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Abstract

Pose estimation through fusion of Global Navigation Satellite System (GNSS) with secondary
sensors has long been an established field. With the developments surrounding autonomous
navigation over the past decade this topic has gained extra importance.

In the current literature GNSS based pose and localisation is often improved through fusion
with either a Inertial Measurement Unit (IMU) or Vehicle Sensors (VS) with the goal of
improving on stand-alone GNSS localisation results as well as dealing with GNSS outages. In
this thesis however, all three of these sensors will be fused together using a cascade of a IMU
orientation filter and a Multi-Rate Unscented Kalman Filter (UKF). This filter structure is
evaluated using simulations and real-world data obtained using a created vehicle-platform.

The simulated results indicate that using a Multi-Rate Unscented Kalman Filter for pose
estimation is promising as the filter, when configured properly, outperforms stand-alone GNSS
receivers for pose estimation. However, the real-world experiments show that the used sensors
lack accuracy and precision to obtain satisfactory results.
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Chapter 1

Introduction

In the introduction the motivation and goals for this research will be given. Firstly, ?? will
provide the reader with the motivation behind this research whereafter section 1-2 will lay
out the goals and proposed solution contained in the thesis. Lastly the structure of the thesis
is given in section 1-3.

1-1 Motivation

In the last couple of years the development of level 5, or fully autonomous vehicles, has been
a hot-topic(Forbes 2018, [1]). Well-known companies involved in the race to level-5 autonomy
are Google, Tesla and Uber together with the classical car manufacturers such as General-
Motors and BMW.
On a smaller scale, Accenda, a tech company situated in Delft, wants to do research in the
field of (semi)autonomous vehicles and they require a hardware and software solution to do
so.

For the development of fully or semi autonomous vehicles a number of hurdles need to be
overcome. One of these hurdles is accurate pose (location and orientation) estimation.

Apart from navigation in the classical sense, (semi-) autonomous vehicles need accurate local-
isation for the implementation of their higher level control architecture (i.e., path planning,
and decision making [2])
The default system used for absolute localisation is a Global Navigation Satellite System
(GNSS) such as Global Positioning System (GPS). However, a stand-alone GNSS does not
offer the precision and accuracy required for autonomous navigation [3]. A commonly used
approach to improve GNSS accuracy is to is to employ additional sensors to improve the
localisation by means of sensor-fusion. Sensors often used for this purpose are Vehicle Sen-
sors (VS) that measure things as angular velocity of individual wheels and motor RPMs
or/and an Inertial Measurement Unit (IMU)

Master of Science Thesis M. de Vries



2 Introduction

This fusion of different sensors is performed using a wide range of possible solutions of which
the Kalman filter developed by Kalman et al. [4] is probably the most well known and em-
ployed [5–10]. Over the years multiple versions of Kalman filters have been proposed to deal
with non-linear systems such as the Extended Kalman Filter (EKF) which is often attributed
to S.F. Schmidt [11] and later the Unscented Kalman Filter (UKF)(Julier et al [12–14]).

Pose estimation filters using GNSS/VS/IMU as measurments often are combined with a bi-
cycle model. Due to the non-linear nature of this bicycle model often a non-linear Kalman
variant is employed. For example Melendez-Pastor [15] propose a single update-rate EKF
based fusion of GNSS with variety of vehicle sensors through use of simple kinematic bicycle
model. A similar approach has been undertaken by (Wang et al [16]) with the extension of
using bezier spline interpolation to deal with the slower update rate of GNSS receivers. The
paper furthermore warns of using Multi-Rate EKF’s as they generally lead to a downgrade
of performance and may cause instability.
Multi-Rate non-linear Kalman for navigation has been investigated Armesto et al [17]. They
use an output hold method to deal with unused sensor inputs and conclude that Multi-Rate
UKF is in their application superior to Multi-Rate EKF.

Apart from the fusion of different sensors to improve the GNSS localisation, a way to deal with
GNSS outages, which can occur due obstructions, a lack of available satellites or other reasons
is important. Literature concerning Kalman filtering with intermittent observations [18–20]
use a Bernoulli based distribution to model measurement arrival to show that a model depen-
dant critical bound exist, that when crossed, results in state estimate divergence. Practical
approaches to GNSS intermittency often resort to process model only updates when GNSS
data is unavailable.

The IMU often used in these fusion schemes is itself capable of providing a measurement for
pose estimates as described by Kok et al. [21] among others and should therefore be considered
an important part of the overall fusion solution.

1-2 Thesis Goals and Description

Accenda, a tech-company situated in Delft, the Netherlands seeks to broaden its scope and
wants to do research into the field of autonomous driving. For this purpose Accenda wants a
Hard & Software platform as well as an integrated pose estimation and localisation solution.
These two goals will be discussed in depth in the following two subsections

1-2-1 Goal I: The Creation of A Hard & Software platform

This platform will consist of a vehicle with integrated sensors for localisation, such as a GNSS
receiver, IMU as well as VS. Part of the development will be the realisation of a Python and
C++ code-library to operate and log the output of the sensors. Furthermore, the created
hard and software platform must be modular, low-cost and well documented.
To achieve this goal hardware must be selected, a proper code libraries must be set-up as
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1-3 Structure of the Thesis 3

well as an analysis of the maximum achievable data-rate with the chosen sensors must be
conducted.

The description of the work related to the achievement of this goal laid out will be described
in chapter 2.

1-2-2 Goal II: Development of a pose estimation and localisation solution

After the first goal is achieved and a working Hard& Software platform is created a filter that
converts the raw observations into a pose estimate must be realised. The filter in question
should satisfy the following requirements:

1. Modular by design
A modular filter will a allow future improvements as well as the inclusion of more
sensors.

2. Be capable of handling variable data-rates
Due to differing data-rates of the to be used sensors it is important that the filter can
deal with differing data-rates.

3. Handle sensor intermittency
Sensor intermittency is an important fact-of-life for GNSS based navigations systems.
When driving in urban areas or through tunnels GNSS data may not/ or is not avail-
able. In this case the system should be able to rely on its ’dead-reckoning’ capabilities.
Therefore it is important that the state estimates the filter produces are usable in these
situations.

Apart from this, the IMU itself can be used to obtain an orientation estimate. For the purpose
of creating a pose estimation and localisation solution it is beneficial to investigate the optimal
way to filter IMU data.

Based on the literature the development of a Multi-Rate Unscented Kalman filter using a
non-linear kinematic bicycle model should allow for the required modularity as well as the
ability to deal with GNSS outages.

1-3 Structure of the Thesis

The structure of the thesis is as follows: In chapter 2 the hard and software platform will be
discussed in more detail to give the reader background information on the underlying hard
and software for the following chapters. This chapter will also detail the way the first goal of
the thesis is achieved. The mathematical definitions used in the thesis will be briefly described
in chapter 3. This chapter will also give a description of the used ’frames’ and references of
the vehicle-platform.
In chapter 4 the UKF structure used in the following chapters will be given as well as a set
of experiments to determine the used IMU orientation filter.
The Multi-Rate UKF used for localisation and pose estimation will be described and evaluated
using simulations in chapter 5. The following chapter, chapter 6 contains the real-world
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experiments obtained using the vehicle-platform. Hereafter, chapter 7 will sum up the results
and the added value of the created solution to the available literature. Furthermore, this
chapter will present possible improvements as well as provide avenues for future research.
Lastly, chapter 8 will restate the goals of the research and summarise the achieved results.

M. de Vries Master of Science Thesis



Chapter 2

Hardware and Computer Architecture

As one of the goals of Accenda is the development of a positioning system, the choice and
design of hardware and computer architecture is an important step in achieving this goal.
Therefore this chapter will give an overview of the used hardware and software. For more
details about the software itself it is recommended to read the documentation of the software.
The first section, section 2-1, will explain the choices for the hardware used in the thesis. After
which section 2-2 in broad strokes describes the software. Lastly, section 2-3 and section 2-
4 describe the used methods for communicating between the hardware as well as give an
evaluation on the performance of said methods.

2-1 Hardware

For the localisation solution a multitude of sensors is required. These sensors include an
Inertial Measurement Unit (IMU), a Global Navigation Satellite System (GNSS) receiver and
a set of vehicle sensors for the determination of the steering angle and the vehicle speed. In
this section the selection of the specific sensors will be explained.

2-1-1 IMU Selection

The choice for an IMU was based mainly based on cost and the requirements of being 9-
Degrees of Freedom (DOF) (for Gyroscope drift corrections through use of a magnetometer)
and ease of programming. Therefore the decision was taken to use the Invensense MPU9250
[22]. This IMU is available on different breakout boards, is cheap1 and is widely used and
well documented. The MPU9250 consists of an accelerometer, gyroscope and a magnetometer

1The IMU is available at TinyTronics for roughly e9,-: https://www.tinytronics.nl/shop/nl/
sensoren/magnetisch-veld/mpu-9250-accelerometer-gyroscope-magnetometer-9dof-module-3.3v-5v?
search=9250, 11-1-2019

Master of Science Thesis M. de Vries
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6 Hardware and Computer Architecture

(AK8963). Furthermore, the IMU has the ability to use a Digital Motion Processor (DMP)2

which can be used to offload calculations to the IMU’s onboard processor.

2-1-2 GNSS Receiver Selection

The second sensor required for the localisation solution is the GNSS sensor plus antenna.
The U-Blox NEO M8P GNSS receiver was chosen because Accenda already had two of these
receivers in stock. Furthermore, this sensor is one of the cheaper receivers capable of receiving
raw GNSS data. This ability is important for future implementations of more advanced GNSS
algorithms such as Single Frequency Precise Point Positioning (SF-PPP)3.
The specific variant of the board used is made by the French company Drotek [23]. The
combined cost of this board together with the Tallysman TW2412 [24] costs e264.82 which,
for a raw capable GNSS module and antenna is acceptable.

2-1-3 Vehicle-Platform

Accenda provided the development platform used for this research. This vehicle-platform
consists of a converted mobility scooter outfitted with an Arduino and a CAN-BUS shield
developed by Accenda. The steering angle is measured using a potentiometer with a voltage
sense line. The motor RPM is measured using an phototransistor(an Omron EE-SX1161-W11
transmissive photomicrosensor) and an encoder disc (see appendix A-2). The phototransistor
measures the angular velocity of the motor shaft based on the duration at which light is or
isn’t allowed to pass through. Based on the transmission-ratio the average rear wheel velocity
can thus be determined4.

2-1-4 Micro-controllers and Processors

On the hardware side two different micro-controllers are used. The IMU is connected through
an Inter-Integrated Circuit (I2C) bus with an ESP32 micro-controller. Because the required
computational power was uncertain the ESP32 was chosen because of its high clockspeed
dual-core processor (240 Mhz).
The vehicle-platform uses an Arduino-Uno [25] with a CAN-BUS shield. For the tasks this
Micro-controller has to perform: Send/Receive CAN-BUS messages, read remote controller
inputs, measure both the motor angular velocity as well as the steering angle and actuate the
vehicle the Arduino is more than sufficient.

To collect and record all data and, in the future, fuse the data, a Raspberry PI 3B+ [26] was
chosen. This choice was motivated by the experience of Accenda with the Raspberry, their
development of a CAN-BUS shield for this platform and the low cost. Since the Raspberry

2Sadly, the DMP lacks documentation and only allows for the fusion of the Accelerometer and the Gyroscope
making and therefore lacking the drift correction provided by the magnetometer

3A method that allows for high accuracy localisation through filtering out the most common GNSS distur-
bances such as: Multi-Path, Ionospheric & Tropospheric delays among others.

4A caveat of the employed system is that the software has to wait for a full section (either air or metal) to
pass before a measurement update can be completed. This means that the minimum measurable velocity is
roughly 600[RPM]
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IMU 
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NEO-M8P
GNSS

Receiver

Vehicle
Sensors

ESP32

Arduino

I2C -Bus
#1

RS232
over USB

Raspberry Pi

CAN-BUS

RS232
Over USB

Figure 2-1: A schematic overview of the hardware system

PI 3B+ has four cores operating at 700 Mhz it should have enough computational power
to run real-time sensor fusion as well as the ability to allow for multi-processing which is
advantageous for parallelisation of computationally intensive tasks.

2-2 Software

In this section an overview of the software architecture is given. For the thesis software was
developed for Python 3, Arduino (C++) as well as Matlab. Since the Matlab code is not
strictly part of the vehicle-platform this software is not described here.

2-2-1 Raspberry PI

The code running on the Raspberry PI is based on Python 3.6. This code is Multi-Threaded
and Multi processed. Each process has its own clearly separate function. The reason the code
has been split into different processes is for performance purposes.

Processes and Threads

In this section the processes and threads that are spawned will be listed and briefly explained;

• Process: Logger
This process is handles status messages it receives from the other processes and threads.
These messages allow the user to identify the operating parameters of the software.
These logs are also stored in a separate .log file.
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8 Hardware and Computer Architecture

• Process: GNSS_Handlers
Receives GNSS messages from the receiver and packs & transmits them to the Data-
Logger thread.

• Process: CAN_Handler
This process sends/receives messages from the CAN-BUS and packs & transmits them
to the Data-Logger.

• Thread: Data-Logger
This thread receives all information from the sensors via their corresponding process
or thread and stores them in .csv files per sensor. Therefore, when the system is fully
operational three different .csv files are filled.

• Thread: IMU_Handler
This thread decodes the information send over Serial-USB using the protocol described
in section 2-3-2. This information is then packed and sent to the Data-Logger.

A visualisation of the process and threads structure can be seen in figure 2-2.

CPU 0 CPU 1 CPU 3

P0: Overseer

T1: IMU_HandlerT0: Data-Logger

CPU 2

P2: GNSS_Listener P3: CAN_HandlerP1: Process Logger

Figure 2-2: This figure displays the Process and Threads structure in the Python code. As can
be seen the Overseer process (P0) initiates all processes and threads (denoted by T).

2-2-2 Arduino and ESP32

On the ESP a modified version of the SparkFun library for the MPU9250 is implemented [27],
these modifications consists of, among other things, the addition of a magnetometer calibra-
tion loop (see appendix A-1) as well as the inclusion of a custom protocol for communication.
On the vehicle-platform a modified version of Accenda’s software is ran. Notable additions
include CAN-BUS communication, battery reading as well as the inclusion of a state machine
and the optimization of the sensor loop. For example, the new code only reads remote control
inputs 10 times per second whereas the old code read the remote state every iteration loop
wasting valuable computation time.
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2-3 Communication

In this section the three different communication channels will be described. These are: a self-
developed protocol for RS232(serial) communication over USB between the ESP32 and the
Raspberry PI, CAN-BUS communication between the vehicle-platform and the Raspberry PI
and RS232 communication over USB between the GNSS receiver and the Raspberry PI. The
data-rates chosen for the CAN-BUS and IMU logging is roughly 20[Hz]. Since the platform is
reaching speeds that are up to a max of ≈ 12Km/h a higher data-rate is not necessary. The
GNSS update rate is only 1[Hz], this limitation is imposed by the receiver as it is incapable
of updating at a higher rate.

2-3-1 CANBUS Messages

The vehicle-platform described in ?? uses CAN-BUS communication to send information
to the Raspberry PI logger. As CAN-BUS is a well documented communication bus no in
depth description will be presented here. Instead, the interested reader is referred to the
following sources: [28,29]. Basically, the CAN-BUS packets consist of a header which is used
to distinguish different payloads from one another and a 8-byte payload. For communication
two different packages are implemented with the following headers:

• Telemetry-Packet, 0x16

• Control-Packet, 0x15

The control-packet (table 2-1) requires some explanation as to the chosen data-sizes. On the
vehicle-platform itself, the received control-packet is read and both the steering value and the
throttle value are then converted to a Pulse Width Modulation (PWM) value. On the vehicle-
platform side the single byte value dim(0, 255)is mapped into the range of dim(−255, 255).
This mapping is necessary since the H-bridges that control both the steering servo-motor as
well as the drive-motor use a separate PWM signal for left/right forward/reverse.

Table 2-1: These two tables represent the data being communicated through the CAN-BUS.

Telemetry-Packet Type Bytes
Steering Angle Float32_t 4
Motor RPM uInt16 2
State byte 1
Battery Voltage byte 1

Control-Packet Type Bytes
Set_State byte 1
Steering Value byte 1
Throttle byte 1

2-3-2 RS232 Protocol

At first an attempt was made to directly connect the IMU to the Raspberry PI. However, since
there was no publicly available library which would allow the use of the IMU’s internal DMP
it was decided to integrate the ESP32 into the communication line. However, as the ESP32 is
not by default programmable using the Arduino Integrated Development Environment (IDE)
an external library was required [30]. Unbeknownst to the author, this library was at the start
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of the software implementation unable to sustain a stable I2C connection with the IMU. This
resulted in some frustration during the development process. Furthermore, the Invensense’s
DMP implementation was poorly documented.
After studying the implementation of orientation filters on hardware vastly inferior to the
ESP32 by [31] it was expected that the ESP32 would be able to run filters at update rates far
exceeding system requirements 5. It was therefore decided to implement an orientation filter
on te ESP32 itself.

This automatically leads to the question on how the filtered data needs to be transferred
between the ESP32 and the Raspberry PI and how to optimize the use of the RS232 commu-
nication bus. For this purpose a custom protocol was developed. This protocol is significantly
more efficient than ’text’ based data transfer. For example, encoding the variable ’100’ in
pure text is equivalent to using a message of three bytes representing the characters 1, 0, 0
in ’UTF-8’ or equivalent encoding. Whereas using a single byte to represent the number 100
directly saves 2 bytes of bandwidth. For floating point numbers this difference is even more
pronounced as a 32-bit number requires only 4 bytes. With these four bytes a value between
−3.4E + 38,+3.4E + 38 can be encoded with a decimal accuracy of about 7. See [32] which
describes the standards for floating-Point arithmetic.

Message encapsulation

Firstly a packet is defined as a message encapsulated within a protocol, the message itself
consists of sensor data and other data, see Figure 2-3. In the developed protocol, the protocol
layer which encapsulates the message consists of three reserved hex characters. The encapsu-
lation itself works as follows: When a new message is ready a byte array is iteratively filled
with the data in this message. The first byte in the array is filled with in ’SOT’ or Start
Of Transmission byte, after which follows the packet type byte. For example 0x0C describes
the M_Packet which contains all IMU data. This reserved byte was created to differentiate
packet types from one another6. Table 2-3.

After the message type, the sensor data and the rest of the message is checked against the
reserved hex values (SOT, EOT or DLE). If one of the bytes encodes one of the reserved hex
values, a ’DLE’ or Data Link Escape hex is inserted before that byte. This DLE lets the
receiver ignore the first byte after the DLE, so if a reserved hex value is present it is ignored.
If the complete message is processed an EOT hex is appended to the packet to denote the end
of the packet and the packet is send to the serial out-buffer. The performance of the protocol
on the ESP32’s side indicate that sending messages costs less than 1 [ms] per message.

5This turned out to be roughly 200[Hz] and is directly tied to the maximum output rate of the magnetometer.
6Initially two different packets were sent using this protocol. The reserved byte allocation was kept for the

modularity of the code.
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Message

SOT Type SensorData Chks FrameID EOT

Figure 2-3: A visualisation of the created RS232 protocol.

Table 2-2: Reserved protocol HEX
values

Packet Type Value
SOT byte 0x01
EOT byte 0x04
DLE byte 0x10

Table 2-3: Message Structure

MAN_Packet Type Bytes Value
Type byte 1 0x12
AX Float32_t 4 -
AY Float32_t 4 -
AZ Float32_t 4 -
GX Float32_t 4 -
GY Float32_t 4 -
GZ Float32_t 4 -
MX Float32_t 4 -
MY Float32_t 4 -
MZ Float32_t 4 -
Q0 Float32_t 4 -
Q1 Float32_t 4 -
Q2 Float32_t 4 -
Q3 Float32_t 4 -
Posix_t Float32_t 4 -
Chks byte 1 0-255
FrameID byte 1 0-255
Total Size 59

2-4 Communication-rate Evaluation for IMU and CAN-BUS

After programming the communication for all three sensor systems it is important to check
if all rates and assumptions are as expected. That is, an IMU and CAN-BUS update rate of
roughly 20[Hz].
The GNSS data-rate has not been taken into account since its data-rate is fixed.
As can be seen from figure 2-4 the data-rate of the IMU relatively stable, however there exist a
notable amount of peaks. These can be attributed to the fact that the python-code running on
the Raspberry PI periodically enters sleep mode. This depends on the requirements of other
pieces of code needing to be executed on the same physical CPU-core. When this happens
the Serial buffer will continue to fill with packages. However, when the IMU_Handler awakes
it will timestamp these packages in buffer with near-identical time-stamps.
To mediate this, the ESP32’s internal clock is synchronised with the Raspberry PI’s internal

Master of Science Thesis M. de Vries



12 Hardware and Computer Architecture

Figure 2-4: This figure displays the inter-frame time of the received IMU packages. Note that this
inter-frame time is based on the Raspberry PI timestamping Top: Displays the time per frame per
measurement instance in seconds. Bottom-left: Shows the histogram of the inter-frame times.
Bottom-right:Displays the box-plot of inter-frame times.
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Figure 2-5: This figure displays the frames per second for both the ESP32-timestamp (blue) and
the Python-timestamp(red), the x-axis displays the time in seconds.

clock. This allows the ESP32 to timestamp its IMU messages with its own clock.
In figure 2-5, which displays the amount of frames per second, it can clearly be seen that
using the synchronised time has its advantages. Still, it is not possible to determine in [ms]
which frame is created when.
Using the synchronised time however, it is possible to assume equally spaced samples over
each measurement second allowing for millisecond time-stamping by assuming both a constant
20[Hz] data-rate as well as equally spaced samples7.

The CAN-BUS data-rate, as can be seen in figure 2-6 is variable. This has to do with the
hardware implementation of the velocity measurement. This measurement depend on mea-
suring the time it takes a blade of an optical encoder to pass. This measurement is thus
directly dependant on the motor [RPM] (which the encode encodes) and thus the velocity of
the vehicle.
Furthermore, the implemented CAN-BUS chip (Microchip’s MCP2515) does not support
hardware-based frame-timing. This results in time-stamping being dependant on the ’enthu-
siasm’ of the Process. If delays occur somewhere these can place a measurement at the wrong
time in the chain which can make data-fusion difficult later-on.

7This approach is taken for the Pose-Estimation filter implemented in Matlab.
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Figure 2-6: This figure displays the inter-frame time of the received Vehicle Sensors (VS) pack-
ages. Note that this inter-frame time is based on the Raspberry PI timestamping Top: Displays
the time per frame per measurement instance in seconds. Bottom-Left: Shows the histogram
of the inter-frame times. bottom-right:Displays the boxplot of inter-frame times
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2-5 Boundary Conditions

The hardware chosen and the software developed in this chapter satisfies the conditions as set
described by the first goal of the thesis section 1-2-1. The achieved data-rates for the IMU
and the CAN-BUS turned out to be a stable 20[Hz] for the IMU and and an approximate
14[Hz] for the CAN-BUS.
Furthermore, the choice to implement the IMU pose estimation filter on the ESP32 has been
justified by the fact that besides offloading computation tasks from the Raspbery PI to the
ESP32 it moreover limits the required communication over the RS232 bus.
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Chapter 3

Definitions

In this chapter concepts and mathematical definitions needed for the following chapters will
be given. The first section, section 3-1, will concern the used mathematical concepts after
which section 3-2 will describe the choice of mathematical conventions and parameter defini-
tions used in the following chapters. Lastly, section 3-3 will give the vehicle-platform frame
definitions and parameters used in later chapters.

3-1 Mathematical Concepts

To prepare the reader for the content of this chapter, this section is set-up to provide the
reader with information concerning the different terms and definitions present in the following
chapters.

Frame

A frame defines what, with respect to a certain ’defined’ origin, can be expressed as up/down
left/right front/back.

A frame for all intents and purposes has an orthonormal-basis in R3, also called Euclidean
space.

Fx,y,z = [v1,v2,v3] ∈ R3×3 (3-1)
v1 = (1, 0, 0) ,v2 = (0, 1, 0) ,v3 = (0, 0, 1) (3-2)

For navigation purposes North, East, Down (NED) is often used.

Euler Angles

Euler angles are the most often used representation of frame rotation. They in essence
represent an order of single-axis rotation sequences to describe the orientation of a frame
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Fa with respect to frame Fb. To perform rotations based on Euler angles one needs the three
angles of rotation and a rotation order, for example using (ψ,ϕ, θ) (Yaw, Pitch, Roll) and
the following rotation rotation order zyx1. These single-axes rotations are described by the
following rotation matrices:

R(ψ)
z =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 R(ϕ)
y =

cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

 R(θ)
x =

1 0 0
0 cosθ sin θ
0 −sinθ cos θ


A notable downside of using Euler Angles it the possibility of ’Gimabl-Lock’ this occurs when
a rotation of 90[◦] occurs around one axis. This results in the loss of a degree of freedom.

DCM

A Direction Cosine Matrix (DCM) is a R3×3 rotation matrix that is similar to the Euler
rotation matrices. However, where Euler rotation matrices always denote rotations around
one of the three principle axes of the inhabited frame, a DCM is more general. This means
that a DCM can be used to describe a rotation around an arbitrary vector thus changing the
complete basis of a frame using a single rotation matrix:

F2 = RψF1 (3-3)

Quaternion

Quaternions, invented by Hamilton [33], are like Euler Angles and DCM’s as that they can
be used for frame rotations. A quaternion is a 4-tuple consisting of a scalar and of a vector
part:

q = (q0, q1, q2, q3) ∈ R4 (3-4)
q = (q0, ~q) (3-5)
q = (q0, iq1, jq2,kq3) (3-6)

The vector part denoted here by ~q is expressed in the standard orthonormal basis for R3.
Since the reader may be unfamiliar with the concept of quaterions and they form an integral
part of chapter 4 the basic rules for addition/substraction and multiplication will be laid out
here.

Basic mathematical operations on quaternions such as equality and addition/subtraction that
is for equality all individual components of the quaterions need to be equal:

q = p =⇒ (q0, q1, q2, q3) = (p0, p1, p2, p3) (3-7)
q + p = (q0 + p0, q1 + p1, q2 + p2, q3 + p3) (3-8)

(3-9)

Multiplication of quaternions will be denoted by ⊗:

p⊗ q = p0q0 − ~p~q + p0~q + q0~p + ~p× ~q (3-10)
1This is referred to as the ’Aerospace-Sequence’
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It is important to note that all quaternions used in this thesis will be unit quaternions:

|q| = 1 (3-11)

For more information about quaternions the book by Kuipers [34] is wholeheartedly recom-
mended.

Pose

A pose (p) is defined as a combination between an orientation o and position x.

o = (ψ,ϕ, θ) ∈R3

x = (x, y, z) ∈R3

p =
[
x o

]
∈R6

Or in words, a pose defines the orientation and position of an object a with respect to an
Orthonormal-frame b Note that in this example Euler angles are used to express orientation,
this could of-course alternatively be a quaternion, DCM or other orientation representation.

3-2 Mathematical Conventions and Parameter Definitions

As most of the thesis deals with transformations and rotations between different frames it
is important to know in which frame certain action or measurement takes place. For this
purpose the notation in Madgwick [35] is followed. Thus Eq denotes a quaternion reference
expressed in frame E which is the earth reference frame in NED. The notation E

S q describes
an orientation of frame E with respect to frame S. For quaternions the following holds:

E
S q
∗ =S

E q (3-12)

Matrices in the text will be expressed as bold capital letter A, whereas vectors will be ex-
pressed as bold lower-case letters v. Scalars will generally be expressed using non-bold,
lower-case letters c. For an overview of the used symbols please look at the nomenclature in
appendix C.

3-3 Vehicle-Platform Dimensions and Frames

The vehicle-platform itself as displayed in figure 3-1 uses three frame definitions:

Fe = (North, East, Down) (3-13)
Fb = Rβ

zFe (3-14)

Fs = R(β+π
2 )

z Fe (3-15)
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Figure 3-1: This figure displays the vehicle-platform’s frames of reference. Note that Fb Denotes
the body frame, Fs the sensor frame and the global frame is aligned with the NED frame. Note
that the frame’s orientation definition is left-hand positive.

Note that the body frame Fb is situated in the middle of the rear axle furthermore, the reason
there is a π

2 rotation from Fb to Fs is due to the physical rotation of the sensor when mounted
in the actual vehicle-platform.
For the filter as discussed in chapter 5 the following parameters need to be defined: L = 0.9[m]
as the distance between the front and rear axle. The distance Ls = 0.64[m] defines the distance
between the Inertial Measurement Unit (IMU) and the and the rear axle. The wheel radius
Wr = 0.13[m] denotes the radius of the wheels of the vehicle-platform. Lastly, Rt = 1

20
denotes the transmission ratio between the motor and the rear wheels. The conversion from
motor RPM to velocity[m/s] can thus be calculated using:

Bux = RPM ·Rt · 2πWr (3-16)
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Chapter 4

IMU Orientation Estimation

This chapter starts with a brief description of the chosen filter structure in section 4-1. After
which the first part of this filter, the IMU orientation filter will be discussed in section 4-2.
The chosen filter will then be used for experiments (see section 4-3). The chapter will end
with a section 5-3 wherein the results will be discussed as well as conclusions will be drawn.

4-1 Filter Architecture

As a direct result of the boundary conditions laid out in the previous chapter (see section 2-5),
a cascading filter structure where the raw Inertial Measurement Unit (IMU) data is pre-filtered
and then communicated with the rest of the system is chosen. This structure has the added
benefit that it is modular as well as capable of handling variable data-rates. This is inline
with the requirements for the second thesis goal as described in section 1-2-2.

IMU Orientation Filter

ESP32 

Multi-Rate UKF

( a ω m)
S

,

S
,

S

IMU 200 [Hz]

( x, y, β, )
E E E

B
B
ux

GNSS 1 [Hz]

( , ,)
B
ux

Bδf

VS ~14 [Hz]

( x, y, β, , )
E E B B

ux
Bδf

State ~35 [Hz]

( a ω m, q)
S

,

S
,

S S
E

20 [Hz]

Figure 4-1: This figure displays the chosen filter structure with the parameter propagation
through the filter as well as the expected update-rates.
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4-2 Orientation filter for Motion Processing Unit (MPU)9250

In this section the way the MPU9250’s accelerometer, gyroscope and magnetometer data is
fused will be explained. Three different filters will be investigated and compared to a high
samplerate filter as described by Madgwick [35].
The structure of this section is as follows: First in section 4-2-1 the to be fused frames will be
defined, in section 4-2-2 the inner workings of the Madgwick complementary filter are given.
In section 4-2-3 the Unscented Kalman Filter (UKF) will be explained toghether with the two
resulting filter variants in consideration. After which section 4-3 will detail the experiment
performed to evaluate the performance of the selected filters. Lastly, section 4-4 will give the
result of the evaluation of the filters together with a conclusion.

4-2-1 Definition of Frames

For the fusion of, in essence, three different sensors on a single IMU, it is important to define
a way to fuse the sensor data. When performing sensor fusion the most often held definition
is that there exist a process and measurement model:

x̂ = Ax̂k−1 + Bu + wk (4-1)
yk = H(xk) + vk (4-2)

The chosen IMU, the MPU9250 provides raw accelerometer Sa = (ax, ay, az), gyroscope
Sω = (ωx, ωy, ωz) and magnetometer Sm = (mx,my,mz) measurements.
For IMU orientation estimation the sensor is often modelled as a point in space with an
orientation with respect to a defined global frame. Often two sensor frames, based on the
grouping of the different sensors in the MPU are defined [36–42]. In the following sections
these frames will be defined and explained in detail.

Frame I: Relative Gyroscope Frame

The first frame is based solely on the previous state and the measured gyroscope angular
velocity. This is then simply integrated over time

x̂k = x̂k−1 + ẋ ·∆t (4-3)

This integration thus expresses a changing orientation using for example quaternions or Euler
angles.

Frame II: Absolute Frame Based on Accelerometer and Magnetometer

The second frame, which measures the orientation in an absolute sense. Absolute here means
that the orientation at each time k is solely dependent on the measured values of that time
step.
The sensors used to define this frame are the accelerometer and the magnetometer. Ideally
both are used since using only the accelerometer or the compass result in having free param-
eters in the second frame definition, making the second frame no longer constrained.
To generate this second frame two assumptions are made:
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Assumption 1. The accelerometer predominantly measures the gravity. That is:

g ≈ a (4-4)

Assumption 2. The magnetometer predominantly measures the direction of the earth’s mag-
netic field.

As long as both assumptions hold it is possible to create a fully defined orientation with respect
to the earth frame Fe. Thus the problem becomes how to fuse the measurements of these two
sensors together. This problem, often referred to as the Least Squares Estimate of Satellite
Attitude orWahba problem [43] pertains to the difficulty of fusing two or more sets observation
vectors to obtain a Direction Cosine Matrix (DCM), quaternion or Euler angles representation
describing the orientation of the object, to which the observation vectors pertain, with respect
to a global frame. From the literature three different algorithms have been evaluated that
solve this problem:

• Quaternion Estimator (QUEST) [40, 44–46]
This algorithm requires three or more vector measurements to determine the orienta-
tion of the body. QUEST is computationally fast however, it cannot perform ≥ 180 deg
rotations. Another challenge is that, contrary to Three Dimensional Attitude Estima-
tion (TRIAD) at least three different vector groups are required therefore making it
more difficult to implement1 and is therefore omitted in the evaluation.

• TRIAD [42, 47]
This algorithm requires at least two vectors to determine body orientation. This algo-
rithm has the advantage that it does not require matrix inverse calculations and is thus
relatively fast and stable. For the implementation used see [42]

• Gradient descent [35]
Gradient descent is an effective method for determining the optimal orientation based
on two vector measurements. Though computationally complex it provides suitable an-
swers. For the implementation chosen the stepsize update is determined by the Barzilai-
Borwein algorithm [48]. If faster computation is required, the iteration count can be set
to 1 (as is default by most Madgwick filter implementations). This has the disadvantage
that the initial stepsize has to be tuned. This initial step-size is dependent on both the
update rate of the algorithm and sensor as well as the movement of the body.

4-2-2 Filter 1: Madgwick

For the first filter we follow Madgwick’s filter description. For the readers understanding, the
math of the filter is included in the text as it has been reformulated from the source material.

1Using only two vector groups effectively reduces the QUEST algorithm into a TRIAD algorithm [46]
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Figure 4-2: Sensor orientation axes. Left, Accelerometer and Gyroscope. Right, Magnetometer
Source: [22]

Frame 1: Gyroscope

As the gyroscope measures an angular rate at a sample instance, it cannot be used for an
absolute determination of the sensors orientation. It is however possible to determine the
change of frame orientation based on the gyroscope’s measurement. This can be done using
the following equations (adapted from Madgwick):

Sω =
[
0 ωx ωy ωz

]
(4-5)

S
Eq̇ω,t = 1

2
S
Eqest,t−1 ⊗

Sω (4-6)
S
Eqω,t = S

Eqest,t−1 + S
Eq̇ω,t∆t (4-7)

Frame 2: Accelerometer + magnetometer

Accelerometer

Eg =
[
0 0 0 1

]T
(4-8)

Sa =
[
0 ax ay az

]T
(4-9)

Fg(SEq,S a) = S
EQ

T · Eg− Sa =
[

0
fg

]
(4-10)

Jg(SEq) = ∂fg
∂SEq

Jg ∈ R3×4 (4-11)
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The notation of equation (4-10) is chosen to clearly define fg.

Magnetometer
The measurements from the magnetometer are corrected using an intermediate step:

Sm =
[
0 mx my mz

]
(4-12)

Eh =
[
0 hx hy hz

]
= S

Eq̂ ⊗ Smt ⊗ S
Eq̂∗ (4-13)

Ebt =
[
0
√
h2
x + h2

y hz
]

(4-14)

Fb(SEq,S bt) = S
EQ

T · Ebt − Sm =
[

0
fb

]
(4-15)

Jb(SEq,Eb ) = ∂fb
∂SEq

Jb ∈ R3×4 (4-16)

With the accelerometer providing the vector to the earth’s gravitational center and the mag-
netometer providing the direction to the earth’s magnetic north, Frame 1 can be fully defined
based on sensor measurements. To obtain the correct quaternion representation for this frame
based on the sensor data, gradient descent is employed:

S
EqO,t = S

Eq̂est,t−1 − µt
∇f

‖∇f‖
(4-17)

For the gradient descent the gradient function ∇f is required. This function is defined as:

∇fg,b = JT
g,b(SEqest,t−1,

E b)fg,b(SEqest,t−1,
S at) ∇fg,b ∈ R4×1 (4-18)

fg,b(SEq,S a,E b,S m) =
[

fg(SEq,S a)
fb(SEq,S bt,S m)

]
fg,b ∈ R6×1 (4-19)

Jg,b =
[

Jg(SEq)
Jb(SEq,E b)

]
Jg,b ∈ R6×4 (4-20)
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4-2-3 Filter 2: Unscented Kalman

As the representation of orientation is non-linear a ’Classic’ Kalman Filter (CKF) [4] isn’t
suited for state estimation. For non-linear systems often the Extended Kalman Filter (EKF)
is employed. Alternatively, the UKF proposed by Julier and Uhlman [12,14] can be used for
the estimation of non-linear systems.

There are some notable differences between EKF and UKF. Where the EKF uses linearisation
to deal with non-linearity, the UKF generates a set of state vectors (sigma-points) based on
variance matrix which is then propagated through the model. This procedure prevents local
sampling and allows the UKF to perform at least equal and in most cases better than the
EKF algorithm.

As mentioned in section 3-1 this research uses unit quaternions for relative orientation repre-
sentation. This choice has some downsides where Kalman filters are concerned.

Remark. As pointed out by [49], a normal quaternion consists of four independent vari-
ables, a unit quaternion however reduces the degrees of freedom by one due to its normality
constraint.

q =
[
q1 q2i q3j q4k

]
|q| = 1

This results in all quaternion parameters being loosely connected and therefore affecting the
variance-covariance matrices. This in turn makes the noises of the individual quaternion
vector and scalar non-normal which is in violation of the basic Kalman filter assumption of
normally distributed noise over the measured states.2 Therefore, the quality of the fusion
result is impacted.

Applied Unscented Kalman Filter

For the implementation of the UKF the approach in table 7.3 of Haykin [50] is followed (this
approach is similar to the one described by Wan et al. [51]). Since this report contains an
implementation based on quaternions. The full algorithm will be included in this section.

Initial state

x̂0 = q0 =
[
1, 0, 0, 0

]T
∈ R4×1 (4-21)

P0 = 04×4 ∈ R4×4 (4-22)

According to UKF theory the amount of sigma points generated is equal to the size of the
state vector times two plus one thus;

L = dim(x) (4-23)

Xk−1 =
[
x̂k−1 x̂k−1 ± γ

√
Pk−1

]
∈ R4×(2L+1) (4-24)

2Quantifying the effect of this coupling when using quaternion based sensor-fusion compared to for example
is a active field of research.
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Note that in equation (4-24) the square root of the Variance Covariance Matrix (VCM) P is
calculated using the Cholesky-Decomposition [52]. Furthermore, to generate the sigma-points
the columns of the VCM are added to the state estimate x̂k−1

Update through ’system’ model using the gyroscope data:

x̂i|k =
(

I4×4 + 1
2Ωk∆t

)
x̂k−1 (4-25)

Ωk =


0 −ωx −ωy −ω)z
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (4-26)

X ∗k|k−1 = F (Xk−1,uk−1) (4-27)

x̂−k =
2L∑
i=0

Wm
i X ∗i,k|k−1 (4-28)

P−k =
2L∑
i=0

W c
i

(
X ∗k|k−1 − x̂−k

) (
X ∗k|k−1 − x̂−k

)T
+ Rv (4-29)

Rv = x̂−k ⊗
[
0 εg

]
(4-30)

Now the literature suggests one of the following two approaches to account for the process
noise Rn

• Augment the sigma-points
This means append the sigma-points from equation (4-24) with extra sigma-points that
take the added noise matrix into account. This would mean that the size of the sigma-
points would become:

Xk|k−1 =
[
X ∗k|k−1 X ∗0|k−1 ± γ

√
Rv
]

∈ R4×4L+1 (4-31)

• Redraw the sigma-points
Redrawing the sigma-points would include the effect of the added VCM in the new
sigma-points:

Xk|k−1 =
[
x̂−k x̂−k ± γ

√
P−k
]

∈ R4×2L+1 (4-32)

The second option of redrawing the sigmapoints will be chosen in the implementation as
that will reduce the computational load significantly because less states are used in the filter
(With the caveat that this "discards any odd-moments information captured by the original
propagated sigma points"(Haykin)).

Next the measurement update has to be computed:

Yk|k−1 = H
(
Xk|k−1

)
∈ R4×2L+1 (4-33)

(4-34)
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where we use the measurement update as described in equation (4-17).

Yk|k−1 = Xk|k−1 − µ
∇f

‖f‖
(4-35)

Then the measurement estimate is calculated using:

ŷ−k =
2L∑
i=0

Wm
i Yi,k|k−1 (4-36)

Pŷkŷk =
2L∑
i=0

W c
i

(
Yi|k−1 − ŷ−k

) (
Yi|k−1 − ŷ−k

)T
+ Rn ∈ R4×4 (4-37)

Px̂kŷk =
2L∑
i=0

W c
i

(
Xi|k−1 − x̂−k

) (
Yi|k−1 − ŷ−k

)T
∈ R4×4 (4-38)

Kk = Px̂kŷkPŷkŷk
−1 ∈ R4×4 (4-39)

x̂k = x̂−k +Kk
(
yk − ŷ−k

)
(4-40)

Pk = P−k −KkPŷkŷkK
T
k (4-41)

The weight factors denoted by W can be calculated as follows:

Wm
0 = λ

L+ λ
(4-42)

W c
0 = λ

L+ λ
+ 1− α2 + β (4-43)

Wm
i = W c

i = 1
2 (L+ λ) i = 1, ..., 2L (4-44)

λ = α2 (L+ κ)− L (4-45)
γ =
√
L+ λ (4-46)

In general the values assigned to α, β and κ are chosen dependent on the prior knowledge of
the distribution. This means that for a Gaussian distribution the following values are chosen:

1 ≥α ≥ 10−4 (4-47)
β = 2 If Gaussian (4-48)
κ = 3− L (4-49)

According to [50] there exists no procedure for determining these parameters, Haykin et al.
furthermore states that in general the choice of parameters doesn’t matter for the stability
of the solution, although the speed of convergence may suffer if they are chosen incorrectly.
Julier, one of the principle inventors of UKF states that individual weighing factors do not
necessarilly have to sum to unity [13] a belief that is held strongly by some online resources.

4-2-4 Filter 3: TRIAD

Filter 3 is the same as filter two, only the measurement model is changed. The measurement
model now uses TRIAD for the fusion of the accelerometer and the magnetometer.
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The TRIAD algorithm, developed by [45] uses two observation vectors (w1,w2) to determine
the orientation of an object in space. For this to work two reference vectors have to be
provided (v1,v2). These vectors define the world orientation frame to which the algorithm
provides the objects relative frame. This is relative orientation is represented by a DCM,
which will have to be converted to a quaternion.

The TRIAD algorithm as described in [42]:

A = MoMT
r ∈ SO(3) (4-50)

Mo =
[
o1 o2 o3

]
(4-51)

Mr =
[
r1 r2 r3

]
(4-52)

o1 = w1 (4-53)

o2 = w1 ×w2
|w1 ×w2|

(4-54)

o3 = w1 × (w1 ×w2)
|w1 × (w1 ×w2) | (4-55)

r1 = v1 (4-56)

r2 = v1 × v2
|v1 × v2|

(4-57)

r3 = v1 × (v1 × v2)
|v1 × (v1 × v2) | (4-58)

4-3 Experiment

For the experiment the THORLABS PRO01/M z-axis rotation platform was used.
For driving it is most important to have a stable yaw angle rotation since for the most part
the vehicles plane of motion will be perpendicular to the global z-axis. Which means that its
orientation accuracy is directly dependant on the accuracy of the yaw angle.
The full set-up can be seen in figure section 4-3.

Using this setup, it is possible to make a coarse quantitative analysis of the selected filters
for some basic scenarios. As the goal of this research is to see which of the selected filters
performs ’best’ running on a lower update frequency of 20[Hz] with respect to the ’Gold
Standard’ Madgwick filter running at 200[Hz]. For the experiment three different datasets
have been collected:

• Test 1: YAW01
This dataset has been created by rotating the sensor ±90◦.

• Test 2: YAW02
For this dataset z axis rotations of ±20◦ have been used.

• Test 3: YAW03 For this dataset z axis rotations of ±5◦ have been used.

Of the collected datasets, dateset 2: YAW02 will be discussed in more detail, the rest of the
results can be found in appendix B-2.
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Figure 4-3: The THORLABS PRO01/M z-axis rotation platform.
source: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2464

4-4 Results & Conclusion

When looking at figure 4-4 and figure 4-5 the raw-data shows the periodicity one can expect
from repeated rotations around the z-axis. As expected a periodic saw-tooth like wave can
be observed. The varying amplitude of this wave in the gyroscope subplot is due tot the
manual nature of the excitation. It is interesting to note that the roll and pitch angle, as can
be seen in the filtered data are, contrary to expectation, not zero. This can be explained by
looking at the accelerometer values. Since the ax,y measurements are non-zero the roll and
pitch angle are also non-zero. This can be caused by the sensor’s x and y axis not being fully
perpendicular to the direction of the earths gravity.
Nevertheless, as the vehicle in question is assumed to be moving on a 2d-plane, minor errors
in roll and pitch should not result in problems.
One final note, the reason the ’Gold-Standard’ Madgwick filter starts at a different point
has to do with the implementation on the ESP32. During these tests the quaternion was
initiated as: q0 = (1, 0, 0, 0). Whereas the Matlab implementation of the filters start with
q0 = (0, 0, 0, 1).

Of the implemented filters the Madgwick filter, together with the TRIAD based Unscented
Kalman filter perform the best. The other results as shown in appendix B-2 confirm that, of
the UKF candidates the TRIAD implementation is the most promising one.
In conclusion, it has become clear that using the Madgwick filter for orientation estimation
is reasonable. The only suitable tested alternative would be the the UKF using TRIAD as
a measurement model. However, since UKF and TRIAD require more extensive and compu-
tationally heavy mathematical operations such as matrix inversion, Cholesky decomposition
and DCM to quaternion conversions, the filter update rate of 200[Hz] is likely to suffer3.

3Note that this is expected, not proven, due to time constraints and the relative difficulty to program
matrix operations using the Arduino the choice has been made to continue the project without implementing
the UKF on the ESP32.
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Figure 4-4: This figure displays the raw data obtained from the accelerometer, gyroscope and
magnetometer.
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Figure 4-5: This figure displays the filtered data after using the ’gold standard’ high-rate em-
bedded Madgwick filter, the low rate Madgwick filter as well as an Unscented Kalman filter using
either a gradient descent based measurement model or a TRIAD based measurement model.
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Chapter 5

Multi-Rate UKF Pose estimation filter

In this chapter the Multi-Rate pose filter is discussed. In section 5-1 the structure of the
Unscented Kalman Filter (UKF) will be given. After which the second section, section 5-2
will evaluate the chosen filter structure by means of simulations. Lastly, section 5-3 will
contain conclusions drawn based on the simulations.

5-1 UKF structure

To account for the different data-rates of the sensors, the data-rate of the Inertial Mea-
surement Unit (IMU), Vehicle Sensors (VS) and Global Navigation Satellite System (GNSS)
are, 20[Hz], ≈ 14[Hz]1, 1[Hz] respectively, a Multi-Rate UKF implementation is chosen to
fuse the sensor measurements together. The amount of literature where Multi-rate Unscented
Kalman filtering is concerned is somewhat limited. However, a working example can be found
in Lapouge et al. and Armesto et al. [17,53] (Although it must be noted that Lapouge’s im-
plementation is directly based on Armesto’s).

The chosen process model is a non-linear kinematic bicycle model operating in R2. This
means that zero lateral or longitudinal wheel slip is assumed. Furthermore, the process
model assumes constant velocity Buk in the positive body x direction and and front wheel
steering angle Bδ.
A justification for the simplicity of the model used is the lack of sensors on the vehicle
platform. For proper wheel slip estimates it is useful to have angular velocity measurements

1This rate is strongly dependent on the speed the vehicle travels.
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of, at least, the two front wheels.

xk =
(
Exk,

Eyk,
E
Bβk,

Buk,
Bδf

)T
(5-1)

xk = f (xk−1) + wk−1 (5-2)

=


Exk−1 + ∆t · Buk−1 · cos(EBβk−1)
Eyk−1 + ∆t · Buk−1 · sin(EBβk−1)
E
Bβk−1 + ∆t ·

Buk−1
L · tan(Bδk−1)

Bux,k−1
Bδf,k−1

+ wk−1 (5-3)

The measurement vectors of the different sensors are expressed as:

yIMU =
(
E
S β
)

(5-4)

yV S =
(
Bu,Bδf

)
(5-5)

yGNSS =
(
Ex,Ey,EB∗β,

B∗u
)

(5-6)

Now two assumptions are made concerning different body angle measurements and the GNSS
velocity measurement:

Assumption 3 (Body angles). The angles obtained from both the IMU (ES β) and the GNSS
E
B∗β represent the same rotation as the body angle:

Fb ≈ R(ES β)
z Fe ≈ R(EB∗β)

z Fe (5-7)

Henceforth both the representations of the body angle will be written as EBβ.

Assumption 4 (Velocity representation). The body velocity as measured by the GNSS receiver
is the same as the velocity measured by the vehicle sensors. That is both represent a velocity
in the x direction of the body frame.

The measurement models for the IMU, VS and GNSS are denoted as ŷ−1 , ŷ−2 , ŷ−3 :

ŷ−n,k = h(xk) + vn,k (5-8)

ŷ−1,k =
(
E
Bβk

)
+ v1,k (5-9)

ŷ−2,k =
(
Euk,

Eδk
)

+ v2,k (5-10)

ŷ−3,k =
(
Exk,

Eyk,
E
Bβk,

Buk
)

+ v3,k (5-11)

Since both the state β and the IMU β reference the magnetic north it can be safely assumed
that, the measured directions are parallel as long as a sufficient distance from the earth’s
magnetic north location is maintained. Since the measurement vectors are of different size
the measurement update equations and their matrices are affected. For the sake of clarity
the formulas for this part of the filter are included here:
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Measurement update

P∆,ŷkŷk =
2L∑
i=0

W c
i

(
Yi|k−1 − ŷ−k

) (
Yi|k−1 − ŷ−k

)T
+ Rn ∈ RM×M (5-12)

P∆,x̂kŷk =
2L∑
i=0

W c
i

(
Xi|k−1 − x̂−k

) (
Yi|k−1 − ŷ−k

)T
∈ RL×M (5-13)

K∆,k = P∆,x̂kŷkP∆,ŷkŷk
−1 ∈ RL×M (5-14)

x̂k = x̂−k +Kk
(
yk − ŷ−k

)
∈ RL (5-15)

Pk = P−k −K∆,kP∆,ŷkŷkK
T
∆,k ∈ RL×L (5-16)

Where L denotes the size of the state-vector and M the size of the measurement vector.
Note that the rest of the UKF implementation is the same the one described in section 4-2-3

5-2 Filter Verification Simulations

In this subsection the filter proposed in the previous section will be evaluated using simulated
data. The goal of these simulations is to prove that the filter works and evaluate it’s inner
workings.

5-2-1 Generation of Simulated data

The data used for the simulation was generated using the process model described in equation
equation (5-3). The fourth and fifth state were used as input and the propagated output was
used as the reference for analysis.
The obtained time series was then subsampled at different rates (20[Hz], 14[Hz], 1[Hz] ) to
represent virtual IMU, VS and GNSS data.
For the ease of implementation it was assumed that the IMU only provides a direct measure-
ment of the yaw angle.
The obtained data was then contaminated with noise based on the requirements of the trial.
The kalman filter scaling parameters and weighing functions are set to the following:

L = 5 (5-17)
α = 10−2 (5-18)
κ = 3− L (5-19)
λ = L− α2 (L+ κ) (5-20)

Note that the choice for λ differs from the ’suggestion’ by switching the sign of the L and α.
Without this change the first weighing factor, calculated using W (m)

0 = λ
2(L+λ) would have a

highly negative value. This would in turn result in grievous state errors. As mentioned in
section 4-2-3, no clear or agreed upon way to choose these parameters is available2 therefore
changing the definition of λ does not violate UKF principles.

2Discovering a way to tune the UKF’s parameters λ, β, κ may be a worthy subject of study.
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5-2-2 Simulations and Results

To evaluate the filter four different test were performed:

1. Only VS no noise
The goal of this test is to verify the integrity of the programming of the filter solution
itself.

2. Full fusion using known noise matrices
The goal of this test is to see if there are any issues with multi-sensor fusion in the filter.

3. Full fusion using unknown noise matrices and erroneous initial conditions
This test is a good indication on how the filter responds to guessed noise matrices.
This is important since for the real-world data determining accurate noise matrices is
difficult. Therefore it is useful to know how ’sensitive’ the filter is in this respect.

4. Full fusion with GNSS outage using known noise matrices
This test aligns with the requirements set out in section 1-2-2 concerning the intermit-
tent nature of the GNSS localisation.

Simulation 1: Only VS

When looking at figure 5-1 it is clear that the noiseless data does not reproduce the gener-
ated data completely. This may seem to suggest an erroneous filter. However, after further
studying the filter in-depth it was determined that the choice for scaling factor λ which in
turn influences γ and the weighing factors has a strong influence the weight of the estimate
with respect to the ’off-centre’ sigma-points (equation (4-24)). Therefore, by favouring the
estimate more strongly.
For example, figure 5-1 was generated using a Wm

0∑2L+1
i=1 Wm

i

= 1. If a different scaling is chosen

for example Wm
0∑2L+1

i=1 Wm
i

= 4, the actual result become much closer to the expected values (see

figure 5-2).
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Figure 5-1: Simulation 1 State Plot 1: For this figure it is important to note that only the VS
data is relevant. For this figure Sigma-point weighing is set to Wm

0

(∑2L+1
i=1 Wm

i

)−1
= 1
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Figure 5-2: Simulation 1 State Plot 2: For this figure it is important to note that
only the VS data is relevant. Note that for this figure the Sigma-point weighing is set to
Wm

0

(∑2L+1
i=1 Wm

i

)−1
= 4.
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5-2-3 Simulation 2: Full Fusion, Known Noise

For this experiment, the noise matrices Rn
1,2,3 for the IMU, VS and GNSS respectively are

fed into the Multi-Rate UKF. The used noise matrices for this experiment are:

Rv = diag
(
10−8[m2], 10−8[m2], 10−12[rad2], 10−3[m2], 10−3[rad2]

)
(5-21)

Rn
1 = 0.500[rad2] (5-22)

Rn
2 = diag

(
0.0256[m2/s2], 0.010[rad2]

)
(5-23)

Rn
3 = diag

(
2.250[m2], 2.250[m2], 0.360[m2/s2], 0.160[rad2]

)
(5-24)

The results are displayed in figure 5-3 and figure 5-4. As can be seen from the results, the filter
is successfully able to estimate the body angle and velocity. It has more difficulty estimating
the actual position of the vehicle. The reason behind this is that, apart from the relatively
higher noise of the steering angle δf the continuous curve generates more points laying on the
inside of the corner. This in turn results in the position estimate laying in the inside of the
corner.
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Figure 5-3: Simulation 2 State Plot: The first sub-plot displays the position of the vehicle,
the second its body angle E

Bβ the third the body velocity Bu and the fourth the steering angle
Bδf
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Figure 5-4: Simulation 2 trace (Pk)

5-2-4 Simulation 3: Full Fusion, Unknown Noise and Erroneous initial conditions

For this experiment the following noise matrices and initial conditions are implemented:

x̂0 = (−2[m], −2[m], π[rad], 0[m/s], 0[rad]) (5-25)
Rn

1 = 5 · 0.500[rad2] (5-26)

Rn
2 = 5 · diag

(
0.0256[m2/s2], 0.010[rad2]

)
(5-27)

Rn
3 = 5 · diag

(
2.250[m2], 2.250[m2], 0.360[m2/s2], 0.160[rad2]

)
(5-28)

Compared to simulation 2 the noises that have been entered in the UKF have been multiplied
by five with respect to their actual values. When looking at the results as displayed in
figure 5-5 and figure 5-6 one can see that the filter responds adequatly to the erroneous
starting condition. Furthermore, as expected the filter performs worse without the actual
noise characteristics. This is clearly visible when looking at the overal position and the
response to changes in velocity.
It is interesting to note that the filter furthermore doesn’t strongly responds to the GNSS
position. The cause of this behaviour lies at the trust that is given to the process model. The
factor five increase in estimated measurement noise does not convince the filter it is at the
wrong position.
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Figure 5-5: Simulation 3 State Plot: The first sub-plot displays the position of the vehicle,
the second its body angle E

Bβ the third the body velocity Bu and the fourth the steering angle
Bδf

M. de Vries Master of Science Thesis



5-2 Filter Verification Simulations 43

Figure 5-6: Simulation 3 trace (Pk)

5-2-5 Simulation 4: GNSS Outage Simulation

This simulation has been performed using the noise matrices from simulation 2 as well as
its initial conditions . The GNSS outage was simulated by removing the GNSS data in the
interval between 20-30s.

When looking at the state results expressed in figure 5-7 it is clear that when compared
to figure 5-3 the quality of the localisation solution has decreased. The last corner in the
top right of the first subplot clearly shows that, when GNSS data becomes available again a
large corrective jump is performed. This results in an overshoot of the corner in the current
simulation with respect to simulation 2.
Interestingly, only a minor difference exists between the trace (Pk) of simulation 2 figure 5-4
and simulation 4 figure 5-8. The largest difference is visible in the Pk1 and Pk2 subplots. In
these figures the time that the GNSS localisation is switched off the σ2

x and σ2
y becomes more

smooth. This indicates that the GNSS updates when they are available, are conflicting with
the position estimate of the previous sensor updates. Hence the ’sawtooth’ pattern3.

3This can be seen as an omen for what is to come during the real-world experimental results
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Figure 5-7: Simulation 4 State Plot: The first sub-plot displays the position of the vehicle,
the second its body angle E

Bβ the third the body velocity Bu and the fourth the steering angle
Bδf
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Figure 5-8: Simulation 4 trace (Pk)
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5-3 Simulation Conclusions

From the results it can be seen that the chosen filter structure is capable of dealing with
varying data-rates. Furthermore, it is clear to see that, with the exception of experiment 3
the filtered data provides an improved localisation solution with respect to the raw GNSS
data.
The results from simulation 3 indicate that the determination of proper noise matrices that
have their basis in actual sensor characteristics is of great importance. Without proper scaling
of these parameters the fusion result can deteriorate the results. Lastly, the results from
simulation 4 show that the filter is capable of dealing with intermittent GNSS measurements.
In conclusion, based on the simulation results, the filter proves to be capable of handling
variable data-rates and GNSS intermittency. Thus the filter in simulation satisfies the second
and third requirement for the achievement of the second thesis goal section 1-2-2.
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Chapter 6

Localisation Trials and Results

In this chapter the filter developed in the previous chapter (chapter 5) is used for the eval-
uation of real-world data collected using the vehicle-platform. The first section will explains
the real-world time-synchronisation between different data-sources. The second section, sec-
tion 6-2 will give the reader the chosen UKF parameter values as well as the noise matrices.
This section is followed by the real world experiments in section 6-3.

6-1 Time Synchronisation

As each filter update is performed when a measurement from one of the three sensors is
available, the ∆t, required for the process update (equation (5-3)), is calculated based on
the last measurement update. As the update rates of the sensors, with the exception of the
Global Navigation Satellite System (GNSS) receiver, are not strictly regulated the inter frame
time f∆t per sensor may vary and can be expressed as:

f∆t,IMU = ts1 + ∆tp1 + ∆ts1 (6-1)
f∆t,V S = ts2 + ∆tp2 + ∆tr (6-2)

f∆t,GNSS = ts3 + ∆ts2 (6-3)

Where ts is the sample time (which vary per sensor and may not be consistent), the ∆tp
expresses the time it takes to pack the measured data into a packet, ∆ts denotes the synchro-
nisation error between the Rapsberry PI time and the timebase used on the sensor. Lastly,
∆tr denotes the time difference between the availability of the packet in the CAN-BUS buffer
and the actual time the package gets time-stamped.
The following assumptions are made when processing measurements:

Assumption 5 (Equal Time source). It is assumed that the measurement data, which is
timestamped based on UTC is the same, which is not guaranteed since the IMU receives
it’s UTC from the Raspberry PI without Receive/Transmission delays being considered and
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the GNSS based UTC of the GNSS receiver is dependent on the atomic clocks on-board the
satellites and is thus per definition another timesource than the UTC of the Raspberry PI1

Assumption 6 (No delay between measurement and frame construction). This especially
holds true for the IMU as the packet creation time is not accounted for. The error due to this
is expected to be small however ≈ 1[ms].
The Vehicle Sensors (VS) suffers from from inaccuracies due to time-stamping as well. The
used MCP2515 doesn’t support hardware based timestamping through the IEEE 1588 (Preci-
sion Time Protocol). Therefore the messages are timestamped using software which is less
accurate.

6-2 Multi-Rate UKF Configuration

In this section an overview of the used parameters for the experiments will be given. These
include the noise matrices Rv and Rn

1,2,3 as well as the UKF scaling parameters.

The noise matrices for the measurement data are partially based on actual measurements as
well as ’educated guesses’. The noise analysis itself can be found in appendix A.

Rv = diag
(
10−8[m2], 10−8[m2], 10−12[rad2], 10−3[m2], 10−3[rad2]

)
(6-4)

Rn
1 = 0.5[rad2] (6-5)

Rn
2 = diag

(
0.0256[m2/s2], 0.01[rad2]

)
(6-6)

Rn
3 = diag

(
(HDOP )2 [m2], (HDOP )2 [m2], 0.36[rad2], 0.16[m2/s2]

)
(6-7)

Where Horizontal Dilation of Precision (HDOP) is used to dynamically change the noise
estimate for the GNSS receiver.

6-3 Experiments

In this section two real-world experimental results will be presented.

6-3-1 Experiment 1 GNSS & VS Fusion

In this experiment the vehicle-platform was driven along the Bieslandsepad in Delft. As can
be seen from the fusion results the GNSS sensor has a significant error with respect to the
actually travelled path (see figure 6-3). The ’sawtooth’ pattern alluded to in the previous
chapter makes its appearance again in the Pk1 and Pk2 plot of figure 6-2.
It is clear that the fusion result based on only the GNSS and VS is lacking an additional
direction reference. Now only the GNSS heading is available, resulting in a clear deviation
from the actual path. It is interesting to note that the filter solution does ignore the GNSS
position when the corner is taken to pass under the overpass. This indicates that the filter

1Although, timestamping is performed based on the Raspberry PI’s time as well.
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trusts the propagated vehicle sensor results more than the GNSS position result. This is
possibly reinforced by the HDOP VCM update rule (appendix A).

The a postiori VCM state descriptions in figure 6-2 clearly show that the the body angle Bβ
is initialised incorrectly. This covariance shows a sharp decrease, starting roughly from the
moment when the first GNSS based heading estimates are available (visible in figure 6-1).
As expected, the variance of the body velocity Bu and Bδf decreases immediately after the
experiment starts. This is expected because these parameters are directly measured by the
VS and thus are updated at least 14 times per second.
With respect to the other variances, the variances describing the global position of the vehicle-
platform Ex and E

y do not decrease as sharply. This suggests that the filter is less certain
about the accuracy of its location than about the orientation, velocity or steering angle.
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Figure 6-1: Simulation 3 State Plot: The first sub-plot displays the position of the vehicle,
the second its body angle E

Bβ the third the body velocity Bu and the fourth the steering angle
Bδf . Note that, although the IMU based body angle measurement is given it is not used in the
filter.

M. de Vries Master of Science Thesis



6-3 Experiments 51

Figure 6-2: Simulation 3 trace (Pk)

Figure 6-3: This figure shows the GNSS data as well as the filtered output. The vehicle drove
along the Bieslandsepad (the path hidden behind the treeline).
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Experiment 2

For this experiment the vehicle-platform was driven around on the sidewalk. Figure 6-6
displays the results of the filter in the real-world. Note that the actually travelled path’s
start is shared by all lines (since it is based on the initial GNSS fix). From then onwards the
route travelled was northward, then turning left and taking all subsequent first available left
corners.

It is clear from the results that the filter failed to reject the incorrect GNSS points. When
looking at the path travelled if only the VS were to be used, it is clear to see that the VS
sensor are more accurate where total distance travelled is concerned. This is clear even without
changing the λ parameter as was done with the first simulation in the previous chapter.
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Figure 6-4: Simulation 3 State Plot: The first sub-plot displays the position of the vehicle,
the second its body angle E

Bβ the third the body velocity Bu and the fourth the steering angle
Bδf
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Figure 6-5: Simulation 3 trace (Pk)

Figure 6-6: This figure shows the results of the filter in green, the GNSS data in red and the VS
only result in yellow. The actual travelled path is displayed in white
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Chapter 7

Discussion and Future Work

In this chapter the combined results of the thesis will be discussed and future work to improve
the current results will be discussed. Firstly, section 7-1 will start with a description of the
different subjects presented in the thesis, after which these subjects will be discussed in their
own subsections. Secondly, section 7-2 will mention several avenues for future research.

7-1 Discussion

As the work presented in this thesis knows three distinct parts namely, the soft & hardware
development, the research conducted into IMU orientation filtering and the development of
a multi-rate UKF for localisation and pose estimation these parts will be discussed in their
own subsection.

7-1-1 Hardware and Software

The development of the software was an integral part of the performed work in the thesis. The
initial goal to develop an on-line filter using self-developed code is the only software related
thing that has not been achieved at the end of this thesis. Due to delays in the delivery of the
hardware platform it was not possible to spend the time required to implement a real-time
filter, though the developed software and used hardware should, with minor tweaks be more
than capable of running the proposed filter at high enough update rates.

Though the real-time filter may not be implemented, it is safe to say that the rest of the code
developed is well engineered, documented and performs to specifications. The used process
and threads structure allows for high data-rates on the Raspberry PI side. The implemented
protocol running on the ESP32 gives superior performance to out of the box methods and
should be good stepping stones for future research projects.
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7-1-2 IMU Orientation Filtering

The results of the research performed in the area of IMU orientation filtering (chapter 4)
provided results that were in line with the literature. Even though in the end the Madgwick
filter [35] was chosen instead of the more complex UKF based frame fusion of gyroscope with
magnetometer and accelerometer, it was worth noting that apart from De Marina et al. [42]
very little literature is available on orientation filtering using UKF. This especially holds true
for the UKF based filter that used Madgwicks’s integration scheme. Though, through its
poor performance it has demonstrated that this way of fusion is not recommended.
One of the main limitations of the research done on IMU orientation filtering is the absence
of a ’ground truth’ or reference signal. This leads to the results being only quantitative in
nature.

7-1-3 Multi-Rate UKF

The choice for a Multi-Rate filter instead of a more conventional Kalman based filter is
validated through the modularity constraint as laid out in chapter 1. Moreover, a Multi-Rate
filter allows for more data-points to be used by the filter without resulting to things such
as spline interpolation, zero or higher order hold functions. It was expected however that,
based on equivalent research into the field of GNSS IMU and VS fusion such as the work
by Melendez-Pastor et al [15], the results of a stand-alone GNSS receiver would be improved
upon.
This expectation was not challenged by the simulation results, as can bee seen in chapter 5. In
this chapter simulation 2 and simulation 4 clearly show superior performance when using the
proposed Multi-Rate UKF. However, when the noise matrices are not properly dimensioned
the results are less positive. Simulation 3, clearly shows that incorrect noise parameters reduce
the filter results.

Based on the real-world experiments, it is more difficult to state that the filter’s performance
is an improvement to stand-alone GNSS. For experiment 1 the case can be made that this
is indeed the case since the filter output arguably describes the travelled route better than
the GNSS. It is likely that a large part of the poor filter results can be attributed to abysmal
GNSS performance. In experiment 2 it is clearly visible that the GNSS measurements forcibly
constrict the filter solution. The poor performance of the GNSS receiver can be due to a
multitude of reasons. One of these reasons may be the configured elevation mask of only
20[◦]. The elevation mask determines which satellites are used for the localisation solution.
The signals of these lower elevation satellites are subject to larger error due to multi-path
errors as well as ionospheric and tropospheric delays. However, the difficulty of magnetometer
calibration as discussed in appendix A-1 may be seen as an accomplice.
Even though the real-world results presented in the thesis are not encouraging, it does not
necessarily mean that the conclusion can be drawn that the filter structure itself is faulty as,
especially the second experiment is by its very nature flawed. Since it does not allow the filter
to stabilise by first driving in a straight line for a prolonged time1.

1For the presentation of the thesis an attempt will be made to obtain better measurement data.
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7-2 Future Work

In this section the avenues for future work are discussed, starting of with an extensive de-
scription of issues with the current GNSS receiver and its configuration.
To mediate the poor real-world results of the Multi-Rate UKF, the GNSS receiver’s perfor-
mance must be optimised. At least, measuring the velocity and heading noise in ideal con-
ditions should be attempted and, ideally related to measurable parameters such as HDOP.
Furthermore, the current GNSS receiver, the ublox M8P should be replaced with a version
that supports the Galileo satellite system as well. This would be highly advantageous since
it would allow the system to be more robust to GNSS outages as well as provide improved
localisation information.
Another way the GNSS results can be improved is by changing the configuration of the GNSS
such as increasing the elevation mask (which determines which satellites are used for local-
isation, lower elevation is generally less accurate) of the GNSS to a value above the default
20[◦], this should reduce multipath errors from signal reflections. Apart from these improve-
ments the GNSS localisation should be improved by adapting Single Frequency Precise Point
Positioning (SF-PPP) techniques.
Another improvement that could be made is integrating maps and vision into the system.
This would allow for localisation based on this map data as well as using vision techniques to
see the position on the road.

The IMU is currently mounted directly on the frame of the vehicle-platform. Since the
vehicle-platform’s frame is undampened, the noise pollutes the accelerometer measurements.
By adding physical damping high frequency noise contamination can be decreased. This
would allow the integration of the accelerometer into the measurement update of the UKF
as a description of the steering angle (through tangential acceleration). It would moreover
be beneficial to add a second magnetometer. This magnetometer could be used to improve
calibration of the IMU’s magnetometer by having a second reference.

The amount of used vehicle sensors should be increased. Especially measuring the angular
velocity of the front wheels of the vehicle-platform could improve the filtering results. Using
these rotational velocities as a measurement would add a additional references to the body
velocity as well as the steering angle.

Concerning the Multi-Rate UKF it would be beneficial to study the effect of the inherent
UKF parameters α, β and κ. Currently there is little to no available literature giving an
in-depth description on how these parameters should be chosen or, how these parameters
effect the weighing of the sigma-points. Moreover, it might be worth investigating the effect
of adapting the weighing factors per sensor.
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Chapter 8

Conclusion

The goals set out by Accenda were the development of a soft & hardware platform for future
research in the field of autonomous navigation as well as the development of a pose estimation
and localisation solution.
As described in chapter 2 the realisation of a soft & hardware platform is achieved. The sensors
required for the pose estimation and localisation are integrated into the vehicle-platform. The
communication rates of the sensors are guaranteed through the analyses performed.

The second goal concerning the development of a pose and localisation solution by means of
data-fusion of GNSS, IMU and VS data is in its current state partially achieved.

Based on the simulations conducted (see chapter 5) the filter structure consisting of a sepa-
rate IMU orientation filter and a Multi-Rate UKF seems to provide superior pose estimates
when compared to stand-alone GNSS measurements while at the same time satisfying the
modularity constraint as well as the intermittency constraint laid out in section 1-2-2. How-
ever, the current real-world results indicate that the filter is not capable of improving upon a
stand-alone GNSS localisation solution.

In conclusion, although a cascading Multi-Rate UKF does provide the flexibility required to
fuse measurements from different sensors into a single coherent state representation and is
capable of providing superior to GNSS pose estimates, as proven by the simulations, current
measurements indicate that this does not translate into the real-world.

Master of Science Thesis M. de Vries



60 Conclusion

M. de Vries Master of Science Thesis



Appendix A

Hardware Calibrations and Noise
Measurements

In this appendix the different noise measurements of the used sensors are given

A-1 MPU 9250 Noise Measurements and Calibrations

In this part of the appendix the noise measurements and the calibration of the Invensense
MPU9250 are described.

A-1-1 Accelerometer and Gyroscope Calibration

The way the accelerometer and gyroscope are calibrated is very simple, an N number of
measurements is taken after which the mean is calculated. This mean is then stored as
the bias variable. For the z-axis the earth’s gravitation is extracted first before a mean is
calculated.

A-1-2 Magnetometer Calibration

For the calibration of the magnetometer we apply the method as discussed by Kris Winer [54].
The calibration works on the basis that, assuming a constant magnetic field the following
holds:

m = (mx,my,mz) (A-1)

|m| = c ∀ (p,o) ∈
{
R

6 : ṗ = 0
}

(A-2)

(A-3)
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Or in words, the magnitude of the measurement vector is constant for any rotations around
a constant point in a three dimensional euclidean space.
Based on this statement the axes of the sensor can be calibrated using the following pseudo
code:

Algorithm 1 Magnetometer Calibration
1: procedure Calibrate Magnetometer Scaling and Bias
2: for n=1:1500 do
3: m(n, :) = (mx,my,mz)
4: mbias = mean(m)
5: mchord = max(m)−min(m)
6: r̄ = mean(mchord)
7: mscale = r̄/mchord

To obtain a suitable measurement of the magnetic field, it is important that the sensor is
moved in figure eight’s to calibrate the magnetometer. This movement is the same movement
that is used for the calibration of the compass on a mobile phone. Since this movement is
difficult to perform on an integrated sensor, the measured calibration values are hard-coded in
the software. This approach is suitable as long as the magnetic field in case of the calibration
is the same or highly similar to the magnetic field experienced while integrated.
During testing the sensor is integrated in the vehicle-platform, this results in a constant
disturbance due to the inherent magnetic field of the metal frame of said platform. This
means that calibration of the magnetometer is of the utmost important in this situation.
However, due to the calibrations temperature dependency as well as the weight of the frame a
calibration in R3 is difficult resulting in the calibration being performed in R2 which reduces
the orientation accuracy.

A-1-3 Noise and Normality

It is assumed that the type of noise contamination of the Motion Processing Unit (MPU) is
normally distributed:

ak =
[
ǎx ǎy ǎz

]
k

+ εa (A-4)

gk =
[
ǧx ǧy ǧz

]
k

+ εg (A-5)

mk =
[
m̌x m̌y m̌z

]
k

+ εm (A-6)

This assumption is confirmed by appendix A-1-3 and appendix A-1-3 as it appears that
the sensors results are indeed contaminated by white-Gaussian noise. It is important to
note however that the measurements gyroscope, accelerometer and magnetometer are all to a
degree dependant on temperature fluctuations [21,22]1. However since both the accelerometer
and magnetometer are used as an absolute directional reference, see section 4-2 the effect of
temperature is negligible. Furthermore, it is assumed that calibration for the gyroscope,
which is executed on each start-up of the sensor should for the most part compensate for
temperature related drift.

1This is due tot the accelerometer and gyroscope using temperature sensitive oscillators.
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Figure A-1: The histogram of a sensor measurement performed with the sensor in a vise and
update rate set to 20[Hz]. The nine plots give the sensor distributions per row. First row is
the accelerometer, second the gyroscope and third the magnetometer/compass. Each column
represents the sensors x, y and z axis respectively. The reason for the white lines is due to the
amount of bins used(50).

Table A-1: This table gives the statistical parameters from the dataset as displayed in appendix A-
1-3. Note that the unit for acceleration, gyration and magnetic fields is [m/s2], [◦/s] and [µT ]
respectively (for the µ and σ).

Ax Ay[] Az Gx Gz Gy Mx My Mz
µ 0.001 0.001 0.958 0.022 -0.034 0.017 132.340 20.282 304.600
σ 0.001 0.001 0.002 0.046 0.044 0.046 6.486 6.105 6.298
Kurtosis 3.271 3.206 3.113 2.939 3.020 2.999 2.958 3.002 2.989
Skewness 0.033 0.003 0.100 0.006 -0.012 0.007 0.002 0.005 0.045
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Figure A-2: This figure gives the noise analysis of the velocity measured by the rotary encoder
of the vehicle-platform. The first plot shows the measured velocity together with the average
velocity µ = 2.65[m/s] together with its 95% bounds (Z = 1.96) based on a standard deviation
of σ = 0.16[m/s]

A-2 Vehicle Sensor Noise Measurements

The vehicle-platform has two different sensors. One for velocity, based on a rotary encode
(see appendix A-2) and a one for the vehicle’s steering angle δf .

The velocity measured at full speed, that is PWM=2402 for roughly 25 seconds (384 mea-
surements). The results can be seen in figure A-2.
When looking it this figure it is interesting to note that the noise is clearly not normally
distributed. This may be problematic when filtering since Kalman based filters work best
when the noise is (near-)normally distributed.
As one can see there are three distinct measurement groups. This can be directly related to
the way the velocity is measured in the Arduino code and the used hardware. Namely using:

Speed = pulseIn(Speed_pin, LOW, 40000);

This code measures the time it take for an individual ’wing’ of the encoder to pass by, which
is then converted to velocity. As there are three different wings on the encoder it can be
concluded that the curve-length of the encoder disk passing through the sensor are unequal.

The steering angle of the vehicle is encoded using a potentiometer. This potentiometer is
supplied 5[v] by the Arduino situated on the vehicle-platform. One of the Arduino’s analogue

2PWM is limited to 240/255 since the H-bridge of the motor is under-dimensioned
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ports are then used to measure the resistance over the supply and the centre tab of the poten-
tiometer. As most potentiometers can rotate up to a maximum of 360[◦] and their response
curve can be assumed to be linear3 their change in resistance can be converted to a rotation
in degrees.

To test the accuracy of the sensor the vehicle was driven straight, as in no steering control
input, on a smooth surface. To test the repeatability at certain intervals a steering input
was given to see how the system would return to normal after which the vehicle-platform was
made to drive straight again. The results, as displayed in figure A-3, seem to indicate that
the system does not have a single rest state. This implies that using a single bias to correct
for offsets is insufficient.

A-3 GNSS noise analysis

Determining the GNSS noise is rather difficult as it is highly dependent on the amount of
visible satellites, their elevation, the local surrounding area and atmospheric and tropospheric
delays. However, the ’$GGA’ NMEA message the GNSS receiver contains a measure of
2D accuracy, namely Horizontal Dilation of Precision (HDOP). The relation between this
parameter and the noise on the GNSS position is:

HDOP =
√
σ2
x + σ2

y (A-7)

This parameter can be used to give an estimate for the position noise by assuming that
σx ≈ σy:

σxy = HDOP (A-8)

This allows the noise matrices of the Unscented Kalman Filter (UKF) to be updated dynam-
ically with accurate noise estimates. When looking at figure A-5 it becomes clear however,
that the assumption of equal standard-deviation for x and y direction clearly doesn’t hold.
Still, the chosen approach is, in the opinion of the author, the best available.

Characterising the noise on the GNSS velocity and heading measurements is more difficult
and has not been attempted. For future research a relation between HDOP and the provided
velocity and heading may be useful.

3This is in no way not guaranteed.
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Figure A-3: This plot displays the steering angle noise measurements. The first plot displays
the steering angle. The blue dashed line denotes the raw data and the red solid line denotes the
data without the steering inputs. The second plot displays the histogram of the measured data
without the steering inputs. The data has a mean of µ = 0.01[rad] and a standard-deviation of
σ = 0.038[rad].

Figure A-4: A simple encoder disk designed to function as an interrupter for the phototransistor,
measurements are in [mm]
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Figure A-5: This figure displays an example of GNSS position noise measured in open-field
conditions. Top:Displays all measured GNSS points. Bottom-left: Displays the histogram of the
GNSS noise in global North direction. Bottom-right: Displays the histogram of the GNSS noise
in the global East direction. Note that µx and µy are both zero and σx = 3.51[m], σy = 1.28[m]
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Appendix B

Measurement Data

This appendix contains additional measurement results. The first section,appendix B-2 con-
tains plots of additional datasets concerning the IMU orientation filter evaluated using Matlab
and the second section contains RMS plot of simulations performed in chapter 5.

B-1 Sensor data-rate evaluation

This section contains result from the data-rate evaluation of both the Inertial Measurement
Unit (IMU) as well as the Vehicle Sensors (VS) over CAN-BUS.
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B-2 Additional measurement data from IMU9250

(a) (b)

(c)

Figure B-1: The Results for the YAW01 IMU results for periodic 90◦ rotations around the z-axis.
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B-2-1 Dataset YAW02

(a) (b)

(c)

Figure B-2: The Results for the YAW03 IMU results for periodic 5◦ rotations around the z-axis.
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B-3 Multi-Rate Kalman Simulations

(a) (b)

(c)

Figure B-3: These results show the state estimate RMS error for the simulations 2,3,4 (Top
Left, Top Right, Bottom)
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Appendix C

Hardware Recommendations

In this chapter the hardware recommendations to improve the pose estimation system will be
discussed.

RTC for IMU & CANBUS

Currently the Inertial Measurement Unit (IMU) does not have a time reference. To provide
optimal synchronisation of data it would be useful to add a Real-Time Clock (RTC) to the
Arduino/ESP32 that would allow the RS232 packets to be sent with a UTC timestamp.

The same holds true for the CANBUS. The used CAN-BUS chip does not support exter-
nal timekeeping hardware. Therefore, the time measurement of incoming data-frames are
dependent on the speed of the software reading the CAN-BUS; this results in time errors.

Change of GNSS Receiver

Even though the ublox Neo m8p is a high end receiver, it does not support Galileo and has
a relatively limited amount of channels (28). For future research it would be advisable to
include a receiver with a higher amount of channels as well as support for Galileo.

Incorporate an Internet connection

As mentioned in chapter 7 it is advisable to implement a form of Single Frequency Pre-
cise Point Positioning (SF-PPP). For SF-PPP accurate Global Navigation Satellite Sys-
tem (GNSS) ephimeris and almanac data is required. This information can be obtained
on-line and it is thus recommended to include an internet connection in the system.
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Include Wheel Sensors

To improve the dead-reckoning aspect of the vehicle-platform it is required to allow for the
measurement of rotational velocities in each wheel. These extra sensors will also allow the
inclusion of wheel slip estimation as expected wheel velocities with respect to the motor RPM
can be modelled and thus slip angles can be estimated (using Unscented Kalman Filter (UKF),
Extended Kalman Filter (EKF) or equivalent state-estimators).

Vehicle-Platform Improvements

The vehicle-platform provided by Accenda is certainly functional, however a large amount of
things can be improved:

• Mount the IMU on Dampers
The IMU is now more or less directly connected to the frame of the platform. This
results in high frequency noise being measured by the IMU. It would be beneficial if the
IMU could be mounted on some dampers to cancel out high frequency noise.

• Steering Angle Measurement
Although the measurement of the steering angle with a potentiometer is functional, it
might be better to use a digital equivalent to reduce the measurement noise.

• Transfer of Servo to Wheels
The mechanical link between the wiper motor and the steering-linkage is somewhat
rickety. If the wheel is locked and the motor tries to rotate the wheels the sheet metal
connection bends. It is therefore recommended to change the sheet metal link to some-
thing with a higher stiffness to remedy this.

• Mounting point for the Raspberry Pi
It would be nice if the Raspberry PI can be mounted on the platform itself.

• Change the Rotary Encoder
Each rotary encoder is now roughly 60◦ this should be reduced, therefore a design with
more ’fins’ should be chosen.

• Change the Remote and Remote Receiver
Currently the signals from the Remote require 20 ms to measure per signal. This can be
vastly improved by implementing say a bluetooth based controller and receiver (since
the vehicle will not be operated a large distanes from the remote bluetooth’s range
should be fine).

• Integrate IMU and Arduino
Currently the Arduino in the platform is responsible for the motor control and vehicle
measurements. It is recommended to swap the Arduino for an ESP32 this would allow
a single board to handle both the driving functions, Vehicle Sensors (VS) measurements
as well as the IMU measurements.
With this improvement the IMU data can be sent over CAN-BUS without the need for
another transceiver.
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• Remove End-stop switches
Currently the PCB provided by Accenda reserves two pins for end switches of the
steering mechanism. These can be removed and replaced by a software limiter. At the
very least one can be removed and the switches can be put in parallel.

• Battery Measurement
Measuring the battery is important especially for long distance travel, since the platform
is rather heavy one wants to avoid carrying it back to the ’mothership’.
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Glossary

List of Acronyms

CKF ’Classic’ Kalman Filter

DCM Direction Cosine Matrix

DMP Digital Motion Processor

DOF Degrees of Freedom

EKF Extended Kalman Filter

GPS Global Positioning System

GNSS Global Navigation Satellite System

HDOP Horizontal Dilation of Precision

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

IMU Inertial Measurement Unit

MPU Motion Processing Unit

NED North, East, Down

PWM Pulse Width Modulation

QUEST Quaternion Estimator

UKF Unscented Kalman Filter

RTC Real-Time Clock

SF-PPP Single Frequency Precise Point Positioning

TRIAD Three Dimensional Attitude Estimation
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82 Glossary

VCM Variance Covariance Matrix

VS Vehicle Sensors
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Nomenclature

Scalars
α UKF parameter, sets the spread of the Sigma-Points [-]
β Describes the vehicle-platform body angle wrt global north [rad]
β UKF scaling parameter used to set the expected distribution [-]
δf Steering angle [rad]
γ UKF sigma-point scaling factor [-]
κ UKF scaling parameter [-]
λ UKF scaling parameter [-]
f∆ Inter frame time [s]
ux Body velocity [m/s]
Vectors
x̂− Process State estimate
x̂k State estimate
ŷ−k Measurement estimate through state estimate propagation
a Acceleration measurement vector [g]
m Magnetism measurement vector [µT ]
p Pose, defined as a combination of rotation and translation ∈ R3 · SO(3)
q A unit quaternion |q| = 1
vi,k Measurement noise vector
wk Process noise vector
yk Measurement
z Measurement vector
ω Angular rates, used for gyroscope measurements (ωx, ωy, ωz) [rad/s]
W (c) UKF VCM weights
W (m) UKF state update weights
Matrices
Ω Angular rate matrix [rad/s]
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84 Nomenclature

J Jacobian derivative matrix
Pk VCM for the measurement update
P−k VCM for the process update
Pxy Estimate vs. Measurement Cross-Covariance matrix
Pyy Measurement Auto-Covariance matrix
Q Quaternion based rotation matrix
Rn Measurement noise matrix
Rv Process noise matrix
Rx/y/z Rotation matrix
Kk Kalman Gain matrix
Sets
X Set of sigmapoints (Process update)
Y Set of sigmapoints (Process update)
Miscellaneous
Fb Vehicle-Platform body frame [−]
Fg Global, left handed frame defined as North, East, Down [−]
Fs IMU sensor frame [−]
Super and Subscripts
©− Process update
©k Discrete time instance
B© Vehicle-platform body frame
E© Earth frame in NED
S© Sensor frame of the MPU9250
E
S© Relative definition from Earth to Sensor frame
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