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Abstract
Computational fluid dynamics (CFD) is an important tool in design involving fluid flow. Scale-
resolving CFD methods exist, but they are too computationally expensive for practical design.
Instead, the relatively cheap Reynolds-averaged Navier-Stokes (RANS) approach is the industry
standard, specifically models based on the Boussinesq hypothesis, which are unable to represent
the effect of turbulence anisotropy. Development of RANS models based purely on physical ar-
guments has stagnated; however, data-driven turbulence modeling presents a paradigm shift for
improved predictions. Though this technique has produced successful models tailored to specific
flows, it has yet to produce a successful general turbulence model, which is the focus of this work.

In this work, models consist of corrections to the classical k-ω SST turbulence model; b∆i j to
correct the Reynolds stress anisotropy and R to correct the turbulent kinetic energy. High fidelity
data combined with the k-corrective-frozen technique is used to obtain exact correction fields,
which are validated. Then, the SpaRTA framework is used to regress symbolic expressions for
the corrections. Using a newly developed solver, models are injected into a full RANS solver to
assess a-posteriori performance for various test cases. SpaRTA identifies a good R model, but only
after a-posteriori optimization of coefficients, this model holds promise for generalization. Mean-
while, SpaRTA is unable to find a good b∆i j model due to its reliance on linear regression. A new
framework based on non-linear regression is introduced which identifies a much better b∆i j model,
though this model is Reynolds number dependent.
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1 Introduction
Computational fluid dynamics (CFD) is used in almost all modern design involving fluid flow,
ranging from internal combustion engines to full aircraft [5, p. 6-9]. Most CFD methods are
based on the Navier-Stokes equations; a set of partial differential equations (PDEs) derived in the
first half of the 19th century [63, p. 3]. To this day, no analytical solution has been found for these
equations, so CFD relies entirely on modeling them. One approach known as direct numerical
simulation (DNS) numerically solves the equations by resolving all relevant scales. Unfortunately,
this approach is unfeasible for most practical engineering problems with current computing power.
Another approach called large-eddy simulation (LES) resolves only the largest scales and models
the smaller ones, leading to a significantly reduced computational cost compared to DNS. Al-
though for a long time the computational cost of LES was also too high for practical engineering
problems, it has been gaining popularity in recent years [69, p. 112].

The most popular approach to CFD is solving the Reynolds-averaged Navier-Stokes (RANS) equa-
tions. The main idea is to split the flow into a mean- and fluctuating component and then take the
average [40]. The resulting system of PDEs contains mostly mean terms, except for the Reynolds
stress tensor (RST), which contains the averaged products of fluctuating velocity components [5,
p. 321]. The RST requires modeling as it depends on fluctuating components, while only mean
components are solved for, it is the main focus of RANS modeling. RANS is much cheaper than
LES as it does not discretize time, can be less than 3-dimensional and only needs to accurately
resolve mean flow gradients [5, p. 325]. The most popular RANS models rely on the Bousinesq
hypothesis to model the RST, which is unable to represent turbulence anisotropy. While alter-
native models have been developed, these have not proven consistently better than Boussinesq
models for general cases, meaning classical RANS modeling has been stagnant over the past thirty
years.

Recent developments in machine learning combined with the increasing availability of high fi-
delity data has opened the possibility of using this data to train more accurate RANS models
[12]. This has led to the discipline known as data-driven turbulence modeling. A variety of ap-
proaches exist within it, from simple coefficient recalibration to symbolic regression of models
beyond Boussinesq’s hypothesis. Most models show improvements in an a-priori setting; predic-
tion of the RST based on fixed field data (such as from an existing RANS model). The a-posteriori
setting, in which the velocity and pressure are updated, yielding new predictions of the RST,
seems much harder. Many models suffer from stability issues in the a-posteriori environment and
improvements are less obvious than a-priori [23] [46].

The k-corrective-frozen approach and the SpaRTA framework introduced by Schmelzer et al. are
of particular focus in the current work, which is written under the same group [46]. They still
use a Boussinesq dependent model (k-ω SST), but they introduce corrections to the RST and the
production of turbulent kinetic energy. The five main steps of the methodology are summarized
below:

1. Establish a baseline case, including a mesh independent mesh, boundary conditions, initial
conditions and a converged result.

2. Interpolate the high-fidelity field data onto the RANS mesh and run k-corrective-frozen to
obtain correction fields.

3. Validate the correction fields a-posteriori (propagation).

1



4. Train models based on the correction fields using SpaRTA for symbolic regression.
5. Propagate the trained models through a full RANS solver to attain a-posteriori results.

With this approach, Schmelzer et al. were able to find a simple symbolic expression model that
improved a-posteriori predictions of various separating flows, also at a higher Reynolds number.
Their approach has been applied to a variety of flows, yielding simple models which improve a-
posteriori predictions, even for non-training cases of similar topology [21] [67]. However, there
is little precedent for training and testing a model on a range of flow topologies, not for the afore-
mentioned approach but also not for the field as a whole. Such a model would prove much more
useful to the wider CFD community, as they can more confidently apply it to an unseen, complex
case. This is the direct impetus for the collaborative testing challenge as part of NASA’s 2022
symposium on turbulence modeling [45]. The goal of the challenge is to train a single RANS
turbulence model and test it on five distinct flows. The classifier approach by Steiner et al., which
applies corrections only in certain areas, shows promise for generating such a general model [54].

The novelty of this works is in part formed by an entry to the challenge, for which a model
and a classifier are trained using the approach by Steiner et al. Unsatisfactory model fits for the
RST correction of the challenge cases inspired further efforts in this work. Two cases are added
which are dominated by anisotropy, a phenomenon that heavily relies on the RST correction. The
functional forms that SpaRTA is able to regress are found to be too limited, especially for RST cor-
rection models. Hence, a new symbolic regression framework is proposed which is able to regress
a wider range of functional forms. Furthermore, a new solver is developed that automates the
propagation of models (step five of the approach outlined above).

The aim of the current study is summarized by the following research question, which is fur-
ther divided into sub-questions:

How suitable is the k-corrective-frozen approach combined with the SpaRTA framework
[46] for training a model giving improvements over a range of steady-state flows with re-
spect to k-ω SST?

• Is the SpaRTA framework [46] suitable for the symbolic regression of general models?
• Does a classifier which applies corrections only in certain areas improve generalizability of

models?
• How well does the a-priori fit to the corrections translate to a-posteriori performance of the

model?

The thesis is structured as follows: In Sec. 2, classical approaches to CFD are reviewed with
an emphasis on RANS models. Then in Sec. 3, relevant literature on data-driven turbulence
modeling is discussed, with particular focus on work related to k-corrective-frozen and SpaRTA.
Sec. 4 delves into the functionality and implementation of the new symbolic regression framework
and the solver to automate model propagation. Next, efforts for the NASA challenge entry are
summarized in Sec. 5. Then, steps 1-3 of the methodology laid out above are described for five
flows. The first two are the anisotropic flows; a rectangular duct and heterogeneous roughness,
described in Sec. 6 and 7 respectively. The latter three come from the challenge; a channel, a flat
plate and a wall-mounted hump, described in Sec. 8, 9 and 10 respectively. The classifier is further
studied in Sec. 11, followed by results of model training and testing in Sec. 12. Finally, conclusions
are drawn in Sec. 13 after which recommendations are given for future work in Sec. 14.
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2 Classical computational fluid dynamics
When designing a new CFD model, it is important to understand how existing ones were de-
signed. Traditionally, CFD models were designed by making physically motivated assumptions
to simplify the Navier-Stokes equations. Models that rely on more simplifications usually have a
lower accuracy compared to models with few simplifications. However, models with more sim-
plifications are usually significantly cheaper in terms of computational cost. When designing a
new model, the goal is usually to have a cost similar to models of the same class, while improving
accuracy. Inaccuracies in CFD models originate from the assumptions made in their derivation,
understanding these assumptions is therefore key in improving model accuracy. In this light, the
current section aims at exploring existing CFD models and their underlying assumptions.

In Sec. 2.1, the assumptions behind the Navier-Stokes equations are laid out in various sets,
each leading to a slightly simpler version of the Navier-Stokes equations. Then, in Sec. 2.2, the
Reynolds number is explained along with it implications on the cost of CFD. Also, the most ac-
curate but expensive form of CFD modeling (DNS) is explained. Next, the evolution of turbulent
structures is explored in Sec. 2.3 along with a class of CFD models of medium cost and accuracy
(LES). The idea behind RANS, the cheapest yet least accurate class of CFD models, is laid out in
Sec. 2.4. Since this class of models is the focus of the current work, various RANS models based
on Boussinesq’s hypothesis are given in Sec. 2.5 along with their underlying assumptions. Finally,
in Sec. 2.6, other RANS models are laid out that are not based on Boussinesq’s hypothesis.

2.1 Navier-Stokes equations
At the foundation of fluid dynamical theory are the Navier-Stokes equations; a set of partial differ-
ential equations (PDEs) describing the velocity and thermodynamic state of fluids through space
and time. Though the derivation of these equations is not shown here, the main assumptions and
ideas behind the derivation are. A comprehensive derivation of the Navier-Stokes equations can
be found in Chapter 2 of Anderson’s Fundamentals of Aerodynamics book [4]. The fundamental
assumptions used in the derivation of the Navier-Stokes equations are listed below.

Fundamental assumptions in Navier-Stokes:

• Conservation of mass

• Conservation of momentum

• Conservation of energy

• Continuum assumption

The derivation of the Navier-Stokes equations starts by assuming conservation of mass, momen-
tum and energy on an infinitesimal element. The infinitesimal element is assumed to act as a
continuum rather than a collection of separate molecules (continuum assumption). As explained
by Pope, for a flow at atmospheric conditions, over a non-microscopic object at typical atmospheric
velocities, this assumption is valid [37, p. 10]. With these assumptions, a mass, momentum and
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energy balance of the infinitesimal fluid element can be made, the structure of which is as follows:�
S=Surface of element

(mass/momentum/energy flux) dS =

∫∫∫

V=Volume of element

(internal mass/momentum/energy increase) dV. (1)

The surface integrals can be converted to volume integrals using the divergence theorem. Then,
the integrals can be dropped altogether since no assumption was made on the shape of the in-
finitesimal element, resulting in the Navier-Stokes equations in differential form (not shown here
as this form is simplified further). Whereas mass and energy are scalar quantities, momentum is
a vector quantity, meaning the Navier-Stokes equations consist of five PDEs. Since there are five
independent unknowns (x-, y-, z-velocity, pressure and temperature), the system is closed.
In the majority of aerodynamic analyses, additional assumptions are used to simplify the Navier-
Stokes equations. These assumptions are listed below and they are motivated next.

Further assumptions used in the majority of aerodynamic analyses:

• No chemical reactions

• Uniform composition

• No electromagnetic forces

• Viscous stress linear function of strain rate (Newtonian fluid)

• Fluid is isotropic

Firstly, it is assumed that there are no chemical reactions, such that the composition of the fluid is
not changing and there is no source of energy. Secondly, the composition of the fluid is assumed
to be uniform, such that there is no diffusion. Thirdly, electromagnetic forces are assumed to be
absent to simplify the body force term. For dry air (typical in aerodynamic analyses), these are
valid assumptions if the Mach number is not too high [63, p. 60].

Next, one of the terms in the momentum equations is the viscous stress. In order to obtain a
solution, this viscous stress should be expressed in terms of the five unknowns (x-, y-, z-velocity,
pressure and temperature). For so-called Newtonian fluids, the viscous stress depends linearly on
the strain rate (which depends only on the velocity gradient). Linearity implies that the two can
be related through a rank-4 tensor, which is symmetric since the viscous and strain rate tensor are
symmetric. Symmetry of this rank-4 tensor implies it has 36 independent coefficients, where each
coefficient is a thermodynamic property of the fluid which can be expressed in terms of pressure
and temperature. In order to reduce the number of independent coefficients, the fluid is also
assumed to be isotropic, leaving just two independent coefficients; the dynamic viscosity and the
bulk viscosity. Both the Newtonian fluid and the isotropic fluid assumption are valid for dry air
[63, p. 65].
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The version of the Navier-Stokes equations resulting from the assumptions listed above is often
referred to as the compressible Navier-Stokes equations within the field of aerodynamics. In
the current work, additional assumptions are made to arrive at the even simpler incompressible
Navier-Stokes equations. These assumptions are listed below and explained next. It should be
noted that there are many practical aerodynamic scenarios where these next assumptions are in-
valid.

Further assumptions in the current work:

• Incompressible fluid

• Constant viscosity

The fluid is assumed to be incompressible which implies that the volume of fluid elements does
not change as they travel through the flow. Note that this assumption is only valid for air up to
Mach 0.3 [4, p. 64]. For many aerodynamic applications (such as commercial jets), this is not a
valid assumption as Mach numbers are much higher. Combining incompressibility with the uni-
form composition assumption made earlier implies that the density of the fluid is constant. This
means that the density can be taken out of many derivatives, as it is no longer a function of time
and space. Furthermore, the bulk viscosity reduces to zero under this assumption, leaving the
dynamic viscosity µ as the only independent coefficient relating the viscous stress to the strain
rate [63, p. 68].

The dynamic viscosity is a thermodynamic property that can be found from the pressure and
temperature, for instance using Sutherland’s law (which only uses temperature). This law also
implies that a relatively constant temperature results in a constant viscosity. For aerodynamic
problems below Mach 0.3 and without heat sources, constant temperature is a valid assumption
and it is made in the current work. This actually leaves no more temperature dependent terms
in the mass and momentum equations, meaning they decouple from the energy equation. As
noted by Pope, assuming both a constant density and temperature means that the pressure is no
longer a thermodynamic variable. Now, only relative differences in the pressure field influence
the velocity field, meaning the effect of gravity can be removed by including it in the modified
pressure [37, p. 18].

The simplified Navier-Stokes equations resulting from the assumptions listed above are given
in Einstein notation in Eq. 2; these will be the foundation of the models discussed in the current
work. Note that the ν parameter in the momentum equation is the kinematic viscosity; it is simply
the dynamic viscosity divided by the density (ν = µ/ρ). Finally, note that no general analytical
solution exists for these equations. Instead, approximate solutions are found using computers. In
the next sections, various methods for obtaining these approximate solutions are discussed.

Incompressible, constant-viscosity Navier-Stokes equations

Conservation of mass
∂ ui

∂ x i
= 0

Conservation of momentum
∂ ui

∂ t
+ u j

∂ ui

∂ x j
= −

1
ρ

∂ p
∂ x i
+ ν

∂ 2ui

∂ x j∂ x j
(2)
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2.2 The Reynolds number and direct numerical simulation

Figure 1: Schlieren image of candle
fumes transitioning from laminar to

turbulent, by Gary Settles [48].

Before discussing numerical solution methods to the
Navier-Stokes equations, the distinction between lam-
inar and turbulent flow shall be laid out. Laminar
flow is characterized as organized and predictable,
with perpendicular streamlines (no mixing). Turbu-
lent flow, on the other hand, is highly chaotic and
unpredictable and much more unsteady than lami-
nar flow. When a flow goes from turbulent to lam-
inar, this is known as relaminarization. When a
flow goes from laminar to turbulent, this is known
as transition. An example of candle fumes tran-
sitioning from laminar to turbulent is shown in
Fig. 1.

The main parameter governing whether a flow is lam-
inar or turbulent is the Reynolds number, defined as:

Re =
U L
ν

. (3)

The Reynolds number is a dimensionless measure of the
ratio between inertial and viscous forces. The inertial
forces are characterized by a velocity U and a length
scale L. The viscous forces are characterized by the kine-
matic viscosity ν. Low Reynolds numbers are associated with laminar flow, while high Reynolds
numbers are associated with turbulent flow. In Fig. 1, the characteristic length scale is the height
above the candle; at a certain height the critical Reynolds number is reached and the flow transi-
tions to turbulent.

Another effect of the Reynolds number is visible in Fig. 1 after the point of transition; first the
turbulent flow structures are chaotic, but no small structures are visible yet. As the Reynolds
number increases further, large structures are still visible, but increasingly smaller structures also
appear. Thus, turbulent flow is characterized by structures with a range of sizes, this size range in-
creases with the Reynolds number. The ratio between the length scale of the largest and smallest
turbulent structure is given as:

L
η
≈ Re3/4. (4)

These smaller structures also live on much smaller timescales than the largest structures, further
giving a range of timescales. The ratio between the timescale of the largest and smallest turbulent
structure is given as:

τ

τη
≈ Re3/4. (5)

Both ratios are derived based on the equations given in Sec. 9.1.2 in the book by Pope [37].
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The concepts of the Reynolds number and the range of turbulent scales are introduced here, as
they are highly relevant to the most obvious approach to numerically solving the Navier-Stokes
equations. Namely, local approximations of first and second derivatives can be found using Taylor
series expansions. Thus, by discretizing the problem in both space and time, a solvable system
of equations is obtained (see the book by Van Kan et al. for more information [57]). In order
for the discretized solution to be close to the continuous solution, all relevant scales should be
resolved. Though the smallest structures in Fig. 1 may seem irrelevant, they are responsible for
the majority of the dissipation, meaning they also have to be resolved. This approach of simply
solving the discretized Navier-Stokes equations on a grid fine enough to resolve all relevant scales
is known as direct numerical simulation (DNS).

Contrary to what one may initially believe, DNS is not used for most practical engineering prob-
lems involving turbulent flow. To understand why, consider again the ratio between the largest
and smallest length and time scales in Eq. 4 and Eq. 5 respectively. Since turbulence is chaotic,
it is inherently 3-dimensional. Even for the simplest geometries, a 3-dimensional computational
domain should be used which represents the whole range of turbulent structures. Furthermore,
since turbulence is unsteady, time integration has to be used. The total time should be larger than
the time scale of the largest structure, while the timestep should be smaller than the timescale
of the smallest structure. Representing all scales in three spatial dimensions and one temporal
dimension gives a combined scaling with Re3.

Pope provides an estimate for the total number of domain points times the total number of
timesteps in terms of the Reynolds number in Eq. 9.12 [37, p. 348]: 160Re3. Assuming an ex-
tremely efficient matrix solver which only needs one floating point operation (FLOP) per point per
timestep, 160Re3 FLOPs would be required to solve one flow case. Consider a group of aerody-
namicists simulating a 4.6 m long Toyota Prius 3 driving on the highway at 120 km h−1 (33 ms−1),
corresponding to a Reynolds number of 6.5 million. A DNS simulation of this case would require
4.4× 1022 FLOPs. The new DelftBlue supercomputer with a theoretical maximum of 1.05× 1015

floating point operations per second 4 would take at least 1.3 years to complete this simulation.

Even this extremely conservative runtime estimate of the Toyota Prius illustrates the unfeasibility
of using DNS for practical engineering problems. Most engineers do not have access to a computer
the size of DelftBlue. Furthermore, many simulations have to be performed in the design process
with a runtime of at most a few weeks. Additionally, many aerodynamic applications have an
even higher Reynolds number than the Toyota Prius. In practise, DNS is only used to study low-
Reynolds number academic cases, where the number of runs is limited and a runtime of months
is acceptable. Luckily, there are alternative methods for finding an approximate solution to the
Navier-Stokes equations with a lower computational cost than DNS, these are discussed in the
next sections.

3Toyota (2019). 2023 PRIUS Full Specs. Toyota. https://www.toyota.com/prius/features/mpg_other
_price/1223/1225/1227

4Delft High Performance Computing Centre (2022). DelftBlue: the TU Delft supercomputer. TU Delft. https://
www.tudelft.nl/en/dhpc/system
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2.3 The energy cascade and large eddy simulation
Pope lays out Richardson’s view on the origin of the range of sizes in turbulent structures (ed-
dies), which was discussed in the previous section. The largest eddies have a Reynolds number
comparable to the case Reynolds number. Due to vortex stretching, these eddies break up into
smaller and smaller eddies. The size and velocity of these smaller eddies decreases, meaning their
Reynolds number also decreases. As mentioned, the Reynolds number is the ratio between inertial
and viscous forces, so the lower Reynolds number of these smaller eddies means a larger effect
of dissipation. At the smallest scales, the Reynolds number becomes so low that no further break
up occurs. Instead, these smallest eddies rapidly disappear due to viscous dissipation [37, p. 183].

The process described above is known as the energy cascade, it can be summarized as the transfer
of energy from the largest to the smallest scales, where it is dissipated. The largest eddies are
responsible for the production of turbulent kinetic energy and contain the vast majority of this
energy. The nature of these largest eddies is also highly dependent on the boundary conditions.
Kolmogorov argues that as eddies break down, the turbulence becomes more and more isotropic
(also implying universal), since the chaotic nature of turbulence reduces anisotropic bias [24].
This implies that it may be possible to find a universal model for these smallest scales. As men-
tioned, simulation of these smallest scales is responsible for the majority of the computational
cost of DNS, so modelling them could lead to a significant decrease in cost. Resolving only the
large eddies and modelling the small eddies is a discipline known as large eddy simulation (LES).

In order to distinguish the large and small eddies, velocity is decomposed into a filtered com-
ponent ui and a sub-filtered component u′′i :

ui = ui + u′′i . (6)

A similar decomposition is done for the pressure:

p = p+ p′′. (7)

Applying filtering to the incompressible, constant-viscosity Navier-Stokes equations in Eq. 2 re-
sults in the filtered Navier-Stokes equations:

∂ ui

∂ x i
= 0

∂ ui

∂ t
+ u j

∂ ui

∂ x j
= −

1
ρ

∂ p
∂ x i
+ ν

∂ 2ui

∂ x j∂ x j
+
∂ τR

i j

∂ x j
. (8)

Note that in this derivation, filtering and differentiation are assumed to commute, which is only
true for spatially uniform filters [37, p. 581]. The τR

i j term in Eq. 8 is known as the residual-stress
tensor, it is defined as:

τR
i j = uiu j − uiu j. (9)

The uiu j component of this tensor cannot be expressed in terms of filtered quantities, but requires
knowledge of the unfiltered flow. Finding models for this tensor in terms of filtered flow quanti-
ties is the main focus of LES modelling.

8



Since only the largest eddies are simulated, the mesh requirements of LES are much less strict
than those of DNS, as only these largest eddies have to be represented. The question remains
how fine to make the mesh; refining the mesh leads to representing a larger part of the energy
cascade. Usually the mesh refinement is chosen such that at least 80% of the turbulent kinetic
energy is resolved [37, p. 560]. Meeting this requirement near walls results in a rather fine mesh,
and the number of mesh cells actually becomes dependent on the Reynolds number again [37,
p. 598]. An alternative approach is to drop the 80% requirement near walls and use wall models
instead, though this introduces additional uncertainties.

Though LES is much cheaper than DNS for high-Reynolds number cases, it is often still too
computationally expensive to be of use in practical aerodynamic design. The 80% requirement
still necessitates rather fine grids. Furthermore, the simulated large eddies are still inherently
3-dimensional and unsteady. Thus, even for simple geometries, LES requires a 3-dimensional
domain simulated through time. Hence, many aerodynamic design problems require a computa-
tionally even cheaper method than LES. The most popular one, Reynolds-averaged Navier-Stokes,
is discussed in the next section.

2.4 Reynolds-averaged Navier-Stokes
Reynolds averaged Navier-Stokes (RANS) takes the ideas of LES one step further: Instead of
separating the large and small eddies, the velocity is decomposed into a mean component 〈ui〉
and a fluctuating component u′i [40]:

ui = 〈ui〉+ u′i. (10)

A similar decomposition is used for the pressure:

p = 〈p〉+ p′. (11)

Applying these decompositions to the incompressible, constant-viscosity Navier-Stokes equations
in Eq. 2 and averaging results in the Reynolds-averaged Navier-Stokes equations:

∂ 〈ui〉
∂ x i

= 0

∂ 〈ui〉
∂ t

+ 〈u j〉
∂ 〈ui〉
∂ x j

= −
1
ρ

∂ 〈p〉
∂ x i

+ ν
∂ 2〈ui〉
∂ x j∂ x j

−
∂ 〈u′iu

′
j〉

∂ x j
. (12)

More details on this derivation can be found in the book of Pope [37, p. 83].

The structure of the RANS equations (Eq. 12) is similar to the structure of the filtered Navier-
Stokes equations used for LES (Eq. 8). The term 〈u′iu

′
j〉 is known as the Reynolds stress tensor

(RST), denoted as τ′′i j. Like the τR
i j term in the filtered Navier-Stokes equations, the RST is the

only term that cannot be expressed in terms of mean flow quantities. Finding models for the RST
in terms of mean flow quantities is the main focus of RANS modeling. For simplicity, the RST is
referred to as τi j throughout this work.
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Simulating only mean flow quantities and modeling all effects of turbulence comes with several
advantages in terms of computational cost. Firstly, if the mean flow is constant through time,
the whole dimension of time can be removed from the simulation by solving for the steady state.
This simply means setting ∂ 〈ui〉/∂ t to zero in the momentum equation. Secondly, if the geometry
implies a mean flow that is constant in a certain dimension this can be exploited by RANS by only
using a single cell in the direction of this dimension. Thirdly, if the geometry implies symmetries
in the mean flow, only one side of the symmetry has to be modeled; the mean flow results can
simply be mirrored to the other side of the symmetry. In LES and DNS, these simplifications are
impossible as (part of) the turbulence is resolved, which is inherently unsteady, chaotic and 3-
dimensional. Finally, a coarser mesh can be used for RANS as it only needs to accurately resolve
gradients of the mean flow, rather than gradients of the (largest) eddies [5, p. 325].

Due to its low cost, RANS is the most popular approach to practical fluid dynamics problems.
However, this lower cost comes at the price of reduced accuracy, as RANS models are based on
rather strong assumptions [46]. The most popular class of RANS models is explored in the next
section. Another note regarding the cost of RANS models: if the whole wall region is resolved,
the grid spacing at the wall is Reynolds number dependent. However, similar to LES, wall models
can be used if resolving the wall proves too computationally expensive.

2.5 Linear eddy viscosity modeling in RANS
The most popular class of RANS models, linear eddy viscosity models (LEVMs), rely on Boussi-
nesq’s hypothesis to model the Reynolds stress. Boussinesq’s hypothesis is laid out in Sec. 2.5.1
along with its shortcomings. LEVMs are classified based on the number of additional PDEs they
introduce. The first eddy viscosity models did not introduce any additional PDEs and are thus
known as zero-equation models. Though not as popular today, these models are explored in
Sec. 2.5.2 to motivate further models. In Sec. 2.5.3, one equation models are explored, which
introduce one additional PDE. Finally, two-equation models (introducing two additional PDEs)
are explored in Sec. 2.5.4. Specifically, the k-ω SST model is explored in detail as it is the most
popular RANS model and the one under investigation in the current work.

2.5.1 Boussinesq’s hypothesis

As explained in Sec. 2.4, the RST is the only term in the RANS equations (Eq. 12) that requires
modeling. A model for the RST should be in terms of mean quantities as only these are resolved.
LEVMs rely on Boussinesq’s hypothesis, which models the effect of turbulence in a similar way as
molecular viscosity of a Newtonian fluid [37, p. 93]. In the RANS equations in Eq. 12, the viscous
term (second term of the right-hand side of the momentum equation) is written in a simplified
form, which is allowed by the incompressible, constant-viscosity fluid assumption. The more
general viscous term (also valid in case of a non-constant viscosity) is as follows:

∂

∂ x j

�

ν

�

∂ 〈ui〉
∂ x j

+
∂ 〈u j〉
∂ x i

��

. (13)

Writing the Reynolds stress in an analogous way to the part of the viscous term (Eq. 13) between
square brackets results in the Boussinesq hypothesis:

〈u′iu
′
j〉= −νt

�

∂ 〈ui〉
∂ x j

+
∂ 〈u j〉
∂ x i

�

+
2
3

kδi j. (14)
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The 2/3kδi j term is added in Eq. 14 such that the trace of the RST is equal to 2k. This k is the
turbulent kinetic energy, defined as:

k =
1
2

�

〈u′1u′1〉+ 〈u
′
2u′2〉+ 〈u

′
3u′3〉
�

, (15)

the trace of 2k is required for this definition to be consistent. Finally, rather than the kinematic
molecular viscosity ν, Eq. 14 uses the kinematic eddy viscosity νt . Contrary to the molecular
viscosity, the eddy viscosity is a function of space and time. Finding an expression for the eddy
viscosity in terms of mean flow quantities is the focus of LEVMs.

Boussinesq’s hypothesis assumes that the strain rate tensor and the RST are aligned, which is
a rather strong assumption as shown by Schmitt [47]. Schmitt finds the misalignment angle be-
tween these two tensors for various flows based on DNS/LES data. Even for simple flows, he
finds a significant misalignment between these two tensors, indicating Boussinesq’s hypothesis is
invalid. He notes that for shear dominated flows, the misalignment does not effect the final result.
However, this does not mean that shear dominated flows always produce accurate results. Since
Schmitt only measures the misalignment, differences in magnitude between these two tensors
are not included in his measure. Thus, an inaccurate prediction of the magnitude can still spoil
the solution of shear dominated flows. The magnitude prediction depends on the eddy viscosity
which is model dependent. Various eddy viscosity models are explored in the coming sections.
Finally, it should be noted that the misalignment angle is independent of eddy viscosity, meaning
Schmitt’s findings hold for all LEVMs.

2.5.2 Zero-equation models

The idea of momentum transfer due to turbulence being analogous to momentum transfer due
to molecular viscosity, used in the Boussinesq hypothesis, was also used by Prandtl to come up
with the first eddy viscosity models. Prandtl imagined lumps of particles having a certain mixing
length lmix , akin to the mean free path of molecules [38]. This results in the following expression
for the eddy viscosity:

νt = l2
mix

�

�

�

�

�

�

�

�

∂ ui

∂ x j

�

�

�

�

�

�

�

�

. (16)

One major drawback of the mixing length model is that the mixing length is not the same for each
type of flow, so it has to be chosen beforehand. Also, the mixing length is only approximately con-
stant when it is far from walls. In boundary layers, the mixing length should decrease closer to the
wall. Various near-wall corrections for the mixing length proposed through the years are laid out
in the book of Wilcox [65, p. 77-79]. These corrections are implemented in later mixing length
models such as the Cebeci-Smith model [49].

The mixing length models discussed above are known as zero equation models, because they
introduce no extra PDEs. The advantage is that these models have a low computational cost and
are relatively easy to implement. One drawback of these models was already mentioned; the need
to specify the mixing length beforehand, requiring calibration. Another drawback is the lack of
time history in these models, giving rise to bad performance for flows where the time history is
relevant such as separation [65, Sec. 3.6]. In an attempt to improve performance for such cases,
new models were proposed which included additional PDEs, these are discussed next.
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2.5.3 One-equation models

The first eddy viscosity model introducing an extra PDE was proposed by Prandtl [39]. He chooses
to solve a PDE for the turbulent kinetic energy k, as the square root of k gives a characteristic
turbulent velocity. The PDE solved to obtain k is used in many subsequent models, so it is further
examined here. First, the Reynolds stress transport equation is needed:

∂ 〈u′iu
′
j〉

∂ t
+ 〈uk〉

∂ 〈u′iu
′
j〉

∂ xk
= −〈u′iu

′
k〉
∂ 〈u j〉
∂ xk
− 〈u′ju

′
k〉
∂ 〈ui〉
∂ xk

+ 2ν

®

∂ u′i
∂ xk

∂ u′j
∂ xk

¸

+ ...

+

�

u′i
ρ

∂ p′

∂ x j

�

+

®

u′j
ρ

∂ p′

∂ x i

¸

+ ν
∂ 2〈u′iu

′
j〉

∂ xk∂ xk
+
∂ 〈u′iu

′
ju
′
k〉

∂ xk
. (17)

This equation is obtained by manipulating the Reynolds-averaged Navier-Stokes equations in
Eq. 12, the full derivation can be found in the book of Wilcox [65, p. 41]. Note that this equation
is exact, however, many new unknowns are introduced, so the system is not closed (see Sec. 2.6).
By taking half the trace of the Reynolds stress equation and reordering some terms, the transport
equation for k is obtained:

∂ k
∂ t
+ 〈u j〉

∂ k
∂ x j

= −〈u′iu
′
j〉
∂ 〈ui〉
∂ x j
− ε+ ν

∂ 2k
∂ x j∂ x j

−
1
2

∂ 〈u′iu
′
iu
′
j〉

∂ x j
−

1
ρ

∂ 〈p′u′j〉

∂ x j
, (18)

where ε is defined as:

ε= ν

�

∂ u′i
∂ xk

∂ u′i
∂ xk

�

. (19)

The full derivation of this equation can also be found in the book of Wilcox [65, p. 108].

The transport equation of k in Eq. 18 is again exact, however, there are more unknowns than
equations. The last and second to last term are modeled together using a gradient-diffusion ap-
proximation:

1
2
〈u′iu

′
iu
′
j〉+

1
ρ

∂ 〈p′u′j〉

∂ x j
= −

νt

σk

∂ k
∂ x j

, (20)

where σk is a model constant. This approximation is actually not valid for the pressure term, but
the introduced error is small. Prandtl used the following equation to model the dissipation rate
ε:

ε= CD
k3/2

lmix
, (21)

where CD is a model constant and lmix is the mixing length, necessary to obtain the correct di-
mension. Thus, an a priori calibration procedure is still necessary to determine an appropriate
mixing length. In practical problems, there are often many different flow regimes, making the
specification of an appropriate mixing length rather difficult [65, p. 110-111].
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2.5.4 Two-equation models

In order to address the problem of having to define a turbulent length scale, two equation models
were introduced, where a second PDE is included. This second equation does not need to solve
for the turbulent length scale directly, another quantity with dimensions of length or time that
is not a power of length per time works as well. The two most popular choices for this second
variable are the dissipation rate ε (dimension length2/time3) and the specific dissipation rate ω
(dimension 1/time). These models are known as k−ε and k−ω models respectively, many vari-
ations exist of both.

By manipulating the Reynolds-averaged Navier-Stokes equations, exact transport equations can
be derived for ε and ω, as was done for k. However, these are much more complicated than
the transport equation for k (Eq. 18). Finding suitable closures for the unknown terms in these
exact equations and validating them with experimental data was at the time impossible. Thus,
the transport equations for ε and ω are postulated, based on the form of the relatively simple
k transport equation. The ε transport equation of the popular standard k-ε model is as follows
[26]:

∂ ε

∂ t
+ 〈u j〉

∂ ε

∂ x j
= −Cε1

ε

k

¬

u′iu
′
j

¶ ∂ 〈ui〉
x j
− Cε2

ε2

k
+ ν

∂ 2ε

∂ x j∂ x j
+
∂

∂ x j

�

νt

σε

∂ ε

∂ x j

�

, (22)

where the eddy viscosity νt is defined as:

νt = Cµ
k2

ε
. (23)

In these equations, Cε1, Cε2, σε and Cµ are model constants. This model uses the k-transport
equation in Eq. 18, where the dissipation rate ε is plugged in directly. The ω transport equation
of the popular Wilcox k-ω model is as follows [64]:

∂ω

∂ t
+ 〈u j〉

∂ω

∂ x j
= −γ

ω

k

¬

u′iu
′
j

¶ ∂ 〈ui〉
∂ x j
− βω2 + ν

∂ 2ω

∂ x j∂ x j
+
∂

∂ x j

�

σνt
∂ω

∂ x j

�

, (24)

where the eddy viscosity is defined as:

νt = γ
∗ k
ω

. (25)

Again, this model uses the k-transport equation in Eq. 18, but obtains ε from

ε= β∗kω. (26)

In these equations, γ, β , β∗, σ and γ∗ are model constants.
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The main disadvantage of k-ε is its inability to accurately model boundary layers, especially in
case of adverse pressure gradients. Also shear layers are not always accurately modeled by k-ε
[65, p. 228]. The k-ω model is much better at modeling boundary layers, however, it suffers
from a sensitivity to the specified inflow ω outside boundary layers. This makes the k-ω model
often inferior to the k-εmodel outside boundary layers. In 1994, Menter addressed the freestream
sensitivity by introducing a blending function [31]. Rewriting the k-εmodel to a k-ω formulation
results in the following additional term in the transport equation:

2
σω2

ω

∂ k
∂ x j

∂ω

∂ x j
. (27)

Menter’s idea was to switch this term on outside boundary layers such that k-ε is used and switch
it off inside boundary layers to use k-ω. To achieve this, Menter multiplied this term with (1−F1),
where F1 is a function that goes to one near walls and to zero away from walls, it is defined as:

F1 = tanh

¨

�

min

�

max

� p
k

β∗ωy
,
500ν
y2ω

�

,
4σω2k

C Dkω y2

��4«

. (28)

In this expression, y is the distance to the closest wall, β∗ and σω2 are model constants and C Dkω

is defined as:

C Dkω =max

�

2
σω2

ω

∂ k
∂ x j

∂ω

∂ x j
, 10−10

�

. (29)

Note that in the original paper C Dkω was bounded by 10−20, but this was later increased to 10−10

[32].

In the same 1994 paper, Menter introduces the following limiter of νt:

νt =
a1k

max (a1ω, SF2)
. (30)

Here a1 is a model constant, S is the invariant measure of the strain rate tensor and F2 is defined
as:

F2 = tanh

�

�

max

�

2
p

k
β∗ωy

,
500ν
y2ω

��2�

. (31)

Similar to the F1 function, F2 is one near walls and zero away from walls. This new definition of
νt limits the production of turbulent shear stress in boundary layers with strong adverse pressure
gradients, where F2 ensures no limiting occurs in shear layers. Note that in the 1994 model,
the F2 function was multiplied with the invariant measure of the rotation rate tensor in the νt

limiter in Eq. 30, this was changed in the 2003 model [32]. The incompressible, constant-viscosity
k-transport equation of the k-ω SST model is:

∂ k
∂ t
+



u j

� ∂ k
∂ x j

= Pk − β∗kω+ ν
∂ 2k
∂ x j∂ x j

+
∂

∂ x j

�

σkνt
∂ k
∂ x j

�

. (32)

The incompressible, constant-viscosity ω-transport equation of the k-ω SST model is:

∂ω

∂ t
+



u j

� ∂ω

∂ x j
=
γ

νt
Pk − βω2 + ν

∂ 2ω

∂ x j∂ x j
+
∂

∂ x j

�

σωνt
∂ω

∂ x j

�

+ 2(1− F1)
σω2

ω

∂ k
∂ x j

∂ω

∂ x j
. (33)
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In these transport equations, the k production term Pk is given as:

Pk =min

�

−
¬

u′iu
′
j

¶ ∂ 〈ui〉
∂ x j

, c1β
∗kω

�

. (34)

Note that the limited Pk was initially only used for the k equation, only later was it also added to
the ω equation [43].

The model coefficients used in k-ω SST as implemented in OpenFOAM are given below. As can
be seen, σk, σω, β and γ are not actually constant but dependent on the F1 blending function.
Similar to how the F1 function blends between the k-ε and k-ω model, their model constants are
blended as well. These model constants were calibrated by considering academic flows where
many terms cancel. The k-ω SST model shows improvements over both the k-ε and the k-ω tur-
bulence models. It has grown to become the most used RANS model today, often being referred
to as the industry standard. Due to its popularity and relatively good accuracy, the k-ω SST model
is used as the baseline RANS model in the current work [31] [32].

β∗ = 0.09, a1 = 0.31, c1 = 10,

σk = F1σk1 + (1− F1)σk2, σk1 = 0.85, σk2 = 1.0,

σω = F1σω1 + (1− F1)σω2, σω1 = 0.5, σω2 = 0.856

β = F1β1 + (1− F1)β2, β1 = 0.075, β2 = 0.0828

γ= F1γ1 + (1− F1)γ2, γ1 = 5/9, γ2 = 0.44

While LEVMs have proven highly successful for many types of flows, they come with some fun-
damental shortcomings that make them inaccurate for certain kinds of flows. In his book, Wilcox
mentions flows with sudden changes in mean strain rate and extra rates of strain as flow regimes
where Boussinesq’s hypothesis is invalid. Concrete cases where LEVMs fail include: flows with
streamline curvature, flows with secondary motions, flows with re-circulation zones and three-
dimensional flows [65, p. 303] [22]. Note that some inaccuracies also result from the lack of
unsteadiness modeling in RANS. These effects occur in many practical engineering flows, mean-
ing LEVMs may provide unsatisfactory predictions. For such flow cases, RANS models that do not
depend on Boussinesq’s hypothesis were developed, these are laid out next.

2.6 Other RANS models
In an effort to overcome the inherent shortcomings of Boussinesq’s hypothesis laid out by Schmitt
[47], various RANS models have been proposed that do not use it. One option is to solve the
tensorial Reynolds stress equation (Eq. 17) directly, these models are known as Reynolds stress
models (RSMs). Since the RST is symmetric, at least six PDEs have to be solved. As for LEVMs,
a length and time scale are needed to close the system, which are usually obtained from either
k and ε or k and ω. Luckily, k can be straightforwardly attained as the trace of the RST. How-
ever, ε/ω require the introduction of an additional PDE, bringing the total to seven. The main
effort of designing a RSM lies in finding approximations for the higher order correlation terms in
Eq. 17, such as 〈u′iu

′
ju
′
k〉. The most famous RSMs are the Launder-Reece-Rodi (LRR) model and

the Speziale-Sarkar-Gatski (SSG) model [27] [52].
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Whereas LEVMs depend on local mean velocity gradients to find the RST, RSMs do not. This
means that by nature, RSMs are able to capture flows with sudden changes in mean strain rate
and extra rates of strain. For instance, RSMs are able to take into account streamline curvature
and secondary motions. Given these advantages, one would expect RSMs to be the most used
RANS models today. However, they come with several disadvantages which have resulted in two-
equation LEVMs being the dominant RANS models. One obvious disadvantage is the increased
computational cost of solving seven PDEs rather than just two. Also, RSMs are significantly less
robust than LEVMs. Robustness is rather important in practical engineering problems, where the
complex geometries often result in worse quality meshes compared to academic cases [37, p. 458]
[65, p. 372]. Finally, Menter mentions that results often did not systematically improve when us-
ing RSMs compared to LEVMs [33].

Nonlinear eddy viscosity models (NLEVMs) are a mix between LEVMs and RMSs. They use more
complex relations between the RST and the velocity gradient tensor than Boussinesq’s hypothesis.
Contrary to RMSs though, they typically only solve two transport equations, making their com-
putational cost similar to LEVMs. A subset of NLEVMs are algebraic stress models (ASMs), which
are further split in implicit and explicit versions. ASMs are characterized by the fact that they
are derived from full RSMs. Rodi proposes the weak equilibrium assumption, by which the mean
substantial derivative of the Reynolds stress is assumed relatively much smaller than the mean
substantial derivative of the turbulent kinetic energy [41]. This allows RSMs to be written in a
form where the Reynolds stress is determined using five implicit algebraic equations depending
on k, ε and ∂ 〈ui〉/∂ x j. Unfortunately these equations are implicit, which results in numerical
stiffness, especially for complex flows encountered in practical engineering problems [15] [37,
p. 448-452].

In order to address the numerical stiffness of implicit ASMs, the implicit algebraic equations are
rewritten in an explicit form, resulting in what are known as explicit algebraic stress models
(EASMs). Pope used an integrity basis to make the equations explicit, his equation for the RST is
as follows [36]:

〈u′iu
′
j〉=

2
3

kδi j + k
∑

λ

GλTλi j . (35)

The tensors Tλi j depend only on the normalized strain rate tensor si j and the normalized rotation
rate tensor ωi j, defined as:

si j =
τ

2

�

∂ 〈ui〉
∂ x j

+
∂ 〈u j〉
∂ x i

�

, (36)

ωi j =
τ

2

�

∂ 〈ui〉
∂ x j
−
∂ 〈u j〉
∂ x i

�

. (37)
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In Eq. 36 and Eq. 37, τ is a timescale for nondimensionalization; Pope used τ = k/ε. Another
option is to use the magnitude of the velocity gradient tensor (τ = 1/||∇U ||) as proposed by
Spalart [50]. In the most general form, there are ten linearly independent tensors Tλi j :

T 1
i j = si j, T 6

i j =ωikωklsl j + sikωklωl j −
2
3
(sklωlmωmk)δi j,

T 2
i j = sikωk j −ωiksk j, T 7

i j =ωiksklωlmωmj −ωikωklslmωmj,

T 3
i j = siksk j −

1
3
(sklslk)δi j, T 8

i j = sikωklslmsmj − siksklωlmsmj, (38)

T 4
i j =ωikωk j −

1
3
(ωklωlk)δi j, T 9

i j =ωikωklslmsmj + siksklωlmωmj − ...

−
2
3
(sklslmωmnωnk)δi j,

T 5
i j =ωiksklsl j − siksklωl j, T 10

i j =ωiksklslmωmnωn j −ωikωklslmsmnωn j.

Each base tensor has an associated scalar function Gλ, which depends on at most five invariants:

I1 = sklslk, I2 =ωklωlk, I3 = sklslmsmk,

I4 =ωklωlmsmk, I5 =ωklωlmsmnsnk.
(39)

Deriving an EASM consists of finding the functions Gλ based on an implicit ASM. In his paper,
Pope derived an EASM from the implicit ASM based on the LRR RSM, though only for 2D flow
as 3D was mathematically too cumbersome [36]. Later, Gatski and Speziale derived the full 3D
EASM from the LRR RSM using symbolic manipulation software, their Gλ functions are as follows
[16]:

G1 = −
1
2

�

6− 3I1 − 21I2 − 2I3 + 30I4

�

/DGS, G6 = −9/DGS,

G2 = −
�

3+ 3I1 − 6I2 + 2I3 + 6I4

�

/DGS, G7 = 9/DGS,

G3 =
�

6− 3I1 − 12I2 − 2I3 − 6I4

�

/DGS, G8 = 9/DGS,

G4 = −3
�

3I1 + 2I3 + 6I4

�

/DGS, G9 = 18/DGS, (40)

G5 = −9/DGS, G10 = 0,

where

DGS = 3−
7
2

I1 + I2
1 −

15
2

I2 − 8I1I2 + 3I2
2 − I3 +

2
3

I1I3 − 2I2I3 + 21I4 + 24I5 + 2I1I4 − 6I2I4.

Whereas (E)ASMs are derived from RSMs, it is also possible to construct a NLEVM purely from
data and physical constraints using the same integrity basis in Eq. 38. Confusingly, these models
are often referred to as NLEVMs, while the class of NLEVMs also contains (E)ASMs [15]. Hereafter,
NLEVM will only be used to indicate these data calibrated models, while EASM refers to models
derived from a RSM. The simplest NLEVMs, known as quadratic eddy viscosity models, only use
the first four base tensors in Eq. 38. Craft et al. argue that these models are only slightly more
general than LEVMs and instead propose a cubic eddy viscosity model using the first six base
tensors [9]. An advantage of NLEVMs is that they are easier to design than (E)ASMs as they do
not require a RSM. Though promising, no (E)ASM or NLEVM has shown sufficient improvements
over LEVMs to see widespread use.
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3 Data-driven turbulence modeling
Recent advancements in data-driven approaches together with the increasing availability of high-
fidelity field data from numerical simulations has opened up a new discipline in turbulence mod-
eling; data-driven turbulence modeling. The aim of this section is to give a brief history of data-
driven turbulence modeling and cover techniques relevant to the current work. In Sec. 3.1, works
using a Bayesian framework to recalibrate turbulence model coefficients are discussed as well as
types of uncertainty in RANS simulations. Then, in Sec. 3.2, works that train either a neural
network or random forests to predict the full RST are discussed. Arising stability issues in an a-
posteriori setting are analyzed. Next, the works discussed in Sec. 3.3 aim to prevent instability by
modeling only the RST difference between LEVM and high-fidelity. One framework in particular,
SpaRTA, is used in the current work, so it is discussed in more detail in Sec. 3.4.

3.1 Coefficient calibration and uncertainty classification
Early efforts to use data to improve the predictive capability of RANS models focused on the re-
calibration of their coefficients. One of the first to do so were Cheung et al., who used a Bayesian
framework to find posterior probability distributions of model coefficients of the Spalart-Allmaras
turbulence model [8]. Incompressible boundary layers over a flat plate subjected to various
streamwise pressure gradients were used as training data. Only two coefficients could be re-
calibrated, their optimal values were notably different from their actual values. Using the same
framework, Edeling et al. recalibrated the coefficients of five RANS models for a broader set of
boundary layers under a streamwise pressure gradient [14]. They calibrated the coefficients for
each case separately and found that each case had significantly different optimal coefficients.

Recalibrating model coefficients for certain cases can improve results and it is not uncommon
in industry to find custom sets of coefficients, recalibrated to the flow in question [68]. How-
ever, recalibration requires high fidelity data which is not always available and improvements
may deteriorate with slight changes in geometry. All in all, it does not seem possible to find a
universally applicable improved turbulence model simply by recalibrating coefficients. To explain
this conclusion, it is useful to consider the uncertainty classification introduced by Duraisamy et
al., listing the following four uncertainties in RANS models [12]:

L1 : Uncertainties stemming from the loss of information in the averaging process.

L2 : Uncertainties from the representation of a microscopic quantity (the Reynolds stress) using
macroscopic quantities.

L3 : Uncertainties in the functional form of the model to relate the Reynolds stress to macro-
scopic quantities.

L4 : Uncertainties in the model coefficients to relate the Reynolds stress to macroscopic quan-
tities.

Coefficient recalibration at best removes all L4 uncertainties. However, there are many practi-
cal flows where the other uncertainties are also important for LEVMs. Hence, in the search for
improved turbulence models, later data-driven approaches have mostly focused on L2 and L3
uncertainties [12]. A number of these approaches are explored in the coming sections.
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3.2 Reynolds stress tensor modeling
Initial efforts to address L2 and L3 uncertainties modeled the RST directly, removing Boussinesq’s
hypothesis. Thus these are not NLEVMs but a whole class of RANS models their own. At a bare
minimum, new models should be Galilean invariant, meaning results are the same for each iner-
tial reference frame. Ling et al. train a neural network to predict the nondimensional, anisotropic
RST, where a special architecture is used to ensure Galilean invariance [28]. They use the Pope
tensor basis in Eq. 35, where the outputs of the neural network are the scalars Gλ. As inputs,
they use the five scalar invariants in Eq. 39. In order to make the model as general as possible,
they trained on five distinct flows and tested on two other distinct flows. Results were compared
to an existing LEVM and NLEVM, improvements were found compared to both, but results were
still far off the DNS data.

In the same paper, Ling et al. attempted to perform a-posteriori tests (implementation in a full
RANS solver). However, their approach can at best be called semi-a-posteriori; they evaluated
the RST just once on the converged fields of the LEVM and converged the solution a second time
while keeping this new RST fixed. The results again showed improvements over the LEVM and
NLEVM, but were still not matching the DNS [28]. Kaandorp and Dwight mention several advan-
tages of random forests over neural networks, such as easier implementation and training [23].
Ling et al. used a neural network as it was easier to embed Galilean invariance. Nonetheless,
Kaandorp and Dwight manage to implement a random forests algorithm with embedded Galilean
invariance. Like Ling et al., they trained on one set of cases and tested on another set of cases,
they found similar performance to the neural network of Ling et al. Interestingly, they found large
performance improvements when expanding the input space by introducing additional invariants
dependent on ∇k.

Kaandorp and Dwight also attempted to test their trained random forest in an a-posteriori set-
ting. They noted instability issues; similar issues likely necessitated the semi-a-posteriori strategy
employed by Ling et al. Kaandorp and Dwight addressed the stability issues by blending their
anisotropy tensor between LEVM (k-ω) and random forest prediction, starting the run fully LEVM
and gradually going to random forest. However, they could only achieve a maximum blending of
80% random forest without diverging. With this setup, they attained a better a-posteriori match
with experimental data than found by Ling et al. This performance increase likely originates from
the expanded input space.

To explain the propagation instabilities, consider the work by Thomson et al, who propagated
the exact RST fields from DNS data in a RANS solver [55]. They did this for plane channel flow
at various Reynolds numbers using DNS datasets from various groups. Surprisingly, the errors in
the propagated velocity fields were much bigger than the errors in the DNS RST data, especially
for large Reynolds numbers. Note that predicting the exact DNS RST is a best-case scenario; the
errors in the RST prediction by Ling et al. and Kaandorp and Dwight were much bigger. Thus,
amplification of these errors likely led to the propagation instabilities when injecting the predicted
raw RST into the RANS solver.
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3.3 Reynolds stress tensor discrepancy modeling
The amplification of RST errors in propagation is not observed in LEVMs, where velocity and
pressure are often predicted with a higher accuracy than the RST [47]. Given the instabilities of
direct data-driven modeling of the RST, inclusion of a LEVM in the model may improve stability.
The group of Moser is accredited as being the first to find models only for the discrepancy of the
RST, rather than the full RST [66]. Their idea is given in mathematical form as:

¬

u′iu
′
j

¶

= −2
νt

τ
si j + 2kb∆i j +

2
3

kδi j, (41)

where the notation of Schmeltzer et al. [46] is used rather than Moser. In short, a LEVM is still
used to (largely) calculate the RST, but an additional tensor is included to correct the shortcom-
ings of the LEVM. Here, b∆i j is a nondimensional, anisotropic tensor, often modeled using Pope’s
tensor basis [36]. In this section, various approaches to modeling b∆i j are explored. Note that
various LEVMs are used and some authors also modify the LEVM.

In Sec. 3.3.1, early work by the group of Xiao is laid out who train random forests to predict
the RST discrepancy. Rather than Pope’s tensor basis, they use projections of the RST to ensure
Galilean invariance. Then in Sec. 3.3.2, initial work by the group of Sandberg is summarized, who
train algebraic expressions as the scalar models in Pope’s tensor basis. They use gene expression
programming to find these expressions. Furthermore, their frozen approach is discussed which
aims at addressing the mismatch between the RANS and high-fidelity time scale. Next, early work
of the group of Dwight is laid out in Sec. 3.3.3, who extend the frozen approach to also account
for a discrepancy in turbulent kinetic energy between RANS and high-fidelity. Dwight’s group
also use algebraic expressions as models, but they use sparse regression to find these. Finally,
later work by Dwight’s group looking at applying their framework to wind turbines is discussed
in Sec. 3.3.4.

3.3.1 Random forests by Xiao group

Wang et al. used random forests to predict Reynolds stresses of square ducts and separated flows
[60]. Possibly due to the difficulties of combining random forests with Pope’s tensor basis noted
by Ling et al. [28], they did not use Pope’s tensor basis. Instead, they trained discrepancies of six
normalized projections of the RST. Most of their inputs came from Ling and Templeton [29], but
they also added their own input based on the streamline curvature. A significant disadvantage of
this input, however, is the need to specify a characteristic length. Ling and Templeton constructed
their input features based on physical intuition, making sure to nondimensionalize and normalize
them for generalizability. Wang et al. found a good RST match with DNS when testing their model
at a higher Reynolds number [60]. However, when they tested on a slightly different separated
flow geometry, there was only a slight improvement over the baseline LEVM.
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In a later paper, Wang et al. added 47 more features to the inputs [59]. These were derived in a
similar fashion to the invariants of the Pope tensor series in Eq. 39. However, they also included
the asymmetric tensors associated with the gradient of k and the gradient of p. In this paper,
they again trained a random forest to predict RST discrepancy, using normalized projections of
the RST to ensure Galilean invariance. Training took place on a square duct at various Reynolds
numbers, while testing was performed on the same geometry at a higher Reynolds number. Again,
the predicted RST showed good agreement with the RST in DNS. In this paper they also tested
the model a-posteriori, where they also observed improvements over the baseline NLEVM. They
compared a random forest with only the 10 input features from their original paper and with
57 inputs (using the 47 additional invariants). The random forest with 57 inputs performed
significantly better a-posteriori, advocating for the use of a large input space.

3.3.2 Gene expression programming and the frozen approach by Sandberg
group

In the work laid out so far, authors attempted to train either a neural network or random forest
to predict the RST (discrepancy). Weatheritt and Sandberg argue against this approach, noting
several fundamental issues with a neural network/random forest and calling it the ultimate black
box [61]. Firstly, such a black box is difficult to implement in an actual CFD solver. Secondly,
it is impossible to understand the nature of the correction being applied by a black box (though
random forests may give some understanding, as illustrated in Fig. 2 in [60]). Thirdly, especially
neural networks are infamous for overfitting and bad performance in extrapolation, which makes
the models less generalizable. To address these issues, Weatheritt and Sandberg instead propose
symbolic expressions as models.

Weatheritt and Sandberg fit the nondimensional, anisotropic discrepancy of the RST (b∆i j in Eq. 41),
noting that they observed divergence when modeling the full RST. They use the first four tensors
of Pope’s tensor basis in Eq. 38. Their goal is then to find expressions for the first four scalar
functions Gλ, which depend on the first two invariants in Eq. 39. As laid out in Sec. 2.6, finding
expressions for these scalar Gλ functions is also the goal of NLEVMs. The functions used in exist-
ing NLEVMs are already quite complex, so Weatheritt and Sandberg’s framework should be able
to find rather complex functions. Fitting a function of arbitrary form to data is known as symbolic
regression.

Weatheritt and Sandberg use gene expression programming (GEP) for symbolic regression, adding
the concept of separate ’plasmids’ to distinguish between tensors and scalars. This modification
is necessary to ensure the output is always a nondimensional, Galilean invariant tensor. Training
was performed on a backward facing step, while testing took place on the same backward facing
step at higher Reynolds number as well as on a periodic hill. They noted that their framework pro-
duced simple, stable models. They tested their models both a-priori and a-posteriori and found
improvements over conventional EASMs, though their models were not yet matching the DNS
[61].

In later work, Weatheritt and Sandberg noted that in industrial cases, DNS and wall-resolved
LES would be too expensive to use as high fidelity training data [62]. Instead, they use detached
eddy simulation (DES) data for training so as to test its feasibility. Also, they note that the tur-
bulent time scale used in RANS is different from the turbulent time scale used in scale resolving
simulations. This stems from the empirical nature of the RANS closure equations and their cal-
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ibration to boundary layers. To address the difference in time scales, they introduce the frozen
approach, in which they freeze the high-fidelity velocity and RST fields. They then solve the ω
transport equation to obtain the RANS time scale corresponding to the high-fidelity data. Fur-
thermore, they apply an ad hoc correction to the production of k, noting nonconvergence with
the original production term .

Using this frozen approach, Weatheritt and Sandberg trained on DES data of two ducts of dif-
ferent aspect ratio. Again, they find relatively simple, stable models which they test a-posteriori
in a duct with higher aspect ratio as well as in a diffuser. They demonstrate significant improve-
ments over both the LEVM as well as over conventional EASMs, even for the diffuser which is
rather different than the training data. However, their model is still not matching the DNS results
closely. Most importantly though, they show that fully resolved DNS data is not needed for train-
ing; DES suffices.

3.3.3 Sparse regression and k-corrective-frozen by Dwight group

Schmelzer et al. extend the frozen approach by addressing the problems with the production of
k, noted by Weatheritt and Sandberg, in a more systematic way [46]. They argue that similar to
the turbulent time scale, the turbulent kinetic energy in RANS may be different from the scale
resolved turbulent kinetic energy. Note that the effect of b∆i j is already included in the k and ω
transport equations (Eq. 32 and Eq. 33 respectively) through the modified RST in Eq. 41. To
address the difference in k between RANS and scale resolved, they replace Pk in both transport
equations by Pk+R, where R is the residual of the k transport equation. In their frozen approach,
called k-corrective-frozen-RANS, they again freeze the high fidelity velocity and RST and itera-
tively solve the k and ω transport equations to find R, ω and b∆i j .

In order to validate that the found R and b∆i j fields indeed propagate to the high-fidelity solution
in a full RANS solver, Schmelzer et al. introduce an approach that is referred to as propagation
in this work. Note that some authors refer to the testing of a trained model in a RANS solver as
propagation; this will be referred to as model propagation. Models are trained to predict both R
and b∆i j ; propagation is the upper performance limit in the sense that it represents a hypothetical
model that exactly predicts R and b∆i j . For each training case, Schmelzer et al. find an exact match
with the high-fidelity data in this propagation step.

Models for R and b∆i j can be in any form laid out before; neural networks, random forests or sym-
bolic expressions. Schmelzer et al. choose symbolic expressions following the aforementioned
arguments of Weatheritt and Sandberg (Sec. 3.3.2). Schmelzer et al. use Pope’s tensor basis in
Eq. 38 for b∆i j models. For R models, a new scalar basis is devised based on the Pk modification
due to each Pope base tensor:

R= 2k
∑

λ

GλTλi j

∂ 〈ui〉
∂ x j

. (42)

This basis ensures that R has the correct dimension (length2/time3), since Gλ and Tλi j are nondi-
mensional. Finally, note that finding expressions for Gλ happens completely independently for R
and b∆i j .
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Schmelzer et al. note that the symbolic regression method used by Weatheritt and Sandberg
(GEP) has the disadvantage of being non-deterministic. Furthermore, GEP appears rather dif-
ficult to implement. Noting that models with few nonlinear terms showed low errors and were
numerically robust, Schmelzer et al. opted for a different approach to symbolic regression; Sparse
regression of turbulent stress anisotropy (SpaRTA). In short, SpaRTA constructs a library of all pos-
sible single terms for either R or b∆i j . A linear combination of the terms in the library is then fitted
to the data. To prevent overfitting, elastic net regression [70] is used to find sparse models with
small coefficients. A more elaborate explanation of SpaRTA is provided in Sec. 3.4.

Using their SpaRTA framework, Schmelzer et al. separately train models on a periodic hill, a
converging-diverging channel and a curved backward-facing step, all characterized by a separa-
tion bubble. Since all cases are 2D, they only used the 2D subset of Pope’s tensor basis (three
tensors; two invariants). Each model is propagated for each case and the best model of each case
is analyzed in more detail, resulting in a detailed analysis of three models. Interestingly, two of
these models only had a model for R (b∆i j = 0). All three models showed significant improvements
over the LEVM for all three cases, however, the match with DNS was still far from the upper limit
found in the propagation step. These models were also tested for a periodic hill at significantly
higher Reynolds number than the training data. Also for this case, significant improvements were
found over the LEVM. Finally, note that algebraic expressions were always trained and tested on
similar geometries. However, if a model is to see widespread use in the turbulence community, it
should prove itself over a wide range of flows.

3.3.4 SpaRTA applied to wind-turbines by Dwight group

The SpaRTA framework (including k-corrective-frozen-RANS) was later applied to wind turbine
modeling by Steiner et al. (same group as Schmelzer et al.) [53]. This is a case with much more
industrial relevance than the academic separation bubble cases used by Schmelzer et al. As such,
many more difficulties were encountered that had to be addressed. Firstly, there was already
a mismatch between the LES and RANS boundary layer development even without a turbine.
SpaRTA was used to find correction models for this discrepancy only, so as to separate it from
discrepancies in rotor modeling. Secondly, the larger number of cells together with many more
input features (discussed next) resulted in a significant increase in data in the library. To alleviate
memory requirements and training time, mutual information and cliqueing were used to reduce
library size, these are discussed in more detail in Sec. 3.4.

In the work of Wang et al. [59] and Kaandorp and Dwight [23], a significant increase in pre-
dictive capability of the random forest was found when using input features based also on ∇k
and ∇p. Steiner et al. note this as well and massively expand the space of scalar variables (so-
called features) available to SpaRTA [53]. They use the 47 invariants introduced by Wang et al.,
which are based on si j, ωi j and the tensorized versions of ∇k and ∇p [59]. Furthermore, they
use 11 q-features, most of which come from Wang et al. [60] who in turn got most from Ling and
Templeton [29]. One particular feature, vortex stretching, was not included by Wang et al. as
their cases were 2D. However, Steiner et al. also did not use this feature even though their case
is 3D, possibly due to an oversight. Also, it should be noted that not all q-features are Galilean
invariant and a number of features depend on the ∇p. According to Spalart, this automatically
disqualifies these features from use in a turbulence model [51]. Finally, Steiner et al. also include
the dissipation rate ε as a basis for R [53].
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Steiner et al. also apply the propagation step introduced by Schmelzer et al. and find excel-
lent agreement with LES. Their trained models are much more complicated than those found by
Schmelzer et al., likely due to the flow being more complex and a larger number of features avail-
able to the symbolic regressor. A number of their models were numerically unstable, likely due
to the more complex algebraic structure. Furthermore, they noted that corrections were small
outside the wake region, resulting in terms that cancelled outside the wake. Nonetheless, their
models showed significant improvements over the LEVM, though results were still far from the
upper limit found in propagation.

To address the complicated models with cancelling terms, Steiner et al. propose the use of a
classifier which activates only in regions where corrections are needed [53]. In later work, they
develop the framework for such a classifier [54]. The expression for their classifierσ is as follows:

σ :=







1 if

�
�

�

�2kb∆i j(∂ 〈ui〉/∂ x j)
�

�

�

|Pk,LES|+ε > 0.2

�

∪
�

|R|
|Pk,LES|+ε > 0.2
�

0 otherwise ,
(43)

where Pk,LES is the LES production of k and ε = 0.01 to prevent division by zero. The classifier
is a binary function, being one in regions where the additional production of k due to either b∆i j
or R is more than 20% of the production in the high fidelity data (in this case LES) and zero
outside these regions. A symbolic expression is trained to approximate σ using SpaRTA. Training
of R and b∆i j only occurs on points for which this classifier is active. Steiner et al. indeed found
simpler models with this classifier approach, however, the models were numerically unstable and
performed slightly worse than the more complicated models found without a classifier.

3.4 Detailed description of SpaRTA
After the promising paper by Schmelzer et al. on the use of the SpaRTA framework to train sym-
bolic expressions for the correction fields found from k-corrective-frozen-RANS [46], the frame-
work has been further developed. SpaRTA will also be used in the current work, which is con-
ducted in the same research group. Hence, the SpaRTA framework including its recent develop-
ments is discussed in more detail in the current section. The technical flow diagram of the first
version of SpaRTA is shown in Fig. 2. Furthermore, the affected k-ω SST equations are repeated
here, the new Reynolds stress tensor equation is:

¬

u′iu
′
j

¶

= −2
νt

τ
si j + 2kb∆i j +

2
3

kδi j. (44)

The new k-transport equation is:
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The new ω-transport equation is:
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24



The new production of k equation is:

Pk = min

�

2
�νt

τ
si j − kb∆i j

� ∂ ui

∂ x j
, 10β∗ωk

�

. (47)

The equations for νt , F1 and F2 remain the same, they are found in Sec. 2.5.4.

Figure 2: Technical flow diagram of SpaRTA (taken from [46]).

The first step of SpaRTA is the construction of a library of candidate functions. The inputs for this
step are the base tensors (T n

i j in Fig. 2) and the scalar invariants (Im in Fig. 2). For R models, the
base tensors are converted to base scalars using Eq. 42. Furthermore, the dissipation rate ε= kω
was later added as a basis for R [53]. Also, for Im Schmelzer et al. only used Pope’s first two
invariants I1 and I2 [46] [36]. However, as explained in Sec. 3.3.4, the number of input features
was later expanded by also including invariants based on ∇k and ∇p as well as q-features from
Ling et al. [29]. For the construction of the library, a sub-library B of the scalar invariants is
constructed first. This sub-library contains combinations of (functions of) input features, the B
used by Schmelzer et al. contains 16 terms, it is given as:

B =
�

1, I1, I2, I2
1 , I2
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1 I3
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1 I2
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1 I2
2

�T
.

(48)
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In order to keep the size of the library manageable, the number of input features per term should
not exceed a certain global degree (2 for Schmelzer et al.). Within this global degree, each
combination of (functions) of input features is added to B. Thus, B rapidly grows with the number
of input features and the number of functions used. Finally, B is multiplied with each b∆i j basis to
obtain the full library Cb∆i j

for b∆i j models:

Cb∆i j
=
�

BT 1
i j,BT 2

i j, . . . ,BT 10
i j

�T
. (49)

Also B is multiplied with each R basis to obtain the full library the library CR for R models:

CR =
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Although this ’brute force’ library approach worked for Schmelzer et al., it was not feasible for
Steiner et al. due to the considerably larger number of input features and bigger meshes used
in their study. Two techniques are used to reduce the size of the library; mutual information
and cliqueing. Mutual information is a measure of how much information one has about a vari-
able by observing a different variable. The benefit of mutual information is that it works for any
functional relation between the variables. In SpaRTA, the k-nearest neighbour method is used to
estimate the mutual information between input features and the correction term [17, p. 24-29].
Steiner et al. only used the ten features with the highest mutual information in their library [53].

Cliqueing is performed after the library of candidate functions has been constructed. In this step,
the correlation coefficient between all candidates in the library is computed based on the training
data. Cliques of candidate functions with a mutual correlation correlation coefficient of at least
0.99 are formed. Each clique is then reduced to a single candidate function in the library; the
algebraically simplest one in the clique. For this step, use of the linear correlation coefficient is
allowed as models are linear combinations of candidate functions [53].

After a (reduced) library of candidate functions has been established for R and b∆i j , models are
discovered as linear combinations of the candidate functions. The corrections predicted by the
model are calculated as R = CRΘR and b∆i j = Cb∆i j

Θb∆i j
, where Θ is a vector of coefficients (one

coefficient for each library candidate function). Finding a model thus consists of finding the co-
efficients in Θ. A simple least-squares fit would result in many large, nonzero coefficients and
possibly overfitting of the data. To promote sparsity and small coefficients in Θ, elastic-net re-
gression is used instead [46]. Elastic-net regression was proposed by Zou and Hastie, it blends
Ridge and Lasso regression to take advantage from both their benefits [70]. The equation for
elastic net regression of Θ is given as:

Θ = argmin
Θ̂





C∆Θ̂−∆






2

2 +λρ∥Θ̂∥1 + 0.5λ(1−ρ)∥Θ̂∥22 (51)

In Eq. 51, ∥Θ∥1 corresponds to Lasso-regression while ∥Θ∥2 corresponds to Ridge regression.
Lasso-regression promotes sparsity while Ridge-regression promotes small (though nonzero) co-
efficients. The two are blended via the hyperparameter ρ; ρ = 1 corresponds to pure Lasso-
regression, ρ = 0 to pure Ridge-regression. The relative importance of these regularization terms
compared to the least-squares term is controlled through the hyperparameter λ. A large value of
λ results in a sparser Θ with smaller coefficients at the cost of a worse least-squares fit. To prevent
bias towards higher magnitude candidate functions, they are all standardised. Schmelzer et al.
go over an approximately logarithmically spaced range of ρ and λ to find a variety of models [46].
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As mentioned, all candidates were standardised when finding models using the elastic net. In
the model inference step (see Fig. 2), the nonzero coefficients of these models are refit for un-
standardised candidate functions. The number of model terms remains the same in this step, but
the refit coefficients should still be small to promote stability. Hence, pure Ridge-regression is used
for this refit, corresponding to Eq. 51 with ρ = 0 and only using the columns with nonzero coef-
ficients. The refitted models for R and b∆i j , M (i)

R and M (i)
b∆ respectively, are then tested a-posteriori

in a CFD solver.

Though SpaRTA has been successfully applied to many cases and has shown significant improve-
ments over LEVMs, it has never come close to the best-case scenario of propagation. This discrep-
ancy is speculated to originate mostly from a misfit in b∆i j models. The model prediction error
was always larger for b∆i j models compared to R models. Furthermore, the best model found
by Schmelzer et al. used b∆i j = 0 [53] [46]. This difficulty is understandable considering that
b∆i j is a traceless, symmetric tensor while R is a scalar; b∆i j essentially has to fit five times more
data. Hemmes notes that SpaRTA is rather inflexible and uses a different framework for symbolic
regression [20]. Likely, Hemmes was referring to the fact that SpaRTA only fits coefficients of
a linear combination of terms, severely limiting the functional forms SpaRTA can regress. For
instance, SpaRTA would not be able to regress the EASM by Gatski laid out in Sec. 2.6 [16].
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4 Expansion of SpaRTA methodology
Consider again the steps laid out in the introduction for training and testing a model for a given
case. Custom solvers and turbulence models are already available for running the first three
steps (baseline, frozen, propagation). Also, the SpaRTA framework is available for the symbolic
regression in the fourth step. However, no general solver was yet available for the fifth step,
such a solver is developed in the current work, it is laid out in Sec. 4.1. Furthermore, the linear
nature of the coefficient fitting in SpaRTA is found to be rather limiting in terms of model accuracy.
Hence, a new symbolic regression framework is developed in the current work which is able to fit
coefficients in nonlinear functions. This new framework named CuRTA is explained in Sec. 4.2.

4.1 Model propagation infrastructure
The current section covers the custom OpenFOAM solver and turbulence model created for prop-
agation of correction models, developed as part of the current work. In Sec. 4.1.1, the motivation
for creating this solver and turbulence model is given. Then, the algorithm and further imple-
mentation details are given in Sec. 4.1.2 and a brief usage guide is provided in Sec. 4.1.3.

4.1.1 Problem statement

The symbolic regression step generates a plethora of potential models, stemming from the trade-
off between accuracy and number of terms. Model accuracy and stability cannot be exactly deter-
mined a-priori, meaning a significant number of models has to be tested a-posteriori to determine
the most suitable one. Testing models a-posteriori may reveal flaws, leading to new model genera-
tion approaches. All in all, the a-posteriori model testing process needs to be as flexible, optimized
and automated as possible.

In previous work, model testing was performed by compiling the models into a custom Open-
FOAM turbulence model, coding the necessary features into OpenFOAM. This approach is rather
inflexible, as OpenFOAM has to be recompiled for each new model. Furthermore, models/fea-
tures have to be written in the C++ language, which has less library functionality compared to
languages such as Python. Also, the approach is not optimized, as a recompile of a custom turbu-
lence model takes around one minute. Once compiled though, the model is evaluated efficiently.
Finally, the approach is hard to automate, owing to the manipulation of source code. Running two
instances of a source code modifying script could lead to problems when they are concurrently
modifying the custom turbulence model.

In the current work, a new approach is introduced which uses a universal model propagation
turbulence model that only needs to be compiled once. This is done by removing the model
dependent part (computation of required features followed by computation of correction fields)
from the compiled code. Instead, this part of the computation is outsourced to an interpreted
language (a language that is not pre-compiled). When correction fields are needed, the new tur-
bulence model sends relevant flow fields such as ∇iu j to the interpreted language script, which
sends back the correction fields. Given that the SpaRTA infrastructure is already written in Python,
Python is used as the interpreted language. To circumvent the slower speed of Python compared
to C++, the NumPy library is used for computations, as NumPy does these at roughly C++ speed.
Outsourcing the model evaluation to Python was not implemented before, as such an interface
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was deemed to difficult to implement. However, with the paper by Maulik et al. [30], implemen-
tation becomes feasible as they provide all code for such an interface in OpenFOAM-8.

4.1.2 Implementation details

The custom turbulence model modelPropagationkOmegaSST contains the OpenFOAM-Python
interface, its code is contained in a header and a source file given in Appendix D.1.1 and Ap-
pendix D.1.2 respectively. The header file only contains declarations and initializations of func-
tions and variables, while the source file contains the actual code. The algorithm of this modified
turbulence model is summarized in Algorithm 1, the algorithm of the associated Python script
'model_definiton.py' is summarized in Algorithm 2. The implementation of these algorithms into
actual C++ and Python code is explained next.

Algorithm 1 OpenFOAM side of model propagation.

1: Start Python interpreter and load Python file ▷ Executed at startup
2: procedure TURBULENCEMODEL ▷ Executed each iteration
3: R, b∆i j , σ = model(∇iu j, k, ω, ∇i p, ∇ik, νt , ui, y , ν, εi jk∇iu j) ▷ Python model evaluation
4: ω = solve(Eq. 46) ▷ Solve modified ω transport equation
5: k = solve(Eq. 45) ▷ Solve modified k transport equation
6: νt = a1k/min(a1ω, SF2) ▷ Calculate eddy viscosity (Eq. 30)
7: 〈u′iu

′
j〉 − 2/3kδi j = − (νt + ν)

�

∇iu j +∇ jui

�

+ 2kb∆i jσ ▷ Calculate modified RST

Algorithm 2 Python side of model propagation (called by Algorithm 1).

1: MR, Mb∆ , Mσ = readModelFiles(casePath) ▷ Read model files, executed at startup
2: procedure MODEL(Γ ) ▷ Model evaluation function, input is flow variables
3: Ψ = setupFlow(Γ ) ▷ Calculate features and bases based on flow variables
4: R, b∆i j , σ = MR(Ψ), Mb∆(Ψ), Mσ(Ψ) ▷ Evaluate models based on features and bases
5: return R, b∆i j , σ

The OpenFOAM source file can be split into two parts; the startup part which is run once at the
start of the program and the iterative part which is run each solver iteration. In the startup part,
a Python interpreter is started and the 'model_definition.py' Python script in the case directory is
loaded and executed. In this initial execution of the Python script, global variables are defined/-
calculated and the equation files are read in. Furthermore, all functions are loaded in, including
the model function which is later called by OpenFOAM. During the run, the Python interpreter is
kept alive along with all variables/functions loaded in this step, such that the associated overhead
is avoided in the iterative part. Also, the array that is converted and send to Python each iteration
is initialized at startup. Dynamic allocation is used rather than static allocation used by Maulik
et al., because of the large number of cells present in some cases.

In the iterative part, the latest value of a number of variables is loaded into the pre-initialized
array which has size (Ncel ls × Nscalars). Here Ncel ls is the number of mesh cells and Nscalars is the
number of scalars send to Python; a vector for example has three scalars. The following variables
are send to Python: k (scalar), ω (scalar), νt (scalar), ν (scalar), wall distance (scalar), ui (vec-
tor), ∇ik (vector), ∇i p (vector), εi jk∇iu j (vector) and ∇iu j (tensor), resulting in Nscalars = 26.
This array is converted from a C++ array to a NumPy array, such that it can be interpreted by
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Python. The model function loaded at startup is called with this converted array as the first argu-
ment. The second argument is a dictionary of the following user specified booleans: useSigma,
modelkDeficit, modelRST and modelSigma. Here, useSigma toggles the use of a classifier; mod-
elkDeficit/modelRST/modelSigma toggles between the use of a R/b∆i j/σmodel or the exact frozen
field, allowing for isolated model testing. Note that kDeficit in variable names refers to the R cor-
rection, while bijDelta/RST refers to the b∆i j correction.

Within the model function, the SpaRTA infrastructure is called for the evaluation of the features.
This is another advantage of the OpenFOAM-Python interface; features are only defined in one
place, decreasing the likelihood of programming errors. Evaluating all ∼ 60 features each itera-
tion would result in a significant amount of wasted computational effort. This is because mod-
els typically contain less than 10 features and many features contain multiple expensive matrix-
matrix products. Hence, features are stored in a custom data type named a lazy dictionary which
is derived from the dictionary data type. The lazy dictionary initially only stores a function for
each feature, containing the steps to calculate that feature. When accessed, the function is called
to actually calculate the feature and the function is replaced with its evaluated result. With this
format, only features which appear in the model are calculated; if they are present multiple times
the calculated result is reused.

The model function evaluates the R/b∆i j model if modelkDeficit/modelRST is true, it evaluates the
σmodel if useSigma and modelSigma are true. Results are returned in an array of size (Ncel ls×8)
(two scalars and one symmetric tensor results in 8 scalars). NaN fields are send back if no model
was evaluated for a variable, as the returned result is not used anyways (OpenFOAM then reads
in the appropriate fields). After OpenFOAM receives this array, it first checks whether it has the
expected shape to prevent out-of-memory reading. Then, for each variable that is modeled, the
appropriate column(s) are extracted from the array and converted to a C++ array. The correc-
tions are multiplied with the classifier, the ramping function and usekDeficit/useRST before they
are added to the equations of the k-ω SST turbulence model. The ramping function, usekDeficit
and useRST are optional, user specified parameters further explained in the next section.

All code for the OpenFOAM-Python interface is contained within the custom turbulence model, so
one would expect the default simpleFoam solver to suffice for running the case. However, using
this solver results in an error at startup, which is also encountered by Maulik et al. [30]. They
identify that the error originates from the inclusion of setRootCaseLists.H in simpleFoam.C
and they devise a fix for it. This fix is implemented in a modified version of simpleFoam.C
named modelPropagationFoam.C, it is listed in Appendix D.3.1. The same error is encoun-
tered when running the postProcess function of the solver, stemming from the inclusion of
setRootCase.H in the postProcess.H file. A similar fix is implemented in a modified ver-
sion of postProcess.H named modifiedPostProcess.H, it is listed in Appendix D.3.2. In
modelPropagationFoam.C, this modifiedPostProcess.H file is included rather than post-
Process.H. The custom model-PropagationFoam solver is then compiled from these modified
files and other required solver files copied straight from simpleFoam.
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4.1.3 Usage of the model propagation infrastructure

The model propagation requires use of both a custom solver and a custom turbulence model, they
are called modelPropagationFoam and modelPropagationkOmegaSST respectively. Their
associated files are given in Appendix D.3 and Appendix D.1 respectively. Compilation of the
turbulence model requires linking to Python and NumPy, the procedure is further laid out by
Maulik et al. [30]. Upon compilation, a number of old-style-cast warnings appear, these can
be ignored. In order to perform model propagation for a case, the RASModel must be set to
modelPropagation-kOmegaSST in the constant/turbulenceProperties file. A number of other
variables can be defined in the turbulenceProperties file as well to modify the behaviour of the
custom turbulence model. These variables are listed below along with their default value and a
description of their effect. Note that kDeficit in variable names refers to the R correction, while
bijDelta/RST refers to the b∆i j correction.

• modelkDeficit [true]: Boolean to switch between using a predefined R field (false) or re-
evaluate R each iteration using a model (true). If false, a file named 'kDeficit' should be
present in the time directory the run starts from. If true, a file named 'kDeficitEq' should
be present in the case directory, containing the model equation to calculate R. This vari-
able is useful for isolated model testing; using the frozen R field (modelkDeficit false) in
combination with a b∆i j model yields the isolated performance of the bijDelta model.

• modelRST [true]: Same functionality as modelkDeficit, but for b∆i j .

• modelSigma [true]: Same functionality as modelkDeficit, but for the classifier σ.

• useSigma [false]: Boolean to switch between using (true) or not using (false) a classifier.
If no classifier is used, σ is 1 everywhere (corrections active in all cells).

• usekDeficit [1.]: Scalar factor by which the R correction is multiplied, should be in range
[0, 1]. No R correction is used if usekDeficit is 0, while the full R correction is used if
usekDeficit is 1. A case which is unstable with usekDeficit = 1 may stabilize when using for
example usekDeficit = 0.5.

• useRST [1.]: Same functionality as usekDeficit, but for b∆i j .

• rampStartTime [-1.] Scalar start time of the ramping function, see rampEndTime for a
description of ramping.

• rampEndTime [0.] Scalar end time of the ramping function. The ramping function is
defined as follows: before rampStartTime it is 0, then it linearly grows to 1 between ramp-
StartTime and rampEndTime, after which it remains 1. The correction fields are multiplied
by the ramping function such that they are slowly introduced to the case. This may stabi-
lize otherwise unstable models/correction fields at the cost of an increased total number of
iterations. By default, ramping is disabled by starting the run after rampEndTime.

As explained in the modelkDeficit description above, if modelkDeficit is true, a 'kDeficitEq' file
should be present in the case directory. If it is set to false, a 'kDeficit' file with field data should be
present in the time directory the run starts from. As an example, if modelkDeficit is false, mod-
elRST is true and the case is started from 0, a 'bijDeltaEq' file should be present in the case directory
and a 'kDeficit' file should be present in the 0 directory. Furthermore, the 'model_definition.py'
Python script, given in Appendix D.2 and further described in Sec. 4.1.2, should be present in
the case directory. Finally, the case has to be run and post-processed using the custom model-
PropagationFoam solver, which is derived from the simpleFoam solver.
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4.2 Non-linear symbolic regression framework (CuRTA)
This section covers the CuRTA symbolic regression framework, developed as part of this work.
CuRTA stands for Curve-fit Regression of Turbulence stress Anisotropy; SpaRTA’s Spa (sparse) is
replaced with Cu. This is because CuRTA uses the non-linear least squares regression implemented
in Scipy’s curve_fit function. In Sec. 4.2.1, the problem statement is provided which motivates
the development of this new framework. Then, the algorithm and further implementation details
are given in Sec. 4.2.2. Finally, in Sec. 4.2.3, the inputs to CuRTA’s main function and their effect
on the program are laid out.

4.2.1 Problem statement

The goal of SpaRTA is to find simple models with small coefficients that match the target as well
as possible. For simplicity, consider the regression of a model containing only one feature q. In
this case, the match of the model with the data depends on two factors: the spread of the data
at a given value q and the ability of the model’s functional form to match the shape of the data.
The first factor is addressed in SpaRTA by using a large number of input features in the library
and selecting the best one. The second factor is addressed by also including various functions and
exponents of features in the library.

Just adding functions of features to the library, for example tanh, does not increase the available
functional forms as much as one may expect. This is because SpaRTA performs a linear regres-
sion, meaning it can only regress coefficients outside the function, giving the following regression
form:

y = C tanh (q) + C . (52)

Even this form is is usually not regressed by SpaRTA as the constant term (the second coefficient)
rarely appears in models. A more general form of the tanh function is:

y = C tanh (C · q+ C) + C , (53)

where two additional coefficients are present inside. Although it is impossible to linearly regress
these coefficients, an informed guess can be made. To this end, all features in SpaRTA are stan-
dardized by their standard deviation, giving the following regression form:

y = C tanh (q/std(q)) + C . (54)

While this proves a good guess in practice, it can never be as accurate as a regression of the
coefficient. Furthermore, the lack of the second coefficient inside the tanh also limits accuracy.
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Figure 3: Comparison of data regression
between SpaRTA (Eq. 54) and non-linear

CuRTA (Eq. 53). Data comes from randomly
sampling Eq. 55 on 0≤ q ≤ 1 and adding

Gaussian noise with σ = 0.04.

To further study the effect of the functional
form, the following function is randomly sam-
pled on the domain 0 ≤ q ≤ 1 and Gaussian
noise with σ = 0.04 is added:

y = −0.4 (tanh (5 · q− 2)− 1.2) . (55)

This sampled data is shown in Fig. 3, together
with the SpaRTA fit of Eq. 54 and a non-linear
fit of Eq. 53 (CuRTA fit). Clearly, SpaRTA’s
functional form is much too limited to properly
regress this data, while non-linear regression
performs optimally. The latter is not surpris-
ing, considering the data is generated directly
from the non-linear functional form. Nonethe-
less, a similar shape is observed for the qν fea-
ture and the data fit is significantly improved
with non-linear regression, as is laid out in
Sec. 12.2.3. This proves that SpaRTA’s func-
tional form indeed prevents it from attaining
the optimal fit. As explained in Sec. 12.2.2,
this bad fit results in unsatisfactory SpaRTA b∆i j models when tested a-posteriori. Hence, a new
framework is needed that is able to train models based on non-linear regression, this is the focus
of this section.

4.2.2 Implementation details

The flow of CuRTA’s Python program given in Appendix E is laid out next, starting at the call of
the main regressModel function. For a description of the inputs to this function, the reader is
referred to Sec. 4.2.3. A simplified version of CuRTA’s algorithm is given in Algorithm 3, where no
filtering, bounds, initial guess and targetFunc are present. The implementation of this algorithm
into Python as well as the inclusion of these additional effects is elaborated next.

Algorithm 3 Simplified CuRTA algorithm (no filtering, bounds, initial guess and targetFunc).

1: Ψ = setupFlow(casePath) ▷ Calculate features and bases for training case
2: T f unc,i = fi1(qi2) · ... · fi2gd−1

(qi2gd
) ▷ Products of global degree (gd) functions of features q

3: T = T f unc,i b j ▷ Term library, combinations of scalar functions and bases b, indices omitted
4: ∆= y ▷ Initialize deficit ∆ as the target y
5: for i = 0 to Nterms do ▷ Loop until the expression has Nterms terms
6: T f i t = nonLinearLSQ(T , ∆, w) ▷ Fit each term in T to match ∆, using weights w
7: topt,i = min(RMSE(T f i t)) ▷ Find optimal term (lowest RSME)
8: M = topt,0 + ...+ topt,i ▷ Full model is the sum of all optimal terms fitted so far
9: Mre f i t = nonLinearLSQ(M , y , w) ▷ Refit coefficients of full model

10: ∆= y −Mre f i t(Ψ) ▷ Update deficit to target-model deficit
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First, all variables in the latest time directory of the specified case directory are read in and bases
and features are calculated. This is done using the already established sparta.features library.
Next, cells are filtered based on allInds followed by random selection of NAll cells. A new dictio-
nary is created of all features/bases/other variables at the cells remaining after these two filtering
steps. Then, further filtering is performed by randomly selecting NTrain cells. A second dictionary
is created of all features/bases/other variables at these further filtered cells.

Next, the functions are loaded in, a list of implemented functions is provided in Tab. 4 along
with their equation. Each function depends on a feature q and most functions also contain one
or more unknown coefficients C . These coefficients C are later regressed using non-linear least
squares. The non-linear least squares algorithm (discussed in a bit) is sensitive to the initial guess
of these coefficients. The default initial guess of 1 is prone to blowup, especially for exponential
functions combined with large features. A better initial guess requires knowledge of the charac-
teristics of the feature, so various statistical functions are used for the initial guesses in Tab. 4:
The standard deviation of q (std(q)), the mean of q (mean(q)) and the sign of q (sign(q)). Some
coefficients also require bounds to prevent blow up, these are again based on feature statistics,
they are also given in Tab. 4. Not all coefficients require bounds, in this case they are set to
±∞. Functions are stored in a custom class which calculates the initial guess and bounds once a
function is combined with a feature.

Table 4: Function names, their equation with feature q and coefficients to be regressed C , their
bounds and their initial guess.

Name Equation Lower bound Upper bound Initial guess

linear y = q - - -

tanh y = tanh (C · q+ C) + C (−∞, −∞, −∞) (∞,∞,∞)
�

1
50std(q)

, std(q), std(q)
�

std y = exp
�

−C(x − C)2
�

(0, −∞)
�

10
(std(q))2

,∞
� �

1
2(std(q))2

,mean(q)
�

rlog y = ln (C |q|+ 1) 0
10

std(q)
1

std(q)

rdiv y =
q

C · q2 + 1
−

10
std(q)

10
std(q)

sign(mean(q))
std(q)

sqrtabs y =
p

|q| - - -

rdivsqrt y =
q

C |q|3/2 + 1
−

10
std(q)

10
std(q)

sign(mean(q))
std(q)

rdivquart y =
q

C |q|5/4 + 1
−

10
std(q)

10
std(q)

sign(mean(q))
std(q)

pow y = |q|C 1.01 4 1.2
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A target function is used to reshape tensorial models and targets to 1D. The default 'all' target
function simply adds a .flatten() to the model equation and target. Three other target functions
are implemented that calculate a scalar from the components of the symmetric tensor, they are
the three principle tensor invariants: 'I1' (corresponding to the trace), 'I2' and 'I3' (corresponding
to the determinant). The equations of these invariants are as follows:

I1 = A11 + A22 + A33, (56)

I2 = A11A22 + A11A33 + A22A33 − A2
12 − A2

13 − A2
23, (57)

I3 = A11A22A33 + 2A12A13A23 − A11A2
23 − A22A2

13 − A33A2
12, (58)

where A is an arbitrary symmetric tensor. Next, the specified weight expression is evaluated for
each mesh cell to attain the weights. Special care is taken when the 'all' target function is used to
correctly copy the weights to all six components.

The library of terms is constructed in three steps: First a subsub-library is made by combining
each specified feature with each specified function. To allow lower order models, the const vari-
able (constant value of one) is added to this subsub-library. Then, the outer product of this
subsub-library is taken with itself global_degree times, giving a sub-library where each term con-
tains global_degree functions of features (or const). In case of global_degree zero, this sub-library
contains a single empty string. Finally, the outer product of the sub-library is taken with the spec-
ified bases to generate the full library. This is also where the leading unknown coefficient of each
term is added. If global_degree is zero, the full library just has bases multiplied by this unknown
coefficient. Even if global_degree is higher (for example two), terms such as C ·const ·const ·basis
are in the library to include models of lower global_degree.

The main iteration starts with regression of the model’s first term; coefficients of each term in
the library are regressed using NTrain points to match the target. The term that gives the highest
R2 is selected and its coefficients are refit using NAll points. Then, the difference between this
term’s prediction and the actual target is calculated to find the prediction deficit. For regression of
the model’s second term, coefficients of each term in the library are again regressed using NTrain
points, but now to match this deficit. The highest R2 term is now added to the first term to form
a two-term model. All coefficients of this model are refit using NAll points and the prediction
deficit of the model is found, serving as the target for the third term. This process is continued
until the model has NTerms terms.

Non-linear regression is performed using SciPy’s optimize.curve_fit function5, which uses
a different optimization algorithm depending on the presence of finite bounds. The Levenberg-
Marquardt (lm) algorithm is used for unbounded problems, while the Trust Region Reflective
algorithm (trf) is used for bounded problems. This default behaviour is maintained, such that the
significantly faster lm algorithm is used for unbounded terms. Next, weights cannot be directly
specified for this function, only the data uncertainty σ. The two are related, as a point with more
uncertainty weighs less in the non-linear least squares regression, they are related as:

σ = 1/
p

weights

5SciPy community (2023). scipy.optimize.curve_fit. https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.curve_fit.html
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Finally, some limitations and possible improvements of the CuRTA framework are listed. Firstly,
the deficit fitting only seems to work for models with just a few terms. After these first terms,
the deficit seems to be mostly noise in the training data, resulting in nonsensical extra terms.
Secondly, the functional forms in Tab. 4 are still somewhat limited; adding more functional forms
potentially improves data fits. Thirdly, a number of optimizations that are in SpaRTA have poten-
tial to speed up CuRTA. For example, removing features and bases with small variance. Also the
cliqueing procedure in SpaRTA is promising, though it cannot be directly adapted due to CuRTA’s
nonlinear coefficients.

4.2.3 Usage of CuRTA

Symbolic regression using the CuRTA library is performed by calling its regressModel function,
which has two required arguments and eleven optional arguments. These arguments are listed
next, along with their accepted input forms and their effect on the program. The default value of
optional arguments is given in square brackets.

• targetVar: The name of the target variable to find a model for, either 'kDeficit' to find a
model for R or 'bijDelta' to find a model for b∆i j .

• casePath: Path (string) to the case directory of the case on which to train a model. This can
be either the frozen case or the propagation case, in this work it is argued that propagation
should be used for training (see introduction to Sec. 12). Within this case directory, the
last time directory should contain all variables needed to calculate the features, bases and
weights. For example, gradU is needed for most bases and V is needed to apply volume
weighing.

• global_degree [1]: Number of (functions of) features to multiply per term, also possible to
specify zero to only use a linear combination of bases. Examples of terms at various global
degrees are given below, where each C indicates an unknown coefficient to be regressed:

– 0 : C · T (2)i j

– 1 : C ·
p

|S2| · T
(5)
i j

– 2 : C · (tanh (C · qν + C) + C) · |S3|
C · T (1)i j

– 3 : C · qγ · exp
�

−C
�

qQ − C
�2�

· ln (C |W2|+ 1) · T (9)i j

Note that terms with a lower global degree than the one specified are also considered in the
symbolic regression.

• NTerms [None]: Total number of terms to symbolically regress. For example, setting
global_degree to zero and NTerms to 3 would regress a b∆i j model such as b∆i j = 1.4 · T (2)i j +

0.3·T (3)i j +0.5·T (6)i j . Note that the program adds terms one-by-one, meaning that the optimal
1-term model is always printed first, followed by the optimal 2-term model and so on. If
NTerms is set to None, it is internally set to infinity such that the program keeps adding
terms.

• allInds [None]: List/array of indices of cells that qualify for use in the symbolic regression.
These indices should be unique and the maximum index should not exceed the number of
mesh cells minus one (due to zero relative indexing in Python). Alternatively, allInds can be
set to None to qualify all cells for use in the symbolic regression. Excluding some cells from
qualifying is useful for boxing of certain mesh areas or excluding bad-quality cells. Finally,
note that not all qualifying cells are used, see NAll/NTrain.
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• NAll [None]: Number of cells to use for computationally cheap operations (field statistics
and final model refits). If None is specified, NAll is set equal to the number of qualifying
cells, so either the length of allInds or the number of mesh cells if allInds is None. If a number
is specified for NAll, it should not exceed the number of qualifying cells. A subset of cells of
size NAll is then randomly chosen from the qualifying cells to use for the aforementioned
computationally cheap operations. Note that identification of the best term from the library
takes the most computational effort; this process uses NTrain cells (see next item). Hence,
NAll should only be used if memory problems are encountered or when using an excessively
large mesh.

• NTrain [None]: Number of cells to use for the identification of the best term from the
library. This process is the most computationally expensive, as it does a non-linear least
squares fit for each term in the library. If NTrain is set to None, NAll cells are used in this
process. If NTrain is specified as a number, a second subset of cells of size NTrain is randomly
selected from the subset of NAll cells. Use of NTrain can significantly speed up computations,
however, one must ensure that the selected cells are still an accurate representation of all
qualifying cells.

• funcs [None]: List of function names to use, for example ['linear', 'tanh', 'pow']. A complete
overview of function names is given in Tab. 4, together with their equation, bounds and
initial guess. The use of initial guesses and bounds is needed for stability, as discussed in
Sec. 4.2.2. Each library term consists of a coefficient, global_degree functions of features
and a basis. If funcs is specified as None, all functions in Tab. 4 are used.

• bases [None]: List of bases to use, for example ['T1', 'T3', 'T9']. These bases must cor-
respond to the specified targetVar. If bases is set to None, all bases corresponding to the
targetVar are used, so ['epsilon', 'G1', ..., 'G10'] for 'kDeficit' and ['T1', ...., 'T10'] for 'bi-
jDelta'.

• fitFeatures [None]: List of features to use, for example ['q_nu', 'S2', 'q_gamma']. All vari-
ables required to calculate these features must be present in the last time directory in
casePath. If fitFeatures is set to None, all available features are used.

• targetFuncName ['all']: Name of the function to use to attain a 1-dimensional target, only
relevant for b∆i j model training. The default 'all' target function flattens both the tensor
equation and the tensor target such that each component is fit, resulting in six times more
fitting points than mesh cells. Target functions that instead calculate a scalar from the
components of b∆i j (such as taking its trace) are also possible. To this end, the three principal
tensor invariants are each available as a target function ('I1', 'I2' and 'I3'), they are given in
Eqs. 56-58.

• weights [None]: Expression of how to calculate the weights as a string, for example 'V*k' to
weigh by both volume and k. Alternatively, if weights is set to None, each cell is weighed
the same.

• meanFlowTimeScale [False]: Which timescale to use to nondimensionalize the strain rate
and rotation rate tensors si j and ωi j (see Sec. 2.6). If True, these tensors are nondimen-
sionalized by the magnitude of the mean velocity gradient tensor. If False, they are nondi-
mensionalized by the specific dissipation rate ω.
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5 NASA challenge submission
A collaborative testing challenge is set up by NASA as part of their 2022 symposium on turbu-
lence modeling. The direct motivation for this challenge is the fact that efforts in data-driven
turbulence modeling have focused on training models tailored to one class of flows, while the
wider community desires general models [45]. Hence, five flows of different classes are included
in the challenge; a zero pressure gradient flat plate, a channel, an axisymmetric subsonic jet,
a wall-mounted hump with separated flow and a NACA0012 airfoil at various angles of attack
(including stall). Meshes, boundary conditions and results for various conventional RANS turbu-
lence models are provided on the symposium website [42]. The goal of the challenge is to train a
RANS turbulence model for all cases, giving improvements over conventional turbulence models
where these fail while retaining performance where they work well.

Prominent groups in the field of data-driven turbulence modeling from all over the world par-
ticipated in this challenge. One of the participants was the group of Dr. Richard Dwight, known
for the introduction of the k-corrective-frozen approach and the SpaRTA framework for symbolic
regression [46]. Their submission is based on these two as well as a classifier introduced in later
work by Steiner et al. [54]. The present work is written under the same group and this section
aims to present the efforts for the challenge submission of this group. The current author is only
one of the contributors, the others are Richard Dwight, Renzhi Tian and Tyler Buchanan. A pa-
per on the submission is currently being prepared, but is unpublished at the time of writing, the
presentation given at the symposium is available though [13].

The section is structured as follows: In Sec. 5.1, the case setup of the axisymmetric jet and airfoil
are presented; other cases merit their own separate sections. The setup includes a baseline k-ω
SST run as well as a frozen run to find correction fields and a propagation run to validate them.
Next, in Sec. 5.2 the creation of training data of the classifier is laid out, followed by symbolic
regression of the classifier. Then, a correction model is trained in Sec. 5.3, followed by its propa-
gation with the classifier to yield a-posteriori results for each case. Finally, conclusions are drawn
in Sec. 5.4 followed by recommendations.

5.1 Case setup
Since meshes and boundary conditions are provided by NASA, the task at hand is to implement
these in an OpenFOAM case and verify the results against NASA’s RANS results. Furthermore,
k-corrective-frozen is applied to cases with a significant RANS model error where high-fidelity
field data is available. The resulting correction fields are then validated using the propagation
approach. Three challenge cases are further used in the present work (the channel, plate and
hump) and thus merit their own detailed section, these are Sec. 8, Sec. 9 and Sec. 10 respectively.
The other two challenge cases, the jet and the airfoil, are not further used in this work. Hence,
their setup is discussed briefly in this section, in Sec. 5.1.1 and Sec. 5.1.2 respectively.
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5.1.1 Axisymmetric jet

x

y

z

Djet

High pressure

Figure 4: Schematic of the
axisymmetric jet case, main flow in

+x-direction.

The axisymmetric jet case consists of a high pres-
sure chamber connected to lower pressure, non-
moving air via a contracting, axisymmetric noz-
zle. As a result of the pressure difference, air
exits the nozzle at high speed, forming an ax-
isymmetric jet. The schematic of this axisymmet-
ric nozzle is shown in Fig. 4, where the main
flow is in the +x-direction. The exit diameter
of the nozzle, Djet , is set to the experiment value
of 0.0254 m. High fidelity data is available in
the form of particle image velocimetry (PIV) mea-
surements by Bridges and Wernet [6]. The exit
Mach number is 0.51, meaning that while the case
is subsonic, it cannot be considered incompress-
ible.

For meshing, the axisymmetric nature of the case can
be exploited to reduce the number of cells; only a small wedge needs to be meshed with a tan-
gential thickness of one cell. On the symposium site, NASA already provides such a mesh that
is verified to be mesh and domain size independent (their 97 × 97; 61 × 97; 257 × 225 mesh)
[42]. This mesh is converted from plot3d to OpenFOAM format using plot3dToFoam, after
which patches are assigned using autoPatch and createPatch. The compressible, transient
solver rhoPimpleFoam is used, as the flow exits at Mach 0.51 and the case only converges to
quasi-steady-state (this was also observed by NASA). After reaching quasi-steady-state, a few ad-
ditional periods are run which are averaged to attain final results (also accounting for sampling
bias). Boundary conditions are adapted from NASA and initial conditions and relaxation factors
are chosen to give stable yet fast convergence.

Profiles of the baseline k-ω SST run on NASA’s mesh (CFD domain) are shown in Fig. 5 together
with the PIV data. The x-velocity is predicted well just behind the nozzle, but is underpredicted
further downstream (especially near the centerline). This can be explained by considering profiles
of k; a large k is introduced at the nozzle wall which spreads throughout the jet further down-
stream. The spreading rate of k is significantly underpredicted by k-ω SST, leading to excessive
dissipation, resulting in the underprediction of x-velocity downstream. Given this mismatch,
correction terms are found for the jet case using the k-corrective-frozen approach outlined in
Sec. 3.3.3. This approach requires knowing high-fidelity velocity and Reynolds stress throughout
the CFD domain. However, the PIV data is only available in the wake of the jet, close to the cen-
terline, meaning a CFD case has to be set up of just this PIV portion.

A new wedge shaped mesh is made of this PIV portion, where the cell sizes are approximately
matched with the NASA mesh. An incompressible, steady-state case is set up for this mesh, even
though the jet is neither. This is necessary as the k-corrective-frozen infrastructure is only imple-
mented for incompressible, steady-state cases, the resulting error is discussed later. The boundary
conditions are based on the PIV data, such that discrepancies come only from the model being
solved in the domain. For the inflow, the velocity and k are taken directly from the PIV, while ω
is calculated based on the assumption that production of k equals dissipation of k. At the outlet,
the static pressure is set to the freestream pressure. The profiles resulting from this PIV domain
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run are shown in Fig. 5, where a significant discrepancy is visible with respect to the CFD domain.
Likely causes of the mismatch are lack of compressibility modeling and a too small domain, how-
ever, no resources are available to address either, so the current setup will have to make do.

The k-corrective-frozen approach takes the high-fidelity data in each cell as an input and cal-
culates first and second derivatives from this. Simple interpolation of the noisy PIV data would
result in large, fluctuating derivatives. To address this, Scipy’s SmoothBivariateSpline func-
tion is used to regress a smooth, second order bivariate spline of each variable, which is then
sampled at each cell center. Next, the correction fields R and b∆i j are found using the k-corrective-
frozen approach described in Sec. 3.3.3. These fields are then propagated in a full RANS solver,
the resulting propagation profiles are shown in Fig. 5. Significant improvements are observed
for the Ux profiles, while only slight improvements are observed for k. This is contrary to other
cases, where usually an almost exact match is observed between high-fidelity and propagation
for U and k [46]. Likely the aforementioned lack of compressibility modeling and small domain
spoil the propagation performance of the current case.
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Figure 5: Profiles at various x-stations of the axisymmetric jet, comparing baseline k-ω SST in
the large CFD domain and the reduced PIV domain, propagation in the reduced PIV domain and

PIV measurements by Bridges and Wernet [6].
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5.1.2 NACA0012 airfoil
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Figure 6: Schematic of the NACA0012
airfoil, main flow in the x-z-plane

(direction dependent on α).

The NACA0012 airfoil is an iconic airfoil that has been
subject to a plethora of studies. Many of these focus
on the case of 2D flow over this airfoil, which is also
the focus of the present study. The schematic of the 2D
NACA0012 case is shown in Fig. 6, where the main flow
is in the x-z-plane. The coordinate system is fixed to
the airfoil, so the angle of attack α is varied by changing
the angle of the incoming freestream velocity U∞. The
airfoil’s length in x-direction is its chord length c, while
it has an infinite span (length in y-direction). This in-
finite span is only theoretical to indicate 2D flow with
no flow/gradients in y-direction. Next, the case actually
consists of multiple CFD runs, each at a different angle
of attack. In particular, angles of attack around stall are
studied as stall is associated with many complex, hard to model flow phenomena.

Since the case is 2D, the mesh only needs single cell thickness in y-direction, NASA provides
such meshes at various levels of refinement. While NASA uses their second to finest mesh, this
proves too difficult to converge and comes with extremely long run times, so their third to finest
mesh is used here. NASA mentions that no mesh independence study was performed, the validity
of using the third to finest mesh is evaluated in a bit. The mesh is converted from plot3d format
to OpenFOAM using plot3dToFoam, after which patches are assigned using autoPatch and
createPatch. Next, NASA mentions that the case is essentially incompressible, as the freestream
Mach number is 0.15. Initial efforts with an incompressible solver gave large discrepancies with
respect to NASA’s RANS results, these are greatly reduced when using a compressible solver. Upon
further investigation, Mach numbers of 0.6 are found near the leading edge, so a compressible
solver is indeed necessary. The rhoSimpleFoam solver is used, boundary conditions are adapted
from NASA and initial conditions and relaxation factors are chosen to give stable yet fast conver-
gence.

The case is run at α = 10◦, 15◦, 17◦, 18◦, the lift coefficient Cl and the drag coefficient Cd are
calculated for each α using the following equations:

Cl =
2L′

ρU2
∞c

, (59) Cd =
2D′

ρU2
∞c

. (60)

Here L′ and D′ are the total lift and drag force per unit span respectively, which are found from the
total x and z forces outputted by OpenFOAM. The resulting Cl-α and Cl-Cd curves are shown in
Fig. 7, where NASA’s RANS data and experimental data by Ladson [25] are added for comparison.
For the Cl-α curve, the present RANS matches the NASA RANS extremely well. The experiment
is matched well up till α= 17◦, however, the large drop in Cl at α= 18◦ is not predicted by either
RANS. Nonetheless, both correctly predict the stall angle and the magnitude of Cl,max . For the Cl-
Cd curve, there is a∼10% difference between the present RANS and the NASA RANS. Also there is
a larger mismatch between RANS and experiment even at α≤ 17◦. At α= 18◦, the experimental
Cd is so much larger than the RANS Cd that it falls outside the plot range (it is ∼0.2).
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For further analysis, the pressure coefficient Cp and the skin friction coefficient C f , further ex-
plained in Sec. 10.3.2, are plotted along the airfoil surface. Though an analysis at α= 18◦ would
be most informative, NASA RANS and experimental data are only available at at most α = 15◦.
The surface plots are shown in Fig. 8, where the NASA RANS data has been added for Cp and C f

and experimental data by Gregory and O’Reilly [19] only for Cp. An excellent match is found for
both RANS runs and the experiment in terms of Cp, which is not surprising as Cp largely deter-
mines Cl . A good match is found between the RANS runs for C f , though a small discrepancy is
found at x/c ≈ 0.1, likely leading to the small difference in Cd .

A large discrepancy exists between experimental data and RANS at α≥ 18◦, making the α= 18◦

case suitable for the k-corrective-frozen approach. However, this approach requires full-field high-
fidelity data to be available, while the provided high-fidelity data only consists of integrated force
coefficients. No high-fidelity full-field data could be acquired of this (or a similar) case, so train-
ing cannot occur on an airfoil. Hence, the airfoil will only serve as a test case, testing models
trained on other geometries and comparing the resulting integrated force coefficients to the high-
fidelity data. Finally, regarding the use of the coarse mesh; differences between the present RANS
and the NASA RANS were much smaller than differences with respect to experiment at α = 18◦.
Furthermore, since the case is not used for training, discretization errors are not as much of a
problem, so use of the coarse grid is deemed acceptable.
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Figure 7: Lift and drag coefficient curves at various angles of attack, comparing the present
RANS, NASA’s RANS and experiment by Ladson [25].
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Figure 8: Pressure and skin friction coefficient over the airfoil surface at α= 15◦, comparing the
present RANS, NASA’s RANS and the experiment by Gregory and O’Reilly [19] for Cp.

5.2 Classifier training

The classifier is a boolean function of space and time, both correction terms (R and b∆i j ) are
multiplied by it. Thus, no corrections are applied if the classifier is deactivated (zero), while full
corrections are applied when it is active (one). The goal is to train a symbolic expression for the
classifier which takes local RANS flow variables as inputs and outputs the local activation status
[54]. In order to train the classifier, training data has to be generated first, several approaches are
possible. The training data generation approach used in the present work is laid out in Sec. 5.2.1.
Next, the training procedure used to regress a symbolic expression based on this training data is
explained in Sec. 5.2.2.

5.2.1 Generating training data

Training data for the classifier model is based on four out of the five cases. For the plate and the
channel, k-ω SST already matches the high-fidelity well, so the classifier should be zero every-
where to retain this performance. For the jet and hump, there are regions where the classifier
should be one to provide a correction to k-ω SST. However, there are also regions where the cor-
rections are small and not relevant to the case (such as the far field) where the classifier should
ideally be zero. Finally, the airfoil case will also have regions where the classifier should be active
and regions where it should be inactive. However, no correction fields are available due to a lack
of high-fidelity data, meaning no training data can be generated, so the airfoil is excluded from
the classifier training.
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For the jet and hump, the classifier training criterion is derived from the criterion used by Steiner
et al., given in Eq. 43 [54]. Direct implementation of their criterion results in too much classifier
activation. This is addressed by changing the denominators, the new criterion is as follows:

σ :=







1 if

�
�

�

�2kb∆i j(∂ 〈ui〉/∂ x j)
�

�

�

Pk,LES
> 0.2

�

∪
�

|R|
Pk,LES

> 0.2
�

0 otherwise,
(61)

where Pk,LES is the domain averaged Pk,LES. Though this criterion gives better activation for now,
it lacks theoretical justification. For example, expanding the farfield of a case should not affect
classifier activation, but with this criterion Pk,LES would decrease, resulting in more activation.
Furthermore, a domain with as much negative as positive Pk,LES would have a mean of zero; it
would be better to use |Pk,LES|. Next, for the hump there is erroneous activation in the incoming
boundary layer, so cells before x = −0.05 are manually forced to be inactive. The resulting
classifier activation contours of the jet and hump are shown in Fig. 9. Though there are some
small unexpected spots of classifier activation, most activation appears in areas of corrections as
intended.

(a) Axisymmetric jet positive x-y-plane (contracted
factor 8 in x), PIV domain.

(b) Hump x-z-plane (contracted factor 2 in x), LES
domain.

Figure 9: Classifier activation training data for the jet and hump, black indicates σ = 1; grey
indicates σ = 0.

5.2.2 Classifier training

Training of the classifier largely follows the procedure outlined by Steiner et al. [54], it is briefly
laid out next. The classifier is fitted as a sigmoid function, which has a negative asymptote at
0 and a positive asymptote at 1, this behaviour is desirable for the classifier. The classifier is
made boolean by setting any values above 0.2 to 1 and any below to 0, the formal mathematical
expression is:

σ(θ ) =

�

1 if 1
1+exp (− f (θ )) > 0.2

0 otherwise.
(62)

Here, θ represents a number of flow features which are largely adapted from Steiner et al., though
some such as actuator forcing are left out. The function f (θ ) in Eq. 62 represents an arbitrary
function of these features; this function is symbolically regressed to fit the classifier training data.
The SpaRTA framework laid out in Sec. 3.4 is used to regress a sparse symbolic expression for
f (θ ). Since σ is a dimensionless scalar, no bases are used, the output is simply a function of
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the features. Training on all four cases with classifier training data does not produce well fitting
classifier models. Hence, the jet is excluded from the training data as its correction fields come
with many uncertainties (see Sec. 5.1.1). The simplest acceptable model regressed based on the
three remaining cases (plate, channel and hump) is still rather complex with twelve terms, it is
as follows:

f (θ ) = 0.02941+ 24.07rdiv
�

W 2

2.964

�

− 3.815rdiv
� qpS

0.1333

�

− ...

− 0.7596rdiv

�√

√ qpS

0.1333

�

− 2.869rdiv
� qγ

1.847

�

− ...

− 0.02062 tanh
� qγ

1.847

�

− 0.935rdiv

�

�

qν
92.16

�2
�

− ...

− 0.9397 tanh

�

�

qν
92.16

�2
�

+ 3.541rdiv
�s

qν
92.16

�

+ ...

+ 0.1161rdiv
�

h qRe

0.5425

i2�

+ 26.34rdiv
�
s

qT I

156.1

�

− ...

− 1.995 tanh
�

h qτk

0.8177

i2�

(63)

where
rdiv(q) =

q
1+ q2

. (64)

In fact, Steiner et al.’s best classifier model only had two terms, so the current model is likely
overfitting the data. Luckily, the boolean nature of the classifier makes this overfitting less of a
problem, as it cannot 'blow up' for unseen cases.

The trained classifier expression is now applied to the plate, channel, jet and hump to assess
how well the training data is matched. The plate and channel training data (no activation any-
where) is matched perfectly by the trained classifier. For the jet and hump, the trained classifier
is evaluated on the high-fidelity data to generate a-priori classifier activation contours, they are
shown in Fig. 10. Comparing the jet activation to its training activation in Fig. 9a, the activation
bubble slightly further from the centerline is not predicted. Furthermore, erroneous activation oc-
curs in the top left region, which consists mostly of unperturbed freestream flow. Next, comparing
the hump activation to its training activation in Fig. 9b, a good match is found. In fact, the re-
gressed classifier produces a smoother activation region, which will likely give better convergence
and a smoother a-posteriori flow solution. Finally, it should be noted that when this classifier is
implemented in a full RANS solver, the features θ update each iteration, leading to constantly
updating activation contours. Hence, the a-posteriori activation contours are likely different from
the a-priori ones shown here.
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(a) Axisymmetric jet positive x-y-plane (contracted
factor 8 in x), PIV domain.

(b) Hump x-z-plane (contracted factor 2 in x), LES
domain

Figure 10: Classifier activation based on Eq. 62 with regressed f (θ ) given in Eq. 63, for the jet
and hump, black indicates σ = 1; grey indicates σ = 0.

5.3 Model training

The next step is to find symbolic expressions for the corrections R and b∆i j , which is also done
with the SpaRTA framework described in Sec. 3.4. Training takes place only on cells in which the
classifier is active, directly excluding the plate and the channel from the training. Furthermore,
following the aforementioned uncertainties in the correction fields of the jet, it is excluded from
the training data as well, leaving only the hump. Encouragingly, a simple model with a high
coefficient of determination (R2 = 0.98) is found for R:

R= 0.079ε. (65)

For b∆i j , most models do not have a much higher R2 than the R2 of b∆i j = 0, which is also a valid
model of course. In the end b∆i j = 0 is actually chosen, as a-posteriori performance of nonzero
models is not any better, they only reduce solver stability. For later reference, the zero b∆i j is
formalized here:

b∆i j = 0. (66)

In order to test a model a-posteriori, it needs to be integrated in a RANS solver, such that it can be
reevaluated with the latest flow fields and feed correction fields back to the solver. Unfortunately,
the modelPropagationFoam solver laid out in Sec. 4.1, which does exactly that, did not exist at the
time of the challenge. Hence, a workaround approach was devised using the existing infrastruc-
ture for propagation of cases. Specifically, the solver is stopped and restarted repeatedly, writing
its fields when it is stopped and starting from these when restarted. Before the solver is restarted,
a Python script is called to reevaluate the classifier and correction fields, updating the ones in
the latest write. Since restarting comes with significant overhead, the solver is run 100 iterations
between restarts. After a number of restarts, the solution has reached a constant value (that is
to say, it has converged) at which point the solver is no longer restarted and the run reaches its end.

Using the restarting approach, the regressed model (R from Eq. 65 and b∆i j from Eq. 66) is propa-
gated under the classifier (defined by Eq. 62 and Eq. 63) to give a-posteriori results for each case.
Since high-fidelity data is no longer required for the model propagation, all cases are run on their
NASA mesh. Furthermore, any solver can be used as model propagation only affects the turbu-
lence model, so a compressible solver is used for the jet and airfoil. Also, an unsteady solver is
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used for the jet and final results are averaged. For the plate and channel, boundary layer profiles
of u+ vs y+ (both defined in Sec. 8.2) are shown in Fig. 11a and Fig. 11b respectively, where
baseline k-ω SST and theoretical results are added for comparison. Furthermore, an additional
run without classifier is performed for these cases; its results are added as well. The model with
the classifier perfectly matches k-ω SST for both cases, which is due to the classifier being 0 in
both domains. The use of the classifier is necessary, as the no classifier results deviate significantly
from baseline k-ω SST.

The a-posteriori results of the model on the hump are shown as profiles of x-velocity and k be-
hind the hump in Fig. 12, where baseline k-ω SST results and LES results by Uzun et al. [56] are
added for comparison. For the x-velocity profiles, PIV results by Greenblatt et al. [18] are also
added. The regressed model performs extremely well in terms of x-velocity; it is in the range of
error between LES and PIV. For k, no obvious improvement is observed, however, k in RANS can
be different from k in LES and it is usually not of engineering interest. Now consider the model
profiles of x-velocity and k of the jet in Fig. 13, where baseline k-ω SST and PIV profiles are added
for comparison. A deterioration is observed with respect to baseline for both x-velocity and k,
however, it is small compared to the difference with PIV. Finally, consider the model results for
the airfoil shown in Fig. 14, where baseline k-ω SST and experiment are added for comparison.
Before α = 17◦, predictions are good, but the model then predicts a much higher stall angle and
Cl,max than experiment, while baseline did predict these correctly. Prediction of Cd is similar to
baseline (significant underprediction for α= 18◦).
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Figure 11: Boundary layer profiles of the propagated regressed model, with and without
classifier, together with baseline k-ω SST and theoretical results.
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Figure 12: Profiles of x-velocity and k behind the hump, using the 817 point RANS domain
mesh, comparing the propagated regressed model, baseline k-ω SST, LES results by Uzun et al.

[56] and PIV results by Greenblatt et al. [18].
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Figure 13: Profiles of x-velocity and k in the axisymmetric jet, using the NASA mesh, comparing
the propagated regressed model, baseline k-ω SST and PIV results by Bridges and Wernet [6].
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Figure 14: Lift and drag coefficient curves at various angles of attack, comparing the propagated
model, baseline k-ω SST and experiment by Ladson [25].

As mentioned, the classifier activation is updated during the runs as well, the final a-posteriori
activation contours are shown for the jet, hump and airfoil at α = 18◦ in Fig. 15. The activation
contours of the plate and channel are not shown, as they are simply zero everywhere. For easier
comparison with the a-priori activation in Fig. 10, only the PIV/LES domain slice is shown for the
jet/hump. All cases have less activation a-posteriori than a-priori, this is a desirable property as
models may destabilize when encountering cells outside the training region. For the hump, the
smaller activation region does not seem to adversely affect the trained model following its good
a-posteriori agreement with high-fidelity data. For the jet and airfoil, the small activation region
already gives a noticeable spoilage of results; this is likely worse without classifier. Of course
activation in other regions may also improve results, further research is needed.

(a) Axisymmetric jet positive x-y-plane (contracted
factor 8 in x), PIV domain slice.

(b) Hump x-z-plane (contracted factor 2 in x), LES
domain slice.

(c) Closeup of airfoil at α= 18◦, x-z-plane.

Figure 15: Model propagated (a-posteriori) classifier activation based on Eq. 62 with regressed
f (θ ) in Eq. 63, black indicates σ = 1; grey indicates σ = 0.
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5.4 Challenge conclusions and recommendations
A collaborative testing challenge is set up by NASA as part of their 2022 symposium on turbulence
modeling. The goal is to train and test a turbulence model on five distinct cases; a flat plate, a
channel, an axisymmetric jet, a wall mounted hump and a NACA0012 airfoil at various angles of
attack. Symbolic expressions are trained for correction terms R and b∆i j , which are added to Pk

and the RST of the k-ω SST turbulence model respectively. Correction fields are found using the
k-corrective-frozen approach by Schmelzer et al. and their SpaRTA framework is used for sym-
bolic regression [46]. Training only on the hump, the optimal model is found to be R = 0.079ε
and b∆i j = 0. Additionally a classifier is used to force corrections to zero in most cells following
Steiner et al. [54]. Classifier training data is generated using a newly proposed criterion, which
has the drawback of being domain dependent. The classifier takes the form of a sigmoid func-
tion of a 12-term expression trained on the hump, channel and plate using the SpaRTA framework.

The regressed model is tested a-posteriori in combination with the regressed classifier. An im-
portant reason for including the classifier is to satisfy the 'do no harm' principle; cases predicted
well by k-ω SST (the plate and channel) should not be spoiled by the corrections. Indeed, the
plate and channel are found to be severely adversely affected by the raw model, but since the
classifier switches off corrections for both, the performance of k-ω SST is retained. For the hump,
the classifier is only active behind it, but the model manages to significantly improve predictions
over k-ω SST. For the jet, much less activation is observed compared to the training data. This
may be for the best, as the model gives slightly worse results than k-ω SST. For the airfoil, the
region of classifier activation is also small and the model again adversely affects results compared
to k-ω SST. Before stall, the model is in good agreement with k-ω SST and experiment, however,
the stall angle and maximum lift coefficient are severely overpredicted compared to both.

Based on the results of the challenge, a number of recommendations are proposed for future
research. Firstly, a new classifier criterion should be devised based only on local properties and
a simpler model should be trained based on it. Secondly, the regressed model contains no b∆i j
correction, making the model still reliant on the inherently flawed Boussinesq hypothesis. It is
recommended to add cases dominated by anisotropic effects to find nonzero b∆i j models. Thirdly,
more cases should be added in general as the model is only trained on the hump. Large domain
DNS/LES data should be available for these to prevent problems encountered with the small PIV
training domain of the jet. Fourthly, given that the regressed model worked well for the hump, but
not for the jet and airfoil suggests different flows may need corrections of a different nature. These
could be selectively switched on/off using a multi-class classifier. Fifthly, cases should be steady
and incompressible, as the effects of unsteadiness and compressibility on k-corrective-frozen are
not fully understood yet. The challenge efforts laid out in the current section preceded subse-
quent efforts presented later in this work, where the second, third and fifth recommendations are
followed.
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6 Rectangular duct case setup

2h

2h AR

x

y

z

Figure 16: Schematic of the
rectangular duct, main flow in

+x-direction.

The rectangular duct case is based on DNS data by Vin-
uesa et al. [58], in which flow through a rectangular
duct is simulated at duct aspect ratios 1, 3, 5, 7, 10
and 14.4. Each aspect ratio is run at a friction Reynolds
number Reτ of approximately 165. Additionally, the
cases with aspect ratio 1 and 3 are run at a friction
Reynolds number of approximately 350. Each case is
assigned a unique identifier, they are given in Tab. 5.
Furthermore, the schematic of the rectangular duct is
depicted in Fig. 16, where the main flow is in the +x-
direction. Note that the indicated infinite domain length
in x-direction is only theoretical; it is there to indicate
that the case is to be solved for the fully developed tur-
bulent solution. For the DNS data, this is achieved by
tripping the initially laminar flow and discarding the solution during the first hundred convective
time units. This gives a flow in which the influence of the initial condition is negligible.

Table 5: Case identifiers and corresponding duct
aspect ratio and friction Reynolds number.

Case identifier Aspect ratio Reτ
rd1L 1 165

rd3L 3 164

rd5L 5 164

rd7L 7 164

rd10L 10 162

rd14L 14.4 166

rd1H 1 342

rd3H 3 363

The section is organised as follows: In
Sec. 6.1, the domain is simplified as much
as possible and a mesh is made of this
subdomain. In particular, relations are
used to generate the mesh based on the
dimensionless first cell height and the cell
growth ratio. Next, in Sec. 6.2, the setup
for a baseline k-ω SST run is given and
results of this run are compared with the
DNS data to identify where the k-ω SST
turbulence model fails. Furthermore, a
mesh independence study is performed
on both the dimensionless first cell height
and the cell growth ratio. Then, in
Sec. 6.3, the setup for the frozen run is
laid out, where correction terms are found
for each cell in the mesh. This gives correction fields based on the frozen DNS data. To validate
whether these correction fields also work in a complete RANS solver, the correction fields are
injected into the k-ω SST turbulence model in Sec. 6.4.
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6.1 Rectangular duct mesh
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Figure 17: Boundary types used in the

rectangular duct mesh.

The duct is symmetric through the y- and z-axis, as
can be seen in Fig. 16, this symmetry also holds for
the statistical quantities solved for in steady-state RANS.
Hence, the domain that needs to be simulated is only
one quarter of the actual domain; here the upper-right
quarter is chosen. The boundary types that are as-
signed to the resulting six faces are shown in Fig. 17.
The flow is solved for steady-state, meaning x-gradients
of flow statistics are zero. Thus, only a single cell
is needed in x-direction, with arbitrary thickness. To
achieve the steady state solution (solution at x =
∞), the cyclic condition is used in x-direction. To
still drive the flow, a bulk velocity is specified and
the solver automatically applies a pressure gradient to
maintain this bulk velocity. Next, due to the presence
of both a side- and top-wall, y- and z-gradients are
nonzero, meaning a mesh has to be made in the y-z
plane (which is later extruded to one single cell in x-
direction).

OpenFOAM’s native blockMesh utility is used to generate the mesh, which requires the num-
ber of cells (N) and the ratio between the first- and last cell (δN/δ1) to be specified along each
edge. The optimal value of these parameters is dependent on the shape of the domain and the
flow Reynolds number. Two parameters for which the optimal value is less dependent on the
domain and the flow Reynolds number are the dimensionless first cell height (y+1 ) and the cell
growth ratio (β). Thus, the goal is to find expressions for N and δN/δ1 in terms of y+1 , β and
a-priori known flow quantities.

Consider the equation for y+1 :

y+1 =
δ1uτ
ν

=⇒ δ1 =
y+1 ν

uτ
, (67)

where δ1 is the first cell height, uτ is the friction velocity and ν is the laminar kinematic viscosity.
This δ1 appears in the blockMesh input parameter δN/δ1, so the expression is rewritten explicitly
for δ1. The only remaining unknown is uτ, which is found from the equation for the friction
Reynolds number Reτ:

Reτ =
uτh
ν

=⇒ uτ =
Reτν

h
, (68)

where h is the duct half-height. Note that uτ in this equation is the average friction velocity,
meaning its use in Eq. 67 results in the average y+1 being the specified value, with a possibly
higher maximum. The maximum y+1 is checked after each baseline, frozen and propagation run
(see Tab. 10 in Sec. 6.4). Normally, Reτ is calculated by approximating the skin friction coefficient
(such as Eq. 6.1 in [10]), however, in this case Reτ is directly available from the DNS data [58].
Combining Eq. 67 and Eq. 68 gives the expression for δ1:

δ1 =
y+1 h

Reτ
. (69)
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Note that in literature and in OpenFOAM, the y+ height used is that of the first cell center rather
than the full cell, this will be referred to as y+1/2, simply related as y+1 = 2y+1/2.

Attaining the required N based on a given y+1 and β is rather complicated; one is essentially
dividing the domain height by a sum of unequal cell heights. Part of this procedure is laid out
in the forum post of the user Tobermory6. Below, the math of this procedure is independently
verified and the equation for N is derived. First consider the cell height for the second and third
cell (δ2 and δ3 respectively):

δ2 = βδ1,

δ3 = βδ2 = β
2δ1.

Clearly, the cell height of a certain cell is simply some power of β multiplied with δ1. The equation
is generalized for δi (1≤ i ≤ N):

δi = β
i−1δ1. (70)

Now consider the sum of cell heights up to and including cell i, which is given for i = 1, 2,3:

1
∑

j=1

δ j = δ1,

2
∑

j=1

δ j = δ2 +δ1 = (β + 1)δ1,

3
∑

j=1

δ j = δ3 +δ2 +δ1 =
�

β2 + β + 1
�

δ1.

Again, this is generalized for arbitrary i as:

i
∑

j=1

δ j =
�

β i−1 + β i−2 + ...+ β2 + β + 1
�

δ1 =
1− β i

1− β
δ1. (71)

Note that in the last step of this general expression, the identity of a geometric series is used [1,
p. 10, 3.1.10]. Taking this sum in y-direction up to the last cell, which has index i = Ny (where
Ny is the number of cells in y-direction), should give a sum equal to the duct half height h. Since
h is known beforehand, the sum for i = Ny can be rewritten to give an explicit expression for Ny :

Ny
∑

j=1

δ j = h=
1− βNy

y

βy − 1
δ1 =⇒ Ny = ln

�

h(βy − 1)

δ1
+ 1

�

/ ln (βy). (72)

Note that for general βy , the Ny attained from Eq. 72 will not be integer. To address this, Ny is
rounded up to the nearest integer, which means the actual βy is slightly lower than the specified
one.

6Post by Tobermory in thread [blockMesh] About Simple Grading in blockMesh. (May, 2020). Tobermory. Archived
21-09-2022, at https://archive.ph/IrpXV
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A similar expression as in Eq. 72 could be derived for the number of cells in z-direction (Nz) by
replacing h with AR · h. This is done for case rd10L, using y+1/2 = 10 and β = 1.3 (tuned for
the best visualization), the resulting mesh is shown in Fig. 18. Even though there is ten times
more domain to cover in z-direction, there are not ten times more cells in z-direction, arising
from the logarithmic nature of Eq. 72. This results in high aspect ratio cells near the origin, even
though gradients in y and z are expected to be similar at this location [58]. Thus, it would be
more desirable to have square cells near the origin. Since the first cell height is the same in y-
and z-direction, square cells at the origin can be achieved by setting δN/δ1 the same in y and
z-direction. Note that if AR> 1, this results in βz < βy . The expression for δN/δ1 is derived next.

Figure 18: Rectangular duct mesh if Eq. 72 is used in both y- and z-direction, case rd10L with
y+1/2 = 10 and βy = 1.3 for clear visualization.

Finding the expression for δN/δ1 is rather trivial using the already established expression for δi

in Eq. 70. Plugging in i = N and dividing by δ1 already gives the desired expression:

δN

δ1
= βN−1. (73)

With this, the system is closed and a mesh can be generated with a specified y+1/2 and βy , the re-
sulting blockMeshDict is given in Appendix A. The mesh produced by this new blockMeshDict
is shown for case rd10L in Fig. 19, where y+1/2 = 10 and βy = 1.3 for clear visualization.

Figure 19: Rectangular duct mesh with (δN/δ1)z = (δN/δ1)y = β
Ny−1
y , case rd10L with

y+1/2 = 10 and βy = 1.3 for clear visualization.
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6.2 Baseline setup and convergence study

Table 6: Given bulk Reynolds
number and resulting bulk

velocity for each case.

Case Reb [-] Ub

[ms−1]
rd1L 2500 37.5

rd3L 2581 38.7

rd5L 2592 38.9

rd7L 2605 39.1

rd10L 2580 38.7

rd14L 2665 40.0

rd1H 5693 85.4

rd3H 5817 87.3

OpenFOAM’s simpleFoam solver is used to solve each case.
It employs the SIMPLE algorithm to solve the incompressible
Navier-Stokes equations, using a turbulence model for the
Reynolds stress [7]. The turbulence model used throughout
this study is the k-ω SST model as implemented in Open-
FOAM [32]. The boundary and initial conditions used for the
case are tabulated in Tab. 7. For the walls, low Reynolds num-
ber wall functions are used, since the bulk Reynolds number
is below 10,000. In the initial condition of U , Ub is the bulk
velocity which is calculated from the bulk Reynolds number
(Reb = Ubh/ν). The channel half height is set to h = 0.001
and the kinematic viscosity is set to 1.5×10−5; since the solver
is incompressible, these can be set to any value. The bulk
Reynolds number and resulting bulk velocity are given for
each case in Tab. 6. Next, the initial conditions in Tab. 7 are
chosen based on similar cases. However, since the case goes
to steady state, the choice of initial conditions only effects
the rate of convergence. Next, note that the pressure is set to
0 m2 s−2 since the relative pressure is solved for rather than the atmospheric pressure. Finally, the
flow is driven by a pressure gradient which the solver automatically calculates and applies to give
the correct bulk velocity.

Table 7: Boundary- and initial conditions for the square duct case.

Mesh part U [m s−1] p [m2 s−2] k [m2 s−2] ω [s−1] νt [m2 s−1]
Inflow

cyclic
Outflow

WallTop
noSlip zeroGradient fixedValue 0

omegaWall-
Function

nutLowRe-
WallFunctionWallSide

Symmetry-
Bottom

symmetrySymmetry-
Side

Initial con-
dition

[Ub 0 0] 0 0.02 10 0
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Table 8: Residuals and relaxation factors for the
baseline rectangular duct case.

Parameter Inner
residual

Outer
residual

Relaxation
factor

U
10−8 -

0.9
p 0.3
k 5× 10−6

0.8
ω 10−15 10−10

The inner and outer residuals, as well as
the relaxation factors for the baseline k-ω
SST runs are given in Tab. 8. The resid-
uals of ω are much lower since its val-
ues varies over many orders of magni-
tude. The relaxation factors only influ-
ence the rate of convergence and stability
of the case, not the final solution. The re-
laxation factors in Tab. 8 give good stabil-
ity and reasonable convergence for each
case. Next, for the outer residuals, con-
sider their convergence for case rd14L shown in Fig. 20; only k, ω and Ux converge, while p,
Uy and Uz do not. This is because the residuals in OpenFOAM are normalized, meaning they are
divided by their initial value. In the final solution of the case, p, Uy and Uz are zero everywhere,
which was also their initial value. Thus the absolute residuals of these parameters were already
around machine epsilon at the start of the run, meaning the normalized residuals cannot go down.

To determine when the case is converged, one would ideally specify a maximum residual for
Ux , k and ω. However, in the OpenFOAM version used (OpenFOAM 7), specifying residuals for
the component of a vector is not possible. Thus, residuals can only be specified for k and ω.
Usually, the case is terminated when all outer residuals are below 10−5. It is observed that the
residual of Ux is usually close to that of k. Thus, the outer residuals of k is set to 5× 10−6 such
that the residual of Ux is at least below 10−5, which is confirmed for each case.

As an additional convergence check, probes are placed at various locations in the domain and
the evolution of local flow parameters is monitored. The evolution of k is plotted for the baseline
k-ω SST case with aspect ratio 14.4 in Fig. 21; at the end of the run, k has converged at each
probe. Convergence of outer residuals and flow evolution at these probes is automatically plotted
for each case and for each flow parameter. All outer residuals of Ux , k and ω are confirmed to be
below 1e-5. Furthermore, all flow parameters are confirmed to have reached a constant value at
the end of the run.
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Figure 20: Outer residual versus iteration for
various flow parameters, case rd14L, β = 1.1,

y+1/2 = 0.1.
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Figure 21: Turbulent kinetic energy versus
iteration at various probe locations, case

rd14L, β = 1.1, y+1/2 = 0.1.
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Now it has been proven that the system of equations being solved by OpenFOAM indeed con-
verges to a stable solution. However, this system of equations is a discretization of an underlying
system of nonlinear partial differential equations (PDEs). It must also be proven that this dis-
cretized solution is sufficiently close to the continuous solution of the system of nonlinear PDEs.
The mesh discussed in Sec. 6.1 represents this discretization. The influence of the discretization
is usually tested in a mesh independence study, where various meshes at various levels of refine-
ment are run. At a certain point, further refinement has little effect on the final solution, meaning
the result is no longer dependent on the mesh.

As explained in Sec. 6.1, the mesh is defined by two parameters; the cell growth ratio β and
the dimensionless first cell center height y+1/2. Mesh independence is to be confirmed with respect
to both parameters. Also, it would be best to perform a mesh independence study for each duct
case separately. However, this is often unfeasible as it requires running a finer mesh than the
actual mesh used, requiring unreasonable runtimes. Thus, the most critical case is usually used
for the mesh independence study. In this case, case rd14L is considered critical, as it is expected
to have the finest structures. The most critical parameter for mesh independence is found to be
y-averaged turbulent kinetic energy. In Fig. 22, it is plotted against z, where in Fig. 22a, β is
varied while y+1/2 is kept constant at its converged value. In Fig. 22b, y+1/2 is varied while β is
kept constant at its converged value. The final mesh independent parameters are β = 1.1 and
y+1/2 = 0.1.
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Figure 22: Turbulent kinetic energy averaged over y versus z, for meshes with various β and
y+1/2, case rd14L.

A baseline run using the k-ω SST turbulence model is performed to assess its performance and to
verify the solver settings and boundary conditions laid out before. Convergence of the baseline
run of case rd14L was already shown in Fig. 20 and Fig. 21. Now, a lower aspect ratio case is
chosen for clearer visualization. The results of case rd3H are compared with DNS data; contours
of the in-plane velocity magnitude and the streamwise velocity are shown in Fig. 23. In Fig. 23a,
two in-plane vortices are visible for the DNS data, which generate flow into the corner over the
diagonal and out of the corner along the walls. These secondary motions are not predicted by
baseline k-ω SST. Though the magnitude of these motions is small compared to the streamwise
velocity, their impact is significant. As seen in Fig. 23b, they transport momentum to the corner,
giving a much higher Ux there. Similar secondary motions are observed for the other duct cases,
none of them are predicted by k-ω SST.
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Perkins explains the origin of these secondary motions by analysing the production terms in
the mean streamwise vorticity equation [35]. Vorticity turns out to be produced by gradients
of Reynolds stresses, which are large in the boundary layer near the duct corner. As explained
in Sec. 2.5.4, k-ω SST is based on Boussinesq’s hypothesis, which assumes the Reynolds stress
tensor to be proportional to the mean strain rate tensor. In the absence of secondary motions,
this yields uniform diagonal Reynolds stresses and v′w′ = 0, resulting in zero streamwise vorticity
production, explaining the lack of secondary motions.
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(a) Normalized in-plane velocity magnitude contours with in-plane velocity vector field overlaid.
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(b) Normalized streamwise velocity contours.

Figure 23: Velocity contours of the rd3H case, comparing between baseline (k-ω SST turbulence
model) and DNS results.

6.3 Finding correction fields
In order to address the discrepancy described in the prior section, corrections are found for each
mesh cell. This is done using the k-corrective-frozen approach proposed by Schmeltzer et al.
[46], which is explained in more detail in Sec. 3.3.3. In short, the symmetric tensor correction
term b∆i j is found which is added to the dimensionless anisotropy tensor bi j. Also, the scalar cor-
rection term R is found, which is added to the production term of turbulent kinetic energy. The
infrastructure to find these terms has already been implemented in the form of a modified solver
frozenSimpleFoam together with a modified turbulence model frozenkOmegaSST.

58



The modified solver requires the velocity vector field, the Reynolds stress tensor field and the
turbulent kinetic energy field from the DNS. The solver needs these for each cell of the RANS
mesh, however, they are only available on the DNS mesh. Thus, these quantities need to be in-
terpolated from the DNS mesh onto the RANS mesh. Luckily, the DNS mesh has a slightly larger
extent than the RANS mesh and is finer (∼ 2.5× more cells). Hence, interpolation using a 2-
dimensional cubic spline is possible and sufficiently accurate.

During the frozen run, U and k are kept fixed at their DNS value and p is not relevant as only the
momentum equation is being solved. Thus, the only parameter that requires iteration is ω. This
also makes the frozen run much faster than the baseline k-ω SST run. This lower runtime is ex-
ploited to find as accurate correction fields as possible by setting the outer residual of ω to 10−15

(same as inner). A relaxation factor of 0.9 is observed to give a stable though fast convergence
for all cases. At then end of the run, one outer iteration is performed to solve for pressure; since
U is fixed, no further iteration is needed.

The boundary conditions are the same as those listed in Tab. 7, also for the parameters obtained
from the DNS, as interpolation is only performed for cells and not for faces. The newly added
Reynolds stress tensor field τi j uses the same boundary conditions as k (fixedValue 0i j at the wall).
For p, ω and νt , the initial conditions are the same as in Tab. 7; for U , k and τi j, they are simply
the interpolated DNS value.

To assess the convergence during the frozen run, the residual of ω is stored at each iteration
and the resulting convergence plot is shown in Fig. 24. As expected, after startup ω converges
linearly in the logarithmic plot until it reaches the specified tolerance of 10−15. As an additional
convergence check, the value of ω and the value of the correction terms are probed at various
locations and stored at each iteration. All were at a constant value at the end of the run for each
case, confirming each case converged. The b∆13 term showed the slowest convergence so its probe
convergence is shown in Fig. 25. Visually, b∆13 seems to converge only after ∼ 1000 iterations. At
this point, the outer residual ofω is ∼ 10−9, which is a much lower tolerance than one would use
in a classical RANS run. Thus, future frozen runs should use an outer tolerance for ω of at most
10−10 and probes should be placed in the flow to confirm convergence.
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Figure 24: Outer residual of ω versus iteration
for frozen run of case rd14L.
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Figure 25: b∆13 versus iteration at various probe
locations for frozen run of case rd14L.
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6.4 Validating the correction fields
In the previous section, correction fields were found for each case based on the velocity and
Reynolds stress of the DNS data. However, these were kept frozen, while in a full RANS sim-
ulation, they are updated each iteration. To test whether the correction fields also yield good
improvements in a full RANS run, they are propagated in the modified turbulence model prop-
agationkOmegaSST. This turbulence model is run with the native simpleFoam solver and mod-
ifies the k-ω SST turbulence model to also include the corrections.

Table 9: Residuals and relaxation factors for the
propagation rectangular duct case.

Parameter Inner
residual

Outer
residual

Relaxation
factor

U
10−8 10−6

0.8
p 0.5
k

0.4
ω 10−15 10−10

The boundary conditions of the propaga-
tion run are the same as those listed in
Tab. 7. However, the initial conditions are
different, as the generic initial conditions
in Tab. 7 may lead to divergence. Best
would be to use the DNS fields as initial
conditions, since these are closest to the
supposed propagation solution. However,
this is potentially misleading as the prop-
agated solution may appear closer to the
DNS than it actually is if it is not iterated
sufficiently. Thus, the baseline solution
fields are used as initial conditions, such that any improvement of the propagated solution over
the baseline solution is achieved through iteration. Next, the case is somewhat less stable than
the baseline case, so lower relaxation factors are used, they are given in Tab. 9. For the baseline,
no outer residual is specified for U and p as (components of) these remain zero the whole run,
leading to normalized residuals of order one. With the correction fields, U and p are nonzero such
that all their residuals converge. As Uy and Uz are much smaller than Ux , rather low residuals
are required for convergence, the outer residuals of U , p and k are set to 10−6.

In order to assess whether the run indeed converges, outer residuals are again plotted against
iteration in Fig. 26. As expected, all outer residuals go to their specified tolerance in a straight
line in the log-plot after some start-up. Additionally, the evolution of flow parameters at certain
probe locations is again measured. Uy and Uz turn out to be most critical for convergence, the
probe convergence of Uy is plotted in Fig. 27. At the end of the run, Uy has reached a constant
value, indicating the run has converged. Using the same analysis, convergence is confirmed for
the other cases as well.
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Figure 26: Outer residual versus iteration for
various flow parameters, propagation of case

rd14L.
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Figure 27: y-velocity versus iteration at
various probe locations, propagation of case

rd14L.

Contours of both in-plane velocity magnitude and streamwise velocity are compared between the
baseline (k-ω SST), propagation (k-ω SST with corrections) and the DNS, they are shown in
Fig. 28. No notable differences are observed between the propagation and the DNS in this figure.
In order to check whether propagation is really the same as DNS, the in-plane velocity magnitude
is plotted along the duct diagonal in Fig. 29, where r is the distance from the duct center. The
complex shape of the DNS data is followed extremely well by the propagation, with only a small
deviation at r/h ≈ 2.7. Additionally, the y-averaged turbulent kinetic energy is plotted against
z in Fig. 30. Again, the propagation follows the DNS alsmost exactly. Similar contour and line
plots are made for each case and the propagation has an almost exact match with the DNS for
each one. Hence, the correction fields found during the frozen runs are considered valid.
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(b) Normalized streamwise velocity contours

Figure 28: Velocity contours of the rd3H case, comparing between Baseline (k-ω SST turbulence
model), propagation (k-ω SST with correction terms b∆i j and R) and DNS results.
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Figure 29: In-plane velocity magnitude along
the diagonal of the rectangular duct, case

rd3H.
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Figure 30: Turbulent kinetic energy averaged
over y versus z, case rd3H.

One point left unaddressed is the use of the average Reτ in Eq. 69, which is used to find the
mesh spacing required to get the specified y+1/2 of 0.1. One is usually interested in the maximum
value of y+1/2, which depends on the maximum value of Reτ. To quantify the difference between
the specified y+1/2 and the maximum y+1/2 in the case, y+1/2,max is computed for each case, for the
baseline, frozen and propagation run. The maximum y+1/2 can be easily found by postProcessing
using OpenFOAM’s yPlus function, the results are given in Tab. 10. Clearly, the maximum y+1/2
is close to the specified one (maximum deviation of 10%). Hence, the y+1/2 estimation based on
the average Reτ is sufficiently accurate for the mesh design of the current case.

Table 10: Maximum y+1/2 for each baseline, frozen and propagation rectangular duct case.

Case Baseline y+1/2,max Frozen y+1/2,max Propagation y+1/2,max

rd1L 0.109 0.102 0.102

rd3L 0.108 0.102 0.102

rd5L 0.105 0.102 0.102

rd7L 0.104 0.102 0.102

rd10L 0.101 0.099 0.099

rd14L 0.103 0.102 0.101

rd1H 0.100 0.096 0.096

rd3H 0.110 0.106 0.106
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7 Heterogeneous roughness case setup
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Figure 31: Schematic of the
heterogeneous roughness, main flow

in -x-direction.

The heterogeneous roughness case is based on wall mod-
eled LES data by Amarloo et al. [3], in which flow over
a surface with periodic streamwise roughness strips is
studied. In their paper, surface roughness and strip
width are kept constant, while the unstable stratifica-
tion strength is varied. Additional simulations were
performed by Amarloo and co-workers with a neutral
boundary layer (no stratification), where the width of
the roughness strips and the roughness heights are var-
ied. Each case is assigned a unique identifier, given in
Tab. 11, together with the roughness heights and strip
width. At the time of writing, results of these additional
simulations have not been published, but they were gen-
erously shared with the author and they will be used in the current work. The schematic of the
case is shown in Fig. 31, where the main flow is in the -x-direction. The inifinite domain length
in x is only theoretical; it is to indicate that the case should be solved for the fully developed tur-
bulent solution. For the LES, this is attained by discarding the timesteps before the flow reaches
steady-state and then averaging twenty steady-state flow-throughs. Finally, the domain height
should also be infinite in theory; the height h was chosen such that the influence of the top
boundary on the rest of the domain is negligible.

Table 11: Case identifiers with the corresponding
wall roughnesses and the roughness strip width.

Case
identifier

Rough
roughness
height
[m]

Smooth
roughness
height
[m]

Roughness
strip
width [m]

hr00 0.5 0.005 0.64πh
hr03 0.5 0.05 0.64πh
hr04 0.5 0.0005 0.64πh
hr05 0.05 0.005 0.64πh
hr06 0.05 0.00005 0.64πh
hr07 0.005 0.00005 0.64πh
hr08 0.5 0.005 0.32πh
hr09 0.5 0.005 0.96πh
hr10 0.5 0.005 1.28πh
hr13 0.05 0.00005 0.64πh
hr14 0.005 0.00005 0.32πh
hr15 0.005 0.00005 0.96πh
hr16 0.005 0.00005 1.28πh

The section is organised as follows: In
Sec. 7.1, the boundary types of the do-
main are given together with the mesh
used (which was adapted from Amarloo
et al.). Then, in Sec. 7.2, the setup of
the baseline k-ω SST run is given, fol-
lowed by the case convergence through
the run. Furthermore, a mesh indepen-
dence study is performed and finally re-
sults are compared with the LES data.
Then, in Sec. 7.3, the setup is given for the
frozen run to find correction fields which
are to address the discrepancy between
RANS and LES. Finally, in Sec. 7.4, these
correction fields are injected into the k-ω
SST turbulence model and run in a com-
plete RANS run for validation.
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7.1 Heterogeneous roughness mesh
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Figure 32: Boundary types used in the
heterogeneous roughness mesh.

The case has three symmetry planes, one of which is
indicated with a dashed line in Fig. 31. For the RANS
simulation, only the part to the left of this symmetry
plane is simulated. The resulting boundary types as-
signed to each of the six domain faces are shown in
Fig. 32. For the bottom wall patch, different rough-
ness heights are specified for faces inside and outside
the roughness strip. The cyclic condition is used in x-
direction to solve for steady-state (x =∞). At x =∞,
gradients with respect to x will be zero, meaning the
mesh only needs one cell in x-direction. A bulk ve-
locity is specified in x-direction and a pressure gradi-
ent is automatically applied to maintain this bulk ve-
locity. Finally, the symmetry condition is applied to
both sides as they are geometrically symmetric. Sym-
metry is also applied to the top to act as a farfield condi-
tion.

The RANS mesh employed by Amarloo et al. is also used in the present work, the lower left
corner is shown in Fig. 33. The mesh is equally spaced in y- and z-direction, except the leftmost
and rightmost column of cells, which have half the width of the other cell columns. There are 33
cells in y-direction and 127 cells in z-direction. The mesh is 500 m in z-direction and 250π m
in y-direction. The case Reynolds number is intentionally large (Reτ ≈ 1.3 × 107), since this
increases the error propagation [2]. The first cell height is also intentionally large (3.9 m), as it
should be at least twice the largest roughness height [34]. Together, this makes for a maximum
y+1/2 of around 30000, meaning wall functions have to be used, these are discussed in the next
section.

Figure 33: Lower left corner of the heterogeneous roughness mesh.

64



7.2 Baseline setup and convergence study

OpenFOAM’s simpleFoam solver (SIMPLE algorithm [7]) is again used to solve the incompress-
ible Navier-Stokes equations, with the k −ω SST turbulence model. The boundary and initial
conditions are tabulated in Tab. 12. Atmospheric wall functions are used for ω and νt , however,
these are only implemented in newer versions of OpenFOAM, not in the version of OpenFOAM
used in the current work (OpenFOAM 7). Thus, the atmOmegaWallFunction and the atmNu-
tUWallFunction are rewritten to OpenFOAM 7 syntax and compiled as custom wall fuctions. The
code of these custom wall functions can be found in Appendix. B.

Table 12: Boundary and initial conditions for the heterogeneous roughness case.

Mesh part U [ms−1] p [m2 s−2] k [m2 s−2] ω [s−1] νt [m2 s−1]
Inflow

cyclic
Outflow

WallBottom noSlip zeroGradient zeroGradient atmOmega-
WallFunction

atmNutU-
WallFunction

SymmetryLeft
symmetrySymmetryRight

SymmetryTop

Initial condi-
tion

[Ub 0 0] 0 0.5 0.0192 0

The initial conditions in Tab. 12 are chosen close to their expected values for fast convergence.
Note that the pressure is set to 0 m2 s−2 since this is a relative pressure rather than atmospheric
pressure. Finally, Ub (used in the initial condition of U) is the bulk x-velocity in the domain.
Rather than a specified bulk velocity, Amarloo et al. used a specified force to drive the flow,
giving a different bulk velocity for each case. In this work, the appropriate bulk velocity is found
by integrating the streamwise velocity from their LES data. The solver automatically calculates
the required pressure gradient to drive the flow to the Ub specified. The bulk velocity is given for
each case in Tab. 13.

Table 13: Bulk velocity specified for each case.

Case identifier hr00 hr03 hr04 hr05 hr06 hr07 hr08

Bulk velocity [m/s] 8.37 7.51 9.15 9.84 10.89 13.41 8.91

Case identifier hr09 hr10 hr13 hr14 hr15 hr16
Bulk velocity [m/s] 8.09 7.56 11.87 14.10 12.89 12.36
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Table 14: Residuals and relaxation factors for the
baseline heterogeneous roughness case.

Parameter Inner
residual

Outer
residual

Relaxation
factor

U

10−8

-
0.9

p 0.3
k

10−6 0.95
ω

The inner and outer residuals as well as
the relaxation factors for the baseline case
are given in in Tab. 14. Since there is no
refinement near the wall, the range of ω
values is not as large, so it has the same
residuals as the other parameters. The
chosen relaxation factors give good sta-
bility and a reasonably fast convergence
for all cases. Next, the outer residuals are
plotted for case hr14 in Fig. 34. This case
is chosen as it is considered most critical
since it has the highest y+ value and thus the highest Reτ (see Eq. 69). As explained in Sec. 6.2,
p, Uy and Uz remain zero meaning their normalized residuals do not converge. Again, the outer
residuals of k and ω are specified at 10−6 to ensure the outer residual of Ux is also sufficiently
low, indeed they all reach below 1× 10−5. Finally, probes are placed in the flow to further assess
convergence; the evolution of k through the run is plotted for case hr14 in Fig. 35. Clearly, at
the end of the run, k has assumed a constant value and can be considered converged, this is also
observed for ω and Ux . The other baseline roughness cases are also confirmed to be converged
using the same check.
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Figure 34: Outer residual versus iteration for
various flow parameters, case hr14.

0 1000 2000 3000
Iterations

0.0

0.2

0.4

0.6

k 
[m

2 /s
2 ]

(0.0h, 0.16h, 0.1h)
(0.0h, 0.16h, 0.9h)
(0.0h, 1.41h, 0.9h)
(0.0h, 1.41h, 0.1h)
(0.0h, 1.41h, 0.1h)

Figure 35: Turbulent kinetic energy versus
iteration at various probe locations, case hr14.

Though not explicitly mentioned, it assumed that Amarloo et al. performed a mesh independence
study on the mesh. To be certain the mesh is sufficiently fine, such that no discretization errors
are trained into the models, an additional mesh independence check is performed. A finer mesh
is created by splitting each cell into four cells, yielding a factor two refinement in y- and z-
direction. Mesh independence is only checked for case hr14, since it is considered critical. Mesh
independence is studied by plotting two variables against z, both also used by Amarloo et al.
Firstly, the y-averaged streamwise velocity u1, nondimensionalized by the friction velocity uτ, is
plotted against z/h in Fig. 36a. Here, angle brackets represent averaging in y-direction. Secondly,
the y-averaged RMS dispersive streamwise velocity < RMS(u′′1) >, nondimensionalized by uτ, is
plotted against z/h in Fig. 36b. The dispersive velocity u′′i is defined as [2]:

u′′i = ui−< ui > . (74)
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In Fig. 36a, there is no visible difference between the two meshes, while in Fig. 36b a small
difference is visible. Still, the difference is small enough to consider the baseline mesh sufficiently
fine.
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Figure 36: Mesh independence study of the baseline heterogeneous roughness mesh and a
versioned refined by a factor two in y- and z-direction, case hr14.

In order to verify the solver settings discussed above and identify the shortcomings of k-ω SST,
a baseline run is performed with the k-ω SST turbulence model for each case. The convergence
of this run was already shown for the case hr14 in Fig. 34 and Fig. 35. Case hr00 is used in
the comparison with the LES, as it exhibits one of the strongest differences and it is also the
training case used by Amarloo et al. [2]. Contours of dispersive x-velocity (see Eq. 74) are
shown in Fig. 37, with the in-plane velocity overlaid as a vector field. Dispersive x-velocity is
nondimensionalized by U0; the mean streamwise velocity averaged at z = h. As was the case
for the rectangular duct, k-ω SST completely fails to predict the in-plane motions in this case.
This is caused by the same mechanism as the duct discussed in Sec. 6.2; in-plane gradients of
in-plane Reynolds stresses are erroneously predicted as zero. The lack of in-plane motions also
has a significant effect on the streamwise velocity, as u′′1 is significantly different between baseline
and the LES.
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Figure 37: Contours of dispersive x-velocity (see Eq. 74) with the in plane velocity vector field
overlaid, comparing between baseline (k-ω SST) and WMLES results, case hr00.
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7.3 Finding correction fields
The k-corrective-frozen approach further explained in Sec. 3.3.3 is used to find the correction
terms b∆i j and R in each cell to address the discrepancy between RANS and LES. Again the cus-
tom frozenSimpleFoam solver is used together with the custom frozenkOmegaSST turbulence
model to find these correction terms. Before the run, however, the velocity, Reynolds stress and
turbulent kinetic energy must be transformed from the LES to the RANS mesh. The LES mesh
is different from the RANS mesh in that it models the full domain from y = 0 till y = 2π (see
Fig. 31), has many cells in x-direction and is solved over many timesteps. In the LES data pro-
vided, averaging is already performed over time, in the x-direction and over the symmetry at
y = π. This means the LES data is in the y-z plane from y = 0 till y = π.

In order to transform the LES data to the RANS mesh, it is first mirrored through the plane
at y = π/2 and then averaged, such that it has the same size as the RANS mesh. Since the LES
mesh used the same cell spacings in y- and z-direction as the RANS mesh, there is a direct overlap
between their cells. To account for slight differences in the cell center coordinates (especially in
the left and right columns), a matching is performed where the closest LES cell is found for each
RANS cell. The velocity, Reynolds stress and turbulent kinetic energy values of this LES cell are
then assigned to the RANS cell.

As explained in Sec. 6.3, ω is the only parameter being solved for. Again, the outer and in-
ner residual of ω are set to 10−15 and a relaxation factor of 0.9 is used. The same boundary
conditions as those listed in Tab. 12 are used. For the Reynolds stress tensor field (τi j), the same
boundary conditions are used as for k, except at the wall where a fixedValue 0i j is used. For p, ω
and νt , the initial conditions from Tab. 12 are used while the LES value is used for U , k and τi j.

Convergence of the run is assessed by monitoring the residual of ω, plotted in Fig. 38. After
some initial iterations, ω starts converging linearly in the log-plot, as expected. At the very end
of the run, there is a slight decrease in slope; this is thought to be due to the inner residual being
the same as the outer residual. If this phenomenon leads to nonconvergence, the inner residual
should be lowered. Additionally, probes are placed in the flow to check the convergence of ω as
well as the correction terms. The b∆22 term showed the slowest convergence, so its probed values
are plotted against iteration in Fig. 39. At the end of the run, all probes reach a constant value,
indicating convergence. Similar convergence for both the outer residual as well as the probes is
observed for all frozen roughness cases. Convergence seems to be reached around iteration 1000,
at which point the outer residual of ω is 10−6. As was the case for the rectangular duct, this is a
much lower convergence residual than in a classical RANS run.
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Figure 38: Outer residual of ω versus iteration
for frozen run of case hr00.
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Figure 39: b∆22 versus iteration at various probe
locations for frozen run of case hr00.

Next, the correction fields are inspected, where b∆i j is multiplied by k to get its actual contribution
to the Reynolds stress tensor. Corrections are close to zero over most of the domain, except near
the transition from smooth to rough wall. Contours of R and k · b∆i j magnitude are shown at this
location in Fig. 40, where each mesh cell is uniformly filled with its value. Both corrections have
high gradients at the wall transition, the cells appear far too coarse for second order finite volume
(used in the present work) to accurately resolve these gradients. Note that this mesh is actually
sufficiently accurate for the LES, as the LES is based on a pseudo-spectral solver which is able to
represent gradients much more accurately [3].

Given that the mesh appears too coarse for the present finite volume based RANS, further mesh
refinement is desired. However, refinement of the mesh is not trivial, as the high-fidelity data is
only available on the current mesh, requiring some form of upsampling. This could be possible
with the derivatives from the LES, but these are not readily available. Also, the first cell height
needs to be twice the roughness height, meaning little wall-normal refinement is possible. Thus,
the mesh is not further refined for now, the impact of these non-smooth correction fields is further
assessed in their propagation and in model testing.
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Figure 40: Magnitude of correction fields near the transition from smooth (left) to rough (right)
wall, case hr00.
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7.4 Validating the correction fields
The correction fields found in the previous section are now validated in a full RANS run where
the velocity and Reynolds stress fields are allowed to update. Again, the modified turbulence
model propagationkOmegaSST is used together with the native simpleFoam solver. The same
boundary conditions as listed in Tab. 12 are used. The baseline results are again used as initial
conditions: as explained in Sec. 6.4, the LES fields would provide better initial conditions, but
could potentially produce misleading results.

Table 15: Residuals and relaxation factors for the
propagation heterogeneous roughness cases.

Parameter Inner
residual

Outer
residual

Relaxation
factor

U

10−8 10−6

0.7
p 0.3
k

0.5
ω

The residuals and relaxation factors used
are tabulated in Tab. 15. Due to stability
issues, the relaxation factors are signifi-
cantly lower than for the baseline, leading
to much slower convergence. The inner
residuals are kept the same as the base-
line. Next, since p, Uy and Uz are now
nonzero, their outer residuals converge as
well. Thus, outer residuals are specified
for all variables. Since Ux is much larger
than Uy and Uz, the outer residual needs
to be lower than usual. For simplicity, all
outer residuals are set to 10−6. In order to assess convergence, the outer residuals are plotted
against iteration in Fig. 41. After some startup, all residuals reach below their specified tolerance.
As mentioned, Uy and Uz are critical for convergence, so the probe convergence of Uz is shown
in Fig. 42. After roughly 20,000 iterations Uz reaches a constant value, confirming convergence.
This corroborates that the standard 10−5 outer residual tolerance would have been too high for
Uz. Convergence is confirmed for all other cases using a similar check.
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Figure 41: Outer residual versus iteration for
various flow parameters, propagation of case

hr14.
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Figure 42: z-velocity versus iteration at various
probe locations, propagation of case hr14.
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For each case, a propagation run is performed using the settings just described. The results of case
hr00 (which was also propagated by Amarloo et al. [2]) are presented; contour plots of disper-
sive x-velocity with the in-plane velocity vector field overlaid are shown in Fig. 43. In this figure,
there is no discernible difference between the propagation results and the LES, indicating valid
correction fields. Possible differences between propagation and the LES are further investigated
by plotting four y-averaged quantities against z, see Fig. 44, the same quantities are plotted by
Amarloo et al. The y-averaged streamwise velocity in Fig. 44a matches the LES perfectly, while
the other three plots show a notable deviation between propagation and the LES. This is not sur-
prising, as these include RMS values and/or the dispersive z-velocity. These quantities are more
sensitive to small differences and thus more prone to errors, as also seen in the mesh indepen-
dence study in Fig. 36.

In Fig. 44b and Fig. 44d, there is a large deviation at z ≈ 0 (the wall). This deviation was also
observed by Amarloo et al. for propagation of k-corrective-frozen RST. However, this deviation
does not seem to influence the mean velocity field, which is the quantity one is usually inter-
ested in. Next, the discrepancy between propagation and LES is smaller than the one observed
by Amarloo et al. for k-corrective-frozen RST. This is likely due to the difference in flow forcing;
Amarloo et al. specify a force, while a bulk velocity (equal to the LES) is specified in the current
work. This then gives a much better match of the < Ux > profile in Fig. 44a, which likely also
improves the other three plots. Finally, though a satisfactory propagated velocity is found, errors
are significantly larger than for propagation of prior cases (such as the duct in Sec. 6.4). This
larger error is speculated to come from the insufficient refinement near the smooth to rough wall
transition discussed in Sec. 7.3.
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Figure 43: Contours of dispersive x-velocity (see Eq. 74) with the in plane velocity vector field
overlaid, comparing between baseline (k-ω SST), propagation (k-ω SST with correction terms

b∆i j and R) and WMLES results, case hr00.
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Figure 44: Plots of various y-averaged quantities vs z, comparing between baseline (k-ω SST),
propagation (k-ω SST with correction terms b∆i j and R) and WMLES results, case hr00.

The frozen approach is applied to each roughness case in Tab. 11 followed by a propagation run
to validate the correction fields. Propagation of each case converges under the settings in Tab. 15
except for case hr05. Though this case can likely be converged with different settings, it decided to
leave it out of further tests given the abundance of other roughness cases. For the remaining cases,
similar propagation performance as observed for case hr00 in Fig. 43 and Fig. 44 is observed, ex-
cept for case hr14. Contour plots of dispersive x-velocity with the in-plane velocity vector field
overlaid are shown for this case in Fig. 45. The propagation shows a definite improvement over
the baseline in that the in-plane vortex is now predicted, roughly at the right location and with
the right rotation direction. However, the strength of this vortex is significantly underpredicted
by the propagation. Also the dispersive x-velocity is predicted better by the propagation, but still
lacking in magnitude.

Next, the four y-averaged quantities plotted for case hr00 in Fig. 44 are also plotted for case
hr14 in Fig. 46. For the plots where the dispersive velocity is plotted (Fig. 46b, Fig. 46c and
Fig. 46d), the propagation shows a definite improvement over the baseline. However, the dis-
crepancy between the propagation and the LES is much larger than for other cases. Now consider
the y-averaged streamwise velocity in Fig. 46a; the propagation shows no improvement over the
baseline, but both are already very close to the LES results. This is not surprising, as case hr14
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has the smallest strip width and the lowest roughness heights (see Tab. 11), giving it the weakest
secondary vortex. This makes the case almost equal to flat-plate flow, for which baseline k-ω
SST already performs well (see Sec. 9). For all other cases, the secondary vortex is significantly
stronger, giving a larger improvement of the propagation with respect to baseline and a better
match with the LES results. Hence, case hr14 is excluded from further model training/testing.
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Figure 45: Contours of dispersive x-velocity (see Eq. 74) with the in plane velocity vector field
overlaid, comparing between baseline (k-ω SST), propagation (k-ω SST with correction terms

b∆i j and R) and WMLES results, case hr14.
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Figure 46: Plots of various y-averaged quantities vs z, comparing between baseline (k-ω SST),
propagation (k-ω SST with correction terms b∆i j and R) and WMLES results, case hr14.
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8 Channel flow case setup
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Figure 47: Schematic of the channel
case, main flow in +x-direction.

The channel flow case is one of the cases in the col-
laborative testing challenge for data-driven turbulence
modeling, part of NASA’s 2022 symposium on turbulence
modeling [42]. Two important changes are made with
respect to their channel case: Firstly, an incompressible
solver is used rather than a compressible one. This is
because k-corrective-frozen currently only works for in-
compressible flows, and the case Mach number is suffi-
ciently low to be considered incompressible (Mach 0.2).
Secondly, an infinite domain length in flow direction is
used with a specified bulk velocity, rather than a finite
domain length with specified inlet total pressure and
outlet static pressure. This is done to improve stability
and make the run faster (1D mesh rather than 2D). The impact of these changes is evaluated
later in the section by comparing new results with those from NASA. The schematic of the up-
dated channel case is shown in Fig. 47, where the main flow is in +x-direction. The case can
be described as two infinitely large plates at a finite distance h from eachother, with forced flow
between them.

The case of channel flow is well known and one for which most RANS models perform well.
The flow is actually so simple that approximate analytical solutions exist which agree well with
experiments [63, p. 424]. Thus, the goal of including this case is not to find corrections to the
k-ω SST model to improve results. Rather, it is to ensure that discovered models retain the same
performance as k-ω SST for simple cases. This 'do no harm' goal is also mentioned by Spalart
during the 2022 symposium on turbulence modeling [45] and is the reason for including the case
in the challenge. The section is structured as follows: A mesh is made of the domain in Sec. 8.1,
based on a specified first cell height and cell growth ratio. Then in Sec. 8.2, the setup for a base-
line k-ω SST run is given and case convergence is verified. Furthermore, a mesh independence
study is performed with respect to both the first cell height and the cell growth ratio. Finally, the
results are compared with NASA’s results for further verification.
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8.1 Channel mesh
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Figure 48: Boundary types used in the
channel mesh.

In Fig. 47, there is a symmetry plane at y = h/2 which is
exploited when generating the mesh; only the part from
y = 0 till y = h/2 is meshed. The boundary types as-
signed to the six faces in this subdomain are shown in
Fig. 48. Since the plates have an infinite length in z-
direction, all gradients with respect to z are zero. Fur-
thermore, since the flow is driven only in x-direction, Uz

is also zero. Thus, all z-components of flow parameters
can be ignored, which is done by specifying the empty
condition for the two patches in the x-y-plane. This
also means that only one cell is necessary in z-direction.
Next, the cyclic condition is used to achieve the steady
state solution at x =∞. At steady state, gradients of
flow parameters with respect to x are zero, meaning only
one cell is needed in x-direction. Finally, the bottom
plate is specified as a wall, where the velocity is zero.
Thus, there is a velocity gradient in y-direction, meaning multiple cells are needed in y-direction.
This means, the final mesh is 1-dimensional with cells in y-direction.

Figure 49: Channel mesh
with y+1/2 = 10000 and
β = 1.3 for clear

visualization.

There are two relevant parameters when generating the cells in y-
direction; the nondimensional first cell-center height y+1/2 and the
cell growth ratio β . The mesh is made using OpenFOAM’s native
blockMesh utility, which does not let one specify these directly.
Thus, the relations laid out in Sec. 6.1 are used to convert y+1/2
and β to the appropriate inputs to blockMesh (specifically Eq. 72
and Eq. 73). Note that both equations depend on the dimensional
first cell height δ1 rather than the nondimensional first cell-center
height y+1/2. In Sec. 6.1, y+1/2 is converted to δ1 using Eq. 69, where
the friction Reynolds number is given for each case. For the chan-
nel case, NASA provides the nondimensionalized friction velocity
uτ/U∞ = 0.02655 at the point where the flow is fully developed.
Of course this quantity will be slightly different in the current run,
but it is assumed to be close enough to provide a good estima-
tion for y+1/2. This parameter is inserted into Eq. 67 to give a new
formula for δ1:

δ1 =
2y+1/2ν

(uτ/U∞)U∞
. (75)

Since all results are nondimensionalized and the solver is incompressible, the value of ν is not
relevant, as long as the same value is used consistently. In this case, ν is set to 1.5× 10−5m2 s−1.
Then one quantity remains unknown in Eq. 75; the free stream velocity U∞. It is calculated based
on the Reynolds number based on the channel height (Reh = U∞h/ν), which is specified as 8×107

by NASA. Like ν, h can be set to any consistent value, it is set to 100 m such that it gives a sensible
freestream velocity of 12 ms−1. With this, all equations are closed and a mesh can be generated
with specified y+1/2 and β . An example mesh is shown in Fig. 49 where y+1/2 = 10000 and β = 1.3
are used for clear visualization.
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8.2 Baseline setup and convergence study

OpenFOAM’s simpleFoam solver (SIMPLE algorithm [7]) is again used to solve the incompress-
ible Navier-Stokes equations, using the k-ω SST turbulence model. The boundary and initial
conditions are given in Tab. 16. No wall function is used for k; this is observed to result in bad
propagation for cases with small y+1/2. The initial conditions are chosen close to their expected
value to give fast convergence. Next, since x goes to infinity, it is necessary to drive the flow,
otherwise it would stop. A bulk velocity Ub is defined in fvOptions and the solver automatically
calculates and applies the required pressure gradient to maintain this bulk velocity. To find the
required bulk velocity, the NASA profile of Y versus u/U∞ is integrated from y/h= 0 till y/h= 1.
This is done by first constructing a cubic spline of the profile and then using scipy’s quad function
for integration. This gives a ratio Ub/U∞ = 0.966, which is multiplied by U∞ = 12 ms−1 to give
Ub = 11.6 ms−1.

Table 16: Boundary- and initial conditions for the channel case.

Mesh part U [ms−1] p [m2 s−2] k [m2 s−2] ω [s−1] νt [m2 s−1]
Inflow

cyclic
Outflow

WallBottom noSlip zeroGradient fixedValue 0 omegaWall-
Function

nutUSpalding-
WallFunction

Left
Empty

Right

SymmetryTop Symmetry

Initial condi-
tion

[U∞ 0 0] 0 0.02 10 0

Table 17: Residuals and relaxation factors for the
baseline channel case.

Parameter Inner
residual

Outer
residual

Relaxation
factor

U
10−8 -

0.9
p 0.3
k 10−6

0.8
ω 10−15 10−10

The inner and outer residuals as well as
the relaxation factors are given in Tab. 17.
Since a large part of the wall is resolved,
the range of values for ω is large, so
its residuals are set to much lower val-
ues. As for the prior two cases, p and
Uy are initialized as zero and remain zero,
so their normalized residuals do not con-
verge. Thus outer residuals are specified
only for k and ω, where k has slightly
stricter value than necessary to ensure Ux

is also sufficiently converged. Finally, the
relaxation factors give good stability and an acceptable convergence speed.

A run is performed with the settings laid out in Tab. 16 and Tab. 17, using a mesh with y+1/2 = 0.1
and β = 1.1. The residuals during this run are plotted against iteration in Fig. 50; after some
startup, Ux , k and ω start converging in a straight line in the log-plot and reach their specified
tolerance. The flow is also probed at various locations during the run, the evolution of k at these
probe locations is plotted against iteration number in Fig. 51. At the end of the run, k has assumed
a constant value, indicating the run has indeed converged, this is also true for Ux and ω.
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Figure 50: Outer residual versus iteration for
various flow parameters, channel case with

y+1/2 = 0.1 and β = 1.1.
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Figure 51: Turbulent kinetic energy versus
iteration at various probe locations, channel

case with y+1/2 = 0.1 and β = 1.1.

In a number of figures provided by NASA for the same case, so-called + quantities appear, which
are quantities nondimensionalized by the friction velocity uτ. Firstly, y+ is defined similarly to
y+1 in Eq. 67, except it depends on the general distance y to the nearest wall, rather than the first
cell height:

y+ =
yuτ
ν

, (76)

where ν is the laminar kinematic viscosity. Furthermore, the friction velocity uτ is defined as:

uτ =

√

√

√

�

�τw,i

�

�

ρw
, (77)

where τw,i is the wall shear stress vector; τw,i/ρw is attained by post-processing using the wall-
ShearStress function. Next, u+ is defined as:

u+ =
u
uτ

, (78)

where u is the x-component of the velocity vector. Finally, k+ is defined as:

k+ =
k
u2
τ

, (79)

where k is the turbulent kinetic energy.

As explained in Sec. 6.2, it must also be proven that the solution obtained on the discretized
mesh is sufficiently close to the continuous solution, which is done in a mesh independence study.
The u+ versus y+ plot shows the clearest differences between meshes and is thus used for the
mesh independence study. In Fig. 52a, u+ is plotted against y+ for various values of β while y+1/2
is fixed at 0.1. In Fig. 52b, u+ is plotted against y+ for various values of y+1/2 while β is fixed at
1.1. In both plots, the k-ω SST results obtained by NASA are also plotted for comparison. The
mesh independent value of β is determined to be 1.1 while the mesh independent value of y+1/2
is determined to be 0.1. These converged values are on the strict side; this is such that mesh
independence also holds if a certain propagated model has slightly higher gradients.
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Figure 52: Channel u+ versus log10(y
+), for meshes with various β and y+1/2, also including

NASA’s k-ω SST results for comparison.

Comparing between the converged result and the NASA RANS data in Fig. 52b, a slight difference
still would remain at infinite mesh density. This is even more pronounced for the profile of νt ,
shown in Fig. 53a. The deviation for the profile of k+, shown in Fig. 53b, is not as large as that of
νt . Thus, k seems to be overestimated at the channel center while ω seems to be underestimated
at the channel center with respect to the NASA RANS results. Still, the deviation of νt is at most
∼ 2.5%, which is attributed to solver differences and small differences in formulation of the k-ω
SST model. Hence, the RANS run of the channel is considered verified. Since the NASA RANS
shows good agreement with channel flow theory and the current run shows good agreement with
the NASA RANS, plain k-ω SST already performs well for the case of channel flow. Thus, as
mentioned at the beginning of this section, no correction fields need to be found as no corrections
are needed.
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Figure 53: Channel profiles comparing between the current RANS run and the reference run
from NASA, β = 1.1 and y+1/2 = 0.1.
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9 Flat plate flow case setup
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Figure 54: Schematic of the flat plate
case, main flow in +x-direction.

The flat plate case also comes from the collaborative test-
ing challenge in NASA’s 2022 symposium on turbulence
modeling [42]. As for the channel case, an incompress-
ible solver is used rather than a compressible one as used
by NASA. This is because the k-corrective-frozen infras-
tructure currently only works for incompressible cases,
and the case Mach number is sufficiently low to be con-
sidered incompressible (Mach 0.2). The schematic of the
case is shown in Fig. 54, where the main flow is in +x-
direction. Essentially, the case consists of uniform flow
encountering an infinitely wide, infinitely long flat plate.
A boundary layer will form on the plate, which grows
with x . Profiles of this boundary layer are taken at x = L,
so the domain length is 2L to remove any downstream
influences at x = L. The domain z-height is theoretically
also infinite, so the value L is chosen such that the top boundary has a negligible effect on the
boundary layer, this is confirmed by NASA [42].

Flat plate flow is a well known case, both experimentally and numerically and one for which
most RANS models perform well. The flow is so simple that approximate analytical solutions
exist which agree well with experiments [63, p. 430]. This is also true for the channel case in
Sec. 8, where the 'do no harm' goal is mentioned. This goal is also the reason for including the flat
plate case; newly found models should not negatively effect the results of this case. The section
is structured as follows: In Sec. 9.1, the domain boundary types are given and the procedure to
convert NASA meshes to OpenFOAM format is laid out. Then in Sec. 9.2, the setup of a baseline
k-ω SST run is provided and the convergence of this case is verified. Furthermore, a mesh inde-
pendence study is performed on the NASA meshes and the results are compared to the k-ω SST
results from NASA for further verification.
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9.1 Flat plate mesh
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Figure 55: Boundary types used in the
flat plate mesh.

A mesh is made of the domain shown in Fig. 54, the
boundary types that are assigned to the six faces in the
domain (with the bottom face being split in two) are
shown in Fig. 55. Since the plate has an infinite width
in y-direction, gradients of all quantities will be zero
in y-direction. Furthermore, the mean velocity is only
in x-direction, so Uy will also be zero. Hence, all y-
components of flow parameters can be ignored, which is
implemented by specifying the empty condition for the
two patches in the x-z-plane. This is also means that
only one cell is needed in y-direction. As mentioned,
uniform flow enters the domain at the inlet and develops
into a boundary layer on the plate. As the flow is sub-
sonic, there will be an upstream influence of the plate.
In order to introduce this influence to the uniform flow, a
small symmetry plane is defined before the plate where
Ux > 0ms−1 but Uz = 0ms−1. A symmetry plane is also
defined for the top of the domain, such that no flow enters the domain at the top, but the flow is
allowed to have Ux > 0m s−1. Finally, the inlet and outlet of the domain are defined as patches,
their exact boundary conditions are given in the next section, but the idea is to define the pres-
sure/velocity so as to drive the flow.

Table 18: Number of mesh points on
the flat plate and the associated total

number of cells of each mesh provided
by NASA.

Plate
points

Cells

29 816

57 3264

113 13056

225 52224

449 208896

Since the case comes directly from the collabora-
tive testing challenge and the domain is the same
(only the solver is different), the meshes used by
NASA can also be used here. NASA provides a
number of meshes with different levels of refine-
ment, conveniently given as the number of mesh
points on the plate. The number of points on
the plate along the with corresponding total num-
ber of mesh cells is given for each mesh in Tab. 18.
The mesh that is used for further testing is deter-
mined using a mesh independence study, which is
laid out in the next section. For this mesh in-
dependence study, however, each mesh should be
converted to OpenFOAM format, which is discussed
next.

The NASA meshes are provided in plot3d format, which can be converted to OpenFOAM for-
mat using the plot3dToFoam utility. Unfortunately, the plot3d files do not contain any patch
information, so the patches have to be assigned again. The autoPatch utility is used to auto-
matically split patches on 90 deg corners. This results in six patches; each domain face in Fig. 47
is assigned a different patch. Thus, the whole domain bottom is assigned to one patch, while
it should be split in two. To address this, the bottom patch is first converted to a set using the
topoSet utility. This set is then copied to produce two identical sets, both containing the bottom
faces. Then the topoSet utility is used again, this time to delete all faces with x > 0 and x < 0
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respectively. The resulting sets are converted back to patches; one with the bottom faces with
x > 0 (the plate) and one with the bottom faces with x < 0 (the symmetry inflow). Finally, all
patches are assigned the correct name and type (types given in Fig. 55) using the createPatch
utility. A side view of the coarsest mesh (29 points) is shown in Fig. 56.

Figure 56: Coarsest flat plate mesh (29 plate points).

9.2 Baseline setup and convergence study
OpenFOAM’s simpleFoam solver is used to solve the incompressible Navier-Stokes equations for
this case, using the k-ω SST turbulence model. The consistent flag is set to true in fvSolution,
meaning actually the SIMPLEC algorithm is used [11], this is done for stability. The boundary
and initial conditions are given in Tab. 19. Note that a fixed velocity is specified at the inlet rather
than a fixed total pressure, which is used by NASA. This change is made to improve stability, the
impact is later evaluated by comparing to NASA’s results. Also, no wall function is used for k, as
this is found to give bad propagation results.

The freestream velocity U∞ in Tab. 19 is calculated from the length based Reynolds number
(ReL = U∞L/ν), specified as 5 × 106 by NASA. The length L is set to 1 m and the kinematic
viscosity to 1.5 × 10−5 m2 s−1, since the solver is incompressible they can be set to any consis-
tent value. The resulting freestream velocity is 75 ms−1. The freestream turbulence intensity is
specified as I = 0.039% by NASA and the freestream eddy viscosity νt,∞ as 0.009 m2 s−1. The
freestream turbulent kinetic energy k∞ is calculated using:

k∞ =
3
2
(U∞ · I)

2 , (80)

giving k∞ = 0.0013 m2 s−2; the freestream ω is calculated to be ω∞ = k∞/νt,∞ = 0.14 s−1.
These freestream values are also used as initial conditions for k and ω.
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Table 19: Boundary- and initial conditions for the flat plate case.

Mesh part U [ms−1] p [m2 s−2] k [m2 s−2] ω [s−1] νt [m2 s−1]
Inflow fixedValue

[U∞ 0 0]
zeroGradient turbulent-

Intensity-
Kinetic-
EnergyInlet
0.039%

fixedValue
ω∞

calculated

Outflow zeroGradient fixedValue 0 zeroGradient

WallBottom noSlip zeroGradient fixedValue 0 omegaWall-
Function

nutUSpalding-
WallFunction

Left
Empty

Right

Symmetry-
Bottom Symmetry
SymmetryTop

Initial condi-
tion

[U∞ 0 0] 0 k∞ ω∞ νt,∞

Table 20: Residuals and relaxation factors for the
baseline flat plate case.

Parameter Inner
residual

Outer
residual

Relaxation
factor

U
10−8 10−6

0.9
p 0.7
k 0.7

ω 10−15 10−10 0.95

The inner and outer residuals together
with the relaxation factors are given in
Tab. 20. Lower residuals are used for ω
since, especially for the fine meshes, a
large part of the wall is resolved, resulting
in ω varying over many orders of magni-
tude. Contrary to the prior baseline cases,
both p and Uz converge to a nonzero value
during the run, meaning outer residuals
can be specified for all flow parameters,
10−6 proves to be necessary for full con-
vergence of the finest mesh. The relax-
ation factors are chosen to give stable, yet fast convergence.

In order to verify that the residuals and relaxation factors listed in Tab. 20 actually lead to a
converged solution, the evolution of the outer residuals is plotted against iteration for the 225
point mesh in Fig. 57. After some initial startup, all residuals start converging in an approximately
straight line in the log-plot and reach their specified tolerances. Next, the flow is probed at vari-
ous locations and the evolution of a certain flow parameter is plotted against iteration. The most
critical parameter turns out to be k; its probed value is plotted against iteration for the 225 point
mesh in Fig. 58. At the end of the run, k has assumed a constant value at each probe, indicating
the solution has converged.
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Figure 57: Outer residual versus iteration for
various flow parameters, flat plate case with

225 point mesh.
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Figure 58: Turbulent kinetic energy versus
iteration at various probe locations, flat plate

case with 225 point mesh.

For comparison with the NASA data, some derived quantities need to be calculated. Firstly, the
skin friction coefficient C f is calculated along the plate using:

C f =
τw,iŵ||,i

1
2ρ∞U2

∞

. (81)

Here, τw,i is the wall shear stress vector; τw,i/ρ∞ is obtained by post-processing using the wall-
ShearStress function. Next, ŵ||,i is the wall tangential unit vector, equal to [ 1 0 0 ]T , so
τw,iŵ||,i/ρ∞ is simply the x-component of the output of the wallShearStress function. Further-
more, U∞ was calculated to be 75 m s−1 at the beginning of this section. Secondly, the Reynolds
number based on the momentum thickness, Reθ , is calculated as:

Reθ =
U∞θ
ν

. (82)

Here, ν is the laminar kinematic viscosity and θ is the momentum thickness which is defined as:

θ =

∫ ∞

0

ρ

ρ∞

u
U∞

�

1−
u

U∞

�

dz, (83)

where u is the x-component of the velocity vector, which is available in each mesh cell. Further-
more, ρ/ρ∞ = 1 since a constant density solver is used.

The integral in Eq. 83 is in wall normal direction. Evaluating this integral is simplified by the
orthogonality of the mesh; there are 'stacks' of cells with the same x-coordinate, but different z
(wall normal) coordinates. Note that most of this stack of cells is outside the boundary layer,
meaning u ≈ U∞, leading to numerical cancellation errors, making the integral inaccurate. To
mitigate these errors, integration is only performed up to the z-coordinate at which u first reaches
99.9% of U∞. In addition to the cell centers within this region, two points are added to the nu-
merical integral: one at z = 0, with u = 0 ms−1 due to the no-slip condition. The other one at
the edge of the boundary layer, having u= 0.999U∞, where its z-coordinate is found using linear
interpolation between the two nearest cells. Finally, the integral is found by first constructing
a cubic spline of the points and then integrating it using numerical quadrature. This yields a θ
value at each wall face.
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As explained in Sec. 6.2, a mesh independence study shall be performed to prove that the solution
on the discretized mesh is sufficiently close to the continuous solution. The study is performed
on the meshes provided by NASA, laid out in Tab. 18. The two figures for which NASA gives their
own k-ω SST results are also used in the mesh independence study and NASA’s results are added
for comparison. Firstly, C f is plotted against Reθ in Fig. 59a, where the 225 point mesh is deemed
close enough to the 449 point mesh to be considered mesh independent. Secondly, u+ is plotted
against y+ in Fig. 59b (both defined in Sec. 8.2), where again the 225 point mesh is deemed close
enough to the 449 point mesh to be considered mesh independent. Hence, the 225 point mesh is
used for further testing.

In both Fig. 59a and Fig. 59b, the 225 point and the 449 point mesh are right on top of the
NASA results (449 closer as it is the same mesh). This further verifies the setup of the current
run. Also, the NASA results are right on top of analytical results for flat plate flow. Hence, the
current run is close to analytical flat plate results, meaning the k-ω SST model in OpenFOAM
already performs well and no corrections are needed.
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Figure 59: Results of various meshes with increasing refinement, plotted together with results
from NASA for comparison, flat plate case.
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10 Wall-mounted hump case setup
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Figure 60: Schematic of the wall-mounted
hump, main flow in +x-direction.

The wall-mounted hump case is part of the col-
laborative testing challenge, which is part of
NASA’s 2022 symposium on turbulence mod-
eling [42]. As for the other symposium cases,
an incompressible solver is used rather than
a compressible one as used by NASA. Again,
the k-corrective-frozen infrastructure is cur-
rently only written for incompressible cases,
and the incoming Mach number of the case is
only Mach 0.1, meaning the maximum veloc-
ity is not expected to exceed Mach 0.2. The
schematic of the hump is shown in Fig. 60,
where the main flow is in +x-direction. The case is based on an experiment performed as part of
the CFDVAL2004 workshop [44], the experiment is further described by Greenblatt et al. [18].
To account for end-plate blockage in this experiment, the mesh height decreases slightly at the
start of the hump. The length of the hump is referred to as the hump chord c. The length of the
inlet and outlet (Linlet and Loutlet respectively) are mesh dependent, as will be explained later in
the section.

In the aforementioned experiment by Greenblatt et al., PIV measurements are also performed
of the hump. However, these do not cover the whole domain and are thus not suitable for train-
ing correction fields using the k-corrective-frozen approach described in Sec. 3.3.3. Uzun et al.
performed a wall-resolved LES of the same case, which is used for training correction fields in-
stead [56]. Unfortunately, the inlet and outlet length of their LES domain are much smaller than
those of the RANS domain of the meshes provided by NASA. Hence, training and validation of
the correction fields are performed on the reduced LES domain, while model testing is performed
on the full NASA RANS domain.

The section is structured as follows: In Sec. 10.1, the used boundary types of the domain are
given and the procedure to convert NASA meshes to OpenFOAM format is laid out. Next, in
Sec. 10.2, the procedure to coarsen the LES mesh as well as the LES data is laid out. Then, the
setup of baseline k-ω SST runs for both the RANS domain and the LES domain meshes is given in
Sec. 10.3 and Sec. 10.4 respectively. In each section, case convergence is verified, a mesh indepen-
dence study is performed and results are compared to k-ω SST results from NASA for verification
and LES results for identification of model errors. The discrepancies between k-ω SST and LES
are addressed by training correction fields using k-corrective-frozen on the LES domain, this is
laid out in Sec. 10.5. Finally, in Sec. 10.6, the correction fields are injected into the k-ω SST
turbulence model and run in a full RANS solver on the LES domain for validation of these fields
(propagation).
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10.1 Hump RANS domain meshes
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Figure 61: Boundary types used in the hump
meshes.

The boundary types used for both the RANS
and LES domain meshes are given in Fig. 61.
The bottom is modeled as a wall, while the top
is modeled as a slip wall. The inlet and outlet
are defined as patches, their exact boundary
conditions are given in Sec. 10.3 for the RANS
domain and Sec. 10.4 for the LES domain. The
general idea is to specify a pressure/velocity at
the inlet/outlet to drive the flow through the
domain. Finally, side plates are used in the ex-
periment, so one would expect a similar condi-
tion for the sides here. However, such a condi-
tion proves too expensive for the LES, which is
the data that is to be matched. Instead, the
LES uses periodic boundaries in y-direction
and modifies the top boundary to account for
side-plate blockage (which is also done for the
RANS domain). Hence, the LES actually models an infinitely wide hump, which implies zero gra-
dients in y-direction for averaged quantities. Thus, the empty condition is used for the two sides
in the x-z-plane for the current RANS runs.

Table 21: Number of streamwise
points on the RANS domain hump

mesh and the associated total number
of cells.

Streamwise
points

Cells

103 2754

205 11016

409 44064

817 176256

1633 705024

The RANS domain meshes are provided by NASA on the
challenge website [42], they are characterized by Linlet =
6.39c and Loutlet = 3c (see Fig. 60). These meshes are
in plot3d format, they are converted to OpenFOAM for-
mat using the plot3dToFoam utility. The meshes pro-
vided by NASA are nondimensional, meaning they use a
chord length of 1 m. In the current work, the same chord
length as the experiment is used; 0.42 m. Hence, during
the conversion to OpenFOAM, the scale argument is set
to 0.42. Next, since the plot3d files only contain point co-
ordinates, the various patches have to be assigned again.
This is done straightforwardly using the autoPatch util-
ity, which already separates all patches since they are at
a 90 deg angle with respect to eachother. Then, each
patch is assigned the correct name and type using the
createPatch utility. NASA provides five meshes at different levels of refinement, the number of
streamwise points and the associated total number of cells is given for each mesh in Tab. 21. The
coarsest mesh (103 points) is shown in Fig. 62.

Figure 62: Coarsest RANS domain hump mesh (103 points).
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10.2 Hump LES domain meshes
The meshes of the LES domain are based directly on the mesh used for the LES by Uzun et al.
[56]. This mesh is similar to the RANS domain mesh, using the same boundary types shown in
Fig. 61. The only difference is that it has a much shorter inlet and outlet length (Linlet = 2.03c;
Loutlet = 1.6c). Also, it uses two regions; one region near the wall and one region further from
the wall, up to the top of the domain. The near wall region has twice as many streamwise cells as
the far-wall region. These separate regions exist to be able to increase near wall accuracy without
massively increasing the total number of cells. A blending function is used to couple these regions
in the solver. Given the more lenient refinement requirements and lower computational cost of
RANS, this two-region approach is not needed for the RANS run on this mesh. Hence, half the
streamwise points of the near-wall region are removed and it is stitched to the far-wall region to
form one coherent mesh.

Even this mesh is likely much finer than what is required for a RANS run, so it is coarsened
further. This is done by defining a coarsening factor and merging this number of cells in each
direction. For instance, for a coarsening factor of 3, 3 consecutive cells in streamwise direction
and 3 consecutive cells in wall-normal direction are merged, giving a 3 × 3 square of cells that
is merged into one new cell. Thus, the total number of cells will reduce by the coarsening factor
squared. Of course, the number of streamwise/wall-normal cells will not always be exactly divis-
ible by the coarsening factor. To address this, a smaller number of cells is merged at the inlet and
top of the domain, such that the remaining number of streamwise/wall-normal cells is exactly
divisible by the coarsening factor. Naturally, this leads to a jump in cell size, but as the inlet/top
cells are finer than their neighbouring cells and they are far from the hump, no impact is expected
on the results. If there is a significant impact, this will become clear in the mesh independence
study performed in Sec. 10.4.4.

Table 22: Coarsening factor for the
LES domain hump mesh and the
associated total number of cells.

Coarsening
factor

Cells

1 825020

2 206338

4 51626

8 13062

Once a mesh has been coarsened, its x- and z-
coordinates are available as 2D arrays. To convert these
to a 3D OpenFOAM mesh, they are first converted to a
plot3d file, which is created using a custom Python func-
tion, given in Appendix C (convertToPlot3d()). This
function converts the mesh to 3D by placing the 2D mesh
points at y = 0 and y = −c, giving one cell thickness in
y-direction. The mesh in the plot3d file is then converted
to OpenFOAM using the plot3dToFoam utility. Similar
to the RANS domain mesh, patches are then created and
assigned the right name and type using the autoPatch
and createPatch utility respectively. Four OpenFOAM
meshes are created using this procedure; one with no
coarsening, the others with coarsening factors 2, 4 and 8. The total number of cells for each of
these meshes is given in Tab. 22. For better visualization, a mesh with coarsening factor 32 is
made, which is shown in Fig. 63.
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Figure 63: LES domain hump mesh with coarsening factor 32.

10.3 Hump RANS domain setup and convergence study
OpenFOAM cases are set up for the hump RANS domain meshes of increasing refinement de-
scribed in Sec. 10.1. The boundary and initial conditions are described in Sec. 10.3.1 together
with solver settings. Furthermore, these settings are verified to lead to a converged solution in
this section. Next, the calculation of derived variables such as the pressure coefficient is laid out
in Sec. 10.3.2. Finally, in Sec. 10.3.3, a mesh independence study is performed to determine a
suitable mesh refinement. Also, results are compared to NASA’s RANS results for verification and
to LES results for validation (identifying model inadequacies).

10.3.1 Initial and boundary conditions, solver settings and run conver-
gence

OpenFOAM’s simpleFoam solver is again used to solve the incompressible Navier-Stokes equa-
tions for this case, using the k-ω SST turbulence model. As for the flat plate, the consistent flag
is set to true such that actually the SIMPLEC algorithm is used, which is needed for stability. The
boundary and initial conditions are given in Tab. 23, they are mostly adapted from the k-ω SST
setup of the NASA challenge [42]. The reference velocity Ure f is calculated using:

Ure f = Mre f

Æ

γRTre f , (84)

where Mre f = 0.1 is the reference Mach number and Tre f = 298.3 K is the reference temperature.
Furthermore, γ = 1.4 is the heat capacity ratio and R = 287.05 m2s−2K−1 is the specific gas
constant (both for air). This gives Ure f = 34.6 ms−1, which is also found by NASA.
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Table 23: Boundary- and initial conditions for the hump case on the RANS domain.

Mesh part U [ms−1] p [m2 s−2] k [m2 s−2] ω [s−1] νt [m2 s−1]
Inflow fixedValue

[Ure f 0 0]
zeroGradient turbulent-

Intensity-
Kinetic-
EnergyInlet
0.077%

fixedValue
ωre f

calculated

Outflow zeroGradient fixedValue
−0.00038

pre f

ρ

zeroGradient

WallBottom noSlip zeroGradient kqRWall-
Function

omegaWall-
Function

nutUSpalding-
WallFunction

Left
Empty

Right

SymmetryTop Symmetry

Initial condi-
tion

[1 0 1] 0 1000kre f 1000ωre f νt,re f

The laminar kinematic viscosity ν is found from the chord-based Reynolds number, given by NASA
as Rec = 9.36× 105, the expression is as follows:

ν=
Ure f c

Rec
. (85)

The chord length c is set the same as in the experiment; c = 0.420 m, resulting in a laminar
kinematic viscosity ν = 1.55 × 10−5 m2 s−1. At the inflow, the freestream turbulence intensity
is specified by NASA as 0.077% and the reference eddy viscosity as νt,re f = 0.009 m2 s−1. The
reference turbulent kinetic energy kre f is calculated as 0.00107 m2 s−2 using Eq. 80; the reference
ω is then ωre f = kre f /νt,re f = 0.118 s−1. NASA specifies the turbulence intensity and the eddy
viscosity at the inlet, which is not possible in OpenFOAM as ω also needs to be specified. Since
velocity varies over the inlet, k varies as well, meaning ω would need to vary to keep a constant
νt at the inlet. This is rather difficult to implement, especially due to the νt limiter in k-ω SST.
Thus, ω is simply set to ωre f over the whole inlet, which is justified by the fact that the boundary
layer is still small there. For further verification of this inlet condition, results are compared to
those from NASA later in this section.

Since NASA uses a compressible solver, they use the actual pressure in their run. However,
for the current incompressible run, a reference pressure of zero is desired; both for consistency
with other cases and easier post-processing. NASA specifies the total pressure at the inlet as
pt,inlet = 1.007pre f and the static pressure at the outlet as poutlet = 0.99962pre f , so setting pre f = 0
would result in stationary flow. In order to be able to use pre f = 0, the difference between pre f

and the inlet/outlet (total) pressure has to be found. Actually, the pressure specified in an incom-
pressible solver is divided by the density, so these absolute differences should be divided by the
density. The resulting expression for the inlet total pressure difference is:

pt,inlet − pre f ,0

ρ
= 0.007

pre f ,NASA

ρ
; (86)
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the expression for the outlet static pressure difference is:

poutlet − pre f ,0

ρ
= −0.00038

pre f ,NASA

ρ
. (87)

These expressions require the reference pressure used by NASA divided by the density to be
known. The perfect gas law is rewritten to yield an expression for pre f ,NASA/ρ:

pre f ,NASA

ρ
= RTre f , (88)

pre f ,NASA/ρ is found to be 8.56 × 104 m2 s−2. This gives (pt,inlet − pre f ,0)/ρ = 599 m2 s−2 and
(poutlet − pre f ,0)/ρ = −32.5 m2 s−2.

Table 24: Residuals and relaxation factors for the
baseline hump case on the RANS domain (except

817 point mesh).

Parameter Inner
residual

Outer
residual

Relaxation
factor

U
10−8 10−6

0.95
p 1
k

0.7
ω 10−15 10−10

The inner and outer residuals as well as
the relaxation factors are given in Tab. 24.
Again, lower residuals are used for ω
since the finest meshes resolve a large part
of the wall, giving an order of magnitude
variation in ω. Also, for the other vari-
ables an outer residual tolerance of 10−6

is necessary for convergence. Finally, the
relaxation factors give fast convergence
while the solution remains stable. Actu-
ally, stability turns out to be a significant
issue for this case. This is why different
initial conditions are used (see Tab. 23)
compared to other cases. Starting with a lower velocity and larger k and ω gives more stability
and faster convergence. Also velocity is specified at the inlet rather than total pressure (which
is used by NASA) to boost stability. To further mitigate the stability issues, velocity magnitude is
limited to 70 m s−1, a minimum ω of 0.1 s−1 is enforced and one non-orthogonal corrector step is
used. Even then, the 817 point mesh fails to converge, so its U relaxation factor is decreased to 0.8.

In order to verify that the settings laid out above lead to convergence, the outer residuals are
plotted against iteration for the 409 point mesh in Fig. 64. After some startup, all residuals go
down in a straight line in the log-plot and reach their specified tolerance. Next, the flow is probed
at various locations to monitor the evolution with iteration. The most critical parameter for con-
vergence turns out to be k, its evolution is plotted for the 409 point mesh in Fig. 65. At the end of
the run, k has reached a constant value at each probe, further verifying convergence. Convergence
is also verified for the other meshes using the same check.
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Figure 64: Outer residual versus iteration for
various flow parameters, RANS domain hump

case with 409 point mesh.
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Figure 65: Turbulent kinetic energy versus
iteration at various probe locations, RANS
domain hump case with 409 point mesh.

10.3.2 Calculation of derived variables

For further analysis, some derived variables are needed, both from the OpenFOAM RANS run
and the LES data, their calculation is laid out next. Firstly, the pressure coefficient Cp is needed,
defined as:

Cp =
p− pre f

1
2ρU2

re f

. (89)

For the OpenFOAM RANS run, this equation can be directly used as pre f = 0 and the solver
directly outputs p/ρ. For the LES data, pre f is nonzero and pressure is provided as p/pre f . The
expression for Cp is rewritten and combined with the perfect gas law in Eq. 88 to attain the
following expression for Cp:

Cp =
pre f

ρ

�

p
pre f
− 1

�

1
U2

re f

=
RTre f

U2
re f

�

p
pre f
− 1

�

. (90)

Secondly, the friction coefficient C f is to be obtained along the wall, its expression is provided
in Eq. 81. For the OpenFOAM RANS run, τw,i/ρ∞ can be obtained by post-processing using the
wallShearStress function and U∞ is known (34.6 m s−1). The wall tangential unit vector ŵ||,i
varies along the wall; for the kth wall panel, it is equal to [ d xk 0 dzk ]T . To obtain d x and dz
for each wall panel, the corner points are needed. To this end, the topoSet utility is used to con-
vert the wall patch to a faceSet. This is then converted to an ASCII VTK file using the foamToVTK
utility. Then, x- and z-coordinates are extracted at one y-location from this ASCII VTK file and
sorted by x . These sorted point coordinates are then used to obtain arrays with d xk and dzk
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For the LES data, |τw,i| has to be calculated using its definition:

|τw,i|
ρ∞

= ν
∂ uwallperpendicular

∂ xwallnormal

�

�

�

�

wall

, (91)

which already has the correct sign. For this equation, a velocity derivative in wall normal coordi-
nates is needed, meaning the velocity gradient tensor has to be transformed from global to local
wall-normal coordinates. The transformation is purely rotational and is characterized by the an-
gle φ defined counter-clockwise positive, it is visualized in Fig. 66. To find each φ along the wall,
the angle between each wall panel and the global x-axis is calculated using a simple arctangent.
The 2D rotation matrix Q ik used to transform a point from the global to the local wall-normal
coordinate system is as follows:

Q ik =

�

cosφ sinφ
− sinφ cosφ

�

. (92)

Then, the velocity gradient tensor is transformed to wall-normal coordinates as follows:

∇iu j

�

�

wall =Q ik (∇kul)Q jl . (93)

The velocity derivative in Eq. 91 is simply the ∂ u/∂ y component of this transformed tensor. This
transformation is applied to each wall panel to find C f .

x

y
x′

z′

Figure 66: Definition of rotated wall-normal coordinate system.

The third and final derived quantity is the 〈u′w′〉 component of the Reynolds stress tensor. This
quantity is directly available in the LES data, however, it needs to be calculated for the OpenFOAM
RANS run. In the k-ω SST turbulence model, the Reynolds stress tensor is approximated using
Boussinesq’s eddy viscosity hypothesis given in Eq. 14; the equation for the 〈u′w′〉 component is:




u′w′
�

= −νt

�

∂ u
∂ z
+
∂ w
∂ x

�

. (94)

Both the eddy viscosity νt and the velocity derivatives are available in the OpenFOAM RANS run.
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10.3.3 Mesh independence study and validation

As described in Sec. 10.1, NASA provides five meshes of increasing refinement of the hump RANS
domain. As for the other cases, a mesh independence study is performed to find the coarsest mesh
that gives sufficiently accurate results. The pressure coefficient Cp and the friction coefficient C f

are plotted along the hump wall in Fig. 67a and Fig. 67b respectively, NASA’s RANS results and
LES results are added for comparison. For the Cp plot, all mesh results are almost exactly on top
of eachother, the discrepancy with respect to the LES data is much larger than the discretization
error. For the C f plot, the difference between meshes is somewhat larger, especially at x/c ≈ 0.2,
but the discrepancy with respect to the LES is still much larger.

In addition to the pressure and friction coefficient along the wall, the x-velocity and the off-
diagonal Reynolds stress 〈u′w′〉 are plotted as a profile at a fixed x/c station. Since both Cp

and C f show a large deviation between RANS and LES at x/c = 1.1, this location is chosen to
show these profiles. The x-velocity and 〈u′w′〉 profiles are plotted in Fig. 68a and Fig. 68b re-
spectively, where the NASA RANS and LES results are added for comparison. For the x-velocity
plot, all meshes have similar profiles, except for the 103 points mesh, which shows a deviation at
0.75 < x/c < 1.1. The other meshes are rather close together; the discrepancy with respect to
the LES is much larger than the discretization error from the 205 points mesh onwards. Next, for
the 〈u′w′〉 profiles, the difference between meshes is much more pronounced. Both the 103 and
205 points mesh show a significant discrepancy with respect to the profiles of the finer meshes.
Though the finer meshes also have a discrepancy between their profiles, this discrepancy is much
smaller than the discrepancy with respect to the LES.

All in all, the results converge when the mesh is refined, though even the finest mesh still has
some discretization error (especially for the 〈u′w′〉 profile). The choice of mesh depends on how
much discretization error is acceptable. As explained, these RANS domain meshes cannot be used
for training correction fields, only for testing models. Thus, many runs are to be performed with
the chosen mesh, meaning computational cost should be reduced as much as possible. As the
discrepancy between the LES and RANS results is much larger than the RANS discretization error,
even a relatively large discretization error is acceptable. Hence, the 409 points grid is chosen
as it is computationally cheap, while it has an acceptable discretization error. Finally, the NASA
RANS data is included in each figure for verification. Though small, there are notable differences
between the current run and the NASA results. These are speculated to originate from different
turbulence inflow conditions and different wall conditions for the wall profiles. Since the current
results are still close to the NASA results, they are considered verified.

Finally consider the discrepancy between RANS and LES, starting with C f along the wall in
Fig. 67b. LES and RANS are quite close at the inlet, which is to be expected as this is close
to flat-plate flow. Then, at the left side of the hump, the LES has a much lower C f than RANS,
which is thought to be due to relaminarization of the flow which is not modelled in standard k-ω
SST. This relaminarization 'plateau' is also mentioned in the source paper of the LES [56]. Then,
behind the hump (x > c), the LES C f becomes positive much earlier than RANS, indicating earlier
flow reattachment. This is also visible in an earlier increase in Cp in Fig. 67a and the fully positive
Ux profile at x = 1.1c in Fig. 68a. The reason for the overprediction of the recirculation zone by
k-ω SST becomes clear in Fig. 68b; it significantly underpredicts the production of turbulence at
the point of separation, which delays reattachment. This is a well known modeling inaccuracy of
RANS models [22].

94



0.5 0.0 0.5 1.0 1.5 2.0
x/c [-]

1.0

0.5

0.0

0.5

1.0

C p
 [-

]

103 points
205 points
409 points
817 points

1633 points
NASA RANS
LES

(a) Cp vs x/c

0.5 0.0 0.5 1.0 1.5 2.0
x/c [-]

0.008
0.006
0.004
0.002
0.000
0.002
0.004
0.006
0.008

C f
 [-

]

103 points
205 points
409 points
817 points

1633 points
NASA RANS
LES

(b) C f vs x/c

Figure 67: Pressure and friction coefficient along the hump wall for RANS domain meshes at
increasing refinement, plotted together with NASA RANS results and LES results for comparison.
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Figure 68: Profiles at x/c = 1.1 for RANS domain meshes at increasing refinement, plotted
together with NASA RANS and LES results for comparison.
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10.4 Hump LES domain setup and convergence study
OpenFOAM cases are set up for the hump LES domain meshes of increasing refinement, described
in Sec. 10.2. The boundary and initial conditions are given in Sec. 10.4.1 as well as the solution
to a discontinuity in the LES data. Next, in Sec. 10.4.2, various ways of approximating the inlet
ω from the high fidelity data are studied. Furthermore, the interpolation method from fine LES
mesh points to coarse inlet/outlet faces is laid out. Then, in Sec. 10.4.3, the solver settings are
given and they are verified to lead to a converged solution. Finally, a mesh independence study
is performed in Sec. 10.3.3 and results are compared to the RANS domain and NASA’s RANS for
verification and to LES for validation (identification of model inadequacies).

10.4.1 Initial and boundary conditions and discontinuity

For the LES domain runs, the simpleFoam solver with the k-ω SST turbulence model and the
consistent flag set to true is used, just like for the RANS domain. The boundary and initial con-
ditions are given in Tab. 25, where the inlet and outlet values are taken directly from the LES
data. This is done to ensure any discrepancies between RANS and LES originate from the RANS
equations being solved in the domain, rather than a difference in boundary conditions. A fixed
velocity inflow combined with a fixed static pressure outflow is chosen since this is a stable com-
bination of inlet/outlet boundary conditions.

The nondimensionalized LES data is available on each mesh node in the form of the coordinates,
velocity, velocity gradient, pressure, Reynolds stress tensor and density. For dimensionalizing the
coordinates, velocity, velocity gradient and Reynolds stress tensor, only the chord c and reference
velocity Ure f are needed (0.42 m and 34.6 ms−1 respectively, see Sec. 10.3.1). Dimensionalizing
the pressure is somewhat more involved, as a reference pressure of zero is again desired. The LES
pressure is given as p/pre f , whereas the input to the incompressible solver should be (p−pre f )/ρ.
This required input is rewritten in terms of p/pre f as follows, where Eq. 88 is used in the last step:

p− pre f

ρ
=

pre f

ρ

�

p
pre f
− 1

�

= RTre f

�

p
pre f
− 1

�

. (95)

Table 25: Boundary- and initial conditions for the hump case on the LES domain.

Mesh part U [ms−1] p [m2 s−2] k [m2 s−2] ω [s−1] νt [m2 s−1]
Inflow fixedValue

ULES,inlet

zeroGradient fixedValue
kLES,inlet

fixedValue
ωLES,inlet

calculated
Outflow zeroGradient fixedValue

pLES,outlet

zeroGradient

WallBottom noSlip zeroGradient kqRWall-
Function

omegaWall-
Function

nutUSpalding-
WallFunction

Left
Empty

Right

SymmetryTop Symmetry

Initial condi-
tion

[Ure f 0 0] 0 kre f ωre f νt,re f
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Now, the dimensional U , p and k can be extracted from the LES data (k is simply half the trace of
the Reynolds stress tensor). However, a closer inspection of the LES data reveals a discontinuity
which is shown for the 〈u′u′〉 profile at x = 0.89c in Fig. 69. This discontinuity is present for
all Reynolds stress components and velocity derivatives in the LES data, throughout the domain
(including the inflow and outflow). The location of the discontinuity is always at the interface
between the fine near-wall region and the coarse far-wall region. This also explains the origin
of the discontinuity: The LES resolves a larger portion of the Reynolds stress on the fine grid,
leading to slightly higher Reynolds stress components in the near-wall region. Why this results in
a discontinuity in velocity derivatives is left for further research.

One way to address the discontinuity would be to add the approximate subgrid-scale Reynolds
stress components, however, these are not directly available. The discontinuity shown in Fig. 69
has a rather small relative magnitude; for other variables and profile locations, the relative mag-
nitude is even smaller. However, in the k transport equation, first and second derivatives of k
appear. Clearly, these would attain extreme values near the discontinuity, ruining the solution.
Thus, only the discontinuity in first and second derivatives has to be addressed. This is done by
smoothing the solution around the interface, the smoothing procedure is laid out next.

As can be seen in Fig. 63, the mesh consists of columns of points (nodes), all sharing the same
x-coordinate. The smoothing process is applied to one column at a time; a 1D cubic spline is con-
structed of each discontinuous variable against z. This spline is based on all points in the column
except those within 20 points of the mesh interface (near the discontinuity). Then, the spline is
evaluated at these points within 20 points of the mesh interface and their value is updated to that
of the spline. The smoothed result is shown for the 〈u′u′〉 profile in Fig. 69. Now, the discontinuity
in first and second derivatives is gone and the magnitude of 〈u′u′〉 is still close to the raw data.
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Figure 69: Profile of 〈u′u′〉 at x = 0.89c, with both the raw LES data and the data smoothed at
the mesh interface.
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10.4.2 Approximation of inlet ω and interpolation

The last inflow variable required, ω, is not present in the LES data and instead has to be approx-
imated in some way. To this end, the Boussinesq approximation given in Eq. 14 is used. Both
the Reynolds stress tensor components and the velocity derivatives are available in the LES data,
allowing the calculation of νt . Due to the tensorial nature of Eq. 14, there are actually multiple
equations available to calculate νt . Though a weighted least squares of each equation would be
most accurate, this is beyond the scope of the current work; instead, the most accurate of these
equations is used. The largest velocity derivative at the inlet is ∂ u/∂ z, so the most accurate equa-
tion to calculate νt is that of 〈u′w′〉, given in Eq. 94. The relation between νt and ω used in the
k-ω SST turbulence model is given in Eq. 30 and further discussed in Sec. 2.5.4. The F2 function
makes the limiter extremely hard to invert, so to calculate ω at the inflow, it is assumed that a1ω
is always maximum in Eq. 30. Thus, ω at the inlet is calculated asωLES,inlet = kLES,inlet/νt , where
νt is found from Eq. 94. The resulting inflow profile is shown as ωνt ,raw in Fig. 70.
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Figure 70: Profiles of ω at the inlet; based on νt (raw and filtered), based on Pk = εk and
extracted from the RANS domain.

Consider the ωνt ,raw profile in Fig. 70; for low z, the profile is smooth, but for high z it is erratic
and even goes to negative ω. This erratic behaviour starts around z = 0.08c at the sharp drop
of ω, which indicates the edge of the boundary layer. This also explains the erratic behaviour;
outside the boundary layer, velocity derivatives and Reynolds stress components are small, so they
are prone to fluctuations. Since they are divided to calculate νt (see Eq. 94), νt has significant
fluctuations outside the boundary layer, which further propagates to ω.

To address the erratic νt outside the boundary layer, νt as calculated from Eq. 94 is no longer
used to find ω outside the boundary layer, only inside. The boundary layer edge is defined as the
point at which u first reaches 99.9% of Ure f . For points outside the boundary layer, consider the
RANS domain ω profile at the same location, also plotted in Fig. 70. After the sharp drop at the
boundary layer edge,ω goes to a constant value outside the boundary layer. A constant value ofω
outside the boundary layer is also used for the LES domain inlet. This constant value is extracted
as the minimum value found in the RANS domain at the LES domain inlet location (x = −0.851c),
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it is equal to 0.123 s−1. To prevent large first and second derivatives resulting from the sudden
jump to a constant value, the spline smoothing procedure described earlier in the section is ap-
plied again. The resulting filtered ω profile is shown as ωνt , f il t in Fig. 70.

Finally, another way of approximating ω from the LES data is also investigated, namely setting
the production of k (Pk) equal to its dissipation (εk). This results in the following expression:

−
¬

u′iu
′
j

¶ ∂ ui

∂ x j
= β∗kω, (96)

where β∗ is a model constant equal to 0.09. The resulting ω profile is shown as ωPk=εk
in Fig. 70.

Again, ω is erratic outside the boundary layer due to the Reynolds stress and velocity derivatives
being prone to fluctuations here. For the outer part of the boundary layer (up till z ≈ 3× 10−4),
ωPk=εk

is close to ωνt
. However, for the inner part, ωPk=εk

unexpectedly decreases again. Likely,
the assumption of Pk = εk is no longer valid in the inner layer. Since ωνt

shows a better match
with the RANS domain profile, it will be used as the inflow ω profile.

The LES data is given on the mesh nodes, however, the inflow variables are needed on the mesh
faces. Furthermore, coarsened versions of the LES mesh are constructed with less inlet/outlet
faces, as described in Sec. 10.2. The conversion from nodes to faces is rather trivial; the nodes
making up a face are averaged to give the face value. The mesh is coarsened by merging every
coarsening factor faces. The variables of the resulting face are calculated as an area weighted
average of the underlying faces being merged. Note that a smaller number of faces is merged at
the top of the inlet/outlet such that the rest of the faces are evenly divisible by the coarsening
factor (see Sec. 10.2 for more details).

10.4.3 Solver settings and run convergence

Table 26: Residuals and relaxation factors for the
baseline hump case on the LES domain.

Parameter Inner
residual

Outer
residual

Relaxation
factor

U
10−8 5× 10−7

0.9
p 1
k 0.7

ω 10−15 10−10 0.7

With the discontinuity addressed and the
inlet value of ω approximated, all initial
and boundary conditions given in Tab. 25
are available. The inner and outer resid-
uals together with the relaxation factors
used in the runs are given in Tab. 26.
Again lower inner- and outer residuals are
used for ω since it varies over many or-
ders of magnitude. For the other vari-
ables, a relatively low outer residual is
used; this is needed to properly converge
the finest mesh. The relaxation factors
used give good stability at a reasonable convergence speed. Though not as severe as for the RANS
domain baseline runs, stability is still an issue. To address this, a non-orthogonal corrector step
is again introduced as well as a velocity magnitude limiter of 70 ms−1 and a minimumω of 0.1 s−1.

To study convergence during the runs, the outer residuals are plotted against iteration for the
coarsening factor 2 mesh in Fig. 71. The startup is rather unstable and negative values of k and
ω are reported in the log file. However, after some iterations, the residuals assume straight lines
in the log-plot and there are no more negative k andω values, eventually all residuals reach their
specified tolerance. Next, several probes are placed in the flow and the flow parameters are mon-
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itored during the run. The most critical parameter for convergence turns out to be k, its probe
convergence is shown in Fig. 72. Again, a rather unstable start-up phase is observed, but then k
goes to a constant value at each probe, indicating convergence. Convergence is also verified for
the other meshes using the same check.

0 1000 2000 3000 4000 5000
Iterations

10 9

10 7

10 5

10 3

10 1

101

103

No
rm

al
ize

d 
re

sid
ua

l

Ux

Uz

p k

Figure 71: Outer residual versus iteration for
various flow parameters, LES domain hump

case with 2x coarser mesh.
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Figure 72: Turbulent kinetic energy versus
iteration at various probe locations, LES

domain hump case with 2x coarser mesh.

10.4.4 Mesh independence study and validation

As described in Sec. 10.2, four meshes of increasing coarseness are made based on the original
LES mesh, as this LES mesh is likely too fine. Now, a mesh independence study is performed to
determine which of these meshes to use for further frozen and propagation runs. The pressure
coefficient Cp and the friction coefficient C f are plotted for the meshes in Fig. 73a and Fig. 73b
respectively, where NASA’s RANS and the LES results are added for comparison. The methodology
used to compute Cp and C f is laid out in Sec. 10.3.2. In the Cp plot, all mesh results are extremely
close, but still convergence behaviour is observed with mesh refinement. Though the 8x coarser
mesh is on top of the 4x coarser mesh in the zoomed-in portion, they deviate significantly at other
locations. In the C f plot, there is a more notable deviation between meshes, especially around
x = 0.25c, where there is even a notable deviation between the baseline and 2x coarser mesh.
However, for x > 0.5c (the most important region), these two meshes are almost right on top of
each-other.

Additionally, profiles at x = 1.1c are plotted again, as this location shows a large deviation be-
tween RANS and LES. Profiles of x-velocity are shown in Fig. 74a and profiles of 〈u′w′〉 are shown
in Fig. 74b, again the NASA RANS and LES results are added for comparison. In both figures, con-
vergence is observed with mesh refinement, though relative differences are larger for the 〈u′w′〉
profile. Whereas the RANS domain mesh is only used for model testing, the current mesh is also
used for finding and validating the correction fields with k-corrective-frozen. Discretization errors
should be as small as possible in the training process, so the 2x coarser mesh is used, despite the
4x coarser mesh already being close to converged.
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Comparing between the current results and NASA’s RANS results in Fig. 73 and Fig. 74, there
is a small but notable discrepancy. The magnitude of this discrepancy is similar to that of the
discrepancy between the RANS domain results and NASA’s RANS results (see Sec. 10.3.3), both of
which use the same mesh. In fact, the discrepancy due to the different solver used by NASA seems
larger than the discrepancy between the current RANS and LES domain runs. This means that
models discovered with the LES domain correction fields should translate well to the larger RANS
domain. Also, this provides validation for the discrepancy smoothing and inlet ω approximation
used for the LES domain.
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Figure 73: Pressure and friction coefficient along the hump wall for LES domain meshes at
increasing refinement, plotted together with NASA RANS and LES results for comparison.
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Figure 74: Profiles at x/c = 1.1 for LES domain meshes at increasing refinement, plotted
together with NASA RANS and LES results for comparison.
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10.5 Finding correction fields on the LES domain
As laid out in the previous section, there is a significant discrepancy between LES and RANS results
of the hump case. To correct the RANS, the fields b∆i j and R are found for each cell using the k-
corrective-frozen approach further explained in Sec. 3.3.3. The custom solver frozenSimpleFoam
is again used in combination with the custom frozenkOmegaSST turbulence model. This solver
requires the velocity, Reynolds stress and turbulent kinetic energy of the LES to be available in
each cell of the coarsened mesh. Before interpolating the LES data to the coarsened mesh, how-
ever, the spline smoothing procedure laid out in Sec. 10.4.1 is applied to the Reynolds stress
components and velocity derivatives over the whole domain. This is again to prevent large first
and second derivatives originating from the discontinuity at the interface between the near-wall
and far-wall mesh regions.

Next, the smoothed LES data is converted from point data to cell data by taking the average
of the eight corner nodes of each cell (actually only four nodes are used as the averaged LES
data is constant in y-direction). This gives the LES data on the baseline RANS mesh, however,
the frozen run is performed on the 2x coarser mesh as explained in the prior section. The mesh
is coarsened by merging rectangles with coarsening factor × coarsening factor cells into a sin-
gle cell. Flow variables for this new cell are calculated as a volume weighted average of the fine
mesh cells being merged. Note that at the inlet and top of the domain, a smaller number of cells is
merged such that the rest of the domain is evenly divisible by the coarsening factor, this is further
explained in Sec. 10.2.

As explained in Sec. 3.3.3, ω is the only parameter being solved for in the frozen run. The
inner residual of ω is again set to 10−15, but the outer residual is increased to 5× 10−10 which is
explained in a bit. A lower relaxation factor of 0.5 is used as the case is notably more unstable
than prior cases. Contrary to the baseline run, the consistent flag is set to false, as setting it to
true gives floating point errors in the pressure solve at the end of the run (this is left for further
research). The boundary conditions used for the baseline run are also applied here, they are
given in Tab. 25. For the Reynolds stress tensor field (τi j), a zero gradient condition is used at
the inlet, outlet and top, while a zero Dirichlet condition is used at the wall. For p, ω and νt , the
initial conditions listed in Tab. 25 are used. For U , k and τi j, the LES value is used as the initial
condition (these also remain constant through the run).

As mentioned, a lower relaxation factor is used since the run is rather unstable, which also leads
to negative values of ω at the start of the run. Even at the end of the run, there are still negative
ω values, but these remain constant. To assess convergence, the outer residual is plotted against
iteration in Fig. 75. After some startup, the solution converges in a straight line in the log-plot, as
expected. However, after 5000 iterations, the residual plateaus to a value slightly below 5×10−10.
This plateauing is thought to originate either from the bounding of ω or noise in the LES data.
This plateauing is also the reason for the outer residual of 5× 10−10; a lower one is not possible.

To ensure the solution is converged at this outer residual, the flow is again probed at several
locations. The evolution of b∆13 is plotted against iteration at these probe locations in Fig. 76.
Clearly, b∆13 has reached a constant value at the end of the run, which is also observed for the
other components of b∆i j , R and ω, confirming convergence. The point of convergence seems to
be after 2000 iterations at which point the outer residual is at 3×10−7. This is again much lower
than the outer residual one would normally use for a run with k-ω SST.
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Figure 75: Outer residual of ω versus iteration
for the frozen run of the hump on the 2x

coarser mesh.
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Figure 76: b∆13 versus iteration at various probe
locations for the frozen run of the hump on the

2x coarser mesh.

10.6 Validating correction fields on the LES domain
In order to validate the correction fields found in the previous section, they are injected into a
full RANS solver where velocity and Reynolds stress are allowed to update (see Sec. 6.4). The
propagationkOmegaSST turbulence model is used together with the native simpleFoam solver,
with the consistent flag set to true to improve stability. The boundary conditions used for the base-
line run are applied here as well, they are listed in Tab. 25. The baseline solution fields are used as
initial conditions; this improves stability and speed of convergence, but also ensures any observed
improvements over the baseline come from the correction fields rather than the initial conditions.

Table 27: Residuals and relaxation factors for the
propagation hump case on the LES domain.

Parameter Inner
residual

Outer
residual

Relaxation
factor

U
10−8 5× 10−7

0.8
p 0.7
k 0.4

ω 10−15 1.5×10−8 0.4

The residuals and relaxation factors for
the propagation run are provided in
Tab. 27. The relaxation factors are sig-
nificantly lower than for the baseline case
due to stability issues. However, the
initial condition instabilities encountered
for the baseline case, which required a
non-orthogonal pressure corrector, are no
longer present. This is undoubtedly due
to the present initial condition (the base-
line solution) serving as a much more
physical initial condition than the base-
line initial condition (constant fields). As such, no non-orthogonal corrector steps are used for
the present propagation run. The inner residuals are adapted from the baseline as well as the
outer residuals for U , p and k, however, a higher outer residual is used for ω, which is motivated
next.

As for the frozen run, negative values of ω are encountered till the end of the run, though they
do reach a constant value at the end of the run. Also, all flow parameters converge despite these
negativeω values, as shown in Fig. 77, where the outer residuals are plotted against iteration. Up
till approximately 4000 iterations, ω shows expected convergence behaviour, but after this point
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the convergence starts plateauing which is also observed in the frozen run. It plateaus to an outer
residual of approximately 3×10−8, which is why this is used as the outer residual tolerance forω.
To check whether this outer residual is sufficiently low for convergence, probes are placed at sev-
eral points in the flow and probed flow parameters are plotted against iteration. The most critical
parameter for convergence turns out to be k; its probe convergence is shown in Fig. 78. Clearly,
k has assumed a constant value at the end of the run, so the solution is considered converged.
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Figure 77: Outer residual versus iteration for
various flow parameters, LES domain hump

propagation case with 2x coarser mesh.
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Figure 78: Turbulent kinetic energy versus
iteration at various probe locations, LES
domain hump propagation case with 2x

coarser mesh.

The results of the propagation run are post-processed to obtain derived variables, such as the
pressure coefficient Cp, skin friction coefficient C f and the off-diagonal Reynolds stress 〈u′w′〉.
The methodology to obtain these derived variables is the same as the baseline, it is laid out in
Sec. 10.3.2. However, there is one important difference: 2kb∆13 should be added to 〈u′w′〉 (see
Eq. 94), as the Boussinesq eddy viscosity hypothesis is modified in propagation. Validation of the
correction fields requires comparing the propagation results with the baseline results and the LES
data. These are compared in four plots: Cp and C f are plotted along the wall in Fig. 79a and
Fig. 79b respectively, profiles of Ux and 〈u′w′〉 are shown at various x/c stations in Fig. 80a and
Fig. 80b respectively.

In both the Cp plot and the C f plot in Fig. 79, the propagation matches the LES extremely well, ex-
cept for x > 1.3c where there is a small deviation. This deviation is thought to originate from the
outlet length being too small for RANS. Nonetheless, the recirculation region behind the hump is
captured well by the propagation, including the point of reattachment. The recirculation region
is the most important to get right, as it has the largest discrepancy between baseline and LES.
The Ux and 〈u′w′〉 profiles in Fig. 80 are of this recirculation region only. A good match between
propagation and LES is also found for these profiles, hence the correction fields are considered
validated.
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Figure 79: Pressure- and skin friction coefficient along the hump wall, using the 2x coarser LES
domain mesh, comparing between baseline (k-ω SST), propagation (k-ω SST with correction

terms b∆i j and R) and LES results.
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Figure 80: Profiles of x-velocity and 〈u′w′〉 behind the hump, using the 2x coarser LES domain
mesh, comparing between baseline (k-ω SST), propagation (k-ω SST with correction terms b∆i j

and R) and LES results.
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11 Classifier training criterion
The classifier is a boolean function of space, denoted σ(x i). The corrections R and b∆i j are multi-
plied by this classifier, such that they are only active if σ = 1. A proper classifier should only be
zero (no corrections applied) in regions where the corrections are not important, such that the
propagated solution changes negligibly under the classifier. Following Steiner et al., the idea is to
train a symbolic expression for the classifier which is evaluated at each iteration in a RANS solver
[54]. Training of this symbolic expression is based on 'exact' fields of σ(x i) for each case, which
are obtained using a training criterion. The training criterion used in the NASA challenge (given
in Eq. 61) is unsuitable as it is nonlocal, as further explained in Sec. 5.2.1. The criterion used by
Steiner et al. in Eq. 43 is local, however, since both R and b∆i j modify the production of k, it is
argued here that they should be considered together, giving the following criterion:

σ :=







1 if

�

�

�2kb∆i j(∂ 〈ui〉/∂ x j)
�

�

�+|R|

|Pk,LES|+ε > ξ

0 otherwise.
(97)

Here, ξ is the classifier threshold and ε = 10−10 is used (rather than ε = 0.01 used by Steiner et
al.). This decrease in ε is due it being dimensional; for cases with small k, ε= 0.01 may be close
to Pk,LES.

Finding a suitable value for ξ is a tradeoff between accuracy and number of cells being acti-
vated. A large ξ would give σ = 0 in most cells, likely resulting in a significant discrepancy
between propagation with and without this classifier. A small ξ, on the other hand, would give
σ = 1 in most cells, likely resulting in no significant discrepancy between propagation with and
without this classifier. The goal of this section is to find a value ξ that gives σ = 0 in as many
cells as possible, while retaining a good propagation match with the high-fidelity data. Various
values of ξ are tested for the rd1L, hr00 and hump case, resulting contours/profiles are plotted
together with baseline and DNS/LES in Fig. 81, Fig. 82 and Fig. 83 respectively.
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Figure 81: In-plane velocity contours, comparing between baseline (k-ω SST), propagation
under various classifier criteria (see Eq. 97) and DNS results, case rd1L.
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Figure 82: Contours of dispersive x-velocity (see Eq. 74) with the in-plane velocity vector field
overlaid, comparing between baseline (k-ω SST), propagation under various classifier criteria

(see Eq. 97) and LES results, case hr00.
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Figure 83: Profiles of x-velocity over the hump, using the 2x coarser LES domain mesh,
comparing between baseline (k-ω SST), propagation under various classifier criteria (see

Eq. 97) and LES results.

The main effect of the classifier on the rectangular duct’s in-plane velocity seems to be on the
magnitude rather than the shape, as seen in Fig. 81. The highest ξ that still gives an acceptable
flowfield is ξ = 0.2, though it is already noticeably different from the DNS. Next, consider the
effect of the classifier on the heterogeneous roughness in Fig. 82. The area just above the rough-
ness strip in the lower right corner seems to be most affected. At ξ = 0.2, this part is already
significantly different from the DNS, but the rest of the domain is still in good agreement. Then
at ξ = 0.5, also the rest of the domain is significantly different from the DNS. Now, consider the
effect of the classifier on the hump in Fig. 83. Even at ξ = 0.5, there is an excellent match with
the LES data, but at ξ = 1 there is a notable discrepancy. In the end, a global classifier criterion
is desired to obtain training data. Based on the discussion above, ξ= 0.2 is chosen as the highest
acceptable value of ξ. The associated classifier activation field is shown for each of the three cases
in Fig. 84 below.
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(a) Rectangular duct case rd1L (b) Heterogeneous roughness case hr00

(c) Hump LES domain

(d) Hump zoomed at separation bubble

Figure 84: Activation of the classifier for various cases at ξ= 0.2, black indicates σ = 1; grey
indicates σ = 0.

Consider the classifier activation in Fig. 84, where grey cells indicateσ = 0 and black cells indicate
σ = 1. For both the duct and the heterogeneous roughness, most of the domain is activated. This
is expected as both contain secondary motions throughout their domain, meaning corrections
have to be applied almost everywhere to capture these motions. Places of inactivation are also
precisely where discrepancies are found with respect to DNS/LES in Fig. 81 (near symmetry) and
Fig. 82 (above roughness). Next, the classifier is also active in most of the hump domain as seen
in Fig. 84c. This is unexpected, as the inflow of the hump should be similar to a flat plate and the
top only acts as a farfield. Corrections are only expected to be relevant over and behind the hump.
To further investigate this, the numerator of the fraction in Eq. 97, here called P |∆|k , is shown in
Fig. 85. Indeed, P |∆|k is only large over- and behind the hump where corrections are expected.
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Figure 85: Modification of Pk due to R and b∆i j

�

P |∆|k =
�

�

�2kb∆i j

�

∂ 〈ui〉/∂ x j

�

�

�

�+ |R|
�

for the hump
on the 2x coarser LES domain mesh.

The fact that the classifier activates in regions with small P |∆|k indicates that the denominator in
Eq. 97 is also small. This denominator,

�

�Pk,LES

�

�, is shown on a logarithmic scale in Fig. 86. Indeed,
�

�Pk,LES

�

� is small at the inlet and top of the domain, leading to the unexpected classifier activation.
This figure also reveals why erroneous activation is not observed as much by Steiner et al.; P |∆|k
is close to or smaller than 0.01 at most points of erroneous activation. Since Steiner et al. use
ε = 0.01, this quantity which is only meant to prevent division by zero is actually preventing
activation.

Based on Fig. 85, one may propose P |∆|k > 3000 m2 s−3 as a better classifier activation criterion. A
similar idea is used in the NASA challenge, where the denominator is replaced with the domain
averaged Pk,LES (see Sec. 5.2.1). While these approaches may provide an ad-hoc fix, such criteria
go against the spirit of RANS modeling, where global variables should be nondimensional. For
example, if a second, much smaller hump is added before the existing one, it would need a differ-
ent P |∆|k threshold. Similarly, ε is a dimensional quantity and should thus not interfere with the
classifier activation. Due to the fundamental nature of the current study, such ad-hoc fixes are not
used to generate classifier training fields. No satisfactory classifier criterion based only on local
quantities is known to the author. Following this difficulty in attaining training data combined
with the limited success of the classifier found by Steiner et al. and in the NASA challenge, it is
decided not to further pursue it.

Figure 86: Absolute Pk of the LES results for the hump on the 2x coarser LES domain mesh.
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12 Model training and testing results
So far, baseline cases for five flows have been established (duct, roughness, channel, flat plate
and hump) and frozen correction fields have been found and validated for the flows requiring
corrections (duct, roughness and hump). The next step is to train and validate models for the
R and b∆i j corrections of these cases. Conventionally, model training is performed on the frozen
case, however, it is argued here that the propagation case should be used. Propagation provides
the upper performance limit of a model, so a-posteriori flowfields of a good model are likely closer
to propagation than frozen. The section is structured as follows: in Sec. 12.1, models are trained
for the R correction, they are tested in isolation by using the exact b∆i j (the frozen field). Next,
b∆i j models are trained in Sec. 12.2, they are also trained in isolation, now by using the exact R
(the frozen field). Finally, in Sec. 12.3, the best isolated R and b∆i j model are combined into a full
model which is tested on each case.

12.1 Isolated R model training and testing
Models for R have the same form as used by Steiner et al., who use (functions of) dimensionless,
scalar features multiplied by eleven bases, see Sec. 3.3.4. Ten bases are formed by the Pk modifi-
cation of each pope base tensor T (λ)i j . In the SpaRTA framework, these bases are named Gλ (not
to be confused with Gλ in Eq. 42), their definition is as follows:

Gλ = 2kT (λ)i j

∂ 〈ui〉
∂ x j

. (98)

The eleventh basis is simply the dissipation rate ε. To avoid confusion, the scalar function by
which each basis is multiplied is referred to as fλ(q) in the current work, where q is a scalar
feature/invariant (see Sec. 3.3.4). The objective of the current section is to train expressions for
fλ(q) and test these a-posteriori, striving for simple and general R models. To isolate the effect of
the R model, the frozen b∆i j field is used in testing.

In Sec. 12.1.1, the same model form as used in the challenge (constant times a single basis)
is trained and tested. To increase model accuracy, a second basis is added in Sec. 12.1.2, both
bases are multiplied by their own constant. These two constants are again trained and tested, but
model accuracy is still insufficient. Hence, in Sec. 12.1.3 the SpaRTA framework is used to train a
model that also includes features, still only with two bases. While this model has good accuracy,
it is Reynolds number dependent, making it non-general. Thus, in Sec. 12.1.4 the simple model
form in Sec. 12.1.1 is manually a-posteriori optimized to attain an accurate, general R model.

12.1.1 Single basis model

Given the success of the simple R model found for the NASA challenge (R = 0.079ε), initial
efforts focus on training the same model form of a constant multiplied by a basis. This is further
motivated by the fact that the best R models found by Schmelzer et al. also take this form,
despite more complex terms being in the library [46]. Next, no weighing was used to regress the
challenge R model, but it is argued here that volume weighing should be used. For example, if
a mesh independent mesh is refined in a random area, corrections change negligibly. However,
without volume weighing, the increased number of cells would result in a higher total weight of
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this random area in the regression. Using volume weighted least squares, each basis is regressed
for each case with nonzero corrections, ε by far provides the best fit for each case. The resulting
model form is R = C0ε, the regressed value of C0 is given in Tab. 28 for each case along with the
coefficient of determination (R2).

Table 28: Fitted C0 in R= C0ε and R2 of the fit.

Rectangular duct Heterogeneous roughness

Case C0 R2 Case C0 R2

rd1L 0.0774 0.981 hr00 0.0317 0.537

rd1H 0.0781 0.984 hr03 0.0309 0.648

rd3L 0.0777 0.984 hr04 0.0318 0.491

rd3H 0.0782 0.986 hr06 0.0360 0.787

rd5L 0.0777 0.985 hr07 0.0411 0.913

rd7L 0.0777 0.985 hr08 0.0390 0.658

rd10L 0.0777 0.985 hr09 0.0316 0.559

rd14L 0.0777 0.985 hr10 0.0311 0.612

Hump hr13 0.0348 0.746

Case C0 R2 hr15 0.0404 0.920

hump 0.0757 0.948 hr16 0.0420 0.930

In Tab. 28, the C0 of the hump is ∼ 4% lower than for the challenge model, stemming from the
volume weighing and fitting to the whole domain rather than only cells with classifier activation.
This also results in a slightly lower R2, though it is still a good fit. Next, C0 is similar among duct
cases and each case has a high R2. This generalization over different aspect ratios and Reynolds
numbers is evidence that the model has some universal nature (at least a-priori). In fact, the
model even seems to generalize to the hump, which has a C0 only 2.6% smaller than the duct
average. Now consider the roughness cases, which have a much greater variation in C0 and a
lower R2. Some do have a high R2, but these are exactly the cases with small secondary motions.
Compared to the hump and duct, the roughness cases have a much lower C0. This discrepancy
does not immediately disprove the universal nature of the current model form. The use of wall
models and the non-smooth correction fields (see Sec. 7.3) introduce substantial uncertainty to
the roughness, also indicated by the low R2. Still, more cases should be added to confirm the
universality of the model form.

Given the uncertainty in the roughness, a general model is constructed from only the hump and
duct C0s. Equally weighing each duct case gives C0 = 0.0778; weighing this equal to the single
hump case gives C0 = 0.0767, resulting in the R model M (1)

R :

M (1)
R = 0.0767ε. (99)

Each duct, hump and roughness case is tested with this R model and the exact frozen b∆i j field.
The same initial conditions, boundary conditions, residuals and relaxation factors as propagation
are used. Contours of k and in-plane velocity are shown for the rd1L case in Fig. 87, together
with baseline and DNS. Furthermore, profiles of k and Ux are shown for the hump case in Fig. 88,
together with baseline and LES. No results are shown for the roughness as not a single case
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converges under the model. This is not surprising, as the model’s C0 is significantly higher than
the regressed C0 for any roughness case, giving excessive Pk.
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Figure 87: Contours of k and in-plane velocity for the rd1L case for R= M (1)
R (Eq. 99) and R= 0

with exact b∆i j , with baseline (k-ω SST) and DNS added for comparison.

First consider the k profiles in Fig. 87; the model severely overpredicts k, despite its good fit with
the training R. This is not necessarily a problem as the velocity is usually of practical interest
rather than k. The NASA challenge model also significantly overpredicts k, but still gives a good
velocity prediction (see Fig. 12). However, in this case the velocity is adversely affected by the
overprediction of k, looking at the in-plane velocity contours. The shape of the in-plane motions
is predicted correctly, but the magnitude is severely overpredicted. This overprediction of k and
in-plane velocity magnitude is found for all duct cases.

As the duct is dominated by anisotropy, the R correction may not be necessary at all (as was
the case for the b∆i j correction in the challenge). Hence, the case is run again with R = 0 and
the exact b∆i j field, the k and in-plane velocity contours are also shown in Fig. 87. Now k is
severely underpredicted, resulting in an underprediction of in-plane velocity magnitude. In fact,
k is even lower than baseline, meaning b∆i j has a negative effect on Pk. Hence, a nonzero R model
is definitely required to get the proper in-plane velocity magnitude. A C0 may exist between 0
and 0.0767 that gives the correct in-plane velocity magnitude, but it cannot be found with the
SpaRTA framework.
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Figure 88: Profiles of k and x-velocity for the hump case for R= M (1)
R (Eq. 99) with exact and

zero b∆i j , with baseline (k-ω SST) and LES added for comparison.

Consider the k profiles of the hump in Fig. 88; the model again overpredicts k, especially behind
the point of separation. As for the duct, the correction is in the right direction, but has a too large
magnitude. This also results in the overprediction of x-velocity, though it is closer to the LES
than baseline. Strangely, the match with LES is worse than for the challenge model, even though
the exact b∆i j is now used. For a better comparison, the current model is run with b∆i j = 0 (used
by the challenge model), the results are also shown in Fig. 88. Surprisingly, b∆i j = 0 gives better

predictions of k and Ux than using the exact b∆i j . Still, the M (1)
R model performs worse than the

challenge model, likely due to the lack of a classifier. Finally, as for the duct, it is speculated that
a model exists with C0 between 0 and 0.0767 that performs better than either model shown here.
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12.1.2 Two bases model

Given the a-posteriori misfit of the single basis R model laid out in the prior section, more accurate
models are trained. The first attempt at increasing accuracy is the addition of a second basis, still
only multiplied by a coefficient. Now volume weighted least squares is used to regress each
possible pair of bases for each case with nonzero corrections. Every time, ε and G1 provide the
best fit, giving the model form R = C0ε+ C1G1. The fitted C0 and C1 are given for each case in
Tab. 29 along with the R2 of the fit.

Table 29: Fitted C0 and C1 in R= C0ε+ C1G1 and R2 of the fit.

Rectangular duct Heterogeneous roughness

Case C0 C1 R2 Case C0 C1 R2

rd1L 0.0835 -0.0508 0.988 hr00 0.120 -0.328 0.788

rd1H 0.0841 -0.0584 0.990 hr03 0.122 -0.328 0.811

rd3L 0.0837 -0.0536 0.990 hr04 0.119 -0.320 0.755

rd3H 0.0841 -0.0579 0.992 hr06 0.132 -0.361 0.914

rd5L 0.0836 -0.0527 0.990 hr07 0.132 -0.353 0.956

rd7L 0.0836 -0.0525 0.990 hr08 0.116 -0.284 0.856

rd10L 0.0836 -0.0521 0.990 hr09 0.120 -0.323 0.798

rd14L 0.0836 -0.0526 0.990 hr10 0.119 -0.310 0.865

Hump hr13 0.130 -0.352 0.908

Case C0 C1 R2 hr15 0.125 -0.324 0.954

hump 0.0832 -0.0569 0.954 hr16 0.123 -0.314 0.951

In Tab. 29, there is again excellent agreement between duct cases for C0 and good agreement for
C1. The R2 is significantly higher than for the single basis R model (see Tab. 28). For the hump
on the other hand, R2 is only slightly better than its single basis R model. Surprisingly, the hump
C0 and C1 are again close to the averaged C0 and C1 of the duct (0.6% and 6% difference respec-
tively). This is evidence that the model form may have a universal nature. Next, the roughness
cases again have a greater variation in coefficients and lower R2 values (especially for cases with
significant secondary motions). Following the aforementioned uncertainty in the training data of
the roughness, the generalized model is only based on the duct and hump.

The duct and hump are weighed equally to arrive at the generalized R model M (2)
R :

M (2)
R = 0.0835ε− 0.0559G1, (100)

it is tested for each case with the exact frozen b∆i j field. Contours of k and in-plane velocity are

shown for the rd1L case in Fig. 89, together with baseline, DNS and M (1)
R (Eq. 99). Profiles of k

and Ux are shown for the hump case in Fig. 90, together with baseline, LES and M (1)
R with zero

b∆i j . No roughness results are shown as not a single case converges with this model, likely due to
the significant difference in optimal coefficients.
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Figure 89: Contours of k and in-plane velocity for the rd1L case for R= M (1)
R (Eq. 99) and

R= M (2)
R (Eq. 100) with exact b∆i j , with baseline (k-ω SST) and DNS added for comparison.
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Figure 90: Profiles of k and x-velocity for the hump case for R= M (2)
R (Eq. 100) with exact and

zero b∆i j , with baseline (k-ω SST), LES and R= M (1)
R (Eq. 99) with zero b∆i j added for

comparison.
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Consider the duct k contours in Fig. 89; the model still overpredicts k, though slightly less than
M (1)

R . This suggests that an R model with an even higher R2 may give a good a-posteriori match
with DNS. The overprediction of k again results in the overprediction of in-plane velocity magni-
tude, but slightly less than M (1)

R . A similar overprediction of k and in-plane velocity magnitude is
observed for the other duct cases. All in all, it is encouraging that the addition of a second basis
improves a-posteriori results, but the two bases model is still not sufficiently accurate for the duct.

Now consider the hump profiles in Fig. 90; also here M (2)
R with exact b∆i j overpredicts k and

Ux , though predictions are slightly better than those of M (1)
R with exact b∆i j (see Fig. 88). For M (1)

R ,

significant improvements are found when using zero b∆i j instead, so profiles of M (2)
R with zero b∆i j

are also shown in Fig. 90. Indeed, also for M (2)
R both k and Ux are predicted significantly better

with zero b∆i j . To better compare M (2)
R with M (1)

R , profiles of M (1)
R with zero b∆i j are also added to

Fig. 90. Evidently, M (2)
R consistently predicts k and Ux better than M (1)

R , but only slightly. This is
not surprising, as the R2 of M (2)

R is only slightly higher.

The disappointing a-posteriori results should not take away from the seeming universal nature
of M (2)

R . The fact that two different flow types regress the same coefficients potentially means
that a physical phenomenon is behind this correction. Unfortunately, the generalized model in
its current form does not seem to approximate this underlying phenomenon well a-posteriori. In
an attempt to improve a-posteriori predictions, the strategy of adding more bases is continued.
Unfortunately, no agreement for the optimal third basis is found between cases and regressed
coefficients vary significantly. Hence, further efforts instead focus on multiplying the bases by
(functions of) the dimensionless, scalar features/invariants used by Steiner et al. (see Sec. 3.3.4).

12.1.3 SpaRTA model

As explained in the previous section, an R model with an even better fit is needed for sufficiently
accurate a-posteriori predictions. The aim of this section is to improve the fit by using the SpaRTA
framework to train R models that contain the dimensionless, scalar features/invariants used by
Steiner et al. (see Sec. 3.3.4). The vortex stretching feature qV is added to these, since the duct
and roughness are 3D. From experience, models that contain Ak and/or Ap invariants (dependent
on ∇ik and/or ∇i p) are highly unstable, so these are excluded from the training. Furthermore,
some q-features are not Galilean invariant, contain the pressure gradient or have low mutual
information for one or more flows, these are excluded as well. In the end, the five Pope invariants
[36] as well as qγ, qV , qQ and qν are used for training, their equation is given in Tab. 30. Note that
hereafter, these will all be referred to as features (including the Pope invariants). Exponents of
these features as well as the tanh, rdiv and exp functions are included in the library. Interestingly,
these functions do not appear in any models, likely because the internal function coefficients are
not regressed, as further discussed in Sec. 12.2.3.
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Table 30: Features used in the model training and their equation.

Feature name Equation
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For each duct case as well as the hump case, the following model form appears as the best 2-term
fit: C0ε + C1qn

ν
G1, where n is found as either 1 or 2. The difference in exponent does not take

away from the generality of the model; n = 1 gives a good fit for all cases, so it is used in the
generalized model form. Also, the fact that this model form is so close to the model form found
in the previous section is encouraging. For the roughness, the best 2-term model form differs
significantly per case and no improvement of R2 is found over the model form in the previous
section. The model form for the duct and hump is studied further, C0 and C1 are regressed for
each case, the results are given in Tab. 31 together with the R2 of the fit.

Table 31: Fitted C0 and C1 in R= C0ε+ C1qνG1 and R2 of the fit.

Rectangular duct Heterogeneous roughness

Case C0 C1 R2 Case C0 C1 R2

rd1L 0.0819 -2.26 0.9978 hr00 0.0465 −1.35× 10−4 0.616

rd1H 0.0816 -1.86 0.9988 hr03 0.0371 −6.36× 10−5 0.676

rd3L 0.0818 -2.19 0.9988 hr04 0.0497 −1.47× 10−4 0.585

rd3H 0.0813 -1.63 0.9986 hr06 0.0441 −8.91× 10−5 0.812

rd5L 0.0818 -2.16 0.9989 hr07 0.0455 −5.20× 10−5 0.923

rd7L 0.0817 -2.15 0.9989 hr08 0.0592 −1.84× 10−4 0.754

rd10L 0.0817 -2.15 0.9989 hr09 0.0405 −8.01× 10−5 0.603

rd14L 0.0817 -2.15 0.9989 hr10 0.0393 −7.21× 10−5 0.653

Hump hr13 0.0447 −9.91× 10−5 0.779

Case C0 C1 R2 hr15 0.0450 −5.45× 10−5 0.931

hump 0.0790 -0.0146 0.972 hr16 0.0461 −4.96× 10−5 0.939
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In Tab. 31, there is excellent agreement between duct cases for C0 and C0 is close to its value
for the two bases model (see Tab. 29). Due to the introduction of qν to the second term, C1 is
significantly more negative than for the two bases model. Furthermore, C1 of the high Reynolds
number ducts is now significantly less negative than C1 of the low Reynolds number ducts, likely
stemming from the fact that qν increases with Reynolds number. This is further confirmed by
the fact that C1 is much less negative for the hump, which has a significantly higher Reynolds
number than the ducts. Unfortunately, this makes the model in its current form Reynolds number
dependent, so not general. Nonetheless, the simple addition of qν to the G1 term has significantly
increased the fit R2. Meanwhile, models of similar simplicity with other features do not improve
the R2 over the two bases model in Eq. 100.

Given that the qν model is the only simple SpaRTA model that gives a significant fit improvement
for the ducts, it is further tested despite its Reynolds number dependence. Due to the variance
in coefficients, the generalized model is based only on the three highest aspect ratio duct cases.
This is because these have the highest R2 and the largest amount of data points, the resulting R
model M (3)

R is:

M (3)
R = 0.0817ε− 2.15qνG1. (101)

The C1 of this model is likely too negative for the high Reynolds number cases, this is further
assessed in testing. The model is tested for all flows, but the hump and roughness cases do not
converge, undoubtedly due to the model’s Reynolds number dependence. Contours of k and in-
plane velocity are shown for the rd1L and rd3H case in Fig. 91 and Fig. 92 respectively, together
with baseline and DNS.

With the new model, the rd1L case almost perfectly matches the k of the DNS as seen in Fig. 91.
The only discrepancy is a slight overprediction of k near the diagonal. Surprisingly, this small over-
prediction of k results in a notable overprediction of the magnitude of the secondary motions, this
effect is further explained in the next paragraph. Nonetheless, the magnitude is predicted much
better than earlier R models (see Fig. 87 and Fig. 89). Similar predictive ability is observed for
larger aspect ratio cases with the same Reynolds number, their contour plots are not shown for
brevity.

Next, consider the k contours of the higher Reynolds number rd3H case in Fig. 92. Now k is
slightly underpredicted in most of the domain, while it is slightly overpredicted in the top-right
corner. The underprediction likely stems from a too negative C1, making the second model term
more negative, resulting in a smaller R and thus a too small Pk. Despite k being largely underpre-
dicted, the in-plane velocity magnitude is overpredicted. This is explained by the overprediction
of k in the top right corner. This is where streamwise vorticity is generated (see Sec. 6.2), which
depends on gradients of the Reynolds stress tensor. The overprediction of k leads to an overpre-
diction of the correction to the Reynolds stress tensor (k · b∆i j ). All in all, the M (3)

R model performs
extremely well for the duct. However, its Reynolds number dependence makes it unsuitable as a
general model as it does not converge for higher Reynolds number cases.
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Figure 91: Contours of k and in-plane velocity for the rd1L case for R= M (3)
R (Eq. 101) with

exact b∆i j , with baseline (k-ω SST) and DNS added for comparison.
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Figure 92: Contours of k and in-plane velocity for the rd3H case for R= M (3)
R (Eq. 101) with

exact b∆i j , with baseline (k-ω SST) and DNS added for comparison.
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12.1.4 Manual CFD-driven model refit

So far, efforts to increase a-posteriori predictions of R models have focused on increasing the a-
priori fit with the exact frozen R field. While this has produced an accurate model for the duct,
generality with the hump has been lost. The approach in the current section goes back to the
R = C0ε model form discussed in Sec. 12.1.1, for which the model M (1)

R in Eq. 99 was regressed.
The error of this model mostly stems from its overprediction of the magnitude of k; the shape of
k is predicted relatively well. Thus, it is speculated that a lower value of C0 exists which yields
better predictions of k and in-plane velocity. This alternate C0 value cannot be found a-priori with
the current tools, so the CFD solver has to be included in the regression.

Implementing a CFD-driven optimizer is beyond the scope of the current work, so C0 optimized
manually for the rd1L case as a proof-of-concept. Manual optimization is only feasible as there
is just one model coefficient, the runtime of the rd1L case is ∼1 minute and a reasonable initial
guess is available. As this is just a proof-of-concept, no rigorous minimization criterion is used,
nor a proper updating algorithm. Instead, the case is run with various values of C0 until a value is
found that visually gives the optimal match with DNS in terms of the in-plane velocity contours.
The manual optimization is only performed on the rd1L case as the other cases have significantly
longer run times. The hope is that the a-posteriori optimized C0 generalizes as well as the a-priori
fit of C0 to the duct and hump (see Tab. 28).

The manual CFD-driven procedure gives C0 ≈ 0.043, resulting in the model M (4)
R :

M (4)
R = 0.043ε. (102)

Encouragingly, this model converges for all cases (including the roughness), likely due to its lower
C0 compared to M (1)

R . Contours of k and in-plane velocity magnitude are shown for the the rd1L
and rd3H case in Fig. 93 and Fig. 94 respectively. Furthermore, profiles of k and Ux are shown
for the hump in Fig. 95, also including a run with b∆i j = 0 as this previously gave improvements

over the exact b∆i j . The best hump model found so far (M (2)
R with zero b∆i j ) is added as well. Next,

results of roughness case hr00 are shown in Fig. 96
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Figure 93: Contours of k and in-plane velocity for the rd1L case for R= M (4)
R (Eq. 102) with

exact b∆i j , with baseline (k-ω SST) and DNS added for comparison.
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Figure 94: Contours of k and in-plane velocity for the rd3H case for R= M (4)
R (Eq. 102) with

exact b∆i j , with baseline (k-ω SST) and DNS added for comparison.

Consider k contours of the duct cases in Fig. 93 and Fig. 94; peak values of k are underpredicted,
while k at the diagonal is overpredicted (this is worse for the rd3H case). Nonetheless, k is pre-
dicted approximately as well as by the M (3)

R model and much better than by the M (1)
R and M (2)

R
models. As mentioned, optimization of C0 is based on the in-plane velocity contours rather than
k. This is why the overall in-plane velocity magnitude is predicted perfectly for the rd1L case.
For the rd3H case, which is not included in the CFD optimization, in-plane velocity magnitude is
slightly overpredicted.
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This overprediction of in-plane velocity magnitude can be explained by the overprediction of k
in the corner. As explained in Sec. 6.2, the secondary motions are generated in the corner by the
Reynolds stress tensor (RST). The correction to the RST is overpredicted in the corner as it is the
product of b∆i j (which is exact) and k (which is overpredicted). A similar slight overprediction of
in-plane velocity magnitude is observed for all other duct cases (except rd1L). Perhaps a smaller
C0 would give better overall in-plane velocity predictions, however, each case is already predicted
well (even better than with M (3)

R ) and the current section is just a proof-of-concept.
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Figure 95: Profiles of k and x-velocity for the hump case for R= M (4)
R (Eq. 102) with exact and

zero b∆i j , with baseline (k-ω SST), LES and R= M (2)
R (Eq. 100) with zero b∆i j added for

comparison.

As can be seen in Fig. 95, k is also slightly underpredicted for the hump. Still, it is predicted much
better than both baseline and M (2)

R with zero b∆i j . Astonishingly, Ux is predicted almost exactly by

M (4)
R , even though the hump is not considered in the a-posteriori optimization of C0. This points

towards a universal nature of the simple R = C0ε model form, as the hump is a significantly
different flow than the duct. For M (1)

R and M (2)
R , using b∆i j = 0 resulted in significantly better

predictions of k and Ux . However, for M (4)
R it results in slightly worse prediction of k for x < 1.0c

and slightly worse prediction of Ux for x > 1.0c. Still, if no better b∆i j model is found, using b∆i j = 0
gives good improvements over baseline.
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Figure 96: Contours of k and dispersive x-velocity (see Eq. 74) with the in-plane velocity vector
field overlaid for the for the hr00 case for R= M (4)

R (Eq. 102) with exact b∆i j , with baseline (k-ω
SST) and LES added for comparison.

Now consider the k contours of the hr00 case in Fig. 96; k is now significantly overpredicted.
Surprisingly, also the shape of k is predicted wrongly, as there is far too much k above the smooth
part of the wall. As mentioned, wall models are used as boundary conditions for the wall, but
these are not modified by SpaRTA. Perhaps these wall models also need to incorporate the correc-
tions, though answering this question is beyond the scope of the current work. Next consider the
velocity contours of the roughness; a large in-plane vortex is visible, however, in-plane velocity is
misaligned especially near the wall. Furthermore, dispersive x-velocity is mispredicted through-
out the domain. Given the uncertainties of the roughness case, these results do not immediately
discard the generality of M (4)

R . However, it clearly is not ready-to-implement as is and further
research is required into its interaction with wall models. Also, more cases should be added to
confirm its generality.

All in all, the manual a-posteriori optimization of the single basis model has yielded the most
simple, general and accurate model so far. An even better model could likely be attained by
applying the procedure to M (2)

R (Eq. 100). However, manual optimization of two coefficients is
much more complicated than just one. Furthermore, the current single basis model is already
sufficiently accurate (at least for the duct and hump). The analysis presented clearly shows that
the frozen nature of k-corrective-frozen is limiting model fits. Hence, for future research, it is
recommended to implement the a-posteriori optimization approach (also known as CFD-driven)
in an OpenFOAM solver. This requires a minimization algorithm and criterion; the minimization
criterion should ideally be based on the velocity field.
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12.2 Isolated b∆i j model training and testing

Following earlier work, models for b∆i j are comprised of Pope’s ten base tensors T (λ)i j (see Sec. 2.6)
multiplied by functions of scalar invariants/features q (see Sec. 3.3.4). Contrary to literature,
these functions are referred to as fλ(q) to avoid confusion with the bases of R models. The objec-
tive of the current section is to train expressions for fλ(q) and test these a-posteriori, striving for
simple and general b∆i j models. To isolate the effect of the b∆i j model, the exact frozen R field is
used in testing. The section is structured as follows: A model that is a simple linear combination
of bases is trained in Sec. 12.2.1. To improve accuracy, the established SpaRTA framework is then
used to train a model that also contains functions of features in Sec. 12.2.2. Unfortunately, ac-
curacy does not improve when using SpaRTA, which is found to come from its limited functional
forms. Thus, in Sec. 12.2.3, the newly developed CuRTA framework is used to regress a model
with an expanded functional form.

12.2.1 One and two bases models
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Figure 97: Coefficient of determination of the fit
b∆i j = C0T (n)i j for each base tensor for each case.

Inspired by the success of the simple one ba-
sis R model laid out in Sec. 12.1.4, a similar
form is sought for a b∆i j model. This means

that the model will have the form b∆i j = C0T (n)i j ,

with C0 a coefficient and T (n)i j the nth Pope
base tensor. To find the base tensor giving
the best model, C0 is fitted for each base ten-
sor for each case. For the regression, volume
weighing is again used but now k weighing is
also included. This is because b∆i j is first multi-
plied by k before being added to the Reynolds
stress tensor. The coefficient of determination
(R2) is shown for the regression of each base
tensor for each case in Fig. 97. The second,
seventh and eighth base tensor provide signif-
icantly better fits than the other tensors, but
these three perform similar to each other. The
second base tensor is chosen for further test-
ing, as it contains the lowest powers of ∇iu j,
making it more stable.

The C0 resulting from fitting b∆i j = C0T (2)i j is given for each case in Tab. 32, along with the fit
R2. There is a significant variance in C0 between duct cases and the R2 is much lower than for
the single basis R model (see Tab. 28). Furthermore, there is no generality between the duct and
hump as the hump has a much lower C0 than any duct case. For the roughness, variance in C0

between cases and fit R2 is similar to the single basis R model, which performs poorly. Given
the variance in C0, a generalized model is not constructed; each case is first tested with its own
optimized C0. Unfortunately, not a single case converges, despite this tailored C0 value.
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Table 32: Fitted C0 in b∆i j = C0T (2)i j and R2 of fit.

Rectangular duct Heterogeneous roughness

Case C0 R2 Case C0 R2

rd1L 0.601 0.734 hr00 0.419 0.727

rd1H 0.447 0.727 hr03 0.409 0.844

rd3L 0.533 0.729 hr04 0.392 0.629

rd3H 0.413 0.739 hr06 0.422 0.750

rd5L 0.530 0.727 hr07 0.472 0.828

rd7L 0.528 0.727 hr08 0.426 0.790

rd10L 0.531 0.726 hr09 0.469 0.820

rd14L 0.525 0.727 hr10 0.448 0.748

Hump hr13 0.410 0.712

Case C0 R2 hr15 0.428 0.772

hump 0.307 0.670 hr16 0.424 0.758

The nonconvergence under the single basis b∆i j model likely comes from the low R2 of the fits. To

address this, the fit is improved by adding another basis, giving the model form b∆i j = C0T (n1)
i j +

C1T (n2)
i j with n1 ̸= n2. A similar analysis as in Fig. 97 is performed, but now on pairs of base

tensors. Given that there are 45 unique pairs of base tensors, the plot is not shown here. A
similar trend is found, where a group of base tensor pairs has a much higher R2 than the other
base tensor pairs. From this high R2 group, the lowest numbered tensor pair should be chosen,
as these tensors contain the lowest powers of ∇iu j, giving better stability. The pair (T (2)i j , T (3)i j ) is
the lowest numbered pair that has an R2 within 5% of the highest R2 of each case, resulting in
the model form b∆i j = C0T (2)i j + C1T (3)i j . This model form is regressed for each case, the resulting
coefficients are given in Tab. 33 together with the fit R2.

Table 33: Fitted C0 and C1 in b∆i j = C0T (2)i j + C1T (3)i j and R2 of fit.

Rectangular duct Heterogeneous roughness

Case C0 C1 R2 Case C0 C1 R2

rd1L 0.596 0.884 0.863 hr00 0.419 -0.00159 0.727

rd1H 0.444 0.516 0.806 hr03 0.405 0.248 0.869

rd3L 0.529 0.726 0.839 hr04 0.391 -0.130 0.636

rd3H 0.411 0.455 0.813 hr06 0.422 0.0632 0.751

rd5L 0.527 0.727 0.840 hr07 0.467 0.416 0.880

rd7L 0.526 0.731 0.841 hr08 0.424 0.179 0.802

rd10L 0.529 0.743 0.843 hr09 0.469 0.175 0.831

rd14L 0.523 0.731 0.844 hr10 0.448 0.0312 0.749

Hump hr13 0.410 -0.0382 0.713

Case C0 C1 R2 hr15 0.427 0.119 0.777

hump 0.307 0.379 0.777 hr16 0.424 0.120 0.764
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Surprisingly, the introduction of the second basis has partially generalized the regressed coeffi-
cients of the duct, as seen in Tab. 33. Partially, because coefficients only generalize for the rd3L,
rd5L, rd7L, rd10L and rd14L case, suggesting the coefficients are a function of the Reynolds num-
ber. The different coefficients for the rd1L case are thought to originate from its relatively small
proportion of low-b∆i j cells. This skews the rd1L model to fit high-b∆i j cells, resulting in the rela-
tively high coefficients. The R2 of each duct case and the hump significantly increased compared
to the single basis model in Tab. 32, though it is still much lower than for the single basis R model
in Tab. 28. Next, the duct model does not seem to generalize to the hump given the hump’s much
lower coefficients, likely from the supposed Reynolds number dependence of the coefficients. For
the roughness, adding the second basis did not notably increase R2. Furthermore, there is no
generality at all for C1 between cases. Hence, it is unlikely that this second basis will improve
convergence of the roughness cases.

The two bases model is tested for each case, again the case specific coefficients are used, given
the lack of generality and prior convergence issues. Only the rd1L and rd1H case converge, likely
due to their aforementioned small proportion of low-b∆i j cells, their models are formalized as M (1)

b∆

and M (2)
b∆ respectively:

M (1)
b∆ = 0.596T (2)i j + 0.884T (3)i j , (103) M (2)

b∆ = 0.444T (2)i j + 0.516T (3)i j . (104)

For the rd1L case, contours of in-plane velocity are shown in Fig. 98, together with baseline and
DNS. There is a definite improvement over baseline, as two corner vortices are present. How-
ever, they are located far too close to the duct’s center. The same mismatch is observed for the
rd1H case. All in all, the two bases model is not general, inaccurate and only converges for two
cases. Adding more bases does not increase the fit R2, so further efforts focus on replacing the
coefficients by (functions of) the dimensionless, scalar features/invariants used by Steiner et al.
(see Sec. 3.3.4). This is further motivated by the fact that the coefficients seem to be Reynolds
number dependent.
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Figure 98: Contours of in-plane velocity for the rd1L case for b∆i j = M (1)
b∆ (Eq. 103) with exact R,

with baseline (k-ω SST) and DNS added for comparison.
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12.2.2 SpaRTA model

The already established SpaRTA framework is used in the first attempt to generate more accurate
models. The duct cases are the primary focus here, as they are dominated by anisotropy and a
proper R model is established (contrary to the roughness). Weighing by volume and k and using
the features in Tab. 30, SpaRTA identifies models of the form b∆i j = f1(qν)T

(2)
i j + f2(qν)T

(3)
i j . This

is exactly the form desired, as it contains the same base tensors as the model in the prior section,
but replaces the coefficients by a function of a feature. It is encouraging that these are functions
of qν, as this introduces some form of Reynolds number dependence (though not necessarily the
correct form). For the low-Reynolds number duct cases, f1 and f2 are rdiv functions, defined as:

rdiv(q) =
q

C + q2
, (105)

where C is a constant. For the high-Reynolds number duct cases, f2 is also an rdiv function, but
f1 is a fourth root. For the roughness and hump, functions of qγ mostly appear, though there is
little agreement in functional form and other features often appear as well.

In the end, the model form b∆i j = C0rdiv(qν)T
(2)
i j + C1rdiv(qν)T

(3)
i j is chosen for the general model,

as the duct is of main interest for b∆i j model training and qν may give the right Reynolds number
dependence. Furthermore, the rdiv function is used for both terms, as it has asymptotic behaviour
(contrary to the fourth root). Usually, the constant C in the rdiv function in Eq. 105 would be
regressed, however, SpaRTA is linear meaning it can only regress the coefficient before each term.
As an informed guess for C , SpaRTA uses the case variance of q (in this case of qν). For the general
model, C = 0.00327 is used for all cases, which is based on the rd14L case given its coefficient
generality observed in Tab. 33. Whereas SpaRTA uses Ridge regression to get small coefficients
when refitting models, this is not considered necessary for the current two-term model, so ordi-
nary weighted least squares is used. The model coefficients C0 and C1 are regressed for each case,
they are given in Tab. 34 along with the fit R2.

Table 34: Fitted C0 and C1 in b∆i j = C0
qν

0.00327+q2
ν
T (2)i j + C1

qν
0.00327+q2

ν
T (3)i j and R2 of fit.

Rectangular duct Heterogeneous roughness

Case C0 C1 R2 Case C0 C1 R2

rd1L 0.0797 0.118 0.782 hr00 252 -80.9 0.222

rd1H 0.07913 0.0952 0.843 hr03 263 -22.1 0.252

rd3L 0.0768 0.106 0.806 hr04 250 -117 0.214

rd3H 0.0821 0.0942 0.869 hr06 255 -61.4 0.227

rd5L 0.0765 0.106 0.811 hr07 288 33.6 0.206

rd7L 0.0764 0.106 0.814 hr08 247 -32.5 0.235

rd10L 0.0762 0.107 0.813 hr09 283 -24.4 0.192

rd14L 0.0763 0.106 0.819 hr10 269 -67.6 0.203

Hump hr13 258 -89.0 0.227

Case C0 C1 R2 hr15 269 -43.0 0.224

hump 0.186 0.136 0.145 hr16 268 -36.7 0.226
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Comparing the duct R2 between Tab. 34 and Tab. 33, it becomes clear that the main goal of in-
creasing the fit R2 has not been achieved. For the duct, R2 decreased slightly while for the hump
and the roughness it decreased substantially. Nonetheless, the goal of removing Reynolds num-
ber and aspect ratio dependence of the coefficients has been partially achieved. For instance, the
difference in C0 between the rd3H and rd3L case went from 22% to 6.5%. Unfortunately, this
is only true within duct cases, as the coefficient discrepancy only grew with respect to the hump
and roughness cases. Within the roughness cases, a similar spread in C0 is observed and C1 again
seems to fit mostly noise.

Despite the lack of R2 improvement, the new model form is tested for each case. Given the
better generality between duct coefficients, a single model is chosen. As reasoned before, high
aspect ratio duct cases contain a higher proportion of low-b∆i j cells, resulting in more stable mod-
els. Furthermore, the coefficients seem to converge to a single value with increasing aspect ratio.
Hence, the general duct model M (3)

b∆ is based on the coefficients of the rd14L case:

M (3)
b∆ =

qν
0.00327+ q2

ν

�

0.0763T (2)i j + 0.106T (3)i j

�

. (106)

This model only converges for the rd1L, rd1H and rd3H duct cases, contours of in-plane velocity
are shown for the rd1L case in Fig. 99 together with baseline and DNS. The hump case does not
converge, however, all roughness cases surprisingly do converge. Results of roughness case hr00
are shown in Fig. 100 together with baseline and LES.
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Figure 99: Contours of in-plane velocity for the rd1L case for b∆i j = M (3)
b∆ (Eq. 106) with exact R,

with baseline (k-ω SST) and DNS added for comparison.
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Figure 100: Contours of dispersive x-velocity (see Eq. 74) with the in-plane velocity vector field
overlaid for the for the hr00 case for b∆i j = M (3)

b∆ (Eq. 106) with exact R, with baseline (k-ω SST)
and LES added for comparison.
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Comparing Fig. 99 with Fig. 98, the new SpaRTA M (3)
b∆ model does not improve duct predictions

over M (1)
b∆ , which is not surprising considering the lack of R2 improvement. Predictions of the new

model are even slightly worse, as in-plane velocity at the symmetry is overpredicted even more.
The same is observed for the other two converged duct cases (rd1H and rd3H). It should be noted
that M (1)

b∆ is trained on the rd1L case, while M (3)
b∆ is trained on the rd14L case. The fact that the

low aspect ratio cases still manage to predict the two corner vortices using a model trained on a
much higher aspect ratio case is encouraging. Still, one would expect R2 to increase significantly
with the more complex model structure enabled by SpaRTA. In Sec. 12.2.3, the limited functional
forms in SpaRTA are found to be limiting the fit.

Looking at the hr00 case in Fig. 100, the model b∆i j seems to be much smaller than the exact
b∆i j , as model results are indistinguishable from baseline. This is to be expected, as the roughness
has much higher qν values than the duct and the rdiv function asymptotes to zero. This is also
why the regressed roughness coefficients in Tab. 34 are much larger; the duct coefficients result
in a b∆i j of almost zero. In principle, this behaviour is acceptable for a generalized model, as one
can not expect to improve predictions for every possible case. Thus, going to baseline for cases
outside the training regime is an acceptable property.

In an attempt to improve a-posteriori results, SpaRTA models with more terms are also tested.
Many of these do not even converge for their training case, let alone other cases. It is concluded
that increasing the number of model terms will not yield a universal model, only massive overfits
to the training data. Hence, in the next section, the R2 of the fit is attempted to be improved by
expanding the available functional forms using the newly developed CuRTA framework.

12.2.3 Nonlinear symbolic regression (CuRTA) model

The lack of improvement in R2 when using SpaRTA compared to a simple basis fit is speculated
to come from its aforementioned linear nature. It is able to use non-linear functions such as
rdiv, however, it is only able to regress the coefficient before each term. Thus, coefficients inside
nonlinear functions (such as C in Eq. 105) cannot be regressed, they are guessed based on field
statistics instead. Furthermore, many functions are missing coefficients that play an important
role in their shape and thus their ability to fit the data. For example, the tanh function has the
form C tanh (C · q), meaning it will always be zero if q = 0. In theory, SpaRTA is able to regress
an additional +C term to allow the function to be shifted vertically. However, in practice this
term is never observed for simple b∆i j models. A much more general functional form would be
C (tanh (C · q+ C) + C), such that the function can be shifted vertically and horizontally.

A new framework is developed that is able to regress the coefficients inside non-linear func-
tions using non-linear least-squares. Similar to SpaRTA, it constructs expressions from a library
of terms, though it constructs the expression term-by-term. The framework is named CuRTA
and is further described in Sec. 4.2. When all base tensors are available to CuRTA, T (8)i j and

T (4)i j are selected for the duct models. However, these only give a slight improvement in fit

over T (2)i j and T (3)i j , so the latter pair is chosen as they contain lower powers of ∇iu j, improv-
ing stability. Adding a third basis gives a negligible increase in R2, so only two bases are used.
Weighing again by volume and k, CuRTA finds the same model form for each duct case; b∆i j =

C0 (tanh (C1qν + C2) + C3) T
(2)
i j + C4

�

tanh (C5qν + C6) + C7

�

T (3)i j , the regressed coefficients and R2

are given in Tab. 35.
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For the roughness and hump, slightly different optimal model forms are found by CuRTA. How-
ever, these only provide a small increase in R2 compared to the duct model form; R2 = 0.765
versus R2 = 0.744 for the roughness (case hr00) and R2 = 0.791 versus R2 = 0.782 for the hump.
Also for these cases, adding a third basis gives a negligible increase in R2. Given that a gen-
eral model is desired, the duct model form is also fitted to the roughness and hump cases. The
regressed coefficients are also given in Tab. 35 along with the R2.

Table 35: Fitted C0 − C7 in b∆i j = C0 (tanh (C1qν + C2) + C3) T
(2)
i j + C4

�

tanh (C5qν + C6) + C7

�

T (3)i j

and R2 of fit.

Rectangular duct

Case C0 C1 C2 C3 C4 C5 C6 C7 R2

rd1L 0.400 -14.6 1.10 1.51 0.631 -20.5 1.47 1.47 0.986

rd1H 0.477 -8.73 0.383 1.53 0.608 -14.5 0.927 1.42 0.985

rd3L 0.437 -11.0 0.765 1.45 0.605 -18.2 1.25 1.50 0.989

rd3H 0.778 -6.08 -0.154 1.32 0.554 -15.1 0.972 1.50 0.986

rd5L 0.454 -10.5 0.746 1.40 0.591 -19.0 1.31 1.55 0.990

rd7L 0.463 -10.2 0.738 1.36 0.582 -19.5 1.34 1.58 0.991

rd10L 0.465 -10.3 0.772 1.33 0.576 -20.1 1.39 1.61 0.992

rd14L 0.457 -10.3 0.756 1.38 0.567 -20.1 1.38 1.63 0.992

Heterogeneous roughness

Case C0 C1 C2 C3 C4 C5 C6 C7 R2

hr00 16.5 −8.93× 10−4 13.2 -0.974 0.196 -0.0736 720 -0.198 0.744

hr03 10.3 −1.56× 10−4 -2.29 1.03 0.00338 -0.0137 120 75.3 0.883

hr04 0.157 −0.821× 10−4 0.676 3.31 0.186 −3.04× 10−3 28.4 -0.793 0.663

hr06 0.0309 −3.49× 10−3 38.0 13.1 0.193 −3.93× 10−3 39.8 0.0494 0.766

hr07 0.0861 −1.71× 10−3 1.42 6.29 -21.5 −3.62× 10−4 -1.86 0.976 0.896

hr08 9.67 −4.90× 10−4 -2.21 1.04 0.104 -0.0677 672 1.22 0.813

hr09 0.0202 −3.70× 10−3 43.1 22.6 0.229 −6.01× 10−3 65.8 0.518 0.848

hr10 0.0244 −4.71× 10−3 47.3 17.7 0.231 -0.0157 145 0.0432 0.770

hr13 0.115 −1.37× 10−3 1.29 4.40 0.198 -0.0421 439 -0.343 0.739

hr15 11.9 −5.73× 10−4 10.2 -0.963 0.172 −7.13× 10−3 81.3 0.383 0.792

hr16 16.3 −3.12× 10−4 -2.49 1.02 0.202 −5.97× 10−3 67.8 0.344 0.788

Hump

Case C0 C1 C2 C3 C4 C5 C6 C7 R2

hump 4.56 -2.32 -1.43 1.07 0.0987 -90.6 6.63 4.84 0.782
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Comparing the R2 of the CuRTA duct models in Tab. 35 with the R2 of the SpaRTA duct models
in Tab. 34, a significant improvement is found. This is evidence that the linear nature of SpaRTA
prevents it from properly regressing the data. As before, the regressed duct coefficients seem
to converge to one value as aspect ratio increases, fit R2 also increases with aspect ratio. Some
coefficients are similar for all cases (such as C4), while others are significantly different for the
low aspect ratio and high Reynolds number cases (such as C2). Due to the large number of coef-
ficients, it is difficult to asses the level of Reynolds number dependence, however, it is definitely
present.

Next, comparing the hump R2 in Tab. 35 with its two-bases R2 in Tab. 33, no significant im-
provement is found. As mentioned, even the best hump model found by CuRTA does not have a
much higher R2. Also, the hump coefficients are quite different from the duct coefficients, indi-
cating no generality between the cases. One explanation for the low hump R2 is the farfield cells,
which have large b∆i j without influencing the flow, though this should be largely addressed by k
weighing. Another option is that the hump’s b∆i j depends on another feature/functional form not
in the library. As the main hump error is in Pk rather than b∆i j , alternative b∆i j models for the hump
are left for further research.

Now compare the roughness R2 in Tab. 35 with its two bases R2 in Tab. 33, again no real improve-
ment is found. Furthermore, there seems to be no generality between cases as each coefficient
varies orders of magnitude. Also, the coefficients are significantly different from the hump and
duct cases. The lack of R2 improvement is surprising, as similar to the duct, the roughness is
dominated by anisotropic effects. It is speculated that the use of wall functions and insufficient
mesh refinement near the transition from smooth to rough wall are the cause, as high gradients
of b∆i j are observed near these locations. As explained in Sec. 7.3, the LES is sufficiently accurate
to generate frozen fields on a finer RANS mesh, but this is left for further research. Furthermore,
applying k-corrective-frozen to the Reynolds force vector also seems to increase accuracy, as ob-
served by Amarloo et al. [2], this is also left for further research.

Following the reasoning in Sec. 12.2.2, the rd14L model in Tab. 35 is considered most suitable as
a general model and is further tested, it is formalized as M (4)

b∆ :

M (4)
b∆ = 0.457 (tanh (−10.3qν + 0.756) + 1.38) T (2)i j + ...

+ 0.567 (tanh (−20.1qν + 1.38) + 1.63) T (3)i j .
(107)

This model is rather difficult to converge (this is also found for other b∆i j models), so all relaxation
factors are set to 0.5. With this simple change, all duct cases converge, though runtime is signifi-
cantly increased compared to propagation. Even after applying significant under relaxation and
using first-order gradient schemes, the hump and roughness cases do not converge. This likely
comes from the fact that this model does not fit these cases at all and does not asymptote to zero
(which converged the roughness cases in Sec. 12.2.2). Contours of in-plane velocity are shown
for the rd1L, rd3L and rd3H case in Fig. 101, together with baseline and DNS.
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Figure 101: Contours of in-plane velocity for various duct cases for b∆i j = M (4)
b∆ (Eq. 107) with

exact R, with baseline (k-ω SST) and DNS added for comparison.

Consider the contours of the rd1L case in Fig. 101a; the shape of the secondary motions is cap-
tured extremely well. The main difference with DNS is that the two vortex cores are predicted
slightly further from the top right corner, causing a relatively high velocity peak at the symmetry.
Though the shape is captured well, the magnitude of the secondary motions is underpredicted. A
similar trend is observed for the rd3L case in Fig. 101b; slightly too far out corner vortices and a
notable underprediction of in-plane velocity magnitude. Though not shown here for brevity, this
trend is also observed for the larger aspect ratio cases. For the rd3H case in Fig. 101c, in-plane
velocity magnitude is underpredicted even further. However, now the vortices are actually pre-
dicted too close to the top right corner, causing a significant discrepancy also in contour shape.
This significant decrease of predictive ability with only a doubling of Reynolds number suggests
that the model is strongly Reynolds number dependent.

In conclusion, CuRTA has produced a b∆i j model with satisfactory predictions for the low Reynolds
number duct cases. Its main discrepancy is an underprediction of velocity magnitude; this could
likely be addressed by an a-posteriori coefficient optimization as performed in Sec. 12.1.4. Though
the number of coefficients is now too great for a manual optimization. Next, the model is strongly
Reynolds number dependent, yielding unsatisfactory predictions for the high Reynolds number
ducts, the roughness cases and the hump. This Reynolds number dependence likely comes from
training at a single Reynolds number. Training on a set of cases at a range of Reynolds numbers
should largely remove Reynolds number dependence. Finally, coupling this model with a model
for R rather than exact fields is speculated to significantly impact results, this is further explored
in the next section.
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12.3 Combined model testing

In Sec. 12.1, various R models are trained and tested in isolation by using the exact b∆i j field. The

best model found is M (4)
R (Eq. 102), which performs well for the duct cases and the hump, but

performs poorly for the roughness cases. In Sec. 12.2, various b∆i j models are trained and tested

in isolation by using the exact R field. The best model found is M (4)
b∆ (Eq. 107), though it only

works well for the low aspect ratio duct cases. In this section, these two models are combined
into a full model, which can be tested without requiring exact fields. Thus, the hump can now be
tested on its full RANS domain and the channel and plate can finally be tested as well.

As laid out in Sec. 12.2.3, significant convergence difficulties are encountered when testing M (4)
b∆

in isolation. Surprisingly, convergence is improved when combining it with M (4)
R rather than the

exact R field, this is observed for all cases. For the duct, only the rd10L and rd14L cases now need
stronger underrelaxation than propagation (each variable at 0.5). Contours of k of the rd1L and
rd14L duct cases are shown in Fig. 102. Furthermore, in-plane velocity contours are shown for
the rd1L, rd3L and rd3H duct cases in Fig. 103. Next, the roughness only converges with strong
underrelaxation for U (0.02) and p (0.2), significantly increasing runtime compared to propaga-
tion. For roughness case hr00, contours of k and dispersive x-velocity with the in-plane velocity
vector field overlaid are shown in Fig. 104.

The hump is run on both the RANS and the LES domain, both domains prove extremely diffi-
cult to converge, stemming from small fluctuations in the recirculation bubble. The SIMPLEC
algorithm is used with no underrelaxation for p. At the start of the run, little underrelaxation is
used for U (0.8), but it is gradually increased during the run (up to 0.0001). While many iter-
ations are required for convergence, all variables eventually reach their outer residual specified
in Tab. 27. Profiles of k and Ux are shown in the wake of the hump in Fig. 105, both on the
RANS domain (RD) and the LES domain (LD), the run with zero b∆i j is shown as well. Finally,
the channel converges with its baseline settings, while the plate needs additional underrelaxation
(each variable at 0.5). The boundary layer velocity profiles of the channel and plate are shown
in Fig. 106. The performance of the full model is analyzed next based on these case figures.
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Figure 102: Contours of k for various duct cases for R= M (4)
R (Eq. 102) and b∆i j = M (4)

b∆

(Eq. 107), with baseline (k-ω SST) and DNS added for comparison.

First compare the k contours of the rd1L case between the full model in Fig. 102a and the isolated
M (4)

R model in Fig. 93. The full model predicts a larger k everywhere, but especially on the
diagonal. This means that the full model improves predictions of k in the lower right and upper
left quadrant, but worsens predictions over the diagonal. A similar trend is observed for the k
contours of the rd14L case in Fig. 102b, though k is overpredicted slightly less in the corner. This
trend is also observed for the other duct cases, where overprediction of k in the corner decreases
with aspect ratio. Even the two high Reynolds number duct cases follow this trend (figures omitted
for brevity).
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Figure 103: Contours of in-plane velocity for various duct cases for R= M (4)
R (Eq. 102) and

b∆i j = M (4)
b∆ (Eq. 107), with baseline (k-ω SST) and DNS added for comparison.

Now compare the in-plane velocity contours of the rd1L case between the full model in Fig. 103a
and the isolated M (4)

b∆ model in Fig. 101a. The full model predicts corner vortices closer to the
corner and with a greater strength. This actually makes the full model prediction much closer
to DNS than the isolated M (4)

b∆ model, the remaining discrepancy is mostly in terms of magni-
tude. The same trend is observed when comparing the full model predictions for the rd3L case in
Fig. 103b with the predictions of the isolated M (4)

b∆ model in Fig. 101b. However, in-plane velocity
magnitude is underpredicted slightly more for this case (though still better than the isolated M (4)

b∆

model). This trend is also observed for the other low Reynolds number duct cases, where the
underprediction increases with aspect ratio. As explained in Sec. 12.1.3, k in the corner is largely
responsible for the magnitude of the secondary motions. Hence, the decrease of corner k with
aspect ratio is thought to be responsible for this increase in underprediction of in-plane velocity
magnitude.

Next, compare the in-plane velocity contours of the rd3H case between the full model in Fig. 103c
with those of the isolated M (4)

b∆ model in Fig. 101c. Now the full model does not improve the shape
of the contours, however, it does predict a higher magnitude. Still, the magnitude is significantly
underpredicted, much more so than for the rd3L case. Furthermore, the corner vortices are ac-
tually predicted closer to the corner than the rd3L case, while they should be further from the
corner. This confirms the Reynolds number dependence of the M (4)

b∆ model once more, though it
is still an improvement over baseline for the high Reynolds number duct cases.
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Figure 104: Contours of k and dispersive x-velocity (see Eq. 74) with the in-plane velocity
vector field overlaid for the for the hr00 case for R= M (4)

R (Eq. 102) and b∆i j = M (4)
b∆ (Eq. 107),

with baseline (k-ω SST) and LES added for comparison.

Consider the k contours of the hr00 case in Fig. 104 and compare these with the isolated M (4)
R

model for the same case in Fig. 96. While k is still overpredicted for the full model, the shape
of the contour is predicted much better. A closer inspection reveals that R is now much lower
above the smooth wall, making R above the whole wall much closer to its exact frozen value.
This is despite using the exact same R model, indicating that R and b∆i j are strongly coupled. Next
consider the velocity profiles of the full model in Fig. 104, which appear identical to baseline.
As mentioned, the roughness has much higher qν values than the duct, meaning the b∆i j model
reduces to the following:

lim
qν→∞

M (4)
b∆ = 0.174T (2)i j + 0.357T (3)i j . (108)

Thus, contrary to baseline, b∆i j is nonzero and its magnitude turns out to be similar to the magni-
tude of the exact frozen b∆i j . The secondary motions are also not exactly zero as in baseline, just
much smaller than LES. Upon further inspection, the b∆i j field appears almost constant, indicating
small gradients. As explained in Sec. 7.2, secondary motions are generated by gradients of the
Reynolds stress tensor, explaining the almost zero magnitude of the secondary motions.
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Figure 105: Profiles of k and x-velocity for the hump case for R= M (4)
R (Eq. 102) and b∆i j = M (4)

b∆

(Eq. 107), run on both the RANS domain (RD) and the LES domain (LD). Baseline (k-ω SST),
LES and R= M (4)

R with zero b∆i j run on the LES domain are added for comparison.

Compare the k profiles of the hump in Fig. 105 between the LES domain cases with b∆i j = M (4)
b∆

and b∆i j = 0. The M (4)
b∆ model predicts k slightly better for x/c ≤ 1 and slightly worse for x/c > 1.

For the Ux profiles, the M (4)
b∆ model gives slightly worse predictions everywhere. To assess the in-

fluence of using the RANS domain rather than the LES domain, the M (4)
b∆ model is also run on the

RANS domain. No notable difference is found between the results of these domains, confirming
again the suitability of the smaller LES domain for training/testing.

The fact that model predictions deteriorate when using b∆i j = M (4)
b∆ rather than b∆i j = 0 indi-

cates that M (4)
b∆ negatively impacts the hump. As the Reynolds number of the hump is significantly

higher than that of the duct, most relevant cells are likely in the asymptotic region of M (4)
b∆ , re-

ducing it to Eq. 108. In Sec. 12.1, a smaller R gave a greater underprediction of Ux at x/c = 1.3.
Thus, it seems that M (4)

b∆ erroneously gives a decrease of Pk; the exact b∆i j increases Pk as it pro-

duces a larger Ux at x/c = 1.3 compared to b∆i j = 0. Nonetheless, the M (4)
b∆ model is only slightly

worse than b∆i j = 0 and it predicts both k and Ux significantly better than baseline.
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Figure 106: Boundary layer velocity profiles for the channel and flat plate case for R= M (4)
R

(Eq. 102) and b∆i j = M (4)
b∆ (Eq. 107), with baseline (k-ω SST) added for comparison.

Consider the boundary layer velocity profiles of the flat plate and channel case in Fig. 106. The
viscous sublayer (y+ < 5) is predicted well for both cases, likely because the model has little
influence here (small k and small qν). Then, the model starts diverging from baseline in the
buffer layer (5< y+ < 30), presumably due to the model’s influence increasing. This discrepancy
further grows in the log-layer (y+ > 30), where the wrong slope is predicted. Surprisingly, the
model predicts roughly the same erroneous slope for both the channel and the flat plate.

The misprediction of fundamental boundary layer profiles by the full model should not imme-
diately disqualify the R model as universal for several reasons. Firstly, the R and b∆i j model
are heavily intertwined, as observed for the roughness case. The Pk term is modified by b∆i j as

2k · b∆i j

�

∂ ui/∂ x j

�

, meaning the total Pk would be unaffected for the channel and flat plate with
a b∆i j model exactly countering R. Secondly, the baseline k-ω SST model has a number of model
coefficients specifically tuned to reproduce the correct boundary layer behaviour [31] [64]. It is
not obvious to the author why these coefficients would remain the same with the introduction of
the corrections. This is further supported by the fact that other than the slope, the same boundary
layer shape is predicted by the model.

All in all, the full model presented in this section greatly improves results of the low-aspect ratio
ducts and the hump over baseline. Only a small improvement is found for the high aspect ratio
ducts and similar results to baseline are found for the roughness. A deterioration of the channel
and flat plate is found, though a coefficient recalibration could potentially resolve this. Thus, in its
current form, the model is not yet general, especially as it appears Reynolds number dependent.
A further observation is the coupling between R and b∆i j models, indicating that isolated model
testing has its limitations. Improvements are expected when this coupling is taken into consider-
ation in training, for example by accounting for the fit deficit of the b∆i j model when training the
R model.
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13 Conclusions
Each research sub-question introduced in the introduction is repeated here, followed by the con-
clusions pertaining to this sub-question. Finally, the main research question is repeated followed
by its conclusions.

Sub-question 1: Is the SpaRTA framework [46] suitable for the symbolic regression of gen-
eral models?
The SpaRTA framework produces well-fitting, simple R (Pk correction) models for all cases with
validated correction fields (duct and hump). A promising single term model is found that general-
izes over the duct and hump, but further testcases are required to verify its generality. In contrast,
the simple b∆i j (RST correction) models regressed by SpaRTA provide no better fit than a linear
combination of tensor bases. This is the result of the limited functional form of SpaRTA, stemming
from its linear regression. The new CuRTA framework, able to represent a much broader range
of functional forms due to its non-linear regression, gives a significantly better b∆i j fit for the same
number of terms. Next, inclusion of the model breaks the match with the law of the wall. The
baseline model only matches this due to a calibration procedure which appears to be affected by
the inclusion of corrections.

Sub-question 2: Does a classifier which applies corrections only in certain areas improve
generalizability of models?
A twelve-term classifier is trained on three out of five cases for the NASA challenge entry, based
on domain dependent activation data. This classifier improves generalizability, as it preserves the
already accurate baseline results for the channel and flat plate case (included in its training). It
is even useful for the axisymmetric jet and stalled airfoil case (both not included in its training),
as it prevents deterioration by an unsuited model. However, given the large number of terms,
it is probable that this classifier is overfitting the data, making generalization unlikely. Further
training attempts are halted at the generation of domain independent training data. Thus, the
answer to the second sub-question remains inconclusive.

Sub-question 3: How well does the a-priori fit to the corrections translate to a-posteriori
performance of the model?
For both R and b∆i j , increased a-posteriori performance is observed with a better a-priori fit (ob-
tained by using a more complex model form). However, the optimal a-priori fit to the corrections
does not necessarily yield the optimal a-posteriori fit to the exact flowfields. For the duct and
hump, the a-posteriori match is significantly improved after manually optimizing the coefficient
of a model produced by SpaRTA. Another important finding is the coupling of R and b∆i j models,
suggesting isolated fitting is not the optimal approach for the best a-posteriori performance.
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Main question: How suitable is the k-corrective-frozen approach combined with the SpaRTA
framework [46] for training a model giving improvements over a range of steady-state flows
with respect to k-ω SST?
SpaRTA gives an R model form which generalizes over two flows and possibly more. However, a
sub-optimal model coefficient is found, originating from the frozen nature of k-corrective-frozen.
For b∆i j , SpaRTA’s linear fit prevents it from properly regressing the data. The CuRTA framework
is able to regress a simple b∆i j model that generalizes over ducts of different aspect ratio. Still, in-
plane velocity magnitude is underpredicted, again indicating sub-optimal model coefficients. Fur-
thermore, the model is strongly Reynolds number dependent. In conclusion, neither k-corrective-
frozen nor SpaRTA is optimally suited for the discovery of general correction models.
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14 Recommendations
Based on the analysis presented in this study, the following recommendations for further research
are put forth:

• Following the success of expanding the functional forms available to the symbolic regres-
sion, it is recommended to add further functional forms to CuRTA.

• The qν feature gives excellent fits, but is highly Reynolds number dependent. The number
of input features should be further expanded, with a special focus on using νt . Also, new
features should be Galilean invariant and ideally not depend on gradients of k/p.

• Many of the optimizations in SpaRTA, such as filtering out features and bases with small
variance and cliqueing, are not yet in CuRTA. Adding these should decrease computational
cost, requiring less filtering for larger cases.

• For the heterogeneous roughness case, the found correction fields are non-smooth. Due to
the rough wall, further mesh refinement is limited. For this case to be of better use, the
effect of wall models on k-corrective-frozen should be further studied.

• Much lower outer residuals are needed to converge the frozen cases than expected. Rigor-
ous convergence verification as presented in this work should be in place for future frozen
cases.

• There is no constraint in place to ensure fundamental theoretical results such as the law of
the wall are matched by a model. As the match of the baseline model with these is simply
the result of a calibration procedure, it is recommended to recalibrate coefficients for a given
model.

• A highly promising R model is identified which works on all cases with validated correction
fields (duct and hump). To confirm its generality, more cases should be added with wall-
resolved high fidelity data.

• The best b∆i j model found is strongly Reynolds number dependent, likely because it is trained
at a single Reynolds number. To remove Reynolds number dependence, training should
occur over a range of Reynolds numbers simultaneously.

• Designing a proper classifier training criterion based only on local flow quantities proves
extremely difficult. A more elaborate study into a proper criterion is warranted, given the
good performance of the classifier for the NASA challenge cases.

• A strong coupling is found between the R and b∆i j model, but they are trained independently.
By taking this coupling into account in training, predictions could be improved, for instance
by letting R account for the fit deficit of b∆i j .

• A manual a-posteriori optimization of the coefficient in the R model regressed by SpaRTA
greatly increases its accuracy. Thus, including the CFD solver in the model regression loop
has potential to yield better models. The greatest improvement is expected when it is in-
cluded in the symbolic regression loop. However, if this proves too expensive, it could also
just be used for a coefficient refit of a model regressed on the frozen correction fields.
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A Rectangular duct case blockMeshDict
/* --------------------------------*- C++ -*----------------------------------*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https :// openfoam.org
\\ / A nd | Version: 7
\\/ M anipulation |

\*---------------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object blockMeshDict;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Include case variables (e.g. h).
#include "../../../ casedef"

// Include mesh variables (e.g. beta).
#include "../ meshdef"

// Calculate the dimensional first cell height.
//The factor two is there since OpenFOAM calculates yPlus at the cell center.
delta_1 #calc "$yPlus * $h / $Re_tau * 2.";

// Calculate the number of cells in y- and z-direction
N_y #calc "ceil(log($h*($beta -1)/$delta_1 +1)/log($beta))";
N_z #calc "ceil($N_y*$AR)";

// Calculate the ratio between the first and last cell
ratio #calc "1/pow($beta , $N_y -1)";

//Scale the mesh by the domain height
scale $h;

// Nondimensional coordinates of the mesh vertices
vertices
(

(0 0 0) //0
(1 0 0) //1
(1 1 0) //2
(0 1 0) //3
(0 0 $AR) //4
(1 0 $AR) //5
(1 1 $AR) //6
(0 1 $AR) //7

);

// Create the single block in the mesh , with the calculated number of cells and ratio
between first and last cell

blocks
(

hex (0 1 2 3 4 5 6 7)
(1 $N_y $N_z)
simpleGrading (1 $ratio $ratio)

);

// Specify the boundary type for each of the six mesh faces
boundary
(

inflow
{

type cyclic;
neighbourPatch outflow;
faces
(

(0 4 7 3)
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);
}

outflow
{

type cyclic;
neighbourPatch inflow;
faces
(

(1 2 6 5)
);

}

wallTop
{

type wall;
faces
(

(3 7 6 2)
);

}

wallSide
{

type wall;
faces
(

(4 5 6 7)
);

}

symmetryBottom
{

type symmetry;
faces
(

(0 1 5 4)
);

}

symmetrySide
{

type symmetry;
faces
(

(0 3 2 1)
);

}
);
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B Atmospheric wall functions rewritten to
OpenFOAM-7

B.1 atmOmegaWallFunction.C

/* ---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https :// openfoam.org
\\ / A nd | Copyright (C) 2011 -2019 OpenFOAM Foundation
\\/ M anipulation |

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not , see <http ://www.gnu.org/licenses/>.

\*---------------------------------------------------------------------------*/

#include "atmOmegaWallFunctionFvPatchScalarField.H"
#include "nutWallFunctionFvPatchScalarField.H"
#include "turbulenceModel.H"
#include "fvMatrix.H"
#include "addToRunTimeSelectionTable.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{

// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //

void atmOmegaWallFunctionFvPatchScalarField :: calculate
(

const turbulenceModel& turbModel ,
const List <scalar >& cornerWeights ,
const fvPatch& patch ,
scalarField& G0 ,
scalarField& omega0

)
{

const label patchi = patch.index ();

const tmp <scalarField > tnutw = turbModel.nut(patchi);

const nutWallFunctionFvPatchScalarField& nutw = nutWallFunctionFvPatchScalarField ::nutw
(turbModel , patchi);

const scalarField& y = turbModel.y()[patchi ];

const tmp <scalarField > tnuw = turbModel.nu(patchi);
const scalarField& nuw = tnuw();

const tmp <volScalarField > tk = turbModel.k();
const volScalarField& k = tk();
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const fvPatchVectorField& Uw = turbModel.U().boundaryField ()[patchi ];

const scalarField magGradUw(mag(Uw.snGrad ()));

const scalar Cmu25 = pow025(nutw.Cmu());
const scalar kappa = nutw.kappa();

// Set omega and G
forAll(nutw , facei)
{

const label celli = patch.faceCells ()[facei];
const scalar w = cornerWeights[facei ];

omega0[celli] += w*sqrt(k[celli ])/(Cmu25*kappa*(y[facei] + z0_[facei]));

G0[celli] += w*(nutw[facei] + nuw[facei])*magGradUw[facei ]* Cmu25*sqrt(k[celli ])/(
kappa*(y[facei] + z0_[facei]));

}
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

atmOmegaWallFunctionFvPatchScalarField :: atmOmegaWallFunctionFvPatchScalarField
(

const fvPatch& p,
const DimensionedField <scalar , volMesh >& iF

)
:

omegaWallFunctionFvPatchScalarField(p, iF),
z0_(p.size(), 0.0)

{}

atmOmegaWallFunctionFvPatchScalarField :: atmOmegaWallFunctionFvPatchScalarField
(

const fvPatch& p,
const DimensionedField <scalar , volMesh >& iF ,
const dictionary& dict

)
:

omegaWallFunctionFvPatchScalarField(p, iF, dict),
z0_("z0", dict , p.size())

{
// apply zero -gradient condition on start -up
//this ->operator ==( patchInternalField ());

}

atmOmegaWallFunctionFvPatchScalarField :: atmOmegaWallFunctionFvPatchScalarField
(

const atmOmegaWallFunctionFvPatchScalarField& ptf ,
const fvPatch& p,
const DimensionedField <scalar , volMesh >& iF ,
const fvPatchFieldMapper& mapper

)
:

omegaWallFunctionFvPatchScalarField(ptf , p, iF, mapper),
z0_(ptf.z0_)

{}

atmOmegaWallFunctionFvPatchScalarField :: atmOmegaWallFunctionFvPatchScalarField
(

const atmOmegaWallFunctionFvPatchScalarField& aowfpsf
)
:

omegaWallFunctionFvPatchScalarField(aowfpsf),
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z0_(aowfpsf.z0_)
{}

atmOmegaWallFunctionFvPatchScalarField :: atmOmegaWallFunctionFvPatchScalarField
(

const atmOmegaWallFunctionFvPatchScalarField& aowfpsf ,
const DimensionedField <scalar , volMesh >& iF

)
:

omegaWallFunctionFvPatchScalarField(aowfpsf , iF),
z0_(aowfpsf.z0_)

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void atmOmegaWallFunctionFvPatchScalarField :: autoMap
(

const fvPatchFieldMapper& m
)
{

atmOmegaWallFunctionFvPatchScalarField :: autoMap(m);
m(z0_ , z0_);

}

void atmOmegaWallFunctionFvPatchScalarField ::rmap
(

const fvPatchScalarField& ptf ,
const labelList& addr

)
{

atmOmegaWallFunctionFvPatchScalarField ::rmap(ptf , addr);

const atmOmegaWallFunctionFvPatchScalarField& aowfpsf =
refCast <const atmOmegaWallFunctionFvPatchScalarField >(ptf);

z0_.rmap(aowfpsf.z0_ , addr);
}

void atmOmegaWallFunctionFvPatchScalarField :: write(Ostream& os) const
{

fixedValueFvPatchField <scalar >:: write(os);
writeEntry(os , "z0", z0_);

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

makePatchTypeField
(

fvPatchScalarField ,
atmOmegaWallFunctionFvPatchScalarField

);

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// ************************************************************************* //
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B.2 atmOmegaWallFunction.H

/* ---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https :// openfoam.org
\\ / A nd | Copyright (C) 2011 -2019 OpenFOAM Foundation
\\/ M anipulation |

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not , see <http ://www.gnu.org/licenses/>.

Class
Foam:: atmOmegaWallFunctionFvPatchScalarField

Group
grpAtmWallFunctions

Description
From https ://www.openfoam.com/documentation/guides/latest/api/
atmOmegaWallFunctionFvPatchScalarField_8H_source.html
Adapted to OF7 by Kaj Hoefnagel

This boundary condition provides a wall constraint on the specific
dissipation rate (i.e. \c omega) and the turbulent kinetic energy
production contribution (i.e. \c G) for atmospheric boundary
layer modelling.

References:
\verbatim

Theoretical expressions (tags:PGVB , B):
Parente , A., Gorlé, C., Van Beeck , J., & Benocci , C. (2011).
Improved k-ε model and wall function formulation
for the RANS simulation of ABL flows.
J. of wind engineering and industrial aerodynamics , 99(4) , 267 -278.
DOI :10.1016/j.jweia .2010.12.017

Bredberg , J. (2000).
On the wall boundary condition for turbulence models.
Chalmers University of Technology , Depart. of Thermo and Fluid Dyn.
Internal Report 00/4. Sweden: Göteborg.

\endverbatim

Required fields:
\verbatim

omega | Specific dissipation rate [1/s]
\endverbatim

Usage
Example of the boundary condition specification:
\verbatim
<patchName >
{

// Mandatory entries
type atmOmegaWallFunction;
z0 <PatchFunction1 <scalar >>;

// Inherited entries
...
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}
\endverbatim

where the entries mean:
\table

Property | Description | Type | Reqd | Deflt
type | Type name: atmOmegaWallFunction | word | yes | -
z0 | Surface roughness length [m] | PatchFunction1 <scalar > | yes | -

\endtable

The inherited entries are elaborated in:
- \link omegaWallFunctionFvPatchScalarField.H \endlink
- \link PatchFunction1.H \endlink

SourceFiles
atmOmegaWallFunctionFvPatchScalarField.C

\*---------------------------------------------------------------------------*/

#ifndef atmOmegaWallFunctionFvPatchScalarField_H
#define atmOmegaWallFunctionFvPatchScalarField_H

#include "fixedValueFvPatchField.H"
#include "omegaWallFunctionFvPatchScalarField.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{

/* ---------------------------------------------------------------------------*\
Class atmOmegaWallFunctionFvPatchScalarField Declaration

\*---------------------------------------------------------------------------*/

class atmOmegaWallFunctionFvPatchScalarField
:

public omegaWallFunctionFvPatchScalarField
{
protected:

// Protected data
//- Surface roughness length field [m]
scalarField z0_;

// Protected Member Functions

//- Calculate the omega and G
virtual void calculate
(

const turbulenceModel& turbulence ,
const List <scalar >& cornerWeights ,
const fvPatch& patch ,
scalarField& G,
scalarField& omega

);

public:

//- Runtime type information
TypeName("atmOmegaWallFunction");

// Constructors

//- Construct from patch and internal field
atmOmegaWallFunctionFvPatchScalarField
(

const fvPatch&,
const DimensionedField <scalar , volMesh >&
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);

//- Construct from patch , internal field and dictionary
atmOmegaWallFunctionFvPatchScalarField
(

const fvPatch&,
const DimensionedField <scalar , volMesh >&,
const dictionary&

);

//- Construct by mapping given
// atmOmegaWallFunctionFvPatchScalarField
// onto a new patch
atmOmegaWallFunctionFvPatchScalarField
(

const atmOmegaWallFunctionFvPatchScalarField&,
const fvPatch&,
const DimensionedField <scalar , volMesh >&,
const fvPatchFieldMapper&

);

//- Copy constructor
atmOmegaWallFunctionFvPatchScalarField
(

const atmOmegaWallFunctionFvPatchScalarField&
);

//- Construct and return a clone
virtual tmp <fvPatchScalarField > clone() const
{

return tmp <fvPatchScalarField >
(

new atmOmegaWallFunctionFvPatchScalarField (*this)
);

}

//- Copy constructor setting internal field reference
atmOmegaWallFunctionFvPatchScalarField
(

const atmOmegaWallFunctionFvPatchScalarField&,
const DimensionedField <scalar , volMesh >&

);

//- Construct and return a clone setting internal field reference
virtual tmp <fvPatchScalarField > clone
(

const DimensionedField <scalar , volMesh >& iF
) const
{

return tmp <fvPatchScalarField >
(

new atmOmegaWallFunctionFvPatchScalarField (*this , iF)
);

}

// Member Functions

// Mapping functions

//- Map (and resize as needed) from self given a mapping object
virtual void autoMap(const fvPatchFieldMapper &);

//- Reverse map the given fvPatchField onto this fvPatchField
virtual void rmap
(

const fvPatchScalarField&,
const labelList&

);

// I-O

//- Write
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virtual void write(Ostream &) const;
};

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

#endif

// ************************************************************************* //
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B.3 atmNutUWallFunction.C

/* ---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https :// openfoam.org
\\ / A nd | Copyright (C) 2011 -2019 OpenFOAM Foundation
\\/ M anipulation |

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not , see <http ://www.gnu.org/licenses/>.

\*---------------------------------------------------------------------------*/

#include "atmNutUWallFunctionFvPatchScalarField.H"
#include "turbulenceModel.H"
#include "fvPatchFieldMapper.H"
#include "volFields.H"
#include "addToRunTimeSelectionTable.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{

// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //

tmp <scalarField > atmNutUWallFunctionFvPatchScalarField ::nut() const
{

const label patchi = patch().index();

const turbulenceModel& turbModel = db().lookupObject <turbulenceModel >
(

IOobject :: groupName
(

turbulenceModel :: propertiesName ,
internalField ().group()

)
);

const scalarField& y = turbModel.y()[patchi ];

const fvPatchVectorField& Uw = turbModel.U().boundaryField ()[patchi ];
const vectorField Up(Uw.patchInternalField () - Uw);
const scalarField magUpn(mag(Up - (Up & patch().nf())*patch ().nf()));

const tmp <scalarField > tnuw = turbModel.nu(patchi);
const scalarField& nuw = tnuw();

tmp <scalarField > tnutw(new scalarField(patch().size(), 0.0));
scalarField& nutw = tnutw.ref();

forAll(nutw , facei)
{
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const scalar Edash = (y[facei] + z0_[facei])/(z0_[facei] + 1e-4);
const scalar uStar = magUpn[facei]* kappa_/log(max(Edash , 1.0+1e-4));

nutw[facei] = sqr(uStar)/max(magUpn[facei], 1e-6)*y[facei] - nuw[facei ];

}

if (boundNut_)
{

nutw = max(nutw , scalar (0));
}

return tnutw;
}

tmp <scalarField > atmNutUWallFunctionFvPatchScalarField :: yPlus
(

const scalarField& magUp
) const
{

const label patchi = patch().index();

const turbulenceModel& turbModel = db().lookupObject <turbulenceModel >
(

IOobject :: groupName
(

turbulenceModel :: propertiesName ,
internalField ().group()

)
);
const scalarField& y = turbModel.y()[patchi ];
const tmp <scalarField > tnuw = turbModel.nu(patchi);
const scalarField& nuw = tnuw();

tmp <scalarField > tyPlus(new scalarField(patch().size(), 0.0));
scalarField& yPlus = tyPlus.ref();

forAll(yPlus , facei)
{

const scalar Re = magUp[facei]*y[facei]/nuw[facei];
const scalar ryPlusLam = 1/ yPlusLam_;

int iter = 0;
scalar yp = yPlusLam_;
scalar yPlusLast = yp;

do
{

yPlusLast = yp;
if (yp > yPlusLam_)
{

yp = (kappa_*Re + yp)/(1 + log(E_*yp));
}
else
{

yp = sqrt(Re);
}

} while(mag(ryPlusLam *(yp - yPlusLast)) > 0.0001 && ++iter < 20);

yPlus[facei] = yp;
}

return tyPlus;
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

atmNutUWallFunctionFvPatchScalarField :: atmNutUWallFunctionFvPatchScalarField
(

const fvPatch& p,
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const DimensionedField <scalar , volMesh >& iF
)
:

nutUWallFunctionFvPatchScalarField(p, iF),
boundNut_(true),
z0_(p.size(), 0.0)

{}

atmNutUWallFunctionFvPatchScalarField :: atmNutUWallFunctionFvPatchScalarField
(

const atmNutUWallFunctionFvPatchScalarField& ptf ,
const fvPatch& p,
const DimensionedField <scalar , volMesh >& iF ,
const fvPatchFieldMapper& mapper

)
:

nutUWallFunctionFvPatchScalarField(ptf , p, iF, mapper),
boundNut_(ptf.boundNut_),
z0_(ptf.z0_)

{}

atmNutUWallFunctionFvPatchScalarField :: atmNutUWallFunctionFvPatchScalarField
(

const fvPatch& p,
const DimensionedField <scalar , volMesh >& iF ,
const dictionary& dict

)
:

nutUWallFunctionFvPatchScalarField(p, iF, dict),
boundNut_(dict.lookupOrDefault <bool >("boundNut", true)),
z0_("z0", dict , p.size())

{}

atmNutUWallFunctionFvPatchScalarField :: atmNutUWallFunctionFvPatchScalarField
(

const atmNutUWallFunctionFvPatchScalarField& snawfpsf
)
:

nutUWallFunctionFvPatchScalarField(snawfpsf),
boundNut_(snawfpsf.boundNut_),
z0_(snawfpsf.z0_)

{}

atmNutUWallFunctionFvPatchScalarField :: atmNutUWallFunctionFvPatchScalarField
(

const atmNutUWallFunctionFvPatchScalarField& snawfpsf ,
const DimensionedField <scalar , volMesh >& iF

)
:

nutUWallFunctionFvPatchScalarField(snawfpsf , iF),
boundNut_(snawfpsf.boundNut_),
z0_(snawfpsf.z0_)

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void atmNutUWallFunctionFvPatchScalarField :: autoMap
(

const fvPatchFieldMapper& m
)
{

atmNutUWallFunctionFvPatchScalarField :: autoMap(m);
m(z0_ , z0_);

}

void atmNutUWallFunctionFvPatchScalarField ::rmap
(

const fvPatchScalarField& ptf ,
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const labelList& addr
)
{

atmNutUWallFunctionFvPatchScalarField ::rmap(ptf , addr);

const atmNutUWallFunctionFvPatchScalarField& snawfpsf =
refCast <const atmNutUWallFunctionFvPatchScalarField >(ptf);

z0_.rmap(snawfpsf.z0_ , addr);
}

void atmNutUWallFunctionFvPatchScalarField :: write(Ostream& os) const
{

fvPatchField <scalar >:: write(os);
writeLocalEntries(os);
writeEntry(os , "value", *this);
writeEntry(os , "z0", z0_);

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

makePatchTypeField
(

fvPatchScalarField ,
atmNutUWallFunctionFvPatchScalarField

);

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// ************************************************************************* //
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B.4 atmNutUWallFunction.H

/* ---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https :// openfoam.org
\\ / A nd | Copyright (C) 2011 -2019 OpenFOAM Foundation
\\/ M anipulation |

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not , see <http ://www.gnu.org/licenses/>.

Class
Foam:: atmNutUWallFunctionFvPatchScalarField

Group
grpAtmWallFunctions

Description
From: https ://www.openfoam.com/documentation/guides/latest/api/
atmNutUWallFunctionFvPatchScalarField_8H_source.html
Adapted to OF7 by Kaj Hoefnagel

This boundary condition provides a wall constraint on the turbulent
viscosity (i.e. \c nut) based on velocity (i.e. \c U) for atmospheric
boundary layer modelling. It is designed to be used in conjunction
with the \c atmBoundaryLayerInletVelocity boundary condition.

The governing equation of the boundary condition:

\f[
u = \frac{u^*}{\ kappa} ln \left(\frac{z + z_0}{z_0}\right)

\f]

where
\vartable

u^* | Friction velocity
\kappa | von Kármán constant
z_0 | Surface roughness length [m]
z | Ground -normal coordinate

\endvartable

Required fields:
\verbatim

nut | Turbulent viscosity [m2/s]
U | Velocity [m/s]

\endverbatim

Usage
Example of the boundary condition specification:
\verbatim
<patchName >
{

// Mandatory entries
type atmNutUWallFunction;
z0 <PatchFunction1 <scalar >>;

// Optional entries
boundNut true;
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// Inherited entries
...

}
\endverbatim

where the entries mean:
\table

Property | Description | Type | Reqd | Deflt
type | Type name: atmNutUWallFunction | word | yes | -
z0 | Surface roughness length [m] | PatchFunction1 <scalar > | yes | -
boundNut | Flag: zero -bound nut near wall | bool | no | true

\endtable

The inherited entries are elaborated in:
- \link nutUWallFunctionFvPatchScalarField.H \endlink
- \link PatchFunction1.H \endlink

SourceFiles
atmNutUWallFunctionFvPatchScalarField.C

\*---------------------------------------------------------------------------*/

#ifndef atmNutUWallFunctionFvPatchScalarField_H
#define atmNutUWallFunctionFvPatchScalarField_H

#include "nutUWallFunctionFvPatchScalarField.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{

/* ---------------------------------------------------------------------------*\
Class atmNutUWallFunctionFvPatchScalarField Declaration

\*---------------------------------------------------------------------------*/

class atmNutUWallFunctionFvPatchScalarField
:

public nutUWallFunctionFvPatchScalarField
{

//- Flag to zero -bound nut to prevent negative nut
//- at the wall arising from negative heat fluxes
const bool boundNut_;

//- Surface roughness length field [m]
scalarField z0_;

protected:

// Protected Member Functions

//- Calculate yPLus
virtual tmp <scalarField > yPlus(const scalarField& magUp) const;

//- Calculate the turbulence viscosity
virtual tmp <scalarField > nut() const;

public:

//- Runtime type information
TypeName("atmNutUWallFunction");

// Constructors

//- Construct from patch and internal field
atmNutUWallFunctionFvPatchScalarField
(

const fvPatch&,
const DimensionedField <scalar , volMesh >&

162



);

//- Construct from patch , internal field and dictionary
atmNutUWallFunctionFvPatchScalarField
(

const fvPatch&,
const DimensionedField <scalar , volMesh >&,
const dictionary&

);

//- Construct by mapping given
// atmNutUWallFunctionFvPatchScalarField
// onto a new patch
atmNutUWallFunctionFvPatchScalarField
(

const atmNutUWallFunctionFvPatchScalarField&,
const fvPatch&,
const DimensionedField <scalar , volMesh >&,
const fvPatchFieldMapper&

);

//- Copy constructor
atmNutUWallFunctionFvPatchScalarField
(

const atmNutUWallFunctionFvPatchScalarField&
);

//- Construct and return a clone
virtual tmp <fvPatchScalarField > clone() const
{

return tmp <fvPatchScalarField >
(

new atmNutUWallFunctionFvPatchScalarField (*this)
);

}

//- Copy constructor setting internal field reference
atmNutUWallFunctionFvPatchScalarField
(

const atmNutUWallFunctionFvPatchScalarField&,
const DimensionedField <scalar , volMesh >&

);

//- Construct and return a clone setting internal field reference
virtual tmp <fvPatchScalarField > clone
(

const DimensionedField <scalar , volMesh >& iF
) const
{

return tmp <fvPatchScalarField >
(

new atmNutUWallFunctionFvPatchScalarField (*this , iF)
);

}

// Member Functions

// Mapping functions

//- Map (and resize as needed) from self given a mapping object
virtual void autoMap(const fvPatchFieldMapper &);

//- Reverse map the given fvPatchField onto this fvPatchField
virtual void rmap
(

const fvPatchScalarField&,
const labelList&

);

// I-O
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//- Write
virtual void write(Ostream& os) const;

};

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

#endif

// ************************************************************************* //
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C Python function to generate plot3d files
def convertToPlot3d(X, Z, c, outFile):

’’’Function to convert grid coordinates to plot3d format (which is easy to
convert to OpenFOAM). Assumes the grid is in the xz -plane and copies this
grid at y=0 and y=-c to give it a single layer of depth.

Inputs:
X : 2D array of x-coordinates
Z : 2D array of z-coordinates
c : chord length
outFile : (path) to the output plot3d file in which the mesh points are to

be saved.’’’

#If the outFile does not yet have the plot3d extension , add it
if outFile [-7:] != ’.p3dfmt ’:

outFile += ’.p3dfmt ’

#Flatten the arrays; duplicate each value of x- and z and make the
#y-array alternating between 0 and 1.
XFlat = np.concatenate ([X.reshape (1,-1)]*2, axis =0).flatten(order=’f’)
YFlat = np.hstack ((np.ones((X.size ,1))*-c, np.zeros((X.size ,1)))).flatten ()
ZFlat = np.concatenate ([Z.reshape (1,-1)]*2, axis =0).flatten(order=’f’)

#Header of the plot3d file: first line indicates the number of blocks (1)
#second line indicates the number of points in y, x and z.
header = f’1\n2 {X.shape [1]} {X.shape [0]}’

#Save the flattened arrays (plot3d first lists all x-values , then y-values
#then z-values).
np.savetxt(outFile , np.concatenate ([XFlat , YFlat , ZFlat]),

header=header , comments=’’)
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D Model propagation infrastructure

D.1 Custom turbulence model for model propagation (model-
PropagationkOmegaSST)

D.1.1 modelPropagationkOmegaSST.H

/* ---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https :// openfoam.org
\\ / A nd | Copyright (C) 2016 -2018 OpenFOAM Foundation
\\/ M anipulation |

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not , see <http ://www.gnu.org/licenses/>.

Class
Foam:: RASModels :: kOmegaSST

Description
Specialisation for RAS of the generic kOmegaSSTBase base class.
For more information , see Description of kOmegaSSTBase.H

See also
Foam:: kOmegaSST

SourceFiles
kOmegaSST.C

\*---------------------------------------------------------------------------*/

/* ---------------------------------------------------------------------------*\
Modification of propagationkOmegaSST; now instead of reading kDeficit and
bijDelta , they are computed based on some model. The model calculation goes
via Python , such that no recompilation is necessary everytime a new model is
to be tested. A case is to be run with the turbulence model set to
modelPropagationkOmegaSST and using modelPropagationFoam as the solver. Then ,
it will look for model_propagation.py in the folder. Within this file , a
function model should be defined that takes an array of shape
(nCells , num_scalars), with columns corresponding to: gradU , k, omega , gradp ,
gradk , nut , U, walldist , nu and curlU. The function should return an array of
shape (nCells , 8) with the first column corresponding to kDeficit , the next
six to the components of bijDelta and the last one to the classifier sigma.
A template for model_definition.py is available in:
inversion/TurbFOAM -7/src/TurbulenceModels/turbulenceModels/

RAS/modelPropagationkOmegaSST
If a classifier is not used , the boolean useSigma should be set to false in
the constant/turbulenceProperties file of the case. Furthermore , for isolated
testing of correction/classifier models , the boolean modelkDeficit/modelRST/
modelSigma should be set to false to use exact fields for this variable
(defined in the 0 directory). T
\*---------------------------------------------------------------------------*/
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#ifndef modelPropagationkOmegaSST_H
#define modelPropagationkOmegaSST_H

#include "kOmegaSSTBase.H"
#include "RASModel.H"
#include "eddyViscosity.H"

/*The following is for Python interoperability */
#include <Python.h>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/arrayobject.h>

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{
namespace RASModels
{

/* ---------------------------------------------------------------------------*\
Class kOmegaSST Declaration

\*---------------------------------------------------------------------------*/

template <class BasicTurbulenceModel >
class modelPropagationkOmegaSST
:

public Foam:: kOmegaSST
<

eddyViscosity <RASModel <BasicTurbulenceModel >>,
BasicTurbulenceModel

>
{
protected:

// ================== Custom model propagation variables ==================
// See modelPropagationkOmegaSST.C for the definition of these variables
// and an elaborate description.

// Scalars
dimensionedScalar useRST_;
dimensionedScalar usekDeficit_;
dimensionedScalar rampStartTime_;
dimensionedScalar rampEndTime_;
dimensionedScalar xi_;

// Switches (booleans)
Switch useSigma_;
Switch modelRST_;
Switch modelkDeficit_;
Switch modelSigma_;

// Fields
volScalarField kDeficit_;
volSymmTensorField bijDelta_;
volScalarField sigma_;
volScalarField y_;

// Python interaction variables
PyObject *pName;
PyObject *pModule;
PyObject *model;
PyObject *model_args;
PyObject *array_2d;
PyObject *boolDict;
PyArrayObject *pValue;

// Array size determining variables

// The number of scalars to send to Python (e.g. for a vector three scalars
// need to be send).
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// gradU=9 + k=1 + omega=1 + gradp=3 + gradk =3 + nut=1 + U=3 + walldist =1 +
// nu=1 + curlU=3 = 26
int num_scalars = 26;

// The number of scalars returned by Python
int num_return = 8; // kDeficit =1 + bijDelta =6 + sigma=1

// Define number of mesh cells variable (set in constructor).
int num_cells;

// Define (num_cells x num_scalars) 1D array , holding flow variables in
// the mesh; this is passed to Python.
double* input_vals;

public:

// ============= Existing k-omega SST variables and functions =============

typedef typename BasicTurbulenceModel :: alphaField alphaField;
typedef typename BasicTurbulenceModel :: rhoField rhoField;
typedef typename BasicTurbulenceModel :: transportModel transportModel;

//- Runtime type information
TypeName("modelPropagationkOmegaSST");

// Constructors

//- Construct from components
modelPropagationkOmegaSST
(

const alphaField& alpha ,
const rhoField& rho ,
const volVectorField& U,
const surfaceScalarField& alphaRhoPhi ,
const surfaceScalarField& phi ,
const transportModel& transport ,
const word& propertiesName = turbulenceModel :: propertiesName ,
const word& type = typeName

);

//- Solve the turbulence equations and correct the turbulence viscosity
virtual void correct ();

//- Destructor
virtual ~modelPropagationkOmegaSST ()
{

delete input_vals;
}

// Probably not used , but left in just in case -Kaj
tmp <Foam:: fvVectorMatrix > divDevReff(volVectorField& U) const;

//- Return the modified effective stress tensor
virtual tmp <volSymmTensorField > devRhoReff () const;

//- Return the modified source term for the momentum equation
virtual tmp <fvVectorMatrix > divDevRhoReff(volVectorField& U) const;

//- Return the modified source term for the momentum equation
virtual tmp <fvVectorMatrix > divDevRhoReff
(

const volScalarField& rho ,
volVectorField& U

) const;

};

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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} // End namespace RASModels
} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository

#include "modelPropagationkOmegaSST.C"
#endif

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif

// ************************************************************************* //
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D.1.2 modelPropagationkOmegaSST.C

/* ---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https :// openfoam.org
\\ / A nd | Copyright (C) 2016 -2018 OpenFOAM Foundation
\\/ M anipulation |

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not , see <http ://www.gnu.org/licenses/>.

\*---------------------------------------------------------------------------*/

/* ---------------------------------------------------------------------------*\
Modification of propagationkOmegaSST; now instead of reading kDeficit and
bijDelta , they are computed based on some model. The model calculation goes
via Python , such that no recompilation is necessary everytime a new model is
to be tested. A case is to be run with the turbulence model set to
modelPropagationkOmegaSST and using modelPropagationFoam as the solver. Then ,
it will look for model_propagation.py in the folder. Within this file , a
function model should be defined that takes an array of shape
(nCells , num_scalars), with columns corresponding to: gradU , k, omega , gradp ,
gradk , nut , U, walldist , nu and curlU. The function should return an array of
shape (nCells , 8) with the first column corresponding to kDeficit , the next
six to the components of bijDelta and the last one to the classifier sigma.
A template for model_definition.py is available in:
inversion/TurbFOAM -7/src/TurbulenceModels/turbulenceModels/

RAS/modelPropagationkOmegaSST
If a classifier is not used , the boolean useSigma should be set to false in
the constant/turbulenceProperties file of the case. Furthermore , for isolated
testing of correction/classifier models , the boolean modelkDeficit/modelRST/
modelSigma should be set to false to use exact fields for this variable
(defined in the 0 directory).
\*---------------------------------------------------------------------------*/

#include "modelPropagationkOmegaSST.H"
#include "error.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{
namespace RASModels
{

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

template <class BasicTurbulenceModel >
modelPropagationkOmegaSST <BasicTurbulenceModel >:: modelPropagationkOmegaSST
(

const alphaField& alpha ,
const rhoField& rho ,
const volVectorField& U,
const surfaceScalarField& alphaRhoPhi ,
const surfaceScalarField& phi ,
const transportModel& transport ,
const word& propertiesName ,
const word& type
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)
:

Foam:: kOmegaSST
<

eddyViscosity <RASModel <BasicTurbulenceModel >>,
BasicTurbulenceModel

>
(

type ,
alpha ,
rho ,
U,
alphaRhoPhi ,
phi ,
transport ,
propertiesName

),

// ====================== Model propagation parameters =====================

// Scalar by which the exact/modeled bijDelta correction is multiplied ,
// typically in the [0,1] range , mostly used for stabilization.
useRST_
(

dimensioned <scalar >:: lookupOrAddToDict
(

"useRST",
this ->coeffDict_ ,
1.0

)
),

// Scalar by which the exact/modeled kDeficit correction is multiplied ,
// typically in the [0,1] range , mostly used for stabilization.
usekDeficit_
(

dimensioned <scalar >:: lookupOrAddToDict
(

"usekDeficit",
this ->coeffDict_ ,
1.0

)
),

// Ramping gradually introduce corrections (both kDeficit and bijDelta)
// to aid solver stability. Before ‘rampStartTime ‘ corrections are zero ,
// after ‘rampEndTime ‘ they are 1.0. Linear in between. Default is
// full correction from beginning.
rampStartTime_
(

dimensioned <scalar >:: lookupOrAddToDict
(

"rampStartTime",
this ->coeffDict_ ,

dimTime ,
-1

)
),
rampEndTime_
(

dimensioned <scalar >:: lookupOrAddToDict
(

"rampEndTime",
this ->coeffDict_ ,

dimTime ,
0

)
),

// Corrections are multiplied by xi_ to apply ramping; xi_ is 0 before
// rampStartTime , it linearly goes to 1 between rampStartTime and
// rampEndTime and it stays 1 after rampEndTime. At each iteration ,
// xi_ is calculated based on the specified rampStartTime and rampEndTime.
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xi_
(

dimensioned <scalar >:: lookupOrAddToDict
(

"xi_ramp",
this ->coeffDict_ ,

dimless ,
1

)
),

// Boolean to decide whether to use a classifier or not (can be either a
// model or existing field). Default is false such that no classifier
// is used.
useSigma_
(

Switch :: lookupOrAddToDict
(

"useSigma",
this ->coeffDict_ ,
false

)
),

// Switches to decide whether to use a model for a correction or frozen
// fields in the 0 directory. If the model switch is true , a model is used
// and the {var}Eq file (e.g. bijDeltaEq) should be present in the case
// directory with the model equation to use. If the model switch is false ,
// the frozen field should be present in the zero directory. Default is to
// use models for all corrections/classifier.
modelRST_
(

Switch :: lookupOrAddToDict
(

"modelRST",
this ->coeffDict_ ,
true

)
),
modelkDeficit_
(

Switch :: lookupOrAddToDict
(

"modelkDeficit",
this ->coeffDict_ ,
true

)
),
modelSigma_
(

Switch :: lookupOrAddToDict
(

"modelSigma",
this ->coeffDict_ ,
true

)
),

// ========================== Fields to be modelled ========================
// The correction/classifier fields are initialized at a bit -specific small
// value. The READ_IF_PRESENT directive is used to overwrite this value
// with whatever is read in from the zero directory. If model{var}_ is
// true , it is later checked whether the field was successfully read in by
// checking whether the field still has the specific initialized value.
// If model{var} is false , the initialized value is overwritten by
// whatever is calculated based on the model equation.

kDeficit_
(

IOobject(
"kDeficit",

this ->runTime_.timeName (),
this ->mesh_ ,
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IOobject :: READ_IF_PRESENT ,
IOobject :: AUTO_WRITE

),
this ->mesh_ ,
dimensionedScalar
(

"kDeficit",
dimensionSet (0,2,-3,0,0,0,0),
1.20813608515e-37

)
),
bijDelta_
(

IOobject
(

"bijDelta",
this ->runTime_.timeName (),
this ->mesh_ ,
IOobject :: READ_IF_PRESENT ,
IOobject :: AUTO_WRITE

),
this ->mesh_ ,
dimensionedSymmTensor
(

"bijDelta",
dimensionSet (0,0,0,0,0,0,0),
symmTensor (1.20813608515e-37,0,0,0,0,0)

)
),
sigma_
(

IOobject(
"sigma",

this ->runTime_.timeName (),
this ->mesh_ ,
IOobject :: READ_IF_PRESENT ,
IOobject :: AUTO_WRITE

),
this ->mesh_ ,
dimensionedScalar
(

"sigma",
dimensionSet (0,0,0,0,0,0,0),
1.20813608515e-37

)
),

// Since the mesh is stationary , wall distance is only computed once at
// the beginning of the run.
y_(

IOobject
(

"walldist",
this ->runTime_.timeName (),
this ->mesh_ ,
IOobject ::NO_READ ,
IOobject :: AUTO_WRITE

),
wallDist ::New(this ->mesh_).y()

)

// Code run at the beginning of the run
{

// Print the turbulence model coefficients (including the custom ones
// defined above).
if (type == typeName)
{

this ->printCoeffs(type);
}

// ========================== Python initialization ========================
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// Start up the Python interpreter
Py_Initialize ();

// Add the run directory to the python path
PyRun_SimpleString("import sys");
PyRun_SimpleString("sys.path.append (\".\")");

// initialize numpy array library
import_array1 ();

// Load the file model_definition.py which should be in the case directory
pName = PyUnicode_DecodeFSDefault("model_definition");
pModule = PyImport_Import(pName);

// Load the model function inside model_definition.py
model = PyObject_GetAttrString(pModule , "model");

// Initialize tuple to be send to Python
model_args = PyTuple_New (2);

// Set num_cells equal to the number of cells in the mesh
num_cells = this ->mesh_.cells ().size();

// Initialize the (num_cells x num_scalars) sized input_vals array. It is
// 1D on purpose so the whole array is contiguous in memory.
input_vals = new double[num_cells*num_scalars ];

}

// ======================== Postprocessing functionality =======================
// Various forms of divDevReff/devRhoReff/divDevRhoReff are called by
// postProcessing functions needing a variable derived from the turbulence
// model. Since the turbulence model is modified by the correction terms ,
// these functions need to be redefined with the correction terms to give
// correct postProcessing results.

// divDevReff function
template <class BasicTurbulenceModel >
tmp <fvVectorMatrix > modelPropagationkOmegaSST <BasicTurbulenceModel >:: divDevReff
(

volVectorField& U
) const
{

Info << "In: modelPropagationkOmegaSST :: divDevReff ()" << endl;
return
(

// Boussinesq part
- fvc::div((this ->alpha_*this ->rho_*this ->nuEff ())*dev2(T(fvc::grad(U))))
- fvm:: laplacian(this ->alpha_*this ->rho_*this ->nuEff(), U)

// Nonlinear correction part
+ this ->sigma_ * fvc::div(dev (2.*this ->k_*this ->bijDelta_) *
useRST_ * xi_)

);
}

// devRhoReff function
template <class BasicTurbulenceModel >
Foam::tmp <Foam:: volSymmTensorField >
modelPropagationkOmegaSST <BasicTurbulenceModel >:: devRhoReff () const
{

Info << "In: modelPropagationkOmegaSST :: devRhoReff ()" << endl;
return volSymmTensorField ::New
(

// Boussinesq part
IOobject :: groupName("devRhoReff", this ->alphaRhoPhi_.group()),
(-(this ->alpha_*this ->rho_*this ->nuEff ()))
*dev(twoSymm(fvc::grad(this ->U_)))
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// Nonlinear correction part
+ this ->sigma_ * dev (2.*this ->k_*this ->bijDelta_) * useRST_ * xi_

);
}

// divDevRhoReff function
template <class BasicTurbulenceModel >
Foam::tmp <Foam:: fvVectorMatrix >
modelPropagationkOmegaSST <BasicTurbulenceModel >:: divDevRhoReff
(

volVectorField& U
) const
{

Info << "In: modelPropagationkOmegaSST :: divDevRhoReff ()" << endl;
return
(

// Boussinesq part
- fvc::div((this ->alpha_*this ->rho_*this ->nuEff ())*dev2(T(fvc::grad(U))))
- fvm:: laplacian(this ->alpha_*this ->rho_*this ->nuEff(), U)

// Nonlinear correction part
+ this ->sigma_ * fvc::div(dev (2.*this ->k_*this ->bijDelta_) *
useRST_ * xi_)

);
}

// divDevRhoReff function (different input template)
template <class BasicTurbulenceModel >
Foam::tmp <Foam:: fvVectorMatrix >
modelPropagationkOmegaSST <BasicTurbulenceModel >:: divDevRhoReff
(

const volScalarField& rho ,
volVectorField& U

) const
{

Info << "In: modelPropagationkOmegaSST :: divDevRhoReff ()" << endl;
return
(

// Boussinesq part
- fvc::div((this ->alpha_*rho*this ->nuEff())*dev2(T(fvc::grad(U))))
- fvm:: laplacian(this ->alpha_*rho*this ->nuEff(), U)

// Nonlinear correction part
+ this ->sigma_ * fvc::div(dev (2.*this ->k_*this ->bijDelta_) *
useRST_ * xi_)

);
}

// ============================ Main function =================================
// Given below is the :: correct () function of the turbulence model , which is
// called each iteration to obtain a new estimate of the Reynolds stress
// tensor (RST). Besides the normal calculation of the RST using k-omega SST ,
// the Python interaction to calculate correction fields is also included
// in this function.

template <class BasicTurbulenceModel >
void modelPropagationkOmegaSST <BasicTurbulenceModel >:: correct ()
{

// ====================== Existing k-omega SST code =======================

if (!this ->turbulence_)
{

return;
}

// Local references
const alphaField& alpha = this ->alpha_;
const rhoField& rho = this ->rho_;
const surfaceScalarField& alphaRhoPhi = this ->alphaRhoPhi_;
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const volVectorField& U = this ->U_;
volScalarField& nut = this ->nut_;
fv:: options& fvOptions(fv:: options ::New(this ->mesh_));

// Manually load omega_ and k_; in base kOmegaSST this happends
// automatically as they are defined there.
volScalarField& omega_ = this ->omega_;
volScalarField& k_ = this ->k_;

BasicTurbulenceModel :: correct ();

volScalarField :: Internal divU
(

fvc::div(fvc:: absolute(this ->phi(), U))()()
);

tmp <volTensorField > tgradU = fvc::grad(U);
volScalarField S2(2* magSqr(symm(tgradU ())));
volScalarField GbyNu(dev(twoSymm(tgradU ())) && tgradU ());
volScalarField :: Internal G(this ->GName(), nut()*GbyNu);

volScalarField CDkOmega
(

(2*this ->alphaOmega2_)*(fvc::grad(k_) & fvc::grad(omega_))/omega_
);

volScalarField F1(this ->F1(CDkOmega));
volScalarField F23(this ->F23());

// ================= Custom variable calculation ==========================

// Calculate vorticity (needed for q_V feature)
tmp <volVectorField > tcurlU = fvc::curl(U);

Info << "In: modelPropagationkOmegaSST.correct ()" << endl;

// Calculate the ramping variable xi_
const dimensionedScalar time = this ->runTime_;
xi_ = (time < rampStartTime_)? 0.0:

(time > rampEndTime_)? 1.0:
(time - rampStartTime_) / (rampEndTime_ - rampStartTime_);

Info << "Corrections: xi = " << xi_.value () <<
", kDeficit factor = " << (xi_*usekDeficit_).value () <<
", bijDelta factor = " << (xi_*useRST_).value() << endl;

// ========================== Python interaction during run ================

//Load the latest p_ as a variable
word pName_ = ("p");
tmp <volScalarField > p_ = U.db().lookupObject <volScalarField >( pName_);

//Get the gradient fields of p and k
tmp <volVectorField > tgradp = fvc::grad(p_);
tmp <volVectorField > tgradk = fvc::grad(k_);

// Loop over each mesh cell and store relevant variables in the array which
// is passed to Python.
forAll(k_.internalField (), id)
{

// First nine elements correspond to the components of the gradU tensor
input_vals[id*num_scalars + 0] = tgradU ()[id][0];
input_vals[id*num_scalars + 1] = tgradU ()[id][1];
input_vals[id*num_scalars + 2] = tgradU ()[id][2];
input_vals[id*num_scalars + 3] = tgradU ()[id][3];
input_vals[id*num_scalars + 4] = tgradU ()[id][4];
input_vals[id*num_scalars + 5] = tgradU ()[id][5];
input_vals[id*num_scalars + 6] = tgradU ()[id][6];
input_vals[id*num_scalars + 7] = tgradU ()[id][7];
input_vals[id*num_scalars + 8] = tgradU ()[id][8];

// Tenth element corresponds to k
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input_vals[id*num_scalars + 9] = k_[id];

// Eleventh element corresponds to omega
input_vals[id*num_scalars + 10] = omega_[id];

// Twelfth -fourteenth elements correspond to components of the
// gradp vector.
input_vals[id*num_scalars + 11] = tgradp ()[id ][0];
input_vals[id*num_scalars + 12] = tgradp ()[id ][1];
input_vals[id*num_scalars + 13] = tgradp ()[id ][2];

// Fifteenth -seventeenth elements correspond to components of the
// gradk vector.
input_vals[id*num_scalars + 14] = tgradk ()[id ][0];
input_vals[id*num_scalars + 15] = tgradk ()[id ][1];
input_vals[id*num_scalars + 16] = tgradk ()[id ][2];

// Eighteenth element corresponds to nu_t
input_vals[id*num_scalars + 17] = nut()[id];

// Nineteenth -twenty -first elements correspond to components of the
// U vector.
input_vals[id*num_scalars + 18] = U()[id][0];
input_vals[id*num_scalars + 19] = U()[id][1];
input_vals[id*num_scalars + 20] = U()[id][2];

// Twenty -second element corresponds to the wall distance
input_vals[id*num_scalars + 21] = y_[id];

// Twenty -third element corresponds to the viscosity
input_vals[id*num_scalars + 22] = this ->nu()().internalField ()[id];

// Twenty -fourth -twenty -sixth elements corresponds to components
// of curlU vector.
input_vals[id*num_scalars + 23] = tcurlU ()[id ][0];
input_vals[id*num_scalars + 24] = tcurlU ()[id ][1];
input_vals[id*num_scalars + 25] = tcurlU ()[id ][2];

}

// Clear temporary arrays with gradients/vorticity
tgradp.clear ();
tgradk.clear ();
tcurlU.clear ();

// Get the array dimensions in a format understood by Numpy
npy_intp dim[] = {num_cells , num_scalars };

// Convert the input_vals array to a format understood by Numpy
array_2d = PyArray_SimpleNewFromData (2, dim , NPY_DOUBLE , &input_vals [0]);

// Set the first element of the tuple to the array to be send to Python
PyTuple_SetItem(model_args , 0, array_2d);

// Create dictionary of booleans relevant for Python and set it as the
// second element of the tuple to be send to Python.
boolDict = PyDict_New ();
PyDict_SetItemString(boolDict , "modelkDeficit",

PyLong_FromLong(modelkDeficit_));
PyDict_SetItemString(boolDict , "modelRST", PyLong_FromLong(modelRST_));
PyDict_SetItemString(boolDict , "useSigma", PyLong_FromLong(useSigma_));
PyDict_SetItemString(boolDict , "modelSigma", PyLong_FromLong(modelSigma_));
PyTuple_SetItem(model_args , 1, boolDict);

// Call the model () function in Python with the input_vals in a tuple as
// the argument. The array returned by Python is loaded into pReturn ,
// which is initialized here.
PyObject* pReturn = PyObject_CallObject(model , model_args);

// Cast pReturn to a PyArrayObject and store it in pValue
pValue = reinterpret_cast <PyArrayObject *>(pReturn);
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// Check if the returned array has the expected number of rows
// (corresponding to number of cells). If not , throw an error.
if (PyArray_DIMS(pValue)[0] != num_cells){

FatalError << "Number of rows (corresponding to the number of mesh "
<< "cells) returned by Python does not correspond to the number of "
<< "mesh cells sent to Python." << nl << exit(FatalError);

}

// Check if the returned array has the expected number of columns
// (corresponding to first column kDeficit , next six bijDelta and last
// column sigma). If not , throw an error.
if (PyArray_DIMS(pValue)[1] != num_return){

FatalError << "Number of columns of the array returned by Python does"
<< " not correspond to the expected number of columns (8). The first "
<< "column should be kDeficit , the next six columns components of "
<< "bijDelta (XX, XY, XZ , YY , ZZ) and the last column sigma."
<< nl << exit(FatalError);

}

// If kDeficit is modeled , extract it as the first column of the returned
// array. If it is not modeled , check whether the file was succesfully
// read in. If not , throw an error.
if (modelkDeficit_)
{

forAll(kDeficit_.internalField (), id)
{

kDeficit_[id] = *(( double *) PyArray_GETPTR2(pValue , id, 0));
}

}
else if (kDeficit_ [0] == 1.20813608515e-37)
{

FatalError << "modelkDeficit set to false , but no kDeficit file found"
<< nl << exit(FatalError);

}

// If bijDelta is modeled , extract it as the next six columns of the
// returned array. If it is not modeled , check whether the file was
// succesfully read in. If not , throw an error.
if (modelRST_)
{

forAll(bijDelta_.internalField (), id)
{

bijDelta_[id][0] = *(( double *) PyArray_GETPTR2(pValue , id , 1));
bijDelta_[id][1] = *(( double *) PyArray_GETPTR2(pValue , id , 2));
bijDelta_[id][2] = *(( double *) PyArray_GETPTR2(pValue , id , 3));
bijDelta_[id][3] = *(( double *) PyArray_GETPTR2(pValue , id , 4));
bijDelta_[id][4] = *(( double *) PyArray_GETPTR2(pValue , id , 5));
bijDelta_[id][5] = *(( double *) PyArray_GETPTR2(pValue , id , 6));

}
}
else if (bijDelta_ [0][0] == 1.20813608515e-37)
{

FatalError << "modelbijDelta set to false , but no bijDelta file found"
<< nl << exit(FatalError);

}

// If sigma is used , either read it in from a file or calculate it.
// If sigma is not used , set it to 1. everywhere.
if (useSigma_)
{

// If modelSigma_ is true , extract the last column of pValue as sigma.
// If useSigma_ is false , check if the file was succesfully read in,
// otherwise throw an error.
if (modelSigma_)
{

forAll(sigma_.internalField (), id)
{

sigma_[id] = *(( double *) PyArray_GETPTR2(pValue , id , 7));
}

}
else if (sigma_ [0] == 1.20813608515e-37)
{

FatalError << "modelSigma set to false , but no sigma file found"
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<< nl << exit(FatalError);
}

}
else
{

forAll(sigma_.internalField (), id)
{

sigma_[id] = 1.;
}

}

//Free the memory of pReturn to prevent a memory leak
Py_DECREF(pReturn);

// ======================= Existing k-omega SST code =======================
// Solving the omega and k equations of the k-omega SST turbulence model ,
// slightly modified to add the corrections just calculated in Python.

// Modified version of the G variable which also includes the effect of
// the corrections.
volScalarField G2
(

"G2",
nut*GbyNu - xi_ * useRST_ * sigma_ * (2*(this ->k_)*bijDelta_ && tgradU ())
);

// Finally clear the temporary gradient of U variable.
tgradU.clear ();

// -------------------------- omega equation ---------------------------
{

volScalarField :: Internal gamma(this ->gamma(F1));
volScalarField :: Internal beta(this ->beta(F1));

// Turbulent frequency equation
tmp <fvScalarMatrix > omegaEqn
(

fvm::ddt(alpha , rho , omega_)
+ fvm::div(alphaRhoPhi , omega_)
- fvm:: laplacian(alpha*rho*this ->DomegaEff(F1), omega_)

==
alpha ()*rho()*gamma

*min
(

// Production modified due to RST correction
G2 / nut(),

(this ->c1_/this ->a1_)*this ->betaStar_*omega_ ()
*max(this ->a1_*omega_ (), this ->b1_*F23()*sqrt(S2()))

)
// Production modified due to k-equation correction

+ alpha ()*rho()*gamma*sigma_*kDeficit_/nut()*(xi_ * usekDeficit_)
- fvm::SuSp ((2.0/3.0)*alpha ()*rho()*gamma*divU , omega_)
- fvm::Sp(alpha ()*rho()*beta*omega_ (), omega_)
- fvm::SuSp

(
alpha()*rho()*(F1() - scalar (1))*CDkOmega ()/omega_ (),
omega_

)
+ this ->Qsas(S2(), gamma , beta)
+ this ->omegaSource ()
+ fvOptions(alpha , rho , omega_)

);

// Update omega and G at the wall
omega_.boundaryFieldRef ().updateCoeffs ();

omegaEqn.ref().relax();
fvOptions.constrain(omegaEqn.ref());
omegaEqn.ref().boundaryManipulate(omega_.boundaryFieldRef ());
solve(omegaEqn);
fvOptions.correct(omega_);
bound(omega_ , this ->omegaMin_);
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}

// ------------------ Turbulent kinetic energy equation -------------------
tmp <fvScalarMatrix > kEqn
(

fvm::ddt(alpha , rho , k_)
+ fvm::div(alphaRhoPhi , k_)
- fvm:: laplacian(alpha*rho*this ->DkEff(F1), k_)

==
// Production modified due to RST correction

alpha ()*rho()*this ->Pk(G2)
// Production modified due to k-equation correction

+ alpha ()*rho()*sigma_*kDeficit_ ()*(xi_ * usekDeficit_)
- fvm::SuSp ((2.0/3.0)*alpha ()*rho()*divU , k_)
- fvm::Sp(alpha ()*rho()*this ->epsilonByk(F1, F23), k_)
+ this ->kSource ()
+ fvOptions(alpha , rho , k_)

);

kEqn.ref().relax ();
fvOptions.constrain(kEqn.ref());
solve(kEqn);
fvOptions.correct(k_);
bound(k_ , this ->kMin_);

this ->correctNut(S2, F23);
}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace RASModels
} // End namespace Foam

// ************************************************************************* //
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D.2 model_definition.py Python file called by modelPropaga-
tionkOmegaSST

’’’Template for the Python file used by modelPropagationFoam (using
modelPropagation ... as a turbulence model). This file should be in the case
directory where the model is propagated. With the current setup , this file looks
for three other files; kDeficitEq , bijDeltaEq , and sigmaEq , defining the
equation for kDeficit , bijDelta and sigma respectively. The equation file for
kDeficit/bijDelta/sigma only needs to be present if modelkDeficit/modelRST/
modelSigma is true.

Note: when there is an error in this Python file , it will not be printed by
OpenFOAM. Rather , a segmentation error will occur. In this case , it is
recommended to uncomment the last line of this file calling the model () function
with a dummy input to check for errors.

Author : Kaj ’’’

#================================================================================
#Import required libraries

import numpy as np
import os
from sparta.features import FlowFeatures
from sparta.util import rdiv , rlog , sqrt_abs
from readOFInternalField import readOFInternalField
import contextlib
import gc

#Use magnitude of gradU tensor to nondimensionalize S and W
meanFlowTimeScale = True

#================================================================================
#Reading in the equations

#Read the contents of the kDeficitEq , bijDeltaEq and sigmaEq files ,
#removing enters. If the file is not present , the content
#variable (kDeficitEq/bijDeltaEq/sigmaEq) is set to False.
if os.path.isfile(’./ kDeficitEq ’):

with open(’./ kDeficitEq ’) as fkDeficit:
kDeficitEq = fkDeficit.read().replace(’\n’,’’)

else:
kDeficitEq = False

if os.path.isfile(’./ bijDeltaEq ’):
with open(’./ bijDeltaEq ’) as fbijDelta:

bijDeltaEq = fbijDelta.read().replace(’\n’,’’)
else:

bijDeltaEq = False

if os.path.isfile(’./ sigmaEq ’):
with open(’./ sigmaEq ’) as fSigma:

sigmaEq = fSigma.read().replace(’\n’,’’)
else:

sigmaEq = False

#Read in the 0/ kDeficit and 0/ bijDelta files if present.
#if modelkDeficit or modelRST are false , they are later updated with their
#calculated value.
kDeficitIn0 , bijDeltaIn0 = False , False
if os.path.isfile(’./0/ kDeficit ’):

kDeficit0 = readOFInternalField(’./0/ kDeficit ’)
kDeficitIn0 = True

if os.path.isfile(’./0/ bijDelta ’):
bijDelta0 = readOFInternalField(’./0/ bijDelta ’)
bijDeltaIn0 = True

#Dictionary of functions which may appear in the equation strings
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funcDict = {’exp’ : np.exp , ’abs’ : np.abs , ’tanh’ : np.tanh ,
’sqrt’ : np.sqrt , ’np’ : np ,#Numpy
’rdiv’ : rdiv , ’rlog’ : rlog , ’sqrt_abs ’ : sqrt_abs} #Custom

#================================================================================
#Main function run by OpenFOAM as well as helper functions

def model(InputArray , boolDict):
’’’Main function that is called by OpenFOAM to evaluate kDeficit ,
bijDelta and sigma. Loads the lazy flow.vv dictionary from the
sparta.features library into the featureDict variable. If modelkDeficit/
modelRST/modelSigma is true , kDeficit/bijDelta/sigma are calculated by
evaluating their formatted equation. For consistency , all arrays will be
three dimensional , with the first axes corresponding to different cells.
This means that:

-scalars have shape (nMeshCells , 1, 1)
-vectors have shape (nMeshCells , 3, 1)
-tensors have shape (nMeshCells , 3, 3)

Input:
InputArray : Array of shape (nMeshCells , 26), the columns corresponding to:

-the 9 components of the velocity gradient tensor
-turbulent kinetic energy k
-specific turbulence dissipation omega
-the 3 components of the pressure gradient vector
-the 3 components of the turbulent kinetic energy gradient

vector
-the eddy viscosity nut
-the 3 components of the velocity vector
-the wall distance
-the molecular viscosity nu
-the 3 components of the vorticity vector

boolDict : Dictionary holding user defined booleans of whether to use and
model the variables. Should have the following keys with either
True or False as the corresponding entry:

-useSigma : whether to use a classifier
-modelSigma : whether to use a model for the classifier
-modelkDeficit : whether to use a model for kDeficit
-modelRST : whether to use a model for bijDelta

Output:
OutputArray : Array of shape (nMeshCells , 8), the columns corresponding to:

-kDeficit
-the six components of the symmetric bijDelta tensor
-sigma ’’’

#Get the number of cells
NCells = InputArray.shape [0]

#Setup a FlowFeatures object from InputArray , this does not have the features
#set up yet.
flow = FlowFeatures.from_inputarray(InputArray)

#Set up the features for the FlowFeatures object. If the program is not run
#directly (but presumably by OpenFOAM), suppress the print output for better
#performance.
if __name__ != "__main__":

with contextlib.redirect_stdout(None):
flow.setup_features(meanFlowTimeScale=meanFlowTimeScale)

else:
flow.setup_features(meanFlowTimeScale=meanFlowTimeScale)

#Extract the lazy feature dictionary from the FlowFeatures object
featureDict = flow.vv

#Add "const" to the featureDict as a variable; this was used in some old
#equations , it is simply 1 everywhere.
featureDict[’const’] = lambda : np.ones(NCells)
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#----------------------------------------------------------------------------
#Evaluating the equations and returning kDeficit and bijDelta back to
#OpenFOAM.

#Evaluate the read in kDeficit equation if modelkDeficit is True.
#Else , set kDeficit to nan everywhere as it is not used anyway.
if boolDict[’modelkDeficit ’]:

if not kDeficitEq:
raise Exception ((’modelkDeficit is set to True , but no kDeficitEq ’

’is provided in the case directory.’))
featureDict[’kDeficit ’] = eval(kDeficitEq , funcDict , featureDict)

else:

featureDict[’kDeficit ’] = np.ones(NCells)*np.nan

#Evaluate the read in bijDelta equation if modelRST is True.
#Else , set kDeficit to nan everywhere as it is not used anyway.
if boolDict[’modelRST ’]:

if not bijDeltaEq:
raise Exception ((’modelRST is set to True , but no bijDeltaEq ’

’is provided in the case directory.’))

featureDict[’bijDelta ’] = eval(bijDeltaEq , funcDict , featureDict)
else:

featureDict[’bijDelta ’] = np.ones((6, NCells))*np.nan

#Dot product between bijDelta and gradU tensor , could be used by a
#classifier criterion.
featureDict[’bijDeltaGradU ’] = lambda :\

(( featureDict[’bijDelta ’].T)[:,0]* featureDict[’gradU’][:,0,0] +\
(featureDict[’bijDelta ’].T)[:,1]* featureDict[’gradU’][:,0,1] +\
(featureDict[’bijDelta ’].T)[:,2]* featureDict[’gradU’][:,0,2] +\
(featureDict[’bijDelta ’].T)[:,1]* featureDict[’gradU’][:,1,0] +\
(featureDict[’bijDelta ’].T)[:,3]* featureDict[’gradU’][:,1,1] +\
(featureDict[’bijDelta ’].T)[:,4]* featureDict[’gradU’][:,1,2] +\
(featureDict[’bijDelta ’].T)[:,2]* featureDict[’gradU’][:,2,0] +\
(featureDict[’bijDelta ’].T)[:,4]* featureDict[’gradU’][:,2,1] +\
(featureDict[’bijDelta ’].T)[:,5]* featureDict[’gradU’][:,2,2])

#Boussinesq production of k, could be used by a classifier criterion.
featureDict[’PkBoussinesq ’] = lambda : 2* featureDict[’nut’]*np.sum(\

(( featureDict[’gradU’] + featureDict[’gradU’]. swapaxes(-1, -2))*\
featureDict[’gradU’]), axis=(-1,-2))

#Evaluate the read in sigma equation if useSigma and modelSigma are True.
#Otherwise set sigma to nan as it is not used anyway.
if boolDict[’useSigma ’] and boolDict[’modelSigma ’]:

#Check if the sigmaEq file was successfully read in.
if not sigmaEq:

raise Exception ((’useSigma and modelSigma are set to True , but no’
’sigmaEq is provided in the case directory.’))

#If kDeficit appears in the sigma equation and is not modeled , check
#if it was successfully read in from the 0 directory and add it to
#featureDict.
if ’kDeficit ’ in sigmaEq:

if not boolDict[’modelkDeficit ’]:
if not kDeficitIn0:

raise Exception ((’modelkDeficit is set to False , but no ’
’kDeficit file provided in the 0 directory.’))

featureDict[’kDeficit ’] = kDeficit0

#If bijDelta appears in the sigma equation and is not modeled , check
#if it was successfully read in from the 0 directory and add it to
#featureDict.
if ’bijDelta ’ in sigmaEq:
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if not boolDict[’modelRST ’]:
if not bijDeltaIn0:

raise Exception ((’modelbijDelta is set to False , but no ’
’bijDelta file provided in the 0 directory.’))

featureDict[’bijDelta ’] = bijDelta0.T

sigma = eval(sigmaEq , funcDict , featureDict)

else:
sigma = np.ones(NCells)*np.nan

#Create the return array , with 8 columns and NCells rows.
#The first column corresponds to kDeficit , the next 6 to the components
#of bijDelta and the last to sigma.
ReturnArray = np.concatenate ([ featureDict[’kDeficit ’]. reshape ((-1,1)),

featureDict[’bijDelta ’].T,
sigma.reshape ((-1,1))], axis=-1)

#Cleanup to prevent memory leaks
del InputArray , flow , featureDict , sigma , boolDict

gc.collect ()

#Return the array; first column corresponds to kDeficit , last six columns
#to the unique components of bijDelta.
return ReturnArray

#================================================================================
#Debugging switch: uncomment to run the model from Python to check for errors.

’’’
boolDict = {’modelkDeficit ’ : True ,

’modelRST ’ : False ,
’useSigma ’ : True ,
’modelSigma ’ : True}

returnArray = model(np.ones ((2209 ,26)), boolDict)#’’’

184



D.3 Custom solver for model propagation (modelPropagation-
Foam)

D.3.1 modelPropagationFoam.C

/* ---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https :// openfoam.org
\\ / A nd | Copyright (C) 2011 -2018 OpenFOAM Foundation
\\/ M anipulation |

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not , see <http ://www.gnu.org/licenses/>.

Application
modelPropagationFoam

Description
Steady -state solver for incompressible , turbulent flow , using the SIMPLE
algorithm. Modified to prevent a numpy error when evaluating a custom
turbulence model in Python.

\*---------------------------------------------------------------------------*/

#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "simpleControl.H"
#include "fvOptions.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc , char *argv [])
{

// ============= Code modified compared to simpleFoam.C ===================

// simpleFoam.C includes the default postProcess.H file here; see the
// modifiedPostProcess.H file for the differences.
#include "modifiedPostProcess.H"

// The following part is instead of #include setRootCaseLists.H; this is
// to prevent a numpy error.
#include "listOptions.H"
Foam:: argList args(argc , argv , true ,true ,/* initialise=*/ false);
if (!args.checkRootCase ())
{

Foam:: FatalError.exit();
}
#include "listOutput.H"

// =================== Existing simpleFoam.C code =========================

#include "createTime.H"
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#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "initContinuityErrs.H"

turbulence ->validate ();

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info << "\nStarting time loop\n" << endl;

while (simple.loop(runTime))
{

Info << "Time = " << runTime.timeName () << nl << endl;

// --- Pressure -velocity SIMPLE corrector
{

#include "UEqn.H"
#include "pEqn.H"

}

laminarTransport.correct ();
turbulence ->correct ();

runTime.write();

Info << "ExecutionTime = " << runTime.elapsedCpuTime () << " s"
<< " ClockTime = " << runTime.elapsedClockTime () << " s"
<< nl << endl;

}

Info << "End\n" << endl;

return 0;
}

// ************************************************************************* //
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D.3.2 modifiedPostProcess.H

/* ---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https :// openfoam.org
\\ / A nd | Copyright (C) 2016 -2018 OpenFOAM Foundation
\\/ M anipulation |

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not , see <http ://www.gnu.org/licenses/>.

Global
postProcess

Description
Execute application functionObjects to post -process existing results.

If the "dict" argument is specified the functionObjectList is constructed
from that dictionary otherwise the functionObjectList is constructed from
the "functions" sub -dictionary of "system/controlDict"

Multiple time -steps may be processed and the standard utility time
controls are provided.

\*---------------------------------------------------------------------------*/

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

#ifndef CREATE_TIME
#define CREATE_TIME createTime.H

#endif

#ifndef CREATE_MESH
#define CREATE_MESH createMesh.H

#endif

#ifndef CREATE_FIELDS
#define CREATE_FIELDS createFields.H

#endif

#ifndef CREATE_CONTROL
#define CREATE_CONTROL createControl.H

#endif

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

#define INCLUDE_FILE(X) INCLUDE_FILE2(X)
#define INCLUDE_FILE2(X) #X

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Foam:: argList :: addBoolOption
(

argList :: postProcessOptionName ,
"Execute functionObjects only"

);

if (argList :: postProcess(argc , argv))
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{
Foam:: timeSelector :: addOptions ();
#include "addRegionOption.H"
#include "addFunctionObjectOptions.H"

// Set functionObject post -processing mode
functionObject :: postProcess = true;

// ============= Code modified compared to postProcess.H ===================

// The following part is instead of #include setRootCases.H; this is to
// prevent a numpy error.
Foam:: argList args(argc , argv , true ,true ,/* initialise=*/ false);
if (!args.checkRootCase ())
{

Foam:: FatalError.exit();
}

// =================== Existing postProcess.H code =========================

if (args.optionFound("list"))
{

functionObjectList ::list();
return 0;

}

#include INCLUDE_FILE(CREATE_TIME)
Foam:: instantList timeDirs = Foam:: timeSelector :: select0(runTime , args);
#include INCLUDE_FILE(CREATE_MESH)

#ifndef NO_CONTROL
#include INCLUDE_FILE(CREATE_CONTROL)
#endif

forAll(timeDirs , timei)
{

runTime.setTime(timeDirs[timei], timei);

Info << "Time = " << runTime.timeName () << endl;

FatalIOError.throwExceptions ();

try
{

#include INCLUDE_FILE(CREATE_FIELDS)

#ifdef CREATE_FIELDS_2
#include INCLUDE_FILE(CREATE_FIELDS_2)
#endif

#ifdef CREATE_FIELDS_3
#include INCLUDE_FILE(CREATE_FIELDS_3)
#endif

// Externally stored dictionary for functionObjectList
// if not constructed from runTime
dictionary functionsControlDict("controlDict");

HashSet <word > selectedFields;

// Construct functionObjectList
autoPtr <functionObjectList > functionsPtr
(

functionObjectList ::New
(

args ,
runTime ,
functionsControlDict ,
selectedFields

)
);

functionsPtr ->execute ();
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}
catch (IOerror& err)
{

Warning << err << endl;
}

// Clear the objects owned by the mesh
mesh.objectRegistry :: clear();

Info << endl;
}

Info << "End\n" << endl;

return 0;
}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

#undef INCLUDE_FILE
#undef INCLUDE_FILE2

#undef CREATE_MESH
#undef CREATE_FIELDS
#undef CREATE_CONTROL

// ************************************************************************* //
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E CuRTA Python library
’’’Program to use non -linear least squares in combination with deficit fitting to
symbolically regress nonlinear functions to predict a target. The main function
to call is regressModel. This function starts by building a library of terms
based on the specified features , functions and bases. Then , the first term is
regressed as the optimal library term. Further terms are found by fitting the
deficit between the target and the established terms. After an additional
optimal term has been found , coefficients of the whole expression are refit.

Author : Kaj Hoefnagel
’’’

#================================================================================
#Libraries to include
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from functools import partial
import time
from sklearn.metrics import r2_score
from sparta.util import LazyDict
from sparta.features import FlowFeatures
import os

#================================================================================
#Bases names

#kDeficit bases names without mean flow timescale: epsilon , G1, ..., G10
PkScalars = [’epsilon ’, *[f’G{i}’ for i in range (1 ,11)]]

#bijDelta bases names without mean flow timescale: T1, ..., T10
baseTensors = [f’T{i}’ for i in range (1,11)]

#kDeficit bases names with mean flow timescale: epsilon , G1_s , ..., G10_s
PkScalars_s = [’epsilon ’, *[f’G{i}_s’ for i in range (1,11)]]

#bijDelta bases names without mean flow timescale: T1_s , ..., T10_s
baseTensors_s = [f’T{i}_s’ for i in range (1,11)]

#================================================================================
#Goodness of fit functions

def getRMSE(funcTarget , exactTarget , targetFunc=None , weights=None):
’’’Function to calculate the root mean squared error between the functional
approximation of a target and the exact target.

Inputs:
-funcTarget : array_like

Array of approximations of the target.
-exactTarget : array_like

Array of the exact target , must have the same shape as funcTarget.
-targetFunc : {callable , None}, optional

Function that takes an equation string as argument and returns a new
string in which the input string is manipulated. For example , if the
equation string "q_nu*T2" is inputted (symmetric tensor),
a targetFunc could be the trace , returning the first , fourth and
sixth column; targetFunc ("q_nu*T2") = "(q_nu*T2)[: ,[0 ,3 ,5]]".
This targetFunc will be applied to the funcTarget and exactTarget
before calculating the RMSE. If the RMSE should be calculated
directly from funcTarget and exactTarget , targetFunc is set to None.
The default is None.

-weights : {array_like , None}, optional
Array of weights by which to weigh the root mean squared error.
Should have the same shape as funcTarget evaluated through the
targetFunc. If each point should be weighed equally , weights should
be None. The default is None.

Output:
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-RMSE : array_like
(Weighed) root mean square error at each point , same shape as
targetFunc(funcTarget).’’’

#If the specified targetFunc is not None , evaluate it on funcTarget and
#exactTarget to apply the targetFunc.
if targetFunc is not None:

funcTarget = eval(targetFunc(’funcTarget ’))
exactTarget = eval(targetFunc(’exactTarget ’))

#Return the square root of the weighted average of squares of differences
#(weighted RMSE).
return np.sqrt(np.average ((funcTarget -exactTarget)**2, weights=weights))

def getRSquared(funcTarget , exactTarget , targetFunc=None , weights=None):
’’’Function to calculate the (weighted) coefficient of determination (R^2)
given the functional approximation of a target and the exact target.

Inputs:
-funcTarget : array_like

Array of approximations of the target.
-exactTarget : array_like

Array of the exact target , must have the same shape as funcTarget.
-targetFunc : {callable , None}, optional

Function that takes an equation string as argument and returns a new
string in which the input string is manipulated. For example , if the
equation string "q_nu*T2" is inputted (symmetric tensor),
a targetFunc could be the trace , returning the first , fourth and
sixth column; targetFunc ("q_nu*T2") = "(q_nu*T2)[: ,[0 ,3 ,5]]".
This targetFunc will be applied to the funcTarget and exactTarget
before calculating the R^2. If the R^2 should be calculated
directly from funcTarget and exactTarget , targetFunc is set to None.
The default is None.

-weights : {array_like , None}, optional
Array of weights by which to weigh coefficient of determination.
Should have the same shape as funcTarget evaluated through the
targetFunc. If each point should be weighed equally , weights should
be None. The default is None.

Output:
-R2 : array_like

Weighted coefficient of determination (R^2) at each point , same shape
as targetFunc(funcTarget).’’’

#If the specified targetFunc is not None , evaluate it on funcTarget and
#exactTarget to apply the targetFunc.
if targetFunc is not None:

funcTarget = eval(targetFunc(’funcTarget ’))
exactTarget = eval(targetFunc(’exactTarget ’))

#Return the weighted R^2 score.
return r2_score(exactTarget , funcTarget , sample_weight=weights)

#================================================================================
#Non -linear least squares fit of equation functions

class fitClass:
’’’Class to allow optimization of a function with extra arguments with an
arbirary number of fit coefficients. Initialized with eqStr and varDict
(see fitEqStr function for their description). Then , the fitFunc function
should be called by curve_fit , which only needs to pass the x-data (simply 1)
and the coefficients. The eqStr and varDict are than accessed within the
object to return the evaluated eqStr with the specified coefficients.’’’

def __init__(self , eqStr , varDict):
self.eqStr = eqStr
self.varDict = varDict

def fitFunc(self , x, *coeffs):
return eval(self.eqStr , {’coeffs ’ : coeffs , ’np’ : np, **self.varDict ,
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’globFuncs ’ : globFuncs })

def fitEqStr(eqStr , yData , varDict , nCoeffs , maxfev=None , weights=None ,
p0=None , bounds=None):

’’’Function to fit the coefficients in an expression using (weighted)
non -linear least squares , implemented in the scipy.optimize.curve_fit
function. This type of regression can be unstable , so possibility to specify
an initial guess p0 and bounds.

Inputs:
-eqStr : str

String of the equation of which to fit the coefficients. Each
coefficient to be regressed should be denoted ’coeffs[i]’, with
i from zero to the number of coefficients. For instance , to
regress C*tanh(C*q_nu), eqStr should be:

"coeffs [0]*np.tanh(coeffs [1]* q_nu)".
The output of eqStr should be 1D, so fitting of a tensor expression
should already have a targetFunc applied to eqStr.

-yData : (M,) array_like ,
Array of target data to be fitted , e.g. kDeficit. If the target is
a tensor , a targetFunc should already be applied such that it is 1D.

-varDict : dict
Dictionary with variables/features as keys and array as the
corresponding values. Should at least contain the variables in eqStr.
For example , if eqStr is a function of q_nu and T2, these should be
keys of varDict.

-nCoeffs : int
Number of coefficients to regress in eqStr. TODO: automatically
read nCoeffs from eqStr.

-maxfev : {int , None}, optional
Maximum number of function evaluations to perform within the
non -linear least squares optimization. If None is specified , the
default value is used. The default is None.

-weights : {array_like , None}, optional
Array of weights by which to weigh the non -linear least squares.
Should have the same shape as yData. If each point should be weighed
equally , weights should be None. The default is None.

-p0 : {array_like , None}, optional
Initial guess of the coefficients , should have shape (nCoeffs ,).
Alternatively , if None is specified , 1 is used for the initial guess
of each coefficient. The default is None.

-bounds : {2-tuple , None}, optional
Bounds on the coefficients , given as a 2-tuple containing arrays of
length nCoeffs with the lower and upper bound of each coefficient.
In order to use no lower/upper bound , use -np.inf/np.inf. If None
is specified , no bounds are used for all coefficients.
The default is None.

Output:
coeffs : array_like

Array of coefficients resulting from the non -linear least squares
optimization. If the optimization failed , an array of ones is
returned.’’’

#Check if yData is indeed scalar
if np.array(yData).ndim > 1:

raise Exception(’yData has more than one dimension (not a scalar).’)

#The curve_fit function does not have a weight argument , but an uncertainty
#argument sigma. Weighing can be applied by varying sigma; a point with
#more uncertainty has a relatively small weight. The relation between sigma
#and weights is sigma =1/ sqrt(weights).
if weights is None:

sigma = None
else:

sigma = 1/np.sqrt(weights)

#If maxfev is None , use a good guess
if maxfev is None:

maxfev = 1000
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#Usually , p0=None is acceptable for the curve_fit function. However , as a
#starred input is used for the coefficients , p0 needs to be specified as an
#array. Hence , if p0 is None , it is specified as an (nCoeffs ,) array of ones ,
#mimicking default behaviour.
if p0 is None:

p0 = np.ones(nCoeffs)

#The curve_fit function doesn’t accept None as an argument for bounds. Its
#default value is (-np.inf , np.inf), this is input when the bounds input to
#the current function are None.
if bounds is None:

bounds = (-np.inf , np.inf)

#Create a fit object , the class of which is defined above this function.
#This is a hack to pass extra arguments to the fit function while also
#being able to use an arbitrary number of coefficients. The extra arguments
#are eqStr and varDict and they are passed to fitClass instead.
fitObj = fitClass(eqStr , varDict)

#Call the scipy.optimize.curve_fit function , optimizing the fitobjects
#fitFunc. The second argument is the initial guess of the dependent
#variables , no dependent variables are actually passed through curve_fit ,
#so it is just set to one. Dependent variables are passed to fitObj via the
#varDict.
try:

(coeffs), _ = curve_fit(fitObj.fitFunc , 1, yData ,
p0=p0, sigma=sigma , maxfev=maxfev , bounds=bounds)

#If the curve_fit function gives an error , first check if either the maximum
#number of function evaluations was exceeded or the gtol was too small.
#These errors usually occur for badly conditioned expressions. However , they
#shouldn ’t stop the run. Hence , they are printed as errors and the run
#continues with the regressed coeffs set to all ones. Other errors are raised.
except RuntimeError as e:

if ’Number of calls to function has reached maxfev ’ in str(e)\
or ’The maximum number of function evaluations is exceeded ’ in str(e):
coeffs = np.ones(nCoeffs)
print(f’maxfev reached by {eqStr}’)

elif ’gtol’ in str(e) and ’is too small’ in str(e):
coeffs = np.ones(nCoeffs)
print(f’Too small gtol for {eqStr}’)

else:
raise e

return coeffs

#================================================================================
#String formatting/evaluation functions

def transposeTensorEqStr(eqStr):
’’’Function to make all T tensors in an equation string transpose and then
transpose the whole eqStr result. This is to address an issue with shapes of
features; scalar features need to be multiplied by tensors transposed rather
than raw tensors.

Input:
-eqStr : str

Tensorial equation string , e.g. "q_nu*T2 + q_gamma*T3".

Output:
-eqStrTrans : str

Same as input , but all tensors transposed , with the whole eqStr
transposed back again. For the input example , the output would be:

"(q_nu*T2.T + q_gamma*T3.T).T". ’’’

#Loop over each base tensor except the last one (T10(_s)).
#First replace Ti with Ti.T; in case of mean flow tensors , this would make
#T2_s into T2.T_s. Fix this by replacing Ti.T_s with Ti_s.T, giving T2_s.T.
for i in range (1 ,10):

eqStr = eqStr.replace(f’T{i}’, f’T{i}.T’)
eqStr = eqStr.replace(f’T{i}.T_s’, f’T{i}_s.T’)
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#In the above procedure , T10(_s) was also targetted by T1(_s) transpose ,
#giving T1.T0(_s). This is fixed by replacing T1.T0 by T10.T. If mean flow
#was used , the result would be T10.T_s , which is then replaced by T10_s.T.
eqStr = eqStr.replace(’T1.T0’, ’T10.T’)
eqStr = eqStr.replace(’T10.T_s’, ’T10_s.T’)

#Finally , the whole equation it transposed back to get the correct shape.
eqStrTrans = f’({eqStr}).T’

return eqStrTrans

def formatEqStr(eqStrRaw , tensorTarget , targetFunc=None):
’’’Function to format a raw equation string , such that is can be used by
the fitEqStr function. Most importantly , "{C}" which is used in the raw
equation string to indicate a coefficient to fit is replaced with coeffs[i],
where i goes from 0 to the number of "{C}" in the raw equation string.
Furthermore , if the eqStr is tensorial , it is tranposed to prevent shape
errors and a targetFunc is applied to get a 1D result.

Inputs:
-eqStrRaw : str

Raw equation string , where coefficients to regress are denoted by
"{C}".

-tensorTarget : bool
Boolean denoting whether eqStrRaw is a tensorial (True) or
scalar (False) equation.

-targetFunc : {callable , None}, optional
Function that takes an equation string as argument and returns a new
string in which the input string is manipulated. For example , if the
equation string "q_nu*T2" is inputted (symmetric tensor),
a targetFunc could be the trace , returning the first , fourth and
sixth column; targetFunc ("q_nu*T2") = "(q_nu*T2)[: ,[0 ,3 ,5]]".
This targetFunc will be applied to the raw equation string.

Outputs:
-eqStr : str

Formatted equation string ready to be used by the fitEqStr function.
-nCoeffs : int

Number of coefficients to fit in the equation string.’’’

#Initialize the formatted eqStr with eqStrRaw.
eqStr = eqStrRaw

#Replace {C} in equation string by coeffs[i], where i goes from zero to the
#number of coefficients.
nCoeffs =0
while ’{C}’ in eqStr:

eqStr = eqStr.replace(’{C}’, f’coeffs [{ nCoeffs }]’, 1)
nCoeffs += 1

#Tranpose the base tensors if the equation is tensorial and transpose the
#result back (see transposeTensorEqStr for more information).
if tensorTarget:

eqStr = transposeTensorEqStr(eqStr)

#Apply the targetFunc to the eqStr if it is defined.
if targetFunc is not None:

eqStr = targetFunc(eqStr)

return eqStr , nCoeffs

def printEqStrRaw(eqStrRaw , coeffs):
’’’Function to format a raw equation string with its fitted coefficients.

Inputs:
-eqStrRaw : str

Unformatted string of the equation of which the coefficients were
fitted. Each coefficient that was regressed should be denoted "{C}".

-coeffs : array_like
Regressed coefficients of eqStrRaw.
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Output:
regressedEqStr : str

eqStrRaw with the unknown coefficients "{C}" replaced with their
regressed value.’’’

#Initialize printStr with eqStr raw. Then loop over each coeff and replace
#the next instance of "{C}" in the eqStr by the regressed coeff.
regressedEqStr = eqStrRaw
for coeff in coeffs:

regressedEqStr = regressedEqStr.replace(’{C}’, str(coeff), 1)

return regressedEqStr

def evaluateRegressedEqStr(regressedEqStr , varDict , tensorTarget):
’’’Function to evaluate a regressed equation string , with the coefficients
already replaced by their regressed value using the printEqStrRaw function.

Inputs:
-regressedEqStr : str

Regressed equation string , meaning its unknown coefficients are
already replaced with their regressed value.

-varDict : dict
Dictionary with variables/features as keys and array as the
corresponding values. Should at least contain the variables in
regressedEqStr. For example , if regressedEqStr is a function of
q_nu and T2, these should be keys of varDict.

-tensorTarget : bool
Boolean denoting whether regressedEqStr is a tensorial (True) or
scalar (False) equation.

Output:
-targetFit : array_like ,

regressedEqStr evaluated using the variables in varDict.’’’

#Apply transposing to tensors if regressedEqStr is tensorial , such that
#shapes are compatible (see the transposeTensorEqStr function for more
#information).
if tensorTarget:

regressedEqStr = transposeTensorEqStr(regressedEqStr)

#Return the evaluated regressed equation string.
return eval(regressedEqStr , {’np’ : np, ** varDict })

#================================================================================
#Coefficient fitting of a raw equation string

def fitEqStrRaw(eqStrRaw , yData , varDict , tensorTarget , targetFunc=None ,
maxfev=None , weights=None , p0=None , bounds=None):

’’’Function to fit the coefficients in a raw equation string using the
scipy.optimize.curve_fit function , which uses nonlinear least squares.
Since this optimization can be unstable , an initial guess and bounds can
be passed as well.

Inputs:
-eqStrRaw : str

Unformatted string of the equation of which to fit the coefficients.
Each coefficient to be regressed should be denoted "{C}".

-yData : array_like ,
Array of target data to be fitted , e.g. kDeficit.

-varDict : dict
Dictionary with variables/features as keys and array as the
corresponding values. Should at least contain the variables in
eqStrRaw. For example , if eqStr is a function of q_nu and T2 , these
should be keys of varDict.

-tensorTarget : bool
Boolean denoting whether eqStrRaw is a tensorial (True) or
scalar (False) equation.

-targetFunc : {callable , None}, optional
Function that takes an equation string as argument and returns a new
string in which the input string is manipulated. For example , if the
equation string "q_nu*T2" is inputted (symmetric tensor),
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a targetFunc could be the trace , returning the first , fourth and
sixth column; targetFunc ("q_nu*T2") = "(q_nu*T2)[: ,[0 ,3 ,5]]".
This targetFunc will be applied to the raw equation string.

-maxfev : {int , None}, optional
Maximum number of function evaluations to perform within the
non -linear least squares optimization. If None is specified , the
default value is used. The default is None.

-weights : {array_like , None}, optional
Array of weights by which to weigh the non -linear least squares.
Should have the same shape as yData. If each point should be weighed
equally , weights should be None. The default is None.

-p0 : {array_like , None}, optional
Initial guess of the coefficients , should have shape (nCoeffs ,).
Alternatively , if None is specified , 1 is used for the initial guess
of each coefficient. The default is None.

-bounds : {2-tuple , None}, optional
Bounds on the coefficients , given as a 2-tuple containing arrays of
length nCoeffs with the lower and upper bound of each coefficient.
In order to use no lower/upper bound , use -np.inf/np.inf. If None
is specified , no bounds are used for all coefficients.
The default is None.

Outputs:
-regressedEqStr : str

Regressed equation string; inputted eqStrRaw with the coefficients to
fit replaced by their fitted value.

-targetFit : array_like
Target approximation of the regressed eqStr.

-coeffs : array_like
Regressed coefficients.’’’

#Get the formatted equation string and number of coefficients.
eqStr , nCoeffs = formatEqStr(eqStrRaw , tensorTarget , targetFunc)

#Apply the targetFunc to the yData if it is defined to make yData 1D.
if targetFunc is not None:

yData = eval(targetFunc(’yData’))

#Fit the coefficients of the now formatted equation string
coeffs = fitEqStr(eqStr , yData , varDict , nCoeffs , weights=weights ,

p0=p0 , bounds=bounds , maxfev=maxfev)

#If there are nan or inf coefficients , the regression also failed and all
#coefficients are set to 1 to prevent further errors. Also a message is
#printed with the affected eqStr.
if np.max(np.isnan(coeffs)) or np.max(np.isinf(coeffs)):

coeffs = np.ones(nCoeffs)
print(f’NaN/inf coefficients in {eqStr}’)

#Replace the unknown coefficients in eqStrRaw with their regressed value.
regressedEqStr = printEqStrRaw(eqStrRaw , coeffs)

#Find the target predicted by the fitted equation string.
targetFit = evaluateRegressedEqStr(regressedEqStr , varDict , tensorTarget)

return regressedEqStr , targetFit , coeffs

#================================================================================
#Library generation functions

def generateMultiDimList(partialList , loopList , global_degree):
returnList = []
if global_degree == 0:

return [partialList]
if global_degree == 1:

for item in loopList:
returnList.append ([* partialList , item])

else:
for i, item in enumerate(loopList):

subList = generateMultiDimList ([* partialList , item], loopList[i:],
global_degree - 1)
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returnList = [*subList , *returnList]

return returnList

def generateTermLib(bases , features , funcStrings , varDict , target ,
global_degree):

’’’Function to generate a library of terms , containing each possible
combination of functions of global degree scalar features multiplied by
each specified basis. Also adds the variable const , such that lower degree
functions are regressed as well. The library consists of strings , with
coefficients to be regressed denoted {C}. As an example , if global degree 2
is specified , with functions **2 and **3, with feature q_nu and
bases T1 and T2 , the following termLib is generated:

["{C}*const*const*T1", "{C}*const*const*T2",
"{C}*const*q_nu **2*T1", "{C}*const*q_nu **2*T2",
"{C}*const*q_nu **3*T1", "{C}*const*q_nu **3*T2",
"{C}*q_nu **2* q_nu **2*T1", "{C}*q_nu **2* q_nu **2*T2",
"{C}*q_nu **2* q_nu **3*T1", "{C}*q_nu **2* q_nu **3*T2"
"{C}*q_nu **3* q_nu **3*T1", "{C}*q_nu **3* q_nu **3*T2"]

Along with this termLib , a p0Lib and boundLib are generated , containing as
many elements as termLib. The p0Lib contains the initial guesses for each
term’s unknown coefficients and the boundLib contains the bounds for each
term’s unknown coefficients.

Inputs:
bases : list

List of the bases to use , should be strings , e.g. [’T2’, ’T3 ’].
features : list

List of features to use , should be strings , e.g. [’q_nu ’, ’q_gamma ’].
funcStrings : list

List of funcString objects to use.
-varDict : dict

Dictionary with variables/features as keys and array as the
corresponding values. Should at least contain the specified features
and bases.

-target : array_like
Array with the target that is to be regressed , e.g. kDeficit.

-global_degree : int
How many (functions of) features to combine for each term. Can also
be set to zero to only include bases.

Outputs:
-termLib : list

List of terms , generated from the combinations specified from the
input.

-boundLib : list
List of bounds , same length as termLib. Each bounds is a 2-tuple
with the array of lower and upper bounds. The number of bounds is
equal to the number of coefficients to be regressed.

-p0Lib : list
List of initial guesses , same length as termLib. Each entry is an
array with the initial guess for each coefficient to be regressed.’’’

#----------------------------------------------------------------------------
#First create libraries of 1 dimension (global_degree 1) of only
#(functions of) features , so no bases yet. For the example in the function
#description , singleDimTerms would be: ["const", "q_nu **2", "q_nu **3"].

#Initialize 1D termLib , boundsLib and p0Lib as empty lists.
singleDimTerms = []
singleDimBounds = []
singleDimP0 = []

#Loop over each specified feature and then each specified functString. Add
#the expression of each combination to singleDimTerms , each bounds to
#singleDimBounds and each p0 to singleDimP0.
for feature in features:

for funcString in funcStrings:
singleDimTerms.append(funcString(feature))
singleDimBounds.append(funcString.get_bounds (\
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feature=varDict[feature ]))
singleDimP0.append(funcString.get_p0(feature=varDict[feature ]))

#Also add const to the libs. This is not done with any functions , as a
#function of a constant value is always another constant value. Empty
#arrays are appended to bounds and p0 such that they are properly intialized
#as other bounds are later appended to these arrays.
singleDimTerms.append(’const ’)
singleDimBounds.append(np.zeros((2, 0)))
singleDimP0.append(np.zeros (0))

#----------------------------------------------------------------------------
#Achieve the specified global degree by taking outer products of the
#singleDimTerms , singleDimBounds and singleDimP0 lists , global_degree times.
#This results in expression lists with each combination of the single dim
#terms/bounds/p0. As an example , the singleDimTerms
#["const", "q_nu **2", "q_nu **3"] would result in the following multiDimTerms
#when global degree is 2:
#["const*const", "const*q_nu **2", "const*q_nu **3", "q_nu **2* q_nu**2,
# "q_nu **2* q_nu **3", "q_nu **3* q_nu **3"].

multiDimTerms = [’*’.join(term) for term in\
generateMultiDimList ([’’], singleDimTerms , global_degree)]

multiDimBounds = [np.concatenate(bounds , axis=-1) for bounds in\
generateMultiDimList ([np.zeros((2, 0))], singleDimBounds ,

global_degree)]

multiDimP0 = [np.concatenate(p0) for p0 in\
generateMultiDimList ([np.zeros (0)], singleDimP0 ,

global_degree)]

#----------------------------------------------------------------------------
#Add the bases to generate complete term , bounds and p0 lists.

#Initialize the final lists with terms , bounds and p0s.
termLib = []
boundLib = []
p0Lib = []

#Note that up to this point , no coefficient has been added before the
#expression; only inside functions. This coefficient does not have bounds ,
#so they are specified between -inf and inf. The p0 is found for each basis
#separately.
firstTermBounds = np.array([[-np.inf], [np.inf ]])

#Loop over each basis
for basis in bases:

#Find the p0 of the coefficient in front of the term. Due to large
#variation in this coefficient , a reasonable initial guess is
#constructed from the standard deviation of the target and basis.
firstTermP0 = np.array([np.std(target)/np.std(varDict[basis])])

#If the basis has a standard deviation of zero (can happen in 2D
#cases). Set the p0 of the first term simply to 1 to prevent errors.
if np.isinf(firstTermP0):

firstTermP0 = np.ones (1)

#Loop over each term , bounds and p0 and multiDimTerms , multiTermBounds
#and multiDimP0. Multipy the term with the basis and add the coefficient
#in front of the term. Add the bounds and p0 of this first term
#coefficient to bounds and p0.
for multiDimTerm , bounds , p0 in\

zip(multiDimTerms , multiDimBounds , multiDimP0):
termLib.append(’{C}’ + f’{multiDimTerm }*{ basis}’)
boundLib.append(np.concatenate ([ firstTermBounds , bounds], axis=-1))
p0Lib.append(np.concatenate ([ firstTermP0 , p0]))

return termLib , boundLib , p0Lib

198



#================================================================================
#Function definitions

class funcString:
’’’Custom class to aid in properly propagating functions in string form ,
including the bounds and p0 of their unknown coefficients. These bounds
and p0 may depend on the feature in the function , so they can only be
calculated later. By passing a funcstring object , this is possible.’’’

def __init__(self , funcString , bounds=None , p0=None):
’’’Initialization function of a funcString.

Inputs:
funcString : str

String of the function with possibly a feature and unknown
coefficient {C}. For example "np.exp({C}*{ feature }+{C})".

bounds : {2-tuple , None}, optional
Bounds of the coefficient(s) in the funcString. For the example
funcString , bounds could be ([-np.inf , ’-np.std{feature}’],

[0, ’np.std{feature }’]).
The first entry of the tuple are the lower bounds; the second
entry the upper bounds. Both number as well as strings can be
used. If strings are used , they are evaluated and {feature} is
replaced with the feature inputted into the funcString. If None
is specified , no bounds are used. The default is None.

p0 : (nCoeffs ,) array_like , optional
Initial guess for each unknown coefficient. Can again be either
a number or a string to be evaluated for the inputted feature.
If None is specified , 1 is used for the initial guess.
The default is None.’’’

#Set object ’s funcString and nCoeffs property
self.funcString = funcString
self.nCoeffs = funcString.count(’{C}’)

#Set bounds to -inf to inf for each coefficient if the input is None.
if bounds is None:

self.bounds = np.vstack ((np.ones(self.nCoeffs)*-np.inf ,
np.ones(self.nCoeffs)*np.inf))

else:
#If bounds are inputted (not None), check if they are a tuple/list
#with two elements , both with length nCoeffs. If so, set the
#object ’s bounds to the inputted bounds.
if not isinstance(bounds , list) and not isinstance(bounds , tuple):

raise Exception ((’Inputted bounds are not a list ’
’neither a tuple.’))

if len(bounds) != 2:
raise Exception(’Inputted bounds does not have length two.’)

if len(bounds [0]) != self.nCoeffs and len(bounds [1]) != self.nCoeffs:
raise Exception ((’Inputted bounds does not have length nCoeffs ’

’for one of the two internal lists.’))
self.bounds = bounds

#Set p0 to ones (equal to the number of coefficients) if no p0 is
#specified.
if p0 is None:

self.p0 = np.ones(self.nCoeffs)

#If p0 is specified , try to reshape it to a 1D array of length nCoeffs.
#If this is somehow not possible , throw an error.
else:

try:
self.p0 = np.array(p0).reshape ((self.nCoeffs))

except:
raise Exception ((f’passed p0 to funcstring {funcString} cannot ’

’be reshaped to size (self.nCoeffs ,).’))

def __call__(self , feature):
’’’If the object is called with a feature argument , it should return the
funcString formatted with that feature. For example , if the unformatted
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funcString is "{ feature }**3", it should return "q_nu **3" if called with
q_nu.

Input:
-feature : str

The feature with which to format the funcString.

Output:
-formattedEqStr : str

The funcString , but with {feature} replaced with the inputted
feature name.’’’

return self.funcString.replace(’{feature}’, str(feature))

def get_p0(self , feature=None):
’’’Function to get the array of initial guesses as numbers , if strings
with feature dependent functions were inputted , these are evaluated
using the optional feature argument.

Input:
feature : array_like , optional

Array of feature values.

Output:
returnp0 : (nCoeffs ,) array_like

Array of initial guesses for each coefficient in the funcString.
Always consists of numbers; if the funcString object was
initialized with strings (e.g. "np.std({ feature })"), these are
evaluated using the inputted array of feature values.’’’

#Initialize the returned p0 as ones
returnp0 = np.zeros(self.nCoeffs)

#Loop over each coefficient in the funcString
for i in range(self.nCoeffs):

#If the p0 value at this coefficient index is not a string , simply
#set the returnp0 value at this index to the value in the
#funcString ’s p0. Directly continue to the next coefficient index.
if not isinstance(self.p0[i], str):

returnp0[i] = self.p0[i]
continue

#If no feature is specified , check if the string belonging to the
#current coefficient contains ’{feature}’. If so, throw an error.
#Else , simply evaluate the string to attain the p0 of the current
#coefficient as a number. Directly continue to the next coefficient
#index.
if feature is None:

if ’{feature}’ in self.p0[i]:
raise Exception(’No feature provided , but needed to get p0’)

returnp0[i] = eval(self.p0[i])
continue

#If a feature is specified , evaluate the p0 string for the current
#coefficient with this feature.
returnp0[i] = eval(self.p0[i]. replace(’{feature}’, ’feature ’))

return returnp0

def get_bounds(self , feature=None):
’’’Function to get the bounds arrays as numbers , if strings
with feature dependent functions were inputted , these are evaluated
using the optional feature argument.

Input:
feature : array_like , optional

Array of feature values.

Output:
returnBounds : (2, nCoeffs) list
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List of bounds for each coefficient in the funcString. Always
consists of numbers; if the funcString object was initialized
with strings as bounds
(e.g. [["-np.std({ feature })"], ["np.std({ feature })"]]), these are
evaluated using the inputted array of feature values.’’’

#Initialize the returnBounds as a list containing two empty lists;
#the lower and upper bounds. These are appended to within this function
#to fill both with nCoeffs values.
returnBounds = [[] ,[]]

#Loop over the lower and upper bound.
for i in range (2):

#Loop over each coefficient entry in the lower/upper bound list.
for j in range(len(self.bounds[i])):

#If the bound is not a string , simply copy the value to
#returnBounds and continue directly to the next coefficient.
if not isinstance(self.bounds[i][j], str):

returnBounds[i]. append(self.bounds[i][j])
continue

#If no feature is specified , but the current bound is a string
#containing "{ feature}", raise an error. Else , evaluate the
#string and continue directly to the next coefficient.
if feature is None:

if ’{feature}’ in self.bounds[i][j]:
raise Exception ((’No feature provided , but needed to ’

’get a bound’))

returnBounds[i]. append(eval(self.bounds[i][j]))
continue

#If the current bound is a string and feature is specified ,
#replace any instances of "{ feature }" in the bounds string with
#the inputted value and evaluate the bound string.
returnBounds[i]. append(eval(self.bounds[i][j]. replace (\

’{feature}’, ’feature ’)))

return returnBounds

def getFuncStringDict ():
’’’Function to get a dictionary of possible funcStrings. The keys are names
of functions and the corresponding values funcString objects of these
values with appropriate bounds and initial guesses.’’’

#Initialize as empty dict.
funcStringDict = {}

#Linear function: y=x
funcStringDict[’linear ’] = funcString(’{feature}’)

#Tanh function: y=tanh(C*x+C)+C
funcStringDict[’tanh’] = funcString(’(np.tanh({C}*{ feature} + {C})+{C})’,

p0=[’1/(50* np.std({ feature }))’,
’np.std({ feature })’,
’np.std({ feature })’])

#Normal distribution function: y=exp(-C*(x-C)**2)
funcStringDict[’std’] = funcString(’np.exp(-{C}*({ feature}-{C})**2)’,

p0=[’1/(2* np.std({ feature })**2)’,
’np.mean({ feature })’],

bounds =[[0, -np.inf],
[’10/(np.std({ feature })**2)’, np.inf ]])

#Regularized log function: y=log(C*x+1)
funcStringDict[’rlog’] = funcString(’np.log({C}*np.abs({ feature }) + 1)’,

p0=’1/np.std({ feature })’,
bounds =[[0] ,[’10/np.std({ feature })’]])
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#Regularized division function: y=x/(C*x^2+1)
funcStringDict[’rdiv’] = funcString(’{feature }/({C}*{ feature }**2+1) ’,

p0=’np.sign(np.average ({ feature }))/np.std({ feature })’,
bounds =[[’ -10/np.std({ feature })’],

[’10/np.std({ feature })’]])

#Absolute square root function: y=sqrt(abs(x))
funcStringDict[’sqrtabs ’] = funcString(’np.sqrt(np.abs({ feature }))’)

#Regularized square root division function: y=x/(C*abs(x)**1.5+1)
funcStringDict[’rdivsqrt ’] = funcString ((’{feature }/({C}*’

’np.abs({ feature }) **1.5+1) ’),
p0=’np.sign(np.average ({ feature }))/np.std({ feature })’,

bounds =[[’ -10/np.std({ feature })’],
[’10/np.std({ feature })’]])

#Regularized cube root division function: y=x/(C*abs(x)**1.25+1)
funcStringDict[’rdivquart ’] = funcString ((’{feature }/({C}*’

’np.abs({ feature }) **1.25+1) ’),
p0=’np.sign(np.average ({ feature }))/np.std({ feature })’,

bounds =[[’ -10/np.std({ feature })’],
[’10/np.std({ feature })’]])

#Power function: y=x**C
funcStringDict[’pow’] = funcString(’np.abs({ feature })**{C}’,

p0=1.2, bounds =[[1.01] ,[4]])

return funcStringDict

#================================================================================
#Target function definitions

class globFuncs:
’’’Class holding several functions to go from a symmetric tensor (6 columns)
to a scalar. Functions inside can later be called using globFuncs.func().’’’

#Trace function
def symmTensI1(S):

#0 1 2 3 4 5
#XX XY XZ YY YZ ZZ

return S[:,0] + S[:,3] + S[:,5]

#I2 function
def symmTensI2(S):

#0 1 2 3 4 5
#XX XY XZ YY YZ ZZ

return S[: ,0]*S[:,3] + S[:,3]*S[:,5] + S[:,0]*S[:,5] -\
S[: ,1]**2 - S[: ,2]**2 - S[: ,4]**2

#Determinant function
def symmTensI3(S):

#0 1 2 3 4 5
#XX XY XZ YY YZ ZZ

return S[: ,0]*S[:,3]*S[:,5] + 2*S[:,1]*S[:,2]*S[:,4] -\
S[: ,1]**2*S[:,5] - S[: ,2]**2*S[:,3] - S[: ,4]**2*S[:,0]

#Definitions of various targetFuncs; these have eqStr as an argument
#and a new string with a manipulated version of the eqStr as output.
I1TargetFunc = lambda eqStr : f’globFuncs.symmTensI1 ({eqStr})’
I2TargetFunc = lambda eqStr : f’globFuncs.symmTensI2 ({eqStr})’
I3TargetFunc = lambda eqStr : f’globFuncs.symmTensI3 ({eqStr})’
allCompTargetFunc = lambda eqStr : f’{eqStr }. flatten ()’

#Generate a dictionary of targetFuncs , with names as keys and a two -element list
#as the corresponding value. The first element of this list is the targetFunc.
#The second element is a string defining what to do with the weights to reshape
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#them similar as the targetFunc.
targetFuncDict = {’I1’ : [I1TargetFunc , ’weights ’],

’I2’ : [I2TargetFunc , ’weights ’],
’I3’ : [I3TargetFunc , ’weights ’],
’all’ : [allCompTargetFunc ,

(’np.tile(weights[:,None], (1, 6)).flatten () ’
’if weights.ndim ==1 else weights.flatten ()’)]

}

#================================================================================
#Plotting functionss

def plotkDeficit(kDeficitFit , kDeficitExact , fignum=1, title=None , weights=None):
’’’Function to scatter the error in kDeficit against the exact kDeficit to
visualize which parts are fitted well/bad. Scatter points have a size
dependent on their weight.

Inputs:
kDeficitFit : (M,) array_like

Array of kDeficit values of the fit.
kDeficitExact : (M,) array_like

Array of exact kDeficit values.
fignum : int , optional

Figure number to plot in, the default is 1.
title : {int , None}, optional

Title to put above the figure. If None , no title is used.
The default is None.

weights : {(M,) array_like , None}, optional
Either array of weights with the same shape as kDeficitFit or None.
If an array is specified , the scatter points size is made weight
dependent. Else , all scatter points have the same size.
The default is None.’’’

#If weights=None , give all points the same size , but make the size dependent
#on the number of points so the plot doesn’t get cluttered if there are too
#many points.
if weights is None:

scaledWeights = np.ones(kDeficitFit.shape)/kDeficitFit.size

#If weights are specified , normalize them.
else:

scaledWeights = weights/np.sum(weights)

plt.figure(num=fignum)
plt.scatter(kDeficitExact , (kDeficitFit -kDeficitExact),

c=’r’, alpha =0.9, s=1500* scaledWeights , zorder =10)
plt.axhline(c=’k’, lw=2)
plt.xlabel(r’kDeficit$_{exact}$ [$m^2/s^3$]’)
plt.ylabel(r’kDeficit$_{fit}$ - kDeficit$_{exact}$ [$m^2/s^3$]’)
plt.title(title)
plt.tight_layout ()

try:
os.mkdir(’kDeficitOutput ’)

except:
pass

plt.savefig(f’kDeficitOutput/kDeficit{fignum}’)

def plotBijDeltaComponents(bijDeltaFit , bijDeltaExact , fignum=1, title=None ,
weights=None):

’’’Function to scatter the error in bijDelta against the exact bijDelta to
visualize which parts are fitted well/bad. Scatter points have a size
dependent on their weight.

Inputs:
bijDeltaFit : (M,6) array_like

Array of bijDelta values of the fit.
bijDeltaExact : (M,6) array_like
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Array of exact bijDelta values.
fignum : int , optional

Figure number to plot in, the default is 1.
title : {int , None}, optional

Title to put above the figure. If None , no title is used.
The default is None.

weights : {(M,) array_like , None}, optional
Either array of weights with the same number of rows as bijDeltaFit
or None. If an array is specified , the scatter points size is made
weight dependent. Else , all scatter points have the same size.
The default is None.’’’

#If weights=None , give all points the same size , but make the size dependent
#on the number of points so the plot doesn’t get cluttered if there are too
#many points.
if weights is None:

scaledWeights = np.ones(bijDeltaFit.shape [0])/bijDeltaFit.shape [0]

#If weights are specified , normalize them.
else:

scaledWeights = weights/np.sum(weights)

#Plot in six separate subplots (one for each component).
fig , axs = plt.subplots(nrows=2, ncols=3, sharex=True , sharey=True)
tt = axs
axsf = axs.flatten ()
for i, comp in enumerate ([’xx’, ’xy’, ’xz’, ’yy’, ’yz’, ’zz’]):

axsf[i]. scatter(bijDeltaExact [:,i],
(bijDeltaFit [:,i] - bijDeltaExact [:,i]),
c=’r’, s=1500* scaledWeights , zorder =10)

axsf[i]. axhline(c=’k’, lw=2)
axsf[i]. set_title(comp)

#xlabel
fig.text (0.5, 0.02, r’$b_{ij ,exact}$ [-]’, ha=’center ’)

#ylabel
fig.text (0.02, 0.5, r’$b_{ij ,fit} - b_{ij,exact}$ [-]’, va=’center ’,

rotation=’vertical ’)
fig.suptitle(title)
plt.tight_layout ()
plt.subplots_adjust(left =0.126 , bottom =0.1)

try:
os.mkdir(’bijDeltaOutput ’)

except:
pass

plt.savefig(f’bijDeltaOutput/bijDelta{fignum}’)

#================================================================================
#Creation of the varDict of a case

def createVarDict(flow , inds=None , meanFlowTimeScale=False):
’’’Function to generate the varDict given a FlowFeatures object of a case.

Inputs:
flow : FlowFeatures object

The FlowFeatures object for a case , with the setup_features ()
function already called such that all variables are available in
flow.vv.

inds : {array_like , None}, optional
Either array of indices of the points to add to varDict or None.
If None is specified , all points in flow.vv are used.
The default is None.

meanFlowTimeScale : bool , optional
Whether to use (True) or not use (False) the mean flow time scale
nondimensionalization. See sparta.features for more information.
The default is False.

Output:
varDict : dict
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Dictionary with all bases , features , targets and rest variables as
keys. The corresponding values are arrays , corresponding to values
at the inputted inds.’’’

features = [*flow.invariant_names , *flow.scalarfeature_names]
features.remove(’q_T’)
targets = [’kDeficit ’, ’bijDelta ’]
others = [’V’, ’k’, ’gradU ’]
varDict = {} #TODO: make lazy

#Use the subscript _s if meanFlowTimeScale is true.
if meanFlowTimeScale:

allVar = [*features , *PkScalars_s , *baseTensors_s , *targets , *others]
else:

allVar = [*features , *PkScalars , *baseTensors , *targets , *others]

#Copy each specified variable from flow.vv to varDict. If inds are not None ,
#only copy the points at inds.s
for var in allVar:

if inds is None:
varDict[var] = flow.vv[var]

else:
varDict[var] = flow.vv[var][inds]

#Add const as a variable as well.
varDict[’const’] = np.ones(flow.N()) if inds is None else np.ones(inds.size)

return varDict

#================================================================================
#Main function

def regressModel(targetVar , casePath , global_degree = 1, NTerms = None ,
allInds = None , NAll = None , NTrain = None , funcs = None ,
bases = None , fitFeatures = None , targetFuncName = ’all’,
weights = None , meanFlowTimeScale = False):

’’’
Regress a model for either kDeficit or bijDelta , based on a certain case.
Regression is performed using the scipy.optimize.curve_fit function , which
relies on nonlinear least squares to fit an expression. A library of possible
expressions with unknown coefficients is built beforehand , these coefficients
are then regressed using curve_fit. Libraries are only built for single
terms , meaning multi -term expressions are regressed term -by -term. After a
new term has been added , the coefficients of the full expression are
regressed again.

Inputs:
-targetVar : {’kDeficit ’, ’bijDelta ’}

Variable to regress a model for.
-casePath : str

Path to the case which data is used to regress the model. This
case should contain all relevant variables (such as gradU ,
gradk , etc ...) to construct the features in its last solution
directory.

-global_degree : int , optional
Maximum degree of each term in terms of number of variables.
For instance , global_degree 2 uses a maximum of two features in
each term. global_degree 0 can also be specified such that no
no features are used in the terms , only scalars multiplied by
bases. The default is 1.

-NTerms : {int , None}, optional
Number of terms to fit in the expression. If set to None , the program
will keep adding terms indefinitely. The default is None.

-allInds : {array_like , None}, optional
Array of indices to use in the regression. This is useful when for
instance only using a certain region in a case. When None is
specified , all cells are assumed available for regression. Note that
a smaller number of cells may still be used for the regression , in
case NAll or NTrain are not None. The default is None.

-NAll : {int , None}, optional
Number of cells to use in the entire regression. This is useful in
case of memory issues. Note that discovery of the expressions may use
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a smaller number of cells in case NTrain is not None. However ,
the final regressed expression is reevaluated using NAll cells.
In case NAll is set to None , all cells in allInds are used for this
reevaluation. The default is None.

-NTrain : {int , None}, optional
Number of cells to use in the training. A large library of terms
is built , each of which has its coefficients fitted by the
scipy.optimize.curve_fit function. Only NTrain cells are used for
this ’training ’ evaluation of each term , which may significantly
reduce run time. The final expression found is evaluated using
NAll cells , to give a more accurate fite. If NTrain is specified as
None , NAll points will also be used for the training. The default
is None.

-funcs : {list , None}, optional
List of function names to use in the terms , see the
getFuncStringDict function for the available names. In the term
library , each combination of function and feature is used. If
funcs is set to None , all functions in getFuncStringDict are used.
The default is None.

-bases : {list , None}, optional
List of bases to use for the regression (e.g. [’epsilon ’, ’G1 ’] for
a kDeficit model or [’T1’, ’T3 ’] for a bijDelta model). If None is
specified , all appropriate bases are used. The default is None.

-fitFeatures : {list , None}, optional
List of features to use in the regression (e.g. [’q_nu ’, ’W2 ’]).
If None , then all available features are used. The default is None.

-targetFuncName : {str , None}, optional
Name of the bijDelta target function , only used when fitting a
bijDelta model. See targetFuncDict for available target function
names. The target function specifies how to calculate an objective
variable from the symmetric bijDelta tensor. If None is specified
and one is trying to regress bijDelta , an error is thrown.
The default is ’all’ to fit all components of bijDelta.

-weights : {str , None}, optional
String expression which is evaluated to get the weighing function ,
e.g. ’V*k’ to weight by both cell volume and k. When None is
specified , no weighing is used. The default is None.

-meanFlowTimeScale : bool , optional
Whether to use the mean flow time scale to nondimensionalize S and W
or simply omega as was done in the past. Set to True to use gradU
and False to use omega. The default is False.-

’’’

#----------------------------------------------------------------------------
#Variables derived from targetVar

#Check if the specified target variable is either kDeficit or bijDelta ,
#otherwise throw an error. Sigma model fitting is not implemented (yet).
if targetVar not in [’kDeficit ’, ’bijDelta ’]:

raise Exception("targetVar should be either ’kDeficit ’ or ’bijDelta ’.")

#Set the tensorTarget variable; True for bijDelta , false for kDeficit
tensorTarget = True if targetVar == ’bijDelta ’ else False

#----------------------------------------------------------------------------
#Get the flowFeatures object for the specified case path and
#set up the features.
flow = FlowFeatures.from_openfoam(casePath)
flow.setup_features(meanFlowTimeScale=meanFlowTimeScale)
N = flow.N() #Total number of cells

#----------------------------------------------------------------------------
#Generation of varDict with NAll points.

#Generate allInds; either use the specified ones or generate array
#from 0 to N-1.
if allInds is not None:

allInds = np.array(allInds)
else:

allInds = np.arange(N)

#If the total number of points is restricted , randomly choose NAll points
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#from the allInds array generated above.
if NAll is not None:

allInds = np.random.choice(allInds , NAll , replace=False)

#Create varDict with NAll points.
allVarDict = createVarDict(flow , inds=allInds ,

meanFlowTimeScale=meanFlowTimeScale)

#----------------------------------------------------------------------------
#Generation of varDict with NTrain points.

#Set trainInds equal to allInds if no NTrain specified. Else , randomly
#choose NTrain points from allInds.
trainInds = allInds if NTrain is None else np.random.choice(allInds , NTrain ,

replace=False)

#Create a varDict with NTrain points.
trainVarDict = createVarDict(flow , inds=trainInds ,

meanFlowTimeScale=meanFlowTimeScale)

#----------------------------------------------------------------------------
#Setting of bases , fitFeatures and NTerms if they are None.

#If no list of bases is specified , simply use all appropriate bases.
#E.g. T1, ..., T10 if tensorTarget is True and meanFlowTimeScale is False.
if bases is None:

if meanFlowTimeScale:
bases = baseTensors_s if tensorTarget else PkScalars_s

else:
bases = baseTensors if tensorTarget else PkScalars

#If no list of fitFeatures is specified , simply use all available fitFeatures
#except q_T , as it is simply sqrt(S2).
if fitFeatures is None:

fitFeatures = [*flow.invariant_names , *flow.scalarfeature_names]
fitFeatures.remove(’q_T’)

#If no maximum number of terms to regress are specified , set the number to
#infinite such that it keeps regressing extra terms.
if NTerms is None:

NTerms = np.inf

#----------------------------------------------------------------------------
#Generating a list of funcStrings and arrays of weights.

#If list of funcs are specified , use all funcStrings available in
#funcStringDict. If a list of funcs is specified , map this list to a
#corresponding list of funcStrings.
funcStringDict = getFuncStringDict ()
if funcs is None:

funcStrings = funcStringDict.values ()
else:

funcStrings = list(map(funcStringDict.__getitem__ , funcs))

#If specified weights are not None , assume its a string to evaluate.
#Evaluate the weight string with allVarDict and trainVarDict to get the
#weights at all points and the train poinst respectively. Note that these
#are later overwritten by the targetFunc modification of the weights.
if weights is not None:

allWeights = eval(weights , {’np’ : np, ** allVarDict })
trainWeights = eval(weights , {’np’ : np, ** trainVarDict })

#If weights are None , the allWeights and trainWeights should also be None.
else:

allWeights , trainWeights = None , None

#TODO: also allow a custom weights list to be passed (with numbers)

#----------------------------------------------------------------------------
#Reading in the targetFunc and applying it to the weights.

#A targetFuncName must be specified if the target is tensorial. If this is
#not the case , throw an error.

207



if targetFuncName == None and tensorTarget is True:
raise Exception(’Please specify a targetFunc when tensorTarget is True.’)

#Only use the specified targetFuncName if tensorTarget is True.
#It is assumed no targetFunc is needed for scalar targets.
if tensorTarget:

#The first element in the targetFuncDict is the actual targetFunc.
targetFunc = targetFuncDict[targetFuncName ][0]

#The second element in the targetFuncDict is the weightFunc. If weights
#are not None , apply this weightFunc to allWeights and trainWeights.
if weights is not None:

allWeights = eval(targetFuncDict[targetFuncName ][1],
{’weights ’ : allWeights , ’np’ : np})

trainWeights = eval(targetFuncDict[targetFuncName ][1],
{’weights ’ : trainWeights , ’np’ : np})

else:
targetFunc = None

#----------------------------------------------------------------------------
#Generation of the term , bounds and p0 libraries.

#Get target arrays with NAll points and NTrain points , by extracting the
#targetVar entry from their respective dictionaries.
allTarget = allVarDict[targetVar]
trainTarget = trainVarDict[targetVar]

#Generate the library of terms , bounds and p0s based on the specified bases ,
#fitFeatures , funcs and global degree. The varDicts and targets are needed
#for some statistics for initial guesses. NAll points are used for these
#to get the most accurate statistics.
termLib , boundsLib , p0Lib = generateTermLib(bases , fitFeatures , funcStrings ,

allVarDict , allTarget , global_degree)

#----------------------------------------------------------------------------
#Initializations before main loop

#Find the number of terms in the termLib. Get an array of printInds to
#print each percentage of the termLib during the main loop. E.g., print
#20% when 20% of the terms in termLib have been regressed.
NExpr = len(termLib)
printInds = np.linspace(0, NExpr , 100).astype(int)

#Initialization of total lists of the expression
totRawExpressionList = []
totRegressedExpressionList = []
totBoundsList = []
totRegressedCoeffsList = []

#----------------------------------------------------------------------------
#Main loop regressing new terms using deficit fitting.

#The first term is fitted as usual; each term in termLib has its coefficients
#regressed given the target. Then , the term that best regresses the target
#is chosen as the first term. Then , the first term is frozen , and the
#second term regresses the deficit between the first term and the target.
#Again , each term in the termLib is considered for this second term , the
#best one is picked. Then , the coefficients of both the second and first
#term are regressed again to optimally fit the target. This deficit fitting
#continues for each new term.

#Initialize the trainDeficit as the target , as the first term should regress
#the target.
trainDeficit = np.array(trainTarget)

t = 1 #Index of the current term
while t <= NTerms:

#Minimum RMSE initialized as large value , later overwritten if smaller
#RMSE is found.
RMSEMin = np.inf
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#Loop over each term , bounds and p0 in termLib , boundsLib and p0Lib.
for i, (term , bounds , p0) in enumerate(zip(termLib , boundsLib , p0Lib)):

#If the current term index in printInds , print the progress as a %.
if i in printInds:

print((f’Regression of term {t} at ’
f’{np.where(printInds ==i)[0][0]}% ’))

#Regress the
regressedEqStr , targetFit , coeffs= \

fitEqStrRaw(term , trainDeficit , trainVarDict ,
tensorTarget , targetFunc=targetFunc ,
weights=trainWeights , p0=p0,
bounds=bounds)

#Calculate the RSME of the current term
RMSE = getRMSE(targetFit , trainDeficit , weights=trainWeights ,

targetFunc=targetFunc)

#If the term has a lower RMSE than the lowest RMSE found so far ,
#set the best term values to those of the current term. In the end ,
#the best term values are those of the term with the lowest RMSE.
if RMSE < RMSEMin:

RMSEMin = RMSE
termMin = term
boundsMin = bounds
coeffsMin = coeffs
regressedEqStrMin = regressedEqStr

#Add the minimum term and its bounds to the total lists.
totRawExpressionList.append(termMin)
totBoundsList.append(boundsMin)

#Find the raw total expression so far (e.g. three term expression if
#t=3). Also find the bounds of this total expression.
totRawExpression = ’ + ’.join(totRawExpressionList)
totBounds = np.concatenate(totBoundsList , axis=-1)

#Find the regressed coefficients of the total expression.
totCoeffs = [* totRegressedCoeffsList , *coeffsMin]

#Find the RMSE for the raw expression given its separately regressed
#coefficients.
totEqStr = printEqStrRaw(totRawExpression , totCoeffs)
allTargetRawFit = evaluateRegressedEqStr(totEqStr , allVarDict ,

tensorTarget)
RMSERaw = getRMSE(allTargetRawFit , allTarget , weights=allWeights ,

targetFunc=targetFunc)

#Refit the total expression to find coefficients regressed for the whole
#expression.
refitTotExpression , allTargetRefit , coeffsRefit = \

fitEqStrRaw(totRawExpression , allTarget ,
allVarDict , tensorTarget ,
targetFunc=targetFunc ,
weights=allWeights , p0=totCoeffs ,
bounds=totBounds , maxfev =1000000)

#Get the RMSE of the refit of all coefficients in the total expression.
RMSERefit = getRMSE(allTargetRefit , allTarget , weights=allWeights ,

targetFunc=targetFunc)

#For some reason , the refit of all coefficients sometimes gives a higher
#RSME than isolated coefficients (TODO: find out why). If this happens ,
#simply use the isolated coefficients for the final expression.
if RMSERaw <= RMSERefit:

TermRMSE = RMSERaw
allTargetTerm = allTargetRawFit
totRegressedCoeffsList = totCoeffs
totExpression = totEqStr

else:
TermRMSE = RMSERefit
allTargetTerm = allTargetRefit

209



totRegressedCoeffsList = list(coeffsRefit)
totExpression = refitTotExpression

#Calcualte the R^2 of the total expression
TermR2 = getRSquared(allTargetTerm , allTarget , weights=allWeights ,

targetFunc=targetFunc)

#Print the total expression and its R^2
print(’\n\n\n’)
print ((f"Fitted the following expression with {t} "

f"term{’’ if t==1 else ’s ’}:"))
print(totExpression)
print ()
print ((f’It has an R^2 value of {TermR2 :.5} and an ’

f’RMSE of {TermRMSE :.6}. ’))

#Calculate the new trainDeficit based on the regressed total expression.
#The next term should regress the difference between the target
#prediction of this total expression and the exact target.
trainDeficit = (allTarget - allTargetTerm)[\

np.where(np.in1d(allInds , trainInds))[0]]

#Plot the fit error
if targetVar == ’kDeficit ’:

plotkDeficit(allTargetTerm , allTarget , fignum=t,
title=f’{t} term model’, weights=allWeights)

elif targetVar == ’bijDelta ’:
if targetFuncName == ’all’:

weights=allWeights [::6]
else:

weights=allWeights
plotBijDeltaComponents(allTargetTerm , allTarget , fignum=t,

title=f’{t} term model’,
weights=weights)

t += 1

return totExpression
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