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Summary

Graph-based machine learning has seen significant growth during the past years with great advance-
ments and applicability. These approaches mostly focus on pairwise interactions, neglecting the pat-
terns of higher-order interactions which are common to complex systems. In real-world applications,
we often encounter these signals that naturally associate with nodes, edges or sets of nodes (e.g. tri-
angles). While the node signals have been well-studied by graph-based methods, the other signals
have been researched in the recently emerging field of topological signal processing and topological
machine learning. In this thesis, we are particularly interested in edge flow, which models the signals
over the edges of a network by signal processing and learning tasks, centring on simplicial complexes.
Examples of such networks can be traffic flows in a road network or water flows in a hydrological net-
work. Recent literature in topological signal processing shows simplicial complex as a powerful and
principled higher-order network model for edge flows.

In this thesis, we introduce PyTSPL, a Python library that provides reliable and user-friendly building
blocks for interacting with simplicial complexes. The library aims to provide a unified platform to read
network data in different formats, preprocess them and store them in a data structure such that their
properties can be easily retrieved. Users can visualize the simplicial complex simply and effectively,
enhancing the interpretability of complex structures and data flows. Additionally, the library provides
functionality to analyze the simplicial complexes using various advanced signal processing techniques.

The motivation behind developing this master’s thesis is to provide practical bridges to analysing and
processing network data based on recent research methods with a unified Python library. While vari-
ous tools exist for specific aspects of network analysis, there is a lack of unified platforms that integrate
reading, processing, visualization, and advanced analysis of network data through topological frame-
works, specifically for simplicial complexes. This library is a comprehensive solution encapsulating the
entire workflow in a single environment.

The source code of PyTSPL is available under MIT licence in this repository with its documentation.
The library is also available on PyPI for installation.
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1
Introduction

We are immersed in a world where data has become an invaluable asset for companies and organiza-
tions. This wealth of information drives decision-making, fuels innovation, and provides a competitive
edge. It has taken a significant role in the digital age, impacting our lives and altering how we live. Each
of us generates massive amounts of data across various levels, from public data like social media activ-
ities to private data such as health records and banking information. The complexity of such data with
its interactions means the data resides on irregular and complex structures [1]. To effectively analyze
this data, standard tools are insufficient; we need to model the data in a more complex manner.

Graphs are a powerful model for representing systems consisting of entities that are interacting with
each other. These entities can be represented as nodes, with their interactions encoded as edges in
a graph. This representation allows for the analysis and visualization of complex relationships within
a system, enabling the identification of key nodes, the discovery of patterns, and the understanding of
overall structure and dynamics. Graphs are widely used in various fields to model complex structures
and relationships, such as public transportation networks [2], social sciences [3] and many more types
of systems. For example, in a social network, the users can be modelled as nodes while their friend
connections can be modelled as edges as shown in Figure 1.1 below. We can add properties to the
nodes (users) and model those signals over a graph. For example, we can analyze the influence
and information spread in a social network by examining the activity level of each user as a graph
signal. By doing so, we can identify key influencers and highlight nodes (people) that play a critical role
in spreading the information. Many of these applications can be addressed in terms of graph signal
processing (GSP), which provides a framework for processing signal data on graphs.
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Figure 1.1: A social network of a user from LinkedIn [4]. The user is located in the centre while the edges represent the user’s
connections. The colour-coded clusters represent the different groups from the user’s professional career such as university

classmates or colleagues from previous workplaces.

However, we often encounter situations where the signals naturally associate with edges or sets of
nodes (triangles) in real-world applications. Such applications include the data flows in social networks
[5], water flows in the hydrological network or traffic flows in a road network [6]. Typically, these signals
are modelled as edge flows over a network, which have been used in analyzing delivery networks [7],
games [8], etc. Regular graphs fail to capture the interactions between more than two nodes even
though such multi-way interactions are common in real-world applications. For instance, people inter-
acting in a small social group [9] or a co-authorship network where a paper has more than two authors
[10]. Graph-based representations compress the higher-order interactions into pairwise interactions
and therefore lose high-dimensional information. In these applications, it can be fruitful to utilize the
relationships between the node-relationships, that are the edges or higher-order edges, themselves.
To represent such polyadic interactions, several modelling frameworks have been proposed in the lit-
erature including simplicial complexes (SCs) [11], hypergraphs [12] and others [13]. Recently, these
frameworks have attracted much attention to analyze polyadic relations and study edge flows. In this
master’s thesis, we focus on the development of a library focusing on the functionalities of using signal
processing on SC.

The field of SCs is rapidly evolving and there is no unified way to process these structures, halting
the reproducibility and research advances. The goal of this library is to enable researchers to quickly
interact or be hands-on with the tools, propose new functionalities and datasets etc. For instance,
NetworkX is a powerful, open-source Python library that enables direct interaction with graphs. It offers
a unified package that includes functionalities for creating, manipulating, analyzing, and visualizing
complex networks. This unified approach provides researchers and engineers with an invaluable tool
to work with network data seamlessly, without the need to rely on disparate code pieces from different
sources.

Before developing the library, extensive research was conducted to identify existing libraries in the do-
main of higher-order interactions. The functionalities they offer were thoroughly evaluated, and gaps
between them were identified. Furthermore, the components of the library were scattered across differ-
ent programming languages. Research was conducted to determine how these components could be
cohesively integrated to ensure good usability, maintainability, and extendability of the library. During
the implementation of the library components, various libraries and functionalities were experimented
with to identify the most efficient solutions. For example, multiplying large sparse matrices using numpy
arrays were not very efficient and required research before implementing it using scipy’s sparse ma-
trices.

The goal of this library is to provide a unified platform for researchers and engineers to interact with
higher-order networks. It includes features for creating, building, manipulating, analyzing, and visual-



3

izing these networks. Additionally, the library offers advanced signal processing techniques such as
simplicial convolutional filters, simplicial trend filtering, and Hodge-compositional edge Gaussian pro-
cesses. In future work, we aim to support additional higher-order structures, such as hypergraphs and
cell complexes, as well as topological signal processing and learning functionalities.

The thesis is structured as follows: Chapter 2 provides the fundamental background on the subject,
including a brief review of prior work directly related to signal processing on graphs and SCs. This
chapter also explores the concepts on which the library is built. Chapter 3 surveys the functionalities
of existing libraries. Chapter 4 delves into the design goals and key modules of the proposed library.
In Chapter 5, we provide pedagogical tutorials on how to use the library’s functionalities. Chapter 6
examines the configuration management of the library and its development using the best software de-
velopment practices. Chapter 7 evaluates the usability of the library and assesses the user experience
during the installation process and the quick-start phase. Finally, Chapter 8 presents a summary of the
thesis and discusses potential future work to further improve and develop the library.



2
Background

This chapter establishes the foundational knowledge required for the reader. As the subsequent chap-
ters assume a certain level of familiarity with the topic, this chapter will systematically develop the
necessary background information.

2.1. Graph Signal Processing
Before delving into signal processing on higher-order networks, we will review the fundamental princi-
ples of signal processing on graphs. This section will concentrate on essential components of graph
theory, including graph signals, filters, and the Fourier transform. This foundational understanding will
provide the necessary context and guide our subsequent discussion on higher-order signal processing.

2.1.1. Graph Theory
A graph G is a triplet G = (V,E,W ) where V = {v1, . . . , vN} is a finite set of nodes or vertices with
cardinality N , E ⊆ V ×V is a set of edges defined as ordered pairs (i, j) andW : E → R is a mapping
from the set of edges to scalar values, wij . The weights wij represent the relationship between nodes i
and j. The adjacency matrixA ∈ RN×N is a square matrix used to represent a graph and its elements
indicate whether pairs of nodes are adjacent in the graph. The matrix A is defined as

Aji =

{
wij , if (i, j) ∈ E;

0, otherwise.
(2.1)

Graphs can be either weighted or unweighted. In unweighted graphs, the adjacency matrix element
Aij is 1 if nodes i and j are connected, and 0 otherwise. If the adjacency matrix A is symmetric, the
graph is considered undirected; otherwise, it is directed.

The degree matrixD ∈ RN×N is a diagonal matrix where element Dii represents the degree of node i,
deg(i). The degree of a node i, deg(i), is the sum of the weights of the edges incident to the node and
is defined as

deg(i) =
∑

j∈N(i)

wij (2.2)

where N(i) is the neighbourhood nodes for node i.

Given an undirected graph G with adjacency matrix A and a degree matrix D, the Laplacian matrix L
∈ RN×N is defined as

L = D−A (2.3)

4



2.1. Graph Signal Processing 5

Alternatively, we can define the Laplacian matrix L using the graph’s incidence matrix B ∈ RN×E as

L = BB⊤ (2.4)

Given an arbitrary graphG = (V,E,W ), a graph-shift operator S ∈ RN×N is a matrix that takes nonzero
values on the edges of the graph G or its diagonal. Formally, Sij = 0 for all i ̸= j and (i, j) ̸∈ E, where
E is the the set of edges of the graph. This focuses on the connections between nodes rather than
arbitrary pairs of nodes. An example of a graph with its corresponding graph-shift operator is shown in
Figure 2.1 below.

S =


S11 0 S13 0 S15 S16

0 S22 0 0 0 S26

S31 0 S33 S34 S35 0
0 0 S43 S44 0 0
S51 0 S53 0 S55 S56

S61 S62 0 0 S65 S66



Figure 2.1: An example of a six node graph with its corresponding graph-shift operator S. The graph-shift operator is nonzero
only where there is an edge or in the diagonal.

There are different choices for the graph-shift operator including the adjacency matrixA [14], the Lapla-
cians [15], or variations of thesematrices each presenting different trade-offs [16]. The Laplacian matrix
L has specific spectral properties, in particular, L is a semi-definite matrix for an undirected graph. This
means all its eigenvalues are non-negative and have an eigenvalue of 0. Since L is a real and symmet-
ric matrix for an undirected graph, it has a complete set of orthonormal eigenvectors with associated
eigenvalues. Due to these properties, using L as a graph-shift operator avoids a certain number of
numerical difficulties [1]. However, one should consider the different graph-shift operators and choose
the one specific to their application with the best trade-off [17].

2.1.2. Graph Signals
A graph signal is a map from the set of nodes V to the set of real numbers R, defined as

s : V → R (2.5)

Graph signals can be represented by the component vector

s =


s0
s1
...

sN−1

 ∈ RN (2.6)

Note that each value sn is indexed by node vn for a given graph G.

2.1.3. Graph Filters
A general graph filter is represented by a matrix H, which takes in a signal sin, processes it via matrix-
vector multiplication and produces another graph signal sout defined as

sout = Hsin (2.7)
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A basic filter defined on a graph G = (V,S), called the graph shift, is a local operation that replaces
each signal value sn at node vn with the weighted sum of graph signal at the neighbours of node vn

s̃n =
∑
i∈Nn

Snisi (2.8)

where the weights Sni are from the graph-shift operator S andNn is a set containing the neighbourhood
nodes of vn. Therefore, the output of the graph shift is given as

s̃ =


s̃0
s̃1
...
˜sN−1

 = Ss (2.9)

The graph shift operation is the most elementary filtering operation in GSP. Linear, shift-invariant graph
filters, in particular, play a crucial role in GSP. Graph filters are considered linear if, for a given linear
combination of inputs, they produce the same linear combination of outputs. Graph filters are shift-
invariant if the processing of a signal bymultiple graph filters does not depend on the order of processing.
In other words, shift-invariant filters commute with each other.

S(Hs) = H(Ss) (2.10)

All linear, shift-invariant graph filters H are polynomials in the graph-shift operator S of the form [14]

H = h(S) = h0I+ h1S+ · · ·+ hLS
L (2.11)

Hence, the output of the filter is signal s̃ is

s̃ = H(s) = h(S)s (2.12)

2.1.4. Graph Fourier Transform
The graph Fourier transform (GFT) allows us to analyze graph signals in the frequency domain. Given
the eigenvalue decomposition of the shift operator as

S = UΛU⊤ (2.13)

whereU represents the eigenvectors of S, and Λ is a diagonal matrix containing the associated eigen-
values of S. These eigenvalues are known as the graph frequencies and form the graph spectrum.
The eigenvectors corresponding to themth frequency λm are referred to as the frequency components.
Given the eigenvalue decomposition and a filtering weight function as h : R → R, any shift-invariant
filter can be expressed as [1]

H =

N∑
k=1

h(λk)uku
⊤
k = Uh(Λ)U⊤ (2.14)

where h(Λ) is shorthand for diag(h(λ1), . . . h(λN )), U are the eigenvectors of the shift operator that
define the GFT and h(Λ) is the frequency response of the filter H. Thus, the GFT of a graph signal s
is defined as

s̃ = U⊤s (2.15)
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where sn are the values of the signal’s graph Fourier transform characterizing the frequency content
of signal s. The inverse of the GFT reconstructs the original signal using the frequency contents, each
weighted by the corresponding Fourier transform coefficients defined as

s = Us̃. (2.16)

2.2. Higher-order Interactions with Simplicial Complexes
In this section, we revisit the definitions of a simplicial complex, signal processing on simplicial com-
plexes, simplicial convolutional filters, and the applications of simplicial signal processing. Furthermore,
we will define Simplicial Trend Filtering and Hodge- compositional Gaussian Process, along with their
respective applications.

2.2.1. Introduction to Simplicial Complexes
Given a finite set of vertices V , a k-simplex Sk is a subset of V with k + 1 nodes. The face of Sk is the
subset of k-simplex Sk with cardinality k. A coface of Sk is a simplex Sk+1 that includes it. A simplicial
complex X is a finite collection of simplices satisfying the inclusion property. The inclusion property
states that for any Sk ∈ X , all its faces Sk−1 ⊂ Sk are also part of the simplicial complex [18, 19]. The
order of the SC X is the largest order of its simplices. Then, a node is a 0-dimensional complex, an
edge is a 1-dimensional complex and a triangle (shaded) is a 2-dimensional complex and so on. Note
that an ”unshaded” triangle formed by three nodes and three pairwise relations between them is not a
2-simplex. Henceforth, we will address 2- simplices as triangles for simplicity. Figure 2.2 shows an SC
with an order 2 including nodes, edges and triangles (shaded). The edge {0, 1} has nodes {0} and {1}
as its faces and triangle {0, 1, 2} as its coface.

Figure 2.2: A 2-dimensional simplicial complex, X , containing seven nodes, ten edges and three shaded triangles (2-simplex).

2.2.2. Signal Processing on Simplicial Complexes
For computational purposes, we fix the reference orientation for each simplex according to the lexico-
graphic order of its vertices [20]. Based on this reference for each simplex, we define a k-simplicial
signal as

sk =


sk1
sk2
...

skNk

 ∈ RNk (2.17)

where the value ski is the signal of the ith k-simplex Sk
i . By convention, if the signal ski is positive,

then the corresponding signal is aligned with the reference orientation. Otherwise, the orientation is
in the opposite direction. Figure 2.3 illustrates an arbitrary edge flow on a SC. The colour map on
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the right describes the strength of the flow. For future reference, we denote a node signal as v =
[v1, v2, . . . , vN0

]⊤ ∈ RN0 and edge flow as f = [f1, f2, . . . , fN1
]⊤ ∈ RN1 .

Figure 2.3: An arbitrary edge flow f on SC X . The negative flow indicates that the actual flow is in the opposite direction to the
reference orientation and the magnitude is denoted by the color map.

The relationship between (k−1)-simplices and k-simplices can be described via linear maps known as
boundary operators. Boundary operators record the higher-order interactions in the networks. Since
we considered finite simplicial complexes, the boundary operators are represented by matrices Bk.
The rows of the matrix Bk correspond to (k− 1) dimensional simplices and the columns correspond to
(k)- dimensional simplices. Specifically, B1 is the node-to-edge incidence matrix and B2 is the edge-
to-triangle incidence matrix. Incidence matrices, by definition, have a particular property [18, 21]

BkBk+1 = 0. (2.18)

We established that an appropriate shift operator is needed to process graph signals in Section 2.1.1.
Similarly, we need to establish an appropriate shift operator to process signals on a SC. Naturally, the
Hodge Laplacian serves as an appropriate shift operator, extending the concept of the graph Laplacian
we discussed earlier. Based on the incidence matrices defined above, we can describe a simplicial
complex X of order K via the Hodge Laplacians defined as

Lk = B⊤
k Bk +Bk+1B

⊤
k+1, k = 1, 2, . . .K − 1 (2.19)

where the graph Laplacian L0 is defined as

L0 = B1B
⊤
1 with B0 = 0 (2.20)

The kth-Hodge Laplacian Lk can be decomposed into the lower Laplacian and the upper Laplacian
defined as

Lk,l ≜ B⊤
k Bk (2.21)

Lk,u ≜ Bk+1B
⊤
k (2.22)

respectively. The lower Laplacian captures how simplices are connected through their shared faces,
while the upper Laplacian captures their connections through shared cofaces. Specifically, L1,l repre-
sents edge adjacencies based on their incident nodes, while L1,u represents adjacencies based on the
triangles they share. For example, two edges would be lower adjacent if they share a common node and
upper adjacent if they are faces of a common triangle. Like the graph Laplacian, the Hodge Laplacian
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is a positive and semi-definite matrix. This ensures we can interpret its eigenvalues as non-negative
frequencies.

Hodge Decomposition
The Hodge decomposition states that the space of k-simplex signals can be decomposed into three
orthogonal subspaces that can be written as

RNk = im(Bk+1)⊕ im(B⊤
k )⊕ ker(Lk) (2.23)

where im is the image space and ker is the kernel space of the respective matrices. The subspace
im(Bk+1) is known as the gradient subspace, im(B⊤

k ) as the curl subspace and ker(Lk) as the har-
monic subspace [18, 20]. Therefore, we can decompose any edge flow f ∈ RN1 into the orthogonal
components

f = fG + fC + fH , (2.24)

where fG is the gradient component fG ∈ im(B⊤
1 ), fC is the curl component fC ∈ im(B2), and fH is

the harmonic component fH ∈ ker(L1). By decomposing the signal into three different components,
we can extract the different properties of the flow. For instance, we can study the effect of an external
source or sink by extracting the gradient component of the edge flow [21]. However, the incidence
matrices B1 and B2 can be interpreted as follows [20, 21].

Divergence. Divergence is defined as the netflow passing through the ith vertex. The incidence matrix
B1 acts as a divergence operator and the divergence of an edge flow f can be calculated as

div(f) = B1f (2.25)

where the ithe entry represents the netflow of the ith vertex. A flow is known to be divergence-free if
the edge flow f has zero divergence at each vertex i.e. B1f = 0 ⇐⇒ f ∈ ker(B1).

Curl. Curl is defined as the netflow circulating along a ith triangle. The curl of an edge flow f can be
calculated as

curl(f) = B⊤
2 f (2.26)

where the ithe entry represents the netflow of the ith triangle. A flow is known to be curl-free if the edge
flow f ∈ ker(B⊤

2 ) has zero curl on each triangle.

Gradient flow. The adjoint operator B⊤
1 is called the gradient operator. It induces a gradient flow fG

by taking the difference between the node signals along the oriented edges calculated as follows

fG = B⊤
1 v ∈ im(B⊤

1 ) (2.27)

The subspace im(B⊤
1 ) is defined as the gradient space, as any gradient flow can be induced from a

node signal via the gradient operator.

Curl flow. The curl flow fC corresponds to a flow locally circling along the edges of a triangle (2-simplex)
and is calculated as follows

fC = B2t (2.28)

where t ∈ RN2 is a triangle signal. The subspace im(B2) is defined as the curl space, as any curl flow
can be induced from a triangle signal.

Harmonic flow. The space ker(L1) is defined as the harmonic space and any flow fH ∈ ker(L1) that
satisfies L1fH = 0 is harmonic. Harmonic flow is both divergence- and curl-free.
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Eigendecomposition
As a generalization of the approach in equation (2.13), we can represent the signals of different order
over bases built with the eigenvectors of the higher-order Laplacian matrices. Thus, the eigendecom-
position of the Hodge Laplacians is defined as

Lk = UkΛkU
⊤
k (2.29)

where Uk is an orthonormal matrix that collects the eigenvectors and Λk is a diagonal matrix with
the associated eigenvalues. The Hodge decomposition establishes a correspondence between U1

and the three orthogonal subspaces, that is, the eigenvectors of U1 fully span the three orthogonal
subspaces, namely gradient, curl and harmonic, given by the Hodge decomposition [22]. Given the
1-Hodge Laplacian of an SC

L1 = L1,l + L1,u (2.30)

the following holds:

1. Gradient eigenvectors UG = [uG,1 . . .uG,NG
] ∈ RN1×NG of L1,l, associated with their corre-

sponding nonzero eigenvalues, span the gradient space im(B⊤
1 ) with dimension NG.

2. Curl eigenvectors UC = [uC,1 . . .uC,NC
] ∈ RN1×NC of L1,u, associated with their corresponding

nonzero eigenvalues span the curl space im(B2) with dimension NC.
3. Harmonic eigenvectors UH = [uH,1 . . .uH,NH

] ∈ RN1×NH of L1, associated with their corre-
sponding zero eigenvalues span the harmonic space ker(L1) with dimension NH.

Furthermore, the matrices [UH UC] and [UH UG] provide the eigenvectors of the lower Laplacian L1,l

and the upper Laplacian L1,u associated with their corresponding zero eigenvalues, respectively.

Simplicial Fourier Transform
Given a k-simplicial signal sk, the simplicial Fourier Transform (SFT) is defined as

s̃k ≜ U⊤
k s

k (2.31)

which is a projection onto the eigenvectors Uk where each entry ski represents the weight eigenvector
uk
i has on sk. The inverse SFT is given by

sk ≜ Uks̃
k (2.32)

Similarly to GFT, the eigenvalues of Lk represent the notion of simplicial frequencies, but in a more
meaningful way. The eigenvalues of Lk measure three types of simplicial frequencies [22].

1. Gradient frequency: Themagnitude of an eigenvalue λG measures the amount of total divergence
in an SC. The divergence is a measure of the net flow of a signal out of a node. The gradient
eigenvectors associated with large eigenvalues have a large total divergence.

2. Curl frequency: The magnitude of an eigenvalue λC measures the amount of total curl in an SC
i.e. rotation variation. The rotation variation is the measure of the extent of circular or rotational
flow in the network. The curl eigenvectors associated with large eigenvalues have a large total
curl.

3. Harmonic frequency: The harmonic eigenvectors UH are both divergence- and curl-free. A har-
monic flow is defined as the SFT of an edge flow that has nonzero components only at the har-
monic frequencies, which correspond to zero eigenvalues.
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Simplicial Embeddings
Given the three component eigenvectors, we define the three embeddings of an edge flow f ∈ RN1 as
follows


f̃H = UH

⊤f = UH
⊤f ∈ RNH , harmonic embedding

f̃G = UG
⊤f = UG

⊤f ∈ RNG , gradient embedding

f̃C = UC
⊤f = UC

⊤f ∈ RNC , curl embedding

(2.33)

These embeddings are the result of the orthogonality of there three components given by the Hodge
decomposition. Using these simplicial embeddings, we can rewrite the SFT of f as

f̃ =
[
f̃H

⊤, f̃G
⊤, f̃C

⊤
]⊤

(2.34)

where f̃H
⊤ is the harmonic embedding, f̃G⊤ is the gradient embedding and f̃C

⊤ is the curl embedding.
Each entry of an embedding represents the weight the flow has on the corresponding eigenvector. This
offers a compressed representation of the edge flow and allows us to cluster them based on their types.

2.2.3. Simplicial Convolutional Filters
This section describes the theoretical foundations and definitions involved in creating a simplicial con-
volutional filter based on the Hodge Laplacian, intended for processing simplicial signals.

The simplicial convolutional filters are based on Hodge Laplacian and rely on the basic building block of
simplicial shifting. We define the simplicial convolutional filter, intended to process a k-simplicial signal
sk, using the kth-Hodge Laplacian Lk. The filter is defined as

Hk = h0I+

L1∑
l1=1

αl1(B
⊤
k Bk)

l1 +

L2∑
l2=1

βl2(B
⊤
k+1Bk+1)

l2 , (2.35)

Here, Hk represents a matrix polynomial of the lower and upper Hodge Laplacian. The polynomial
coefficients are given by h0, with vectors α = [α1 . . .αL1

]⊤, and β = [β1 . . .βL2
]⊤. The symbols L1

and L2 represent the filter orders. Specifically, when k = 0, this leads to the graph convolutional filter
H0 := H(L0) which is constructed using the graph Laplacian [22].

Assigning two different sets of coefficients to the lower and upper Laplacian parts inHk allows us to treat
the lower and upper adjacencies differently. This leads to more flexibility and control over the frequency
response. On the other hand, if the coefficients are the same for the lower and upper Laplacian part,
that is L1 = L2 = L and α = β, the filter becomes Hk =

∑L
l=0 hlL

l
k. In such a case, the filter cannot

differentiate between the two types of adjacencies and loses some expressive power.

Simplicial shifting. Applying Hk to a k-simplicial signal sk yields an output Hks
k which is a shift-

and-sum operation. The filter Hk shifts the signal L1 times over the lower neighbourhoods and L2

times over the upper neighbourhoods. Next, the shifted results are summed together according to the
corresponding coefficients. Similarly, consider an edge filter H1 applied to an edge flow f with the
output

fo = H1f = h0f +

L1∑
l1=1

αl1L
l1
1,lf +

L2∑
l2=1

βl2L
l2
1,uf , (2.36)

where we apply different powers of the lower and upper Hodge Laplacian to the edge flow. This basic
operation is known as simplicial shifting. The one-step lower and upper shifting are defined below,
respectively

f
(1)
l ≜ L1,lf , (2.37)
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f (1)u ≜ L1,uf , (2.38)

Then, k-step shifting is defined as the weighted linear combination of the lower and upper shifted
simplicial signals after k steps

fo = h0f
(0) +

L1∑
l1=1

αl1f
(l1)
ℓ +

L2∑
l2=1

βl2f
(l2)
u , (2.39)

Filter designs. Given a dataset of input-output edge flow relations T = {(f1, fo,1), . . . , (f|T |, fo,|T |)}, we
learn the filter coefficients by aligning the filter’s outputH1f with the observed output fo. The filter coeffi-
cients here are learned in a data-driven manner. The optimization utilizes a mean squared error (MSE)
cost function, enhanced with a regularization term γr(h0,α,β), to prevent overfitting. The problem is
formulated as

min
h0;α;β

1

|T |
∑

(fi;fo,i)∈T

∥H1fi − fo;i∥22 + γr(h0,α,β), (2.40)

where γ > 0 acts as the regularization coefficient, balancing fit and complexity to improve model gen-
eralization. In the next section, we aim to design simplicial filters given a desired frequency response.
First, we considered the standard least-squares (LS) filter design and following that, we consider a
universal filter design that avoids the eigenvalue computation given a continuous frequency response.
In particular, we consider grid-based and Chebyshev polynomial filter designs.

Least-Squares Filter Design
To determine the filter coefficients h0, α and β in a data-driven manner to approximate the desired
response using the filter frequency response H̃1(λ), the problem can be formulated as follows


h0 ≈ g0, for λi = 0,

h0 +
∑L1

l1=1 αl1λ
l1
i ≈ gG(λi), for λi ∈ QG,

h0 +
∑L2

l2=1 βl2λ
l2
i ≈ gC(λi), for λiQC .

(2.41)

The equation (2.41) can be solved to obtain the filter coefficients by solving the following LS problem

(2.42)

In this context, 1 (0) represents a matrix or vector filled with ones (zeros) of a suitable dimension.
The matrices ΦG ∈ RDG×L1 and ΦC ∈ RDC×L2 are Vandermonde matrices, characterized by their
entries [ΦG]ij = λj

G,i for ΦG and [ΦC ]ij = λj
C,i for ΦC . This is known as the LS problem and can be

solved using the direct pseudo-inverse of the systemmatrix or decoupled way or through the decoupled
solution method [23].

Grid-Based Filter Design
The grid-based filter design is a type of universal filter and avoids computing the eigenvalues of L1.
The filter matches the desired frequency response in a continuous interval and determines where the
exact frequencies lie. Given harmonic g0, gradient gG(λ) for λ ∈ [λG,min, λG,max], and curl gC(λ) for
λ ∈ [λC,min, λC,max] frequency responses, we aim to achieve the following conditions such that
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h0 − g0 ≈ 0∫ λG,max

λG,min

∣∣∣h0 +
∑L1

l1=1 αl1λ
l1 − gG(λ)

∣∣∣2 dλ ≈ 0∫ λC,max

λC,min

∣∣∣h0 +
∑L2

l2=1 βl2λ
l2 − gC(λ)

∣∣∣2 dλ ≈ 0

which is a continuous version of (2.41). This problem can be transferred and solved as an LS problem
of the form (2.42) by sampling M1 and M2 grid-points uniformly from the interval [λG,min, λG,max] and
[λC,min, λC,max]. The largest true eigenvalue can be approximated by using efficient algorithms such as
power iteration and the smallest eigenvalue can be set to a value greater than 0 as the lower bound
[24, 25].

Chebyshev Polynomial Filter Design
The filters described earlier depend on resolving the LS problem and experience numerical instability
due to the Vandermonde matrix. To tackle this issue, we consider a filter design based on Chebyshev
polynomials [26, 27]. Let us consider a continuous gradient frequency response gG(λ), λ ∈ [0, λG,max]
and a continuous curl frequency response gC(λ), λ ∈ [0, λC,max]. We require that gG(λ) = gC(λ) = g0,
that is, the continuous gradient and curl frequency are defined starting at 0. At this point, they are
equal to the harmonic frequency g0. The strategy is to obtain the gradient and curl frequency responses
separately and sum these two polynomials together to obtain the final filter.

In the first step, we approximate the gradient frequency response via a truncated series of shifted
Chebyshev polynomials Hl := Hl(L1,l). Let P̄l(λ), λ ∈ [−1, 1] be the l-th Chebyshev polynomial of the
first kind [28]. To shift the domain to [0, λG,max] as mentioned previously, we perform a transformation
Pl(λ) := P̄l

(
λ−ω
ω

)
with ω :=

λG,max
2 . Next, we approximate the operator gG(L1,l) that has the gradient

frequency response gG(λ) by Hl of order L1

Hl =
1

2
cl,0I+

L1∑
l1=1

cl,l1Pl1(L1,l) (2.43)

where P0(L1,l) = I and P1(L1,l) =
2

λG,max
L1,l − I. The l1th Chebyshev term for l1 ≥ 2 can be calculated

as

Pl1(L1,l) = 2P1(L1,l)Pl1−1(L1,l)− Pl1−2(L1,l), (2.44)

where the Chebyshev coefficients c;l1 can be computed as

cl,l1 =
2

π

∫ π

0

cos(l1ϕ)gG (ω(cosϕ+ 1)) dϕ. (2.45)

The frequency response H̃l(λ) of Hl is{
pl,0 := 1

2cl,0 +
∑⌊L1/2⌋

l1=1 (cl,2l1 − cl,2l1−1), for λ ∈ QH ∪QC,

H̃l,G(λ) :=
1
2cl,0 +

∑L1

l1=1 cl,l1Pl1(λ), for λ ∈ QG,
(2.46)

with coefficients pl,0 on the identity term of Hl. This is the frequency response at the harmonic and
curl frequencies associated with the kernel of L1,l. For a large value of L1 we have pl,0 ≈ g0 and
H̃l,G ≈ gG(λ), for λ ∈ QG.

In the second step, we approximate the curl frequency response gC(λ) following the same logic to
obtain the Chebyshev polynomial Hu := Hu(L1,u) of order L2

Hu =
1

2
cu,0I+

L2∑
l2=1

cu,l2Pl2(L1,u) (2.47)



2.2. Higher-order Interactions with Simplicial Complexes 14

The frequency response H̃u(λ) of Hu is{
pu,0 := 1

2cu,0 +
∑⌊L2/2⌋

l2=1 (cu,2l2 − cu,2l2−1), for λ ∈ QH ∪QG,

H̃u,C(λ) :=
1
2cu,0 +

∑L2

l2=1 cu,l2Pl2(λ), for λ ∈ QC.
(2.48)

with coefficients pu,0 on the identity term of Hu. This is the frequency response at the harmonic and
gradient frequencies associated with the kernel of L1,u. For a large value of L2 we have pu,0 ≈ g0 and
H̃u,C ≈ gC(λ), for λ ∈ QC .

Finally, we sum Hl and Hu to obtain the filter that approximates the gradient and curl frequency re-
sponses. However, we notice from equation (2.46) that Hl generates a frequency response at both
harmonic and curl frequencies, lifting the curl frequency unwantedly by pl,0. Similarly,Hu lifts the gradi-
ent frequency response by pu,0. To tackle this, we require that gG(0) = gC(0) = g0 and subtract a term
g0I from the summation of the filters. Hence, the final Chebyshev polynomial designH1 with orders L1

and L2 is given by

H1 = Hl +Hu − g0I, (2.49)

with the frequency response


pl,0 + pu,0 − g0, for λ ∈ QH

H̃1,G(λ) + pu,0 − g0, for λ ∈ QG

H̃u,C(λ) + pl,0 − g0, for λ ∈ QC.

(2.50)

The approximation error of the Chebyshev polynomial design given in equation (2.49) is bounded.

2.2.4. Simplicial Trend Filtering
Simplicial trend filtering is applied for reconstructing simplicial signals from (partial) noisy observation
[29]. The simplicial signals are the signals defined on nodes, edges triangles etc. of a higher-order
network. The type of flow data includes, for instance, flows in traffic networks, exchange rates of a
foreign currency (forex), flows in water, and so on [30]. These topological structures can be represented
through SCs. Algebraically, these problems can be defined via their Hodge Laplacian matrices, utilizing
two types of simplicial adjacency: lower adjacency and upper adjacency. Lower adjacency occurs when
the two edges are adjacent if they share a common node. Conversely, upper adjacency occurs when
two edges are adjacent if they belong to the same triangle. The reconstruction of a nonparametric
signal is typically an ill-posed problem that requires regularizing with a term that introduces a particular
bias into the solution. In GSP, the Tikhonov regularizer is used to recover the smooth signals of a
graph from noisy observations by penalizing large node signal variations in adjacent nodes. This can
be represented via the ℓ2 norm of the signal differences in the adjacent nodes.

In real-world applications, we often encounter signals that are naturally associated with edges or sets
of nodes (triangles). To address this, the simplicial signal reconstruction problem, equivalent to the
signal reconstruction problem in GSP, is extended to the simplex. The Tikhonov regularizer has been
extended in the following paper [31] for edge flow denoising and in [32] for interpolation of missing
values. Both of the works penalize the fitting part with a term based on ℓ2 norm of signal smoothness.
Since SCs have two types of adjacency, we penalize them separately. The smoothness is penalized
based on connectivity. For lower-connectivity, this is done using the ℓ2 norm of the divergence of the
flow, which corresponds to the net flow at the nodes. For upper-connectivity, it is penalized using the
ℓ2 norm of the curl, which corresponds to the net flow circulating within triangles. However, the ℓ2
regularizers cannot preserve the divergence- or curl-free nature of the real-world edge flows, such as
the forex markets [30] where we aim to have divergence or the curl of the edge flow to be zero.

ℓ1 regularizer
Motivated by this, a regularized filtering is proposed in [29] which penalizes the ℓ1 norm of the diver-
gence and curl referred to as simplicial trend filtering (STF). Consider a noisy edge flow observation
y = f∗ + n where n is the additive noise.
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The 0-order SFT estimates f̂ by solving

f̂ = arg min
f∈RN1

∥y − f∥22 + α ∥B1f∥1 + β
∥∥B⊤

2 f
∥∥
1
, (2.51)

where the parameters α ≥ 0 and β ≥ 0. These parameters control the trade-off between the data
fidelity and the ℓ1 norm of the divergence and curl. When α = 0 or β = 0, the SFT only accounts the
regularization on the curl or the divergence, respectively. To solve the 0-STF convex problem, we can
use the off-the-shelf algorithms, such as ADMM or Newton method [33].

As discussed in Section 2.2.2, the Hodge Laplacian acts as an shift operator for simplicial signals. By
applying the lower Laplacian L1,l and the upper Laplacian L1,u to a flow f , we obtain the shifted edge
flow as discussed in Section 2.2.3. Similarly, for a general shifting Lp

1,lf or L
q
1,uf , we consider the p-hop

lower neighbours and q-hop upper neighbours [22, 34]. Thus, to account the information frommulti-hop
neighbours using a general (p, q)-order SFT, we can solve the following

f̂ = arg min
f∈RN1

∥y − f∥22 + α
∥∥∥∆(p)

ℓ f
∥∥∥
1
+ β

∥∥∥∆(q)
u f
∥∥∥
1
, (2.52)

where the operators ∆
(p)
ℓ and ∆

(p)
u have the forms

∆
(p)
ℓ =

{
B⊤

1 ∆
(p−1)
ℓ = L

p+1
2

1,l , for odd p,

B1∆
(p−1)
ℓ = B1L

p
2

l,l, for even p,
(2.53)

with ∆
(0)
ℓ = B1 and

∆(q)
u =

{
B2∆

(q−1)
u = L

q+1
2

1,u , for odd q,

B⊤
2 ∆

(q−1)
u = B⊤

2 L
q
2
1,u, for even q,

(2.54)

with∆
(0)
u = B⊤

2 . In case where p = 0 and 1 = 0, we obtain the 0-STF (2.51). When p = 1, we obtain the
regularizer L1,lf which is a one-step lower shifting. When q = 1, we obtain the regularizer L1,uf which
is a one-step upper shifting. At an edge i, the regularizers have the following entries, respectively

[L1,lf ]i = 2fi +
∑

j∈N 1,+
i,ℓ

fj −
∑

k∈N 1,−
i,ℓ

fk, (one-step lower shifting) (2.55)

[L1,uf ]i = di,ufi +
∑

j∈N 1,+
i,u

fj −
∑

k∈N 1,−
i,u

fk, (one-step upper shifting) (2.56)

where the edges j and k are positive and negative lower (upper) neighbours. The regularizers
∥∥∥∆(p)

ℓ f
∥∥∥
1

and
∥∥∥∆(q)

u f
∥∥∥
1
can promote the divergence- and curl free property.

For interpolation, the proposed STF is adapted by replacing the data fitting term ∥y − f∥22 with ∥y −Cf∥22
where y ∈ RM and C ∈ {0, 1}M×N1 is the selection matrix [29].

ℓ2 regularizer
This section discusses the ℓ2 regularizer from the frequency domain, which aims to generate a globally
smooth edge flow. The ℓ2 regularization problem has the form [20, 31]

min
f∈RN1

∥y − f∥22 + α ∥B1f∥22 + β
∥∥B⊤

2 f
∥∥2
2
, (2.57)
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where the regularizers ∥B1f∥22 and
∥∥B⊤

2 f
∥∥2
2
are the edge flow variation measures [22, 34]. The closed-

form solution can be written as

f̂ =
(
I+ αB⊤

1 B1 + βB2B
⊤
2

)−1
y. (2.58)

where the operator H :=
(
I+ αB⊤

1 B1 + βB2B
⊤
2

)−1 is a low-pass simplicial filter.

2.2.5. Hodge-compositional Gaussian Process
Gaussian processes (GPs) are a popular class of statistical models known for their ability to quantify
the uncertainty in their predictions [35]. These models are defined by covariance kernels, which en-
code prior knowledge about the unknown function. Selecting an appropriate kernel can be particularly
challenging, especially when the input space is non-Euclidean [36]. Specifically, we focus on functions
defined over the edges of a network such as flows of signal. The Hodge compositional GPs are built
as a combination of three GPs. Each of the GP models a specific part of the Hodge decomposition of
an edge function, namely gradient curl and harmonic parts [37].

Gaussian processes. A random function f : X → R defined over a set X is a Gaussian process
f ∼ GP(µ, k) with mean function µ(·) and kernel k(·, ·) if, for any finite set of points x = (x1, . . . , xn)

⊤ ∈
Xn, the random vector f(x) = (f(x1), . . . , f(xn))

⊤ is multivariate Gaussian with mean vector µ(x) and
covariance matrix k(x,x). The kernel k of a prior encodes the prior knowledge about the unknown
function. The mean of the kernel µ is assumed to be zero. Thus, a GP on graphs f0 ∼ GP(0,K0)
assumes f0 is a random function with zero mean and a graph kernelK0 which encodes the covariance
between pairs of nodes.

Edge Gaussian processes. We can define GPs on the edges of simplicial 2-complexes SC2, specifi-
cally, f1 ∼ GP(0,K1) with zero mean and edge kernel K1. These are referred to as edge GPs. The
edge Gaussian processes (GPs) are derived from stochastic partial differential equations (SPDEs) on
edges. The detailed derivation can be found in [37].

The two edge GPs can be defined as

f1,Matérn ∼ GP

(
0,

(
2ν

κ2
I+ L1

)−ν
)
,

f1,diffusion ∼ GP
(
0, e−

κ2

2 L1

)
,

(2.59)

which are the edge Matérn and diffusion GPs, respectively. These edge GPs impose a structured prior
covariance that encodes the dependencies between edges. Given the eigendecomposition in Section
2.2.2, we obtain special classes of edge GPs by using certain types of eigenvectors when building edge
kernels in equation (2.59). These types can be defined as the gradient, curl and harmonic edge GPs
as follows

fG ∼ GP(0,KG), fC ∼ GP(0,KC) fH ∼ GP(0,KH) (2.60)

where the gradient kernel, curl kernel and the harmonic kernel are

KG = UGΨG(ΛG)U
⊤
G, KC = UCΨC(ΛC)U

⊤
C KH = UHΨH(ΛH)U⊤

H . (2.61)

Hodge-compositional Edge GPs. Many real-world edge functions are indeed div- or curl-free, but not
all. We combine the gradient, curl and harmonic GPs to define the Hodge-compositional (HC) edge
GPs as follows. A Hodge-compositional edge Gaussian process f1 ∼ GP(0,K1) is a sum of gradient,
curl, and harmonic GPs, i.e., f1 = fG + fC + fH , where

f□ ∼ GP(0,K□) with K□ = U□Ψ□(Λ□)U
⊤
□
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for □ = H,G,C, where their kernels do not share hyperparameters. Given this definition, the following
property of HC edge GP holds. Let f1 ∼ GP(0,K1) be an edge GP. Its realizations then give all
possible edge functions. It further holds that K1 = KH + KG + KC , and the three Hodge GPs are
mutually independent.

The HC GP encodes the prior covariance Cov(f1(e), f1(e′)) between edge functions over two edges
e, e′ as follows:

1. The covariance is the sum of three covariances Cov□ = Cov(f□(e), f□(e′)) for □ = H,G,C.
2. Each Cov□ encodes the covariance between the corresponding Hodge parts of f1 without affect-

ing the others.
3. No covariance is imposed across different Hodge components, e.g., Cov(fG(e), fC(e′)) = 0.

The eigenvalues Ψ□ of HC GP’s kernels are associated with three different Hodge spaces. These
have individual parameters, which enable us to capture the different Hodge components of the edge
functions. On the other hand, the Non-HCGPs require us to solve the Hodge decomposition in equation
(2.24) and are strictly incapable of practical need when an eigenvalue is associated with both gradient
and curl spaces.



3
Review of Existing Libraries

This chapter reviews the existing libraries in the domain of graphs and higher-order networks. As these
fields continue to evolve, examining the tools and resources available to researchers and practitioners
becomes increasingly crucial. By exploring the existing frameworks and libraries, the aim is to provide
insights into the capabilities and limitations of the tools. Through this exploration, we identify missing
functionality in each library.

3.1. Libraries for Graphs
There are several existing libraries for analysing graphs such as NetworkX [38], PyTorch Geometric
(PyG) [39], Deep Graph Library (DGL) [40], and KarateClub [41].

NetworkX1 is a Python-based library designed for creating, manipulating, visualizing, and studying the
structure of complex networks. It offers efficient data structures for various graph types, including simple
graphs, directed graphs, and multigraphs, along with many standard graph algorithms. This library is
particularly useful for analyzing network structures and performing measures on large datasets. It is
open-source and supported by a large community of contributors who maintain the core library and
extend its functionality through a third-party ecosystem.

PyG2 is a library built on PyTorch, designed for working with Graph Neural Networks (GNNs) and ge-
ometric deep-learning tasks. It provides a comprehensive toolkit for developing and training GNNs
across a wide range of applications involving structured data. PyG includes various deep- learning
methods for graphs, derived from numerous published papers, offering a flexible interface for building
GNNs. It is optimized for handling large datasets, supporting scalable GNNs for graphs with millions
of nodes.

DGL3 is also a geometric deep-learning library and similar to PyG in terms of functionality. It is built for
developing and training GNNs on top of existing Deep Learning frameworks such as PyTorch, MXNet
and TensorFlow. It supports a wide range of graph types, including directed and undirected graphs, as
well as graphs with multiple node and edge types. The library also offers multi-GPU and CPU training
that can be scaled to graphs with millions of nodes. This allows DGL to be suitable for real-world
applications.

KarateClub4 is a Python framework that combines more than 30 state-of-the-art graph mining algo-
rithms for unsupervised machine learning tasks. The main features include community detection, clus-
tering, node and whole graph embedding techniques. The library is designed as an extension library
for NetworkX. It’s a scalable and efficient library that supports the analysis of large real-world datasets.

1https://github.com/networkx
2https://github.com/pyg- team/pytorch_geometric
3https://github.com/dmlc/dgl
4https://github.com/benedekrozemberczki/karateclub
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Table 3.1 below compares the features across the different libraries for analysing graphs. However,
none of these libraries supports higher-order interactions, especially for SCs. The rapid growth of the
sub-field of higher-order network science has pushed scientists to take a different approach to tackle
this problem [42].

Table 3.1: Comparison of features across different libraries for graph-based learning

Library Loading datasets Manipulating network Analyzing network Visualizing network Unsupervised ML GNNs

NetworkX ✓ ✓ ✓ ✓ ✓

PyG ✓ ✓ ✓

DGL ✓ ✓ ✓

KarateClub ✓ ✓ ✓ ✓ ✓

3.2. Libraries for Higher-Order Networks
In this section, we will explore the existing libraries for interacting with higher-order networks. Several
existing libraries support higher-order networks, namely HyperNetX [43], CompleX Group Interactions
(XGI) [44], Reticula [45], Geometry Understanding in Higher Dimensions (GUDHI) [46], Deep HyperGraph
(DHG) [47], and TopoX [48].

HyperNetX5 is a Python library that provides functionality for the analysis and visualization of hyper-
graphs, which are networks composed of nodes and hyperedges. Unlike traditional networks where
the edge only connects two nodes, hyperedges can connect three or more nodes simultaneously. Key
features of the library include hyperedge analysis of hypernetworks, clustering, community detection,
and visualization. The library was developed by the Pacific Northwest National Laboratory.

XGI6 is a Python library for higher-order interactions. It provides similar functionality to HyperNetX with
a distinction: it also allows users to interact with SCs and directed hypergraphs. Users can create
hypergraphs and SCs, analyze the structures, visualize them and provide a collection of higher-order
datasets. The main features of the library include finding the degree of assortativity, computing the
centralities of nodes and edges, clustering, and computing the shortest path in a hypergraph.

Reticula7 provides a comprehensive set of tools to work with directed and undirected temporal net-
works, hypergraphs, and hypergraph temporal networks [45]. The library is built on C++ and is opti-
mized for fast and efficient analysis of complex network structures. A Python version of the library is
also available. The main features of the library include generating and randomising different types of
networks, calculating and studying various properties of networks, such as calculating static or temporal
network readability and forming event graphs.

GUDHI8 is another Python-based library providing a wide range of methods for Topological Data Analysis
and Higher Dimensional Geometry Understanding. It provides a wide range of methods, including data
structures and algorithms for various types of SCs to compute geometric approximations of shapes
and persistent homology. The types of SCs include alpha complex, cubical complex, rips complex, and
witness complex. The algorithms are used for statistical analysis, computing persistence homology
and bottleneck distance.

DHG9 is a Python library built on PyTorch for deep-learning with GNNs and Hypergraph Neural Net-
works (HGNN). The library supports different low-order and high-order network structures. Low-order
structures include graphs, directed graphs and bipartite graphs. Higher-order structures include hyper-
graphs and directed hypergraphs. The library has various spectral-based and spatial-based operations
for different structures and provides performance metrics for the evaluation of different tasks. The li-
brary also has datasets and implemented models that can be utilized for research.

5https://github.com/pnnl/HyperNetX
6https://github.com/xgi-org/xgi
7https://github.com/reticula-network/reticula
8https://github.com/GUDHI
9https://github.com/iMoonLab/DeepHypergraph
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TopoX10 is a suite of Python libraries designed for machine learning and deep learning in topological
domains. The library provides a tool for higher-order interactions using hypergraphs, simplicial, cel-
lular, path and combinatorial complexes. The suite has three libraries, TopoNetX, TopoEmbedX and
TopoModelX. TopoNetX focuses on the construction and computation of hypergraphs, SCs, cellular,
path and combinatorial complexes. This includes working with the nodes, edges and higher-order cells.
TopoEmbedX provides the functionality to embed topological domains into vector spaces, similar to the
well-known graph-based embedding algorithms such as Node2Vec. These algorithms include DeepCell
and Cell2Vec. TopoEmbedX builds on top of KarateClub and utilizes its functionality. TopoModelX is built
on PyTorch and provides a comprehensive toolbox of higher-order message-passing functions for neu-
ral networks operating on topological domains. This library allows users to work with topological deep
learning (TDL) techniques on topological data and leverage neural networks for pattern recognition.

Table 3.2 below compares the features of various libraries for interacting with higher-order networks. To
facilitate comparison, we categorize these libraries into three distinct clusters based on their function-
alities and offerings. In the next section, we will compare the libraries in more detail. Our implemented
library, PyTSPL, is also listed in the table with the features it offers. In Chapter 4, we will delve into more
detail about the features and implementation.

Table 3.2: Comparison of features across different libraries for higher-order interactions. Our implemented library, PyTSPL is
also listed for direct comparison.

Library SC Hypergraphs
Other

topological
structure

Loading
datasets

Analyzing
structure

Visualizing
structure TDL

Signal
Processing on

SC
Linear filters

Hodge-
compositional

Edge
Gaussian
Process

HyperNetX ✓ ✓ ✓ ✓

XGI ✓ ✓ ✓ ✓ ✓

Reticula ✓ ✓ ✓ ✓ ✓

GUDHI ✓ ✓ ✓ ✓

DHG ✓ ✓ ✓ ✓ ✓

TopoX ✓ ✓ ✓ ✓ ✓ ✓ ✓

PyTSPL ✓ ✓ ✓ ✓ ✓ ✓ ✓

3.3. Comparison and Interaction of Libraries
The first cluster comprises of NetworkX, HyperNetX, XGI, and TopoNetX. These libraries support the
functionality computations on graphs and hypergraphs. NetworkX facilitates computations on graphs,
while HyperNetX and XGI offers functionalities for hypergraphs. Additionally, XGI offers additional sup-
port for SCs and directed hypergraphs [48]. TopoNetX has similar APIs to the libraries mentioned above
with the adoption of topological domains including SCs, cell complexes, combinatorial complexes, and
hypergraphs. We can also include Reticula in the cluster. The second cluster comprises TopoEmbedX
and KarateClub. TopoEmbedX is built on top of KarateClub, extending the functionality of unsupervised
ML of graphs to the topological domain via embeddings. The third cluster comprises deep learning li-
braries for graphs. This includes PyG and DGL, the twomost popular libraries for geometric deep learning
on graphs. These two libraries are closely related to TopoModelX and DHG that support deep learning
on hypergraphs.

If we now examine the libraries strictly in terms of SC functionality, currently, XGI, GUDHI, and TopoX are
the only libraries that offer support for it. XGI provides a data structure to store an SC, visualize it, and
perform a quick analysis using the simplicial Kuramoto model. While these features are a good start,
they are limited in terms of functionality. GUDHI offers similar SC functionality to XGI. TopoX surpasses
in terms of functionality relative to the previous two libraries. TopoNetX offers functionality to calculate
the shift operators of the SC that can be used for analyzing the structure and TopoModelX offers TDL
for SCs that can be used for node and complex classification.

10https://github.com/pyt-team/TopoModelX



4
Design Goals and Description of

PyTSPL

This chapter delves into the design goals and description of PyTSPL. We will explore the goals of the
library, providing a clear understanding of its intended purpose and the problems it aims to solve. Fol-
lowing this, we will examine the key components and modules in detail, explaining their roles, function-
alities, and how they interact with each other to deliver the desired outcomes.

4.1. Design Goals of PyTSPL
The primary goal of PyTSPL is to provide a unified and comprehensive toolset for the analysis, visual-
ization and processing of signals on higher-order interactions, specifically SCs. As illustrated in Table
3.2, various libraries offer functionalities for SCs, but each with its limitations. These functionalities are
scattered across different libraries, making it challenging to utilize multiple features simultaneously. By
integrating and extending these functionalities within a single library, PyTSPL aims to facilitate research
and practical applications in various domains. Thus, we define the functional and non-functional re-
quirements of the library in the next sections.

4.1.1. Functional Requirements
Functional requirements are the features of the product that the software engineers must implement
to meet the specific needs and expectations of the end user. These requirements detail the system’s
behaviour, functions, and interactions with users and other systems, ensuring that the product performs
its intended tasks effectively. They are critical for guiding the development process and ensuring that
the final product aligns with user needs.

The functional requirements of PyTSPL are as follows:

• Support for SCs: Enable support for the construction, manipulation and analysis of SCs. There
are very limited libraries that support SC. Some libraries have a data structure to store and ma-
nipulate an SC, such as TopoX, however, the functionalities are limited.

• Dataset loading: Facilitate the loading and preprocessing of various real-world datasets and
directly convert them into an SC without any custom scripts, streamlining the workflow from raw
data to analysis-ready formats.

• Structural analysis of SCs: Extensive functionalities for analyzing the structure of SC. This
includes calculating the shift-operators e.g. Laplacian matrix, extracting eigenvalues and eigen-
vectors using eigendecomposition, and applying k-step shifting using simple function calls.

• Visualizing SCs: Provide visualization tools to help users intuitively understand and present the
structural characteristics of the SC. Even though the libraries have the functionality to visualize
network data, none of the libraries provide comprehensive functionality to visualize an SC.

21
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• Signal processing on SCs: Include functionalities for signal processing on SCs, supporting
advanced analysis techniques such as Hodge decomposition, Simplicial Fourier Transform and
simplicial embeddings.

• Applying linear filters on SCs: Offer linear filtering methods to facilitate various signal process-
ing tasks e.g. edge flow denoising, subcomponent extraction, on higher-order structures, such as
Least-squares filter, Grid-based filter, Chebyshev polynomial filter and Simplicial Trend filtering.

• Hodge-compositional Edge Gaussian Processes: Provide functionality of edge Gaussian pro-
cesses to provide probabilistic modelling and inference capabilities on edges within the analyzed
structures.

4.1.2. Non-functional Requirements
The non-functional requirements of the system are defined as the quality constraints that the system
must satisfy to enhance the overall user experience. These requirements focus on how the system
performs rather than what it does.

The non-functional requirements of PyTSPL are as follows:

• Unified Framework: Consolidate multiple functionalities into a single, cohesive library. This
includes streamlining the process of loading built-in datasets defined over a network, plotting
them, and applying advanced signal processing techniques to analyze the SCs.

• Usability: Design the library to be user-friendly for researchers and practitioners across differ-
ent fields. New users should be able to quickly learn and navigate the library with minimal effort.
This includes providing comprehensive documentation, intuitive interfaces, and helpful error mes-
sages. Additionally, the library should offer examples and tutorials to assist users in understand-
ing and utilizing its features effectively.

• Scalability: Ensure the library can handle large datasets defined over a network efficiently. This
involves optimizing algorithms and data structures to perform well with increasing data size.

• Flexibility: Allow for the easy extension and customization of features by the open-source com-
munity e.g. via GitHub issues. The library should be designed with a modular architecture, en-
abling users to add new functionalities or modify existing ones without altering the core compo-
nents. This includes providing extensive documentation, tutorials and API references of existing
functionalities.

• Maintainability: Design the library such that it is easy to maintain and improve over time. This in-
cludes writing in-code documentation and the following best coding practices. Additionally, having
good test coverage is implemented to catch and fix bugs at the early stage, ensuring the reliability
of the library. Furthermore, there are continuous development/deployment (CI/CD) pipelines in
place to streamline the process of integrating code changes into a repository. There are clear
guidelines on how to contribute to the project such that the open-source community can easily
contribute.

• Reusability: Ensure the library’s components can be easily reused in different components. This
involves designing modular and well-encapsulated functions and classes that adhere to standard
programming practices. By promoting reusability, the library can save development time and
effort, and encourage consistent use of best practices across different modules.

4.2. Key Modules and Submodules
PyTSPL is organized into key modules and submodules to enhance the overall design, maintainability,
and functionality of the system. Currently, the library has six key modules.

4.2.1. io
The io module is responsible for reading raw datasets and preprocessing them such that they can be
passed on to the next module to build an SC. The raw datasets can be read using the network_reader
submodule. The data can be in various formats such as comma-separated values (CSV), tab-delimited
text files (TNTP) or plain incidence matrices B1 and B2. There is additional functionality to read the
coordinates and edge flow of the SC as well. Most of the network datasets are in CSV or TNTP
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format, so they can be read using the built-in functions. Additionally, there is functionality to load
built-in datasets using the dataset_loader submodule. The submodule provides various options for
datasets such as forex exchange and transportation networks from different cities. The user can view
the available datasets as well. Finally, there is also a quick way to generate a random SC using the
sc_generator submodule.

The method and their respective descriptions of the io module are given in Table 4.1 below.

Table 4.1: Methods and their descriptions of the io module.

Method Description

list_datasets() List the currently available datasets that can loaded directly into
an SC.

load_dataset(...) Load the dataset by passing in the available dataset name.
read_csv(...) Read custom data defined over a network using the CSV format.
read_tntp(...) Read custom data defined over a network using the TNTP format.

read_B1_B2(...) Read custom data defined over a network using incidence matri-
ces B1 and B2.

read_coordinates(...) Read the coordinates of the network. This is useful e.g. when
plotting the SC.

read_flow(...) Read the edge flow of the network. This is useful e.g. when
applying filter designs to the SC.

4.2.2. simplicial_complex
Building an SC. Once the raw data is read using the io module, it is passed to the sc_builder sub-
module. This submodule constructs an SC from the raw data. The 2- simplices are created based
on user-defined criteria: triangle-based and distance-based. The triangle-based method finds all the
triangles in the graph and considers them as 2-simplices. The distance-based method finds all the
triangles and only keeps the ones where the distance between the nodes is less than a threshold ϵ.
By default, when we load a dataset using the load_dataset function, the SC is built using the triangle-
based method. The Table 4.2 illustrates the two ways to build the SC.

Table 4.2: The two ways to build the SC using the sc_builder module.

Method Description
to_simplicial_complex
(condition="all")

Build the 2-simplices of the SC using the triangle-based method.

to_simplicial_complex
(condition="distance",
dist_threshold=0.8)

Build the 2-simplices of the SC using the distance-based method.

SC data structure class. Once the SC is built, it is stored in the simplicial_complex data structure
class. This data structure allows us to efficiently compute the algebraic properties of the SC. This
includes computing the adjacencymatrix, incidencematrices and the Laplacianmatrices. Also, it allows
the computation of k-step lower and upper shifting of the SC. The methods and their implementation
details provided by the simplicial_complex class are shown in Table 4.3 below.

4.2.3. plot
The plot module offers the functionality to plot an SC in a quick and meaningful way. The user can
draw nodes, edges, and their respective labels in a custom way that meets their needs. The plots are
drawn using the network coordinates provided. If the coordinates are not provided by the user or don’t
exist in the corresponding dataset, the module automatically generates coordinates using NetworkX’s
spring_layout.

The methods and descriptions offered by plot module are given in Table 4.4 below.
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Table 4.3: Methods and descriptions of the of simplicial_complex module.

Method Description
print_summary() Prints the summary of the SC including the number of nodes,

edges, triangles, shape, and maximum dimension with the coor-
dinates and flow.

generate_coordinates() Generates random coordinates for an SC if they are not provided,
for instance for plotting purposes. The coordinates are generated
using NetworkX’s spring_layout.

get_node_features() Returns the node features of the SC. These features are directly
loaded from the dataset.

get_edge_features() Returns the edge features of the SC. These features are directly
loaded from the dataset.

get_faces() Returns the faces of the SC.
shape Returns the shape of the SC. This includes the number of 0-, 1-

and 2-simplices.
max_dim Returns the maximum dimension of the SC.
simplices Returns the simplices of the SC.
incidence_matrix(...) Returns the incidence matrix of the SC using the rank.
adjacency_matrix() Returns the adjacency matrix of the SC defined in equation 2.1.
laplacian_matrix() Returns the Laplacian matrix of the SC defined in equation 2.3.
hodge_laplacian_matrix(...) Returns the Hodge Laplacian matrix of the SC using the rank de-

fined in the equation 2.19.
lower_laplacian_matrix(...) Returns the lower Laplacian matrix of the SC using the rank de-

fined in the equation 2.21.
upper_laplacian_matrix(...) Returns the upper Laplacian matrix of the SC using the rank de-

fined in the equation 2.22.
apply_lower_shifting(...) Applies lower shifting to an edge flow for k steps defined in the

equation 2.37.
apply_upper_shifting(...) Applies upper shifting to an edge flow for k steps defined in the

equation 2.38.
apply_k_step_shifting(...) Applies k-step shifting to an edge flow defined in the equation

2.39.
get_total_variance(...) Calculates the total variance of the SC.
get_divergence(...) Calculates the total divergence of the edge flow defined in the

equation 2.25.
get_curl(...) Calculates the total curl of the edge flow defined in the equation

2.26.
get_simplicial_embeddings(
...)

Calculates the simplicial embeddings of the edge flow f and re-
turns the harmonic, curl and gradient embeddings using the equa-
tion 2.33.

get_component_eigenpair(...) Calculates the eigenpairs of harmonic, curl or gradient compo-
nents using the equation 2.29.

get_component_flow(...) Calculates the harmonic, curl or gradient flow based on the com-
ponent parameter passed using the equations 2.28 and 2.27

An example plot of the chicago-sketch transportation network dataset drawn using the draw_network
function is shown in Figure 4.1 below.



4.2. Key Modules and Submodules 25

Table 4.4: Methods and descriptions offered by the plot module.

Method Description
draw_sc_nodes(...) Draw the nodes of the SC and customize the plot using parame-

ters like node size, node colour, camp, edge font size etc. This
method is designed to customize the drawing of nodes.

draw_sc_edges(...) Draw the edges of the SC and customize the plot using parame-
ters like edge colour, edge width, edge colour etc. This method
is designed to customize the drawing of edges.

draw_network(...) Draw the SC with or without edge flow and labels. The user can
pass in parameters to customize the plot according to their own
needs, such as node size, edge width etc. The method uses
draw_sc_edges() and draw_sc_nodes() to plot the SC.

draw_hodge_decomposition(...) Plot the Hodge decomposition for the given component and edge
flow. If the component name is not passed as a parameter, it
draws all three components i.e. harmonic, curl and gradient flows.

draw_eigenvectors(...) Plot the eigenvectors and their corresponding eigenvalues for a
given component. The user can pass in the indices and only plot
certain eigenpairs.

Figure 4.1: SC plot of the chicago-sketch transportation network dataset.

4.2.4. decomposition
The decomposition module offers functionality to decompose signals using eigendecomposition and
Hodge decomposition. The eigendecomposition functionality allows users to extract the gradient, har-
monic and curl eigenvalues and eigenvectors, whereas, the Hodge decomposition offers the users to
get the gradient, harmonic and curl component of the edge flow.

The methods and descriptions offered by eigendecomposition and Hodge decomposition submodule
are given in Table 4.5 and 4.6 below, respectively. These methods are encapsulated in their module
and used by others as a service for code cohesion.
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Table 4.5: Methods and descriptions offered by the eigendecomposition submodule.

Method Description
get_total_variance(...) Calculates the total variance of the SC and returns it.
get_divergence(...) Calculates the divergence of the SC and returns it using the equa-

tion 2.25.
get_curl(...) Calculates the curl of the SC and returns it using the equation

2.26.
get_harmonic_eigenpair(...) Calculates the harmonic eigenpairs as discussed in Section 2.2.2.
get_curl_eigenpair(...) Calculates the curl eigenpairs as discussed in Section 2.2.2.
get_gradient_eigenpair(...) Calculates the gradient eigenpairs as discussed in Section 2.2.2.
get_eigendecomposition(...) Calculates the eigendecomposition as discussed in Section 2.2.2.

Table 4.6: Methods and descriptions offered by the Hodge decomposition submodule.

Method Description
get_harmonic_flow(...) Calculates the harmonic component of an edge flow as discussed

in Section 2.2.2.
get_curl_flow(...) Calculates the curl component of an edge flow using the equation

2.28.
get_gradient_flow(...) Calculates the gradient component of an edge flow using the

equation 2.27.

4.2.5. filters
The filters module aims to provide simplicial convolutional filters for the SC, namely, Least-Squares
filter (2.2.3), Grid-Based filter (2.2.3), and Chebyshev polynomial filter design (2.2.3). The applications
for these filters include subcomponent extraction and edge flow denoising. Additionally, the module
offers functionality for simplicial trend filtering (2.2.4) for reconstructing simplicial signals from (partial)
noisy observations.

The purpose and functionality of each of the filter classes are explained below.

BaseFilter: Each filter is implemented as a filter class that extends from the BaseFilter parent class.
This programming concept is known as inheritance and is a good choice when we want to reuse code
from the base class and make global changes to the extended classes by changing a base class. In
this case, we define various methods in the BaseFilter class that are reused in the child classes for
code reusability. Additionally, we update the history attribute using one method from the base class,
which stores the built filter, estimated frequency, frequency responses, extracted component error and
filter error. The inheritance diagram for the filters module is shown in Figure 4.2 below.
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Figure 4.2: Class inheritance diagram for the filters module.

EdgeFlowDenoising: This class implements a low-pass filterHP for edge flow denoising. Given a noisy
edge flow f = f0 + ϵ, where f0 is the true edge flow and ϵ is a zero-mean white Gaussian noise, we can
estimate the edge flow f̂ by solving the following regularized problemminf̂ ∥f̂−f∥22+µf̂Pf̂ [20, 31]. The
optimal solution to the regularized problem is given by f̂ = HPf̂ := (I+ µP)−1f . The denoise function
in the class finds the optimal solution given the noise-free flow f0, noisy flow f , the P choice matrix
p_choice and themu values mu_vals. Once the solution is found, it builds the filter and calculates the
frequency response of the error for each filter order. The users can also calculate and plot the desired
frequency response given the P choice matrix using the plot_desired_frequency_response function.

LSFilterDesign: This class implements subcomponent extraction of type I and type II filters using
the LS-filter design. In type I filter, we have L1 = L2 = L and α = β. To apply the type I filter, users
can use the subcomponent_component_extraction_type_one function. The type I filter does not dif-
ferentiate between lower and upper adjacencies, resulting in a loss of expressive power as it cannot
distinguish between them. To address this limitation, we additionally offer the type II filter using the
subcomponent_component_extraction_type_two function, which treats lower and upper adjacencies
separately, where L1 != L2 and α != β. This approach provides greater flexibility and control over the
frequency response. Finally, the general_filter function extracts and returns the subcomponents for
all three components: harmonic, gradient, and curl. The LS problem is solved via the pseudo inverse
of the system matrix using the LS problem using the np.linalg.lstsq function provided by numpy.
The function takes in the system matrix and the alpha coefficients as input and returns the coefficients
of the filter, which are then used to build the filter. Once the filter is built, we calculate the estimated
subcomponent flow f̂ and calculate the errors and frequency responses for each filter size.

GridBasedFilterDesign: This class implements edge flow denoising and subcomponent extraction
using the grid-based filter design. The subcomponent_extraction function uses a grid-based simpli-
cial filter H1 for edge flow denoising and the general_filter function extracts all three components:
harmonic, gradient and curl. The filter design avoids the eigenvalue computation of the 1-Hodge Lapla-
cian L1 and aims to match the desired frequency response in a continuous interval where the exact
frequencies lie. To achieve this, we sample M1 and M2 grid points from the interval [λG,min, λG,max]
and [λC,min, λC,max] and solve the problem as an LS problem of form equation 2.42. The LS problem
is solved via the pseudo inverse of the system matrix using the np.linalg.lstsq function provided by
numpy. To approximate the largest eigenvalue, we implement the power_iteration function. For the
smallest eigenvalue, we set it to a small value greater than 0 or as 0.
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ChebyshevPolynomialFilterDesign: This class implements the Chebyshev polynomial filter design
to tackle the issue of numerical stability by solving the LS problem using the Vandermonde matrix as
a system matrix. In real-world datasets, some of the simplicial frequencies are close together, leading
to an ill-conditioning of the LS-based filter design. This issue is tackled by the Chebyshev polynomial
design, which requires a continuous desired frequency response to extract the gradient subcomponent.
Ideally, this is an indicator function 1λ>0 with λ ∈ [0, λG,max]. In this case, we use the logistic function
gG(λ) = 1

1+exp−k(λ−λ0) with a growth rate k > 0 and the midpoint is λ0. Given the smallest gradient
frequency close to 0, we require large k and a small λ0 to achieve a good approximation of the ideal
indicator function. Given an edge flow f , matrix choiceP and component, we can apply the Chebyshev
filter design using the apply function. First, we approximate the Chebyshev series using the number of
points, minimum andmaximum domain, and the cut off frequency. For this, we calculate the Chebyshev
coefficients using the chebpy1 library. Next, we approximate the component frequency using either
equation 2.43 or 2.47. Finally, we calculate the extracted component error and the filter error. The
users can plot the Chebyshev series approximation using the plot_chebyshev_series_approx and
the frequency response approximation using the plot_frequency_response_approx function.

SimplicialTrendFilter: This class implements the edge flow denoising and the interpolation tasks
using the STF (see Section 2.2.4). The users can apply the denoising_l1_regularizer function to
denoise the edge flow using the ℓ1 regularizer (see Section 2.2.4). The function takes in parameters
such as the edge flow f , the order of the STF, component name (divergence or curl) and the regular-
ization parameter α and β. The order of the STF and the component name determine the operators
∆

(p)
ℓ and ∆

(p)
u as given in equation 2.53 and 2.54, respectively. Next, it solves the equation 2.52 using

the cvxpy2 library and calculates the frequency response of the filter, the divergence or curl flow, with
its corresponding NRMSE error and correlation. Finally, it updates the history of the filter so users
can retrieve the filter results. Similarly, users can apply the denoising_l2_regularizer function to
denoise the edge flow using the ℓ2 regularizer (see Section 2.2.4). The function uses the closed-form
of equation 2.58 and approximates f̂ . The class also offers functionality for interpolation tasks. The
user can apply the interpolation_l1_regularizer function to interpolate. This function solves the
equation 2.52 using the cvxpy library but replaces the data fitting term by ∥y − f∥22 with ∥y −Cf∥22 as
discussed in Section 2.2.4.

4.2.6. hodge_gp
Hodge-compositional edge Gaussian processes are used to model functions defined over the edge set
of an SC (see Section 2.2.5). This method intends to learn the flow-type data on networks where edge
flows can be characterized by discrete divergence and curl. This module is built on PyTorch and allows
users to directly train their model and make predictions on real-world datasets e.g. forex dataset.

The types of kernels are defined in the Kernels enum class. These kernels include diffusion, diffu-
sion non-HC, Matérn, Matérn non-HC, Laplacian and Laplacian non-HC (see equation 2.59). The
kernels are built using the gpytorch.kernels.Kernel base class provided by gpytorch3. These ker-
nels can be defined separately for each dataset to ensure the best performance. When initializing a
kernel, the users can use the KernelSerializer class by specifying the kernel type and the dataset
name. This ensures the initialization of different kernels is encapsulated from the users. For training
a model, the HodgeGPTrainer class can be leveraged by passing in the loaded SC and the edge flow
defined on the SC. The trainer object encapsulates the methods required to train the models. Users
can use the built-in class function train_test_split to split the data into training and testing sets
into different ratios. Once the data is spit, the users can initialize the ExactGP model, inherited from
gpytorch.models.ExactGP which is a base class for any Gaussian process latent function to be used
in conjunction with exact inference. The model takes the data, the likelihood function and the kernel
as the parameters. Next, we train the ExactGP model, the likelihood function and pass these as pa-
rameters to the HodgeGPTrainer along with the training data to start the training process. The model is
trained by calling the train function with parameters such as the training iterations, learning rate and
the optimizer e.g. Adam. Once the training is complete, users can get the model’s learned parameters

1https://github.com/chebpy/chebpy
2https://www.cvxpy.org/
3https://gpytorch.ai/
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using the get_model_parameters function. To build a kernel, users can use the built-in class methods
and obtain the kernel e.g. Matérn kernel can be built using the build_matern_kernel function which
uses the equation 2.59.

4.3. Interaction Between the Modules
The flow and interaction between the key modules can be seen in Figure 4.3 below. The process begins
with reading network data either by directly loading build-in datasets or by loading custom datasets
using the io module. The module preprocesses this data to ensure it is in a suitable format. The
preprocessed data is then used to construct an SC in different ways and stored in a data structure
using the simplicial_complex module.

Figure 4.3: The flow and interaction between the key modules.

Once the SC is built, the user has various options including

1. Plotting the SC: Visualize the nodes, edges, triangles, edge flow and their respective labels
within the SC to understand the structure and relationships in the network data.

2. Decomposing the Signals: Use techniques such as eigendecomposition and Hodge decompo-
sition to analyze and understand the properties of the signals within the SC. This also includes
calculating simplicial Fourier Transform and simplicial embeddings.

3. Applying Various Filters for:

• Subcomponent Extraction
• Edge Flow Denoising
• Reconstructing simplicial signals from (partial) noisy observation

4. Applying the Hodge-compositional edge Gaussian processes

In the next chapter, we will dive into each module and provide pedagogical code examples for them.

4.4. Datasets
The library offers pre-loaded datasets to get started. Currently, the library contains various datasets,
namely foreign exchange, lastfm-dataset- 1k4 transportation networks5 and so on. All the available
datasets are listed in Table 4.7 below.

The signals in the datasets are defined solely on the edges and the nodes have coordinates as features.
The features of the edges are detailed in Table 4.8 below. Note that the transportation networks datasets
include all the city names from Table 4.7. Some datasets lack node coordinates or edge flow. If the
node coordinates don’t exist, they are automatically generated using NetworkX’s spring_layout. In
case the edge flow doesn’t exist, the user can manually define it and use it. These datasets can be

4https://github.com/eifuentes/lastfm-dataset-1K
5https://github.com/bstabler/TransportationNetworks
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Table 4.7: List of built-in datasets in PyTSPL.

Dataset Name Num. of Nodes Num. of Edges Num. of Triangles Coordinates Edge
Flow

anaheim 416 634 54 ✓ ✓
barcelona 1020 1798 164 ✓ ✓
chicago-
regional 12982 20627 807 ✓ ✓

chicago-sketch 546 1088 112 ✓ ✓
forex 25 210 770 ✓
goldcoast 4807 5952 269 ✓
lastfm-1k 657 1997 1276 ✓ ✓
opashi-
powergrid 4940 6593 0

paper (data) 7 10 3 ✓ ✓
siouxfalls 24 38 2 ✓ ✓
winnipeg 1052 1595 185 ✓ ✓
wsn 114 164 2 ✓ ✓

directly loaded via the dataset_loader module. An example of this is given in the next chapter. For
future work, the aim is to add additional datasets.

Table 4.8: List of features in the built-in datasets.

Dataset Name Edge Features

transportation networks capacity, length, free flow time, b, power, speed, toll, link type, volume,
cost

forex bid, ask, midpoint
lastfm-1k artist, music
opashi-powergrid
paper (data) arbitrary flow
wsn water flow



5
Pedagogical Tutorials

In this chapter, we delve into the foundational aspects of using the library. By exploring elementary
examples, the aim is to provide a clear and practical understanding of how to navigate through the basic
functionalities and tools available. These examples are carefully chosen to illustrate key concepts and
operations that form the building blocks for more advanced analyses. For clarity, the important functions
implemented are color-coded in blue.

5.1. Loading a SC
The io module handles the loading of an SC (see Section 4.2.1). Let’s start by loading a SC using an
existing dataset defined over a network. The library offers built-in datasets that can be directly loaded
or users can load their custom dataset using the provided functions. For experimental purposes, the
users can also generate a random SC. Once the SC is loaded up, we can use it for further analysis.

Built-in Dataset
Let’s load an existing built-in dataset using the dataset_loader module. To list the available built-in
datasets, we can use the list_datasets function as follows

1 from py t sp l impor t l i s t _ d a t a s e t s
2

3 l i s t _ d a t a s e t s ( )

Listing 5.1: List existing built-in datasets.

The list of the available built-in datasets will be shown as follows
1 [ ” barcelona ” ,
2 ” chicago − reg iona l ” ,
3 ” s i o u x f a l l s ” ,
4 ” anaheim ” ,
5 ” t es t_da tase t ” ,
6 ” go ldcoast ” ,
7 ” winnipeg ” ,
8 ” chicago −sketch ” ,
9 ” paper ” ,
10 ” f o rex ” ,
11 ” las t fm −1k− a r t i s t ” ]

Listing 5.2: List of available built-in datasets.

For this example, we will load the paper dataset. Once the dataset is loaded, it will return the SC data
structure, coordinates, and the edge flow defined over the SC. The existing built-in dataset can be
loaded using the load_dataset function

1 from py t sp l impor t load_dataset
2

31
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3 sc , coord inates , f low = load_dataset ( dataset= ” paper ” )

Listing 5.3: Loading the existing built-in paper dataset.

Once the dataset is loaded, the summary of the dataset will be printed as follows
1 Num. o f nodes : 7
2 Num. o f edges : 10
3 Num. o f t r i a n g l e s : 3
4 Shape : (7 , 10 , 3)
5 Max Dimension : 2
6 Coordinates : 7
7 Flow : 10

Listing 5.4: Summary of the paper dataset.

Note that the number of coordinates should match the number of nodes and the flow length should
correspond to the number of edges. Both coordinates and flow are represented as dict, where the keys
are the edges, and the values are the respective coordinates or flow.

Custom Dataset
Users can also load their datasets by utilizing the built-in functions to preprocess data and build an SC.
They can load an SC from a CSV file, a TNTP file, or through incidence matrices B1 and B2. Once the
SC is loaded, the user can print the summary using the print_summary function.

CSV and TNTP. To load the datasets from a CSV format, the user can use the read_csv function as
follows

1 from py t sp l impor t read_csv
2

3 f i lename = f ” {PAPER_DATA_FOLDER} / edges . csv ”
4 de l im i t e r = ” ”
5 s rc_co l = ” Source ”
6 dest_co l = ” Target ”
7 f ea tu re_co l s = [ ” Distance ” ]
8

9 # reading from a CSV f i l e
10 sc = read_csv (
11 f i lename=f i lename ,
12 de l im i t e r =de l im i t e r ,
13 s rc_co l=src_co l ,
14 dest_co l=dest_col ,
15 f ea tu re_co l s= fea tu re_co l s
16 ) . t o_s imp l i c i a l_comp lex ( cond i t i on= ” a l l ” )
17

18 # p r i n t summary
19 sc . print_summary ( )

Listing 5.5: Loading an SC using a CSV file.

Similarly, the datasets can be loaded from TNTP format using the read_tntp function.

Incidence matrices. We can use the read_B1_B2 function to load the incidence matrices and the
to_simplicial_complex function to build the SC.

1 from py t sp l impor t read_B1_B2
2

3 B1_fi lename = ” py t sp l / data / paper_data /B1 . csv ”
4 B2_fi lename = ” py t sp l / data / paper_data / B2t . csv ”
5

6 # ex t r a c t the t r i a n g l e s
7 scbu i lde r , t r i a n g l e s = read_B1_B2 (
8 B1_fi lename=B1_filename ,
9 B2_fi lename=B2_fi lename
10 )
11

12 # bu i l d the SC using the ex t rac ted t r i a n g l e s
13 sc = scbu i l de r . to_s imp l i c i a l_comp lex ( t r i a n g l e s = t r i a n g l e s )
14
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15 # p r i n t summary
16 sc . print_summary ( )

Listing 5.6: Loading an SC using incidence matrices B1 and B2.

Coordinates. The coordinates of the SC can be loaded using the read_coordinates function as
follows

1 from py t sp l . i o . network_reader impor t read_coord inates
2

3 # load coord ina tes
4 coord inates_path = ” py t sp l / data / paper_data / coord ina tes . csv ”
5

6 coord ina tes = read_coord inates (
7 f i lename=coordinates_path ,
8 node_id_col= ” Id ” ,
9 x_col= ”X” ,
10 y_col= ”Y” ,
11 de l im i t e r = ” ”
12 )

Listing 5.7: Loading coordinates of a SC.

The user can specify the node_id_col, x_col, and y_col names as well as the delimiter to read the
coordinates. Different data files may have different column names and delimiters.

Edge flow. The edge flow defined over the SC can be loaded using the read_flow function as follows
1 from py t sp l . i o . network_reader impor t read_f low
2

3 # load f low
4 f low_path = ” py t sp l / data / paper_data / f low . csv ”
5

6 f l ow = read_f low ( f i lename=f low_path , header=None )

Listing 5.8: Loading edge flow defined over a SC.

Generating a SC
The users can randomly generate an SC using the generate_random_simplicial_complex function
in the following way

1 from py t sp l impor t generate_random_simpl ic ia l_complex
2

3 # generate a random SC
4 sc , coord ina tes = generate_random_simpl ic ia l_complex (
5 num_of_nodes=7 ,
6 p=0.25 ,
7 d i s t _ t h r esho l d =0.8
8 seed=42 ,
9 )
10

11 # p r i n t summary
12 sc . print_summary ( )

Listing 5.9: Generate a random SC.

The user defines the number of nodes, the probability of an edge between two nodes and the distance
threshold for building the 2-simplices. An example of a randomly generated SC with seven nodes is
shown in Figure 5.1 below.
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Figure 5.1: A randomly generated SC with seven nodes.

5.2. Building a SC
There are two ways to build an SC using PyTSPL, namely the triangle-based method and distance-
based method using the to_simplicial_complex function. More details about the building methods
are given in Section 4.2.2. By default, when we load a dataset using the load_dataset function, the
SC is built using the triangle-based method.

Triangle-based method. To build a SC using all the triangles, we can do the following
1 from py t sp l impor t read_csv
2

3 sc = read_csv (
4 f i lename=f i lename ,
5 de l ime te r=de l imeter ,
6 s rc_co l=src_co l ,
7 dest_co l=dest_col , f ea tu re_co l s= fea tu re_co l s
8 ) . t o_s imp l i c i a l_comp lex ( cond i t i on= ” a l l ” )

Listing 5.10: Building the SC using the triangle-based method.

where the condition parameter is set to all. This parameter specifies to use all the triangles as the
2-simplices.

Distance-based method. To build a SC using the distance-based method, we can do the following
1 from py t sp l impor t read_csv
2

3 # reading a csv f i l e
4 sc = read_csv (
5 f i lename=f i lename ,
6 de l ime te r=de l imeter ,
7 s rc_co l=src_co l ,
8 dest_co l=dest_col , f ea tu re_co l s= fea tu re_co l s
9 )
10 . t o_s imp l i c i a l_comp lex (
11 cond i t i on= ” d is tance ” ,
12 dist_col_name : s t r = ” d is tance ” ,
13 d i s t _ t h r esho l d : f l o a t = 1 .5 ,
14 )

Listing 5.11: Building the SC using the distance-based method.

where the condition parameter is set to distance, dist_col_name specifies which data attribute has
the distance values for comparison and the dist_threshold specifies the value of ϵ.

Similarly, we can build an SC in two ways by reading TNTP and incidence matrices files using the
to_simplicial_complex function.
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5.3. Plotting
Once the SC is loaded, we can plot it using the plot module (see Section 4.2.3) by passing in its
coordinates. To plot the SC, we can use the draw_network function.

1 from py t sp l impor t SCPlot
2

3 # i n i t the p l o t ins tance
4 scp l o t = SCPlot (
5 s imp l i c ia l_comp lex=sc ,
6 coord ina tes=coord ina tes
7 )
8

9 # con f igu re f i g u r e s ize
10 f i g , ax = p l t . subp lo ts ( f i g s i z e =(8 , 10) )
11

12 # draw network w i thou t edge f low
13 scp l o t . draw_network ( node_size=400 , ar rowsize =30 , ax=ax )
14

15 # draw network w i th edge f low
16 scp l o t . draw_network ( edge_flow=f low , node_size=700 , ar rowsize =30 , ax=ax )

Listing 5.12: Plot the SC.

The triangles are shaded as light blue to represent the 2-simplices shown in Figure 5.2. The SC can
be drawn with or without the edge flow, shown in Figures 5.2b and 5.2a below, respectively.

(a)Without edge flow. (b)With edge flow.

Figure 5.2: SC plots with and without edge flow for the paper dataset.

To see how a real-world dataset would look like, the chicago-sketch transportation network is plotted
in Figure 5.3 below.
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Figure 5.3: SC plot of the chicago-sketch transportation network.

The data defined over an SCmay in size depending on the dataset, therefore, the users have the option
to draw the network that suits their needs. The user can customize the plot using the parameters of
the draw_network function, for instance by changing the node size, arrow size, edge width etc. The
function supports the parameters to customize the nodes, edges and edge labels straight from the
draw_network function. Table 5.1 below shows the list of supported parameters.

Table 5.1: List of customizable parameters provided by the draw_network function .

Node Parameters Edge Parameters Edge Label Parameters
node size edge color font size
node color edge width font color
node edge colors arrow size font weight
font size edge cmap offset
font color edge vmin alpha
font weight edge vmax
cmap directed
vmin alpha
vmax
alpha
margins

For this, we provide custom plotting functionality to draw the SC by defining the nodes and edges
separately using the draw_sc_nodes, draw_sc_edges and draw_edge_labels functions

1 impor t ma t p l o t l i b . pyp lo t as p l t
2

3 # con f igu re f i g u r e s ize
4 f i g , ax = p l t . subp lo ts (1 , 1 , f i g s i z e =(10 , 10) )
5

6 # draw nodes wi th custom parameters
7 scp l o t . draw_sc_nodes (
8 node_size=1000 ,
9 f on t_s i ze =25 ,
10 wi th_ labe l s=True
11 )
12
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13 # draw edges wi th custom parameters
14 scp l o t . draw_sc_edges (
15 edge_flow=f low ,
16 edge_width=5 ,
17 arrowsize =30 ,
18 edge_cmap= p l t .cm. Blues ,
19 )
20

21 # draw edge labe l s w i th custom parameters
22 scp l o t . draw_edge_labels (
23 edge_labels=f low ,
24 f on t_s i ze =20
25 )

Listing 5.13: Plot the SC in by plotting the components separately.

5.4. Algebraic Properties
The SimplicialComplex data structure class offers the functionality to calculate different algebraic
properties of the SC. The list of functions provided by the class is given in Table 4.3. For instance, the
incidence matrix and 1-Hodge Laplacian matrix can be calculated as follows

1 # get the B1 and B2 inc idence matr ices
2 B1 = sc . inc idence_mat r i x ( rank =1)
3 B2 = sc . inc idence_mat r i x ( rank =2)
4

5 # get the 1−Hodge Laplac ian mat r i x
6 L1 = sc . hodge_lap lac ian_matr ix ( rank =1)

Listing 5.14: Calculate the incidence matrices and the Hodge Laplacian matrix of the SC.

The output is a scipy sparse matrix. Since these matrices are sparse, the scipy’s sparse module
allows for efficient computations, for instance, matrix multiplication. Once an scipy sparse matrix is
converted to an array, the output looks like the following for the incidence matrix B1

1 ar ray ( [ [ − 1 . , −1. , −1. , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ] ,
2 [ 1 . , 0 . , 0 . , −1. , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ] ,
3 [ 0 . , 1 . , 0 . , 1 . , −1. , −1. , 0 . , 0 . , 0 . , 0 . ] ,
4 [ 0 . , 0 . , 1 . , 0 . , 1 . , 0 . , −1. , 0 . , 0 . , 0 . ] ,
5 [ 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 1 . , −1. , −1. , 0 . ] ,
6 [ 0 . , 0 . , 0 . , 0 . , 0 . , 1 . , 0 . , 1 . , 0 . , −1 . ] ,
7 [ 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 1 . , 1 . ] ] )

Listing 5.15: B1 matrix output.

5.5. Signal Processing
The decomposition module (see Section 4.2.4) offers Hodge decomposition and eigendecomposition
in a quick and user-friendly manner. The eigendecomposition then can be used to get the SFT of a
flow f .

5.5.1. Hodge Decomposition
The Hodge decomposition can be used to extract the gradient, curl and harmonic frequencies and
analyze the spectral properties of the simplicial filters. For additional functionality of the submodule,
please see Table 4.6. To get the harmonic, gradient and curl frequencies of the edge flow, we can use
the get_componenet_flow function

1 # create a syn t he t i c f low
2 syn the t i c_ f l ow = np . ar ray ( [ 0 . 03 , 0 .5 , 2.38 , 0.88 , −0.53 , −0.52 , 1.08 , 0.47 , −1.17 , 0 . 09 ] )
3

4 # get component f low
5 f_h = sc . get_component_flow ( f low=syn the t i c_ f l ow , component= ” harmonic ” )
6 f_g = sc . get_component_flow ( f low=syn the t i c_ f l ow , component= ” g rad ien t ” )
7 f_c = sc . get_component_flow ( f low=syn the t i c_ f l ow , component= ” c u r l ” )
8

9 # grad ien t component
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10 p r i n t ( ” Gradient : ” , f_g )
11 # cu r l component
12 p r i n t ( ” Cur l : ” , f_c )
13 # harmonic component
14 p r i n t ( ” Harmonic : ” , f_h )

Listing 5.16: Extract the the three frequency components of the edge flow using Hodge decomposition.

1 Gradient : [ 0 . 25 , 1.34 , 1.32 , 1 .1 , −0.02 , 0.03 , 0.53 , −0.47 , −0.78 , −0.3]
2 Cur l : [ −0.15 , −0.7 , 0.85 , −0.15 , −0.85 , 0 .0 , 0 .0 , 0.58 , −0.58 , 0 .58 ]
3 Harmonic : [ −0.07 , −0.14 , 0.21 , −0.07 , 0.34 , −0.55 , 0.55 , 0.37 , 0.18 , −0.18]

Listing 5.17: The three Hodge components extracted.

The user also has the option to directly plot either a single frequency component or all three components
using the draw_hodge_decomposition function

1 # create a syn t he t i c f low
2 syn the t i c_ f l ow = np . ar ray ( [ 0 . 03 , 0 .5 , 2.38 , 0.88 , −0.53 , −0.52 , 1.08 , 0.47 , −1.17 , 0 . 09 ] )
3

4 # p l o t on ly a s p e c i f i c component − harmonic
5 scp l o t . draw_hodge_decomposition ( f low=syn the t i c_ f l ow , component= ” harmonic ” )
6

7 # p l o t a l l th ree components
8 scp l o t . draw_hodge_decomposition ( f low=syn the t i c_ f l ow )

Listing 5.18: Plot the frequency components.

The plots of all three frequency components, gradient, curl and harmonic, are shown in Figure 5.4
below.

(a) Gradient component. (b) Curl component. (c) Harmonic component.

Figure 5.4: The gradient, curl and harmonic component of the edge flow.

5.5.2. Eigendecomposition
The functionality offered by the eigendecomposition module is listed in Table 4.5. As an example, the
gradient, curl and harmonic eigenvectors with their respective eigenvalues can be extracted using the
get_component_eigenpair function

1 # harmonic
2 u_h , eigenvals_h = sc . get_component_eigenpair ( component= ” harmonic ” )
3 # cu r l
4 u_c , e igenvals_c = sc . get_component_eigenpair ( component= ” c u r l ” )
5 # grad ien t
6 u_g , eigenvals_g = sc . get_component_eigenpair ( component= ” g rad ien t ” )

Listing 5.19: Extract the eigenvectors and eigenvalues of the three components.

Using the draw_eigenvectors function, we can plot the eigenvectors with their respective eigenvalues.
The users have the option to plot all the eigenvectors or pass indices of the eigenvalues they want to
plot as illustrated below
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1 # p l o t c u r l e igenvectors
2 scp l o t . draw_eigenvectors ( component= ” c u r l ” )
3

4 # p l o t on ly the se lec ted cu r l e igenvectors
5 e ig_vec_ ind ices = np . ar ray ( [ 0 , 2 ] )
6 scp l o t . draw_eigenvectors ( component= ” c u r l ” , e igenvec to r_ ind ices=e ig_vec_ ind ices )

Listing 5.20: Plot the eigenvectors and eigenvalues of a component.

The first and third eigenvectors and their associated eigenvalues of the curl component is shown in
Figure 5.5 below.

Figure 5.5: The first and third eigenvectors in the curl space with the corresponding curl frequencies.

5.5.3. Simplicial Fourier Transform
The SFT (see Section 2.2.2) can be written in terms of simplical embeddings as discussed in Section
2.2.2. The frequency embeddings can be calculated using the get_simplicial_embeddings function
in the following way

1 # def ine a syn t he t i c f low
2 syn the t i c_ f l ow = [0 .03 , 0 .5 , 2.38 , 0.88 , −0.53 , −0.52 , 1.08 , 0.47 , −1.17 , 0 .09 ]
3

4 # get s i m p l i c i a l embeddings
5 f _ t i l d a_h , f _ t i l d a_ c , f _ t i l d a _ g = sc . get_s impl ic ia l_embeddings ( f low=syn the t i c_ f l ow )
6

7 p r i n t ( ” embedding_h : ” , f _ t i l d a _ h )
8 p r i n t ( ” embedding_g : ” , f _ t i l d a _ g )
9 p r i n t ( ” embedding_c : ” , f _ t i l d a _ c )

Listing 5.21: Get the simplicial embeddings of flow f .

1 embedding_h : [ −1.00084785]
2 embedding_g : [ −1.00061494 , −1.00127703 , 1.00173495 −1.00287539 0.99531105 , 1.00412064]
3 embedding_c : [ −1 , 0.99881597 , 0.99702056]

Listing 5.22: The extracted simplicial embeddings from flow f .

5.6. Filters
The tutorials in this section illustrate the functionality of simplicial shifting, simplicial convolution filters
(see Section 2.2.3) and the simplicial trend filter (see Section 2.2.4).

5.6.1. Simplicial Shifting
Simplicial shifting allows k-step shifts on a signal over the lower and upper neighbourhoods. In other
words, the edge collects the flows from its lower and upper neighbours k-hops away and updates its
information. The user can apply k-step lower and upper shifting using the apply_lower_shifting and
apply_upper_shifting functions, respectively.
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1 # create a syn t he t i c f low
2 syn the t i c_ f l ow = [0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ]
3

4 # one step lower s h i f t i n g
5 one_step = sc . app l y_ l owe r_sh i f t i ng ( syn the t i c_ f l ow , steps =1)
6

7 # two step lower s h i f t i n g
8 two_step = sc . app l y_ l owe r_sh i f t i ng ( syn the t i c_ f l ow , steps =2)

Listing 5.23: Applying lower and upper k-step simplicial shifting on an indicator flow f .

An example of lower and upper k-step shifting is illustrated in Figure 5.6 and 5.7 below, respectively.

(a) An edge flow indicator f of edge (4, 5). (b) One-step lower shifting L1,lf . (c) Two-step lower shifting L1,l
2f .

Figure 5.6: One- and two-step lower shifting on an edge flow indicator f .

(a) One-step upper shifting L1,uf . (b) Two-step upper shifting L1,u
2f .

Figure 5.7: One- and two-step upper shifting on an edge flow indicator f .

The user can also apply k-step shifting using the apply_k_step_shifting function
1 # apply two−step s h i f t i n g
2 k = 2
3 f l ow = sc . app l y_k_s tep_sh i f t i ng ( syn the t i c_ f l ow )

Listing 5.24: Applying two-step simplicial shifting on an indicator flow f .

The resultant edge flow after applying a two-step shift is illustrated in Figure 5.8 below
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Figure 5.8: Two-step simplicial shifting L1
2f = L1,l

2f + L1,u
2f on an indicator flow f , as the sum of 5.6c and 5.7b

5.6.2. Simplicial Convolutional Filters
The filtersmodule offers functionality for three simplicial convolution filters (see Section 2.2.3), namely
LS-Filter,Grid-Based Filter andChebyshev Polynomial Filter Designs (see Sections 2.2.3, 2.2.3, 2.2.3).

Least-Squares Filter Design. The LS filter design offers subcomponent extraction using type I and
II filters. In type I filter, we have L1 = L2 and α = β. The type I filter can be applied using the
subcomponent_component_extraction_type_one function

1 from py t sp l . f i l t e r s impor t LSF i l te rDes ign
2

3 # i n i t LS f i l t e r
4 f i l t e r _ s i z e = 16
5 component = ” g rad ien t ”
6 l s _ f i l t e r = LSFi l te rDes ign ( s imp l i c ia l_comp lex=sc )
7

8 # subcomponent e x t r a c t i o n using type I f i l t e r
9 l s _ f i l t e r . subcomponent_extract ion_type_one (
10 f = f ,
11 component=component ,
12 L= f i l t e r _ s i z e
13 )

Listing 5.25: Subcompoenent extraction using type I filter.

The type I filter does not differentiate between lower and upper adjacencies, resulting in a loss of ex-
pressive power. To address this limitation, we propose the type II filter, which treats lower and upper
adjacencies separately. This approach provides greater flexibility and control over the frequency re-
sponse.

Subcomponent extraction using the type II filter, where we have L1 != L2 and α != β can be applied
using the subcomponent_component_extraction_type_two function as follows

1 # subcomponent e x t r a c t i o n using type I I f i l t e r
2 l s _ f i l t e r . subcomponent_extract ion_type_two (
3 f = f ,
4 component=component ,
5 L= f i l t e r _ s i z e
6 )

Listing 5.26: Subcomponent extraction using type II filter.

The history of the filter stores the results of the built filter H1 and can be retrieved using the class
attribute history

1 # r e t r i v e a l l h i s t o r y
2 h i s t o r y = l s _ f i l t e r . h i s t o r y
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3

4 # r e t r i v e h i s t o r y components
5 H = h i s t o r y [ ” f i l t e r ” ]
6 f_es t imated = h i s t o r y [ ” f_es t imated ” ]
7 f_responses = h i s t o r y [ ” frequency_responses ” ]
8 extracted_comp_error = h i s t o r y [ ” extracted_component_error ” ]

Listing 5.27: Retriving the history of the built filter H1.

where filter is the built filter H1, f_estimated is the estimated frequency of the extracted component,
frequency_responses are the frequency response for each filter size and extracted_component_error
is the normalized root mean squared error (NRMSE) for each filter size. The filter error can be plotted
over each filter size as shown in Figure 5.9 below. The extraction improves as the filter size increases
as shown in Figure 5.9a. As seen in Figure 5.9b, for the gradient component, setting L1 = L2 and α =
β worsens the performance because of the limited expressive power.

(a) Performance of type I filter for the gradient, curl and harmonic component. The extraction
improves as the filter size increases.

(b) Performance of type I and II filters for the gradient component. Type I filter worsens the
performance by setting L1 = L2 and α = β.

Figure 5.9: Subcomponent extraction performance by filter H1

Grid-Based Filter Design: Similar to LS filter design, the grid-based filter design offers type I and II
filters, however, it aims to match the desired frequency response in a continuous interval. In this case,
the exact frequencies lie such that the eigenvector and eigenvalue computation of L1 can be avoided.
We can denoise with low-pass filter HP using the denoise function as follows

1 # denoise
2 gbf . denoise (
3 f = f ,
4 f _ t r ue=f0 ,
5 p_choice= ” L1 ” ,
6 L= f i l t e r _ s i z e ,
7 mu_vals = [ 0 . 5 ]
8 )

Listing 5.28: Denoising with the low-pass filter HP .
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where f is the noisy flow, f_true is the original flow, p_choice is the shift matrix choice used for the filter
and mu is regularizer. Futhermore, we can denoise with gradient based simplicial filter H1 using the
subcomponent_extraction function as follows

1 from py t sp l . f i l t e r s impor t Gr idBasedFi l te rDes ign
2

3 # i n i t f i l t e r
4 f i l t e r _ s i z e = 10
5 g b _ f i l t e r = Gr idBasedFi l te rDes ign ( s imp l i c ia l_comp lex=sc )
6

7 # subcomponent e x t r a c t i o n
8 g b _ f i l t e r . subcomponent_extract ion (
9 f = f ,
10 f _ t r ue=f0 ,
11 p_choice= ” L1L ” ,
12 L= f i l t e r _ s i z e
13 )

Listing 5.29: Denoising with the gradient based simplicial filter H1.

The frequency responses of the denoising filter HP = (I + 0.5L1)−1 based on the grid filter design is
shown in Figure 5.10 below.

Figure 5.10: Frequency responses of the denoising filter HP based on the grid filter design.

We can see the plotted results of denoising in Figure 5.11 below. Figure 5.11a represents an edge flow
f0 induced by a node signal with a flat spectrum. Figure 5.11b is the noisy observation f . Figure 5.11c
and 5.11d is the denoising with the low-pass filterHP with P = L1 and P = L1,l, with error e = 0.70 and
e = 0.73, respectively. In Figure 5.11e, we denoise by the gradient based simplicial filter H1 with an
order L1 = L2 = 4 that yields a much better performance with error e = 0.39.
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(a) Noise-free flow f0 (b) Noisy flow f

(c) H = (I + 0.5L1)−1 (d) H = (I + 0.5L1,l)−1

(e) H1,α = β

Figure 5.11: Gradient flow denoising.

Chebyshev polynomial filter design. The goal of using Chebyshev polynomial based filter design
is to tackle the numerical instability issue and design a filter for large networks. For this filter design,
we will use a large network to demonstrate its capabilities. Specifically, we will use the Chicago road
network dataset with 546 nodes, 1088 edges and 112 triangles. We perform the gradient component
extraction of the measured traffic flow via the filter H1 built on the lower Hodge Laplacian L1,l using
the apply function as follows

1 from py t sp l impor t load_dataset , SCPlot
2 from py t sp l . f i l t e r s impor t ChebyshevFi l terDesign
3

4 # load chicago −sketch dataset
5 sc , coord inates , f low = load_dataset ( ” chicago −sketch ” )
6
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7 # conver t the f low to an numpy ar ray
8 f l ow = np . asarray ( l i s t ( f l ow . values ( ) ) )
9

10 # i n i t f i l t e r
11 chebyshev_ f i l t e r = ChebyshevFi l terDesign ( s imp l i c ia l_comp lex=sc )
12

13 # apply f i l t e r
14 f i l t e r _ s i z e = 50
15 chebyshev_ f i l t e r . apply (
16 f = f low ,
17 p_choice= ” L1L ” ,
18 component= ” g rad ien t ” ,
19 L= f i l t e r _ s i z e ,
20 cu t_o f f_ f requency =0.01 ,
21 steep=100 ,
22 n=100
23 )

Listing 5.30: Subcomponent extraction using the Chebyshev polynomial based filter design.

where the order of the Chebyshev polynomial is 50.

Next, we can plot the filter error and the extracted component error as follows
1 # p l o t e r r o r s
2 p l t . p l o t ( chebyshev_ f i l t e r . h i s t o r y [ ” extracted_component_error ” ] )
3 p l t . p l o t ( chebyshev_ f i l t e r . h i s t o r y [ ” f i l t e r _ e r r o r ” ] )

Listing 5.31: Plot filter error and extracted component error.

Figure 5.12: The approximation errors of Chebyshev filters of different orders and the extracted gradient component.

To compare the true component with the extracted component, we can plot the frequency response
using the plot_frequency_response_approx function as follows

1 chebyshev_ f i l t e r . p lot_frequency_response_approx ( f low=f low , component= ” g rad ien t ” )

Listing 5.32: Plot frequency approximation of the extracted component.

As shown in Figure 5.13 below, the Chebyshev polynomial design effectively extracts the gradient
component.
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Figure 5.13: Frequency response of the true and extracted gradient component using the Chebyshev polynomial design.

To compare the three filter designs, we applied them to the Chicago road network. For the LS-based
filter design, we set a filter order of 10. Setting a low filter order avoids the ill-conditioning. For the
grid-based filter design, we uniformly sampled 100 points in the interval [0, λG,max] with λG,max = 10.8
approximated using the power-iteration algorithm with steps = 50. The cut-off frequency λ0 = 0.01 and
the steep k = 100 for the logistic function in the Chebyshev polynomial design.

As seen in Figure 5.14 below, the Chebyshev polynomial of order 50 only has a couple of frequencies
smaller than 0.9 at the smallest gradient frequency. The remaining frequencies can preserve the gradi-
ent component well. The LS-based and grid-based filter designs have a poorer performance, especially
at small gradient frequencies.

Figure 5.14: Filter frequency responses for all three filter designs.

Finally, we can calculate the SFT of the extracted gradient component and compare it with the grid-
based filter design. The comparison is plotted in 5.15 below. As we can see, the Chebyshev polynomial
filter has a good extraction ability and performs well at very small frequencies where the grid-based
design fails.
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Figure 5.15: SFT of the extracted gradient component.

5.6.3. Simplicial Trend Filter
Reconstructing simplicial signals of a network from (partial) noisy observation can be achieved via
simplicial trend filter (STF) by regularizing the total divergence and the curl as discussed in Section
2.2.4. This process is also known as simplicial signal denoising and interpolation. For this pedagogical
example, we will primarily focus on the edge flow case. To initialize an STF and get the divergence and
curl, the users can use the get_divergence_flow and get_curl_flow functions respectively

1 from py t sp l . f i l t e r s impor t S imp l i c i a l T r e ndF i l t e r
2

3 # i n i t STF
4 t r e n d _ f i l t e r = S imp l i c i a l T r e ndF i l t e r ( s imp l i c ia l_comp lex=sc )
5

6 # get the divergence and cu r l f l ow
7 p r i n t ( ” Divergence : ” , t r e n d _ f i l t e r . get_d ivergence_f low ( f low ) )
8 p r i n t ( ” Cur l : ” , t r e n d _ f i l t e r . ge t_cu r l _ f l ow ( f low ) )

Listing 5.33: Initialize STF and get the divergence and curl flow.

1 Divergence : 1.4141
2 Cur l : 220.6808

Listing 5.34: Output: divergence and curl flow.

Denoising: We denoise a noisy signal by using the regularizers ℓ1 or ℓ2 (see Sections 2.2.4 and 2.2.4).
To denoise using a ℓ1 regularizer, we can use the denoising_l1_regularizer

1 # def ine parameters
2 num_rea l iza t ions = 50
3 snr_db = np . arange ( −12 , 12.5 , 2)
4

5 # order o f the STF
6 order = 0
7

8 # denoise using l 1 r e gu l a r i z e r
9 t r e n d _ f i l t e r . deno i s i ng_ l 1_ regu l a r i ze r (
10 f l ow=f low ,
11 order=order ,
12 component= ” divergence ” ,
13 num_rea l iza t ions=num_real izat ions ,
14 snr_db=snr_db ,
15 r e g u l a r i z a t i o n =0.5
16 )

Listing 5.35: Denoise using the ℓ1 regularizer.

where the order of the STF and the component name determine the operators ∆
(p)
ℓ and ∆

(p)
u as given

in equation 2.53 and 2.54, respectively.



5.6. Filters 48

1 SNR: 0.0631 dB − l1 e r r o r : 0.2922 − co r r : 0.9591
2 SNR: 1.0 dB − l1 e r r o r : 0.0197 − co r r : 0.9998
3 SNR: 15.8489 dB − l1 e r r o r : 0.0032 − co r r : 1.0

Listing 5.36: Output: denoising with ℓ1 regularizer using STF.

Similarly, we can denoise with ℓ2 regularizer using the denoising_l2_regularizer function
1 # def ine parameters
2 num_rea l iza t ions = 50
3 snr_db = np . arange ( −12 , 12.5 , 2)
4

5 # denoise using l 2 r e gu l a r i z e r
6 t r e n d _ f i l t e r . deno i s i ng_ l 2_ regu l a r i ze r (
7 f l ow=f low ,
8 component= ” divergence ” ,
9 num_rea l iza t ions=num_real izat ions ,
10 snr_db=snr_db ,
11 mu=0.5
12 )

Listing 5.37: Denoise using the ℓ2 regularizer.

1 SNR: 0.0631 dB − e r r o r no isy : 0.1185 − l2 e r r o r : 0.3047 − co r r : 0.9558
2 SNR: 1.0 dB − e r r o r no isy : 0.0112 − l2 e r r o r : 0.0193 − co r r : 0.9998
3 SNR: 15.8489 dB − e r r o r noisy : 0.0014 − l2 e r r o r : 0.003 − co r r : 1.0

Listing 5.38: Output: denoising with ℓ2 regularizer using STF.

Next, we can plot the errors and correlations for the ℓ2-based regularizer, 0-STF, 1-STF and 2-STF. The
errors and correlations are shown in Figures 5.16a and 5.16b below.

(a) Denoising NRMSE performance. (b) Correlation performance.

Figure 5.16: Reconstruction performance for the lastfm-1k-artist dataset.

We have set β = 0 to only penalize the divergence and the regularization parameter µ was set to 0.5.
For denoising with SNRs ranging from [-12dB, 12dB], we observe that the STF performs comparably
with the ℓ2 regularizer in terms of NRMSE.

Interpolation: For interpolation tasks, the users can use the interpolation_l1_regularizer function
as follows

1 # def ine parameters
2 num_rea l iza t ions = 50
3 r a t i o = np . arange (0 .05 , 1.05 , 0 .3 )
4

5 # order o f the STF
6 order = 0
7

8 # i n t e r p o l a t e
9 t r e n d _ f i l t e r . i n t e r p o l a t i o n _ l 1 _ r e g u l a r i z e r (
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10 f l ow=f low ,
11 order=order ,
12 r e g u l a r i z a t i o n =0.5 ,
13 component= ” divergence ” ,
14 r a t i o = r a t i o ,
15 num_rea l iza t ions=num_rea l iza t ions
16 )

Listing 5.39: Interpolate using the ℓ1 regularize.

1 Rat io : 0.05 − e r r o r : 0.9549 − co r r : 0.2814
2 Rat io : 0.35 − e r r o r : 0.6522 − co r r : 0.7502
3 Rat io : 0.65 − e r r o r : 0.3355 − co r r : 0.9381
4 Rat io : 0.95 − e r r o r : 0.0151 − co r r : 0.9996

Listing 5.40: Output: interpolating with ℓ1 regularizer using STF.

5.7. Hodge-compositional Edge Gaussian Processes
Gaussian processes (GPs) are used for modelling functions defined over the edge set of a simplicial 2-
complex, a structure similar to a graph in which edges may form triangular faces. This method is aimed
at learning flow-type data on networks, where edge flows can be described by discrete divergence and
curl [37]. More details in Section 2.2.5.

To get started, we can load the forex exchange dataset and initialize the HodgeGPTrainer class as
follows

1 from py t sp l impor t load_dataset
2 from py t sp l . hogde_gp impor t HodgeGPTrainer
3

4 # read dataset
5 sc , _ , f l ow = load_dataset ( ” fo rex ” )
6

7 # get the y from f low d i c t
8 y = np . f r om i t e r ( f low . values ( ) , dtype= f l o a t )
9

10 # i n i t t r a i n e r
11 hogde_gp = HodgeGPTrainer ( sc=sc , y=y )

Listing 5.41: Initilialize HodgeGPTrainer.

Next, we split our data into training and testing data using the train_test_split function as follows
1 # t e s t s p l i t r a t i o
2 t r a i n _ r a t i o = 0.2
3

4 # normal ize data
5 data_norma l i za t ion = False
6

7 # s p l i t data
8 x_ t ra in , y_ t ra in , x_ tes t , y_ tes t , x , y = hogde_gp . t r a i n _ t e s t _ s p l i t (
9 t r a i n _ r a t i o = t r a i n _ r a t i o ,
10 data_norma l i za t ion=data_normal iza t ion ,
11 seed=4
12 )

Listing 5.42: Split the data into training and test set.

In the next step, we decide the kernel type, likelihood function and model used in training. We can
retrieve the eigenpairs using the get_eigenpairs function as follows

1 from py t sp l . hogde_gp . k e r n e l _ s e r i a l i z e r impor t Ke r ne lSe r i a l i z e r
2 impor t gpytorch
3 from py t sp l . hogde_gp impor t ExactGPModel
4

5 # set the kerne l parameters
6 kerne l_ type = ” matern ” # kerne l type
7 data_name = ” fo rex ” # dataset name
8
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9 # get the e igenpa i rs
10 e igenpa i rs = hogde_gp . ge t_e igenpa i rs ( )
11

12 kerne l = Ke rne lSe r i a l i z e r ( ) . s e r i a l i z e (
13 e igenpa i rs=e igenpai rs ,
14 kerne l_ type=kernel_type ,
15 data_name=data_name
16 )
17

18 # choose a l i k e l i h o o d func t i on
19 l i k e l i h o o d = gpytorch . l i k e l i h o od s . GaussianLike l ihood ( )
20

21 # choose a model
22 model = ExactGPModel (
23 x_ t ra in ,
24 y_ t ra in ,
25 l i k e l i h ood ,
26 kernel ,
27 mean_function=None
28 )
29

30 # view model a r c h i t e c t u r e
31 p r i n t ( model )

Listing 5.43: Choose parameters for training and build the model.

1 ExactGPModel (
2 ( l i k e l i h o o d ) : GaussianLike l ihood (
3 ( noise_covar ) : HomoskedasticNoise (
4 ( raw_no ise_cons t ra in t ) : GreaterThan (1.000E−04)
5 )
6 )
7 (mean_module ) : ConstantMean ( )
8 ( covar_module ) : ScaleKernel (
9 ( base_kernel ) : MaternKernelForex (
10 ( raw_kappa_down_constraint ) : Pos i t i v e ( )
11 ( raw_kappa_up_constraint ) : Pos i t i v e ( )
12 ( raw_kappa_constra int ) : Pos i t i v e ( )
13 ( raw_mu_constraint ) : Pos i t i v e ( )
14 ( raw_mu_down_constraint ) : Pos i t i v e ( )
15 ( raw_mu_up_constraint ) : Pos i t i v e ( )
16 ( raw_h_const ra in t ) : Pos i t i v e ( )
17 ( raw_h_down_constraint ) : Pos i t i v e ( )
18 ( raw_h_up_constra int ) : Pos i t i v e ( )
19 )
20 ( raw_ou tpu tsca le_cons t ra in t ) : Pos i t i v e ( )
21 )
22 )

Listing 5.44: Output: model architecture.

We can train the models with the training data using the train function as follows
1 # t r a i n models
2 model . t r a i n ( )
3 l i k e l i h o o d . t r a i n ( )
4 hogde_gp . t r a i n (model , l i k e l i h ood , x_ t ra in , y _ t r a i n )

Listing 5.45: Training the model.

1 I t e r a t i o n 1/1000 − Loss : 5.387
2 I t e r a t i o n 2/1000 − Loss : 4.940
3 I t e r a t i o n 3/1000 − Loss : 4.554
4 I t e r a t i o n 4/1000 − Loss : 4.221
5 I t e r a t i o n 5/1000 − Loss : 3.936
6 I t e r a t i o n 6/1000 − Loss : 3.691
7 I t e r a t i o n 7/1000 − Loss : 3.482
8 . . .

Listing 5.46: Example training output.
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Finally, we can evaluate the model and make predictions using the predict function as follows using
the test data

1 # make p red i c t i o ns
2 hogde_gp . p r ed i c t (
3 model=model ,
4 l i k e l i h o o d = l i k e l i h ood ,
5 x_ tes t=x_tes t ,
6 y_ tes t=y_ tes t
7 )

Listing 5.47: Evaluating the model and making predictions using the test dataset with the trained model.

1 # met r i cs
2 Test MAE: 0.01143
3 Test MSE: 0.0019
4 Test R2 : 0.9997
5 Test MLSS: −3.0126
6 Test NLPD: −3.5197
7

8 # type
9 Mul t i va r ia teNorma l ( l oc : to rch . Size ( [ 1 6 8 ] ) )

Listing 5.48: Example prediction output.

To obtain the model’s learned parameters, users can use the get_model_parameters function as fol-
lows

1 # get the t r a i ned model parameters
2 hogde_gp . get_model_parameters ( )

Listing 5.49: Obtain model’s learned parameters.

1 { ’ raw_noise ’ : 0.00010002510680351406,
2 ’ raw_mu ’ : 0.6931471824645996 ,
3 ’ raw_mu_down ’ : 0.6705738306045532 ,
4 ’ raw_mu_up ’ : 2.148306369781494 ,
5 ’ raw_kappa ’ : 0.6931471824645996 ,
6 ’ raw_kappa_down ’ : 39.97739791870117 ,
7 ’ raw_kappa_up ’ : 0.02517639473080635 ,
8 ’ raw_h ’ : 0.6931471824645996 ,
9 ’ raw_h_down ’ : 31.798500061035156 ,
10 ’ raw_h_up ’ : 0.053553808480501175 ,
11 ’ raw_outputscale ’ : 11.325119972229004
12 }

Listing 5.50: Output: model’s learned parameters.

To build the Matérn kernel K1 and get the variance, we can use the build_matern_kernel. Figure 5.17
below shows the plot of the forex dataset with a training ratio of 20%.

Figure 5.17: Forex dataset with a training ration of 20% where the the dashed (solid) edges are used for training (testing).
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Next, we interpolate the forex market using the test set. The ground truth is shown in Figure 5.18a and
the prediction is shown in Figure 5.18b.

(a) Ground truth. (b) Mean, HC Matérn

Figure 5.18: Interpolating the forex dataset with the HC Matérn.



6
Configuration Management

In this chapter, we dive into the crucial part of software development, the configure management. This
includes version control, quality assurance, continuous integration and deployment (CI/CD) pipelines
and documentation. Several tools were used to ensure the library conforms to certain standards and
follows best practices.

6.1. Version Control
Version control is tracking and managing changes in a software repository. It keeps track of every
modification in the code base. If a mistake is made, the developers can always revert to the last
version and compare the changes. This helps them debug the code and fix the error, minimizing the
delivery time of the software.

GitHub1 is an online version control platform, that was used to develop the PyTSPL library. Its widespread
adoption in the software development community ensures familiarity and ease of use for developers.
Moreover, GitHub facilitates seamless collaboration through features like pull requests, issue tracking,
and code review, enabling efficient communication and coordination among contributors. Additionally,
its integration with CI/CD (GitHub Actions) tools streamlines the development process, enhancing
productivity and code quality [49].

6.2. Dependency Management
Dependency management is the practice of identifying, resolving, and patching dependencies within
a package. A dependency is an external package that your package relies on to function as intended.
Dependencies can range from using a small function to a whole module from an external package.
Managing these dependencies is crucial for your package for several reasons. Dependencies shorten
your development time by utilizing existing code and avoid reinventing the wheel. Managing these de-
pendencies ensures your package runs consistently across different environments without any issues.
It prevents conflicts between different versions of existing packages and mitigates introducing bugs in
your package due to incompatible versions between dependencies. Additionally, keeping dependen-
cies up to date is crucial, as existing packages regularly release a new version by patching any security
vulnerabilities. Updating the dependencies protects your package against potential attacks. A good
practice is to automate dependency management by utilizing tools and processes, which significantly
reduces manual effort and avoids any human error. The automation includes regularly checking for
updates, resolving conflicts and applying patches [50].

Poetry2 is a modern dependency management package for Python. It replaces multiple files like
setup.py, setup.cfg, and requirements.txt. It has gained popularity due to its simplicity and versatil-
ity. Poetry offers a simpler and user-friendly way to handle dependency management compared to

1https://github.com/
2https://python-poetry.org/
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pip or pipenv. Pip requires manual configuration to be used at maximum efficiency [51]. Poetry has
an advanced dependency resolution mechanism and can handle dependency conflicts more effectively.
It has a built-in virtual environment which is easily configurable, whereas pip requires venv to be in-
stalled and configured. The tool also facilitates the publishing of packages to Python Package Index
(PyPI or private repositories using simple commands. Moreover, Poetry has a large community that
actively develops and maintains the package by constantly fixing bug fixes and updating the function-
ality. Also, Poetry can be used with other tools, such as linters and pre-commit hooks by configuring
the pyproject.toml file without the need for any external tools.

6.3. Quality Assurance
In this section, we dive into the crucial part of software development, Quality Assurance (QA) within the
context of the developed library. QA is essential for software development and ensures that the final
product meets the specified requirements and adheres to the highest performance, reliability, and us-
ability standards. QA is a systematic and proactive approach that involves ensuring the software meets
quality standards and user expectations. It comprises processes, techniques, and activities designed
to prevent, detect, and correct defects, errors, or inconsistencies, ensuring optimal performance and
reliability [52]. Through rigorous testing and static code analysis, QA identifies and fixes defects. By im-
plementing strong QA processes, teams improve product reliability, performance, and user satisfaction,
building trust in the software.

6.3.1. Testing
Software testing is the process of verifying and validating to see if the software is doing what it is
supposed to do. It prevents future bugs and improves the performance. Delivering software with
defects can significantly damage a brand’s reputation, leading to frustrated users and potential loss
of users. When the software fails to perform as intended, users lose trust and may seek alternative
solutions elsewhere [53]. For quality assurance purposes, the testing of PyTSPL was started early. By
testing at an early stage of software development, we identify bugs early so they can be fixed before
they cause even larger bugs.

PyTest3 is a Python framework to write and execute tests, that can scale and support complex functional
testing of libraries. This framework was used to write tests for the PyTSPL library. Once the tests are
run, we can see the test coverage. The test coverage measures the amount of testing performed by a
set of tests. It informs us which lines of code are executed (tested) and which require additional tests.
Identifying a quantitative measure of test coverage helps us indirectly measure the quality of the code.
After extensive research, PyTest was chosen as the framework used for testing. It is simple to use,
can run a specific subset of tests, and is open-source, which means it has robust community-driven
support [54].

The test coverage of PyTSPL was above 90 percent at the end of the thesis, which is considered a
high test coverage for a software library. This ensures that the majority of the codebase is tested and
the reliability of the library increases. It helps identify and fix bugs in the early stage of the develop-
ment process, leading to a more stable application. Additionally, maintaining and expanding the code
becomes much easier. The future contributors of the library can refactor or add new features with
confidence, knowing that the existing functionality is well-tested and any new potential issues will be
quickly identified by the test suite.

Codecov4 was used to report the test coverage after each push to the master branch. It is an all-in-one
code coverage reporting solution that helps to visually analyze the code coverage of the codebase and
improve it over time. Each time it is updated, it issues a badge which is displayed in the README of
the repository as shown in Figure 6.1 below.

Figure 6.1: Codecov code coverage badge.

3https://docs.pytest.org
4https://about.codecov.io/
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6.3.2. Static Code Analysis
Static code analysis is a method to debug code by examining it without actually executing the program.
The process provides an understanding of the code structure to ensure the code adheres to indus-
try standards. The method is good at finding issues such as programming errors, coding standing
violations, syntax violations and security vulnerabilities [55].

A way to automatically analyze your source code for programmatic and stylistic errors is by using
linters. Flake85 is a well-know linter used for Python projects. It is a highly extensible tool and can be
integrated easily into most Python environments. It applies code style checking, syntax checking, and
code complexity checking. The tool ensures you adhere to the best development practices in your code
base. A .flake8 file allows you to configure the tool’s behaviour to your specific requirements by defining
which rules should be enforced and which ones can be ignored. This configuration file empowers you
to finely tune the linting process according to your project’s standards and preferences [56].

6.4. CI/CD Pipelines
Continuous integration and development (CI/CD) pipelines are automated workflows that streamline
the process of integrating code changes into a repository, testing those changes, and deploying them
into development, test and production environments. It’s a practice followed by developer teams to
improve software delivery through the software development life cycle via automation. Automating
CI/CD pipelines enables the development team to produce code of higher quality in a faster and more
secure way.

Continuous Integration (CI): CI is the practice of integrating code changes regularly into your main
branch, triggering an automated build and test process each time to verify that the new code doesn’t
introduce bugs into the code base. With CI, bugs and security vulnerabilities can be identified and fixed
at an earlier stage in the development process [57]. Common stages for the CI pipeline include build,
static code analysis and running the automated tests.

Github Actions is a CI/CD platform that allows you to automate build, test and deployment pipelines
through workflows. The workflows can be created for every push or pull request to your repository.
Additionally, you can create workflows that add appropriate labels whenever someone opens a new
issue in the repository. The workflow can contain one or more jobs that run sequentially or parallel to
other jobs. The jobs run inside a virtual machine or a container. The workflows are configured in a
YAML file under .github/workflows in your repository and are triggered by an event. The workflow
can also be triggered manually or at a defined schedule [58].

The CI pipeline workflow is illustrated in Figure 6.2 below. The pipeline is triggered by a push to the
dev branch or a pull request to the main branch. The workflow consists of several key steps:

1. Build: The project is built by setting up the appropriate Python version and installing the neces-
sary packages.

2. Lint: Static code analysis is performed to ensure adherence to best coding practices and to
identify potential vulnerabilities.

3. Test: Automated tests are executed, and a test coverage report is generated. This report is then
uploaded to Codecov for coverage analysis.

4. Build documentation: The documentation and tutorials are built and uploaded to Read the Docs
for public access.

5https://flake8.pycqa.org/en/latest/
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Figure 6.2: Github Actions CI pipeline.

Continuous Deployment (CD): CD enables development teams to deploy their code or applications
automatically without any human intervention in the development, test or production environments. This
automation reduces manual work, minimizes the risk of human error, and accelerates the delivery of
new features or fixes to the end-users. While it’s possible to do CI without CD, it’s not possible to do CD
without having CI in place. Deploying changes directly to a production environment without adhering to
fundamental CI principles, such as integrating changes into a main branch or running automated tests
before deployment, poses substantial risks. Such actions can lead to disruptions in the production
environment, resulting in application malfunctions and user dissatisfaction, ultimately leading to the
potential loss of users [59].

The CD pipeline workflow is illustrated in Figure 6.3 below. The pipeline is triggered on a release tag.
The workflow consists of several key steps:

1. Build: The project is built by setting up the appropriate Python version and installing the neces-
sary packages.

2. Publish the package to PyPI: The package is built and published to PyPI. Publishing requires
the PyPI access token from a maintainer or owner of the project on PyPI.

Figure 6.3: Github Actions CD pipeline.

6.5. Documentation
Documentation plays an equally vital role, serving as a comprehensive guide that outlines the function-
alities, features, and usage instructions of the software. By paying close attention to these aspects,
software development teams can improve their product quality, simplify development workflows, and
facilitate effective communication among team members and users.

Building documentation. Sphinx6 is a Python package to build documentation for a custom imple-
mented library. Under the hood, it takes your reStructuredText (rst) or Markdown (MD) documents
and converts them into HTML files or a PDF file. Many well-known libraries such as NumPy, SciPy and
scikit-learn document their library using Sphinx. The library leveraged Sphinx to build the documen-
tation and tutorials.

Hosting documentation. Once the documentation is built, a hosting platform that seamlessly inte-
grates into our workflow is essential. Read the Docs7 is an excellent tool for documentation versioning
and hosting. It simplifies software documentation by treating it like code, making it easier to maintain.

6https://sphinx-rtd-tutorial.readthedocs.io/en/latest/
7https://docs.readthedocs.io/en/stable/

https://docs.readthedocs.io/en/stable/
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Additionally, it can host multiple versions of the documentation, such as version 1.0 and 2.0, by directly
pulling them from Git.

Figure 6.4: Home page of the PyTSPL documentation hosted by Read the Docs.

The documentation also includes an installation guide, a quick start section, and tutorials to help users
become familiar with the library’s functionalities. For future work, the aim is to add additional tutorials.

6.6. Contributing and Changelog
Contributing: The CONTRIBUTING.md file in the repository provides comprehensive instructions on how
to contribute to the library. It includes detailed guidelines on how to fork the repository, create a new
branch, make changes, write and run tests, update documentation, and submit a pull request. These
instructions ensure that contributors can easily follow a structured process to fix bugs, add new features,
and improve existing functionality.

By following the guidelines, contributors can:

• Fork the Repository: Create a personal copy of the repository to work on.
• Create a New Branch: Work on a separate branch to keep changes organized and isolated.
• Make Changes: Improve or add functionality in the pytspl folder, ensuring all changes are well-
documented.

• Write and Run Tests: Write unit tests to cover new code and run existing tests to maintain code
quality.

• Update Documentation: Keep the README.md and CHANGELOG.md up to date with relevant changes
and new features.

• Submit a Pull Request: Follow a streamlined process to submit changes for review and integration
into the main codebase.

Additionally, the CONTRIBUTING.md file encourages contributors to add examples or tutorials in the
notebooks folder, demonstrating the usage of new features. This comprehensive guide lowers the
barriers to contribution, fostering an inclusive and collaborative open-source community. Over time,
this collaborative effort helps the library evolve and improve, benefiting all users. By adhering to these
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guidelines, contributors ensure their contributions are effectively integrated, maintaining the library’s
robustness and reliability.

Changelog: A CHANGELOG.md file is used to keep a chronological record of all notable changes made to
a project. This file is particularly useful in the context of software development as it provides a clear and
concise history of changes, improvements, and bug fixes, making it easier for users and developers to
understand the evolution of the project [60].

Here are the primary purposes of a CHANGELOG.md file:

1. Track Changes: It provides a detailed log of what has been added, changed, fixed, deprecated,
removed, and improved in each version of the project.

2. Communication: It communicates to users and contributors what has been done in each release.
This transparency helps users understand new features, bug fixes, and any breaking changes that
might affect their use of the software.

3. Reference for Developers: It serves as a reference for developers to understand the history of
the project, aiding in debugging and understanding the context of changes.

4. Release Notes: It can be used to generate release notes for new versions of the software, sum-
marizing the key changes and improvements.

5. Project Management: It helps in managing the project by keeping a structured record of progress
and development activities over time.



7
Library Usability Evaluation

One of our primary goals was to create a usable library that would facilitate ease of use to the users
and integration for developers. To evaluate the usability of the library, a questionnaire was designed to
assess how well new users adapt to and utilize the functionality.

At the end of the thesis, eight users had answered the evaluation. The users can be divided into three
groups.

• Group 1: The first group consisted of people who were unfamiliar with the field of graphs and
learning on graphs, especially SCs. They have a computer science background and have been
using various libraries throughout their academic and professional lives. Furthermore, they have
at least some sort of industrial experience and are currently working in the industrial sector.

• Group 2: The second group consisted of people who are familiar with graphs and are doing their
PhD in a similar subfield. They also have a computer science background and have been in
academia for the most part.

• Group 3: The third group consists of people who have closely been working with the development
of PyTSPL, and are educated individuals in the field of SCs and learning on SCs with various
published journals and papers.

The questionnaire evaluated four key sections:

• Installation: This section assessed the ease of installing the library, including the clarity of in-
structions, the simplicity of the process, and any issues encountered during installation.

• Quick Start: This section focused on the initial setup and use of the library. It evaluated how easily
users could get started, including their ability to understand and execute the basic functionality
without extensive help.

• Tutorials and API Reference: This section examined the quality and comprehensiveness of the
tutorials and API reference documentation. It looked at how well the users found it useful.

• General Feedback: This section gathered users’ overall impressions and experiences with the
library. It included open-ended questions to capture any additional comments, suggestions for
improvements, and feedback on aspects not covered in the previous sections.

7.1. Installation
This section evaluates the installation process of PyTSPL. To evaluate the installation process, users
were asked multiple questions with an open feedback form at the end.

Installation guide is available. Users were asked if the installation guide is available in the provided
documentation. The evaluation result of the question is shown in Figure 7.1 below.
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Figure 7.1: Question 1: Installation guide is available.

All of the users agreed that the installation guide is available in the provided documentation.

Installation guide is easy to follow. The second question focused on the clarity of the user guide,
evaluating how well the instructions were presented and whether users could follow them without con-
fusion. The evaluation result of the question is shown in Figure 7.2 below.

Figure 7.2: Question 2: Installation guide is easy to follow.

All bar graphs use a scale from 1 to 5, where 1 represents ”strongly disagree” and 5 represents ”strongly
agree”. The majority of the users were happy with the clarity of the installation guide and considered
them easy to follow. One of the users suggested adding the instructions for setting up the virtual
environment, which was later added to the installation guide.

Installation setup completed successfully. The third and fourth questions asked users if they en-
countered any errors during the installation and whether the installation setup was completed success-
fully. The evaluation results of the questions are shown in Figure 7.3 and 7.4 below, respectively.

Figure 7.3: Question 3: Did you encounter any errors during the installation?
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Figure 7.4: Question 4: Installation setup was completed successfully.

None of the users encountered any errors during installation and the installation setup was completed
successfully.

Additional feedback. Most of the users gave positive feedback regarding the installation process.
One of the users suggested only installing dependency packages when they are needed. This was a
valuable suggestion and was tackled.

7.2. Quick Start
This section evaluates the quick start process of PyTSPL. To evaluate how quickly users can get started
with the library, users were asked the following questions.

Quick start guide is available. Users were asked if the quick start guide is available in the provided
documentation. The evaluation result of the question is shown in Figure 7.5 below.

Figure 7.5: Question 5: Quick start guide is available.

All of the users agreed that the installation guide is available in the provided documentation.

Quick start guide is easy to follow. The sixth question focused on the clarity of the quick start
guide, evaluating how well the instructions were presented and whether users could follow themwithout
confusion. The evaluation result of the question is shown in Figure 7.6 below.
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Figure 7.6: Question 6: Quick start guide is easy to follow.

The majority of the users were happy with the clarity of the quick start guide and considered them easy
to follow. A couple of users didn’t strongly agree, which is a clear indication that the quick start guide
can be improved. The goal is to add additional documentation and examples that would introduce
users to the basic functionality of the library.

Quick start completed successfully. The seventh and eighth questions asked users if they encoun-
tered any errors during the quick start and whether the quick start setup was completed successfully.
The evaluation results of the questions are shown in Figure 7.7 and 7.8 below, respectively.

Figure 7.7: Question 7: Did you encounter any errors during the quick start?

Figure 7.8: Question 8: Quick start setup was completed successfully.

The majority of the users were able to complete the quick start process without issues, however, one
of the users encountered errors during the quick start. After investigating the problem, the user en-
countered a problem that was not related to the setup of the library. The problem was related to their
environment which was not setup correctly. Due to this problem, they were encountering import errors.
Once the environment was set properly, they were able to complete the quick start without any further
issues. This was another reason why the instructions to setup the virtual environment were added to
the installation guide.
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Quick start examples were helpful. The users were asked if the quick start examples were helpful.
The evaluation result of the question is shown in Figure 7.9 below.

Figure 7.9: Question 8: Were the examples provided in the quick start guide helpful?

While most of the users found it helpful, a few users didn’t strongly agree. After investigating the
matter in terms of the groups, the hypothesis is that Group 2 users don’t have any background on
SCs and require more documentation on what the quick start examples do. A quick introduction to
SCs and examples can be added to provide people with more background. While all the Group 2
users found the quick start helpful, Group 3 users didn’t and suggested adding additional examples
and documentation. Since they have a strong background regarding the domain, it would be useful to
follow their suggestions and improve the quick start examples.

7.3. Tutorials and API Reference
This section evaluates the tutorials and documentation of PyTSPL. This includes clarity of instructions,
comprehensiveness, usefulness of examples and ease of navigation. To evaluate the usefulness of
the tutorials and documentation, the users were asked the following questions.

Tutorials. The users were asked if the tutorials provided a good starting point for new users to explore
the different functionalities of the library. The evaluation result of the question is shown in Figure 7.10
below.

Figure 7.10: Question 9: The tutorials provide a good starting point for new users to explore the different functionalities of the
library.

Most users found the tutorials helpful for new users of the library. However, users in Group 3 did not
strongly agree with this assessment. The hypothesis is that Group 3 users are seeking improvements
in the tutorials, specifically requesting more comprehensive documentation and additional examples to
enhance their learning experience. This is valuable feedback and to improve the completeness of the
library, this is an aspect to improve.

API Reference. The users were asked if the API Reference provides a useful tool to explore and look
up documentation for different functionalities. The evaluation result of the question is shown in Figure
7.11 below.
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Figure 7.11: Question 10: The API Reference provides a useful tool to explore and look up documentation for different
functionalities.

Similarly, most users found the API Reference as a useful tool to explore and look up documentation.
In the open feedback, most of the users provided positive feedback regarding the tutorials and API
references. Once again users from Groups 1 and 2 thought of the tutorials and API reference as useful
and well-documented, while the users from Group 3 found it incomplete. Since it is an iterative process,
the tutorials and API References will be improved over time.

7.4. Overall Feedback
This section evaluates the overall experience of the users after initially using the library. At the end of
the evaluation, users were asked about their overall experience. The evaluation result of the question
is shown in Figure 7.12 below.

Figure 7.12: Question 11: Overall user experience of the library.

Users were also asked if they had any additional comments or suggestions for improving the library.
Overall, users had a pleasant experience. Some valuable feedback was provided to decrease the
number of installed packages and add additional examples to the tutorials. These suggestions are
considered and will be implemented before the end of the thesis.



8
Conclusion

8.1. Thesis Summary
Simplicial complexes (SCs) have shown remarkable performance in capturing complex graph struc-
tures where the signals naturally associate with the edges or sets of nodes (triangles). As the field of
SC is evolving at a fast pace, a unified process to process these structures was halting the responsibility
of research advances. In this master’s thesis, we introduced a Python library PyTSPL to bridge the gap
between research and experiments. The library enables direct interactions with higher-order networks,
specifically SCs. The library streamlines the workflow for loading datasets defined over a network,
building SCs, and manipulating, analyzing and visualizing them. Furthermore, it offers functionality for
advanced signal processing techniques such as eigendecomposition, Hodge decomposition, simplicial
convolutional filters, simplicial trend filtering and Hodge-compositional edge Gaussian processes. For
each of the modules, implementation details and pedagogical examples are provided. Additionally, the
performance of each module is evaluated using different datasets. We showed how the Chebyshev
polynomial filter design has a superior performance compared to LS-based and grid-based filter designs
on large network datasets. We evaluated the performance of simplicial trend filtering using different
regularization techniques for denoising and interpolation tasks. Further, we analyzed the performance
of Hodge- compositional edge Gaussian processes for modelling functions defined over the edge set
of simplicial 2- complexes. In Chapter 6, we delve into the software development process of the library,
adhering to the best software development practices throughout the development cycle. We delved
into each process and provided detailed explanations of why each step is necessary. For each phase,
we discussed the importance of following best practices to ensure code quality, maintainability, and
scalability. We also highlighted the benefits of using specific tools and methodologies, and how they
contribute to the overall success of the software development lifecycle. In Chapter 7, we assessed the
usability of the library for new users. This evaluation helped us identify potential issues and areas for
future improvement, ensuring the library meets user needs more effectively. We concluded that PyTSPL
serves as a foundational backbone for the future development of additional functionalities on SCs and
other higher-order networks. Its comprehensive feature set provides a solid platform for extending ca-
pabilities, enabling researchers and developers to build upon and enhance the library to meet evolving
needs in these advanced areas of study.

8.2. Future Work
PyTSPL is the first Python library that unifies the workflow of loading, building, manipulating, visualizing,
and applying advanced signal processing techniques and learning on SCs. This is only the first step
and there are still many ways this library can be improved. In this section, we will touch on a few which
directly relate to our work.

Improving tutorials and documentation. One of the critical areas for improvement is the refinement
of tutorials and documentation. While the current documentation provides a solid foundation, expanding
it with more comprehensive examples and detailed explanations will help new users understand and
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utilize the library more effectively. This includes step-by-step tutorials for each module with additional
documentation.

Adding additional functionalities. Expanding the library’s functionality is another important direction
for future development. This could include integrating more advanced signal processing techniques,
supporting a broader range of higher-order networks, and adding tools for specific applications such
as analysis and machine learning on SCs. These additions will make PyTSPL even more versatile and
powerful for researchers and developers.

Efficiency. Enhancing the efficiency of the library is crucial for handling large datasets and complex
computations. Optimizing the existing algorithms, improving memory management, and leveraging
parallel computing techniques can significantly boost performance. This will enable PyTSPL to process
larger datasets more quickly and efficiently, improving the overall user experience.
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