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Abstract
We present a powerful approach for learning about uncomputability and undecidability in information
theory. Our approach is to use automata from automata theory that have undecidable properties to
construct channels for which an information-theoretic quantity is uncomputable or undecidable. We
demonstrate this approach by showing that, for channels with memory, capacity is uncomputable and
information-stability is undecidable.
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1 Introduction
Information theory encompasses the study of communication channels. A communication channel is
any medium through which information can pass; for example, a telephone line, or an optical fiber. In
general, communication channels can be put into two categories: channels that change every time they
are used, and channels that do not. The former are known as channels with memory, because they
way they change depends in general on the input they received in past uses; the latter are known as
memoryless channels.

Suppose we are given a communication channel W that we are told we can use a limited number of
times. A natural question we might ask is the following: What is the maximmum amount of information
we can transmit over W if we use it as efficiently as possible — if we do not send any unnecessarily
redundant information? In the limit in which the number of times we are allowed to use the channel
approaches ∞, the maximum amount of information that we can transmit per channel use is known as
the channel’s capacity. The capacity of memoryless channels is given by the formula [23]

C(W) = max
X

I(X;Y ), (1)

where I(X;Y ) (see Section 2.2) is called the mutual information, and represents the amount of
correlation between the random-variable input to the channel, X, and the random-variable induced at
the output of the channel, Y . As given by (1), the quantity C(W) is known to be efficiently computable:
given any memoryless channel, we can use the so-called Blahut-Arimoto algorithm [3, 1] to efficiently
approximate C(W) to within any desired precision.

In terms of computability of capacity, the situation for channels with memory is different: It has
long been unknown whether an algorithm like the Blahut-Arimoto algorithm exists, and, hence, whether
capacity is computable. Although algorithms have been found that approximate the capacity of channels
with memory ([19, 8, 22, 2, 24, 16, 14, 21, 27, 10] and more recently [28]), these algorithms either only
work for special cases or cannot guarantee the precision of the approximation.

The aim of this paper is to present a powerful approach to studying the decidability and computability
of information-theoretic properties of communication channels with memory. And as a demonstration of
this approach, we will resolve the aforementioned open question: we will show that capacity is, in fact,
uncomputable for channels with memory. A second demonstration of our approach will be to show that
another information-theoretic property of channels, called information-stability, is undecidable.

The channels we use to prove our theorems are instances of what are known as finite-state machine
channels (FSMC), which are channels whose behavior is dictated by a finite-state automaton. More
precisely, the memory of an FSMC is modeled by the state of the finite-state automaton, and the way
the memory of the channel changes after each input follows how the underlying automaton transitions
between its different states in response to different inputs. This is the essence of our approach: by
choosing the underlying automaton to be one that has a certain undecidable property, we can construct
a channel that has an uncomputable or undecidable property.
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2 Communication channels

Mathematically, a communication channel W is a sequence of conditional probability distributions:

W = (W1(y1|x1),W2(y2|x2),W3(y3|x3), . . .) . (2)

The ith conditional probability distribution in the sequence determines the probability that the ith
output of the channel will be yi if the ith input was xi. For memoryless channels, because the channel
does not change from one input to another, all the conditional probability distributions in the sequence
are equal: W1(y|x) = W2(y|x) = · · · = W (y|x). On the other hand, for channels with memory the
distributions are not in general equal, because the ith conditional probability distribution depends on
the state of the memory in the ith use.

The set of input symbols that can be input to a channel is its input alphabet; the set of symbols
that it can output is its output alphabet. For example, a channel with input alphabet {0, 1} and output
alphabet {0, 1, 2} can receive 0 or 1 at the input and produce 0, 1, or 2 at the output. In addition to
input and output alphabets, channels with memory have a set of memory states.

2.1 Finite-state machine channels (FSMC)

Finite-state machine channels (FSMC) are a type of channels with memory whose memory is modeled by
a finite-state automaton. Let X , Y, and S denote finite sets that represent the FSMC’s input alphabet,
output alphabet, and the set of states, respectively. An FSMC can be fully characterized by a set of
conditional probabilities {p(y, s|x, s′)}s,y,x,s′ , where each p(y, s|x, s′) is the probability that the FSMC
is going to output y and transition to the state s given that the input was x and it was in the state s′,
where s, s′ ∈ S, x ∈ X , and y ∈ Y. The sequence that determines the action of the channel (Eq. (2))
then satisfies Wi(yi|xi) ∈ {p(y, s|x, s′)}s,y,x,s′ .

2.2 Mutual information and information-stability

2.2.1 Mutual information

For any communication channel, the information transmission capability of the channel can be quantified
in terms of the amount of correlation between what we input to the channel and what it outputs. This
correlation is captured by the concept of the mutual information I(X;Y ) between a random variable
X that we input to the channel and the random variable Y that the channel outputs. The mutual
information appears in formulas for the capacity, like Eq. (1) and Eq. (5).

Mutual information is defined as follows. For any two random variablesX and Y with joint probability
distribution pX,Y (x, y), define the random variable iX,Y (x; y) as

iX,Y (x; y) ≡ log
p(y|x)

p(y)
.

The random variable iX,Y (x; y) is called the information-density, and its expected value is the mutual
information I(X;Y ) between X and Y :

I(X;Y ) ≡ 〈iX,Y (x; y)〉XY =
∑
x,y

p(x, y) log
p(y|x)

p(y)
.

The mutual information is also given by the following expression in terms of the Shannon entropy:

I(X;Y ) = H(Y )−H(Y |X),

where, for any sequence of random variables Xn, H(Xn) – the Shannon entropy of Xn – is the
expected value of hXn(xn) ≡ − log(pXn(xn)).
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2.2.2 Information-stability

There are several formulas for computing the capacity of communication channels. Although all of them
involve mutual information, the formula to be used to compute the capacity of a given channel depends
on whether the channel is information-stable. Here is a rough intuition for when a channel is information-
stable. Suppose there is a store that sells channels. In the store there are boxes arranged on the shelves,
and all of them contain the same channel W. Someone goes into the store, buys one instance of W,
takes it home and starts using it. After a while of using the channel, the owner gets a feeling for the
"usefulness" of the channel for transmitting information – how often the channel successfully passes the
input to the output. If this "usefulness" is equal to the average "usefulness" of all the other W channels
in the store, then W is information-stable.

To illustrate this intuition, here is an example of a channel that is NOT information-stable. Consider
a channel W that, when the "on" button is pressed, becomes an noiseless channel with probability 1/2
or a completely noisy channel with probability 1/2, and stays like that forever. Suppose a channel store
is stocked with this channel W. A customer comes in and buys one instance of W. On the first use, the
channel, unbeknownst to the lucky customer, switches to being a forever noiseless channel. After using
the channel for a while and seeing how the channel is perfectly useful, this person might guess that all
the store only sells perfect channels. However, this guess would be misplaced, because approximately
half of channels in the store, when used, are completely noisy and useless. Since the usefulness of one
instance of W leads to a wrong guess on how useful, on average, a store-bought channel W is going to
be, W is not an information-stable channel.

This intuition is captured precisely by the following mathematical definition of information-stability.

Definition 2.1. (Information-stability [5, 25]) A channel W is said to be information-stable if and only
if there exists a sequence of inputs {Xi}∞i=1 that satisfies the condition that, for any λ > 0,

lim
n→∞

Pr
[∣∣∣∣ iXn,Wn(Xn;Yn)

supXn I(Xn;Yn)
− 1

∣∣∣∣ > λ

]
= 0. (3)

The random variable iXn,Wn(Xn;Yn) represents the "usefulness" of a single instance of W that a
customer takes home from the store in the example above; the term supXn I(Xn;Yn) represents the
average usefulness of all the channels in the store. The information-stability condition (3) then just
means the following: in the limit of infinitely many uses, the probability that the usefulness of a single
instance of the channel is different from the average usefulness of all the channels in the store is 0.

Another way of saying this is that a channel is information-stable if and only if the input process that
maximizes the mutual information and the process it induces at the output of the channel both behave
ergodically. It is because of this ergodicity that the random variable iXn,Wn(Xn;Yn) converges (for
the right input process) by the law of large numbers to its average supXn I(Xn;Yn), thereby satisfying
condition (3).
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3 Statement of the results and sketch of their proofs
Now that we have formally defined what communication channels are — basically a sequence of condi-
tional probability distributions (Wi(xi|yi)) —, we are ready to state our results.

In a nutshell, our results are the following: The first result is that there exist channels with memory
whose capacity is uncomputable; the second result is that there exist channels with memory whose
information-stability is undecidable.

Formally, our results are the following.

Theorem 3.1. (Capacity is uncomputable) Any function that takes as input the probability assignments
{p(y, s|x, s′)}s,y,x,s′ = {p(y|x, s′)p(s|x, s′)}s,y,x,s′ of an information-stable finite-state machine channelW
with input, output, and number of states point-wise equal or larger than (7, 2, 30) and outputs a rational
number c such that the capacity C(W) satisfies

|C(W)− c| < 1/4

must be uncomputable.

Theorem 3.2. (Information-stability is undecidable) Given the probability assignments {p(y, s|x, s′)}s,y,x,s′ =
{p(y|x, s′)p(s|x, s′)}s,y,x,s′ of an finite-state machine channel W with input, output, and number of states
point-wise equal to or larger than (7, 2, 30), it is undecidable whether W is information-stable or not.

To arrive at the above results, we use FSMCs whose memory is based on finite automata that have
been shown in the automata theory literature to have an undecidable property. Let us be more specific:
The automata we use are called probabilistic finite automata (PFA). These are finite automata for which
the transitions between the different states are probabilistic. Given a PFA, its so-called value is the
supremum – over all possible strings of input symbols – of the probability that the automaton ends up
in a certain state.

In Ref. [7], a family of PFAs Bα was given for which it is undecidable whether the value is 1 or α,
with α ∈ [1/2, 1). In Section 4.3 we update the construction of Bα to reduce its number of states; we
call the new construction B′α. With B′α in hand, we can construct an FSMC as follows (full details in
Section 2.1). In each use, we can input a symbol from {a, b, c, c∗, 0, 1, rt} into the channel input. A PFA
B′α has two types of states, accepting states and non-accepting states. Right after a symbol is input, two
things happen. The first thing that happens is that the channel checks if B′α is in an accepting state or
a non-accepting state; if non-accepting, the channel outputs 0 or 1 uniformly at random; if accepting,
the channel checks if the input was 0 or 1, or if it was one of the other symbols; if 0 or 1, the channel
passes the input to the output as is; if one of the other symbols, the channel outputs 0 or 1 uniformly
at random. The second thing that happens is, after the channel produces an output, B′α transitions to
a new state depending on the input.

This particular channel construction allows us to relate the expected information transmission capa-
bility of any of these channels to the value of the underlying PFA (Lemma 6.7):

lim
n→∞

1

n
sup
Xn

I(Xn;Yn) = valB′α . (4)

The expression on left-hand side of this equation, as it turns out [26, 5], gives the capacity of information-
stable channels; i.e, for information-stable channels

C(W) = lim
n→∞

sup
Xn

1

n
I(Xn;Yn). (5)

Using this fact, we connect the undecidability in valB′α to the capacity of our channels by showing
that those of our channels whose memory is modeled by PFAs B′α with α = 1/2 are information-stable
(Lemmas 7.1 and 7.2). Upon doing so, we will be able to write

C(W) = lim
n→∞

1

n
sup
Xn

I(Xn;Yn) = valB′
α=1/2

. (6)

Then, since it is undecidable whether valB′α = α = 1/2 or valB′α = 1, it is undecidable whether C(W) = α
or C(W) = 1; this implies that C(W) is uncomputable to any precision < 1−α

2 = 1/4, proving our first
result.
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As for the second result (Theorem 3.2), we prove it as follows. In Section 7 (Lemmas 7.1 and 7.2)
we prove that the channels built on top of some PFAs B′α are information-stable when B′α has value 1
and is not information-stable when B′α has value α. Then, since it is undecidable whether valB′α = α or
valB′α = 1, it is undecidable whether these channels are information-stable or not.
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4 Probabilistic finite automata (PFA)

It is time to lay down the technical foundations we will need to build our results. This section is devoted
to reviewing PFAs in general (Section 4.1), reviewing the PFA family Bα from Ref. [7] in particular
(Section 4.2), and finally presenting a PFA family B′α with a smaller number of states than Bα (Section
4.3); recall that B′α is the family of PFAs with an undecidable property on which our channel construction
(next section) is based. This section can be skipped on first reading. However, the reader is advised to
read the statement of Lemma 4.8 and to look at the design of the PFA Bα in Fig. 2, as they will be
referred to throughout the rest of the text.

4.1 Definition

A PFA P is given by a tuple P = (Q,N ,K,v,F), where Q is a finite set containing the states of P, N
is a finite set containing the input alphabet of P, K is a finite set containing stochastic matrices – one
matrix for every input symbol in N–, v is a vector containing the initial probability distribution over
the states Q, and F ⊂ Q is the set of accepting states of P.

We denote by p[qa
w−→ qb] the probability that the PFA transitions from the state qa to the state qb

upon reading the input symbol w; this probability is given by

p[qa
w−→ qb] = πTqbKwπqa ,

where πq is a column vector with one in the position of the state q and zeroes elsewhere, and Kw ∈ K
is the stochastic transition matrix corresponding to the symbol w. Using this notation, the probability
that a PFA transitions from qa to qb upon reading the word w ≡ w1 . . . w|w| ∈ N |w| is given by

p[qa
w−→ qb] = πTqbKw|w| · . . . ·Kw1πqa .

We denote by valP(w) the probability that the PFA P accepts upon reading the word w: the
probability that P starts from the initial probability distribution v and, upon reading w, ends up in any
of the accepting states F of P. valP(w) is given by

valP(w) =
∑
F∈F

πTFKw|w| · . . . ·Kw1
v.

The supremum of acceptance probabilities over all input words to a PFA P is called the value of P,
and is denoted by valP :

valP ≡ sup
w∈N∗

valP(w),

where N ∗ is the set of finite length words in N .
In our diagramatic representation of the different automaton constructions (Fig. 1, Fig. 2, and Fig.

4) we will adopt the following conventions. A state is represented by a circle. If the state is accepting,
the circle has a double line around it. Initial states are represented by circles to which origin-less arrows
point. If the automaton transitions from a state qa to a state qb with probability p upon reading the
letter w, this transition is depicted on the diagram by an arrow w,p−−→ that points from qa to qb. To
avoid clutter, we do not show self-loops that occur with probability 1, and if a transition occurs with
probability 1 but is not a self-loop we drop the probability and simply write w−→. Additionally, if all input
symbols trigger the same transition with the same probability p we simply depict that transition with
p−→.

Moreover, if after the first use one of the PFAs in this paper started in the upper(lower) branch, i.e.
started in the state q1(q4) shown on the figures, we will use valup(low)(w) to denote the probability that
the PFA ends up in an accepting state when the word w is read. It will be clear from context which
PFA we are talking about.
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(a) (b)

Figure 1: The PFA construction on the left (with α fixed to 1/2) is originally due to [7]. Note that this
construction has 6 states. The PFA A from Lemma 4.1 is embedded in the construction on the left to
give the construction on the right, which we refer to as Bα. Note that this construction has 6 + 2nA,
where nA is the number of states of A and in this paper will take values 20, 25, 30, . . ., according to
Lemma 4.3. The symbol c in Bα takes Bα from A to a state outside A; the double line denotes that
the transition was from an accepting state in A and the dashed line denotes that the transition was
from a non-accepting state. Besides the symbols shown on the figure, Bα has a reset symbol which takes
it to q1 if it started in upper branch and to q4 if it started in the lower branch. Transitions inside A
are triggered by the symbols 0 and 1, which are the same symbols that constitute the channels’ output
alphabet. t is a rational number that is chosen such that the symbol c causes Bα to transition from A
to q1(q5) with maximum probability valA + t(1− valA). In particular, t is chosen to be a fixed number
such that the symbol c causes Bα to transition from A to q1(q5) with maximum probability > 1/2 when
valA > δ and with maximum probability ≤ 1/2 when valA ≤ δ, where δ is a rational number such that
it is undecidable whether valA > δ or valA ≤ δ. This is needed for the proof of Lemma 4.7. The PFA
Bα has input alphabet {a, b, c, 0, 1, rt}: 6 symbols.

13



4.2 The PFA family Bα
In Ref. [7], the authors presented a family of PFAs for which it is undecidable whether the value is 1
or α, where α is some number such that 0 < α < 1. To construct Bα, the authors of [7] start with the
PFA shown in Fig. 1(a), which they show (see Lemma 4.4) has value 1 when x > 1/2 and value α when
x ≤ 1/2. To get Bα, the PFA in Fig. 1(a) is then modified such that it is effectively undecidable whether
x > 1/2 or x ≤ 1/2. This is accomplished by embedding another PFA due to Hirvensalo [13] – which
we refer to as the PFA A – in the PFA in Fig. 1(a), in a way such that, for some rational number δ,
valA > δ has the same effect as x > 1/2 and valA ≤ δ has the same effect as x ≤ 1/2. This produces the
PFA Bα shown in Fig. 1(b). Because A is such that it is undecidable whether valA > δ or valA ≤ δ, it
is then undecidable whether valBα = 1 or valBα = α.

4.2.1 The PFA A
The undecidability in valA obeys the following lemma:

Lemma 4.1. [13] Let A be a PFA with (5k− 10) states and an alphabet of size 2, where k is an integer
such that k ≥ 7. And let δ be a rational number such that δ > 1/(5k − 10). It is undecidable whether
valA > δ or valA ≤ δ.

The PFA A inherits this undecidability in its value from Post’s Correspondence Problem (PCP),
which is defined as follows:

Definition 4.1. (PCP) Given k pairs of words (ui, vi), where ui, vi ∈ Σ∗ and Σ is a finite alphabet,
decide whether there exists i1, . . . , in ∈ {1, . . . , k}+ such that ui1ui2 . . . uin−1

uin = vi1vi2 . . . vin−1
vin .

At the time [13] was published, PCP was known to be undecidable for k ≥ 7, and to prove Lemma 4.1
Hirvensalo [13] basically mapped an instance of PCP to a PFA. Recently, Neary [20] improved the PCP
undecidability result by showing that it is undecidable for five pairs of words (k ≥ 5). More precisely,
Neary proved the following:

Lemma 4.2. ([20]) Given the five pairs of words

{(p1, q1), (p2, q2), (p3, q3),(p4, q4), (p5, q5)}
= {(1, 1u), (1 0 . . . 0︸ ︷︷ ︸

β

1, 110), (1 0 . . . 0︸ ︷︷ ︸
β

1, 0), (1, 0), (1 0 . . . 0︸ ︷︷ ︸
β

1111, 1111)},

where u ∈ {0, 1}∗, β ∈ N, and β ≥ 1, it is undecidable whether there exists i1, . . . , in ∈ {1, 2, 3, 4}+
such that p1pi1pi2 . . . pin = q1qi1qi2 . . . qin .

This recent result can be used to modify Lemma 4.1 so that it applies to PFAs with smaller memory
sizes. This is straightforward but has to be done with care, since Hirvensalo [13] uses what are known
as Claus instances of PCP to prove Lemma 4.1, while the the five pairs of words in Lemma 4.2 do not
constitute such an instance.

The Claus formulation of PCP can be defined as follows.

Definition 4.2. (PCP: Claus) [4, 9] Given k pairs of words (ui, vi), where ui, vi ∈ Σ∗ and Σ is a
finite alphabet, decide whether there exists i1, . . . , in ∈ {2, . . . , k − 1}+ such that u1ui1 . . . uinuk =
v1vi1 . . . vinvk.

In other words, the standard PCP (Definition 4.1) and the Claus formulation of PCP (Definition 4.2)
differ in that the latter requires that the first and last word pairs, (u1, v1) and (uk, vk), be used only at
the beginning and end of the string.

The five pairs of words in Lemma 4.2 are almost a Claus PCP instance in that the first pair is fixed.
To adapt Lemma 4.2 such that it is usable in Lemma 4.1, we can simply add a dummy pair of words to
the set of five words, resulting in a Claus PCP instance of six pairs of words where the first pair is fixed
to the beginning and the dummy pair is fixed to the end. This gives us the following new lemma for the
PFA A:
Lemma 4.3. Let A be a PFA with (5k − 10) states and an alphabet of size 2, where k is an integer
such that k ≥ 6. And let δ be a rational number such that δ > 1/(5k − 10). It is undecidable whether
valA > δ or valA ≤ δ.
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4.2.2 The value of Bα is undecidable

To derive the undecidability in the value of Bα, we begin by showing that the PFA in Fig. 1(a) has
value 1 when x > 1/2 and value α otherwise (Lemma 4.4), then we embed A in the PFA in Fig. 1(a) –
producing Bα (Fig. 1(b)) – such that valA > δ has the same effect as x > 1/2 and valA ≤ δ has the same
effect as x ≤ 1/2, from which it will follow that valBα = 1 when valA > δ and valBα = α when valA ≤ δ
(Lemma 4.6). It will then immediately follow that it is undecidable whether valBα = 1 or valBα = α
(Lemma 4.7).

Lemma 4.4. ([7]) The value of the PFA in Fig. 1(a) is 1 when x > 1/2 and α when x ≤ 1/2.

Proof. First we are going to show that for the PFA in Fig. 1(a) val = α when x ≤ 1/2. Note that if
we enter ′b′, the upper branch ends up in an accepting state and the lower branch ends up in q6 with
certainty, and so for this word the acceptance probability is α. We can check that this is the maximum
acceptance probability from the following chain of inequalities:

val(wk) = α valup(wk) + (1− α) vallow(wk)

≤ α (1− ε) + (1− α) ε

≤ α (1− ε) + α ε

= α,

where the first inequality follows from Lemma 4.5 below. Thus, since α is the maximum probability
that any word could give when x ≤ 1/2, we have that the value is α when x ≤ 1/2.

Now we are going to prove that the value is 1 when x > 1/2, and we do that by showing that for any
ε ∈ (0, x) there exists a word wk of the form given in (13) such that

p[q4 → q6] ≤ ε (7)

p[q1 → q3] ≥ 1− ε. (8)

Let the lengths n2, . . . , nk in (13) be given by

nk =

⌈
logx

1

k
+ Cε

⌉
, (9)

where Cε = 1
b logx

(
b−1
b ε
)
, and let b > 1 be a number such that xb = 1 − x. The following chain of

inequalities holds:

p[q4 → q6] = (1− x)n2 + (1− (1− x)n2)(1− x)n3 + · · ·

≤
k∑
i=2

(1− x)ni

=
∑

xbni

=
∑

xbdlogx 1
i+Cεe

≤ xbCε
∑

xb logx
1
i

= xbCε
k∑
i=2

1

ib
. (10)

Note that the sum in (10) when k goes to ∞ is very similar to the Riemann zeta function evaluated
at a real argument strictly larger than one, which can be upper bounded by [15] ζ(b) =

∑∞
n=1

1
nb
≤ b

b−1 .
If we apply this bound to Eq. (10) we obtain
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lim
k→∞

p[q4 → q6] ≤ lim
k→∞

xbCε
k∑
i=2

1

ib

≤ xbCε b

b− 1

= ε. (11)

Eq. (11) remains an upper bound for any finite k since we are only dropping positive contributions.
Hence, ineq. (7) holds for all k.

Now let us check that (8) also holds. Consider the following sum

k∑
i=2

xni ≥
∑

xlogx
1
i+Cε+1

= xCε+1
∑

xlogx
1
i

= xCε+1
k∑
i=2

1

i
. (12)

This sum diverges for any non-zero x and finite Cε, which implies that limk→∞
∏k
i=2(1 − xni) = 0

and that there exists finite k such that
∏k
i=2(1− xni) ≤ ε. Then, p[q1 → q3] ≥ 1− ε.

Lemma 4.5. When x ≤ 1/2, any input word that causes the PFA in Fig. 1(a) to accept with probability
1 − ε if it started in the upper branch must cause it to accept with probability ≤ ε if it started in the
lower branch; i.e., if valup(w) = 1− ε then vallow(w) ≤ ε.
Proof. Note that any word that ends with a ′b′ cannot cause the lower branch to end up in the accepting
state q5, and for these words too the statement of the lemma holds because vallow(w) = 0 ≤ ε no matter
what ε is. The same holds for any word that contains two consecutive ′b′ and any word that starts with
a ′b′.

Next, note that any word that does not contain any ′b′ cannot cause the upper branch to accept
(valup(w) = 0), and for these words the statement of the lemma holds trivially because vallow(w) ≤ ε = 1.

Besides those words, any remaining word that we could enter must be of the form

wk = an2ban3b . . . bank . (13)

We know that for any word w, valup(w) = p[q1 → q3] and

vallow(w) = p[q4 → q5]

= 1− p[q4 → q6]− p[q4 → q4]

≤ 1− p[q4 → q6].

We can also easily see that, for words of the form given in (13), we have that p[q1 → q3] = 1 −
Πk
i=1(1 − xni) and p[q4 → q6] = 1 − Πk

i=1(1 − (1 − x)ni). Since x ≤ 1 − x whenever x ≤ 1/2, it follows
that

1−Πk
i=1(1− xni) ≤ 1−Πk

i=1(1− (1− x)ni). (14)

Thus, if valup(wk) = p[q1 → q3] = 1− ε, ineq. (14) says that p[q4 → q6] ≥ 1− ε, which implies that
vallow(wk) ≤ 1− p[q4 → q6] ≤ ε.

Now we are going to embed the PFA A from Lemma 4.1 into the PFA in Fig. 1(a) to get the PFA
Bα shown in Fig. 1(b). The main idea is that x is replaced by the probability that A accepts a word
wA.
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Lemma 4.6. The PFA Bα shown in Fig. 1(b) has value 1 when valA > δ and value α when valA ≤ δ
(recall from Lemma 4.1 that δ is a rational number such that it is undecidable whether valA > δ or
valA ≤ δ).
Proof. First, note that Bα transitions to A it continues inside A until the symbol ′c′, which is a symbol
outside the alphabet of A, is entered. Let wA be an arbitrary input word into A. Suppose we enter the
symbol ′a′, followed by wA, followed by the symbol ′c′. Then

p[q1
awAc−−−−→ q1] = p[q4

awAc−−−−→ q5] = valA(wA) + t(1− valA(wA)),

where t is a rational number chosen such that δ + t(1 − δ) = 1/2, which has the effect that the
probability that the symbol ′c′ takes Bα to the state q1(q5) with probability > 1/2 when valA > δ and
with probability ≤ 1/2 when valA ≤ δ.

Let us assume first that valA > δ. Then there exists some word wA such that valA(wA) > δ. Hence
we can construct the input word

wk = (awAc)
n2 . . . (awAc)nk (15)

with the lengths n2 . . . nk given by Eq. (9). As with the automaton in Fig. 1(a), we have that for
ε > 0, there exists a k such that wk satisfies conditions (7) and (8).

Now let us assume that valA ≤ δ. Since the word ”bb” still gets us value y, we can restrict our attention
to words of the form (aw1

Ac)
n1b . . . b(awk

Ac)
nk . Furthermore, letting g(w) ≡ valA(w) + t(1− valA(w)),

for any word wA we have that g(wA) ≤ 1− g(wA) and in consequence

1−
k∏
i=1

(1− g(wi
A)ni) ≤ 1−

k∏
i=1

(1− (1− g(wi
A)ni)),

just like in ineq. (14).
For ε > 0, the above inequality implies that for any word wk such that p[q1 → q4] = 1 − ε we have

that p[q4 → q6] ≥ 1− ε and valBα(wk) ≤ α, as is the case with the PFA in Fig. 1(a).
So far, we have not considered any word that contains the symbol rt. However, note that any word

w = w1 rtw2 rt . . . rtwt, where wi are words that do not contain rt, has acceptance probability val(wt),
and any word that ends with a rt has acceptance probability 0.

Thus, valBα = 1 when valA > δ and valBα = α otherwise.

Note that it follows from this proof that Lemma 4.5 also holds for Bα, with x ≤ 1/2 replaced by
valA ≤ δ; i.e. the following corollary holds

Corollary 4.6.1. When valA ≤ δ (or equivalently when valBα = α), any input word that causes the
upper branch of Bα to accept with probability 1−εmust cause the lower branch to accept with probability
≤ ε; i.e., if valup(w) = 1− ε then vallow(w) ≤ ε.

Now we are finally prove the undecidability in the value of Bα:
Lemma 4.7. It is undecidable whether the PFA Bα has value 1 or α.

Proof. From Lemma 4.6, Bα has value 1 when valA > δ and value α when valA ≤ δ. Since it is
undecidable whether valA > δ or valA ≤ δ (Lemma 4.1), it is undecidable whether valBα = 1 or
valBα = α.

4.3 The PFA family B′
α (like Bα but smaller)

One of the main contributions of this work is to present a new PFA family whose value is undecidable
but with fewer states than Bα from [7]. Whereas the smallest PFA Bα has 46 states, the smallest PFA
B′α has 30. We achieve this reduction by modifying the construction of Bα so that, instead of using two
A automata in parallel, the new PFA construction B′α (shown in Fig. 2) uses only one A automaton
sequentially. Recall from Section 4.2.1 that A is the source of undecidability in the value of Bα. The
PFA B′α is designed to emulate Bα, in the sense that when valA > δ the automaton B′α has value 1, and
when valA ≤ δ it has value α.

The new PFA family B′α allows us to update Lemma 4.7 into the following:
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Lemma 4.8. It is undecidable whether the PFA B′α has value 1 or α.

Proof. Let us begin with Lemma 4.6. Lemma 4.6 says that the automaton Bα (see Fig. 1(b)) has value
1 when valA > δ, and has value α when valA ≤ δ, where δ is some rational number. We would like to
show that this lemma holds also for the automaton B′α (Fig. 2). First, it is easy to verify by looking at
Fig. 1(b) and Fig. 2 that words of the form

wk = (awAc∗wAc)n2b . . . b(awAc∗wAc)nk (16)

cause B′α to transition to the same states (with the same transition probabilities) as Bα when the
latter reads (awAc)n2b . . . b(awAc)nk . More precisely, if we examine what happens to the automa-
ton Bα and the automaton B′α when the former reads (awAc)n2b . . . b(awAc)nk and the latter reads
(awAc∗wAc)n2b . . . b(awAc∗wAc)nk , we will find that both automata have identical probability distribu-
tions over the states q1, q2, q3, q4, q5, and Sink. This observation implies that, since a word of the form
(awAc)n2b . . . b(awAc)nk causes Bα to have value 1 when valA > δ (Lemma 4.6), a word of the form
(awAc∗wAc)n2b . . . b(awAc∗wAc)nk causes B′α to have value 1 when valA > δ. Thus, the first half of
Lemma 4.6 holds for B′α. Let us see how the second half also holds.

When valA ≤ δ, we can easily verify by looking at Fig. 2 that the word ′b′ causes B′α to ac-
cept with probability α. We need to check that this is the supremum of achievable probabilities
when valA ≤ δ. From the same observation used above, since (by Lemma 4.6) any word of the
form (awAc)n2b . . . b(awAc)nk cannot cause Bα to accept with probability greater than α, any word
of the form (awAc∗wAc)n2b . . . b(awAc∗wAc)nk cannot cause B′α to accept with probability greater than
α. Finally, lemma 4.9 below shows that no other word can perform better than words of the form
(awAc∗wAc)n2b . . . b(awAc∗wAc)nk . Thus, Lemma 4.6 also holds for B′α.

Since it is undecidable whether valA > δ or valA ≤ δ, it is undecidable whether valB′α = 1 or
valB′α = α.

Lemma 4.9 (helper lemma to Lemma 4.8). Any word not of the form (awAc∗wAc)n2b . . . b(awAc∗wAc)nk
causes B′α to accept with probability at most α.

Proof. Note that any word that causes either branch of B′α to end up in the sink with certainty leads to
an acceptance probability of at most α. The question now is, which words do not cause B′α to end up
in the sink with certainty? We will use a set of rules based on the automaton in Fig. 3 to eliminate all
words that cause B′α to end up in the sink with certainty, eventually showing that the only words that
remain are words of the form (ac∗c)n2b . . . b(ac∗c)nk , where in between the symbols we may insert wA –
recall that wA ∈ {0, 1}∗.

Video



The rules, which can be straightforwardly deduced (and verified) by looking at Fig. 3, are the following:

1. any word that contains "aa", "bb", "cc", "c∗c∗", "ab", "ac", "bc∗", "c∗a", "c∗b" causes B′α to end
up in the Sink with certainty.

2. If the automaton reads "bc" it will always end up in the same state as it had read a "b"; i.e., a "c"
does nothing when it comes after a "b". Similarly, if the automaton reads "cc∗c" it will always end
up in the same state as it had read a "c".

3. any word that does not take the automaton to Sink with certainty must begin with an ”a”.
To verify the first rule, it is sufficient to check that it holds for any state the automaton can be in.

This can be done using Fig. 3. For example, to verify that any word containing "aa" takes either the
upper or lower branch to Sink with certainty, we start from the state q1/q4 in Fig. 3 and check that
it goes to Sink when "aa" is read; then we do the same check but starting from the state c1/A; then
starting from all the other states. That is it. To verify that words containing "bb" takes either the upper
or lower branch to Sink with certainty we go through the same procedure. And similarly for the rest of
the sequences listed in the first rule above. These checks do not take long to perform, and are left as an
exercise for the reader. Thus, the first rule is verified.

To verify the second rule we similarly start from every state in Fig. 3 and check that entering "bc"
has the same effect as just entering a "b"; and similarly for "cc∗c" and "c".

18

https://youtu.be/W15mNxTn38U


Verifying the third rule is easy. The automaton begins in the state q1/q4, as indicated by the free
arrow near the top of Fig. 3. From this starting position, we can easily see that the automaton can
proceed to the next state (that is not a Sink) if and only if it reads an "a".

With the rules verified, let us now try to construct a word that does not cause B′α to end up in the
sink with certainty. From the third rule, we know that we have to begin with an "a". Then, from the
first rule we can see that to avoid falling in the Sink "a" must be followed by nothing but a "c∗", and
"c∗" must be followed by nothing but a "c". Therefore, we have that our word can only begin with
"ac∗c". Now, from the first rule above, "c" cannot be followed by another "c", therefore we are left with
three possibilities: 1) "ac∗c a", 2) "ac∗c b", and 3) "ac∗c c∗". The third possibility can be discarded:
Since "c∗" can only be followed by a "c", "ac∗c c∗" can only continue on to be "ac∗c c∗c", which by the
second rule above is equivalent to "ac∗c", taking us back to where we were. This leaves us with the two
possibilities 1) "ac∗c a" and 2) "ac∗cb". Let us think about the first possibility. Like before, we must
follow the "a" by "c∗c". In fact, any "a" must be followed by "c∗c" from now on, and so "ac∗c" can be
seen as a block of symbols that must occur together. Moreover, a "ac∗c" block can be followed by another
"ac∗c" block, so we can have "ac∗c ac∗c ac∗c ac∗c . . .". Now let us think about the second possibility. By
the first rule, "b" must be followed by an "a". Since "ac∗c" must come together as a block, the second
possibility continues on to be "ac∗c b︸︷︷︸ ac∗c". So we can see that "b" acts as a separator between blocks
of "ac∗c". To conclude the above discussion, we have that after the initial "ac∗c", we can build our word
only using "ac∗c" blocks and the separator "b". The only words that we can build using these two are
words of the form "(ac∗c)n2b . . . b(ac∗c)nk".

Thus, we can see that any word that does not cause B′α to end up in Sink with certainty (and hence
have its acceptance probability limited to α) must be of the form "(ac∗c)n2b . . . b(ac∗c)nk". Plugging
back the wA words we get words of the form shown in (16).

The new B′α construction also allows us to update Corollary 4.6.1 to the following:

Corollary 4.9.1. When valA ≤ δ (or equivalently when valB′α = α), any input word that causes the
upper branch of B′α to accept with probability 1−εmust cause the lower branch to accept with probability
≤ ε; i.e., if valup(w) = 1− ε then vallow(w) ≤ ε.
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Figure 2: The PFA construction B′α shown in this figure is designed to emulate Bα in Fig. 1(b) for input
words with a specific form. It requires only one A and so has fewer states than Bα. More precisely, it
has 10 + nA, where nA is the number of states of A and can take values 20, 25, 30, . . .. Note that all
Sink states are one state. B′α has input alphabet {0, 1, a, b, c, c∗, rt}: 7 symbols. The reset symbol "rt"
takes the automaton to the state q1 if it started from q1 (upper branch) in the first use and takes it to
the state q4 if it started from q4 (lower branch).
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Figure 3: The automaton shown in this figure represents the behavior of the automaton B′α in Fig. 2:
each state of this automaton contains the state of the PFA B′α if it started in the upper branch is written
on the left and if it started in the lower branch (written on the right). For example, the situation in
which a word causes B′α to transition from the state q1 to the state c1 if it started in the upper branch
and to transition from q4 to q5 if it started in the lower branch corresponds to this automaton starting
from the state q1/q4 then transitioning after each symbol so that it ends up in the state c1/q5. The Sink
nodes on the graph correspond to either of the upper or lower branches of B′α ending up in the state
Sink.
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5 Our channel construction
Now that we have a family of PFAs B′α with an undecidable property let us construct channels on top
of them. We will see in the next sections how this channel construction causes the undecidability in B′α
to be inherited by the information-theoretic properties of the channel.

5.1 The construction
Recall from our definition of FSMC in Section 2.1 that we use X , Y, and S to denote finite sets that
represent the FSMC’s input alphabet, output alphabet, and the set of states, respectively. Recall also
that an FSMC is fully characterized by a set of conditional probabilities {p(y, s|x, s′)}s,y,x,s′ , where each
p(y, s|x, s′) is the probability that the FSMC is going to output y and transition to the state s given
that the input was x and it was in the state s′; where s, s′ ∈ S, x ∈ X , and y ∈ Y. Moreover, to
eliminate any ambiguity regarding whether our uncomputability result is due to problems with approxi-
mating p(y, s|x, s′), in this paper we only consider (w.l.o.g) FSMCs for which the probabilities p(y, s|x, s′)
are rational. For simplicity, we also only consider (w.l.o.g) FSMCs for which p(y, s|x, s′) factorizes to
p(y|x, s′)p(s|x, s′); that is, FSMCs for which {p(y, s|x, s′)}s,y,x,s′ = {p(y|x, s′)p(s|x, s′)}s,y,x,s′ .

All channels in this paper will be built on top of B′α, and these channels have the input alphabet
X = {0, 1, a, b, c, c∗, rt} and output alphabet Y = {0, 1}

For all FSMCs in this paper, p(y|x, s′) can be expressed as follows:

p(y|x, s′) =

{
δyx if s′ is accepting and x ∈ {0, 1}
1/2 otherwise,

(17)

where δyx is 1 when x = y and 0 otherwise. After the channel produces an output, the underlying
PFA transitions to a new state with probability p(s|x, s′), the value of which is shown on the figures; for
example, from Fig. 2 we can see that p(c3|′a′, q2) = 1.

5.2 Upper channel and lower channel
For channels in this paper, it will be useful to think of the channel as a mixture of an "upper channel",
the one based on the upper branch of the PFA B′α shown in Fig. 2, and a "lower channel", the one based
on the lower branch of B′α. Mathematically, we can express the channel as Wn(yn|xn) = αWn

up(y
n|xn)+

(1− α)Wn
low(yn|xn), where Wn(yn|xn) = W1(y1|x1)W2(y2|x2) · · ·Wn(yn|xn) is the probability that the

channel is going to produce the output sequence (y1, y2, . . . , yn) when it gets as input the sequence
(x1, x2, . . . , xn), and Wi(yi|xi) ∈ {p(y, s|x, s′)}s,y,x,s′ . In other words, the channel can be thought of
as a switched channel: After the first use, the channel either switches to being the upper channel (in
which case the underlying PFA can only be in one of the states of the upper branch) with probability
α, or switches to being the lower channel (in which case the underlying PFA can only be in one of the
states of the lower branch) with probability 1−α. And then the switch position does not change for the
duration of the transmission. In the following sections, we will employ this interpretation of the channel
as a switched channel via the following lemmas.

Lemma 5.1. Given the mixed channelWn(yn|xn) = α1W
n
up(y

n|xn)+α2W
n
low(yn|xn), where α1+α2 = 1,

it holds that

I(Xn;Yn) ≥ α I(Xn;Yn
up) + (1− α) I(Xn;Yn

low)− 1. (18)

Proof. Let Z be a random variable that takes value 1 when the PFA goes to the upper branch and
value 0 when it goes to the lower branch, and so p(Z = 1) = α and p(Z = 0) = 1 − α. Note that Z is
independent of the input Xn, so I(Xn;Z) = 0. We can write

I(Xn;Yn) = I(Xn;Yn|Z) + I(Xn;Z)− I(Xn;Z|Yn)

≥ I(Xn;Yn|Z)− 1

= α I(Xn;Yn
up) + (1− α) I(Xn;Yn

low)− 1,

where the inequality follows because I(Xn;Z|Yn) ≤ 1.
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Lemma 5.2. Given the mixed channelWn(yn|xn) = α1W
n
up(y

n|xn)+α2W
n
low(yn|xn), where α1+α2 = 1,

it holds that
I(Xn;Yn) ≤ αI(Xn;Yn

up) + (1− α)I(Xn;Yn
low) (19)

Proof. Let Z be a random variable that takes value 1 when the PFA goes to the upper branch and
value 0 when it goes to the lower branch, and so p(Z = 1) = α and p(Z = 0) = 1 − α. Note that Z is
independent of the input Xn, so I(Xn;Z) = 0. We can write

I(Xn;Yn) = I(Xn;Yn|Z) + I(Xn;Z)− I(Xn;Z|Yn)

≤ I(Xn;Yn|Z)

= αI(Xn;Yn
up) + (1− α)I(Xn;Yn

low).

The two lemmas above can be seen as special cases of the following more general lemma.

Lemma 5.3 (adaptation of Lemma 1.4.2 and Remark 1.4.1 in [11]). Given the mixed channelWn(yn|xn) =
α1W

n
up(y

n|xn) + α2W
n
low(yn|xn), where α1 + α2 = 1, and an arbitrary sequence of functions fn(·), the

following holds for any λ:

α1Pr
[
fn
(

1

n
iXn,Wn

up
(xn; ynup)− β2 + β1

)
> λ

]
+ α2Pr

[
fn
(

1

n
iXn,Wn

low
(xn; ynlow)− β3 + β1

)
> λ

]
≥Pr [fn (iXn,Wn(xn; yn)) > λ] ≥

α1(1− e−nγn)Pr
[
fn
(

1

n
iXn,Wn

up
(xn; ynup)− β2 + β1

)
> λ

]
+ α2(1− e−nγn)Pr

[
fn
(

1

n
iXn,Wn

low
(xn; ynlow)− β3 + β1

)
> λ

]
, (20)

where {γn} is an arbitrary sequence such that γ1 > γ2 > . . . > γn > 0, γn → 0 and nγn → ∞,
0 ≤ β1 ≤ c0/n, c0 ≡ − log min(α1, α2), and 0 ≤ β2, β3 ≤ γn.

Proof. We use the following simple inequality from [12]:

1

n
log min(α1, α2) + max(u, v) ≤ 1

n
log[α1e

nu + α2e
nv] ≤ max(u, v). (21)

By setting u = 1
n logWn

up(y
n) and v = 1

n logWn
low(yn), where Wn(yn) =

∑
xn pXn(xn)Wn(yn|xn),

we have
− c0
n

+ ∆n(yn) ≤ 1

n
logWn(yn) ≤ ∆n(yn), (22)

where c0 ≡ − log min(α1, α2) and ∆n(y) ≡ max
(
1
n logWn

up(y), 1
n logWn

low(y)
)
.

Now, given the sequence {γn}, it holds that

Pr
[

1

n
logWn

up(y
n
up)−

1

n
logWn

low(ynup) ≤ −γn
]

=
∑
y∈Bn

Wn
up(y)

≤
∑
y∈Bn

Wn
low(y)e−nγn

≤ e−nγn → 0 (as n→∞),

where Bn ≡ {y ∈ Yn| 1n logWn
up(y) − 1

n logWn
low(y) ≤ −γn}. This implies that with probability

≥ 1− e−nγn
1

n
logWn

up(y
n
up) ≥

1

n
logWn

low(ynup)− γn.
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Therefore, with probability ≥ 1− e−nγn , we have

1

n
logWn

up(y
n
up) ≤ max

(
1

n
logWn

up(y
n
up),

1

n
logWn

low(ynup)

)
≤ 1

n
logWn

up(y
n
up) + γn,

i.e.,

1

n
logWn

up(y
n
up) ≤ ∆n(ynup) ≤

1

n
logWn

up(y
n
up) + γn. (23)

Similarly, we have that with probability ≥ 1− e−nγn

1

n
logWn

low(ynlow) ≤ ∆n(ynlow) ≤ 1

n
logWn

low(ynlow) + γn. (24)

Equation (22) implies that

1

n
logWn(yn) = ∆n(yn)− β1, (25)

where 0 ≤ β1 ≤ c0
n . Equations (23) and (24) respectively imply that with probability ≥ 1− e−nγn

1

n
logWn

up(y
n
up) = ∆n(ynup)− β2 (26)

and that with probability ≥ 1− e−nγn

1

n
logWn

low(ynlow) = ∆n(ynlow)− β3, (27)

where 0 ≤ β2, β3 ≤ γn. Note that β1, β2, β3 are all random variables.
We can now finally write the following chain of inequalities. Let L(y) ≡ 1

n log p(xn,yn)
p(xn) :

Pr
[
fn
(

1

n
iXn,Wn(xn; yn)

)
> λ

]
= Pr

[
fn
(
L(yn)− 1

n
logWn(yn)

)
> λ

]
= Pr [fn (L(yn)−∆n(yn) + β1) > λ]

= α1Pr
[
fn
(
L(ynup)−∆n(ynup) + β1

)
> λ

]
+ α2Pr [fn (L(ynlow)−∆n(ynlow) + β1) > λ]

≥ α1(1− e−nγn)Pr
[
fn
(
L(ynup)−

1

n
logWn

up(y
n
up) + β1 − β2

)
> λ

]
+ α2(1− e−nγn)Pr

[
fn
(
L(ynlow)− 1

n
logWn

low(ynlow) + β1 − β3
)
> λ

]
= α1(1− e−nγn)Pr

[
fn
(

1

n
iXn,Wn

up
(xn; ynup) + β1 − β2

)
> λ

]
+ α2(1− e−nγn)Pr

[
fn
(

1

n
iXn,Wn

low
(xn; ynlow) + β1 − β3

)
> λ

]

where the third equality follows from Lemma 5.4. This establishes the lower bound in (20). Noting
that, trivially, (26) and (27) also hold with probability ≤ 1, so we can also write
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Pr
[
fn
(

1

n
iXn,Wn(xn; yn)

)
> λ

]
= Pr

[
fn
(
L(yn)− 1

n
logWn(yn)

)
> λ

]
= Pr [fn (L(yn)−∆n(yn) + β1) > λ]

= α1Pr
[
fn
(
L(ynup)−∆n(ynup) + β1

)
> λ

]
+ α2Pr [fn (L(ynlow)−∆n(ynlow) + β1) > λ]

≤ α1Pr
[
fn
(
L(ynup)−

1

n
logWn

up(y
n
up) + β1 − β2

)
> λ

]
+ α2Pr

[
fn
(
L(ynlow)− 1

n
logWn

low(ynlow) + β1 − β3
)
> λ

]
= α1Pr

[
fn
(

1

n
iXn,Wn

up
(xn; ynup) + β1 − β2

)
> λ

]
+ α2Pr

[
fn
(

1

n
iXn,Wn

low
(xn; ynlow) + β1 − β3

)
> λ

]
,

which establishes the upper bound in Eq. (20).

Lemma 5.4 (helper lemma to Lemma 5.3. [17]). Let
(
Z

(1)
n

)∞
n=1

and
(
Z

(2)
n

)∞
n=1

be two sequences of

random variables taking values in Zn, and define (Zn)
∞
n=1 by

PZn(z) = α1PZ(1)
n

(z) + α2PZ(2)
n

(z)

for all z ∈ Zn. Then for an arbitrary sequence of functions (fn)
∞
n=1 defined over Zn, we have that

for any λ

Pr [fn(Zn) > λ] = α1Pr
[
fn(Z(1)

n ) > λ
]

+ α2Pr
[
fn(Z(2)

n ) > λ
]
.
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6 Relating mutual information of the channel to the value of the
underlying PFA

Here is an intuitive argument for why the way we have defined the channels in Eq. (17) might allow us to
relate the information transmission capabilities of the channel to the value of the underlying automaton:
Eq. (17) just means that if the underlying automaton is in an accepting state and the input is 0 or 1
the channel is going to act like an ideal channel; and if the underlying automaton is in a non-accepting
state the channel is going to be completely noisy. Suppose for the sake of argument that the value of
the underlying automaton is valB′α = 0. This implies that the automaton can never be in an accepting
state, and hence the channel is always going to be completely noisy. Since you cannot transmit any
information over a channel that is always completely noisy, the mutual information between the input
and the output is always going to be I(Xn;Yn) = valB′α = 0. On the other hand, if the underlying
automaton had value valB′α = 1 then the automaton is always in an accepting state, and the channel is
always ideal. This corresponds to I(Xn;Yn) = valB′α = 0. In this section we are going to show that this
intuition holds not just for valB′α = 0 and valB′α = 1 but for all intermediate values as well.

More precisely, the main aim of this section is to prove that the supremum of all values of mutual
information that the channel can create between the input and the output is equal to valB′α ;i.e.,

lim
n→∞

1

n
sup
Xn

I(Xn;Yn) = valB′α .

To prove this relation we need to prove two things: 1) we need to prove that limn→∞
1
n supXn I(Xn;Yn) ≤

valB′α and 2) we need to prove that limn→∞
1
n supXn I(Xn;Yn) ≥ valB′α .

Let us begin with the latter. There are only two possible values for valB′α : 1 and α. If we can prove
that limn→∞

1
n supXn I(Xn;Yn) ≥ valB′α for both of these cases, we would be done.

Lemma 6.1. For channels built on top of B′α: when valB′α = 1, for any ε > 0 there exists an arbitrarily
long input sequence Xn such that 1

nI(Xn;Yn
up) ≥ 1− ε and 1

nI(Xn;Yn
low) ≥ 1− ε.

Proof. We have from the proof of Lemma 4.8 that for any η > 0 there exists a word w with length m
(i.e., w = w1 . . . wm) such that valup(w) ≥ 1− η and vallow(w) ≥ 1− η. Consider the sequence

X = (w,data, rt) , (28)

where the data symbols data ∈ {0, 1}k are chosen uniformly at random. (From this point on, when
a word w is part of a sequence that gets input to a channel, it is to be understood that what is actually
input to the channel is a random variable that takes value w with certainty. This is because, formally,
an information channel takes random variables as input). If we enter the sequence (28) into the channel
input the following chain of inequalities holds simultaneously for the upper and lower channels:

H(Yup(low)|X) =

m+k+1∑
i=1

H(Yup(low)i
|Yup(low)[1,i−1]X)

= m+ 1 +H(Yup(low)[m+1,m+k]
|Yup(low)[1,m]

X[1,m+k])

≤ m+ 1 +H(Yup(low)[m+1,m+k]
|X[1,m+k])

≤ m+ 2 + kη,

where the first equality follows from the chain rule, the second equality from the fact that the channel
output is uniformly random and independent of the input during the first m uses and the last use (see
Section 5), the first inequality by removing the conditioning on Yup(low)[1,m]

, and the final inequality
by bounding the entropy by the following bound:

after the first m uses, the channel behaves like a noiseless channel with probability at least 1− η and
like a completely noisy channel with the complementary probability, so we can bound the conditional
entropy of the output of the uses m+ 1 to m+ k as follows:
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H(Yup(low)[m+1,m+k]
|X[1,m+k]) ≤ H((1− η + η2−k)φ+ η(1− 2−k)ρ)

= h(1− η + η2−k) + η(1− 2−k) log(2k − 1)

≤ 1 + kη,

where φ = (1, 0, · · · , 0) is a vector with length 2k, ρ = (0, 1
2k−1 , . . . ,

1
2k−1 ) is a vector of length 2k− 1,

and h(p) ≡ −p log(p) − (1 − p) log(1 − p) is the binary entropy function. Using the above and the fact
that H(Yup(low)) = m+ k+ 1 because the output of the channel is completely uncertain if one does not
know the input, we can now write

I(X;Yup(low)) = H(Yup(low))−H(Yup(low)|X)

= m+ k + 1−H(Yup(low)|X)

≥ k(1− η)− 1.

For any given η > 0, by choosing any k larger than (1 + (1− 2η)(m+ 1))/η we get

1

m+ k + 1
I(X;Yup(low)) ≥ 1− 2η,

which implies that, for any given ε > 0, there always exists an arbitrarily long input sequence Xn

such that 1
nI(Xn;Yn

up(low)) ≥ 1− ε.

Knowing how the upper and lower branches of the channel behave, we can use the lemmas we
developed in Section 5.2 to say the following about the whole channel.

Lemma 6.2. When valB′α = 1, it holds that limn→∞
1
n supXn I(Xn;Yn) ≥ valB′α .

Proof. When valB′α = 1, it follows from Lemma 6.1 that, for any ε > 0, there exists an arbitrarily long
(arbitrarily large n) input sequence Xn such that 1

n I(Xn;Yn
up) > 1 − ε and 1

n I(Xn;Yn
low) > 1 − ε.

Inputting that sequence into the channel, Eq. (18) gives us 1
nI(Xn;Yn) ≥ 1 − ε − 1

n . Since 1/n can
be made arbitrarily small, we have that there is always an input sequence Xn such that 1

nI(Xn;Yn) ≥
1− η = valB′α − η for any η > 0.

The proof for the valB′α = α case proceeds similarly.

Lemma 6.3. For channels built on top of Bα: when valB′α = α, for any ε > 0 there exists an arbitrarily
long input sequence Xn such that 1

nI(Xn;Yn
up) ≥ 1− ε and 1

nI(Xn;Yn
low) = 0.

Proof. Recall from Section 4.3 that a word that achieves value α is w = ′b′. Using this word w in
the sequence in (28), we have from Lemma 6.5 below that 1

m+k+1I(X;Ylow) ≤ vallow((b,data)) =

vallow(b) = 0. To get the 1
m+k+1I(X;Yup) term, we can write

H(Yup|X) =

m+k+1∑
i=1

H(Yupi |Yup[1,i−1]X)

= m+ 1 +H(Yup[m+1,m+k]|Yup[1,m]X[1,m+k])

= m+ 1,

where the last equality follows because after entering ′b′ we know with certainty that the PFA is in
the accepting state if started in the upper branch, and so the channel output is completely known if we
are given the input. Then, since H(Yup) = m + k + 1 (because without knowing the input the output
induced by sequence (28) is completely uncertain), we have

1

m+ k + 1
I(X;Yup) =

1

m+ k + 1
(H(Yup)−H(Yup|X))

≥ k

m+ k + 1
.

27



This implies that for any given ε > 0, by choosing any k larger than (m+ 1)(1− ε)/ε we get

1

m+ k + 1
I(X;Yup) ≥ 1− ε.

Lemma 6.4. When valB′α = α, it holds that limn→∞
1
n supXn I(Xn;Yn) ≥ valB′α .

Proof. When valB′α = α, it follows from Lemma 6.3 that, for any ε > 0, there exists an arbitrarily long
input sequence Xn such that 1

n I(Xn;Yn
up) > 1 − ε and 1

n I(Xn;Yn
low) = 0. For this sequence Eq.

(18) becomes 1
nI(Xn;Yn) ≥ α (1− ε)− 1

n . Since 1/n can be made arbitrarily small, we have that there
is always an input sequence Xn such that 1

nI(Xn;Yn) ≥ α− η = valB′α − η for any η > 0.

Now let us prove that limn→∞
1
n supXn I(Xn;Yn) ≤ valB′α .

Lemma 6.5. Let X be an arbitrary sequence of the form

X = (X1, . . . , Xn, rt) .

Let X be input to a channel built on top of some PFA P such that the channel acts as a noiseless channel
when P is in an accepting state and as a completely noisy channel otherwise, and the reset symbol erases
all memory of previous uses of the channel. Then we have that

1

n+ 1
I(X;Y) ≤ valP(X[1,n]). (29)

Proof. Consider the following chain of inequalities:

H(Y|X) =

n+1∑
j=1

H(Yj |Y[1,j−1]X)

≥
n+1∑
j=1

H(Yj |XSj−1)

=

n+1∑
j=1

p(Sj−1 ∈ F )H(Yj |X, Sj−1 ∈ F ) + p(Sj−1 /∈ F )H(Yj |X, Sj−1 /∈ F )

≥
n+1∑
j=1

p(Sj−1 /∈ F )H(Yj |X, Sj−1 /∈ F )

=

n+1∑
j=1

p(Sj−1 /∈ F )

≥ (n+ 1)(1− valP(X[1,n])).

The first equality follows from the chain rule. The first inequality follows from the fact that knowing
the state of the PFA tells us at least as much about what the next output could be as knowing the
previous outputs. The second equality is clear. The second inequality is clear. The third equality follows
from the fact that if the automaton is in a non-accepting state, the output is random regardless of the
input. The final inequality follows from the fact that the probability of not being at an accepting state
is always at least as big as 1− valP(X[1,n]).

Knowing that, trivially, H(Y) ≤ n+ 1, we can finally write

1

n+ 1
I(X;Y) =

1

n+ 1
(H(Y)−H(Y|X))

≤ 1

n+ 1
(n+ 1− (n+ 1)(1− valP(X[1,n])))

= valP(X[1,n]).
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The following corollary follows from Lemma 6.5:

Corollary 6.5.1. Let X be a length n sequence of the form

X =
(
Xn1+1,Xn2+1, . . . ,Xni+1, . . .

)
, (30)

where Xni+1 ≡ (X1, . . . , Xni , rt), and note that
∑
i(ni + 1) = n. Let X be input to a channel built

on top of some PFA P such that the channel acts as a noiseless channel when P is in an accepting state
and as a completely noisy channel otherwise, and the reset symbol erases all memory of previous uses of
the channel. Then we have that

1

n
I(X;Y) ≤ 1

n

∑
i

(ni + 1) valP(Xni+1
[1,ni]). (31)

Proof. The presence of the reset button at the end of each Xni+1 makes the channel outputs correspond-
ing to all Xni+1 independent of each other, which allows us to write I(X;Y) =

∑
i I(Xni+1;Yni+1). By

Lemma 6.5 it then follows that 1
nI(X;Y) = 1

n

∑
i I(Xni+1;Yni+1) ≤ 1

n

∑
i(ni+1)valP(Xni+1

[1,ni]).

Lemma 6.6. For channels built on top of B′α, it holds that limn→∞
1
n supXn I(Xn;Yn) ≤ valB′α .

Proof. We can write

1

n
I(Xn;Yn) = α

1

n
I(Xn;Yn

up) + (1− α)
1

n
I(Xn;Yn

low)

≤ α 1

n

∑
i

(ni + 1) valup(X
ni+1

[1,ni]) + (1− α)
1

n

∑
i

(ni + 1) vallow(Xni+1
[1,ni])

=
1

n

∑
i

(ni + 1) valB′α(Xni+1
[1,ni])

≤ valB′α
1

n

∑
i

(ni + 1)

= valB′α , (32)

where the first equality follows from Lemma 5.2, the first inequality follows from Corollary 6.5.1 and
we used that any sequence Xn can be written in the form (30).

Now the relation we set out to prove at beginning of this section follows immediately.

Lemma 6.7. For channels built on top of B′α, it holds that

lim
n→∞

1

n
sup
Xn

I(Xn;Yn) = valB′α .

Proof. Since valB′α = α and valB′α = 1 are the only two possible values for valB′α , we have from Lemmas
6.2 and 6.4 that limn→∞

1
n supXn I(Xn;Yn) ≥ valB′α . Additionally. from Lemma 6.6 we have that

limn→∞
1
n supXn I(Xn;Yn) ≤ valB′α . This proves the lemma.

Discussion
Lemma 6.7 constitutes the first of two steps towards relating the capacity of the channels we constructed
in Section 5 to the value of the underlying PFA B′α via Eq. (6). The second and final step will be taken
in Section 7. The ultimate goal is to prove Theorem 3.1.
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7 The information-stability of our channels
Our results depend on the information-stability of the channels we have just constructed (see definition
of information-stability in Section 2.2.2). The PFAs B′α on which the channels are built are parametrized
by a number α, which is the probability that the PFA enters the upper branch in the first use (see Fig.
2). As we will see in this section, the information-stability of our channels depends on the parameter α
of the underlying PFA.

The proofs in this section will require that we treat the upper and lower branches of the PFA as
supporting channels of their own, i.e., and upper channel and a lower channel, and prove the results for
these channels individually. We introduced Lemma 5.3 in Section 5.2 in preparation for this.

7.1 When valB′
α
= 1, the channels are information-stable

Lemma 7.1. FSMCs based on PFAs B′α are information-stable when valB′α = 1.

Proof. From Lemma 6.1 we have that when valB′α = 1 there always exists an input sequence Xn such
that

1

n
I(Xn;Yn

up(low)) ≥ 1− ε = valB′α − ε (33)

for any ε > 0. Assuming without loss of generality that nt+1 ≥ nt, this implies that there exists an

input sequence Xt = (X1, . . . , Xnt−1, rt) such that
I(Xt;Yt

up(low))

nt
≥ valB′α −

µ
2t for any µ > 0. Suppose

we concatenate these sequences to get the following sequence:

Vn =

X1, . . . ,X1︸ ︷︷ ︸
m1 times

, . . . ,Xt, . . . ,Xt︸ ︷︷ ︸
mt times

,Xt+1, . . . ,Xt+1︸ ︷︷ ︸
κ times

,Xt+1
[1,τ ]

 . (34)

For this sequence, each use of the channel can be uniquely identified by the triple (t, κ, τ), with t ∈ N,
κ ∈ [0,mt+1− 1], and τ ∈ [0, nt+1], and for the triple that corresponds to the n-th use of the channel the
following holds:

n =

t∑
i=1

mini + κnt+1 + τ. (35)

The numbers mi are chosen such that

I(Vn;Wn
up(low))

n
≥ valB′α −

µ

2t−1
, (36)

where Wn
up(low) is the random variable induced by Vn at the output of the upper(lower) channel,

and n is related to t by (35). Note that the input sequence Vn is composed of independent random
variables because each Xt ends in a reset, and hence

iVn,Wn
up(low)

=

t∑
i=1

mi iXi,Yi
up(low)

+ κ iXt+1,Yt+1
up(low)

+ iXt+1
[1,τ],Y

t+1
up(low)[1,τ]

. (37)

Also, note that for all t and τ ∈ [0, nt], we have 0 ≤ iXt
[1,τ],Y

t
up(low)[1,τ]

≤ τ.
Eq. (37) implies the following:

I(Vn,Wn
up(low)) =

t∑
i=1

miI(Xi;Yi
up(low)) + κI(Xt+1;Yt+1

up(low)) + I(Xt+1
[1,τ ];Y

t+1
up(low)[1,τ ]

)

≥
t∑
i=1

mini(valB′α −
µ

2i
) + κnt+1(valB′α −

µ

2t+1
).

From that, we can see that (36) is verified if mt is chosen to be larger than
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⌈
2t

ntµ

(
t−1∑
i=1

miniµ

(
1

2i
− 1

2t−1

)
+ nt+1

(
valB′α −

µ

2t−1

))⌉
, (38)

so that
∑t
i=1mini

(
valB′α −

µ
2i

)
≥
(∑t

i=1mini + nt+1

) (
valB′α −

µ
2t−1

)
.

However, for technical reasons pertinent to the bounds that follow we choose

mt = max{Eq.(38), (nt+1)2}. (39)

Recall the definition of information-stability in (3), and let Cn ≡ 1/n supXn I(Xn;Yn). From Lemma
5.3 we can write

Pr
[∣∣∣∣ iVn,Wn

nCn
− 1

∣∣∣∣ ≥ ηµ]
≤ α Pr

[∣∣∣∣∣ iVn,Wn
up
− (β2 − β1)

nCn
− 1

∣∣∣∣∣ ≥ ηµ
]

+ (1− α) Pr
[∣∣∣∣ iVn,Wn

low
− (β3 − β1)

nCn
− 1

∣∣∣∣ ≥ ηµ] . (40)

For the first term we can write

Pr

[∣∣∣∣∣ iVn,Wn
up
− (β2 − β1)

nCn
− 1

∣∣∣∣∣ ≥ ηµ
]

= Pr

[
iVn,Wn

up
− (β2 − β1)

nCn
− 1 ≥ ηµ

]
+ Pr

[
1−

iVn,Wn
up
− (β2 − β1)

nCn
≥ ηµ

]

≤ Pr

[
iVn,Wn

up
+ c0/n

nCn
− 1 ≥ ηµ

]
+ Pr

[
1−

iVn,Wn
up
− γn

nCn
≥ ηµ

]
. (41)

For the input sequence described above the following bounds hold:
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≤ 1 + ζ (42)

≤ 1

1− ε− 1/n

=
I(Vn;Wn

up(low))/n

1− ε− 1/n

≤
I(Vn;Wn

up(low))/n

α(1− ε) + (1− α)(1− ε)− 1/n
(43)

≤
I(Vn;Wn

up(low))/n

α I(Vn;Wn
up)/n+ (1− α) I(Vn;Wn

low)/n− 1/n

≤
I(Vn;Wn

up(low))/n

supVn

(
α I(Vn;Wn

up)/n+ (1− α) I(Vn;Wn
low)/n− 1/n

) (44)

=
I(Vn;Wn

up(low))/n

supXn I/n

E

[
iVn,Wn

up(low)

nCn

]

≥ E

[
iVn,Wn

up(low)

n valB′α

]

≥ 1

valB′α

(
valB′α −

µ

2t−1

)
= 1− µ

valB′α2t−1
, (45)

for any number ζ > 0, and where (44) follows from (18) and (43) follows from (33). Note that ζ can
be made to go to 0 as n goes to ∞. Substituting by the upper bound in (42) and the lower bound in
(45) into the first and second terms in (41), respectively, we get

Pr

[∣∣∣∣∣ iVn,Wn
up
− (β2 − β1)

nCn
− 1

∣∣∣∣∣ ≥ ηµ
]

≤ Pr
[
iVn,Wn

up
− E

[
iVn,Wn

up

]
≥ ηµnCn − c0/n− nCnζ

]
+ Pr

[
E
[
iVn,Wn

up

]
− iVn,Wn

up
≥ nCn

(
ηµ− µ

valB′α2t−1

)
− γn

]
≤ Pr

[
iVn,Wn

up
− E

[
iVn,Wn

up

]
≥ nCn

(
ηµ− ζ − µ

valB′α2t−1

)
− c0/n− γn

]
+ Pr

[
E
[
iVn,Wn

up

]
− iVn,Wn

up
≥ nCn

(
ηµ− ζ − µ

valB′α2t−1

)
− c0/n− γn

]
= Pr

[∣∣∣iVn,Wn
up
− E

[
iVn,Wn

up

]∣∣∣ ≥ nCn(ηµ− ζ − µ

valB′α2t−1

)
− c0/n− γn

]
Now we use the fact that iVn,Wn

up
can be expressed as sum of l =

∑t
i=1mi + κ + 1 independent

random variables. For these sums we can bound the two-tailed probability via Hoeffding’s inequality.
More concretely, let {Xi}li=1 be a sequence of l independent random variables, let d ≥ 0, and let
ai ≤ Xi ≤ bi, then

Pr

[∣∣∣∣∣
l∑
i=1

Xi − E

[
l∑
i=1

Xi

]∣∣∣∣∣ ≥ d
]
≤ 2 exp

(
−2d2∑l

i=1 |bi − ai|2

)
.
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We can bound the denominator in the exponential as follows:

l∑
i=1

|bi − ai|2 =

t∑
i=1

mi(ni)
2 + κ(nt+1)2 + τ2

≤
t∑
i=1

minint+1 + κnt+1nt+1 + τnt+1

≤ n3/2,

where the last inequality follows because, from Eq. (39), we have (nt+1)2 ≤ mt ≤ n. Now the
exponential becomes

2 exp

−2
(
nCn

(
ηµ− ζ − µ

valB′α
2t−1

)
− c0/n− γn

)2
n3/2

, (46)

which goes to 0 for all η > 0 as n→∞.
The exact same can be done for the second term in (40), and hence we have that, when valB′α = 1,

there exists a sequence for which limn→∞ Pr
[∣∣∣ iVn;Wn

nCn
− 1
∣∣∣ > ηµ

]
= 0, and so the channel is information-

stable.

7.2 When valB′
α
= α, channels parametrised by α = 1/2 are information-stable

and channels parametrised by 1/2 < α < 1 are not information-stable.
Lemma 7.2. FSMCs based on PFAs B′α with α = 1/2, are information-stable when valB′α = α.

Proof. We are going to show that the following input sequence causes the channel to be information-stable
when α = 1/2:

X =
(
w0,data, rt,w1,data, rt

)
, (47)

where w0 ≡ w0
1 . . . w

0
m0

is a word that causes the PFA to accept with probability 1 if it started in the
upper branch and with probability 0 if it started in the lower branch, w1 ≡ w1

1 . . . w
1
m1

is a word that
causes the PFA to accept with probability 0 if it started in the upper branch and with probability 1 if
it started in the lower branch, m ≡ m0 +m1 and n ≡ n0 + n1, and the data symbols data ∈ {0, 1}n are
chosen uniformly at random. For the above sequence we have that H(Yup) = H(Ylow) = m + n + 2,
because the output of the channel is completely uncertain if one does not know the input. Moreover, for
the upper channel we can write

H(Yup|X) =

m+n+2∑
i=1

H(Yupi |Yup[1,i−1]X)

= m+ 2 +

n∑
i=1

H(Yupi |Yup[1,i−1]X)

≤ m+ 2 +

n1∑
i=1

H(Yupi |Yup[1,i−1]X)

≤ m+ 2 + n1,

where the first inequality follows from bounding the entropy of the uses in which w0 and w1 and the
two resets are entered by m+ 2, the second inequality follows from the fact that when the upper branch
accepts with probability 1 there is no uncertainty in the output given the input, and the final inequality
follows by bounding the entropy of the n1 uses by n1; and so 1

m+n+2I(X;Yup) ≥ n0

m+n0+n1
.

Similarly, for the lower channel we have 1
m+n+2I(X;Ylow) ≥ n1

m+n0+n1
.
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We can equate both of these lower bounds to get the n0 and n1 at which the lower bounds are
simultaneously ≥ 1/2 − ε for any ε > 0. If we let nx ≡ n0 = n1, we can see that there always exists an
nx such that nx

m+2nx
≥ 1

2 − ε = valB′α − ε.
The rest of the proof is exactly like the proof in the previous section starting from Eq. (34).

Lemma 7.3. FSMCs based on PFAs B′α with 1/2 < α < 1 are not information-stable when valB′α = α.

Proof. Letting Cn ≡ 1
n supXn I(Xn;Yn), recall that a channel W is said to be information-stable if and

only if there exists a sequence of inputs {Xi}∞i=1 that satisfies the condition

lim
n→∞

Pr
[∣∣∣∣ iXn;Wn

nCn
− 1

∣∣∣∣ > λ

]
= 0, (48)

for any λ > 0. For 1/2 < α < 1, we are going to show that condition can never be satisfied when
valB′α = α, or, equivalently, when valA ≤ δ.

Consider the following chain of inequalities:

Pr
[∣∣∣∣ iXn,Wn

nCn
− 1

∣∣∣∣ > λ

]
= Pr

[∣∣∣∣ 1niXn,Wn − Cn
∣∣∣∣ > λCn

]
= Pr

[
1

n
iXn,Wn − Cn > λCn

]
+ Pr

[
Cn −

1

n
iXn,Wn > λCn

]
≥ Pr

[
Cn −

1

n
iXn,Wn > λCn

]
≥ Pr

[
Cn −

1

n
iXn,Wn > λ

]
, (49)

where the last inequality follows because Cn ≤ 1.
Since we have from Lemma 6.7 that when valB′α = α it holds that limn→∞ Cn = valB′α = α, we

know that for a sufficiently large n we have that Cn > α− ε for any ε > 0. At one such n, the chain of
inequalities above continues on to be

Pr
[
Cn −

1

n
iXn,Wn > λ

]
≥ Pr

[
α− 1

n
iXn,Wn > λ+ ε

]
(50)

≥ α(1− e−nγn)Pr
[
α− 1

n
iXn,Wn

up
+ β2 − β1 > λ+ ε

]
(51)

+ (1− α)(1− e−nγn)Pr
[
α− 1

n
iXn,Wn

low
+ β3 − β1 > λ+ ε

]
, (52)

where the second inequality follows from Lemma 5.3.
Lemma 7.4 below implies that max

(
α− 1

nI(Xn;Yn
up), α− 1

nI(Xn;Yn
low)

)
≥ α− 1/2. Let us assume

that we are in the case

α− 1

n
I(Xn;Yn

up) ≥ α− 1

n
I(Xn;Yn

low) ≥ α− 1/2, (53)

and let us choose λ =
(
α− 1

nI(Xn;Yn
up)
)
/4 and ε =

(
α− 1

nI(Xn;Yn
up)
)
/4 + (β2 − β1). Before

proceeding let us check that with this choice of ε the chain of inequalities starting from (50) still holds.
From (53) we have that ε ≥ (α − 1/2)/4 + (β2 − β1) ≥ (α − 1/2)/4 − c0/n. As n increases, the c0/n
term vanishes, and we have that ε is bounded away from 0 by a constant, which guarantees that at a
sufficiently large n we can have that Cn > α − ε, and hence that the chain of inequalities holds. Now,
with that choice of λ and ε, (52) becomes
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α(1− e−nγn)Pr
[
α− 1

n
iXn,Wn

up
+ β2 − β1 > λ+ ε

]
+ (1− α)(1− e−nγn)Pr

[
α− 1

n
iXn,Wn

low
+ β3 − β1 > λ+ ε

]
≥ α(1− e−nγn)Pr

[
α− 1

n
iXn,Wn

up
>
α− 1

nI(Xn;Yn
up)

2

]
. (54)

Now, note that α− 1
nI(Xn;Yn

up) = E
[
α− 1

n iXn,Wn
up

]
. Denoting the random variable α− 1

n iXn,Wn
up

by V , (54) can be rewritten as α(1− e−nγn)Pr
[
V > E[V ]

2

]
. Since V ≡ α− 1

n iXn,Wn
up

(Xn;Yn
up) ≤ 1, we

have from Lemma 7.5 below that

α(1− e−nγn) Pr
[
V >

E [V ]

2

]
≥ α(1− e−nγn)

E [V ]

2− E [V ]
. (55)

From (53) we have that 1 ≥ E [V ] ≥ α− 1/2 > 0, and so the right hand side of (55) is always strictly
positive, and all that finally means that there exists a λ at which condition (48) does not hold for any
sequence of inputs when n is sufficiently large. The same conclusion holds in case

α− 1

n
I(Xn;Yn

low) ≥ α− 1

n
I(Xn;Yn

up) ≥ α− 1/2,

and we chose λ =
(
α− 1

nI(Xn;Yn
low)

)
/4 and ε =

(
α− 1

nI(Xn;Yn
low)

)
/4 + (β3 − β1). Note that

both (β2 − β1) and (β3 − β1) can both be made arbitrarily small for a sufficiently large n.

Lemma 7.4 (helper lemma to Lemma 7.3). For the PFA B′α, when valB′α = α it holds that for any
input process Xn

min

(
1

n
I(Xn;Yn

up),
1

n
I(Xn;Yn

low)

)
≤ 1/2.

Proof. Recall that we can think of the upper branch and lower branch of B′α as two channels whose
reset erases all memory of previous uses. We have from Corollary 6.5.1 that 1

nI(Xn;Yn
up) ≤ 1

n

∑
i(ni +

1) valup(X
ni+1

[1,ni]) and 1
nI(Xn;Yn

low) ≤ 1
n

∑
i(ni + 1) vallow(Xni+1

[1,ni]). From Corollary 4.9.1 we
then have 1

nI(Xn;Yn
up) ≤ 1

n

∑
i(ni + 1) (1− εi) and 1

nI(Xn;Yn
low) ≤ 1

n

∑
i(ni + 1) εi.

Note that 1
n

∑
i(ni+1)(1−εi) = 1

n

∑
i(ni+1)− 1

n

∑
i(ni+1)εi ≥ 1/2 implies that 1

n

∑
i(ni+1)εi ≤ 1/2,

and conversely 1
n

∑
i(ni + 1) εi ≥ 1/2 implies that 1

n

∑
i(ni + 1) (1− εi) ≤ 1/2. From this it follows that

if 1
nI(Xn;Yn

up) ≥ 1/2 it must be that 1
nI(Xn;Yn

low) ≤ 1/2, and that if 1
nI(Xn;Yn

low) ≥ 1/2 it must be
that 1

nI(Xn;Yn
up) ≤ 1/2. Hence the statement of the lemma.

Lemma 7.5 (helper lemma to Lemma 7.3. [18]). Let V be a random variable such that V ≤ 1. Then
Pr
[
V > E[V ]

2

]
≥ E[V ]

2−E[V ] .

Proof. If we introduce the random variable Z which takes value 1 when V > E[V ]
2 and value 0 otherwise,

we can write

E [V ] = p(Z = 1) E [V |Z = 1] + (1− p(Z = 1)) E [V |Z = 0]

≤ p(Z = 1) + (1− p(Z = 1)) E [V |Z = 0]

≤ p(Z = 1) + (1− p(Z = 1))
E [V ]

2
,

From this chain of inequalities we have that p(Z = 1) = Pr
[
V > E[V ]

2

]
≥ E[V ]

2−E[V ] .
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Discussion
The take-away from this section is the following: The channels we constructed in Section 5 are information-
stable when the value of the underlying PFA is 1 or 1/2 (Lemmas 7.1 and 7.2, respectively), and not
information-stable otherwise (Lemma 7.3).
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8 Capacity is uncomputable
proof of Theorem 3.1. We saw in Section 5 that we can build FSMCs on top of the PFAs B′α such
that the channels have input alphabet, output alphabet, and memory size pointwise equal to or greater
than (7, 2, 30). For PFAs B′α with α = 1/2, Lemmas 7.1 and 7.2 tell us that the channels are always
information-stable. Combined with Lemma 6.7, this allows us to write

C(W) = lim
n→∞

1

n
sup
Xn

I(Xn;Yn) = valB′α . (56)

Then, since it is undecidable whether valB′α = α = 1/2 or valB′α = 1, it is undecidable whether C(W) = α
or C(W) = 1; this implies that C(W) is uncomputable to any precision < 1−α

2 = 1/4.
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9 Information-stability is undecidable
proof of Theorem 3.2. We saw in Section 5 that we can build FSMCs on top of the PFAs B′α such that
the channels have input alphabet, output alphabet, and memory size pointwise equal to or greater than
(7, 2, 30). For PFAs B′α with 1/2 < α < 1, Lemma 7.1 tells us that the channel is information-stable
when valB′α = 1 and Lemma 7.3 tells us that the channel is not information-stable when valB′α = α.
Since it is undecidable whether valB′α = 1 or valB′α = α (Lemma 4.8), it is undecidable whether the
channel is information-stable or not.
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10 Conclusion
We have demonstrated a new approach for exploring uncomputability in information theory. In this
approach, we use tools from automata theory to show, for channels with memory, that capacity is in
general uncomputable, information-stability is in general undecidable. Both of these results have been
shown to hold for channels with input alphabet, output alphabet, and number of states point-wise equal
or larger than (7, 2, 30). We expect that our approach can be used to show other problems in information
theory and quantum information theory undecidable or uncomputable.

In the appendix, we present two corollaries that follow from our results. The first corollary, which
follows from Theorem 3.1, is the following. Suppose you are given an information source X and a channel
W. It is undecidable whether it is possible transmit X over W such that the receiving party receives X
with arbitrarily small error. The second corollary, which follows from our new PFA construction shown
in Fig. 2, is the following. For a PFA with input alphabet of size 5 and 36 states, it is undecidable
whether the value of the PFA is 1. This is known as the value-1 problem, and it is a well known problem
in automata theory. In fact, it has already been shown before that the value-1 problem is undecidable.
Our corollary only improves the undecidability result so that it applies for PFAs with input alphabet
with size 5 and 36 memory states, instead of the previous best of 5 and 61 [7].

11 For future research

11.1 Reducing the memory size further
The capacity of channels with 1 memory state (memoryless channels) is computable [3, 1]. The capacity
of channels with 30 memory states is uncomputable (Theorem 3.1). At what number of memory states
does capacity transition from being computable to being uncomputable? This is an interesting question
to answer in future research.

The channels we use to prove Theorem 3.1 inherit the uncomputability in their capacity from Post’s
Correspondence problem (see section 4.2.1), which we know is undecidable for k > 5 pairs of words.
At the time of writing this paper, it is unknown whether Post’s Correspondence Problem is decidable
for 3 ≤ k ≤ 5 pairs of words. If it turns out to be undecidable for k ≥ 3, it would immediately follow
from our analysis that the results hold for channels with input alphabet, output alphabet, and number
of states point-wise equal or larger than (7, 2, 15). This is one way through the memory size of channels
with uncomputable capacity could be reduced.

Another way is find a cleverer PFA construction than ours (shown in Fig. 2). Such a construction
would presumably still have be based on an undecidable problem, although it might not need to be Post’s
Correspondence Problem..

In section C of the appendix we detail some of our failed attempts to reduce the memory size of the
channels. These failed attempts eventually led to the automaton shown in Fig. 2.

11.2 Proving other problems in (quantum) information theory undecidable
11.2.1 Quantum channels with uncomputable capacity

Since classical channels are special cases of quantum channels – they are quantum channels that can only
transmit classical information and no quantum information –, the results of this work trivially apply to
quantum channels as well.

Non-trivially, however, the results might be extensible to quantum channels that can transmit quan-
tum information. That is, it might be possible – and we suspect that it is – to show, for instance, that
quantum capacity for quantum channels with memory is uncomputable. This could be done using the
same technique we used in the work: simply by defining the channels built on top of the automata to
take qudits as input and produce qudits at the output instead of classical symbols.
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Appendix

A Corollary of Theorem 3.1: Reliable transmission is undecid-
able

As a corollary from Theorem 3.1, it follows that it is undecidable whether an information source can be
reliably transmitted over a channel.

A source is said to be reliably transmissible over a channel if it can be decoded at the output of
the channel with arbitrarily small error in the limit of infinitely many uses of the channel. A necessary
and sufficient condition for a (stationary) source to be reliably transmitted over a channel was given in
[25]. We show that for the family of states in Theorem 3.1, it is undecidable whether that condition is
satisfied. The corollary can be stated precisely as follows:

Corollary A.0.1. Given a stationary information source X with minimum source-coding rate 1/2 <
T (X) < 1, and an information-stable FSMC W with rational product probabilities and with input,
output, and number of states point-wise equal or larger than (7, 2, 30), it is undecidable whether X can
be reliably transmitted over W or not.

Before proving Corollary A.0.1, let us first make some definitions.

Definition A.1 (limsup in probability). Define the limsup in probability of a sequence of random
variables An ≡ {An} to be the smallest extended real number β such that, for all ε > 0, limn→∞ Pr[An ≥
β + ε] = 0.

Definition A.2 (source coding rate). An (n,M, ε) fixed-length source code for Xn is a collection of
M n-tuples {an1 , · · · , anM} such that Pr[Xn /∈ {an1 , · · · , anM}] ≤ ε. R is an ε-achievable source coding
rate for the source X if for every γ > 0 there exist, for all sufficiently large n, (n,M, ε) codes with
1
n logM < R + γ. R is an achievable (fixed-length) source coding rate for X if it is ε-achievable for all
ε > 0. We denote by T (X) the minimal achievable source coding rate for X.

If we replace "for all sufficiently large" by "for infinitely many" in the definition above, R becomes
the "optimistic" achievable source coding rate. We denote by T(X) the minimal optimistic achievable
source coding rate for X.

For an expression for the minimal achievable source coding rate, we have the following lemma.

Lemma A.1 (Theorem 4 in [25]). For any finite alphabet source X, T (X) = H(X), where H(X) denotes
the sup-entropy rate, which is given by the limsup in probability of the sequence of random variables
{(1/n)hXn(Xn)}∞n=1.

One of the main components of our proof is a source-channel coding theorem. The classical source-
channel coding theorem proved by Shannon in [23] was only proved for memoryless channels, so we
cannot use it. Instead, we are going to use a more general source-channel coding theorem from [25],
which applies to any channel provided that the source is stationary. We re-construct this theorem below.

Lemma A.2 (Theorem 6 in [25]). For any source X and channel W, if the condition T (X) < C(W) is
satisfied then X can be reliably transmitted over W.

This lemma constitutes the direct part the general source-channel coding theorem. We are now going
to re-construct the converse part.

Lemma A.3 (Theorem 12 in [25]). Let TC(X) ≡ infV∈V C(W), where V is the set of all channels over
which the source X can be reliably transmitted. For any source X and channel W, the following two
conditions are equivalent:

• TC(X) = T (X).

• If X is reliably transmissible over W, then it must hold that T (X) ≤ C(W).
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Note that the second condition is the converse part of the general source-channel coding theorem.
For a source X, if this second condition holds, then (with Lemma A.2) we have a source-channel coding
theorem. It turns out that this converse part does not hold in general, but it does hold for stationary
sources (because the first condition holds for stationary sources) [25], and so (with Lemma A.2) we finally
have that a stationary source X can be reliably transmitted over any channel W if T (X) < C(W) and
only if T (X) ≤ C(W)

We are now ready to prove corollary A.0.1.

proof of corollary A.0.1. From Theorem 3.1, it is undecidable whether the capacity C(W) is 1/2 or 1. It
then follows trivially from the above discussion that for any stationary source for which 1/2 < T (X) < 1,
it is undecidable whether the condition T (X) < C(W) is satisfied, and hence it is undecidable whether
reliable transmission is possible.

Such source can be very simple: for example, an i.i.d source that outputs 0 with probability p and 1
with probability 1− p, for which it holds that 1/2 < −p log(p)− (1− p) log(1− p) < 1. This is because
for such a source we can write

T (X) = H(X)

= H(X)

= −p log(p)− (1− p) log(1− p),

where the first equality follows from Lemma A.1, the second equality follows from the fact that for
an i.i.d source H(X) = H(X) [11].
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B New automaton for the value 1 problem
In this section we show that the new automaton B′α – after a few minor modifications – improves on
the undecidability result of the value 1 problem [7]. The value 1 problem is a well-known problem in
automata theory. It can be defined as follows:

Definition B.1. (The value 1 problem [7]) Given a PFA P, determine whether it has value 1.

The new PFA construction above allows us to prove the following corollary about the value 1 problem.

Corollary B.0.1. The value 1 problem is undecidable for a PFA with 36 states and 5 input symbols.

Proof. We modify the automaton in Fig. 2 so that it has 5 input symbols instead of 7. This results in
the PFA B′′ shown in Fig. 4, which has 5 input symbols and 36 states.

Since we are now concerned with building a PFA for the value 1 problem and not for information
transmission purposes, the reset symbol is not needed. After removing the reset symbol, we have 6
symbols. Next, we are going to remove the symbol ′a′, and we do this as follows. Taking B′α as a starting
point, we are going to replace every ′a′ transition (e.g. q1

a−→ c1) by a ′b′ transition to an intermediate
state then a ′1′ transition to the final state. And we replace every ′b′ transition by first a ′b′ transition
to an intermediate state then a ′0′ transition to the final state. For example, the transition q1

a−→ c1 in
Fig. 2 is replaced by the transition q1

b−→ d5
1−→ c1 in Fig. 4, and the transition q1

b−→ q3 is replaced by
the transition q1

b−→ d5
0−→ q3. Note that for transitions in B′α in which ′a′ and ′b′ lead to the same state,

no intermediate state is required; e.g. the transition A a,b−−→ Sink.
Recalling that ′0′ and ′1′ are the control symbols for A, one might think that entering a control

word with the symbols ′0′ and ′1′ intended to trigger transitions outside of A might cause unintended
transitions if B′′ happens to be inA. However, note that for all words that achieve the value in B′α, namely
words of the form (16) and the word ′b′, the symbols ′a′ and ′b′ are never entered when the automaton is
inside A, and so replacing ′a′ and ′b′ by ′b1′ and ′b0′, respectively, does not lead to unintended transitions
inside A. Moreover, any word in which ′b0′ or ′b1′ is entered when the automaton is inside A causes the
automaton to fall into the sink, and these words can never lead to a higher acceptance probability than
1 and y.

Thus, B′′ emulates B′α, and therefore has value 1 when valA > δ and value α when valA ≤ δ. So, the
value 1 problem is undecidable for a PFA with 36 memory states and 5 input symbols.

Discussion
We have improved on the undecidability result of the value 1 problem [7] by making it apply to smaller
automata: the value 1 problem is now undecidable for automata with input alphabet, and number of
states pointwise equal to or greater than (5, 36) instead of the previous (5, 61) in [7].
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Figure 4: The PFA construction B′′α: designed to emulate B′α in Fig. 2 but with 5 input symbols instead
of 7 (the symbols rt and a are removed). If any symbol except 0 and 1 is entered while the PFA is in one
of the states di it goes to the Sink. This is not shown on the figure to avoid clutter. B′′α has 16+statesA
states.
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C Reducing the memory size of the channels: failed designs

The automaton shown in fig. 2 is smaller than the original automaton used in the paper [6], and so allows
for smaller channel constructions with uncomputable capacity. In this section we detail our analysis of
some of prototypes of the automaton design shown in fig. 2.

At first, I did not have an idea how to begin making a smaller automaton, but I was intrigued by the
fact that the when x ≤ 1/2 (see fig. 1) the automaton has value 1/2 and when x > 1/2 it had value 1.
This jump in the value is essential for eventually showing capacity uncomputable. I started to wonder if
we could still get a gap if the x in the upper branch and lower branch of the automaton were different
(see fig. 5 left). Not having to have the same x in the upper and lower branch would mean that we
might be able to make do with only a single A automaton instead of two as in the original desgin. This
thinking led to the following analysis.

C.1 Failed design 1

Figure 5: Here, y = x2 = 1/2

Consider the automaton in fig. 5, with y = x2 = 1/2. We aim to show that the value of the automaton
jumps from one value to another as x1 transitions from ≤ 1/2 to > 1/2; i.e. that there is a gap in the
value. We begin with the following lemma.

Lemma C.1. The value of the automaton in fig. 5 is 1/2 when x1 ≤ 1/2.

Proof. We know that

val(A,w) ≤ 1

2
p[q1 → q3] +

1

2
(1− p[q4 → q6]),
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and that the upper bound is reachable.
Note that

p[q1 → q3] = 1−Πt
i=1(1− xni1 ),

and
p[q4 → q6] = 1−Πt

i=1(1− (1− x2)ni).

Consider the case x1 ≤ 1/2. In that case, x1 ≤ 1− x2 = 1/2, and therefore

1−Πt
i=1(1− xni1 )︸ ︷︷ ︸
p[q1→q3]

≤ 1−Πt
i=1(1− (1− x2)ni)︸ ︷︷ ︸

p[q4→q6]

.

We can then use that to write

val(A,w) ≤ 1

2
p[q1 → q3] +

1

2
(1− p[q4 → q6])

≤ 1

2
p[q1 → q3] +

1

2
(1− p[q1 → q3])

=
1

2
.

Since the upper bound is reachable – simply by entering ′b′ into the automaton–, we have that the
value is 1/2.

If we can now show that when x1 transitions to x1 > 1/2 the value jumps from 1/2 to some other
value, we would be done. For this we have the following lemma.

Lemma C.2. The value of the automaton in fig. 5 is ≥ 1/2 + ε (for some finite 0 < ε ≤ 1/2) when
x1 > 1/2.

Proof. We are going to prove the lemma by giving a word w for which

val ≥ val(A,w) > 1/2

for any x1 > 1/2.
This word is w = aabaaa · · · until ∞. For this specific word we can easily see that

val(A,w) =
1

2
(1− (1− x1)) +

1

2
x22

∞∑
i=0

(1− x2)i︸ ︷︷ ︸
1/x2

=
x1
2

+
1

4
.

Thus, for x1 = 0.5 + ε and any 0.5 ≥ ε > 0,

val(A,w) = 0.5 +
ε

2
> 0.5.

The term (1− (1−x1)) is the complement of the probability that the upper branch of the automaton
will go to the state q2 when the second "a" in w is entered. The "a"s after the "b" do not add to the
acceptance probability of the upper branch.

As for the acceptance probability of the lower branch: if we label the event that automaton loops
back to q4 when it is in q4 by "lp", the event that the automaton goes forward from q4 to q5 by "fd",
and the event that the automaton goes back from q5 to q4 by "bk", the term x22

∑∞
i=0(1 − x2)i is the

addition of the following probabilities:
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x22

∞∑
i=0

(1− x)i =p(fd→ bk → fd)

+ p(fd→ bk → lp→ fd)

+ p(fd→ bk → lp→ lp→ fd)

+ p(fd→ bk → lp→ lp→ lp→ fd)

+ p(fd→ bk → lp→ lp→ lp→ lp→ fd)

+ · · · .

The x22 factor is there because in all the terms there are two "fd"s.

With Lemma C.1, we have that the value of the automaton is = 1/2 when x1 ≤ 1/2. With Lemma
C.2, we have that the value of the automaton > 1/2 + ε/2 when x1 = 1/2 + ε > 1/2. We have
indeed established a gap in the value. However, the usefulness of this gap for the purpose of proving
uncomputability of the capacity is questionable for the following reason. As x1 gets arbitrarily close to
1/2, the gap becomes arbitrarily small, and this leads to an ambiguity: is capacity really uncomputable
or does it just seem so because we can never in principle compute the value of any function to within
infinitely small precision in a finite amount of time?

Therefore, this is a failed approach.
However, the idea of using a single A automaton instead of two inspired the approach detailed in the

next section.

48



C.2 Failed design 2

Figure 6: The automaton on the left is the operational equivalent to the one of the right.

Consider the automaton in fig. 6 (left). This corresponds to the design in fig. 6 (right). Like before,
we would like to know if we can get a gap in the value using this design. Below, we will investigate what
happens when we enter the general word an2b · · · bank , where ni can assume any non-negative integer
value. This word form includes all possible words that we could enter into the automaton.

First, let’s think about what happens when the part an2 is entered. The probability that the au-
tomaton is going to end up at q2 is that same regardless of whether the automaton went from init to q1
or q4, because a has exactly the same effect regardless of whether the automaton is in q1 or q4. Now, the
probability of ending up at q2 is equal to the probability that the first a took us to q2 ( 1−x2 ), plus the
probability that the first a took us to q1 or q4 and the second a took us to q2 ((x2 + 1−x

2 )( 1−x
2 )), and so

on... This all adds up to

pan2 (q2) = (
1− x

2
) +

1

2
(
1− x

2
) + · · ·+ 1

2n2−1
(
1− x

2
)

=

n2−1∑
i=0

1

2i
(
1− x

2
)

=
(1− x)(2n2 − 1)

2n2
.

Similarly,
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pan2 (q5) = (
x

2
) +

1

2
(
x

2
) + · · ·+ 1

2n2−1
(
x

2
)

=

n2−1∑
i=0

1

2i
(
x

2
)

=
x(2n2 − 1)

2n2
.

Now, when the first b is entered, if the automaton was in q1 or q4 it will end up in the final states
q3 or q6, and if that happens the probability of ending up at q2 drops to 0 and nothing that comes
afterwards can change that. However, if the automaton was in q2 or q5 (which happens with probability
pan2 (q2) + pan2 (q5) = 1 − 1

2n2
), the b takes the automaton to q1 or q4, respectively. Then, the same

reasoning as above gives us that the probability of ending up at q2 and q5 for the word an2ban3 is

pan2ban3 (q2) = (1− 1

2n2
)
(1− x)(2n3 − 1)

2n3
,

and

pan2ban3 (q2) = (1− 1

2n2
)
x(2n3 − 1)

2n3
,

respectively.
So, after the entire word an2b · · · bank is entered, the probabilities of ending up at q2 and q5 are

p(q2) = (1− x)

k∏
i=2

(1− 1

2ni
),

and

p(q5) = x

k∏
i=2

(1− 1

2ni
).

Now let’s calculate p(q1) and p(q4). Let’s think about what happens when the part an2 is entered.
Note that to get to q1, it must be that none of the a’s took us to q2 or q5, because once we enter these
two states there is no getting out until a b comes. The probability of ending up at q1 after the an2 is
equal to the probability of going to q1 then going to q1 then going to q1 · · · then finally going to q1
((x2 )n2), plus the probability of going to q4 then going to q1 then going to q1 · · · then finally going to
q1 (( 1−x

2 )(x2 )n2−1), plus the probability of going to q1 then going to q4 then going to q1 · · · then finally
going to q1 ((x2 )( 1−x

2 )(x2 )n2−2), and so on, adding up to

pan2 (q1) =

n2−1∑
i=0

(
n2 − 1

i

)(x
2

)n2−i(1− x
2

)i
=
(x

2

)n2

n2−1∑
i=0

(
n2 − 1

i

)(1− x
x

)i
=
(x

2

)n2
(1− x

x
+ 1
)n2−1

=
x

2n2
.

Similarly,
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pan2 (q4) =

n2−1∑
i=0

(
n2 − 1

i

)(1− x
2

)n2−i(x
2

)i
=
(1− x

2

)n2

n2−1∑
i=0

(
n2 − 1

i

)( x

1− x
)i

=
(1− x

2

)n2
( x

1− x + 1
)n2−1

=
1− x
2n2

.

Now, when the b comes, the automaton will go to q3 if it was in q1, so pan2b(q3) = pan2 (q1) = x/2n2 .
So, pan2ban3b(q3) is equal to the probability that the automaton went to q3 when the first b came, plus
the probability that the automaton was in q2 or q5 before the first b and that it went to q3 when the
second b came, which adds up to

pan2ban3b(q3) =
x

2n2
+ (1− 1

2n2
)(

x

2n3
).

Following this reasoning, we get that after the whole word is entered (note that ank does not contribute
to the probability of ending up in q3 since no b comes after it), the probability of being at q3 is

p(q3) = x

k−1∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
).

Also,

p(q1) = x

k∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
).

Similarly,

p(q6) = (1− x)

k−1∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
),

and

p(q4) = (1− x)

k∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
).

From all of the above, we can write that the value of the automaton, given a word w of the form
an2b · · · bank , is

val(w) = p(q3) + p(q5) = x

k−1∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
) + x

k∏
i=2

(1− 1

2ni
). (57)

This expression can be simplified as follows. Note that
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1 = p(q1) + p(q2) + p(q3) + p(q4) + p(q5) + p(q6)

= x

k∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
) + (1− x)

k∏
i=2

(1− 1

2ni
)

+ x

k−1∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
) + (1− x)

k∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
)

+ x

k∏
i=2

(1− 1

2ni
) + (1− x)

k−1∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
)

=

k∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
) +

k−1∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
) +

k∏
i=2

(1− 1

2ni
)

=
1

2nk

k−1∏
j=2

(1− 1

2nj
) + 2

k−1∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
) +

k∏
i=2

(1− 1

2ni
)

=

k−1∏
i=2

(1− 1

2ni
) + 2

k−1∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
).

So,

2

k−1∑
i=2

1

2ni

i−1∏
j=2

(1− 1

2nj
) = 1−

k−1∏
i=2

(1− 1

2ni
).

Substituting that last line into equation (57), we get

val(w) =
x

2
+
x

2
(1− 1

2nk
)

k∏
j=2

(1− 1

2ni
),

which implies that

val(w) ≤ x
regardless of x. The conclusion is that the automaton shown in fig. 6 cannot get us a gap.
The failure of this design to get us a gap in the value might be rooted in the fact that a word could

cause the automaton to begin in the upper branch and then "leak" into the lower branch or vice versa.
The design analysed in the next section was made to address this particular problem.
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C.3 Failed design 3

Figure 7

The failure in the design in the previous section – the absence of a gap in the value – was in part
due to the fact that the branches could move between each other; there was a connection between them.
The design in this section takes the first steps towards patching this problem.

We begin by modifying the automaton so that we use different entry and exit (into A) symbols "a, c"
and "a∗, c∗" for the upper and lower branches, respectively, as shown in fig. 7. The leakage problem is
not fixed yet because the word "awAc∗" could take the automaton from the upper branch to the lower
branch.

Before proceeding further, let us consider exactly how the leakage problem harms our ability to prove
uncomputability. Note first that, using the automaton in fig. 7, we can still get value 1 when Lλ>1/2 is
not empty. This can be achieved using a word of the form

”[(awAc)(a
∗wAc

∗)]n2b[(awAc)(a
∗wAc

∗)]n3b · · · b[(awAc)(a∗wAc∗)]nk”,

because this word causes the automaton to behave exactly like the automaton in fig. 1, which we know
can achieve value 1. We do not get a gap, however, because, if Lλ>1/2 is empty we can use the word
"a∗wAbbc∗" to get value 1. So we have no gap from which we can get uncomputability. The value is
always 1.

Let’s think about what the word "a∗wAbbc∗" makes the automaton do. Suppose the automaton was
in init, then slid up to q1. When a∗wA is entered the automaton remains in q1. Then when bb is entered,
the automaton accepts. Now suppose the automaton was in init, then slid down to q4. The automaton
just acts normal, and repeating the same word for infinity gets the automaton to accept. The problem
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Figure 8

can be stated as follows: when one of the branches is operating, the other branch can just do whatever
it wants without affecting the other branch. The branches are decoupled, which is bad because it gives
the automaton the ability to always accept. This particular hole can be fixed by adding the states c1
and c2, and the Sink as shown in figure 8.

By making sure that the upper branch is debilitated when the lower branch is operating, the de-
coupling problem is fixed. And by making sure that leakages from one branch to another are punished,
other problems are fixed. Generally speaking, by patching the automaton such that the presence of a
connection between the upper and lower branches cannot be exploited to get value more than 1/2 in the
case Lλ>1/2 empty, we eventually arrive at the automaton shown in fig. 2, which we prove to have value
1/2 when Lλ>1/2 is empty.
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