position of COM lg1, lg2 0.070, 0.195 m
Motor constant kt1, kt2 25.9, 25.9 mNm/A
Gearbox ratio g1, g2 82.5:1, 22.5:1 rad/rad

60W RE30 motors with gearbox ratios of respectively 66:1 and 18:1. The timing
belts provide an additional transfer ratios of 5:4 on both joints. Because the second
joint is connected to its motor via a parallelogram mechanism (see [131]), the angle
of the second arm is taken as the absolute angle, i.e., relative to the world frame.
The end effector acts in the vertical plane and thus its motions do not influence the
dynamics of the first and second DOF. The mass of the end effector is incorporated
in the inertial terms of the second DOF. The arm is controlled through xPC-target
in MATLAB at a frequency of 1 kHz. The parameters of this robotic arm are listed
in Table 5.1.

5.2.3 Task description

We let the manipulator perform a cyclic pick and place motion, with pick and
place positions at [-0.2, -0.3] rad and [0.2, 0.4] rad respectively. The time to move
between the pick and the place position is 1.05 s. Hence, the total time of one
cycle is 2.1 s.

5.2.4 The feedforward term in the controller

We test the accuracy resulting from different feedforward controllers: minimization
and maximization of the novel Manipulation Sensitivity Norm (see section 5.3)
and both smooth and time optimal trajectories (see section 5.4). The feedforward
controller has to be parameterized in order to be able to optimize it.
The optimization schemes parameterize the torque signals for both joints as a
piecewise linear signal, with the length of every piecewise part being 0.3 s. The
space of such signals is called U . The system states are constrained to be on the
pick and place motions at the pick and place times. This also ensures that the
motion is cyclic. Finally, the absolute value of both torque signals is bounded by
τmax = 1 Nm in order to prevent reaching the actuator limits when when feedback
is needed. An example of such a feedforward control signal is shown in Fig. 5.2.
In the remainder of the chapter, the piecewise linear torque signals are optimized
for various goals. These goals are expressed as a function C(τff), which is either
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Figure 5.2: An example of a feedforward controller. The controller is parameterized as a
piecewise linear function with the length of every part being 0.3 s. These torques over time are
used as decision variables in the optimizations.

maximized or minimized. Combined with the task description, this leads to the
following optimization problem:

minimize
τff(t)∈U

C(τff)

subject to |τ(t)| ≤ τmax ∀t
q(0) = qpick

q(1.05) = qplace

q(2.1) = qpick

q̇(0) = q̇(1.05) = q̇(2.1) = [0, 0]

(5.7)

5.3 | Optimality study

In this section we estimate the lower bound and upper bound of the accuracy
of the arm, given a certain feedback gain ω. First, we introduce a new measure
for disturbance and modeling error rejection, called the Manipulation Sensitivity
Norm (MSN). Then, we use this measure to optimize feedforward controllers in
simulation, both minimizing and maximizing the MSN. Finally, we apply these
controllers on the hardware setup, to test their accuracy.

5.3.1 The Manipulation Sensitivity Norm

To judge the quality of a feedforward signal, a measure is needed that quantifies
the feasibility of performing a manipulation task when there are disturbances or
modeling errors. This section explains the novel Manipulation Sensitivity Norm
(MSN), which is inspired by the gait sensitivity norm used for bipedal walking
robots [67]. This inspiration comes from the insight that a pick and place task can
be seen as a repetitive motion and can therefore be analyzed using limit cycles
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[132]. The effect of disturbances on limit cycles on bipedal robots can be captured
by the gait sensitivity norm, which analyses the system based on an estimation of
an input-output relation that is defined once per step. This means that the effect of
a realistic disturbance profile during one step is taken as input, and a performance
measure as it occurs during that step is the output. In walking robots, a possible
output is the step time. A slight modification of the gait sensitivity norm can be
used to analyze the performance of manipulation tasks. This modification is the
MSN, and requires four steps to compute.

1. Defining output indicators

2. Defining a set of realistic disturbances as input signals

3. Obtaining the input to output relation

4. Computing the appropriate system norm of the input output relation.

The first step is to define output indicators. For pick and place tasks, output
indicators are a measure of the distance of the arm to the desired path. To make
the analysis as clear as possible, we use the error in the absolute angles of the
links at the pick position, which is the initial position of the cycle. The MSN will
compute the gain from a set of realistic disturbances to this output measure and
is therefore a measure of accuracy when moving under real world disturbances.

The next step is to define the disturbances, which are used as inputs. For our
analysis, we use three disturbances: a torque on the first link during the first
0.15 s of the cycle, a varying end-effector mass that represents a product that
has a different weight than expected and a varying viscous friction coefficient.
These inputs have a nominal value of 0, and their value is allowed to change
every cycle. Note that the last two inputs, mass and friction, are typically seen
as parameter variations. For this linearized analysis, there is no mathematical
distinction between such a parameter variation and a more traditional disturbance
such as the torque. This justifies treating parameter variations and disturbances in
the same way. Do note however, that the parameter uncertainty is lasting, which
should be reflected when computing the input-output gain.

In the third step, the input-output relation in Eqs. 5.8-5.9 are obtained using a
finite difference scheme. At the beginning of every cycle, very small (10−5) initial
condition disturbances are used to obtain a Jacobian matrix A, by comparing the
initial state to the state after exactly one cycle. Then, small values (10−5) of the
inputs are used to obtain the input to state Jacobian B. Finally, the relation to
the output is linearized, again both for initial error and inputs, obtaining C and
D respectively. The procedure is described in more detail in [67]. We now obtain
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a state space system S of the form:

x(n+ 1) = Ax(n) +Bu(n) (5.8)
y(n) = Cx(n) +Du(n) (5.9)

where x is a vector containing the errors in the state after each cycle and y is a
vector containing the errors in the positions at the pick position. In this linearized
discrete system, the matrix A depends on the system dynamics and the chosen
trajectory and B depends on how the inputs influence the state error. Note that
for our choice, the output indicators are already linear in the state and D = 0.

The last step is to compute an appropriate norm, which is the main difference be-
tween the gait sensitivity norm and the MSN. For walking, it is important that the
walking motion recovers to normal after the disturbance stops. For manipulation,
the disturbances tend to last, meaning we are interested in the maximum error in
the situation where the disturbance continues to exists, The appropriate norm is
thus the induced L∞ norm:

‖S‖L∞ = sup
u6=0

‖y(u)‖∞
‖u‖∞

(5.10)

What remains is to compute ‖S‖L∞ . The L∞-induced norm is the same as the L1
norm of the impulse response [20, 127]. Rather than computing the complete L1
norm, we approximate it by taking the sum of the first N steps, with N = 100,
chosen sufficiently large. Take gij(n) as the impulse response from input j to
output i. Now the Manipulation Sensitivity Norm can be written as:

MSN = ‖S‖msn = max
i

N∑
n=0

∑
j

|gij(n)| (5.11)

The MSN is the amount of error given a unit input and therefore could have
radians as unit. However, the specific input for which the error is largest differs
per cycle. Therefore, we chose to not use a unit for the MSN. The calculation
of the MSN is visualized in Fig. 5.3 and the overall procedure is summarized in
Algorithm 3.

When computing the MSN, we should scale the size of the inputs in order to
take into account the difference in the effect they have and the realistic sizes of
those inputs. Since the expected disturbances depend heavily on the system under
consideration, we choose a different approach, which highlights the capability of
the MSN to take into account multiple disturbance sources at the same time. The
input sizes are scaled such that the MSN of each of the three inputs considered
separately is 1, when feedback gains specified by ω = 1 s−1 are used for the MSN
minimization.
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Figure 5.3: A visualization of the calculation of the MSN. a) The impulse response of the
system. b) The sum of the absolute values of the impulse response. The MSN can be interpreted
as the amount of error given a unit input, which would have radians as unit. Since the input for
which the error is largest differs per cycle, we chose to not use a unit for the MSN.

The overall optimization for minimizing/maximizing the MSN is described by
eq. (5.7), with as cost function

C(τff = ±MSN(τff) (5.12)

We used fmincon with 20 initial conditions determined by multistart in MATLAB®

to solve the optimizations.

5.3.2 Simulation results

Fig. 5.4 shows the minimum and maximum MSN that were obtained as functions
of the natural frequency parameter ω. This figure shows what was to be expected:
increasing the gains results in a decrease of the MSN. The figure shows both
the maximum and the minimum MSN that were obtained by optimization. At
low gains, the maximization does not result in stable controllers, meaning that the
MSN is infinitely large. This instability shows that at these gains the unstabilizing
dynamical effects are larger than the stabilizing effects of the feedback controller.
For ω > 5 s−1, the difference between the cycles with minimized and maximized
MSN is negligible.
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Algorithm 3 Calculating the MSN
1: procedure MSN(τ(t), ω,N)
2: Determine [q(t), q̇(t)] . Eq. (5.1)
3: Determine K . Eq. (5.4)
4: Determine C . Eq. (5.5)
5: Determine A . Finite difference on q0
6: Determine B . Finite difference on u
7: for j = 1..J do
8: for n = 1..N do
9: Determine gij(n) . Eqs. 5.8-5.9
10: Determine MSN . Eq. 5.11
11: return MSN
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Figure 5.4: The minimized and maximized MSN as function ω, as found in simulation.

The red lines in Fig. 5.6a and 5.6b correspond to two optimized cycles. The cycle
in Fig. 5.6a was obtained by maximizing the MSN and the cycle in Fig. 5.6b was
obtained by minimizing the MSN. These cycles were obtained for ω = 2.7 s−1. The
corresponding values for the MSN are 12.2 and 1.6 respectively. Finally, Fig. 5.7
shows the time evolution of the torque signals, the feedforward term of which was
obtained in simulation.

5.3.3 Hardware results

Fig. 5.5 shows the position error of the end effector at the pick position during
hardware experiments as function of the natural frequency parameter ω. These
errors are the average error over 10 cycles after letting the robotic arm converge
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Figure 5.5: The errors at the pick position as function of ω, as found in hardware experiments.
The errors are shown for trajectories with a minimized MSN and a maximized MSN.

for 2 cycles initially. The standard deviation over these 10 cycles is negligible.
Logically, the errors decrease when the feedback gains are increased.

At the pick position, the error of the MSN minimizing trajectory is 0.3 cm at ω
= 2.1 s−1, in between ω = 2.1 s−1 and ω = 4.5 s−1, the error of that trajectory
is approximately 2.5 cm and for ω >4.5 s−1, the error drops to approximately 0.3
cm again. The error of the maximized-MSN-trajectory is larger than 2.5 cm, for
almost the whole range of gains. Only, for ω = 7.7 s−1, the error becomes 1.8 cm.
This significant difference between the errors of these two trajectories means that
the choice for the feedforward controller is important for the accuracy of the task
execution.

Fig. 5.6 shows two typical sets of hardware results. These results were obtained
for a controller with ω = 2.7 s−1. The plots show the state space trajectories for
a maximized MSN and a minimized MSN. They show that the three trajectories
differ significantly: the trajectory with maximized MSN covers a larger part of
state space than with minimized MSN. The measurements on the prototype show
the 10 cycles used in determining the errors used in Fig. 5.5. It can be seen that
the arm has converged, and only very little variation between cycles occurs.

Fig. 5.7 shows the torques for the two different feedforward controllers with ω =
2.7 s−1. The plots show both the feedforward torque and the actual torque. The
difference between the two is due to the feedback controller. The plots clearly
show that the feedback control effort is larger when following the trajectory with
maximized MSN (Fig. 5.7a), than when following the trajectory with minimized
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Figure 5.6: State space plots of the optimization and hardware results for ω =2.7 s−1. a) The
cycle with a maximized MSN. b) The cycle with a minimized MSN.

MSN (Fig. 5.7b).

5.4 | Alternative motion pro�les

In the previous section, the feedforward controllers under study were determined
by minimizing or maximizing the MSN. To further study which feedforward con-
trollers lead to accurate motions, four more methods to generate a feedforward
controller will now be compared. The simulation and hardware results for these
controllers are found in Fig. 5.8 and 5.9 respectively.

The first of the controllers is used to compare the minimized and maximized MSN
trajectories to a trajectory that is standard in industry: a trapezoidal velocity
profile. The trapezoidal velocity profile is created by dividing the time to move
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Figure 5.7: The torques as functions of time for the results with ω =2.7 s−1. a) Torques for
the cycle with a maximized MSN. b) Torques for the cycle with a minimized MSN.

between pick and place position in three equal parts: one part each for acceleration,
constant velocity and deceleration. The same procedure is used to move from
place to pick position. Both the MSN in simulation, and the position error on
the hardware show that this trapezoidal trajectory has accuracy closer to the
minimized MSN trajectory than to the maximized MSN trajectory. In hardware
results, the error of the trajectories with minimized MSN and trapezoidal velocity
profile are not even significantly different.

So, why does this standard controller perform as accurate as the optimally accurate
one? There are two potentially beneficial aspects to this trapezoidal trajectory.
First, it is relatively smooth, without large accelerations back and forth. Second,
it approaches the goal directly, and is already close to the goal position for the last
part of the motion. To test if these two effects are indeed beneficial, we compare
feedforward controllers with these two specific aspects.

If smooth controllers lead to accurate motions, it should be impossible to make
an inaccurate motion with a smooth controller. To test this, we performed the
MSN-maximization with a smoothness constraint. Here we took the smoothness
as a maximal torque time derivative of tf/4 Nm/s. This rate allows the torque to
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Figure 5.8: The MSN as found in simulation experiments. The errors are shown for six types
of trajectories.

go from maximum to minimum and back in one cycle. As can be seen in Fig.5.9,
this maximization with constraint has similar accuracy as the minimization in
hardware results. This indicates that smoothness is indeed beneficial for accuracy.

To test whether a quick motion towards the goal leads to low errors, we optimized a
cost function that squares the error with the goal position. This new optimization
is otherwise the same, but minimizes the following cost function:

C(τff) =
∫ tf

0
(q(τff)− qg(t))T (q(τff)− qg(t))dt (5.13)

With qg(t) being the way-point position when t < tf/2, and the initial position
otherwise. Again, the results show that this squared error minimization gives
accuracy close to the minimized MSN trajectory, as expected.

In order to confirm these results, we also tested the motion with a maximize the
squared error function? Because this would lead to a motion that moves away
from the target, and only reaches the target at the very last moment, this motion
is expected to result in relatively large errors. Furthermore, moving away, and
then rapidly towards the target is not very smooth, which is also likely to affect
the accuracy adversely. Figs. 5.8 and 5.9 show that this prediction is indeed true.
The trajectory performs worse than the other trajectories, although still not as
poorly as the maximized MSN trajectory.
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Figure 5.9: The errors at the pick position as function of ω, as found in hardware experiments.
The errors are shown for six types of trajectories.

5.5 | Discussion

In this section, we discuss the results as presented in this chapter. As can especially
be seen in Fig. 5.5, the choice for a certain trajectory is important for the accuracy
that is achieved. For high gains (ω > 3.2 s−1), this choice makes the difference
between a negligible position error and an error of multiple centimeters. For
medium gains (1.9 s−1 < ω < 3.2 s−1), this choice makes the difference between
negligible position errors and errors between 5 and 27 cm. And for low gains (ω <
1.9 s−1) this choice makes the difference between stability and instability.

The simulation and hardware results match well. Particularly, the shape of Figs. 5.4
and 5.5 are similar. There are however two differences. First, the difference in error
between the trajectories does not converge to 0 when the gains increase in hardware
experiments, whereas the difference in MSN does convergence in simulation. The
second difference is the hump in error and MSN that occurs around ω = 3 rad/s.
These differences are small and are caused by unmodeled dynamics that were not
taken into account in our choice for disturbances in the MSN-computation. The
most likely effects are elasticity in the timing belts and backlash. Because the sim-
ulation and hardware results are so similar, the MSN is a good approximation for
accuracy, and can be used to find feedforward controllers in cases when feedback
gains are low, yet accuracy is important.

The shape of Figs. 5.8 and 5.9 are similar, but there are clear differences. The first
and most important difference is that only two control strategies lead to errors
that are significantly larger than the minimum error. Those two control strategies
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are the maximized MSN and the maximized squared error. These results suggest
that there are two principles that lead to small errors: smoothness and being close
to the goal position before the end of the motion. Therefore, we expect that other
common profiles such as minimal energy, minimal torque, minimal acceleration and
minimal jerk will also perform well. The second difference is that in the hardware
results, the accuracy of the MSN-optimized feedforward controllers only give an
estimate of the range of possible accuracies. This can be seen in Fig. 5.9, in which
the minimized MSN controller is not the most accurate one for 2.1 s−1 < ω <

4.5 s−1.
In simulation, there are two points where one of the comparison trajectories has an
MSN that is outside the range given by the MSN minimization and maximization.
Specifically, this occurs for the In both these instances, the difference is small, and
caused by the choice of step size in simulation. In optimization, a sampling time
of 0.01 s is used to save computation time. For Fig. 5.8, a sampling time of 0.001
s was used, because this aligns with the robot hardware.
As ω goes to zero, both the MSN and the error in hardware results get very
large. This is logical since the system without feedback is not stable. Fig. 5.5
shows that for feedback with ω < 1.8 s−1, the error is larger than 2.5 cm and
therefore picking up objects of reasonable size will be difficult. If the feedback
gains cannot be increased, more mechanical feedback has to be implemented. The
most straightforward approach is to place springs at the joints. In our previous
work [132, 185], we showed that with a spring at the first joint, tasks can be
performed stably even when ω = 0.
The results from this chapter can be improved by incorporating the feedback in a
Repetitive Control (RC) scheme [98]. In an RC scheme, the feedforward controller
is adjusted based on the state error in the previous cycle. In the most simple form,
the feedforward controller in the current cycle is equal to that in the previous cycle
plus the feedback that was applied. Such an RC scheme was used before on robotic
arms to learn open loop stable trajectories [185].
There is an interesting parallel between the controller we use in this chapter and
human movement control. Similar to our controller, humans also exploit the ad-
vantages of both feedforward and feedback in order to optimize their performance
[42]. For fast motions, humans cannot rely on feedback at all, due to the large
time delays (typically 150 ms for humans [36, 170]). Therefore, they have to rely
on feedforward, in which control signals are generated based on the prediction of
an internal model [78]. In slower motions, more feedback is used to correct for
inaccuracies in the internal model and external disturbances.
Another interesting parallel with human motion control is the fact that smooth
motions perform well. In human motion control, there is an ongoing debate about
the cost function humans use optimize their motions. Suggested cost functions
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are the maximum jerk [49, 68], change of torque [175] and sensitivity to motor
noise [62]. Other researchers suggest that humans perform some kind of stochastic
optimal control in which variability in task irrelevant directions is ignored [172].
The problem in this debate is that all cost functions result in approximately the
same smooth motions. Similarly, we expect that all smooth motions that result
from such cost functions will perform well in terms of accuracy.

5.6 | Conclusion

In this chapter we focused on the question ‘is optimizing the feedforward controller
for self stability a useful approach to improving the accuracy of robotic arms with
(limited) feedback?’ The answer to this question is: ‘yes, the choice for a cer-
tain feedforward controller can make the difference between an accurate and an
inaccurate task execution.’ The feedforward controller was tuned using the novel
Manipulation Sensitivity Norm, which measures the accuracy while taking into
account disturbances and model errors. Feedforward controllers that were either
minimized or maximized for this norm were implemented on our robotic arm. Re-
sults show that for a large range of feedback gains, the error varies between 0.3
and 2.5 cm, depending on the choice for the feedforward controller. Further ex-
periments with alternative feedforward controllers indicated that a trajectory that
is either smooth, or approaches the goal position quickly, will be accurate. There-
fore, the commonly used trajectory with a trapezoidal velocity profile performs
well and is a good choice in terms of accuracy.
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Abstract

This chapter addresses the design of control systems whose actuation
can only dissipate energy. Such systems provide intrinsic safety, and
can be used in scenarios where energy is supplied by external entities
and point-stabilization is possible with only energy dissipation. Three
control synthesis methods are proposed that range from model-based
to a learning approach and their validity is demonstrated on a pas-
sively controlled manipulator performing a positioning task. These
three methods are the Zero Control Velocity Field, Monte-Carlo Tree
Search and Reinforcement Learning. The simulation results are cor-
roborated by experiments on a physical two link manipulator.

6.1 | Introduction

On many robotic arms, actuators actively provide the power needed to achieve
motion. Designers often aim for the cheapest or lightest actuator that suffices the
power requirements, in order to reduce the cost and weight of the arm. This chap-
ter takes this aim to an extremum and proposes control systems for a manipulator
that does not use active actuators to power the motion. In such a manipulator,
motions can only be influenced by clutches and dissipative components such as
brakes. As a case study for this idea, the system shown in Figure 6.1a is exam-
ined: a two DOF manipulator in the vertical plane which picks up objects and
places them at a lower height. While doing so, the controller can dissipate energy
but cannot add energy to the manipulator. Such a system shows resemblance with
a skier (see Figure 6.1b), who can steer and brake by dissipating energy while going
down to end up at a desired location.

Systems with solely dissipative components have several advantages. First, they
exhibit intrinsic safety: such systems cannot make unexpected motions caused by
unexpected inputs. Therefore, the motions are very transparent for the user, caus-
ing the system to be safer. The advantage of intrinsic safety is that it does not rely
on active control, as in [38], or clever trajectories enforcing safety during control
failures, as in [69], both of which can potentially fail in operation. Obtaining intrin-
sic safety was the prime motivation for previous research on dissipatively actuated
systems in the field of haptic devices [108, 143, 165], particularly for rehabilita-
tion purposes[6, 41]. Second, manipulators without motors are cheaper in both
purchase (actuators are expensive) and usage (lower energy costs). The energy
considerations prompted research in walking robots to consider purely unactuated
robots [109], and derived robots which use very limited actuation combined with
the dynamic properties of walking [59, 66, 72]. Finally, dissipatively actuated
manipulators could lead to lightweight designs.
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(a)

(b)

Hotel Bar Lift

Pick

Place

Figure 6.1: This chapter considers the control of systems with dissipative components instead
of actuators. A two DOF arm in the vertical plane is studied, which picks up objects and places
them at a lower height (a). While moving downwards, the arm can only brake. This case study
shows resemblance with a skier that can only brake while going downslope (b), in order do steer
itself to a certain goal at the bottom of the hill (e.g. a hotel, a bar or the entrance of the lift).

The goal of this chapter is to introduce the concept of dissipatively actuated ma-
nipulation. This concept turns out to be challenging from a controls perspective,
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as the resulting systems do not fulfill the required assumptions of the traditional
control approaches for nonlinear input-affine models. Therefore we compare three
controllers that do not make these assumptions: a Zero Control Velocity Field
(ZCVF) controller, a receding horizon controller implemented by Monte-Carlo
Tree Search (MCTS) and a Reinforcement Learning (RL) controller. These three
controllers merely illustrate a much wider range of possible controllers. They are
chosen as they form a scale from a mostly model-based towards a purely numerical
approach. As such, they represent three main paradigms in control: model-based,
receding horizon and learning.

Past research into the control of dissipatively actuated systems has largely been
guided by the requirements of haptic devices. Two prime topics of interest are the
regulation of admittance using dissipative actuators [60, 61], and the creation of
position dependent steering forces at an end-effector [6, 54]. In both these cases the
desired behaviour is expressed locally, which is not possible in our tasks: position
control.

More global behaviour was obtained in research on walking-guidance by means of
wheeled robots [83]. However, as the desired behavior of that robot was guidance,
the control system was based on a user supplying a force in approximately the
right direction. Furthermore, the main external force, gravity, was compensated
for using active actuators. For these two reasons their approach is not directly ap-
plicable to the problem here. The zero-control-velocity-field controller (discussed
in section 6.4), is the most similar to their approach, as it tries to steer towards a
preplanned trajectory.

Outside of haptic guidance, dissipative actuators are less commonly used. In
underactuated robot manipulators, brakes have been used as a locking mechanism,
allowing the robot to reach a desired configuration by sequentially manipulating
and locking the unactuated degrees of freedom [5, 30, 119]. Although such a
decoupling mode could be used in a fully dissipatively actuated robot arm, the
decoupling structure severely limits the possibility of control.

The rest of this chapter is structured as follows. Section 6.2 formulates the dis-
sipatively actuated manipulation problem mathematically. Section 6.3 describes
the test case chosen to test the controllers: a two DOF manipulator in the vertical
plane. Sections 6.4, 6.5 and 6.6 discuss the three controllers compared in this
chapter: ZCVF control, MCTS control and RL control. The chapter ends with a
discussion in Section 6.7 including a comparison between the three controllers and
a conclusion in Section 6.8.



Dissipatively actuated manipulation | 97

6.2 | Dissipatively actuated systems

Consider a class of mechanical systems in which the controller cannot add energy
to the system. For mechanical systems, the energy is expressed as [23]:

H(q, p) = 1
2p

TM(q)−1p+ V (q) (6.1)

where q ∈ Rn the generalized coordinates, p = M(q)q̇ the generalized momenta,
M(q) the positive definite mass matrix, and V (q) the potential energy.

The equations of motion can now be expressed in port-Hamiltonian form [147]:(
q̇

ṗ

)
=
(

0 I

−I −R

)(
∇qH
∇pH

)
+
(

0
I

)
u

ξ =
(
0 I

)(∇qH
∇pH

)
(6.2)

where u ∈ Rn are the input torques, R a positive definite matrix representing
mechanical damping (e.g. friction), and ξ = ∇pH = q̇, is the output of the
system.

From this formulation, one can show that the system is passive with the total
energy H as storage function, as can be seen by expressing the time derivative of
H:

Ḣ = −q̇TRq̇ + ξTu ≤ ξTu (6.3)

The input does not add energy to the system as long as ξTu ≤ 0, or equivalently:

Ḣ ≤ −q̇TRq̇ (6.4)

In this case, the controlled system is passive with respect to the original Hamil-
tonian, even if there is no damping (R = 0). Denote systems (respectively con-
trollers) that satisfy eq. (6.4) as dissipatively actuated systems (respectively dissipa-
tively actuated controllers). Such systems should be distinguished from dissipative
control systems, described in for instance [79],[120], in which both the controller
and the uncontrolled system meet a demand similar to Eq. 6.3. Do note that a
dissipatively actuated system is always a dissipative control system, the converse
is not true.

A more strict demand is

ξTi ui ≤ 0 ∀i = 1, . . . , n (6.5)

which gives rise to elementwise dissipatively actuated systems. This distinction is
important in implementation, because elementwise dissipatively actuated systems
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can be constructed using only brakes, whereas dissipatively actuated systems in
general require clutches. The implementations discussed later in this chapter are
all elementwise dissipatively actuated controllers.

The control goal is dissipatively actuated manipulation: steering a dissipatively
actuated system to a desired state. The first challenging aspect of dissipatively
actuated manipulation can be understood from eq. (6.4). Since the energy in the
system must always be decreasing, the problem of point stabilization becomes
challenging: if the energy of the desired final state is higher then the total energy
of the initial condition, then there exists no solution.

Even neglecting such reachability issues, the design of dissipatively actuated con-
trollers is not solved by standard methods. To see this, consider the following
structure of an elementwise dissipatively actuated controller:

u = −D(q, q̇)q̇ (6.6)

where D is positive diagonal. If instead of this diagonal constraint, D+DT is con-
strained to be positive definite, a normal dissipatively actuated system is obtained,
as Eq.6.4 is then satisfied. In either case, if D is allowed to be discontinuous, all
(elementwise) dissipatively actuated state feedback controllers can be written in
this form.

The constraints on D have two important consequences for model based controller
design: First, they mean the system is no longer small-time locally controllable
[23], as can be seen from the reachability argument above. Secondly, while the sys-
tem is input affine, its control space is not proper, i.e. 0 is on the boundary of the
control space. Unfortunately, most results on input-affine systems (see [23][79]) re-
quire the input space to be proper, or even to be Rn. As such, the requirements for
most nonlinear model-based control synthesis techniques (e.g. feedback lineariza-
tion, backstepping or sliding mode control; see [79]) are not met. Furthermore,
when using a flatness based approach [176], the constrained space is not readily
expressed in bounds on the flat output and its derivatives. This makes a flatness
based approach unappealing as well.

It is concluded that the problem of dissipatively actuated control is not readily
solved by standard model-based control design methods. In the remainder of the
chapter three approaches are discussed that have a significant degree of numerical
planning contained in them (this is also the case for other types of more challenging
plants such as nonholonomic systems).

6.3 | Case study

To test the three proposed approaches, a pick and place task for a two DOF arm
in the vertical plane is used. Before discussing these approaches, the hardware
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setup is described, how it is modeled and the task it has to perform.

6.3.1 Robotic manipulator

Motors

Gripper

Shoulder joint

Elbow joint

Timing belt

Pick position

Four place positions

y

x

Figure 6.2: This figure shows the task of the case study considered in this chapter. The two
DOF arm has to move from an initial position (pick position) to four different goal positions
(place positions), that are at a lower height than the initial position.

Figure 6.2 shows a picture of the two DOF robotic arm [131]. The DOFs are
created by two 18x1.5mm stainless steel tubes, connected with two revolute joints.
A mass of 1 kg is connected to the end of the second tube, which represents the
weight of a gripper plus a product. The motors are placed on a housing and AT3-
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Table 6.1: The model parameters of the two DOF arm.

Parameter Symbol Value Unit
Coulomb friction µc1, µc2 0.25, 0.08 Nm
Viscous friction µv1, µv2 -0.024, -0.009 Nms/rad
TD-friction µt1, µt2 32, 22 %
Inertia J1, J2 0.0364, 0.0808 kgm2

Mass m1, m2 0.8, 1.0 kg
Length l1, l2 0.38, 0.55 m
Position of COM lg1, lg2 0.07, 0.25 m
Motor constant kt1, kt2 25.9, 25.9 mNm/A
Gearbox ratio n1, n2 1:22.5, 1:82.5 rad/rad

gen III 16mm timing belts are used to transfer torques within the housing. The
joints are actuated by Maxon 60W RE30 motors with gearbox ratios 1:18 and 1:66
respectively. The timing belts provide an additional transfer ratio of 5:4 on both
joints. The parameters of this robotic arm are listed in Table 6.1.

The friction in the joints is modeled as a combination of viscous, Coulomb and
torque dependent friction (TD friction in Table 6.1):

Tf = −µv · ω − (µc + µt · |u|) · sign(ω) for ω 6= 0 (6.7)
Tf = −(µc + µt · |u|) · sign(u) for ω = 0 (6.8)

The standard mechanical equations are derived from the port-Hamiltonian model
presented in (6.2), using the Legendre transformation, to obtain:

M(q)q̈ + C(q, q̇)q̇ +∇qV = u+ Tf (6.9)

where M is the positive definite mass matrix, C the matrix representing the Cori-
olis and centrifugal forces, and V the potential energy due to gravity. Further
details of these equations are omitted from this chapter due to length. Note that
because of the parallel mechanism created by the timing belt to the second joint,
the angle of the second arm is taken as the absolute angle, i.e., relative to the
world frame.

6.3.2 Pick and place task

The manipulator has to perform a pick and place task with one pick position and
four place positions (see Figure 6.2). Every motion starts at the pick position while
knowing the place position it has to go to. When the place position is reached, the
arm is transferred back to the pick position. In the sketch of the idea in Figure 6.1,
this transfer is done by a spring once the package is dropped and the total mass
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of the manipulator reduces. The actual robot setup used in this chapter does not
include such a spring and thus the arm is moved up using the motors.

For mechanical systems, disturbance handling is often an important issue. In
the design of the three controllers, these issues are not explicitly addressed, as the
focus is on the challenge of controlling a robot arm to a desired position using only
dissipative actuators. The capability of handling large disturbances is discussed in
Section 6.7 as part of the reachability question, as it relates directly to the range
of motions that the robot can perform.

6.4 | Zero Control Velocity Field

6.4.1 Steer towards minimal control

The first approach proposed is a model based controler, based on a simple heuristic:
when control authority is limited, steer towards a trajectory that requires little or
no control, and then keep following that trajectory using the natural dynamics.
The idea behind this heuristic is that if a disturbance would act upon the system in
a trajectory that uses no (or very limited) control, it is likely that enough control
authority remains to steer back to the desired trajectory. Contrast this to the case
where all control authority is required to follow the trajectory, which is likely to
make it impossible to recover from a disturbance.

The above heuristic is applied using a three staged approach. The first stage is to
find trajectories towards the goal position that use a control action that does not
come close to violating the constraint in eq. (6.5). The second stage is defining a
velocity field for which the previously found trajectories are attractive. The third
stage is the design of a controller that tracks the velocity field. This final controller
is then used during the motion. In the description below it is shown how these
three stages are incorporated into the controller for the vertical pick and place
task. The complete control procedure is summarized in Algorithm 4.

Note that this approach is not a unique approach to designing a model based
controller for passively actuated systems. The design heuristic, and its implemen-
tation in the form of a velocity field controller were chosen due to their intuitive
appeal. Splitting the control design in these three steps allows reasoning about
the capacity of a passively actuated controller to execute the desired control com-
mands.

There is a class of controllers, known as intrinsically passive controllers [161], which
also seem to have intuitive appeal. In this case, the appeal comes from the tight
link between the control design and the energy in the system, which is highly
important for dissipatively actuated systems. The prime appeal of intrinsically
passive controllers is that they guarentee passivity of the whole system, even with
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Table 6.2: ZCVF control parameters.

Goal x-position Vertical velocity Virtual damping
[̃m] [m/s] [Nms/rad]
0.3 -0.3 2.0
0.1 -0.2 2.4
-0.1 -0.4 2.0
-0.3 -0.5 1.4

model uncertainties. However, the passivity of a system that is passively actuated
is already guaranteed, as discussed in the previous section. Furthermore, it is
unclear how to design and connect an intrinsically passive controller with internal
energy, such that eq. (6.5) is always satisfied.

6.4.2 Implementation

Stage 1, trajectory

To find the minimum control trajectories backward simulation is used. A trajectory
qtraj(t) is computed by starting at the goal position and simulating backwards in
time, using a feedforward signal (i.e. a constant gain damping coefficient). This
trajectory is represented by letting the workspace x-position be a function of the
workspace y-position, resulting in the trajectory always going downwards at all
time. This also makes the trajectory not cross itself.

In the backward simulation, there are two parameters that have to be tuned.
The first tunable parameter is the velocity at the goal position. In a practical
application, this goal velocity is typically 0 rad/s. However, a large braking torque
towards the end of the motion can easily be used to achieve that velocity. Therefore
any goal velocity can be used to tune the motion in the backwards simulation1. A
final braking step is then used to obtain the actual goal velocity on the hardware.
This braking step will clearly dissipate energy, so a standard controller can be
used without requiring an actuator that provides energy. Because such a standard
controller can be used, this braking step is ignored in the rest of this chapter.
The second parameter to tune for the backward simulation is the virtual damping
coefficient. A diagonal matrix is used to specify the simulated damping, where the
damping coefficients are the same for each link, leaving just one tunable parameter.
The velocity and damping are manually tuned to obtain trajectories with a low
endpoint velocity that do not require large braking torques. Table 6.2 shows the
damping and velocities used for the goal positions in the experiment.

1If the final velocity given by the control specification is nonzero, a similar reasoning applies.
The only change is that the final velocity for the simulation must be larger than the required
velocity.
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Stage 2, velocity �eld

A velocity field q̇des = N(q) is created such that N(qtraj(t)) = q̇traj(t), implying
that qtraj is an invariant set for the velocity field. Furthermore, this invariant set is
made to be attractive, that is: one must construct a Lyapunov function µ(q), which
has its minimum on all points of the trajectory, such that µ̇ = ∇qµ(q)N(q) ≤ 0.
The vector field N(q) is designed by constructing a velocity field in the end-effector
coordinates (x, y), and transforming that velocity field back to configuration space
coordinates, see Figure 6.3. First the uncontrolled trajectory is parameterized.
This is achieved by using qtraj to parametrize the x-position of the endpoint tra-
jectory as a polynomial of its y-position: x(y) = px(y), and then have an error
function Ḡ(x, y) = x−px(y). The velocity magnitude is also needed, which is also
taken as a polynomial in y:

√
ẋ2 + ẏ2 = pv(y). Fitting of both these polynomials

is done using least squares approximation.
The next step is to define two vector fields f̄d1 and f̄d2. The first, f̄d1, points
towards the desired trajectory qtraj. The second, f̄d2, enforces the correct velocity
once the system is on the trajectory qtraj. A simple way to define these vector
fields is as follows:

f̄d1 = −pv(y)normalize(∇(Ḡ(x, y)2)) (6.10)

f̄d2 = pv(y)normalize
(
∇y(px(y))

1

)
(6.11)

The complete vector field fd(x, y) is a weighted combination of the two fields
mentioned above. When x is close to px(y), the vector field steers mostly along
the trajectory. Oppositely, when x is far from px(y), steer happens towards the
trajectory. This intuitive approach is implemented using the weighting function
n(x) = (1 + Ḡ(x)2)−α, with α ∈ R+ a parameter that manipulates the trade-off
between how quickly the field steers towards the desired trajectory, and how much
acceleration is need to follow the vector field. For the experiments presented in
this chapter α = 100. The resulting vector field is:

fd(x, y) = (1− n(x))f̄d1 + n(x)f̄d2 (6.12)

This field is defined in workspace coordinates, and is converted to configuration
space by means of the Jacobian of the workspace-configuration space transforma-
tion to obtain N(q).

Stage 3, �eld controller

To control towards the velocity field, an inverse dynamics approach is used [85].
Let N̄(q, q̇) = q̇−N(q), be the velocity error. Then the input u is determined by:

u = −KN̄(q, q̇)−∇qµ(q) +M(q)∇qN(q)q̇+
+C(q, q̇)N(q) +B(q, q̇)

(6.13)
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where, K ∈ Rn×n is a linear feedback-gain, and can be set to any positive definite
matrix. For the experiments only the diagonal terms are used, which were tuned
manually to obtain: K = diag(30, 30). Also, µ(q) = Ḡ(x, y)2 is a valid Lyapunov
function, satisfying ∇qµ(q)N(q) ≤ 0. And finally, B(q, q̇) = ∇qV (q) − Tf(q, q̇),
is a term compensating for gravity and friction. Using the candidate Lyapunov
function

L = 1
2N̄(q, q̇)TM(q)N̄(q, q̇) + µ(q) (6.14)

one can show [85] that the input u in equation (6.13) renders system (6.9) stable
at N̄(q, q̇) = 0. Note that the control law described above is not necessarily a
dissipatively actuated controller. Therefore u is projected on the allowed control
space, using unweighed least squares. Finally, because of hardware limitations a
torque saturation of 3.5 Nm is used on the first motor and 2.5 Nm on the second
motor.

Algorithm 4 Zero-Control Velocity field
1: function ZCVF
2: perform backwards simulation to obtain qtraj
3: approximate resulting trajectory as a polynomial px(y)
4: compute velocity field N(q) based on approximate trajectory with Eqs.

(6.11)-(6.12)
5: measure state [q, q̇]T
6: while floor not reached do
7: find desired input torque u with velocity field and Eq. (6.13)
8: if torque violates (elementwise) dissipatively actuated constraint then
9: project input torque on (elementwise) dissipatively actuated inputs
10: apply braking torque u
11: measure state [q, q̇]T

6.4.3 Results

The velocity field for moving towards x = −0.3 m is shown in Figure 6.3. In this
figure, the blue line shows the backwards integrated motion, the red line shows the
polynomial approximation of that motion, and the black arrows show the velocity
references for the specific positions. Four such velocity fields were obtained, one
for each goal position.

Figure 6.4.a-top shows the four resulting motions of the arm in simulation. The
figure shows that the arm moves toward the four goal positions, but there is an
error in the position at which the arm reaches the ground. The average position
error for the four positions is 1.9 (±1.6) % of the length of the arm. Because the
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Figure 6.3: The velocity field for a controller that steers towards the most left goal position. The
goal position is indicated by a circle at the height of the floor. The blue line shows the backwards
integrated motion from the goal position, the red line shows the polynomial approximation of
this motion, and the black arrows indicate the velocity field.

arm is nearly 1 m long, this percentage is very close to the absolute error measured
in cm.

Figure 6.4.a-bottom shows the four resulting motions for the same controller, but
now implemented on the robotic arm. The motion to x =0.1m and x =0.3m have
the largest final errors (4.3 % and 2.3 % respectively). The average position error
of the four positions is 1.9 (± 1.6) %, which is the same as in simulation. Looking
closer at Figures 6.4.a), one can see that not only the endpoints are the same, but
that the whole motion is quite similar for both simulation and experiment. This
similarity is likely due to a reasonably accurate model combined with high gains.

6.5 | Monte-Carlo Tree Search

The second proposed approach uses receding horizon control to steer the system
in the right direction. This means that at every time step the model is used to
plan from the current state to the goal, but only the first action in the plan is
taken. This should reduce the requirements on the accuracy of the model because
the error is continually corrected on-line.
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Figure 6.4: Simulation and experimental results using the a) zero control velocity fields, b)
Monte-Carlo search tree, and c) reinforcement learning. The black lines represent the trajectories
towards the four goal positions, which are indicated by black crosses. The blue lines show different
positions of the two DOF arm, while moving towards the most left goal position.

6.5.1 Controller

A standard Monte-Carlo Tree Search (MCTS, [22]) method is used, summarized
in Algorithm 5. The tree consists of nodes ν associated with a state s(ν), which
is defined as s = [q, q̇]T . These nodes each have a number of children equal to the
number of actions possible in that state. First, a root node ν0 is created at the
current state s0. Then, while there is still time, a node νt is iteratively selected
from the tree, perform a rollout from that state s(νt), and back up the resulting
cost ∆ through the tree. When time is up, the action with the lowest cost from
the root node is returned.

Node selection is done by traversing the tree using an ε-greedy policy, selecting a
random child with probability ε and the child that has the lowest cost otherwise.
When a node is reached for which not all actions have been evaluated yet, a random
unevaluated action u is expanded and the resulting child node νt is returned.
Rollouts are performed by taking random actions starting at s(νt) until the arm
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Algorithm 5 Monte-Carlo Tree Search
1: function MCTS(s0)
2: create root node ν0 with state s0
3: while within computational budget do
4: νt ← SELECT (ν0)
5: ∆← ROLLOUT (s(νt))
6: BACKUP (νt,∆)
7: return u(BESTCHILD(ν0))

hits the ground or until the evaluation horizon is reached. The total cost ∆ of this
rollout is assigned to νt. Then, for all parent nodes ν up until the root node, the
cost c(ν) is set to

k(ν)c(ν) + ∆
k(ν) + 1 , (6.15)

where k(ν) is the number of times ν has been selected before.
Dissipativity of the control actions is ensured by parametrizing the actions such
that they always meet the dissipativity constraint. This can always be done by
projecting the action on the feasible actions. For the elementwise case a more
elegant approach is to only use actions with a positive value, and multiply the
action-value with the sign of the velocity and the torque limit (3.5 and 2.5 Nm for
the first and second joint respectively). That approach was used in the experiment,
with actions of 0, 0.5 or 1.
A control step time ∆t of 50 ms is used, together with a horizon of 20 steps,
exploration probability 0.05, and the following cost function:

c(s) =
{
−e−5|x(s)−x(sdes)| if y(s) < −0.8
0 otherwise (6.16)

6.5.2 Results

The performance of MCTS greatly depends on the number of rollouts that can be
performed before the time budget is exhausted. We have observed that a single
core of an Intel Xeon E5-2665 is able to perform ∼600 simulation steps per control
step. This resulted in an average error of 2.8% of the arm length, mostly due to
the large error for the far left target (see Figure 6.4.b-top). The error is mostly due
to the limited number of simulations, as a warm start variant (which initializes the
search using the chosen branch of the tree generated in the previous control step)
resulted in an average error of just 0.1%. However, model discrepancies prohibit
the use of such an algorithm on the real system.
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When executing the controller on the robot (Figure 6.4.b-bottom) the error is
similar to that in simulation, being 3.0 %. However, instead of falling short on the
far left target the system now overshoots it.

6.6 | Reinforcement Learning

The previous two model-based controllers are compared to a completely model-free
controller learned through temporal difference (TD) learning [164]. In a period
before the actual task is to be performed, the learning algorithm interacts with
the system to optimize the controller. Through trial and error it learns a feedback
controller that minimizes the cost without the direct or indirect use of a model.

6.6.1 Controller

In model-free TD learning, one tries to estimate a state-action value function Qπ
which indicates for each state-action pair (s, u) the expected cost-to-go of taking
action u in state s and following the control policy π : s→ u afterwards. Because
in this case only the final error is being optimized, the cost-to-go is simply the cost
of the final state. In TD control the policy π is derived from the value function by
choosing the action with the lowest estimated cost-to-go. We may use the same
ε-greedy policy as in MCTS, such that

π(s;Q) =
{

minuQπ(s, u) with probability 1− ε
random otherwise (6.17)

The optimal value function Q∗, defining the optimal policy π∗, is the unique
solution to the Bellman equation

Q∗(s, u) = c(s′) + min
u′

Q∗(s′, u′) (6.18)

where s′ is the next state when taking action u. Q is estimated by sampling state
transitions (s, u)→ (c(s′), s′) along a trajectory and updating Q towards minimiz-
ing the temporal difference error δ. We use the SARSA algorithm, summarized in
Algorithm 6.

In this algorithm, α is a learning rate that sets the parameter of an exponential
moving average filter determined by the stochasticity of the problem. To speed up
convergence the SARSA(λ) algorithm is used, which not only updates the current
state but also a number of previous states based on their eligibility [164].

The same cost function as in MCTS is used, and just as in MCTS the dissipativity
of the control actions is enforced by using positive actions which are multiplied
with the sign of the velocity. α and λ are set to 0.1 and 0.92, respectively.



Dissipatively actuated manipulation | 109

Algorithm 6 On-policy TD control (SARSA)
1: function SARSA
2: obtain initial value function Q
3: while not converged do
4: move robot to start position
5: obtain state s and set u← π(s;Q)
6: while floor not reached do
7: apply braking torque u.
8: obtain new state s′ and set u′ ← π(s′;Q)
9: δ ← c(s′) +Q(s′, u′)−Q(s, u)
10: Q(s, u)← Q(s, u) + αδ

11: s← s′, u← u′

12: return Q

6.6.2 Results

In general, reinforcement learning can take quite some time before converging to an
acceptable policy. However, the informative reward structure and episodic nature
of the task allow for fast convergence in this case. In experiments presented here,
learning took ∼2 minutes of interaction time (see Figure 6.5) with an average
error of 1.2 % of the length of the arm in simulation and 1.6 % on the real setup.
However, in both cases there was considerable variance between trials that learned
to move to the same position.

The resulting trajectories (Figures 6.4.c) show a tendency for the simulated con-
troller to arrive more vertically, although the observed variance prohibits firm
conclusions.

6.7 | Discussion

6.7.1 Comparison

The simulation and experiment results obtained show that the three different
approaches to the dissipatively actuated control problem show promising results.
The question now becomes: how do these approaches compare on the general case.
To answer this question one must explicitly steer away from detailed quantitative
analysis of the results on this test-problem, with these implementations, as such
details are unlikely to transfer to other problems.

To compare the controllers qualitatively, five criteria are used: the required accu-
racy of the model, the planning/learning computational cost, the online compu-
tational cost, the accuracy of motion and the range of motion that the controller
allows (reachability). The results of the comparison are summarized in table 6.3.
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Figure 6.5: SARSA(λ) learning curves for the simulated system, averaged over 30 independent
trials. The far left position takes significantly longer to converge than the other targets.

As the proposed velocity-field controller depends on zero-control paths that are
sensitive to model inaccuracies, it is expected that the performance is dependent
on an accurate model. So on this point, it is at a disadvantage when compared to
receding horizon controllers, which are known to cope well with model inaccuracies,
or reinforcement learning controllers, which require no model at all.

The cost of not using a model in reinforcement learning, is that a motion should
be learned which requires a lengthy learning phase before operation can start.
The velocity field controller requires only the computation of the zero-control
paths, whereas the receding horizon controller requires no planning beforehand at
all. But, not planning beforehand means the work itself gets harder online. The
receding horizon controller requires much more online computation than the other
methods. The velocity field controller requires a little computation as the correct
torque needs to be computed from the velocity field. The reinforcement learning
controller requires almost no computation after learning.

The dissipation constraint clearly prohibits some goal states to be reached from
some initial states. But how well does the controller fill the space of feasible ini-
tial/goal state combinations? This question is particularly important as it directly
relates to the robots capabilities to recover from large disturbances. The heuristic
behind the velocity field controller is partially aimed at providing such reachabil-
ity, but gives no guarantees. Again, for the other two controllers this reachability
is a trade-off with computational costs. Because full reachability for the receding
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Table 6.3: Theoretical comparison between the three controllers

Criterion ZCVF MCTS RL
No accurate model needed − ± ++
No offline computation ± ++ −−
No online computation + −− ++
Reachability − ± +
Accuracy − + ±

horizon controller requires the motion to be planned completely at every time step,
the computational cost of reachability is expected to be lower for reinforcement
learning than for the receding horizon controller.

Finally, the performance measure that was tested and compared in the experi-
ments: accuracy of the controller. In principle, the accuracy of the velocity field
controller is low, because it approaches the velocity field in infinite time, whereas
the motion takes a finite time. Furthermore, there is an unknown effect caused
by projecting the desired torques onto the dissipating torques. For the other two
control methods, accuracy can be traded for computational costs. The robot re-
sults obtained deviate slightly from this expectation, due to a bottleneck in terms
of computational cost: online computation. This bottleneck made it impossible
for the receding horizon controller to simulate many variations in the control ap-
proach. This is likely the reason the receding horizon controller was less accurate
than the reinforcement learning controller, and even less accurate than the velocity
field controller.

6.7.2 Future work

From the comparison in table 6.3, obvious directions for improvement of the three
controllers can be found. For the velocity field controller, the main challenge
is to extend the logic behind following the no-control path into guarantees of
convergence. The most promising area here seems to be to look more carefully
towards the power flow within the system. The disadvantages associated with
the other two controllers are more general, in the sense that they also hold for
other types of problems. For the receding horizon controller, it is interesting
to look at using a learned model, or to use the intrinsic capacity of the MCTS
to deal with stochasticity in order to improve the robustness of the controller.
For the reinforment learning based controller, the main improvements will come
from designing a more sample-efficient (batch-mode or policy search) algorithm
for reinforcement learning.
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6.8 | Conclusion

This chapter introduced the problem of dissipatively actuated control of mechan-
ical systems. A type of control intuitively related to steering when skiing. The
main problem in these systems is that the actuators can only brake, i.e., take en-
ergy out of the system or redistribute it. It must therefore rely on potential energy,
for instance from gravity, to power the motion, and on actuation to steer. Such
brake-steering can potentially be used to create robots with low energy consump-
tion. This chapter shows that standard model based non-linear control techniques
do not suffice for this problem, meaning the dissipatively actuated control prob-
lem is in itself an interesting challenge. To tackle that challenge three numerically
oriented approaches are proposed which have been tested on a 2-link manipulator,
by making it move from one initial position to four different goal positions. In
conclusion:

• ZCVF A newly proposed velocity field controller that is based on the heuris-
tic of steering towards the path-of-zero-control as quickly as possible when
limited control authority is available. This method requires an accurate
model, but fairly limited computation both in planning and during motion.
In the robot-experiments, an average accuracy of 1.9% of the length of the
arm was obtained.

• MCTS A receding horizon control that copes with less-accurate model, but
requires vast computation during motion. In robot-experiments an accuracy
of 3.0% was found.

• SARSA A reinforcement learning technique that finds optimal solutions
without using a model, but requires interaction with the real system prior to
execution. In the robot-experiment the accuracy of this approach was found
to be 1.2%.
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Abstract

Sampling-based kinodynamic planners, such as Rapidly-exploring
Random Trees (RRTs), pose two fundamental challenges: computing a
reliable (pseudo-)metric for the distance between two random nodes,
and computing a steering input to connect the nodes. The core of
these challenges is a Two Point Boundary Value Problem, known to be
NP-hard. Recently, the distance metric has been approximated using
supervised learning, reducing computation time drastically. Previous
work on such learning RRTs use direct optimal control to generate the
data for supervised learning. This chapter proposes to use indirect op-
timal control instead, because it provides two benefits: it reduces the
computational effort to generate the data, and it provides a low di-
mensional parametrization of the action space. The latter allows us to
learn both the distance metric and the steering input. This eliminates
the need for a local planner in learning RRTs. Experimental results on
a pendulum swing up show 10-fold speed-up in both the offline data
generation and the online planning time.

7.1 | Introduction

For motion planning of robotic manipulators, kinodynamic planning and sampling-
based planning are getting increasingly popular. Kinodynamic planning, i.e., plan-
ning in state space rather than configuration space, improves robustness, speed and
energy efficiency of robots [34, 130, 185]. Combining configuration-space planning
with post-processing in state-space is often successful [126], but cannot solve all
challenging dynamical problems. Sampling based planning has been shown to
be the most viable way to handle high dimensional spaces and obstacles [70, 93].
Therefore, this chapter will consider how to apply Rapidly-exploring Random Trees
(RRTs) [93], the most popular sampling-based single-query planning algorithm, di-
rectly to state space planning for deterministic, fully modeled systems.

RRT builds a tree graph structure with the states of the system as nodes and
the trajectories of the system between two states as edges. The algorithm selects
a node to expand from based on a distance to a randomly sampled node in the
state space, i.e., it selects the nearest node in the current tree. That node is then
expanded by means of a local planner that aims to reach the randomly-sampled
node. These steps happen online, so computation time is crucial. Unfortunately,
in state-space, both local planning and distance computation are computationally
expensive [93].

In literature, the main approach to reduce the computational burden is to approx-
imate the true distance function by a heuristic [56, 76, 125, 154]. Two frequently
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Figure 7.1: Schematic of the Learning-RRT architecture. First, optimal control generates a
dataset that specifies the local steering cost j and control input u for a given start state x0 and
end state x1, Subsequently, machine learning predicts the steering cost and input given a start
and goal node. These first two (computationally intensive) phases happen offline. Subsequently,
the RRT handles online planning. The function approximators provide the RRT with quick cost
and input prediction without online optimization.

used heuristics are the Euclidean distance and the optimal steering cost for a lin-
ear approximation to the system. The convergence of RRT variants using the
Euclidean distance heuristic, and random steering inputs, was extensively ana-
lyzed in [95]. For promising results for the linearizing heuristic see [58, 151, 178].
However, these heuristics only minimally utilize the dynamical properties of the
system, and therefore typically require more nodes to solve a given problem using
RRT.

Recent literature proposes a promising different approach, which we call Learning-
RRT [4, 16, 122]. Learning-RRT involves an offline machine learning phase that
learns the distance and steering function in RRT (Fig. 7.1). An optimal control
algorithm provides a database of optimal trajectories, which is the input for a su-
pervised learning algorithm. This algorithm learns to approximate the functions
the RRT requires. Note that trajectories found by RRTs are in general not op-
timal, even if the segments in the database are. Using optimal segments in the
database provides a meaningful steering-cost metric and similarly shaped trajecto-
ries for connecting similar points in state space, which helps the learning algorithm.
Supervised learning provides two benefits: 1) generalization over state-space and
2) fast online predictions. Thereby, the computations for trajectory optimization
does not have to be repeated for new situations, and is shifted offline.

This chapter proposes a method that helps to overcome the two remaining chal-
lenges of Learning-RRT:

1. Local planning: In literature on learning-RRT [16, 122], only the distance
function is approximated by machine learning. Supervised learning of the
steering function is hard due to the large number of parameters typically
required to describe optimal input signals. Therefore, previous Learning-
RRTs resort to computationally expensive optimizations for their steering
function [16].
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2. Dataset generation: The dataset for the supervised learning algorithm
consists of many optimal trajectories. As optimizing a single trajectory al-
ready is a significant computational burden, generating a full dataset is very
computationally demanding.

The main contribution of this chapter is the use of indirect optimal control to
generate the dataset. This allows us to solve both the problems mentioned above,
thereby decreasing the computational burden by up to two orders of magnitude,
both in the offline and the online phase of the learning RRT planning. However,
the dataset generated by this method contains a bias, which is problematic for
the learning algorithm. It turns out we can efficiently remove this bias through a
simple dataset cleaning algorithm.

The focus of this chapter is the introduced method and its implementation details.
Our experiments provide proof of concept by evaluating our method on a pendulum
swing-up, as was done in [16]. While simple, this task allows us to demonstrate
and compare the validity of our method. To our knowledge, we are the first
to demonstrate learning of the control input in a kinodynamic sampling-based
planner.

The structure of this chapter is as follows. Sec. 7.2 describes the Learning-RRT al-
gorithm. This algorithm is applicable to any data generation method, and intended
to structure all Learning-RRT components. The subsequent sections combine to
introduce RRT-CoLearn, which is a Learning-RRT. The main contribution comes
in Sec. 7.3, which tackles the problems of local planning and dataset generation via
indirect optimal control. The class of systems for which this approach is valid can
be found in that section as well. Sec. 7.4 discusses how to remove the dataset bias
introduced by optimal control. In Sec. 7.5, we discuss how the learned steering-cost
metric affects the convergence of the RRT algorithm. Sec. 7.6 presents experimen-
tal validation of our algorithm. Finally, Secs.7.7 and 7.8 contain discussion and
conclusions.

7.2 | Learning-based RRT

Learning-based RRTs leverage (supervised) learning to speed up the computation-
ally expensive modules of a kinodynamic RRT. The Learning-RRT algorithm is
presented in Algorithm 0. Here we present the standard, forward search RRT
version of the algorithm as used in the experiments. Enhancements are briefly
discussed in Sec. 4.4.

The first step in the algorithm is to create a dataset of optimal trajectories through
the state-space of the system (X ). This step disregards obstacles, as they are
handled later on. The dataset D = {bi}Ni=1, has entries bi = {xi0, xi1, ji, ui} that



Indirect optimal control in learning RRT | 117

Algorithm 7 Learning RRT ((V, E), N)
D̂ ← generate_data(N) // Section 7.3
D ← clean_data(D̂) // Section 7.4
Ĵ ← fit_cost(D)
Û ← fit_input(D)
V̂ ← fit_valid(D) // Section 7.5
(X,E)← (xinitial, ∅)
solutionfound ← False
while NOT(solutionfound) do

xtarget ← sample()
if ANY (V̂ (x, xtarget))∀x ∈ X then

xnearest ← arg minx∈X Ĵ(x, xtarget)
(c, x, u)← simulate(xnearest, Û(xnearest, xtarget))
if not collision(xnearest, x) then

X ← X ∪ {x}
E ← E ∪ {(xnearest, x, c)}

return X,E

consists of an initial state x0 ∈ X , a final state x1 ∈ X , a distance metric/local
steering cost j ∈ R+, and a set of parameters u ∈ U , that describe the optimal
input leading the system from state x0 to state x1. Note that U can take many
forms, depending on the discretization used. For example, it can be the coefficients
of a polynomial or the values at the switch times of a piecewise-linear function.

The optimal trajectories are generally found using a numerical algorithm searching
for local optima, which poses a challenge for the supervised learning algorithm. If
two solutions are nearby in x0 and x1, but hail from a different local optimum, a
deterministic supervised learning algorithm (for example trained on mean-squared
error) will predict the average over the two solutions. This not only makes the
cost prediction inaccurate, but most importantly it ruins the steering input predic-
tion: the average of the two steering inputs in the data could lead to a completely
different state than the target state. This local-optimum bias requires us to cre-
ate the dataset D in two stages. The first stage creates a dataset D̂ of size N
which contains local-optimum-bias, and is indicated in Alg. 0 by the function
generate_data. The second stage clean_data removes the local-optimum-bias
to create the desired dataset D.

The second step is to use a supervised learning algorithm on D to approxi-
mate the two functions that define the optimal control solution: 1. the function
Ĵ : (X , X )→ R+, which maps from an initial and a final state to a steering cost,
2. the function Û : (X , X )→ U , mapping the initial and final state to the required
input parameters.
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For both function approximators we implement k-nearest neighbours [50], a stan-
dard non-parametric function approximator with robust performance in smaller
state-spaces. For a test point x, we identify the k nearest neighbors in our dataset
D. The predicted value (e.g. for cost j) for the test point is the average value of
these neighbors. We cover extensions to other learning techniques in Sec. 4.4.

The next step, fit_valid, addresses an inherent limitation of supervised learning
and is treated in Sec. 7.5.

The fourth stage of the Learning-RRT algorithm, the online RRT stage, handles
long-term planning and obstacles. First, it samples a point and tests for a valid
connection from any node in the tree to the sampled point. If that exists, it
expands the node that is nearest to the sampled point according to the function
Ĵ . The expansion will use the learned steering function Û , which likely makes
a small error. The new node is therefore not exactly at the sampled state. The
trajectory to the new state is checked for collisions. If collision free, the new node
is added to the tree. The algorithm iterates these steps until it connects to the
desired region in state-space. As standard in RRTs, the sampling of new nodes
is biased towards the goal by intermittently replacing the sampled state with a
desired end-state.

7.3 | Data generation

The dataset for the function approximator is generated from a set of optimal
trajectories. The most common approach to find these trajectories are the so-
called direct optimal control approaches [136, 167]. In these approaches the state
equations and cost function are approximated by a discretized system, which is
then numerically optimized.

An alternative to direct optimal control is the much older indirect approach [135,
142], which first optimizes and then discretizes. For many applications, direct
approaches replaced the indirect approach due to better numerical stability at
long planning distances. However, it turns out indirect optimal control is ideally
suited for the RRT scenario. First, the numerical instability poses no problem
for the short segments that are required for RRT. Furthermore, indirect optimal
control brings two important benefits. First, it parametrizes the control input in a
low dimensional space, which allowing it to be learned. Second, it removes the need
for optimization in the sampling process, which speeds up data generation. Both
benefits are further explained at the end of this section, after the indirect optimal
control method is described. At that point, we will also explain the remaining
downside of the indirect optimal control approach: a more biased dataset.
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Indirect optimal control

Here the indirect optimal control procedure is used to derive the optimal equa-
tions of motion for a pendulum swing-up. The procedure can be applied to other
systems, with small differences. For more details and proofs see [117].
Indirect optimal control finds the functions x(t) and u(t) from time t ∈ R to state
x ∈ Rn and input u ∈ Rm, that minimizes a cost function of the following form:

J(x(t), u(t)) =
∫ tf

0
C(x(t), u(t))dt (7.1)

Subject to: ẋ(t) = f(x(t), u(t)) ∀t ∈ (0, tf),
x(0) = xinitial, x(tf) = xfinal (7.2)

where xinitial and xfinal are fixed initial and goal states, and the final time tf is
optimized along with x(t) and u(t). We will often drop the explicit dependency
on the time t.
For the pendulum we get f(x, u) = (ω, sin(θ) + u), with x = (θ, ω), θ and ω the
(angular) position and velocity respectively, and u the torque. The cost integrand
C = 1 + u2/2, which takes into account both the time it takes to reach the goal-
state as the control effort to do so.
The first step in the indirect optimal control approach is to define the Hamiltonian
H, the sum of the integrand C and the inner product of the state derivatives with
a vector of Lagrange multipliers, also called the costate. With (λθ, λω) as costate,
we obtain:

H(x, λ, u) = 1 + 1/2u2 + λθω + λω(sin(θ) + u) (7.3)

The second step is finding an optimal input u∗, by minimizing the Hamiltonian
with respect to the input:

u∗ = arg min
u

H = −λω (7.4)

The third step takes partial derivatives of the optimal Hamiltonian, which is cre-
ated by replacing the input with the optimal input: H∗(x, λ) = 1+λθω+λω sin(θ)−
1/2λ2

ω. Note that this equation only depends on the state and costate. The partial
derivatives form a system of ordinary differential equations (ODEs) specifying the
evolution of the optimal state and costate over time:

θ̇ = ∂H∗

∂λθ
= ω ω̇ = ∂H∗

∂λω
= sin(θ)− λω (7.5)

− λ̇θ = ∂H∗

∂θ
= λω cos(θ) − λ̇ω = ∂H∗

∂ω
= λθ (7.6)

The last step is to use the Eqs. 7.5-7.6 to find the optimal trajectory towards a de-
sired state. For a given costate, the above equations are (numerically) integrated,
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which results in a locally optimal state trajectory. This trajectory depends on
the choice of initial costate and the time duration of the integration. The initial
costate and final time are tuned to find a locally optimal state trajectory that
reaches the desired state. This tuning requires a numerical method that mini-
mizes the difference between final state and desired state. Later we show that this
tuning can be avoided when generating the database.

Optimal control problems solved for Learning-RRTs typically have a free final time
and a cost integrand C that does not explicitly depend on time. On this type of
problem, the constraint that sets the final time can be rewritten as a constraint
on the initial costate [117]:

H∗(x(0), λ(0)) = 0 (7.7)

The main reason why indirect optimal control is largely replaced by direct methods,
such as multiple shooting, is that the resulting differential equations are unstable,
and therefore difficult to numerically solve reliably. However, because a learning-
RRT database only requires short trajectories, this instability is not as important.

Bene�ts of using indirect optimal control

There are two major advantages to using indirect optimal control for Learning-
RRTs. First, the input directly follows from the costates; in principle, there is
a map U(xinitial, xfinal) → (λθ(0), λω(0), tf), from initial and final state to a set
of only three parameters that describe the input function. This set is small, and
will only grow linearly with the size of the state space (and is independent of
the number of inputs). In contrast, direct optimal control approaches require to
parametrize inputs as functions over time, which results in much larger spaces of
parameters. The reduction in the number of parameters means the input function
can be learned efficiently, thereby solving the problem of local planning in RRTs
as identified in the introduction.

To see the second major advantage, look at how the whole dataset is created.
In current learning RRTs [16, 122], the dataset is generated by sampling from
the (xinitial, xfinal)-space, and then, find an optimal trajectory and cost for each
sample. Note that every combination of initial state, initial costate and final time
produces an optimal trajectory for a certain final state. So, if we sample from the
allowed initial states, initial costates and final times, we effectively sample over
all initial state - final state combinations. Thus, we can eliminate the need for
numerical optimization by sampling the costate, meaning the data are generated
much faster.

The data generation procedure is outlined in Alg. 0. The functions random_State,
random_Costate, and random_Time sample random states, costates and final
times depending on the problem domain and constraint Eq. 7.7. The function
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Algorithm 8 generate_data(N,Tfinal, rbound)
Optimal_ODEs ← Eqs. 7.1-7.6
D̂ ← empty()
for n = 1 : N do

xinitial ← random_State()
λinitial ← random_Costate() s.t. Eq. 7.7
Tfinal ← random_Time()
xfinal, J ← integrate(Optimal_ODEs,xinitial ,λinitial,Tfinal)
append(D̂,{xinitial,xfinal,J ,λinitial})

return D̂

integrate numerically integrates the optimal control equations until the final time
(Tfinal) or until the distance from the initial state reaches a reachability bound
(rbound). To optimize the efficiency of the data generation we add the intermediate
integration results to the dataset, causing dependencies between the data-points.
We observed that the learning algorithm performed well despite these dependen-
cies.

In this section, we outlined the indirect optimal control approach to data gen-
eration in learning RRTs. Because the optimal control algorithm incorporates
costates, we name the overall algorithm RRT-CoLearn. Its two major advantages
are: learning optimal steering inputs (online speed) and generating data without
optimizing (offline speed).

7.4 | Dataset cleaning

The dataset generated by Algorithm 0 originates from a search for local optima,
and can therefore include a bias that interferes with learning performance. The
problem is illustrated for with an artificial dataset in Fig. 7.2 (top), where in the
middle input region we have the global optimum at the bottom, but there are local
optima above it. A standard function approximator (with squared loss) for a given
point input (independent variable) predicts the conditional expectation of the
dependent variable, shown in green. Note that the predicted function deteriorates
in the middle segment, where the average is predicted instead of the optimal cost.

This is problematic for predicting the cost function and especially harmful for
predicting the control parameters. Averaging over two locally optimal control
inputs by no means guarantees that we end up anywhere close to the target. As
an intuitive example, consider the Dubins vehicle, which can be seen as a model of a
non-holonomic car. The vehicle can reach a goal behind it by either steering left or
right, but will fail to reach the target when taking the average (straight ahead). To
counteract this issue, we need a dataset cleaning algorithm, i.e., a procedure that
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Algorithm 9 clean_data(D̂, d, kmax)

D ← D̂

k ← 0
while k < kmax do

psample ← selectRandom(D)
pneigh ← nearestNeighbor(psample, D)
if distance(psample, pneigh) < d then

k ← 0
phigh ← arg minp∈{psample,pneigh} Cost(p)
remove(D, phigh)

else
k ← k + 1

return D

somehow eliminates conflicting (non-optimal) datapoints. In literature, there are
resampling methods for dataset imbalance, most noteworthy class label imbalance
in classification tasks [52]. However, our dataset is not imbalanced, but rather
contains a systematic bias. It turns out we can leverage that structure to come up
with a simple resampling/cleaning algorithm.

For each point in input space, we are interested in retaining the lower bound of
the cost of the generated datapoints. First note that we prefer to remove points
in high-density regions, as in low-density regions there is little to throw away, and
we may only hope that our data are accurate. We implicitly remove from high
density regions by first uniformly sampling a point from our dataset. We then
search for its nearest neighbor in the dataset based on Euclidean distance. If this
neighbor is within a distance d from our sampled point, we remove the node of the
two with the highest cost, frequently removing a biased data-point while retaining
a good one. Otherwise, we retain both points, which will happen in low density
regions. This process is repeated until no points are removed for km consecutive
steps, after which we return the cleaned dataset. The procedure is outlined in
Alg. 0.

The main parameter in this algorithm, d, can be interpreted as a neighborhood
size. Fig. 7.2 shows it has an optimal setting that depends on the dataset and
which has to be found empirically. To evaluate it d, we fix it, run the cleaning,
fit the function predictors, and then sample new datapoints to assess the error in
cost and co-state parameters on the predictions. This evaluation is not ideal, but
the ideal metric (RRT performance) is too expensive to compute.



Indirect optimal control in learning RRT | 123

Original data

Overcleaned

function

datapoints

fit

Undercleaned

Goldilock

Figure 7.2: The data-bias problem and the effect of the d parameter in the data cleaning
algorithm. The top figure shows an imaginary dataset, which has a problem with bias in the
middle of its domain. The fitted function is a poor approximation of the least cost part of the
datapoints. In the second figure d was chosen too large: the bias is gone, but there is not enough
resolution left to accurately fit the function. In the third figure, d is too small: not all bias
is removed. The bottom figure shows a proper choice for d: the bias is removed, and enough
resolution remains.

7.5 | Notes on completeness

The machine learning approximations in the proposed algorithm intuitively might
interfere with its completeness properties. In this chapter we do not prove prob-
abilistic completeness of learning RRTs or RRT-CoLearn. However, we made a
number of small additions that improve the algorithm and make it more amenable
to a future proof of convergence. This section discusses these additions, and the
reasoning behind them. A future proof of completeness will likely follow the lines
of earlier work such as [75, 93, 95].

For the first addition, note that our inputs are generated based on a prediction of
the costate from the function approximator. If the input is constructed directly
based on this prediction, the rest of the inputs will have no chance of being selected.
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If the prediction is not perfectly accurate, this could cause the algorithm to get
stuck. Therefore, the input resulting from the prediction is generated based on
a probability distribution that associates a high probability of choosing a value
close to the prediction, while giving some probability to all possible inputs. In our
experiments, the control parameters are samples from truncated normals, with
the bounds for each parameter specified by its sampled domain. The means are
the value predicted by the learned model. The standard deviation σ of the (non-
truncated)-normal is a parameter of the algorithm.

To make our algorithm more similar to the algorithm discussed in [93], which might
make it easier to adjust the proof found there to our algorithm, we discretized the
action space. This was done by rounding the input to two decimals. As this is a
relatively fine discretization, we expect it had little effect on the experiments.

Experiments showed that inaccurate prediction makes selecting the right input
difficult when the problem requires the RRT to very precisely reach a small region
in state space, as happens when near the goal region. Therefore, when the target
in an RRT step involves the goal region, we increase the standard deviation of the
input distribution. This empirically improved performance.

Errors made by the distance function approximation could also cause the algorithm
to get stuck. If the distance towards a certain node is always underestimated,
other nodes might no longer be expanded. Alternatively, if the distance to a node
is overestimated, that node might no longer be expanded.

The more dominant method to prevent approximation errors in the distance func-
tion to hinder the algorithm looks at a specific type of error. Learning algorithms
are intended to generalize using interpolation, so may make large errors when ex-
trapolating. This is especially true for Learning RRTs, for which this problem has
not been identified in literature yet. In RRTs we uniformly sample state-space,
while we have confined our dataset to only contain short motion segments. There-
fore, sampled combinations (x0, x1) are often outside the dataset, where function
approximation may make large errors. Notably, the approximated distance metric
might greatly underestimate the steering cost from a certain node, causing that
node to be incorrectly chosen for expansion.

This issue can be solved by a binary classifier that decides whether a query would
yield a valid prediction, i.e., whether the dataset D covers the queried point. The
implement classifier V̂ : (X ,X )→ v, with v ∈ [true, false], simply computes the
summed distance to the nearest neighbors of the queried point to the points in the
dataset, and rejects the query point if this sum becomes too large. An alternative
approach, explored in [154], relies on reachability: the notion that the dataset
contains only short segments, meaning the final states should be reachable within
a short period of time.
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The second method to limit the effect of approximation errors is by directly ex-
cluding overly small or large values for the distance. In our experiments, it was
implemented by clipping the distance value to 10±5 times the Euclidean distance,
and had little effect on the computation.

7.6 | Experiments and results

To test our approach, we perform experiments on the pendulum described in
Sec. 7.3. The task is to move the pendulum from its stable equilibrium (θ, ω) =
(−π, 0) to its unstable equilibrium (0, 0).

This experiment does not require obstacle handling; we do not explicitly focus on
collision checking or obstacles in our work, as our focus is on the RRT itself and
we assume the collision checking is handled by an external algorithm.

Data were generated and cleaned for separate epochs, with 300 runs of the RRT
algorithm per epoch. The data for each epoch consist of 40000 simulations, which
ended when the local cost exceeds 2 or when the norm of the state difference with
the initial state (rbound) exceeds1.5. Integration was done by the 4th order Runge-
Kutta algorithm with a time step of 0.01 s. The initial position was uniformly
sampled from (−3π/2, π/2)rad, the initial velocity from (−π, π)rad s−1, and the
initial costate sampled as described below. The data cleaning resolution d equals
0.05. The data cleaning stopping parameter kmax is set to 5000. The nearest
neighbor fitting algorithm during the RRT takesm = 3 nearest neighbors. Finally,
the standard deviation of the sampling distribution σ = π/4 normally, and π/2
when the query involves the goal state. The experiments ran on a MacBook with
Intel(R) Core(TM) i5-3210M 2.50GHz CPU and 8GB of RAM, running Ubuntu
Linux 14.04 and code in Python and Julia.

To avoid projecting on the costate constraint (Eq. 7.7), which is computation-
ally expensive for larger systems, the constraint is solved explicitly by uniformly
sampling the parameter φ ∈ (−π/2, 3π/2) that sets the initial costate as follows:
λθ = tan(φ) and λω = − sin(θ) + sign(cos(φ))

√
sin(θ)2 + 2 + tan(φ)ω. If λω has

an imaginary part, the simulation is disregarded.

Figure 7.3 shows a typical run of the algorithm. Three important points can be
seen from this figure. First, the algorithm neatly expands through state-space.
While it favors expanding along the circular paths that correspond to low input
trajectories, it expands nodes in all feasible directions. This indicates that the
distance metric works properly, and contrasts with trees that are grown without
appropriate distance metric, which tend to have many nodes clustered. Secondly,
the figure highlights the approximation errors that still exists; the edges that lead
to the border of the figure all had target nodes inside the figure. As these nodes
are outside the figure, the target was not reached exactly. Finally, the algorithm
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Figure 7.3: The state-space coordinates of the tree-nodes of a successful run of the algorithm.
The edges are shown as straight lines, with those connecting the initial point to the goal being
highlighted.

has tried to reach the goal-state a number of times from the same node. This
shows the effect of the increased randomness; because the attempts are spread out
sufficiently, the goal is eventually reached.

Figure 7.4 shows the computation times for 10 epochs. The planning time has
the same variation in each epoch, indicating that data generation and cleaning
are performed robustly. The median time to reach the target over all samples was
2.43 s, over 10 times faster than [16] on the same hardware. Data generation and
cleaning took ∼25 min per epoch, an order of magnitude faster than [16]1.

The performance of the learned steering function is assessed by the mean squared
error between the target state and the final state attained by using the predicted
costate. The median of this error over all epochs is 0.11.

The quality of the combined machine learning is assessed using the number of nodes
needed to reach the target. For the results in Fig. 7.4, the median over all runs is
84 nodes. About 30% smaller (better) than in [16], this result is best interpreted as
a roughly equal performance, as the problem here does not require the pendulum

1The cited paper does not report the offline computation time. However, due to overlapping
authors we know offline computation took nearly a week.
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Figure 7.4: Boxplot of planning times for ten epochs.

to swing back and forth to reach its goal. Equal performance indicates the learned
steering function approximates the online optimization well.

Figure 7.5 shows the effect of the reachability bound on the number of nodes needed
to reach the goal position. This investigates how the length of the simulation in the
dataset influences the performances of the algorithm. When the simulations are too
short, the online algorithm is forced to use many segments, hindering convergence.
When simulations are too long, the coverage of all possible trajectories becomes
sparse, causing poorer learning performance.

Figure 7.6 shows the number of nodes needed to reach the goal position with
various parts of the algorithm removed or replaced. This allows us to identify
the important aspects of the algorithm, and to compare the algorithm to the
state-of-the-art. The last four algorithms have the validity check turned off and
perform worst. Note that [16] does not use such a check, but instead implements
an online trajectory optimization to avoid the poor performance without validity
check shown here. The figure also shows that the difference between learned and
Euclidean distance is small when using a validity check, confirming the intuition
from [154]. The algorithm in that paper is very close to the ∆__-algorithm in
Fig 7.6. Finally, we see that learning the actions makes the algorithm perform
better than using random costate selection.
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Figure 7.5: The number of nodes required to find a solution using different settings of the
reachability bound.
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Figure 7.6: The number of tree nodes required to find a solution for different configuration
settings for RRT-CoLearn algorithm. The horizontal axis is labeled with three symbols, which
can be turned on or off. In the first position, the ∆ signifies the validity check being turned on.
Similarly, the Γ switches between learned and Euclidean distance, and the Λ between learned
and random costate (action) selection.
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7.7 | Discussion

The algorithm introduced in this chapter allows learning of not only the distance
metric, but also the steering input. As proof of concept, we tested our algorithm
on a basic pendulum swing up problem. It reduces the time spend both in the
offline learning and in the online computation by a factor of more than 10, a large
step towards sampling based kinodynamic planning in a practical setting.

The main direction for future research is to support higher degree of freedom
systems. Such systems will require more sample efficient data generation and
learning. To improve the efficiency of data generation, new simulations might
be selected based on already obtained data, and the partially learned cost and
steering functions, similar to what has been done for reinforcement learning [94].
(Deep) generative models could provide more efficient learning. These models
allow sampling from complex, high-dimensional probability distributions, meaning
we could retain all data points without averaging over solutions [57, 112].

A secondary direction for future research is to support input bounds. We have
taken a preliminary step in this direction by implementing RRT-CoLearn on a
time optimal pendulum swing up with the torque bound set to 0.5, and all other
constants as in Eq. 7.3. The resulting optimal equations of motion are invariant
to the norm of the costate vector. Therefore the constraint of Eq. 7.7 is satisfied
by setting the norm of the costate to 1. For 50 runs of RRT-CoLearn, the solution
was always found within 2000 nodes, using a median planning time of 12.32 s, and
median number of 195 nodes. These results compare favorably with those reported
by the state-of-the-art in kinodynamic planning [16, 126, 154].

Unfortunately, the input constraints can cause an exact overlap between trajec-
tories starting from different costates, at least for a finite time. Such overlapping
trajectories are difficult for the learning and cleaning algorithms we used. There-
fore, a larger dataset was required, severely slowing down the RRT. Extending the
machine learning aspects of RRT-CoLearn, such that they can cope with overlap-
ping trajectories is an important theoretical and practical issue.

The third direction for future research is the combination of the RRT-CoLearn
algorithm with other (non-learning) enhancements of the basic RRT algorithm,
such as [82, 90]. RRT-Connect [90] would be the most prominent addition. It
grows two trees: one forwards from the initial state, and one backwards from a
goal state. A new model based on backwards integrated data must be learned
for creating the backwards-searching tree. As the system of differential equations
(Eqs. 7.5-7.6) is unstable in both forward and backward direction[117], the learning
challenges remain similar.

Finally, note that RRTs, and therefore learning RRTs, are suited to finding novel
motions for deterministic systems for which an accurate model is available. When
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Optimal Control Machine Learning RRT

+ Distance computation Generalization High dimensional
Optimal local planner Fast online prediction Obstacle avoidance

- Costly computation7.3 Needs large dataset7.3 Needs distance metric
Local optima→bias7.4 Needs unbiased data7.4 Needs local planner7.3

Bad extrapolation7.5

Table 7.1: Benefits and challenges of components of Learning-RRTs

planning for non-deterministic or uncertain systems, funnel based approaches are
more appropriate than trajectories [168]. If the system has to perform similar
motions repeatedly, multi query methods such as probabilistic roadmaps [55] or
motion libraries can be more effective [15]. For the last problem, learning has
already been used to find similarity between obstacle locations between planning
instances [166]. It is interesting to investigate if using indirect optimal control
similarly to this chapter could be beneficial for those settings.

7.8 | Conclusion

This chapter first described a general Learning RRT algorithm. Table 7.1 shows
the benefits and challenges of its components: Optimal Control, Machine Learning
and RRT. The superscripts in the table refer to the sections in which the challenges
are addressed.

RRT-CoLearn, an instance of a learning-RRT, was proposed. RRT-CoLearn gener-
ates data faster and allows learning of the steering function, both by using indirect
optimal control. It also uses a newly proposed data-cleaning algorithm for more
accurate function approximation.

RRT-CoLearn was successfully used on a pendulum swing up both with and with-
out input constraints. The main results are on the system without input con-
straints and show that RRT-CoLearn is 10 times faster than a state-of-the-art
learning RRT [16].
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Abstract

The RRT-coLearn algorithm presented in the previous chapter is not
completely developed yet. This chapters answers two questions, bring-
ing the algorithm closer to maturity. The first question is: will the
algorithm always find a solution, at least theoretically? This question
is answered by proving that the algorithm is probabilistically com-
plete. The second question is: can the data generation part of the
algorithm be generalized beyond the pendulum swing up? We show
that the data generation can be extended to a large class of robots for
three important control costs, two of which include input constraints.

8.1 | Introduction

To approach human quality of movement, robots need to plan their motion through
state-space, rather than configuration space only. For a variety of tasks, planning
in state-space either greatly improves the resulting motion, or is necessary to make
successful completion possible at all[34, 130, 185].

Unfortunately, planning in state-space, also known as kinodynamic planning, is
hard. A promising technique is to combine the advantages of optimal control with
those of machine learning and those of sampling based planning. A number of pa-
pers have proposed similar schemes [4, 16, 122], all based on the Rapidly Exploring
Random Trees (RRT) approach to sampling based planning. Such Learning RRTs
have been shown to greatly speed up RRTs for kinodynamic planning. In [184],
a generic description of learning based RRTs was given, along with an important
addition: the use of indirect optimal control as part of the algorithm. The results
of this study are reproduced in Chapter 7.

However, while a general description of learning based RRTs was given, the only
proof of its performance is based on empirical results on simple systems. As such, it
remains uncertain what the performance of the proposed RRT-CoLearn algorithm
would be in a more general sense.

This chapter contains two notes on such more general performance. First in Section
8.2, a proof of the probabilistic completeness of the algorithm is given. This
establishes that the algorithm is sensible, meaning that when a solution exist, the
algorithm will find it when given enough time. Second, in Section 8.3, it is shown
how to use indirect optimal control to sample optimal trajectories for a large class
of important robotics problems.
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8.2 | Probabilistic completeness

The machine learning approximations used in learning RRTs might intuitively
interfere with their completeness properties. Therefore, we establish probabilistic
completeness of learning RRTs, by modifying the proof for the original RRT [93]
in a way that is partially inspired by the proof in [26]. We have not tried to make
the proof outlined here as general or rigorous as possible. The framework from
[95] might aid in that effort, as might the ideas from [75].

The proof given below is not for RRT-CoLearn, but rather for a more generic
algorithm which has properties that RRT-CoLearn can achieve. Section 8.2.3 dis-
cusses how these properties are achieved for the RRT-CoLearn algorithm presented
in Chapter 7.

8.2.1 De�nitions

First, we define the planning problem. The goal of planning is to reach the goal
set Xgoal, a subset of the statespace X which is a bounded subset of Rn. Some
part of statespace is inaccessible due to obstacles. The part of statespace that is
not part of obstacles is called Xfree. Finally, to steer the robot from its starting
state x0 ∈ Xfree to the goal set, it can take actions from a finite set A.

The algorithm proposed to solve this problem is defined as follows. First, initialize
a tree of states, with the initial state x0 as the first node. Then, grow the trees
using the following steps.

1. Sample xr, a random state from the uniform distribution over X

2. Determine xnn the nearest node to xr in the tree according to some distance
function d : X × X → R.

3. Sample an action as, according to some probability function q(a|xi, xr)

4. Simulate the motion m starting from xnn using as, to determine xnew, the
final state of the motion.

5. Verify whether all of the states in m are in Xfree. If so, add xnew, and an
edge from xnn to xnew. In the following, the edge is identified implicitly both
by the action as, and the trajectory that leads from xnn to xnew.

6. Furthermore check if the added xnew is in Xgoal. If so, stop the algorithm,
otherwise repeat from step 1.

Finally, we set the following conditions on the distance d, the probability density
over actions q, and the dynamics of the system:
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1. The distance function must always be larger than some positive constant clb
times the Euclidean distance.

d(x, y) ≥ clb||x− y||2 clb > 0 ∀x, y (8.1)

Intuitively this prevents the distance towards a node in the tree to be too
low, causing the algorithm to always choose that node for expansion.

2. The set G(x), has a nonzero volume for all x ∈ X . Here G(x) is the largest
connected set that includes x and has the distance to each point y in the
set, i.e., d(x, y), smaller than some constant positive cub times the Euclidean
distance.

Vol(G(x)) > cv ∀x (8.2)

where G(x) = argmaxVol(S) s.t. S ⊆ {y|d(x, y) ≤ cub||x− y||2},
x ∈ S, S is connected

Intuitively, this is an upper-bound condition on the distance, adjusted to
cater for the discontinuity of d(x, y) at x = y that occurs in many steering
costs. The upper bound prevents the distance to a node from becoming to
high, causing the algorithm to never expand that node.

3. The probability function q(a|x1, x2) ≥ qa for some positive constant qa for
all a ∈ A, and x1 and x2 in X .

4. The last condition specifies that the same action performed at nearby states
lead to similar trajectories. The condition resembles a Lipschitz continuity:
if the state of a trajectory starting at x, taking action a (which includes a
final time tf ) is denoted by γ(x, a, t) for all t ∈ (0, tf ) then: ||γ(x, a, t) −
γ(x+ ∆x, a, t)|| ≤ K||∆x|| for all x,∆x, a and t within the bounds set by a.
Here K is some constant.

8.2.2 Theorem and proof

For this problem, and these conditions, we prove the following theorem:

Theorem 1 (Probabilistic Completeness). Assume there exists a solution consist-
ing of a finite number of nodes: x0, x1, . . . , xn and accompanying actions a0, . . . , an−1,
each with a finite duration, such that any trajectories that abides by the differential
and input constraints, and that stays within a distance qδ from that trajectory is
also a feasible solution (we say that the solution has a δ-clearance of qδ). Then,
the probability P of finding a solution approaches one as the number of iterations
go to infinity.
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Proof. Consider that xi is the most advanced waypoint of the solution that is
already in the tree. The chance that one iteration of the loop of the algorithm
reaches the next waypoint in the solution is factored as:

P (reach xi+1) = P (ui|expand xi)P (expand xi) (8.3)

Now both factors are strictly positive, i.e.:

• P (ui|expand xi) ≥ qa, which follows from condition 3

• P (expand xi) ≥ qx, which follows from Lemma 1 below.

Therefore we get: P (reach xi+1) ≥ qaqx. This means the chance of getting to the
next node of the solution will approach one as the number of iterations increase,
so at some point the algorithm will get to the next node, and the next one, and
so on. Therefore the algorithm will eventually find the solution.

Lemma 1. P (expand xi) ≥ qx, i.e., the chance of selecting xi, the most advanced
waypoint of the solution that is currently in the tree waypoint is always larger than
a positive constant qx.

Proof. Per step 1 and 2 in the algorithm, the chance of expanding from xi is the
volume of the state space for which that node is the nearest node divided by the
total volume of the free state-space:

P (xi) = Vol({x ∈ X |d(xi, x) < d(xe, x),∀xe ∈ V\xi})
Vol(X ) (8.4)

Since the volume of X is fixed and finite we only need to make sure the numerator
is non-zero.

Take the largest ball Bρ(xi) centered around point xi, such that cub||xi − y|| ≤
clb||x − y|| for all y in the ball, and all nodes x in the tree. Based on simple
Euclidean geometry, ρ > 0. Also, by construction, the intersection Bρ(xi)∩G(xi),
with G defined in condition 2, has positive volume. Per conditions 1 and 2, all
points in that intersection are closer (by measure d) to node xi than to any other
node in the tree. Therefore the enumerator from Eq. 8.4 is nonzero, and hence
P (expand xi) > 0.

A nonzero chance for expansion for every iteration does unfortunately not imply
that expansion occurs at some point. If the chance for expansion at each step
approaches zero fast enough, the chance of never expanding can converge to a
finite value. The following paragraphs show that the chance of expansion can be
bounded from below by a positive constant qx.
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Note that to make the volume of the space that is closest (by measure d) to xi,
normalized by the volume of X , smaller than some value qx, the nearest node in
the tree to xi should be closer by Euclidean distance than some other value qn. If
we pick qx small enough, this means (per condition 4, and the finite number and
duration of the edges) that there exist another solution from that nearest node,
by following the same actions as in the original solution. Furthermore, the volume
of statespace for which either node is the nearest neighbor is always larger than
qx. Therefore, the chance of extending either one of the solutions is at least qx.

There are two further considerations to complete the proof. First, the same logic as
above implies that if there are multiple nodes within a distance qn of the original xi
node, they all provide their own alternative solution, and their combined nearest-
neighbor volume is still always larger than qx. Second, if one of the alternative
solutions is expanded, the δ-clearance of that solution might be smaller than that
of the original solution. However, due to δ-clearance being defined by an open set
around the solution, the alternative solution will still have some positive clearance.
Due to the solution consisting of a finite number of steps, a possible limit of 0
clearance is never reached. Therefore, with a little abuse of notation, we can say
P (expand xi) ≥ qx.

8.2.3 Probabilistic completeness in practice

The proof of probabilistic completeness is given for a slightly different problem and
for a subtly different algorithm than those discussed in Chapter 7. This section will
discuss those differences and make some further observations about the practical
aspects of the algorithm with regards to the proof.

The first point of attention is that the previous chapter started with a continuous
action space, whereas the theorem aboves involves a finite action space. This is
resolved easily by discretizing the action space, as was already done in the previous
chapter. By sampling that discretized space using truncated normal distributions,
condition 3 was also satisfied. However, discretizing the action space comes at a
price. It is possible that there exists a solution to the planning problem for the
continuous action space, which does not exists for the discretization. Therefore
discretizing the state-space might cause a failure to find a solution. We believe
that some form of probabilistic completeness holds for a continuous action space,
but we leave finding it for future work.

The second point of attention is the distance metric: does the approximated op-
timal steering cost meet conditions 1 and 2? The answer depends on the the cost
function used for the optimal control, the system, and the learned approximation.
First the cost function: if the cost function is such that there exists actions that
do not incur a cost, condition 1 is not met. This happens for instance if the cost
is solely the square of the input, which is a frequently studied case.
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Secondly, the optimal steering cost is known to be a Sub-Finslerian metric [99].
This implies that the distance from a given state is well behaved within some
cone of directions. Given sufficient smoothness of the optimal control cost, this
almost implies condition 2. Almost, because the cone does not have volume for all
systems. Specifically, systems systems need to be small time locally accessible for
the cone to have volume. As such, systems that do not meet that demand, such
as underactuated systems, also do not meet condition 2.

Note that the validity check used in Chapter 7 effectively identifies states that
are outside the cone in which the steering cost is bounded by a scaled Euclidean
distance. States outside that cone cannot be reached with a short trajectory, which
means that they are not represented in the database and therefore marked invalid.
The validity check can therefore be interpreted as a way to improve the qualitative
match between the actual and approximated steering cost.

Finally, approximation errors due to learning could cause conditions 1 and 2 to
be violated. Unfortunately, this is difficult to assess. However, the clipping of the
distance function, as used in Chapter 7 forces the approximated distance function
to conform to these conditions.

8.3 | Generalizing initial costate

Chapter 7 showed how to implement RRT-CoLearn for an energy optimal pendu-
lum swing-up. A main step in that algorithm, is to derive the optimal equations
of motion via the maximum principle of Pontryagin [117]. For the type of problem
under study, these optimal equations involve a constraint on the initial value of the
costate. An ad-hoc approach to solving that constraint for the pendulum swing up
was shown. This solution was complex, even for this simple system. As a result,
the scalability of this method is not obvious.

In this section, the optimal equations of motion will be derived for three of the
most important problems in robotics: energy optimal control, time optimal control
with input constraints and energy optimal control with input constraints, all for
a generic class of systems: fully actuated open chain robots. Next to deriving the
equations of motion, we will also provide a sampling scheme for the initial costate,
that handles the constraint on the Hamiltonian.

For the derivation of the optimal equations of motion, we use the

First, the equations of motion. For the class of fully actuated open chain robots,
they can be represented by the following differential equation:

M(q)q̈ = C(q, q̇) +G(q) + τ (8.5)



138 | Chapter 8

Where q are the generalized coordinates, M is a positive definite mass matrix, C
represent the convective acceleration terms, G the forces due to potential energy
and finally τ are the motor torques. Note that friction losses are neglected.

8.3.1 Energy optimal control

The most frequently used cost term in control involves a squared input term. For
robots this corresponds to energy losses due to the winding resistance in the motor.
This so called copper-loss is thought to be the main source of energy loss in most
robots. For our energy optimal control term, we augment this cost term with
another term that penalizes the time it takes to reach the goal:

J =
∫
ct + 1

2τ
>τdt (8.6)

where ct is a positive parameter that tunes the relative importance between energy
and time costs.

As a result, we get the Hamiltonian:

H = ct + 1
2τ
>τ + λ> q̇ + µ>M−1(q)(C(q, q̇) +G(q) + τ) (8.7)

Setting the partial derivatives with respect to τ to zero, gives us the optimal motor
torque:

τ∗ = −M−>µ (8.8)

Which in turn leads to the optimal Hamiltonian:

H∗ = ct −
1
2µ

TM−1(q)M−>(q)µ+ λ> q̇ + µ>M−1(q)(C(q, q̇) +G(q)) (8.9)

The optimal control equations of motion are found by taking the appropriate
derivatives, as explained in Chapter 7.

To generate the data for RRT-CoLearn, these optimal control equations of mo-
tion are numerically integrated, starting from randomly sampled initial states and
costates. This random sampling is made more complex, because for this type of
problem, the value of the optimal Hamiltonian is constrained to be 0 at t = 0.

For sampling initial states and costates while taking into account that constraint,
the following approach is proposed. First, sample the initial states uniformly over
their domain (q0 and q̇0). Second, sample a costate uniformly over the unit sphere,
resulting in λ̂0 and µ̂0. The costate used in simulation will be a constant (α) times
that unit costate vector. By setting the optimal Hamiltonian (Eq. 8.9) to zero, we
get:
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ct−
1
2α

2m̂uT0 M
−1(q0)M−>(q0)µ̂0 +αλ̂>0 q̇0 +αµ̂>0 M

−1(q0)(C(q0, q̇0)+G(q0)) = 0
(8.10)

This is a quadratic equation, which can be readily solved for α:

α = −b±
√
b2 − 4ac

2a (8.11)

With

a = −1
2 µ̂

T
0 M

−1(q0)M−>(q0)µ̂0 (8.12)

b = λ̂>0 q̇0 + µ̂>0 M
−1(q0)(C(q0, q̇0) +G(q0)) (8.13)

c = ct (8.14)

Because ct is positive, so is c; and because M(q) is positive definite, a must also
be positive definite. As a result, there are always two solutions. Due to sampling
directions from the unit sphere, we can also sample the negative of every sampled
(λ̂0, µ̂0), which simply swaps the two solutions as found by Eq. 8.11. As a result,
we sample all solutions by sampling from that unit sphere and picking the solution
from Eq. 8.11 were the ± is set to +.

8.3.2 Time optimal control with input bounds

If the goal is to move as fast as possible, the energy term in 8.6 drops, and we are
left with the following Hamiltonian:

H = 1 + λ> q̇ + µ>M−1(q)(C(q, q̇) +G(q) + τ) (8.15)

The problem of moving as fast as possible is only sensible for robots if there are
constraints on their inputs. As such, the optimal input is found by minimizing
the Hamiltonian subject to the input constraints. In our case, the motor torques
are bounded by some constant: |τi| ≤ τ̄i ∀i. This results in the optimal torque:
τ∗ = −σ(M−>µ) � τ̄ , where � signifies the elementwise product, and τ̄ is the
vector of bounds on the motor torques.

As a result the optimal Hamiltonian becomes:

H∗ = 1 + λ> q̇ + µ>M−1(q)(C(q, q̇) +G(q))− |M−>µ|E � τ̄ (8.16)
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Which gives rise to the optimal equations of motion:

q̈ = ∂H
∂µ

= M−1(q)(C(q, q̇) +G(q)− σ(M−>µ)� τ̄)

λ̇ = −∂H
∂q

= −µ> ∂M
−1(q)(C(q, q̇) +G(q))

∂q
+ σ(M−>(q)µ)� ∂M−>(q)µ

∂q
� τ̄

µ̇ = −∂H
∂q̇

= −λ> + µ>M−1(q)∂C(q, q̇)
∂q̇

(8.17)

Note that the state equations will remain unchanged when multiplying the costate
with a positive constant α. The costate equations of motion will simply scale when
multiplying the costate with α. As a result, the state equations will behave exactly
the same over time, when multiplying the initial costate by a positive factor. We
therefore sample the initial costate from the unit sphere, and directly use that
costate.
The optimal Hamiltonian cannot always be set to zero by means of choosing a
positive factor α. Therefore, if the initial sampled costate is such that this is not
possible, we should disregard that sample. For a given costate direction, there
is always at least one (possibly negative) α that sets the optimal Hamiltonian to
zero, so the chance of picking an invalid costate is at most fifty percent. Given the
relative computational cost of solving the constraint equation for α, disregarding
at most half of the samples is acceptable.

8.3.3 Energy e�ciency with input constraints

As the last class of optimal control problems we look at the combination of the
previous two: energy optimal control with input constraints. This combination is
useful in practice, as energy optimal control could demand larger torques than the
actuators can supply.
The cost function is the same as for the energy optimal case, Equation 8.6. Finding
the optimal cost function becomes a constrained minimization. Effectively, we
solve:

argmaxτ
1
2τ
>τ + µ>M−1(q)τ (8.18)

s.t. |τi| ≤ τ̄i ∀i (8.19)

The level sets of this function are hyperspheres, and the unconstrained minimum
is at τ = −M−>µ. Since the constraints form a box, we can find a closed form
solution:

τ∗ = clip(−M−>µ,−τ̄ , τ̄) (8.20)
That is, clipping the unconstrained optimum to fall within the input bounds. The
resulting optimal equations of motion are again derived by taking the appropriate
derivatives.
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To solve the constraint H∗ = 0 we again select a unit costate, and multiply it by
an unknown positive factor α. Depending on α, the clipping will be turned off
or on for different motor torques. To find the values of α at which the clipping
behavior switches, we solve ᾱ = τ̄ � (M−>(q)µ̂).

The values in ᾱ define intervals for the different clipping modes. For each interval,
we fix the clipping behavior to solve H = 0 for α. By fixing the clipping behavior,
that constraint becomes either a quadratic equation, with a positive and a negative
solution, similar to the unconstrained case, or the exact linear equation for the time
optimal case. We check if the solutions (if they exist) fall in the domain for that
clipping behavior. If so, we use that value for α.

Note that this approach only works if there is at most one solution, and that it
exists most of the time.

Fortunately, the shape of the optimal Hamiltonian as function of α is not as
complex as it might appear. Because for a given µ̂, the term −M−>µ̂ is a constant
vector c , the Hamiltonian consists of the constant time-cost ct, terms linear in α,
and the sum over i of terms with the following structure:

1
2clip(αci,−

τ̄i
|ci|

,
τ̄i
|ci|

)2 − αciclip(αci,−
τ̄i
|ci|

,
τ̄i
|ci|

) (8.21)

where ci are elements of the vector c, and τ̄i elements of τ̄ . The equation above is
quadratic within the clipping bounds, and linear outside them. Furthermore, the
equation is smooth (with a non-smooth derivative). As a result, the Hamiltonian
is a well behaved mix between energy optimal control without input bounds, and
time optimal control with input bounds.

Therefore, the optimal Hamiltonian has a shape that has either one zero (if the
linear term is larger than the linear parts of the clipped terms), or two zeros. In
the latter case, there must be a zero for both a positive and a negative value of α.
As a result, sampling from the sphere, and using the iterative procedure outlined
above is a valid procedure to sample the costate for the problem of energy optimal
control of input constrained systems.

8.4 | Conclusion

In this chapter we provided a proof of probabilistic completeness for RRT-CoLearn,
and showed that there exists a simple costate sampling scheme for a large class of
robotic systems and three important control problems. The code for the sampling
scheme will be made available as a bitbucket repository.

The results are a step towards implementing RRT-CoLearn on multi degree-of-
freedom systems. In future work, the machine learning aspects of RRT-CoLearn
should be improved to make such an implementation feasible.
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9.1 | Discussion

This thesis was inspired by human movement to investigate three aspects of robotic
arms: self-stability, energy-efficient actuation and trajectory planning. This chap-
ter will first discuss the results for each of these aspects separately. Then, it will
reflect upon the content of the thesis as a whole. In particular, I will look at the
main commonality between all parts of this thesis: the use of optimal trajectory
generation. The last two sections in this chapter will state the main conclusions
and suggest directions for future work.

9.1.1 Self-stability

Overview of results

Chapter 2-5 researched the self-stability of industrial robot arms. This topic was
addressed in three stages.

The first stage showed that a feedforward only controller can make robot arms
exhibit a stable limit cycle. First, a simulation study found self-stabilizing reaching
motions exist for a planar two degree of freedom arm, using an optimal control
approach. Implemented on a physical robot, the motions were found to be self-
stabilizing as well. However, the motions on the robot did not reach the desired
end positions.

The second stage developed a robustly stable robot arm, such that a robot with
limited sensing can learn to perform a pick-and-place task, despite both model
uncertainty and disturbances. First, conditions were derived for which a motion is
stable, independent on the input required to perform that motion. Furthermore,
this stability is robust to uncertainties in the model. Using these conditions, a
robustly stable limit cycle was found. Finally, the correct input to track that
cycle was learned, using repetitive learning control. This scheme allows a robot
to perform a pick-and-place task with feedforward control only, after a learning
phase with a limited form of feedback. The feedback during the learning phase is
delayed by one cycle of the reaching motion, which in effect means a delay in the
order of seconds.

Finally, the third stage took a step back, and answered the following research
question: is the use of self-stabilizing effects useful to improve the energy efficiency
and the accuracy of robotic arms? This question was answered by studying how
self-stabilizing motions affect the performance of a robot arm when it has low-gain
feedback available. It was found that the choice of motion affects the accuracy
of a robot with low-gain feedback. Specifically, the results showed that a generic
smooth motion performed nearly as accurately as a motion optimized for self-
stability.
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The applicability of self-stabilization in robot arms

The research on self-stabilization of robotic arms was inspired by human self-
stabilization, and the success achieved by implementation on (mostly) legged
robots. It was noted that this self-stabilization was not yet used on industrial-
type robot arms. Here I reflect on the use of self-stabilization for robot arms.

Chapters 2-4 showed that it is possible to apply self-stabilization on these arms,
even in the presence of uncertainty. Further research [133], not included in this
thesis, focused specifically on suppressing uncertainty by using smart trajectories.
These results show that it is possible to achieve self-stabilizing motions on robot
arms.

However, this does not mean that self-stabilizing effects should be the main focus
for future robot arm control. First, the self-stabilizing effect is not large. The
dynamical effects that cause the motion to be stable, do not cause fast convergence.
While springs can be added to improve convergence (as was done in Chapter 4,
and in [28]), this reduces versatility and the system still needs multiple cycles to
return to its desired trajectory. Note that in previous robots showing self-stability,
it was mostly caused by impacts, which have an immediate and strong effect on
the behavior of the system. These impacts also allow for fast dissipation of energy.
For the motions studied in this thesis dissipation of excess energy happens slowly,
by a small friction term, and during phases where negative work is performed by
the motors. Because the self-stabilizing effect is not large, it is not sensible to rely
on it completely in an industrial setting.

Secondly, there is an issue with modeling accuracies. In [133], I explicitly at-
tempted to minimize the sensitivity to such errors, and found that this can help,
but cannot diminish the error in all cases.

Chapter 5 investigated a more moderate approach to self-stabilization: allowing it
to aid other types of control. Optimizing for self-stability was found to improve the
accuracy of robot arms. However, the difference between an optimized trajectory
and more standard, relatively smooth trajectories was only significant when the
feedback gains are small.

It is interesting to compare these results with studies on human motion optimiza-
tion. Many researchers currently believe that humans implicitly use an optimiza-
tion algorithm to plan their motions [10, 172]. Unfortunately, they do not agree on
the cost function humans optimize for. The most commonly cited cost functions
are energy use, variance in performance and smoothness (jerk). All these cost
functions cause smooth trajectories. In my studies on robot motion, I also found
such smooth trajectories to be the most useful.

The developed self-stabilization methods are useful for three special case scenarios.
First, it can be useful when feedback is unreliable due to measurement noise [91],
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feedback delays, or sensor failure. This is the likely reason that self-stability seems
to be an import part of human movement control. Unreliable feedback might
arise for robots in settings with high radiation. Second, it can be necessary when
feedback is unavailable. Robot designers can be forced to omit sensors due to size,
cost or energy constraints. This reason was the cause for investigating robustness
of feedforward signals in works related to micro robotics [13]. The last type of
situation for which self-stability is useful, is when the natural dynamics of the
system happen to make self-stabilization highly effective. Such has been the case
for robot walking and juggling. It is expected that a large impact or contact
element to the motion can make self-stabilization more effective. Self stabilization
in such contact-motions is an under-investigated area for industrial robot arms.

9.1.2 Energy e�ciency and actuation

Overview of results

Chapter 6 was inspired by the energy efficiency of human movement. More pre-
cisely, it was inspired by the fact that human muscles perform negative and positive
work via different (chemical) mechanisms. This inspiration caused us to investi-
gate brakes as a dedicated mechanism for doing negative work, and their use in
robot arms. Their use does seem counterintuitive, as the negative work they do is
simply turned into heat, rather than captured in a flywheel or battery. However,
the low efficiency of such capturing might not warrant the additional complexity
and weight of a capturing mechanism.

In contrast, brakes have some attractive properties. One, because they can be
mechanically simple, lightweight and cheap. Two, they function well without state
estimation, or high bandwidth control loops. As such, they can be robust and
precise.

The main contribution of this part of the thesis is to introduce the concept of
a plugless robot arm. This robot arm performs a pick-and-place motion, where
the pick location is located higher than the place location. As a result, the pick-
and-place motion release the potential energy of the package. In principle, this
energy can be used to power the robot arm, so it does not need additional energy
supply. Designing and controlling such a plugless arm is a challenging, and realistic
problem for testing efficient robot design and control.

In this thesis, an interesting property of the plugless arm problem is used: as
the energy is already applied, it should be possible to control the arm by using
only dissipative actions. This control concept was named dissipatively actuated
control. By studying dissipatively actuated control, I investigated the limits of
using brakes as actuators for robot arms.

Three dissipatively actuated controllers were designed and tested: a model based
geometric controller, a model based receding horizon controller using Monte-Carlo
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tree search and a reinforcement learning controller. The performance of all algo-
rithms was similar, with comparatively little tweaking of the control algorithms.
This is likely explained by the inherent robustness of braking actions: as they can
only slow down the motion, they steer the robot to (stable) equillibria. Therefore
wild, dangerous and unstable motions are difficult if not impossible to accomplish.
These properties make dissipatively actuated manipulation an attractive testbed
for online learning algorithms on physical robots.

Towards a plugless robot arm

The plugless arm was conceived as an ultimate challenge for energy efficient
robotics; building a robot arm that needs no external energy input to perform
its pick-and-place task, other than the gravitational energy of the pick objects
themselves. With the foundations of dissipative control as presented in this thesis,
the road is now clear to tackle the challenge of building a plugless arm in a future
research project.

As the task is a given for most robots, the only way to approach energy efficiency
is to reduce energy losses. The plugless arm is no different. The three main energy
losses are the electric energy consumption for the control-boards, friction losses in
joints and gears and the copper losses in the motor.

The energy loss due to computation can be reduced by designing simpler controllers
that run at lower frequencies and require less computation. The gain in energy
efficiency is mostly because such controllers can run on simpler electronics which
require less overhead. Friction losses in joints and gears can be reduced in the
design of the robot. Apart from higher quality manufacturing, the main benefit
is obtained by using rolling contact. Sliding contact, including those in gears, can
be avoided by using spindles or specially designed planetary gear stages.

The main avoidable source of energy loss are the copper losses in the motor.
These can be reduced in three ways. One, improving the efficiency of the motor.
This is mostly done by selecting the motor and gearbox combination that is most
suitable. Two, reducing the torque demands for executing the task by picking a
more effective motion. A famous example is to straighten the knee joint of the
stance leg in walking, such that the links directly support the body weight without
relying on motor torque.

The third way to reduce energy consumption is to transfer or store energy. Vari-
ous mechanisms can relieve the actuators of some of their torque demands. Two
important examples are: one, passive elements in parallel with the actuator, which
can replace actuators for the energy neutral part of the torque demands; and two,
multiarticular actuators, which can transfer energy between links and can avoid
simultaneously performing positive and negative work in two different actuators.
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Elastic and multiarticular actuators are a more conceptual improvement, and offer
interesting possibilities for future research. By combining novel mechanisms for
energy transfer and storage for multi degree of freedom arm with careful mechan-
ical design, a plugless robot arm with a modest weight and drop (say 1 kg over 1
m) might become a feasible prospect.

9.1.3 Adaptive planning

Overview of results

Chapters 7-8 researched a new idea on planning trajectories with minimal com-
putational power. The ability to plan motion is widely understood to be one of
the most important areas in robotics. Various fields, from data based approaches,
such as reinforcement learning to geometric control approaches, for instance those
based on flatness, all aim at increasing the speed with which motion plans for
robots are made. The most important contribution of this chapter is to propose a
new algorithm: RRT-CoLearn.

The RRT-CoLearn algorithm, is grounded in the philosophy that a combination
of various approaches can benefit from the strength of each. Optimal control
techniques leverage the structure of the system to more quickly solve planning
problems. However, these approaches require models of the obstacle boundaries,
which are not always available. Sampling based approaches are well suited for
situations. A sampling based planner will always rely on randomness to explore the
motions, and is therefore at least somewhat limited in its computational efficiency.
Finally, learning based approaches offer quick online performance, at the cost of
an offline learning phase. For general feedback control of robotic systems, the
problems of learning are not yet solved. Furthermore, the number of effective
states of robotic systems moving around moving obstacles is overwhelming, and
learning a highly accurate controller for such a large dimensional system will always
require a prohibitive amount of samples.

All learning RRTs combine the efficient computation of optimal control with the
online speedup caused by machine learning. The sampling based planner handles
long-term planning, thereby drastically reducing the number of samples required
for learning. Furthermore, the sampling-based planner can take care of obstacles
in future work. Although such future implementations will finetune the roles of
each of the algorithms, the general layout of the algorithm with an optimization,
a learning, and a sampling based planner has shown great promise.

The work in this thesis investigated a new choice for the optimal control algorithm
used in learning RRT. Specifically, so called indirect optimal control, based on the
maximum principle of Pontryagin was used to create the RRT-CoLearn algorithm.
This indirect optimal approach allows faster uniform sampling of optimal trajec-
tories. Furthermore, the control is parametrized in the costate, a vector with the
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same length as the state. Due to this smaller parametrization, the control input
were learned for the first time. As a result, both the offline and online phases of
the learning based RRT are sped up by a factor 10.

Applicability of RRT-CoLearn

In this thesis RRT-CoLearn is only applied to a pendulum swing up. This begs
the question: how useful is the algorithm for more realistic scenarios, such as multi
degree-of-freedom robot arms. This question is discussed in two steps. One, can
RRT-CoLearn be applied on such an arm? And two, what are the benefits of
applying RRT-CoLearn?

Before RRT-CoLearn can be applied to a multi-degree of freedom robot arm, one
main challenge needs to be overcome. Two studies [116, 124] have attempted to
directly use the CoLearn algorithm from Chapter 7, without successful planning
as a result. Those studies identified poor learning performance in the steering
function as the main culprit. The challenges of learning the costate where already
explained in Chapter 7, and the simple dataset cleaning algorithm there was shown
to not scale well to higher dimensions. However, there are avenues to explore in
improving the learning performance. Chief among these is the use of generative
models, such as variational autoencoders or generative adversarial networks. These
models can potentially capture the more complex relationship between planning
task and steering input.

Should the steering function learning problems be solved, the RRT will have access
to an accurate cost and steering function. To I knowledge, this would be the first
time that a kinodynamic RRT is given these functions for a task with a high
dimensional state. As such, unknown challenges with RRTs in such a domain
might be revealed.

If these challenges are fixed, RRT-CoLearn will be a single query kinodynamic
planning algorithm delivering a feasible, but non-optimal, trajectory to the goal.
The main quality of RRT-CoLearn is that it will be fast at exploring the state
space of a robot in a cluttered environment. As a result RRT-CoLearn will be
beneficial when the following four criteria are met:

• The motion needs to be analyzed in state space. That is, the dynamics of
the movement matter for the success of its execution.

• The robot needs to move through an environment with obstacles.

• A feasible motion should be hard to find. This must be true to such an
extent that the optimality of the motion is to no concern.

• The situation changes, such that similar situations are not encountered re-
peatedly.
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Many scenarios that are currently seen as amenable to robotic automation do not
meet all four criteria. RRT-CoLearn is therefore truly an algorithm for future
industries, where faster movement in high-skill tasks are demanded. A simple,
but relevant scenario would be bin picking from a moving bin. A robot with that
skill would provide a performance benefit in warehouse with fast changing and
irregularly shaped goods, such as seasonal fruits and vegetables.

9.1.4 General discussion

Applicability of trajectory optimization

This thesis relied heavily on the use of optimization on simulated models, in order
to compute the motions of various robots. This was done because optimization
provides a natural way to phrase my research questions as a mathematical problem,
while leaning on previous work on optimization and simulation algorithms to find
a solution. In this section I reflect on some issues that might interfere with the
applicability of trajectory optimization for robotics.

The reason for this reflection is that optimized attributes of a simulation model
do not always transfer well to the physical world. Partially, this can be directly
attributed to the gap between model and reality. This gap was explored in Chap-
ters 3-4. In those chapters, an algorithm was developed that takes into account
the model-reality mismatch. Such algorithms are a wider area of research, for ex-
ample see [171]. These algorithms provide performance guarantees given bounded
disturbances. Another approach is to optimize the expected performance, given
some probability distribution over the uncertainties or inaccuracies in the model,
see [169]. A different solution to the same problem can be found in online adap-
tation, as explained in [157].

However, the model mismatch is not the most important issue with optimizing sim-
ulated systems. The main problem is more philosophical: often an optimal solution
is not the goal. Rather, a solution that performs, without failing some constraint
is the goal. Because many optimizations problems contain active constraints, the
optimization algorithm searches for solutions near the constraint boundary. This
means that many of the settings tried during the algorithm fail, and feasibility
is only guaranteed after full convergence. However, the gains made during the
final stages in the optimization, are often merely overfitting to the model, and are
therefore at best not visible in the real setup, but likely even detrimental.

In chapter 5 this effect is clearly seen. The simulation results clearly overfitted on
some aspect of the model around a controller frequency of 3.5 Hz. This caused
a slight peak in the performance of the simulated system around that frequency.
The real system on the other hand showed a distinct dip in performance, when the
controller resulting from the optimization was applied. In fact, a commonsense, not
optimized controller outperformed the controller that was optimized in simulation.
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To counteract the overfitting problem, future work can look at the field of machine
learning, where the problem is well studied. The most common solutions there
are regularization and early stopping, see [50]. While both solutions seem to
be detrimental by intuition, they cause an increase in performance in practice.
For the machine learning case of an optimization overfitting sampled data, this
can be theoretically explained by an improvement in the bias-variance trade off.
A similar trade off likely exists when overfitting to a simulation model, and is
worth investigating in that setting. Note that for early stopping, the optimization
algorithm has to provide mostly feasible intermediate solutions. This can likely
be accomplished by using forms of regularization that cause the solutions to move
away from the constraint boundaries.

9.2 | Conclusions

This thesis studies the use of industrial robot arms by investigating three aspects
inspired by human arm movement: self-stability, actuation and energy efficiency
and adaptability by fast planning. The main results are

1. Self stability alone is sufficient to make a robot perform a basic pick-and-
place task, even in the presence of disturbances and model inaccuracies.

2. While the choice of feedforward controller has a noticable effect on the accu-
racy of robot arms, optimizing that controller for self-stability is only useful
in special cases when limited feedback gains are possible.

3. Three different controllers for a dissipatively actuated robot arm were devel-
oped. These controllers can potentially form the basis for a plugless robot
arm, i.e., a pick-and-place robot arm that gets all its required energy from
a height difference between the pick- and place-locations.

4. The use of indirect optimal control as part of a sampling based planning
algorithm with a learned distance metric, allows learning of the steering
function and decreases the time used in the offline training phase and causes
a 10-fold speedup in the online planning.

9.3 | Future work

Earlier chapters in this thesis already gave suggestions for future research. Here
I list the two most interesting directions that follow directly from this thesis, and
briefly discuss a more general outlook.
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9.3.1 Self stability in general robot arm movements

Situations encountered by robots outside the lab setting are more complex than
those encountered by the self-stabilizing robots in this thesis. Before self-stabilizing
effects can be utilized in the scenarios listed in Section 9.1.1, the results in this
thesis should be extended towards such more complex situations. Most notably,
three improvements should be made.

First, the self-stability of robot arm through contact should be studied. The as-
sessment of stability as developed in this thesis is valid for movements with a
set sequence of contacts. However, finding self-stabilizing motions becomes much
harder when the search involves optional contact. A possible avenue towards solv-
ing this issue is to use soft contact constraints, as proposed in [115]. Furthermore,
deviations from the limit cycle could cause a different sequence of contacts to oc-
cur, which should be accounted for in the stability assessment. By necessity, this
stability assessment should therefore investigate the behavior after finite devia-
tions from the nominal trajectory. That is, the assessment should investigate the
basin of attraction of the cycle.

Second, the self-stability of non-cyclic motions should be further developed. First,
because practical tasks for robot arms require a variety of motions. For instance, a
pick and place task will likely have different pick and place locations in a practical
setting. Second, the study of non-cyclic motions makes it possible to study the
stability of the motion before learning of the feedforward signal has completed. In
this thesis I have implicitly assumed that the unlearned motion is close enough
to the desired motion that it also converges to a stable cycle. For more complex
scenarios, particularly those involving contact, this might not hold true. To study
self-stability of non-cyclic motions, work on the basin of attraction could again be
useful, most notably via the funnel concept [171]. In this concept, the regions of
attractions of small trajectories are forced to link together, thereby enforcing the
attraction of a combined trajectory.

Third, the techniques for finding stabilizing feedforward controllers should be ex-
tened to robot arms with more degrees-of-freedom. Partly, this can be accom-
plished by using newly developed software that efficiently computes the desired
derivatives of the dynamics equations [27]. However, due to the increased search
space more extensive development is necessary. Conditions for the existence of
self-stable motions could aid in more efficiently searching for such motions.

9.3.2 Generative models for RRT-CoLearn

In any learning RRT, a database of trajectories is used to learn a distance function
and a steering function. Note that the forward dynamics of the system imply a
mapping from initial state and steering input to final state. The steering function
however, is a mapping from initial and final state to steering input, which is akin
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to an inverse of the forward dynamics function. For general inputs, this inverse is
multivalued.

The current solution, a cleaning algorithm, relies on the k-nearest-neighbor al-
gorithm, which becomes less reliable for higher dimensions. The idea behind the
cleaning algorithm is to delete all but a consistent branch of solutions in the multi-
valued inverse described above. The challenge is in identifying a consistent branch,
which now causes the reliance on nearest-neighbor algorithms.

There exists an alternative approach: using generative models. Generative models
are built to sample from the underlying distribution of some dataset. For RRT-
CoLearn, this means that we can sample any of the possibilities for the steering
input that connects the given initial and goal states. Because the sampling does
not need to be from a consistent branch, we no longer have to explicitly identify
these branches. Development of such generative models is therefore an interesting
direction for future research.

9.3.3 E�ective motions for future robots

The work in this thesis focussed on generating effective motions for future robot
arms in simplified situations with a singular focus. Real-world robot arms do not
have such a singular focus. As such, the meaning of effective motions for more
general scenarios should be studied. In these scenarios, combining all aspects of
state estimation and control should lead to a robust skill, as performed by the
robot. Future work should study how the concepts in this thesis can enhance such
skills by improving the role of feedforward control.

This work would extend of Chapter 5, in which the interplay between motion and
low-gain feedback was studied. In that chapter, challenges with state estimation,
and the reproducability of actions were neglected. For real robots, these issues
can greatly reduce the effectiveness of feedback, causing the system to rely more
on the feedforward controller. Furthermore, for the reaching task studied in that
chapter, the prime objective is accuracy in all directions. For more general tasks,
some types of errors may degrade performance very quickly, while performance is
insensitive for other errors. This performance sensitivity is discussed in [158, 189]
for throwing and walking tasks respectively.

To study the role of feedforward control in robot skills, the space of controllers
needs to be explored effectively. Recent improvements in optimal control tech-
niques and data-driven techniques such as MCTS and (deep) reinforcement learn-
ing have paved the way for such exploration. The challenge for future research lies
in combining these data-driven techniques with the more model based concepts in
this thesis.
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Propositions

1. Indirect optimal control is better at generating optimal trajectories for learn-
ing RRTs than direct optimal control. (This thesis)

2. Control using only dissipative actions is challenging from a planning per-
spective, but is beneficial because of robust real world results (This thesis).

3. A physical robot arm performing a pick-and-place task requires some mini-
mum amount of feedback. (This thesis)

4. The role of feedforward control in robotics is currently undervalued because
current robots have limited dynamical interaction with the environment.

5. The energetic cost of computation is unfairly neglected in models for opti-
mizing energy efficiency of robots.

6. The utility of two equally effective methods is determined by the complexity
of their implementation, not the simplicity of their concepts.

7. Advances in computation speed will never abolish the need for methods that
require less computation.

8. The culture of judging robotic research by novelty undermines the value of
that research.

9. The limited personal incentive for thorough reviewing is a danger to the
reliability of science.

10. Car-navigation systems miss a vital option for setting a planning objective:
plan in such a way, that the delays caused by missing exits is minimized.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotors Prof. dr. ir. M. Wisse and dr. ir. R.Babuška
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Stellingen

1. Voor het genereren van optimale trajektoriën voor gebruik in RRTs is indirect
optimal control beter geschikt dan direct optimal control. (Deze thesis)

2. Regelen met alleen maar dissipatieve acties zorgt voor een extra uitdaging bij
het plannen van bewegingen, maar is nuttig door de robuste experimentele
resultaten. (Deze thesis)

3. Een fysieke robotarm die een pick-and-place taak uitvoert heeft een minimale
hoeveelheid feedback nodig. (Deze thesis)

4. De rol van feedforward control in robotica wordt onderschat, omdat de
huidige robots slechts beperkte interactie met de omgeving hebben.

5. De energiekosten voor berekeningen worden onterecht verwaarloosd in mod-
ellen die gebruikt worden voor het optimaliseren van de energie efficiëntie
van robots.

6. Het nut voor de gebruikers van twee net zo effectieve methoden wordt bepaald
door de complexiteit van de uitvoering, niet door de eenvoud van de con-
cepten.

7. Vooruitgang in rekenkracht van computers zal methodes die minder rekenkracht
vereisen niet onnodig maken.

8. De cultuur die robotonderzoek beoordeelt op basis van nieuwigheid hindert
de waarde van dat onderzoek.

9. Het gebrek aan persoonlijke prikkels tot het schrijven van grondige reviews
is een gevaar voor de betrouwbaarheid van de wetenschap.

10. Navigatie systemen voor auto’s missen een belangrijke planningsoptie: het
dusdanig plannen dat vertragingen veroorzaakt door het missen van afslagen
worden geminimaliseerd.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goedgek
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