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ABSTRACT

The development of swarm robotics strives for resilience, a key factor in this is energy supply. Without
energy a robot swarm cannot operate, so a self sustaining power management system is of great impor-
tance. In this thesis, the design of the power management system control hardware and firmware for
the new DeciZebro is discussed. The power flow between the battery and peripherals of the robot will
be controlled with safety as a top priority.
The firmware of the power system reflects the thinking and being of a real animal in code. When the
power system wants to recharge it will tell the brain of the robot to get back to a charging station. In
case of an error, a pain signal in the form of an interrupt is send through the nerves of the robot.
The firmware and hardware design is done, and several parts of the system have been tested and veri-
fied. The prototype PCB is completed, however testing has not yet taken place at the current time.
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1
INTRODUCTION

The Zebro project is a swarm robotics research group at the TU Delft. The idea was inspired by swarm
behaviour exhibited in nature by animals. Each individual in the swarm follows the same set of simple
rules and by doing that the swarm exhibits emergent behaviour. The swarm becomes something greater
than the sum of its parts and is then able to accomplish more complex tasks. One of the most important
requirements for the swarm to operate is resilience. Each member of the swarm should be expendable.
To expand upon this principle the Zebro robot itself is also made to be resilient. This is done through
modularity of each component; every module in the Zebro can be replaced through a basic connector
interface and module can be independently developed as long as they fulfil the interface standards of
the Zebro. This means the robots can be deployed on areas humans would not be able to survive or a
difficult to access, such as disaster areas or even the moon.

One of the key factors in the resilience of the swarm is its energy supply. If the swarm is unable to
acquire enough energy it will collapse as the Zebro’s will cease operation. In this regard the Zebro can
be seen as an electric animal; much like in nature when an animal is unable to supply itself it dies.
Previous design of the Zebro power management system lacked this sustainability and consisted of a
laptop charger interface and a battery. This allowed the a single DeciZebro to be operational for a few
hours before human intervention is required to connect the laptop charger.

Different Zebro robots exist in different sizes and the goal of our group is to design a new power man-
agement system for the DeciZebro that allows for it to operate autonomously and thus remove the need
for human intervention. This will allow the swarm in theory to remain operational indefinitely. To ac-
complish this the charging capabilities have to be expanded by adding a solar charging module as well
as an inductive charging module. The project is commissioned by the Zebro team of TU delft, led by
Mattijs Otten and supervised by dr.ir. Chris Verhoeven and Daniël Booms. The project has been divided
as:

• The peripheral part manages the three input sources.

• The power electronics part develops the battery management system as well as the output con-
verters.

• the control electronics develops both the necessary hardware and firmware to manage the system
and serve as communication interface.

1.1. PROBLEM DEFINITION
The topic of this thesis is the control electronics part of the power management system. The control
electronics have to monitor the state of the system at any given moment and make decisions that ensure
the safe operation of the Zebro. It has to function as the interface between the power management
system and the main Zebro controller. Our final product consists of the following deliverables:

1
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Power management system firmware Due to the modular nature of the Zebro the power manage-
ment system has to make decisions autonomously based on its own inputs. Its power flow must be
managed by the firmware. The firmware should be able to communicate with the main Zebro con-
troller according to the ZebroBus protocol. The firmware for the microcontroller is written in C.

Control system hardware In order to achieve the desired operation of the system, the hardware im-
plementation has to be provided. The hardware implementation is fully integrated into the power man-
agement system’s PCB and will be designed in KiCad.

1.2. STATE OF THE ART
Power management systems of this scale are common in CubeSats. Their Electrical Power System (EPS)
makes use of solar panels as input and a battery for storage. They are often controlled by a dedicated
microcontroller unit (MCU) that regulates the power flow and monitors the state of the system using
sensors. [1]

The CubeSTAR EPS uses the ATxmega128A1U as dedicated MCU that communicates via inter-integrated
circuit (I2C) bus with the other subsystems. For its internal communication it uses a second I2C bus to
read out temperature, voltage and current of the system as well as State of Charge of the battery. The
MCU does not handle the maximum power point tracking (MPPT) algorithm, instead it uses a dedi-
cated IC to achieve this. It uses a buck-converter to power the internal sensor system at 3.3V. Current
limiting switches are used to enable and disable the different outputs to subsystems as well as close off
the input from the solar panels. [2]

The Nanosatellite CubeStar uses a finite state machine as main loop for the power system control. The
system has two charging states for the constant current and constant voltage part of Li-ion charging,
it has a separate disconnect state in case of emergency. The internal system is powered with the use
of a LDO. The MCU handles the MPPT algorithm for the solar panels through pulse width modulation
(PWM) of a synchronous buck converter. [3]

Architectures of other robot power supplies can be considered as well. In [4] a power management
system structure of a service robot is proposed, it can select either an adapter, a wireless power receiver
or a battery pack as input. The power is then converted to the different outputs using a buck-boost con-
verter for the motors and a buck converter and LDO for the control systems. The power system however
lacks a dedicated control unit.

While most power systems are larger than the one developed for DeciZebro, much of the same prin-
ciples apply. This paper describes the development and implementation of a DC microgrid control
system with the use of a finite state machine. A two layer state machine is designed, the first layer to
handle major states such as emergencies or shutdown, the second layer is used to nuance the system
and handle the different scenarios. [5]

1.3. THESIS LAYOUT
The thesis is structured as follows:

• Chapter 2 describes the Programme of Requirements divided into functional and system require-
ments.

• Chapter 3 shows an overview the top-level design of the system together with the hardware inter-
faces.

• Chapter 4 discusses the hardware design choices made for the control electronics.

• Chapter 5 describes the firmware design for the power management system.
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• Chapter 6 describes the testing and verification of different components of the system.

• Chapter 7 discusses the results of the testing performed on the various components

• Chapter 8 provides a conclusion on the current system and recommendations.



2
PROGRAMME OF REQUIREMENTS

The project has a number of requirements set by the proposer and with further talks these have been
refined in order to draw the Programme of Requirements (PoR). The main goal of the project is to design
a power management and battery management module for the new DeciZebro line. The design should
be implemented on a PCB allowing it to be integrated directly on the module slot of the robot. The
power system should support solar charging and inductive charging aside from a laptop charger. This
subgroup is responsible for the control of the system, so mainly firmware and the hardware needed for
this. The system has been divided into a power management system and a battery management sys-
tem. This PoR will list the power system’s functional requirements as well as the system requirements.

2.1. FUNCTIONAL REQUIREMENTS
[FR-1] The entire system has to fit within the specified dimensions of the robot

[FR-2] Mechanical and software interfaces have to be well defined and comply with the current Zebro
standards

[FR-3] Support 230VAC charging via laptop charging interface

[FR-4] Support inductive charging via the QI charging standard, featuring receiving coil(s) that are em-
bedded at the bottom of Zebro

[FR-5] Support charging batteries via a PV module at the top of Zebro

[FR-6] Support directly supplying Zebro modules via the PV cell as well as via the battery

[FR-7] Utilize a damage protection system to avoid damage to any part of Zebro

[FR-8] The power supply should be able to deliver 16V - 1A continuously, with a peak of 3A, fused without
voltage regulation

[FR-9] The power supply should be able to deliver 5V - 1A and 3.3V - 1A, both fused with voltage regula-
tion

[FR-10] There should be an overcurrent protection module

[FR-11] The module must communicate with the DeciZebro main controller according to ZebroBus pro-
tocol [6]

[FR-12] The cost of the complete system must be below 100 EUR when mass produced

4
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2.2. SYSTEM REQUIREMENTS
From the general functional requirements specific system requirements were distilled. Some require-
ments were added after the initial design through discussion with the other subgroups in order to en-
sure successful integration of the system:

[SR-1] Relevant system parameters must be monitored

[SR-2] Detect overvoltage, overcurrent and undervoltage faults and recover from these faults if possible

[SR-3] The battery management system is to be controlled and read out by the microcontroller

[SR-4] Temperature must be monitored, at Thi g h a warning signal must be given, at Tmax the Zebro must
shut down

[SR-5] The battery must be able to charge while the On/Off switch is Off

[SR-6] Expose system parameters to the main ZebroBus

[SR-7] Error count must be logged with the most recent error code being stored

[SR-8] In case of a critical error or shutdown an interrupt must be generated on the ZebroBus

[SR-9] The system must have a debug facility

[SR-10] Implement a maximum power point tracking (MPPT) algorithm for the Solar converter

[SR-11] Control the digital potentiometer of the laptop/QI converter



3
SYSTEM DESIGN

While the project consists of three subgroups the complete system is still full of dependencies. This
chapter will give an overview of the complete system as well as discuss the external interfaces.

3.1. SYSTEM OVERVIEW
Power enters the system from one or two of the three power sources. The laptop charger and QI input
are connected to a power path selector after which one of the two is connected to the DC-DC converter.
This fulfils requirements [FR-3], [FR-4] and [FR-5]. The converter reference voltage can be adjusted to
match the voltage of the powerbus. The powerbus voltage is determined by the batteries and is between
12V while fully discharged and 16.8V while fully charged. The solar panel is connected to a separate DC-
DC converter that tracks the maximum power point (MPP) of the panel. This setup allows for both the
solar panel and either the laptop charger or QI to deliver power simultaneously. Each input can be en-
abled or disabled from the centralised control unit. The reasoning for this is to ensure that in case of a
faulty input it can be locally disabled. As protective measure, two fuses have been placed at the input,
both before the respective DC-DC converter. This acts as failsafe for when an internal component fails
such as a capacitor that turns into a short circuit.

The power then either flows to the battery management system or the outputs depending the load con-
nected at the output. The external battery management system detects the load on the batteries and
autonomously determines whether or not the batteries should charge or discharge, this information is
then communicated to the MCU. Directly connected to the powerbus is the internal power supply of
the control system. The On/Off switch is connected in series with the powerbus, ensuring the outputs
are safe while still allowing the batteries to be charged.

The output converters set the voltage to the required levels and each of the three can be independently
switched off to allow for more resilience in the system. The output voltages and currents are also mon-
itored and the 16V bus features overcurrent protection using an analog comparator as required by [FR-
10]. The BMS connection as well as every input and output features a TVS diode to protect the system
against electrostatic discharge. The outputs all have non-resettable fuses as hardware protection to
comply with requirement [FR-7].

A block diagram of the complete system is shown in Figure 3.1. The hardware design will be dis-
cussed more in depth in Chapter 4.

3.1.1. EXTERNAL INTERFACES
The final system is implemented on a PCB and must conform to requirement [FR-1]. To comply with
[FR-2] the external hardware interfaces have to be well defined and while some of the connectors and
interfaces are predefined, others have been selected. This paragraph will give an overview of the con-
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Figure 3.1: Overview of the complete power management system. The V, A and T represent voltage, current and temperature
monitoring respectively.

nector interfaces of the power management system. Figure 3.2 shows the relevant interfaces for the
control system.
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Figure 3.2: Debug, ZebroBus and BMS hardware interfaces

ZebroBus The connector interface of the ZebroBus has been specified in the design document listed
on the Zebro Github repository. It is a 6 pin 2.54mm connector that connects the ZebroBus Dataline,
Clockline, Bus supply voltage as well as the Interrupt pin and Ground.

Debug interface The debug interface consists of 2x3 2.54mm pin header. It is a Programming and
Debug interface and can also support UART.

BMS interface The battery management system interface consists of a 3 pin 2.56mm header for data
signals and a two pin 3.96mm JST connector for the power lines.

On/off switch The on/off switch has been specified in the requirements and is a DPST switch. The
PCB connector used for this will be the 4 pin Molex KK 396 rated at 7A. The switch is mounted on the
frame of the DeciZebro and as such a wire needs to run from the PCB to the switch and back. In order
to reduce the electromagnetic interference caused by these wires they will be twisted. [7]

Solar input The solar panel itself will be mounted on the allocated space on top of the DeciZebro, the
panel will then be connected to the PCB using a 2 pin Molex KK 254. Each connector pin is rated at 4A.
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QI input The receiving coil will be mounted in the allocated space inside the DeciZebro, the coil will
then be connected to the PCB using a 2 pin Molex KK 254.

Laptop charger input The laptop charger connector has been specified and will be connected to PCB
using a 2 pin Phoenix Screw terminal.

Output All three outputs use the standard 4 pin Molex KK 254 according to the DeciZebro interface
standard. The 16v output fans out over 4 of these connectors while the other two fan out over 2.

LEDs To help with debugging and gives visual confirmation of the system, LED’s are positioned at the
inputs and outputs for the system indicating their status.



4
HARDWARE DESIGN

Hardware is an essential part of the design as physical change has to be possible to control the system.
In this chapter the requirements for the hardware are listed followed by the design and choices made
during this.

4.1. REQUIREMENTS
The requirements for the hardware of the control system are not only determined by the Programme
of Requirements but also established through communication with the other subgroups. The main
requirements for the hardware design are:

• Supply power to the internal system from the powerbus

• Allow for communication to exist with the Zebro main controller

• Ability to monitor the voltage, temperature and current in the system

4.2. DESIGN
In order to fulfil the hardware requirements, the design is split into different components. These com-
ponents consist of:

• The internal power supply

• Temperature sensing

• Current/Voltage sensing

• Reverse polarity protection

• The main control unit

The schematics were made in KiCad to allow for easier design of the PCB. The complete schematics are
listed in Appendix B.

4.2.1. INTERNAL POWER SUPPLY
Just like the outputs, the control electronics require power. These components however do not oper-
ate at the voltage level present in the system and because of to this a solution has to be found. To find
the correct location for the internal power supply, the requirements have to be considered. When the
switch is off the outputs of the system should be safe but still allow for charging of the batteries [SR-5].
To ensure this the internal power supply has to be placed between the batteries and the switch.

9
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There are different ways to reduce a voltage in a DC system, common methods include a buck converter
used as in [2] or a low-dropout regulator (LDO). A switching converter has the advantage of having a
higher efficiency and therefore also dissipates less heat, it does however require more components and
therefore space which is limited. It also introduces switching noise to the internal power system which
is undesirable. LDO’s do not have a switching component and thus do not cause switching noise, they
also also benefit from being smaller in size and are less complex. Their topology differs from other volt-
age regulators as they use open drain or open collector topology as opposed to an emitter follower one.
This allows the LDO to bring the transistor into saturation allowing the voltage drop to reach the satu-
ration voltage of the transistor. [8] However the voltage drop is still achieved by dissipating power and
thus generating heat.

The power use by the internal system is quite limited and because of that the LM3480-3.3 LDO from
Texas Instruments was selected. It converts the bus voltage to 3.3V and can deliver a maximum cur-
rent of 100mA. While the LDO itself does not cause switching noise or transients the power bus itself
does contain them due to the input converters and because of that additional filtering is desired. It was
therefore decided to place an electromagnetic interference (EMI) filter at the input of the LDO in order
to suppress these transients as shown in Figure 4.1. The output of the LDO also has two decoupling
capacitors.

LDOC1 C2

L2

L1Vpb+

Vpb-

Cdecouple

V3.3+

V3.3-

Figure 4.1: The conversion from the power bus to the internal supply using a LDO preceded by an EMI filter.

EMI FILTER

The input Cúk converter produces unwanted electromagnetic interference (EMI) due to its switching
nature. This unwanted EMI is conducted through the power lines to the powerbus and to prevent it from
disturbing the internal power supply it is filtered. The switching frequency of the laptop charger/QI
converter is 500 kHz and in order to filter it the cut-off frequency of the EMI filter must be sufficiently
low. The transfer function of the EMI filter shown in Figure 4.2 can be calculated as:

VO

VI
= Xc√

X 2
L +X 2

c

(4.1)

Solving for the cut-off frequency gives:

f0 = 1

2π
p

L1 +L2 +C2
(4.2)

The values chosen for the converter were L1 = L2 = 270nH and C1 = C2 = 4.7uF . This results in
a cut-off frequency of 100 kHz which is sufficient, opting for a lower cut-off frequency would require
larger components.

4.2.2. TEMPERATURE MONITORING
The temperature inside the Zebro is an important parameter. There are strict limits for the Li-ion bat-
tery operating range and because of that it is crucial to monitor the system in order to detect if temper-
ature thresholds are reached.[9] Different choices exist to measure the temperature, the most common
choices are a NTC thermistor or a silicon bandgap temperature sensor.
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Figure 4.2: Differential mode EMI filter

A negative temperature coefficient thermistor has, as a first order approximation, a temperature
that depends linearly on the resistance. Using a voltage division and an ADC the temperature can be
computed. This would require either an external ADC or the microcontroller to perform the conversion.
Another downside is that the NTC cannot be turned off within the circuit and thus consumes power.
The silicon bandgap temperature sensor is based on the fact that the forward voltage of a silicon diode,
such as the base-emitter junction of a bipolar junction transistor depends on the temperature. Using a
Brokaw bandgap reference the base-emitter voltage can be measured and from there the temperature
can be derived. [10] The benefit of the bandgap sensor is that it is already integrated in commercial
and industrial digital sensors that are available on the market and will therefore not require additional
hardware to function.

Table 4.1 shows the considered temperature sensors. The LM75B digital temperature sensor was se-
lected based on its lower operating current and price compared to the other sensors. Its accuracy over
a broad range is acceptable as the temperature thresholds are not precisely defined. [11]

Table 4.1: Trade-off table for temperature sensor selection.

NCT75 LM75B SI7060 TMP175
Accuracy +/- 1 C +/- 2 C +/- 1 C +/- 2 C
Price €0,50 €0,47 €0,37 €2,18
Resolution 12 bit 11 bit 7 bit 12 bit
Operating current 800 uA 100 uA 500 nA 50 uA
Range (at specified accuracy) 0 - +70 C -25 - +100 C 0 - +70 C -40 - +125 C

The sensors are positioned near the input Cúk converter and the output Buck-boost converter to
monitor the temperature at locations where the largest power conversions take place. The sensors will
be connected via the Two-Wire interface used as internal communication. The complete application
schematic is shown in Figure 4.3. The battery management system has the possibility of connecting an
external thermistor able to be placed directly on the battery pack.

4.2.3. CURRENT AND VOLTAGE MONITORING
Monitoring the voltage and current within a system has numerous advantages as it provides valuable
information about the state of the system as well as the power draw of different output modules. It will
also help pick up unwanted behaviour that is present in the system.

There are several ways to measure current based on different physical principles: directly by applying
Ohm’s law or indirectly based on Faraday’s law of induction. The direct approach involves connecting a
resistor in series with the load and measuring the voltage drop over the resistor due to the current. This
type of measurement is invasive as it is electrically connected to the system that is being monitored, it
is however quite accurate even at lower currents. [12]

The indirect way of current sensing is realized through the hall-effect. The size of a magnetic field is
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Figure 4.3: Application of the temperature sensor.

proportional to current and as such allows for the current to be indirectly measured by looking at the
magnetic field strength. However this method requires a relatively high current to be present in order
to achieve the same level of accuracy as shunt measurements. [12] On top of this, hall-effect sensors are
more expensive than their shunt counterpart and as such it was decided to use the shunt measurement
technique. To accomplish this the INA226 from Texas Instruments was selected.

Two setups exist for shunt sensing, high side and low side, illustrated in Figure 4.4. Low side sensing
places the shunt resistor between ground and the load resulting in a low common-mode voltage. This
method puts less requirements on the amplifier used but does bring disadvantages. As the current
through the load and shunt changes so does the the voltage across the shunt, this results in a ground
potential that can differ from that of the source affecting other measurements. It can also allow for short
circuits on the load to remain undetected. On the other hand placing the shunt at the high side brings
a high common-mode voltage that the amplifier must be able to handle, however it does remove the
ground disturbance and is able to detect these short circuits. It was therefore decided to use the high
side measurement.

The INA226 is an integrated current and voltage monitor with I2C- and SMBus-compatible interface.
It can handle a common-mode voltage of up to 36V and operates at a supply voltage between 2.7V and
5.5V. The internal ADC is 12 bits and has a maximum range of 81.92mV. The sensor can average over
a number of measurements which allows for random peaks and other disturbances to be suppressed.
The input range of the ADC sets the requirement for selecting the shunt resistor.

Rshunt =
81.92mV

Ishunt
(4.3)

The different points in the system handle different currents and as such so will the shunt resistor. For
the power bus the maximum current is set at 5A, this results in a shunt value of 16mΩ. There is however
more to the choice of the shunt resistor. Power dissipation also has to be taken into account; a larger
shunt resistance offers a higher resolution due to the larger voltage drop but at the cost of more power
dissipated across it. More power also means that a larger shunt resistor is required. It was therefore
chosen to use a value 5mΩ resulting in a maximum dissipation of 52 ∗5m = 125mW . The other shunt
values were calculated the same way and are listed in Table 4.2.
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Vsupply Vsupply

Shunt

Load Shunt

Load

Vcc

Vcc

sensing output

sensing output

High side Low side

Figure 4.4: High side and low side shunt measurement setups.

Rshunt [Ω]
PV input 100m
Power bus 5m
5v output 50m
3.3v output 50m

Table 4.2: Shunt resistor values

The differential measurement is very susceptible to noise due to low voltages across shunt. The
sensor offers internal filtering by averaging over a number of measurements. This helps remove peaks
and takes the burden off the MCU. However it is also recommended to use a differential low pass filter
when transients are present at the sampling rate frequency (500kHz) or close to sampling rate harmon-
ics. Since the switching frequency of the input Cúk converter matches the sampling rate it was decided
to use a differential input filter to suppress the transients. The filter is shown in Figure 4.5.

R1

Vin-
R2

Vin+

C1

Vout+

Vout-

Figure 4.5: Input filter for the shunt measurement

The transfer function can be calculated from the topology as:

Vo

Vi
= Xc√

R2 +X 2
c

(4.4)

This results in a cut-off frequency of:

f0 = 1

2π(R1 +R2 +C1)
(4.5)
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A low value resistor was recommended by the manufacturer and therefore a 10Ωwas used, the capacitor
value was chosen at 100nF resulting a cut-off frequency of:

f0 = 1

2π(10+10+100∗10−9)
= 79.6kH z (4.6)

It was decided not to use the differential low-pass filter at the PV input sensor and the 5- and 3.3V output
sensors as no transients around the vulnerable frequency range are present; the solar panel provides no
switching noise and the output LDO’s act as a buffer between the switching buck-converter and the
sensors. The complete topology is shown in Figure 4.6.

Figure 4.6: The INA226 applied topology.

Main bus overcurrent protection The INA226 provides telemetry and features an alert output for
when an overcurrent/voltage condition is measured. However it only processes the measurements af-
ter the ADC conversion and as such has latency. In order to allow for faster response time in the case of
an overcurrent event on the main bus an analog comparator is used. It is applied in the same manner
as the INA226 as a high side shunt current sensor and has a differential low pass filter at the input to
suppress the noise caused by the buck-boost converter. The comparator output is directly connected
to the enable signal of the buck-boost and thus allows for immediate shutdown during an overcurrent
event. Controlling the output is done by using the enable signal of the INA300 which is connected to the
MCU. When enabled the output alert will be default high thus enabling the 16V output. The connection
is shown in Figure 4.7.

Analog voltage measurement A basic method of measuring the voltage at a point in the system is by
using a voltage division to reduce voltage to a valid range for an ADC. This method lacks the accuracy
provided by the sensor but does allow for checking ranges. It is used at the laptop charger input to detect
the voltage for the acceptable range of 5-22V for the Cúk converter set by the peripheral subgroup. Three
more analog voltage measurements are done at the output to detect if a fuse has been blown, for in that
case the voltage measured will drop to zero.

4.2.4. REVERSE POLARITY PROTECTION
The system needs to be foolproof and therefore also account for user error in connecting the system to
external sources. Measure has to be taken to prevent reverse polarity. In order to achieve this a blocking
diode is used in systems. [2] However the voltage drop across a silicon diode is typically around 0.7V and
when placed on the powerbus will dissipate 1W or more continuously. Luckily an alternative solution
exists in MOSFETs. A P-channel MOSFET’s drain-source resistance while conducting is extremely low,
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Figure 4.7: Application of the INA300 as output comparator

in the order of mΩs, resulting in a minimal voltage drop The gate of the MOSFET is connected directly
to the negative voltage line as shown in Figure 4.8.

OUTPUTINPUT 
BMS

+ +

- -

P-Channel MOSFET

G

D S

Figure 4.8: Reverse polarity MOSFET.

When the input and output are connected correctly VD will be 12-16.8V and VG as well as VS remain
0V. Current then has to flow through the body diode in order to raise VS so that to the point where VGS

drops below the threshold voltage of -3V at which point the MOSFET turns on and the voltage between
VD and VS becomes near equal. When reverse biased the body diode does not conduct and therefore
VGS remains positive resulting it never turning on.

4.3. MAIN CONTROL UNIT
The ATxmega32A4U-AU was selected as MCU for the power management system. There are a number
of reasons for this. The MCU has to be able to actively communicate on two busses at once, the Ze-
broBus and the internal bus. This requirement alone limits the number of available microcontrollers. It
also needs to have enough I/O pins to handle all the control signals. It is low power with a supply voltage
that is the same as that of the sensors: 3.3V. It is cheap and has heritage within the Zebro project. The
AU version was selected over the MH version as the MH version is a ball grid array chip which greatly
increases the difficulty of PCB routing while saving minimal surface area.

It is an 8-bit microcontroller that can operate at a clock frequency of 32MHz but can be scaled down.
It has 34 programmable I/O pins, an internal ADC as well as a PWM generator. [13]

4.3.1. BACKUP POWER SUPPLY
The ZebroBus protocol dictates that in the case of an emergency the Zebro interrupt should be raised
to give a warning to the main controller of the robot. This should allow for critical data to be saved
and appropriate action taken. To accomplish this a back-up capacitor is placed near the MCU power
supply. This will provide power in the case of sudden disconnection of the battery management system
or failure of the internal power supply. In order to prevent the capacitor current from supplying the
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internal 3.3V a schottky diode is used. A schottky diode offers a lower forward voltage drop compared
to a silicon diode and offers a faster switching time. An equivalent circuit of the backup power is shown
in figure 4.9.

3.3V

3kΩ

1m
F

~0.3V drop

t=0
ATxm

ega32A4U

Figure 4.9: Backup power equivalent circuit

A back on the envelope calculation has been done to determine how long the capacitor can supply
backup power. In normal conditions the switch is closed, in this case there will be approximately 3V
over the capacitor and microcontroller, as the schottky diode has a voltage drop. The microcontroller
is represented as a 3k resistor, because it consumes about 1mA at 3V 2MHz according to [14]. The
capacitor is fully charged.

Once the switch opens at t=0, there is still 3V over the capacitor. However there is no current coming
from the source anymore, so all current will be drawn by the microcontroller. So now there is a resistor
in series with the capacitor, which means the standard discharge formula can be used:

Vc (t ) =V0 ·e−
t

RC (4.7)

The result is plotted in figure 4.10. The microcontroller’s minimum operating voltage at 2MHz is 1.6V
[14]. So doing a raw calculation this means it has 1.886 seconds of backup power to store the critical
data.

Figure 4.10: Backup power capacitor discharge prediction
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4.3.2. ANALOG SUPPLY FILTER
The clock switching of MCU causes switching noise in the digital supply voltage. This noise can transfer
to the analog supply rail and influence the ADC measurements. Since the noise is present at a relatively
high frequency, a few to tens of MHz, a ferrite bead is used as a filter instead of an inductor. A ferrite
bead is preferred since it offers a superior real impedance at high impedances compared to an inductor.

4.3.3. ANALOG INPUT PROTECTION
The pins of the MCU can handle a maximum voltage of Vcc +0.3 and to make sure this will always be
the case a Zener diode is placed in parallel to the measurement point and ground. The Zener diode has
a low forward voltage and when exceeded it will conduct, thus regulating the voltage at the specified
forward voltage, in this case selected to be 3.3V.

4.3.4. ZEBROBUS
For the ZebroBus interface a Buffer and interrupt had to be implemented both are shown in figure 4.11.

Buffer The requirements state the the module’s internal state is not allowed to interfere with the Ze-
broBus [FR-12]. To accomplish this a buffer is implemented that separates the supply voltages of the
module’s bus connection and the external bus.

Interrupt The ZebroBus protocol also states a special interrupt signal that is default high and should
be grounded in case of emergency. This is implemented with the use of a simple NMOS. The pullup
supply for this interrupt line is external.

Figure 4.11: ZebroBus Buffer and Interrupt



5
FIRMWARE DESIGN

5.1. REQUIREMENTS
The firmware ties the whole system together and because of that has to fulfil an array of tasks.

• Communicate with the main ZebroBus controller (PoR [FR-12])

• Initialise the complete module on startup

• Monitor the system parameters (PoR [SR-1])

• Generate the PWM signal for MPPT of the solar panel

• Recover from errors autonomously (PoR [SR-2])

• Determine the correct power scheme

• Implement a MPPT algorithm for the Solar converter

• Control the digital potentiometer of the laptop and QI charger

5.2. TOP-LEVEL FIRMWARE
The top-level firmware routine is shown in Figure 5.1. During startup the MCU initialises itself as well
as its subsystems. As it enters the main loop it proceeds to perform a routine sensor check in order to
monitor the state of the system. The watchdog timer is reset and the power scheme is then determined
with the help of the sensor data. The power scheme is implemented as a Finite State Machine (FSM),
see figure 5.3. After the current state of the power system is determined the system will update its virtual
registers and increment the loop counter to provide fresh data for the ZebroBus. Interrupts are enabled
except during execution of crucial commands. The interrupts can originate from the ZebroBus, the
internal bus and from within the MCU itself.

18
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System
Initialization

Reset

Determine state

Update vregs 

Check sensor data

Discharge Charge (QI/ Solar/ Laptop)

Shutdown

Reset Watchdog

Figure 5.1: Flowchart of the top-level firmware architecture

5.2.1. SYSTEM INITIALISATION
During startup the MCU will first configure the clock followed by initialising the various internal func-
tions such as the virtual registers. The FSM is initialised and set to the start state with no inputs or
outputs enabled. This will ensure that minimum power flows through the system before its parameters
are known. After this it will proceed to initialise the I/O pins of the system and configure the sensors.

Initialization Initialize MCU
functions Configure sensors 

Figure 5.2: Initialisation procedure of the system.

5.2.2. RETRIEVING SENSOR DATA
Most of the monitoring in system is done via the internal data bus which will be described in-depth in
Section 5.4. The sensor data also includes analog signals originating from the laptop charger input and
the three output fuses. These signals are converted by the internal ADC of the microcontroller before
being stored in the virtual registers. The implementation is described in 5.3.3.

Sensor Data Routine All sensor data coming into the microcontroller has to be checked, for both
determining the next FSM state and doing error handling. A check function for each sensor has been
written in which the data is compared to the predetermined values. Based on the comparison an error
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could be reported, see table 5.5. After that the value of the sensor data is written into the right virtual
register, table 5.3.

For example in the case of the temperature sensors. If the temperature of the input is larger than
45oC then the OTI should trigger, because this is the maximum charging temperature. The output over-
temperature error is triggered once the output temperature is above 60oC. This comparison is imple-
mented into the check function. The function includes a switch statement, which based on what ad-
dress is read out determines what data to compare and store in the right virtual registers, see the code
implementation below:

1 void Check_And_Write_Temperature_Registers ( uint8_t adr , uint8_t high_byte , uint8_t low_byte )
2 {
3 switch ( adr ) {
4 case ADDRESS_TEMP_SENS_INPUT :
5 i f ( low_byte > 0x2d ) // I f the input temperature i s higher than 45 degrees Celsius t r i g g e r OTI
6 {
7 error_report (ERROR_OTI) ;
8 }
9 vregs_write (VREGS_INPUT_TEMP_LOW, low_byte ) ;

10 vregs_write (VREGS_INPUT_TEMP_HIGH, high_byte ) ;
11 break ;
12 case ADDRESS_TEMP_SENS_OUTPUT :
13 i f ( low_byte > 0x41 ) // I f the output temperature i s higher than 60 degrees Celsius t r i g g e r OTO
14 {
15 error_report (ERROR_OTO) ;
16 }
17 vregs_write (VREGS_OUTPUT_TEMP_LOW, low_byte ) ;
18 vregs_write (VREGS_OUTPUT_TEMP_HIGH, high_byte ) ;
19 break ;
20 default :
21 error_report (ERROR_UNKNOWN) ;
22 }
23 }

5.2.3. DETERMINING POWER SCHEME
While the firmware runs in a loop, the input and output settings of the system will be determined by
a Finite State Machine (FSM), this is done due to the limited amount of possible scenarios. A FSM is
more efficient and reliable which is prefered in the case of controlling lithium-ion batteries[15]. Figure
5.3 shows an overview. After initialisation the system is in the start state after which it checks for the
different transition conditions and selects the next state. The system is divided into three main opera-
tional states defined by the state of the connected power supplies, the batteries will either be charging
or discharging depending on it.

In the start state all outputs and inputs are disabled, this is done to ensure safe startup by prevent-
ing power flow under unknown conditions. In every operational state the solar panel module will be
enabled, it will always assist the current state of the system, it either helps with charging or it lessens
the discharging rate of the batteries as stated in [FR-6].
The charge state enables either the QI module or the laptop charger depending on the power path selec-
tor at the input. The outputs are enabled as well to allow the Zebro to stay operational while charging.
This choice was made with the idea of the swarm in mind: when the Zebro has positioned itself on a
charging pad and another Zebro that requires urgent power arrives at the station it can still move out
of the way. Unique to this state is that the digital potentiometer is controlled to adjust the reference
voltage of the laptop/QI input DC-DC converter based on the battery voltage. Solar charging on the
other hand will disable the 16V output or it would never be able to charge. The solar panel delivers a
tiny amount power, so it functions as a last resort for when the batteries are at a critically low voltage
and no other charging method is present. To allow for more efficient charging the Zebro should ideally
be put in a sleep state to minimize ambient power usage. The discharge state is the default operating
state when all systems are nominal and the Zebro is out on the field: only the solar panel is supporting
the batteries and all outputs are enabled. The shutdown state is entered when the temperature sur-
passes the maximum allowed value. It could also enter shutdown state in case a critical error occured
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Figure 5.3: Top-level state machine for the system power scheme.

in the system concluding the operation. Termination is achieved by disabling the discharge NMOS on
the BMS through its host controller. An overview of the I/O of the system is shown in Table 5.1.

The transition conditions from the starting state are defined as:

Transition Transition condition Transition description
1 (∼ (Vl aptop |VQI )&(Vbat >Vcr i t i cal )&(Tbat < Tmax ))& ∼ (Ecr i t ) nominal operation, no charger present
2 (((Vl aptop |VQI ) == 1)&(Tbat < Tmax ))& ∼ (Ecr i t ) charger is connected
3 ( (Vl aptop |VQI )&(Vbat >Vcr i t i cal )&(Tbat < Tmax ))& ∼ (Ecr i t ) charger is disconnected
4 ((Vl aptop |VQI == 1)&(Tbat < Tmax ))& ∼ (Ecr i t ) charger is detected
5 ((Tbat > Tmax )|(Ecr i t ) shutdown state
6 ((Vl aptop |VQI ) == 1)&(Tbat < Tmax ))& ∼ (Ecr i t ) charger is detected
7 ((Vbat <Vcr i t i cal )&(Tbat < Tmax ))& ∼ (Ecr i t ) last resort solar charging
8 ((Vbat <Vr estor e )&(Tbat < Tmax ))& ∼ (Ecr i t ) Acceptable SoC reached
9 ((Vbat <Vcr i t i cal )&(Tbat < Tmax ))& ∼ (Ecr i t ) last resort solar charging
10 (Tbat > Tmax )|(Ecr i t ) shutdown state
11 (Tbat > Tmax )|(Ecr i t ) shutdown state
12 (Tbat > Tmax )|(Ecr i t r ) shutdown state

Table 5.1: Transition conditions for the the state machine

Aside from critical errors, faults can occur in the system. These faults might be an overcurrent in
a specific bus or overvoltage. To account for this every output has a health flag, good will result in the
system turning on when set, bad will prevent the output from being enabled functioning as an authority
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above the state machine. The implementation is discussed further in section 5.5.

State Laptopcharger Solar charger 16V out 5V out 3.3V out
Start disabled disabled disabled disabled disabled
Laptop/QI charging enabled enabled enabled enabled enabled
Solar Charging disabled enabled disabled enabled enabled
Discharge disabled enabled enabled enabled enabled
Shutdown disabled disabled disabled disabled disabled

Table 5.2: Overview of the power scheme for every state.

5.3. FUNCTIONS

5.3.1. WATCHDOG TIMER
Fault recovery is an important part of the system and a requirement [SR-2]. The firmware allows for
the system to recover from hardware errors, however the firmware itself is also prone to malfunctioning
due to the code or external causes. The DeciZebro swarm will operate autonomously and when a fatal
error occurs the system must be able to recover or the Zebro will fail. In embedded software this error
recovery is achieved through an external hardware timer also known as a watchdog timer. It runs inde-
pendently from the CPU and will therefore not fail in case of an error within the code. To prevent the
watchdog from resetting the MCU has to clear the timer before it expires. When the timer does reach
its threshold it will log the event and reset the system, shown in Figure 5.4. The log serves as a counter
to check if the system keeps failing. The log is also directly written to the loop counter virtual register,
(0x12) in Table 5.3.

reset

CPU Watchdog timer

timeoutreset

clkclk

Figure 5.4: Watchdog configuration.

5.3.2. MPPT IMPLEMENTATION
The MPPT is realized together with the peripheral subgroup. An overview of the system is shown in
Figure 5.5. The idea is to maximize power transfer by load matching using a DC-DC converter, in this
case a Cúk converter. Different MPPT techniques exist such as Perturb and Observe (P&O), Incremental
conductance and fuzzy logic design[16]. As the Zebro swarm moves around terrain the irradiance can
vary, this combined with the simplicity and high efficiency is why the P&O algorithm was selected[17].
The algorithm measures the power coming from the solar panel and checks if it has increased compared
to the previous step, if so it continues incrementing in that direction, if not it takes a step back. The al-
gorithm climbs along the P-V curve and is therefore also known as a hill climbing algorithm. Once the
maximum power point is reached the climbing doesn’t stop and the algorithm oscillates around it[18].
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Figure 5.5: Overview of the solar power converter with MPPT.

Figure 5.5 shows the setup used to implement the MPPT, the INA226 will provide the current and
voltage measurement. Moving along the P-V is done by changing the duty cycle of the PWM signal of the
converter. The initial step is defined as right however this is arbitrary and serves only as initializaton.
The implementation is quite straightforward. Memory is kept of the previous step direction and the
power measurement is refreshed every loop by the sensor. A waveform generator is set on the compare
match of the counter register and the compare value register. When matched the output will become
0. Using a peripheral clock of 2MHz a 12-bit resolution PWM can be generated at 8kHz, however this
frequency can be made higher by using the 128MHz PLL oscillator.

1 i f ( ( ( power > PowerOld ) & ( LastStep == RIGHT) ) | ( ( power < PowerOld ) & ( LastStep == LEFT) ) )
2 {
3 PWM_IncrementDutyCycle ( 1 ) ;
4 TCC0.CCDBUF = DutyCycle ;
5 LastStep = RIGHT;
6 }
7 else
8 {
9 PWM_DecrementDutyCycle ( 1 ) ;

10 TCC0.CCDBUF = DutyCycle ;
11 LastStep = LEFT ;
12 }
13 PowerOld = power ;

5.3.3. ADC IMPLEMENTATION
The MCU has a built in 12-bit ADC with 4 conversion channels it allows for internal comparison and
can generate an interrupt when a user defined threshold is reached. The maximum internal reference
voltage is Vcc /1.6 resulting in a measurement range of roughly 0V to 2V. The selected values for the
voltage division at the laptop charger result in a measured value of 2V at 25V and 0V at 0V resulting in a
resolution of approximately 6mV/LSB, which is more than sufficient to detect whether or not it is valid.
For the each of the fuses the voltage division results in a measurement of 2V when the specific output
is enabled. The ADC channels measuring the fuse signals are only enabled when the relevant outputs
are enabled and will generate an interrupt when the value drops below comparison threshold, chosen
at 0.5V.

5.4. COMMUNICATION
In the power system there are multiple ways in which the micro controller is able to communicate.
Figure 5.6 shows a hierarchical overview of the communication. Within the power system there is a
Internal Bus, this bus is used to read out the sensors and battery system data. Outside there is the
communication with the rest of the Zebro Robot, using the so called ZebroBus protocol [6], as defined
in requirement [FR-11]. The main controller is on top as it controls all the systems in the Zebro, the
power system controller is one layer below with the sensors and batterysystem on the internal bus.
The power management system thus needs to communicate with two different busses, both will be
discussed in this section.
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5.4.1. ZEBROBUS, NERVOUS SYSTEM
The definition of a nervous system is: An animal’s or person’s nervous system consists of its brain and all
the nerves in its body that together make movement and feeling possible by sending messages around
the body. For a robot a digital nervous system has to be made, in this case a digital communication
protocol. The protocol is named ZebroBus and defined so that every part is connected to the brain the
same way. Zebro should be aware of how long it can survive and when it got hurt. Critical situations
in which fuses blow up or batteries run dry need to be communicated with the brain/main-controller
of the robot. ZebroBus is a protocol based on I2C, where one Master will send out the data it wants to
receive or set, in this case the main controller. Also there are multiple Slaves which can be read to or
written from. The power system will be a slave, so the slave version of the ZebroBus protocol will be
applied. The most important information about the power system should be available for the ZebroBus
Master to read. The information is readily updated and stored in Virtual Registers. These virtual reg-
isters are continuously reachable by the Master. Another addition to the ZebroBus communication is
an Interrupt pin, this pin can be set high from any slave and is only used in extreme situations. One
example is the situation in which the internal temperature of the robot is too high, creating a very big
risk of the batteries exploding. Then, the Interrupt pin will be set high so the main controller knows it
has to shut down before the power is cut off.

ZebroBus Address According to the ZebroBus protocol only the addresses 0x10 to 0x6F can be used
for Slave devices. Multiple of these addresses have already been chosen. Therefore the power system
address will be 0x60.

Virtual Register The ZebroBus uses the same convention as normal I2C protocols, where data is trans-
ferred by first transmitting the register address of the data the masters wants to read or write on the
slave, followed by the actual data. All ZebroBus devices should have a set of Virtual Registers that com-
prise the following 6 rules defined[6].

1. The vregs are byte addressed

2. The vregs have 256 fields
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3. When reading or writing more than one byte in a single I2C transaction, the read or write register
address should auto increment

4. After receiving the STOP bit, the read or write register address should be reset to the address that
was last received.

5. The register address is shared for read and writes. i.e. the I2C sequence
START 0x31 0x42 0x43 STOP START READ_BYTE STOP
should do the following:

(a) Write 0x42 to register address 0x31

(b) Write 0x43 to register address 0x32

(c) Read the value in register address 0x31

Virtual Register Fields For as defined in the ZebroBus protocol rules 1 and 2 there are 256 vreg
fields each containing one byte of data. The fields consist of 4 kinds: Shared, Class specific, device
specific and reserved for further use.

1. Field addresses 0x00 - 0x1F represent the Shared fieds, and are identical for all ZebroBus modules.

2. Field addresses 0x20 - 0x3F represent the Class specific fields, and are equal for all the same
classes of modules (e.g. leg modules, sensors, power management systems, ...). In this case all
measured sensor values such as power sensors and temperature. These are in word format so e.g.
0x20 will be Temp lsb byte and 0x21 Temp msb byte.

3. Field addresses 0x40 - 0xEF represent the Device specific fields and differ for each module. In this
case the battery registers, the power system reads in from the battery system, this could differ per
battery management system.

4. Field address 0x60 is the Status register of the power system. Each of the 8 bits defines the current
situation of the power system, as follows:

Bit 7 Solar input: On[1],Off[0]

Bit 6 Laptop input: On[1],Off[0]

Bit 5 QI input: On[1],Off[0]

Bit 4 3.3V output: On[1],Off[0]

Bit 3 5V output: On[1],Off[0]

Bit 2 16V output: On[1],Off[0]

Bit 1,0 The FSM state: Start[11], Charge[01],Discharge[10],Shutdown[00]

Each of the fields has been defined for the power management system in the virtual_register.h
file, An overview of each field address and the implementation is given in table 5.3.

5.4.2. INTERNAL BUS, SENSORY
The Internal bus could be seen as the sensory of the robot. All the physical senses of the robot are
brought to the nervous system through the internal bus. All sensors in the power system are connected
to the Internal bus. The microcontroller is the gateway in between the sensors and the main controller.
Each sensor value is read in and stored in the corresponding virtual register. The microcontroller is
therefore the Master on the Internal bus.
All digital sensors bus and register addresses are defined in the global_register.h file, an overview
of these is given in Table 5.4.
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Address Size Dir Name Description
Dec Hex Bytes

0 0x00 1 r ZebroBus version Highest of the ZebroBus protocol supported
1 0x01 1 r class id Class this module is part of
2 0x02 1 r product id Product ID of this module
3 0x03 1 r product version Product version of this module
4 0x04 1 r/w serial id Serial number of this module
5 0x05 1 r software version Software version of this module
6 0x06 1 r zebrobus address Primary ZebroBus slave address of this module
7 0x07 r reserved
. . . . . . . . . . . . . . . Reserved for future use
16 0x0F r reserved
17 0x10 1 r quick status One byte module status message
18 0x11 1 r/w sync counter Time synchronisation counter
19 0x12 1 r loop counter Counts the times we go through the main control loop
20 0x13 1 r/w error counter Counts the number of errors that occurred
21 0x14 1 r last error Error code of the last error
22 0x15 r reserved
. . . . . . . . . . . . . . . Reserved for future use
31 0x1F r reserved
32 0x20 2 r Solar Current The solar cell input current measurement
34 0x22 2 r Qi Current The QI input current measurement
36 0x24 2 r Powerbus Current The Powerbus current measurement
38 0x26 2 r 3V3 Current The 3.3V output current measurement
40 0x28 2 r 5V Current The 5V input current measurement
42 0x2a 2 r Solar Voltage The solar cell input voltage measurement
44 0x2c 2 r Qi Voltage The QI input voltage measurement
46 0x2e 2 r Powerbus Voltage The Powerbus voltage measurement
48 0x30 2 r 3V3 Voltage The 3.3V output voltage measurement
50 0x32 2 r 5V Voltage The 5V input voltage measurement
52 0x34 2 r 3V3 Fuse Voltage ADC 3.3V fuse voltage measurement
54 0x36 2 r 5V Fuse Voltage ADC 5V fuse voltage measurement
56 0x38 2 r 16V Fuse Voltage ADC 16V fuse voltage measurement
58 0x3a 2 r Laptop input Voltage ADC laptop input voltage measurement
60 0x3c 2 r Input Temp Temperature measurement close to input converters
62 0x3e 2 r Output Temp Temperature measurement close to ouput converters
64 0x40 2 r Battery Status Status of the battery 11.23[19]
66 0x42 2 r Time To Empty 11.7 Time for battery to discharge [19]
68 0x44 2 r Time To Full Time for the battery to charge 11.6[19]
70 0x46 2 r Battery Temp Temperature of the battery 11.9[19]
72 0x48 2 r Battery Voltage Voltage over the battery 11.10[19]
74 0x4a 2 r Battery Current Current through battery 11.11[19]
76 0x4c 2 r State Of Charge State of Charge of the battery 11.14[19]
78 0x4e 2 r State Of Health State of Health of the battery 11.41[19]
80 0x50 2 r Number Of Cycles Number of Cycles of the battery 11.24[19]
96 0x60 1 r Status This register reflects the current state of the system

Table 5.3: Virtual register addresses
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Address Description
Bin Hex

0b1001000 0x48 Temperature Sensor at Input
0b1001001 0x49 Temperature Sensor at Output
0b1000010 0x42 Current Sensor at Solar Input
0b1000000 0x40 Current Sensor at the power bus
0b1000001 0x41 Current sensor at 5V Output
0b1000011 0x43 Current Sensor at 3.3V Output
0b0100101 0x25 Digital potentiometer
0b0101111 0x2F QI receiver
0b0001011 0x0b Battery management system

Table 5.4: Internal bus addresses

Temperature Sensor The temperature sensor as chosen in section 4.2.2 is a LM75BD. This is an I2C-
bus based device. Register 0x00 hexadecimal is the temperature register. The 11 most significant bits
of the two bytes define the temperature value in 2’s complement notation. Each time the temperature
sensor is read in by the TWI the value will be checked and reported

5.4.3. TWO WIRE INTERFACE ( TWI)
The microcontroller chosen is an Atmel ATxmega32A4U, this microcontroller has been specifically cho-
sen because it has 2 TWI ports. This choice was made because TWI is compatible with both SMBus[20]
and I2C[21] busses.

SMBus and I2C Multiple different devices are connected to the bus, so it is very important that all
are compatible. For example the Battery Management System works solely on the SMBus protocol,
and the ZebroBus is only based on I2C. Therefore knowing how to deal with the differences is essential.
SMBus and I2C are almost identical. However there are some differences that have to be taken into
account. The most important difference between both protocols is Timeout. In Timeout a slave device
resets the interface when the Clock goes down for longer that the timeout time. For SMBus this timeout
time is defined as 35ms, thus it has a minimum clock speed of 10kHz. The I2C protocol in contrast has
no timeout implemented, so both master and slave can hold the clock low for as long as it wants to
process data. To make sure both are compatible, the microcontroller has to wait for a certain timeout
to give the I2C devices more processing time, but also detect a bus error once a SMBus device resets
the interface. Secondly, SMBus is limited to the clock speed of 100kHz, while I2C permits speeds up to
400kHz. Complete compatibility can only be ensured below 100kHz, because then the protocols work at
the same speed. So the clock rate of 100kHz has to be used. Other minor differences are some hardware
specifications listed in table 5.5. Although there is quite a difference in level specifications and pullup
resistor recommendations, this is often not a big issue. The reason is that bus devices often always have
a output voltage swing close to the supply voltage, which complies with both protocols.

Protocol I2C SMBus

Timeout None 25 to 35 ms
Frequency 100kHz, 400kHz(or 2Mhz) 10 to 100kHz

VH IG H 0.7 ·VDD ,3V Fixed 2.1V
VLOW 0.3 ·VDD ,1.5V Fixed 0.8V
Imax 3mA 350µA

Rpul lup 3V >1k >8.5k
Rpul lup 5V >1.6k >14k

Table 5.5: Hardware specification differences between I2C[21] and SMBus[20]
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Bus topology In general TWI provides a simple two-wire communication bus consisting of a serial
clock line (SCL) and a serial data line (SDA). Both lines are open-collector and pulled by a pull-up resis-
tor and form a Bus together where multiple devices can be connected. A device connected can be either
a Master or a Slave, where the master controls all bus communication. The topologies of the ZebroBus
and Internal Bus are shown in figures 5.7 and 5.8. The buffer in the ZebroBus topology has to convert
the 5V pull-up voltage of the main controller to the 3.3V of the microcontroller on the power system
4.3.4.

ZebroBus
Master

[main controller] 

ZebroBus
Slave

[e.g. sensor] 

ZebroBus  
Slave

[e.g. Leg module] 

ZebroBus
Buffer

[5V→3.3V] 

Vcc = 5V

SDA

SCL

ZebroBus  
Slave

[Power System] 

Figure 5.7: ZebroBus Two Wire Bus topology

Internal Bus
Master

[Power System] 

Slave
[Temperature

Sensors] 

Slave  
[Current Sensors] 

Slave  
[Battery Management

system] 

Vcc = 3.3V

SDA

SCL

Slave  
[QI Receiver] 

Figure 5.8: Internal Bus Two Wire Bus topology

TWI transaction A transaction is a complete transfer from Start to Stop, with possibly a repeated start
in between. A typical two wire transaction is shown in 5.9. First of all the Master starts by sending a
Start bit. Then it sends the 7 bit Address of the Slave it wants to reach, followed by a Read/Write bit. If
the Slave gives back an Acknowledge, the Master or Slave can send data over the bus. This repeats until
a Notacknowledge NACK is send by either of the two, followed by a Stop bit of the Master which will end
the transaction.
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Figure 5.9: TWI Transaction[14]

If the Master wants to read out a value from the Slave it should put the R/W bit high and wait for the
acknowledge. After that the master can receive the data from the slave, which can be either one byte or
multiples as shown in figure 5.10. After the last byte the Master has to send a NACK followed by a stop
byte to finish the read transaction.

Figure 5.10: TWI Read[14]

In case the Master wants to write a value to the Slave it should put the R/W bit low and wait for the
acknowledge. Then the master can keep sending data bytes, until it gets a NACK from the slave. Sending
a last stop byte will stop the transaction and the bus will be open again.

Figure 5.11: TWI Write[14]

In the case of the power system the sensors often have many more than one byte to read out. So
instead of returning a single byte after a write command, the Master first has to specify which register
address it wants to read from. This can be done by first doing a write transaction with the specific
register address as data. Immediately after that a repeated start [Sr] can be send, followed by a read
transaction. This way the bus is not interrupted in between writing the address and reading the data.
Figure 5.12 shows such a transaction.
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Figure 5.12: TWI Read Slave Register

TWI MASTER IMPLEMENTATION

The TWI Master implementation is used in the Internal Bus to set and read out all sensors within the
power system. The Master is responsible for starting and stopping transactions between the different
Slaves on the power system. The built-in TWI driver of Atmel is used to implement the TWI master.
This choice has been made, because other selfconstructed techniques as bit-banging are often less ef-
ficient and are more fault sensitive. Bit banging, means only one process can be done at the time, while
the built-in TWI driver uses interrupts, which allows parallelism and makes the MCU usage way more
efficient. [22]

In order to implement the TWI master driver it first has to be included and initialised. The Internal
Bus is connected to the SDA and SCL of port C, so the master will be initialized to &TWIC. Then, because
the sensors are not the most critical the intterupt level is set to low. The Baudrate and Clockspeed have
to be defined and set. The BAUDRATE is set to 100kHz, as that complies with both SMBus and I2C. See
the code below:

1 #include " twi_master_driver . h"
2 #include " sensor . h"
3 TWI_Master_t twiMaster ;
4

5 #define BAUDRATE 100000
6 #define CPU_SPEED 2000000
7 #define TWI_BAUDSETTING TWI_BAUD(CPU_SPEED, BAUDRATE)
8

9 void sensor_init ( )
10 {
11 TWI_MasterInit(&twiMaster , &TWIC, TWI_MASTER_INTLVL_LO_gc, TWI_BAUDSETTING) ;
12 }

Each sensor has its own bus address and register addresses which have to be read out and stored
into the virtual registers of the microcontroller. So a function for each sort of devices has been made.
Below is the code of the master readout of the current sensors. For each current sensor address, each
voltage and current register will be read out. The TWI master write and read function will be called.
This function will first write the register value to the slave address and then read two bytes, just as in
figure 5.12. After waiting for the transaction to be done the read data can be checked and written to
the corresponding virtual registers. Within the Check and write registers function the data is checked
comparing it to the limits to raise error flags. At last the virtual registers are updated.

1 void Read_Current_Registers ( void )
2 {
3 uint8_t current_addresses [ 4 ] = {ADDRESS_CURRENT_SENS_BUS,
4 ADDRESS_CURRENT_SENS_5V,
5 ADDRESS_CURRENT_SENS_3V3,
6 ADDRESS_CURRENT_SENS_SOLAR } ;
7 uint8_t c u r r e n t _ r e g i s t e r [ 2 ] = {CUR_BUS_VOLTAGE_REG,
8 CUR_CURRENT_REG} ;
9

10 for ( uint8_t AdrPos = 0 ; AdrPos < 4 ; AdrPos++)
11 {
12 for ( uint8_t RegPos = 0 ; RegPos < 2 ; RegPos++)
13 {
14 TWI_MasterWriteRead(&twiMaster ,
15 current_addresses [ AdrPos ] ,
16 &c u r r e n t _ r e g i s t e r [ RegPos ] ,
17 1 ,
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18 2) ;
19 while ( twiMaster . status != TWIM_STATUS_READY) { }
20 Check_And_Write_Current_Registers ( c u r r e n t _ r e g i s t e r [ RegPos ] ,
21 current_addresses [ AdrPos ] ,
22 twiMaster . readData [ 0 ] ,
23 twiMaster . readData [ 1 ] ) ;
24 }
25 }
26 //update vregs
27 vregs_writeout ( ) ;
28 }

TWI SLAVE IMPLEMENTATION

The TWI Slave will communicate with the ZebroBus[6]. The ZebroBus is connected through the buffer(4.3.4)
to port E on the microcontroller. The slave register needs to be initialised and set to port E, also the slave
process data function is defined to decide over what is send over the bus. The slave module is initialised
to a new address, which will be 0x60 based on the ZebroBus protocol [6]. The interrupt level is set to low
and low level interrupts are enabled in line 8 and 9. Note also the interrupt handle needs to be declared
as in line 14-16.

1 TWI_Slave_t twiSlave ;
2

3 void zebrobus_init ( )
4 {
5 /* I n i t i a l i z e TWI slave . */
6 TWI_SlaveInit ial izeDriver (& twiSlave , &TWIE, TWIE_SlaveProcessData ) ;
7 TWI_SlaveInitializeModule(& twiSlave , 0 x60 , TWI_SLAVE_INTLVL_LO_gc) ;
8 PMIC.CTRL | = PMIC_LOLVLEN_bm;
9 s e i ( ) ;

10 }
11

12 /* ! TWIC Slave Interrupt vector . */
13 ISR ( TWIE_TWIS_vect )
14 {
15 TWI_SlaveInterruptHandler(& twiSlave ) ;
16 }

Once there is an interrupt from the slave driver the data processing function is called. This function
is the junction between the ZebroBus and the virtual registers. The first received byte from the ZebroBus
is the register Index of the virtual register(line 3). The amount of bytes received determines the size of
the buffer, and thus how many bytes should be written(line 4). As stated in the ZebroBus protocol[6]
the slave will always give the value of the first register requested(line 5). During prototyping, however 2
bytes could be read in right after each other so the next byte in the register is stored in the following send
data(line 6). A possibility for the ZebroBus to read in the complete virtual register is not implemented in
the ZebroBus protocol, but discussed in recommendations(8)(line 7-11). When the slave receives more
than one byte, each next byte has to be written into the virtual registers, just as described in rule 6 of the
ZebroBus protocol[6](line 13-17).

1 void TWIE_SlaveProcessData ( void )
2 {
3 uint8_t bufIndex = twiSlave . receivedData [ 0 ] ;
4 uint8_t bufSize = twiSlave . bytesReceived ;
5 twiSlave . sendData [ 0 ] = vregs_read_buffer ( bufIndex ) ; //send the read data from r e g i s t e r
6 twiSlave . sendData [ 1 ] = vregs_read_buffer ( bufIndex +1) ; //send the read data from r e g i s t e r +1 i f word

i s requested
7 /* Suggestion for ZebroBus protocol to read a l l r e g i s t e r s */
8 // for ( uint8_t i = 0 ; ( bufIndex+ i ) <VREGS_FILE_TOTAL_SIZE ; i ++)
9 // {

10 // twiSlave . sendData [ i ] = rw_reg [ bufIndex+ i ] ;
11 // }
12 for ( uint8_t recvIndex = 0 ; recvIndex <bufSize ; bufIndex ++)
13 {
14 recvIndex ++;
15 vregs_write ( bufIndex , twiSlave . receivedData [ recvIndex ] ) ;
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16 }
17 }

5.5. ERROR HANDLING, PAIN
The Zebro robot can get hurt, just like a normal animal it reflexes and sends a signal to the brain it
feels pain. For example if you touch a hot soldering iron, your first reflex is to get your hand away
and secondly you feel the pain. This reflex skips the brain and retracts the hand immediately. The
overcurrent protection symbolizes this reflex, while the interrupt received by the MCU represents the
sting that was measured by the sensors. Errors in the system generate interrupts. Each error can trigger
an ISR to respond appropriately. An example of error handling is shown in Figure 5.13.

ISR - 16V Fuse Error 

Turn off 16V bus Set 16V_fuse flag
return

Raise interrupt
DeciBuslog error in vreg

Figure 5.13: Example of error handling within the system.

The flag set will prevent the FSM from turning the output on again, the fuse flag cannot be cleared
by the main Zebro controller to restore functionality as represents a physical connection being broken.
The overcurrent and voltage flags on the other hand do allow for this. The error will be reported, its value
stored in a register and the error count is increased[SR-7]. Critical errors mainly concern the batteries
as they have to be safe and secured in any scenario and when faults occur.

Error numbers The error handling has been implemented by having a separate array with the size of
all errors. All addresses in the error array have been defined as a array address. The error addresses are
defined in error.h, of which an overview is shown in Table 5.6. These error addresses are also the Error
numbers which the main controller can read out in case an error was reported.
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Error Number Error Name Description Source

0 NONE no error
1 OCA Over-Current Alarm Battery Management System
2 TCA Terminate Charge Alarm Battery Management System
3 OTA Over Temperature Alarm Battery Management System
4 TDA Terminate Discharge Alarm Battery Management System
5 RCA Remaining Capacity Alarm Battery Management System
6 RTA Remaining Time Alarm Battery Management System
7 BUSY Battery Busy Battery Management System
8 RESERVEDCMD Reserved command Battery Management System
9 UNSUPPORTEDCMD Unsupported command Battery Management System
10 ACCESSDENIED Access denied Battery Management System
11 UNDEROVERFLOW Underflow or Overflow Battery Management System
12 BADSIZE Bad Size Battery Management System
13 OCBUS Over-current at Power Bus Current Sensor
14 OCSOLAR Over-current at Solar input Current Sensor
15 OC3V3 Over-current at 3.3V output Current Sensor
16 OC5V Over-current at 5V output Current Sensor
17 OC16V Over-current at 16V output Current Sensor
18 OCQI Over-current at QI input QI Receiver
19 FUSE3V3 Fuse blown at 3.3V output ADC
20 FUSE5V Fuse blown at 5V output ADC
21 FUSE16V Fuse blown at 16V output ADC
22 OTI Over-Temperature at input Temperature Sensor
23 OTO Over-Temperature at output Temperature Sensor
24 UTI Under-Temperature at input Temperature Sensor
25 UTO Under-Temperature at output Temperature Sensor
26 UNKNOWN
. . . . . . Reserved for future use
255 ERROR UNKNOWN

Table 5.6: Error numbers and array addresses

Error reporting Once a sensor reads in a value that is troublesome it will report the error. This is done
by a check after each read in from any of the sensor values. If the value is above a certain threshold,
e.g. temperature at the input above 45oC then it will call the error report function. In the error report
function interrupts are temporarily turned off, so that the error can be reported safely. If the value in
the error register was already reported before, then it will increase the error counter by 1(line 7-9). Then
it will set the value of the register corresponding to the error code given to 1, so the register logs the
specific error(line 10). The error number is also stored in the last error variable. Lastly both the error
counter and last error virtual registers are updated(line 14-15) and interrupts are turned on again(line
17).

1 void error_report ( uint8_t error )
2 {
3 /* BEGIN c r i t i c a l section */
4 c l i ( ) ;
5

6 /* check what errors where already reported */
7 i f ( errors_array [ error − 1] == 0) {
8 error_counter ++;
9 }

10 errors_array [ error − 1] = 1 ;
11

12 l a s t _ e r r o r = error ;
13

14 vregs_write (VREGS_ERROR_COUNTER, error_counter ) ;
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15 vregs_write (VREGS_LAST_ERROR, l a s t _ e r r o r ) ;
16

17 s e i ( ) ;
18 /* END c r i t i c a l section */
19 }

ZebroBus Interrupt In case of a critical error or shutdown, meaning the power will go off, the main
controller needs to be aware of what happened. Therefore in case of a critical error the interrupt pin is
pulled low [SR-8], by setting the interrupt mosfet 4.3.4.



6
PROTOTYPING

Testing the control for a power system without having the system yet is difficult, as debugging is not
possible. Therefore a partial prototype of the control part of the system has been made to simulate and
debug the code. For this the DeciZebro Leg module PCB was used and slightly adapted, see Figure 6.1.
It uses the ATxmega32A4 microcontroller. Several parameters and functions have been tested on the
prototype board which will save time debugging the main PCB:

1. Power consumption

2. Communication, internal and external

3. Temperature sensor

4. Current sensor

5. Voltage division ADC measurement

6. MPPT implementation

However not all functions are available on the Leg module and there are many hardware differences,
so when the prototype PCB arrives many tests have to be done to verify successful integration of the
system. This test plan includes:

1. Execution Time With a time measurement of the total loop, the energy consumption can be cal-
culated

2. MPPT integration A test of the combination of reading in the data from the current sensor and
setting the eventual pwm, to verify the power increases

3. Error handling Different errors should be artificially set, to verify the errors are well handled and
reported

4. FSM The working of the FSM has to be verified, to go to the correct states while changing the
inputs

5. Sensor calibration On the new PCB, all sensors have to be recalibrated and checked on noise
behaviour

6. Runtime In order to see if the watchdog timer works, and if the power system is able to work for a
longer time. A long runtime test should be executed.

7. Efficiency The efficiency of the power system should be measured, to see how much energy is lost
between input and output, and in what way this could be improved

35
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Condition Current Voltage Power

Standby 0.47mA 4.944 V 2.32 mW
Sleep idle 0.57mA 4.933 V 2.81 mW

Empty loop 87.3mA 4.945 V 432 mW
0% Dutycycle 91.2 mA 4.935 V 450 mW

50% Dutycycle 90.8 mA 4.932 V 448 mW
100% Dutycycle 91.0 mA 4.932 V 449 mW

100% Dutycycle + 2 LEDS 103.9 mA 4.899 V 509 mW

Table 6.1: Power consumption

Figure 6.1: Communication test setup

6.1. POWER CONSUMPTION
The leg test module is powered by an AVR-ISP-MK2 usb interface. This USB connection could be inter-
cepted with a special board, hence all power drained from the usb port could be measured. Different
conditions have been tested in order to get a view on what a PCB could consume. The results are shown
in table 6.1. Note the usb voltage is 5V, so the conversion to 3.3V costs some power already.

6.2. COMMUNICATION
The communication of both the Internal bus and ZebroBus have been tested using the leg module as
microcontroller. The communication test setup is shown in Figure 6.1

ZebroBus The leg module is designed to also be able to communicate with ZebroBus, therefore it
already had a port and buffer available for prototyping. To test the ZebroBus communication the I2C
pins of a Raspberry Pi have been connected to the leg module. Using the Pi I2C interface it was possible
to both read and write the virtual registers of the microcontroller. So the ZebroBus is verified to work
properly.

Internal bus Attaching devices to the internal bus of the leg module was more difficult, as the de-
vice did not have output pins for connecting another bus. Therefore separate wires have been hand-



6.3. TEMPERATURE SENSOR 37

soldered onto the leg module to intercept the internal bus. With this bus all slave devices have been
tested and verified to work, including:

• Battery Management System: Using a test battery module bq40z60EVM-578 it has been verified
the SMBus slave of the battery mangagement system was write-/readable

• Temperature Sensor: Using a breakout board with a LM75B it has been verified the temperature
could be read out via I2C

• Current Sensor: Using a breakout board with an INA226 the current sensor communication was
verified

6.3. TEMPERATURE SENSOR
The temperature sensor(LM75B) measures the temperature on the device and has to be very accurate
in case of a battery system. If the temperature is too high during charging this can severely damage the
batteries. During prototyping this has been taken very serious and a complete reference measurement
has been done in a range of 10 to 65 oC. A calibrated kitchen ntc temperature sensor(GTTMBBQ02) has
been used as reference. The result is shown in figure 6.2.

Figure 6.2: Temperature reference measurement

The value of the temperature sensor is defined as the 11 most significant bits and has a resolution 
of 0.125o C[11]. So initially the hexadecimal value was shifted to the right by 5 and then multiplied by 
0.125. In the ideal case the measured temperature would be equal to the reference temperature, this 
would result in a linear line. However the data measured is off this line for many times. With a small 
python script C statistical calculations have been done to get a view on the accuracy.

The maximum deviation is 9.25oC and standard deviation is 2.014o C. Also the measured tempera-
ture looks to be too high at low temperatures, this could be because the reference temperature sensor 
was in between the cooler and the LM75B.

6.4. CURRENT AND VOLTAGE SENSOR
The INA226 measures only the bus voltage and the differential voltage across the shunt resistor. Both 
of these measurements are automatically stored with a resolution of 1.25mV/bit and 2.5uV/bit respec-
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tively. However the current and power measurement have to be calibrated by the user as they are de-
pendent on the value of the shunt resistor and the expected current.

The calibration values can be calculated form the following equations [23]:

C AL = 0.00512

Cur r ent_LSB ∗RSHU N T
(6.1)

Where

Cur r entLSB = M axi mumE xpectedCur r ent

215 (6.2)

Filling in the equations with the expected values of the system the resolution will be the highest.
However by sacrificing a bit of resolution more convenient conversion value can be selected. Table 6.2
shows the calibration values for each of the current sensors.

Table 6.2: Calibration values for each current sensor.

Expected maximum current Current_LSB Selected_LSB CAL

Solar input .5 A 15 uA/bit 25 uA/bit 2048
Bus 5A 153 uA/bit 250 uA/bit 4096
5V output 1A 31 uA/bit 50 uA/bit 2048
3.3V output 1A 31 uA/bit 50 uA/bit 2048

The current can now be calculated as:

Cur r ent = ShuntV ol t ag e ∗C ali br ati onReg i ster

2048
(6.3)

The power can then be computed from the current value and the measured Bus voltage:

Power = Cur r ent ∗BusV ol t ag e

20000
(6.4)

A measurement of the bus voltage was done with the INA226 and a multimeter as reference. In a
range from 6 to 25 V, multiple measurements are done and stored. The result is plotted in figure 6.3. A
linear fit through the data gave the following formula:

VBus = 0.001246 ·Measured data+0.04878 (6.5)
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Figure 6.4: ADC test setup

Figure 6.3: INA226 bus voltage reference measurement

6.5. ADC
The microcontroller has to use multiple of its analog to digital converters in order to read relevant data
from the power system. Examples of uses are in the fuses and at the input. To get a view on what the
ADC reads in and what values it gives back this had to be tested preliminary. A small test setup has been
made with a voltage division connected to a DC power supply, as shown in figure 6.4. The power supply
can be set to 20V, which means the ADC voltage ranges from 0 to 3.3V.

In order to test the ADC, different voltages have been applied. In steps of 0.1V, the voltage was
measured and compared to the value read out by the ADC. However as discussed in chapter 5.3.3 it can
only measure from 0.2 to about 2V, above that it gives an over-/underflow. The results are shown in
figure 6.5.
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Figure 6.5: ADC reference measurement

With this measurement information the conversion can be done accurately. The following formula
was extracted from the linear fit of the graph:

VADC = 0.0009653 ·Measured Data−0.1182 (6.6)

At approximately the value of 1.87V the ADC gives an overflow value and cannot become any higher.
Also below the value of 0.2V the ADC value is unreliable, thus an underflow value will be generated.

6.6. MPPT
Optimizing the harvesting of energy from the solar panel can be done with a Maximum PowerPoint
Tracking. The converter is designed by the peripheral group. The way to control this converter to get
the most energy out of the solar panel was discussed in section 5.3.2. This chapter will explain how the
solar panel was tested to prove the panel has a maximum power point.

Pulse Width modulation The Cúk converter of the Solar panel has to be controlled by the Microcon-
troller, so that the MPPT algorithm can be applied. The Dutycyle of the pwm signal driving the Mosfet of
the Cúk converted determines the amount of power which is extracted from the solar panel. A function
was written to set the dutycycle of the pulse width modulation. An integer of 0 sets the dutycycle to 0%
and 256 sets it to 100%. The maximum peak on the solar panel you get with a dutycycle of 80%, after
some trial and error the integer value was set to 200. The pulse is shown in 6.6.
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Figure 6.6: PWM signal on the mosfet, compared to the output voltage

A test program has been written to find out how the dutycycle influences the solar power. The test-
program sets the dutycycle from 0 to 100% in a loop. Both the voltage on the PWM signal and the voltage
over the load are measured. The result is shown in figure 6.7.
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Figure 6.7: Dutycycle MPPT test

Figure 6.7 shows one loop in which it is clear the rms voltage of the pwm signal increases and de-
creases fluently as the dutycycle goes from 0 to 1 00%. The voltage over the load is negative as the Cúk 
converter inverts the voltage. So the maximum powerpoint is the point where the voltage over the load 
is most negative. The graph above shows one clear peak at a dutycycle of approximately 70%. 
Multiple measurements have been done to get a view on the consistency of the Maximum PowerPoint 
peaks. Approximately 40 minutes of data has been collected and the peak was detected with a peak de-
tection algorithm in Python, see appendix C. The script detects the peaks in the MPPT and compares it 
to the PWM dutycycle. A big data analysis has been done with all dutycycle calculations. The 
statistical data is shown in a histogram in figure 6.8. The mean of the distribution is 68 and the standard 
deviation 7. This means the MPP dutycycle is quite consistent.
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Figure 6.8: Histogram Maximum Power Point dutycycle



7
DISCUSSION

7.1. POWER CONSUMPTION
The power consumption measurements show a large deviation from the expected value listed in the
datasheet of the MCU, The sleep and standby modes to however show very little power consumption.
The maximum current draw appears to be slightly over 100mA, the specified limit of the selected LDO,
the two debugging LEDs account for roughly 15mA and as such should be used with care. The results
indicate that the power draw of the prototype PCB’s internal system might also be at the specified limit
and as such special notice of this will be taken during testing. The increased current consumption
will also lower the expected duration of the backup power supply, if a constant current consumption of
90mA is assumed the backup time will be around 21ms. One thing to keep in mind with this test was that
AVR-ISP-MK2 also consumes power and that the current draw by the MCU was not measured directly
at the supply pins as this was impossible. This will be verified in the prototype PCB, in the design the
current drawn by the internal power supply can be measured by measuring the current flowing through
the EMI filter.

7.2. COMMUNICATION
Communication with the ZebroBus, the battery management system and the current/voltage sensor
has been verified. The BMS used for communication testing is not identical to the designed prototype,
however the interface is identical and as such it can be seen as representative. Communication with the
temperature and current sensors is verified. Communication with the digital potentiometer and the QI
controller has not yet been tested as it is a ball grid array IC, however since the internal bus has been
verified for the other sensors, we are confident that communication will be successful on the prototype
PCB.

7.3. TEMPERATURE SENSOR
The measurement results with the temperature sensor show a standard deviation of 2oC. The test condi-
tions were however far from ideal. Especially at the higher and lower temperature range the test results
show increasingly large deviations. The measurement does seem to indicate a slight offset from a linear
relation, cause of this could be internal however the test setup is also a possible reason. In the prototype
PCB it must therefore be verified if the temperature measurement does indeed have offset and if so, be
accounted for.

7.4. CURRENT AND VOLTAGE SENSOR
The bus voltage measurement appears to be quite accurate and agree with the specification with a
offset of ±7.5mV . The shunt current measurement was not yet performed, however this test will not be
representative as the shunt measurement will be performed on the prototype PCB and can be subject
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to interference from various sources. The impact of this on the measurement will have to be verified on
the prototype.

7.5. ADC
The voltage division setup connected to the test MCU shows that the upper and lower boundaries of
the reference voltage are slightly below the specified boundaries by the datasheet. The selected volt-
age division will still deliver results within the boundary. The maximum measured input voltage will be
1.87V ∗108k/8k ≈ 25V . The lower boundary being slightly limited will not impact the system. By con-
necting the setup to multiple pins of the MCU at once, the multichannel conversion was also verified.

7.6. MPPT
The resulting load voltage coming from the Cúk converter is below 10mV, which is almost nothing.
The reason for this is not proven, however we suspect the microcontroller PWM cannot deliver enough
current to fully open the MOSFET in the Cúk. At the time of writing this thesis this has been discussed
with the input group and a possible solution such as a gate driver or different MOSFET has not been
tested as of yet. The PWM signal frequency is quite low at 8.1kHz in the current configuration resulting
a significant voltage ripple if operating correctly. The MCU allows for the PWM to run on the 128MHz
pll oscillator so by using it the frequency can be improved while maintaining resolution. This has yet to
be tested however.

The Maximum Powerpoint could be clearly visualised with the measurements done. However the
application of the Maximum Powerpoint Tracking technique has not been tested yet. Seperately reading
in the sensor and incrementing the PWM signal have been verified, but the combination was not be
tested as the sensor and the PWM could not be connected at the same time. So this MPPT integration
test also still has to be done when the main PCB arrives.



8
CONCLUSION AND RECOMMENDATIONS

The control hardware for the power management system is designed and the proposed design takes
into account the requirements stated in the PoR. The design offers resilience against errors caused by
internal and external faults by localizing the shut down of the outputs and inputs. Components have
been selected by keeping in mind the size restrictions set and the price of the system. The firmware
design is implemented with the use of a finite state machine and ISR’s to allow errors to be cleared by
the main Zebro controller providing more flexibility during operation. Safety is a high priority in the
design and several hardware and software measures have been implemented. For hardware, non re-
settable fuses were used in series with every incoming and outgoing power line to ensure that during
an extended overcurrent event the fuse will blow and break the connection. TVS diodes were used to
prevent ESD from harming the system and a watchdog timer servers as a software backup in case it
malfunctions.

At the time of writing the thesis the system has been designed and several components have been tested
and verified. Further testing of the system is being undertaken and the prototype PCB has been ordered,
however it has not yet arrived at this time. Complete system integration and debugging will therefore
be done in the following weeks.

Recommendations The system was developed in a short amount of time and because of that not all
aspects have been thoroughly examined to provide optimal performance. The focus consisted mainly
on getting it all working. The firmware design can be optimized for power usage by making more ap-
propriate use of interrupts, the ADC conversion can also be stored by skipping the CPU and using direct
memory access.

A recommendation for the ZebroBus protocol regards its the safety and resilience, it is a open I2C
bus without any check of the data, such as a Cyclic Redundancy Check. In case of a space environment
such as the moon radiation could easily manipulate the data. A bit flip would result in a wrong read in
the main controller of the ZebroBus and have considerable consequences.
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A
MCU SIGNAL OVERVIEW

Table A.1: List of signal lines connected to the MCU.

Pin Dir. Type Name Description

PA1 IN A 3.3V_fuse 3.3V output fuse alert
PA2 IN A 5V_fuse 5V output fuse alert
PA3 IN A 16V_fuse 16V output fuse alert
PA4 IN A v_laptop input voltage laptop connector
PA5 IN D OC_3.3V 3.3V sensor overcurrent/voltage alert
PA6 IN D OC_5V 5V sensor overcurrent/voltage alert
PA7 IN D OC_16V 16V shutdown alert due to overcurrent.
PB0 IN D bus_alert Powerbus overcurrent/voltage alert
PB1 IN D QI_int Overcurrent/voltage/temperature alert QI charger
PB2 IN D input_select QI or laptop charger input selection
PC0 BI D SDAA Data line for the ZebroBus
PC1 IN D SCLA Clock line for the ZebroBus
PC2 OUT D buffer_enable Enable signal for the ZebroBus buffer
PC3 OUT D pwm_solar PWM control signal for the MPPT Solar converter
PC7 OUT D Interrupt Interrupt line for ZebroBus
PD0 OUT D 3.3V_enable 3.3V output enable signal
PD1 OUT D 5V_enable 5V output enable signal
PD2 OUT D 16V_enable 16V output enable signal
PD3 IN D ALERT BMS alert
PD5 OUT D QI_enable QI charger enable
PD6 IN D RX UART communication
PD7 OUT D TX UART communication
PE0 BI D SDA_SMBUS Internal TWI
PE1 OUT D SCL_SMBUS Internal TWI
PE2 IN D OT_output Overtemperature alert output
PE3 IN D OT_input Overtemperature alert input
PR0 OUT D led_0 Debugging led
PR1 OUT D led_1 Debugging led
RESET /PD I IN D PDI_CLK Clock signal of debug interface
PDI IN D PDI_DATA Data signal of debug interface
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B
KICAD SCHEMATICS

The following pages contain all kicad schematics, rendered to pdf format.
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C
CODE

The code has been developed in the private Zebro Github repository, so the files discussed in this thesis
are copied to an open Github. See: https://github.com/nfakkel/DeciZebroPowerSystemControl
This includes:

• Schematics - kicad project

• Microcontroller Firmware - C Code

• Statistical Analysis - Python Code
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