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SUMMARY

This thesis addresses the problem of path prediction for cyclists. Instead of solely focusing
on how to predict the future trajectory based on previous position measurements, this thesis
investigates how to leverage additional contextual information that can inform on the future
intent of cyclists. This thesis does this with the application of intelligent vehicles in mind.
That means all measurements come from the point of view of a vehicle on the road. Addi-
tionally, the resulting predictions must be usable by a motion planner. In practice, this means
the predictions are a probability distribution over the future position rather than a single point
in space.

This thesis starts with an investigation of one of the modules that allow path prediction
in the first place: 3D object detection. Two existing state-of-the-art 3D object detectors that
exploit Lidar data are evaluated beyond the standard metrics of 3D object detection. 3D ob-
ject detectors predict an oriented 3D bounding box. The standard metric determines a correct
detection based on the accuracy of the position, extent, and orientation of the bounding box
all at once. By loosening the requirements for when a detection is considered correct, the
accuracy of the estimated position, extent, and orientation can be evaluated separately. The
results show that a large number of detections are considered incorrect largely because of
inaccurate bounding box extent rather than bounding box position, which is arguably a more
important aspect for path prediction. As a result, the performance of these 3D object detec-
tors when used for path prediction can be considered to be higher than what the common
metrics suggest.

After this, this thesis investigates how knowledge of the road topology can be used to im-
prove the accuracy of cyclist path prediction. The trajectories of cyclists near an intersection
are extracted from a naturalistic cyclist detection dataset. These are categorized and grouped
based on the action taken by each cyclist (hard left/right, slight left/right, or straight). A
Linear Dynamical System (LDS) is fitted on each group. These LDSs are used together to
create a Mixture of Linear Dynamical Systems (MoLDS). During online inference, the rela-
tive probability of each underlying LDS allows the MoLDS to evaluate which direction the
cyclist is most likely to take. This chapter demonstrates that the highest prediction accuracy
is obtained when this model is additionally given prior knowledge on which directions are
available for the cyclist to take.

Next, context cues related to a specific scenario are considered. In the scenario, a cyclist
in front of the ego-vehicle approaches an intersection and has the option to either continue
straight or turn left. The three context cues considered are the distance of the cyclist to the
intersection, whether the cyclist is raising their arm, and the criticality of the situation. This
last context cue is based on the time it will take the ego-vehicle to overtake the cyclist: the
lower this is, the more risk a left turn brings. This scenario is first modeled with a Switching
Linear Dynamical System (SLDS) with two motion models that represent "cycling straight"
and "turning left", respectively. This model does not yet use any context cues. Still, the
SLDS is shown to outperform a baseline model that represents the scenario with a single

ix
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x SUMMARY

motion model. By letting the context cues inform the SLDS whether switching from one
motion model to the other is likely to happen the performance is increased even further. The
resulting model is referred to as a Dynamic Bayesian Network (DBN).

The context-based path prediction methods described so far have been designed with spe-
cific motion models and interplay of context cues in mind: the overall state representation
has been hand-crafted. The advantage of this approach is that the state representation is then
interpretable, making it easy to understand why a model predicts what it does, even when
it fails to predict something correctly. However, methods with a learned state representation
often attain higher performances. The next point of investigation of this thesis is then to com-
pare a model with a crafted state representation to a model with a learned one. Specifically,
the DBN is compared to a Recurrent Neural Network (RNN), using the cyclist scenario from
before. To level the playing field as much as possible two actions are taken. First, the con-
textual cues are supplied to the RNN as well, and experiments assert that the performance of
the RNN does in fact improve when it incorporates these cues. Secondly, the optimization
method used in the RNN is applied to the DBN as well, but in such a way that the inter-
pretation of its crafted state representation remains the same. Of the two methods, the RNN
attains the highest performance. Still, optimizing the DBN largely closes the performance
gap between the two.

Finally, this thesis determines whether the DBN is not only performant but also useful in
practice: it is integrated in an intelligent vehicle. The cyclist scenario is performed live, in
which the intelligent vehicle extracts the relevant context cues directly from sensor data. The
resulting predictions are used to create an early warning system for the driver, to warn them
if the cyclist intends to turn left. The model is also used for predictions in an autonomously
driving intelligent vehicle, but due to safety reasons on a different scenario that contains com-
parable contextual cues. An automated dummy plays the role of a pedestrian on the sidewalk
who walks towards the curbside in order to cross the road. The intelligent vehicle is driv-
ing on this road towards the pedestrian and has right of way. In this scenario, a pedestrian
is only expected to cross the road if they are unaware of the approaching vehicle. Further-
more, if they will stop, they are expected to only stop at the curbside. The intelligent vehicle
determines whether the pedestrian is aware of it by estimating the head orientation of the
pedestrian. Additionally, it measures the distance between the pedestrian and the curbside,
and predicts the future trajectory of the pedestrian accordingly. With the model in place, the
vehicle can autonomously follow a planned trajectory and evade the pedestrian if the pedes-
trian does indeed cross the road. The real-world experiments confirm the feasibility of the
system. By evaluating the entire pipeline at once, from detections to motion planning, this
chapter is able to propose future work that bridges these various disciplines and shows what
intelligent vehicles can already realistically achieve.
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SAMENVATTING

Deze thesis adresseert het voorspellen van het toekomstige pad van fietsers. Dit wordt niet
alleen gedaan aan de hand van de positie van de fietser in het verleden: deze thesis onder-
zoekt hoe relevante contextuele informatie gebruikt kan worden om de nauwkeurigheid van
de voorspellingen te verbeteren. Dit wordt gedaan met intelligente voertuigen als uiteinde-
lijke toepassing. Dat betekent dat zowel de positiemetingen als alle gebruikte contextuele
informatie meetbaar moeten zijn met de sensoren van een intelligent voertuig dat op de weg
rijdt. Daar bovenop moeten de resulterende voorspellingen bruikbaar zijn voor de module
die het voertuig autonoom bestuurt. In de praktijk betekent dit dat alle voorspellingen een
kansverdeling over de toekomstige positie zijn.

Deze thesis begint met het onderzoeken van een van de modules zonder welk het voor-
spellen niet mogelijk zou zijn: de detectie van objecten in 3D. Twee van de best presterende
3D object detectors die gebruik maken van Lidar data worden geëvalueerd op de standaard
metriek van 3D object detectie. 3D object detectoren leveren hun detecties aan in de vorm
van een 3D bounding box: een balk gedefinieerd aan de hand van zijn 3D positie, zijn di-
mensies en een oriëntatie. De standaard metriek bepaalt of een voorspelde 3D bounding box
correct is aan de hand van een combinatie van alle aspecten van die 3D bounding box. Door
de standaard definitie van een correctie detectie te versoepelen is het mogelijk om de correct-
heid van de geschatte positie, afmetingen en oriëntatie los van elkaar te evalueren. Uit deze
evaluatie blijkt dat een groot aantal detecties voornamelijk als incorrect wordt gezien door
een onnauwkeurige schatting van de dimensies van de 3D bounding box en niet zo zeer de lo-
catie, terwijl redelijkerwijs de locatie gezien kan worden als een belangrijker aspect voor pad
predictie. Het resultaat hiervan is dat de competentie van deze 3D object detectoren specifiek
bij het gebruik van pad predictie hoger is dan wat de officiële metriek suggereert.

Hierna onderzoekt deze thesis hoe kennis van de layout van een kruispunt gebruikt kan
worden om de nauwkeurigheid van pad predictie van fietsers te verbeteren. De afgelegde
wegen van fietsers in de buurt van een kruispunt worden geëxtraheerd uit een naturalistische
dataset gemaakt voor het detecteren van fietsers. Deze worden gecategoriseerd en gegroe-
peerd op basis van de richting die de fietser beweegt (hard naar links of rechts, licht naar
links of rechts, of rechtdoor). Een Linear Dynamical System (LDS) wordt gepast op elke
groep. Deze LDS’en worden samengevoegd om een zogenaamd Mixture of Linear Dynami-
cal Systems (MoLDS) te creëren. Dit model kan vervolgens online afleiden welke richting de
fietser het meest waarschijnlijk op zal gaan, gebaseerd op de relatieve waarschijnlijkheid van
de onderliggende LDS die bij die richting hoort. Dit hoofdstuk laat zien dat de meest nauw-
keurige voorspellingen van de toekomstige locatie van de fietser gemaakt kunnen worden als
in het model voorkennis mee wordt genomen over welke kant de fietser op het kruispunt op
kan gaan.

Vervolgens wordt een specifiek scenario onderzocht: een fietser fiets rechtdoor voor het
intelligente voertuig, en beide bewegen zich richting een kruispunt. Op dit kruispunt kan de
fietser ofwel rechtdoor gaan, ofwel linksaf slaan. In dit scenario zijn er meerdere contextu-

xi
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xii SAMENVATTING

ele informatiebronnen relevant. Er worden er drie beschouwd: de afstand van de fietser tot
de kruising, of de fietser zijn arm opsteekt, en hoe kritiek de situatie is. Dit laatste wordt
bepaald aan de hand van hoe lang het duurt totdat de auto de fietser ingehaald zal hebben.
Dit scenario wordt eerst gemodelleerd met een Switching Linear Dynamical System (SLDS),
waarin twee dynamische modellen respectievelijk “rechtdoor fietsen” en “naar links afslaan”
representeren. Deze SLDS neemt nog geen contextuele informatie mee, maar laat al betere
resultaten zien dan een LDS dat het complete scenario met maar één dynamisch model re-
presenteert. Door de contextuele informatie in de SLDS te gebruiken als informatiebron of
de dynamiek mogelijk gaat wisselen van “rechtdoor” naar “linksaf” (dit model wordt een
Dynamic Bayesian Network (DBN) genoemd) wordt een nog nauwkeurigere voorspelling
gemaakt.

De hierboven beschreven methodes zijn handmatig ontworpen. Ze beschrijven specifieke
dynamische modellen en specifieke manieren hoe de contextuele informatie deze modellen
kunnen beïnvloeden. Het voordeel van deze aanpak is dat hun toestandsrepresentatie ver-
volgens interpreteerbaar is, bijvoorbeeld in termen van “positie” en “snelheid”. Dit maakt
het makkelijk om te begrijpen waarom een model een specifieke voorspelling maakt, en het
maakt het ook makkelijk te begrijpen waar de fout zit als de voorspelling niet klopt. Modellen
waar de toestandsrepresentatie niet ontworpen is maar automatisch geleerd wordt zijn echter
vaak nauwkeuriger in het voorspellen. Het volgende punt dat deze thesis onderzoekt is een
zo eerlijk mogelijk vergelijk tussen een model dat een onderworpen toestandsrepresentatie
heeft (het DBN van hiervoor) en een model dat een geleerde toestandsrepresentatie heeft,
een Recurrent Neural Network (RNN). Om er voor te zorgen dat de vergelijk alleen gaat
over hun representatie worden de modellen zo gelijk mogelijk behandeld. Als eerst wordt
dezelfde contextuele informatie in het RNN verwerkt, en wordt er vastgesteld dat dit RNN er
daadwerkelijk nauwkeuriger mee kan voorspellen, net als hoe het DBN dit kan. Ten tweede
wordt de optimalisatie methode die het RNN gebruikt om zijn toestandsrepresentatie te leren
ook gebruikt voor de DBN. Dit wordt gedaan op zo’n manier dat de toestandsrepresentatie
nog steeds interpreteerbaar is. Uit de vergelijk blijkt dat het RNN de nauwkeurigste voor-
spellingen maakt. Door het DBN te optimaliseren loopt de nauwkeurigheid van het DBN
echter een stuk minder achter op die van het RNN.

Als laatste achterhaalt deze thesis of de DBN ook daadwerkelijk bruikbaar is in de prak-
tijk door het te integreren in een intelligent voertuig. Het fiets scenario wordt in het echt
uitgevoerd, waarbij het intelligente voertuig live de relevante context informatie moet extra-
heren uit sensor data. De voorspellingen van het DBN worden gebruikt om een waarschu-
wingssysteem te ontwerpen dat de bestuurder vroegtijdig waarschuwt als de fietser van plan
is om af te slaan. Het model wordt ook ingezet om een volledig autonoom voertuig te helpen
een mogelijke botsing te vermijden. Om veiligheidsredenen wordt dit gedaan op een ander
scenario met typen van vergelijkbare contextuele informatie. Een geautomatiseerde dummy
speelt de rol van een voetganger die richting de stoeprand loopt om een weg over te steken.
Op deze weg komt het zelfrijdende voertuig aanrijden, en deze heeft voorrang. In dit scena-
rio wordt er verwacht dat voetgangers alleen zullen oversteken als zij zich niet gewaar zijn
van het aanrijdende voertuig. Mochten zij van plan zijn te stoppen, dan zullen ze dit doen
dichtbij de rand van de stoep. Het intelligente voertuig bepaalt of deze voetganger gewaar
is van het aankomend voertuig door middel van het schatten van de oriëntatie van het hoofd
van de voetganger. Verder wordt er gebruik gemaakt van de afstand tussen de stoeprand en
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SAMENVATTING xiii

de voetganger om te voorspellen tot waar de voetganger door zal lopen als deze van plan
is te stoppen. Met dit model kan het voertuig autonoom een pad volgen en de voetganger
ontwijken mocht deze inderdaad oversteken. De evaluatie van het systeem als geheel leidt
tot aanbevelingen voor verder onderzoek dat de verscheidene disciplines beter aan elkaar zal
laten aansluiten, en laat zien waar intelligente voertuigen al toe in staat zijn.
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1
INTRODUCTION

A bicycle ride around the world begins with a single pedal stroke.

Scott Stoll

1
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1

2 1. INTRODUCTION

E VERY day, millions of people get in their car to drive to work, friends, home, or any
other destination. The combination of speed and flexibility that a car has is virtually

unrivaled by any other transportation method. Arguably the most complex component of this
transportation method is the driver itself. We, the drivers, are what makes it possible to take
the car from one bustling inner city, on the highway, and into another.

However, that does not mean that the human driver is perfect. The World Health Orga-
nization estimated that 1.35 million people died in traffic-related accidents in 2018 world-
wide [1]. A large portion of these deaths is a result of driver error such as inattentiveness,
drowsiness, or drunk driving. Additionally, people do not necessarily want to drive. Many of
the hours driven are seen as hours wasted: traffic jams being the obvious culprit, but in many
cases, people solely drive to get to the destination rather than for the journey.

To alleviate both issues, universities and companies around the world are working on the
development of intelligent vehicles [2–6]. Some of these are vehicles that assist the driver
with Advanced Driver Assistance Systems (ADAS) such as lane guidance and emergency
brake assistance. Others are intelligent vehicles that go one step further and require no driver
at all, for example, those of Waymo in Phoenix, USA.

In the development of intelligent vehicles, many difficult situations arise in the urban cen-
ters of the cities that were never designed for vehicles in the first place. Here, vehicles drive
close to (or even in the same space as) pedestrians and cyclists who may quickly change di-
rection – or not. An intelligent vehicle must be able to reason about that uncertainty inherent
in the behavior of others around it. At the same time, the uncertainty cannot be so big that no
maneuver seems safe.

Take for example the following situation in fig. 1.1, recorded in the city of Delft in the
Netherlands. As the driver approaches a T-junction to turn left onto a bridge, the driver stops
in fig. 1.1a to let the couple coming from the right cross. The driver knows the couple has
the right of way: both the sign of the zebra crossing as well as the zebra stripes themselves
indicate this. As the couple crosses, several cyclists pass behind them in fig. 1.1b. These
cyclists are looking straight forward rather than into the road that the ego-vehicle is coming
from. This indicates they will likely continue straight, so the driver knows that they will no
longer be in the way the moment the couple has crossed the road. However, the driver must
be aware of what is happening even further away from them, as on the left side of fig. 1.1b,
a woman is looking to the right, instead of in front of her. Could she be planning to cross
the road? Indeed, in fig. 1.1c she has moved onto the road but has left enough space for the
driver to continue onto the bridge.

In this example, one of the essential concepts that allows the driver to navigate this sit-
uation safely is anticipation. Instead of solely relying on what is happening now, the driver
tries to predict what will happen in the near future and uses that to make a more informed
decision. To ensure the planned maneuvers are safe, the driver takes the context of the sit-
uation into account. In other words, solely looking at the physical properties of the people
around (position, velocity, etc.) is not enough. Instead, various other factors come into play
to provide context to the situation. These factors are called context cues.

In fig. 1.1a, the zebra crossing is an example of a context cue that indicates the couple
will continue to cross the road, as they will expect the ego-vehicle to stop. In fig. 1.1b, the
context cue that the woman is looking over her shoulder shows she intends to move onto the
road. At the same time, the context cue that her posture is more parallel than perpendicular to

148762 Pool_BNW.indd   16148762 Pool_BNW.indd   16 21-05-2021   14:1721-05-2021   14:17



1

3

(a)

(b)

(c)

Figure 1.1: Three different situations occurring in succession while driving in Delft. (a): Two people plan to cross
the road. (green box) (b): Behind them, several cyclists continue straight (blue boxes). (c): The person behind the
cyclist with a child on the back steps onto the road (red box).
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the sidewalk is indicating that she will most likely move in such a way that does not require
the driver to come to a full stop (fig. 1.1c).

1.1. ANALYZING THE COMPLEXITY OF EVERYDAY DRIVING

T HE examples above showcase two complexities for intelligent vehicles. The first: context
cues can come in many forms. Moreover, different context cues are relevant in different

situations. Secondly, human drivers are adept at assessing what is relevant at what time.
The descriptions above only contain the key context cues required for the reasoning of what
will happen in the future and omit many details. Because human drivers can easily convey
why they took certain actions, it is easier to put trust in their driving abilities. Somehow, an
intelligent vehicle must be able to do the same.

From these two complexities arise the two main directions in this research. The first di-
rection is to improve context-based path prediction for everyday driving. Here, the challenge
lies in finding prediction methods and context cues that are applicable in a diverse set of situ-
ations that arise in inner cities. The second direction is to ensure the models are interpretable
so it is easier to trust their results, while maximizing their prediction accuracy. The challenge
in this direction lies in finding prediction methods that can easily convey why they predict the
trajectory that they do, yet also have the ability to learn as much as possible from available
datasets.

In this thesis, these two main directions are investigated with an additional emphasis on
cyclists over pedestrians. For one, cyclists move faster than pedestrians and often share the
same drivable space with the intelligent vehicle, putting them at a greater risk. Furthermore,
pedestrian path prediction has already been studied to a greater extent (e.g. [7–11]). However,
that is not to say that the methods described in this thesis could not be applied to pedestrians
or other road users as well. Some chapters will address both cyclists and pedestrians, who
are together referred to as Vulnerable Road Users (VRUs).

The purpose of improving path prediction is to facilitate safer intelligent vehicles. To
ensure the compatibility of these methods for use in intelligent vehicles, all the information
that the models in this thesis use must be accessible or measurable from a vehicle. For
example, the position information of a cyclist must be extracted from sensors mounted on the
intelligent vehicle. Furthermore, the predictions must account for the uncertainty present in
the measurements as well as the uncertainty in the model itself. To that end, all methods used
in this thesis predict the future path as probability distributions, rather than single points in
space. To limit the scope, this thesis considers only path prediction for the near future, up to
one second ahead.

1.2. THESIS OUTLINE AND CONTRIBUTIONS

C HAPTER 2 will cover the related work. Next, chapter 3 will look into 3D VRU detection,
one of the more important inputs to any prediction method. After this, chapters 4 to 6

present prediction methods for cyclist path prediction. To showcase the compatibility of
these methods for use in intelligent vehicles, one is implemented on such a vehicle as well,
and tested on real-world sensing conditions. This is described in chapter 7, where one of
the proposed models is interfaced directly with both a motion planning module as well as its
required perception modules. More detailed topic outlines and contributions of chapters 3
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to 7 are as follows:

EVALUATION OF LIDAR-BASED 3D PERSON LOCALIZATION.
As mentioned, before the rest of this thesis concerns itself with path prediction chapter 3
evaluates a part of the pipeline that precedes it: 3D VRU detection. For much of the past
two decades, vision has been the dominant sensor modality for intelligent vehicles to detect
VRUs. Strong progress has been made on 2D image-based VRU detection facilitated by novel
(deep learning) methods, faster processors, and more data (including benchmarks, e.g. [12–
14]). These 2D detections still need to be converted to 3D detections, though. This is usually
done through disparity matching [15], which can result in noisy 3D positions.

The Lidar sensor is an attractive sensor for intelligent vehicles, and in particular for 3D
VRU detection, stemming from its capabilities to directly and accurately measure distances
and to deal with low-light environments. Chapter 3 therefore investigates the efficacy of
two current state-of-the-art 3D object detectors based on Lidar measurements specifically for
intelligent vehicles. It does so by evaluating additional metrics that are relevant to intelligent
vehicle research, on top of the metrics commonly used by 3D detection benchmarks. This
chapter also provides an overview of 3D object detectors together with available datasets.

The contributions of this chapter are twofold. The first is a performance analysis of two
state-of-the-art methods (PointPillars [16] and AVOD [17]) on the KITTI 3D object detec-
tion benchmark [18], to determine whether 3D bounding box location, extent, or orientation
influences the performance the most. Secondly, it provides results from domain transfer ex-
periments between KITTI and the EuroCity Persons 2.5D (ECP2.5D) dataset [19].

USING ROAD TOPOLOGY TO IMPROVE CYCLIST PATH PREDICTION.
Chapter 4 investigates cyclist path prediction using a generic context cue that is relevant in
a wide set of scenarios. The main location where the paths of vehicles and cyclists inter-
sect is at intersections. Depending on the angle from which the vehicle and cyclist approach
the intersection, the cyclist can be at a collision course with the approaching vehicle either
by intending to turn or by intending to continue straight. Whether a cyclist is actually able
to make either maneuver depends on the specific layout of the intersection. This chapter,
therefore, investigates how knowledge of the road layout can improve the accuracy of cy-
clist path prediction at intersections. The trajectories used in the experiments are extracted
from a naturalistic cyclist dataset [13] which covers a wide range of intersections and cyclist
behaviors.

The contributions of this chapter are twofold. First, it supplies an extension to the
Tsinghua-Daimler Cyclist (TDC) benchmark [13] in the form of cyclist trajectories, which
are made available to the scientific community. Secondly, it provides a study of cyclist path
prediction using probabilistic filters and a mixture model. It shows that this approach can
exploit prior information on the topological road layout.

CYCLIST PATH PREDICTION USING CONTEXT-BASED SWITCHING SYSTEMS.
Chapter 5 zooms in on a specific subscenario of the previous chapter: a cyclist who is aware
of the ego-vehicle driving behind them and who might turn left at an upcoming intersection.
In this scenario, the dynamics of the cyclist can suddenly change from cycling straight to
a left turn. Predicting whether the change might happen, as well as predicting when it will
happen is facilitated by looking at various contextual cues. For one, cyclists are more likely
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to turn when they raise their arm. Additionally, how far the ego-vehicle is from the cyclist in
combination with how quickly the ego-vehicle is catching up influences whether the cyclist
feels the need to raise an arm. If the cyclist intends to turn, however, then there is a specific
area at the intersection where the cyclist is likely to do so. This chapter describes how to
incorporate these three context cues into a Dynamic Bayesian Network (DBN) [20]. Because
this section investigates a specific scenario, it does not use a naturalistic dataset as these do
not contain large numbers of scenario examples as a consequence of their generality. Instead,
it uses a dataset that is recorded especially for this scenario.

The main contribution of this chapter is the extension of the DBN from [20] onto the
cyclist domain. It provides explicit equations for inference with the model in general terms
and shows how these can be adapted to fit a specific scenario. Additionally, the cyclist dataset
recorded for this experiment is made public for the scientific community.

CRAFTED VS. LEARNED REPRESENTATIONS IN PREDICTIVE MODELS.
The methods used in the two previous chapters, chapters 4 and 5, are both examples of
models with a crafted state representation. On the other side of the spectrum are methods with
learned representations such as Recurrent Neural Networks (RNNs), which have shown state-
of-the-art performance in context-based path prediction [21, 22]. The downside of these data-
driven approaches is they do not provide an intuitive explanation of their output: the learned
state representation essentially renders them black-box models. The lack of interpretability
complicates understanding why they fail when they do, which is disadvantageous for safety-
critical domains such as intelligent vehicles.

Models with a crafted state representation on the other hand explicitly capture the causal
relationships between context cues and future actions. However, as their crafted representa-
tions are an abstraction of the real world, they might not encode all the useful information
that is available in the data. Additionally, the parameters for these methods are often not
optimized, but instead individually estimated from ground truth annotations (see chapters 4
and 5) or tuned manually (e.g. [23]). Estimating parameters individually does not necessarily
optimize the predictive performance of the complete model directly.

Chapter 6 therefore compares the context-based path prediction performance of a model
with a learned state representation, an RNN, to that of a model with a crafted state repre-
sentation, the DBN from chapter 5. The main contribution of this chapter is the evaluation
of these two methods on a leveled playing field. This is made possible thanks to the other
two contributions: first, the chapter describes how to integrate the context cues into an RNN
(as is done for the DBN), and conversely, how to optimize the DBN with gradient descent
by utilizing back-propagation (as is done for the RNN) while keeping its state representation
interpretable.

INTEGRATED PATH PREDICTION FOR INTELLIGENT VEHICLES.
The intent of the methods developed in this thesis is to improve the performance of intelligent
vehicles as a whole. Comparing path prediction methods to one another tells you which
outperforms the others, but it does not tell you whether they would aid an intelligent vehicle
in practice, either with driver assistance or with full autonomy. Chapter 7 therefore further
builds on the DBN and evaluates its effectiveness when used online on an intelligent vehicle.
Here, intelligent vehicles are assessed both as a driver-in-the-loop system in which the goal
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is to assist the driver, as well as a fully autonomous vehicle, where it must follow a trajectory
and evade obstacles without any human intervention.

As contributions, this chapter shows that the path prediction method can be readily ap-
plied in a larger pipeline in intelligent vehicles. It explains how the DBN can act as an early
warning system for the cyclist scenario. Furthermore, it describes how to connect the DBN
to a motion planner, which uses the predicted path and uncertainty to autonomously follow
a trajectory while evading dynamic obstacles. Finally, it makes observations on the work-
ings of the entire pipeline which would not become apparent when these components are
evaluated in isolation.
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RELATED WORK

The more that you read, the more things you will know.
The more that you learn, the more places you’ll go.

Dr. Seuss

9
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D ETECTION and tracking of Vulnerable Road Users (VRUs) have made great progress
in recent years. Ohn-Bar and Trivedi [24] indicate that VRU tracking is becoming in-

creasingly robust, and research is shifting to high-level tasks of predicting future traffic situa-
tions to inform automated decision making in Advanced Driver Assistance Systems (ADAS).
As a consequence, there are now survey papers that focus solely on path prediction for
VRUs [6, 25].

Path prediction methods require VRU positions as input. Prediction methods often in-
corporate additional semantic information, also called context cues, related to the VRU and
their environment. The prediction methods themselves differ in how they model the VRU’s
dynamics, which in turn affects how the model parameters are estimated or optimized. The
following sections will describe each of these topics (detection, prediction methods, context
cues, and parameter estimation) in detail. Finally, this chapter concludes with related work
on what comes after path prediction: motion planning.

2.1. DETECTION

G ROUND plane positions relative to a vehicle reference frame can be obtained from detec-
tions in various sensors, such as camera [14, 26], radar [27], or Lidar [16]. In the case of

camera-based detections, the 3D location is often extracted using depth information retrieved
from stereo camera images [15, 28]. However, there is a current trend towards obtaining 3D
detections by incorporating Lidar (e.g. [17, 29]). A more in-depth overview of Lidar-based
detection methods along with available datasets can be found in section 3.1. If ground plane
positions relative to a global reference frame are needed, then vehicle ego-motion compen-
sation is necessary as an additional pre-processing step.

To separate the performance of the prediction module from the accuracy of the VRU
detector, it is common to use datasets where the VRUs are annotated, e.g. [4, 30–32]. Sim-
ilarly, as ego-motion compensation will never perfectly transform the location to a global
world frame, some datasets capture VRU motion from static viewpoints. However, these
viewpoints are most of the time sufficiently different (e.g. a top-down view filmed with a
drone [31]) from the viewpoint of a vehicle that VRU specific cues might not be as easily
recognized.

2.2. MOTION MODELS

M OTION models for path prediction can be categorized into physics-based, pattern-
based, and planning-based [6].

In physics-based methods, motion is predicted by the forward propagation of a set of
explicit dynamics equations with a physical interpretation. This category contains the single-
motion model case, as in Linear Dynamical Systems (LDSs) (e.g. a plain Kalman filter)
and extensions to the non-linear case (e.g. unscented or extended Kalman filters or particle
filters). This category also contains more advanced approaches with multiple motion models,
either as a mixture [8, 33] or with switching dynamics, e.g. Interacting Multiple Models
(IMM). Context cues can guide the switch in dynamics, leading to a more general Dynamic
Bayesian Network (DBN) [20, 34, 35].

Pattern-based methods instead derive predictions from previously seen data. One way
of doing this is to match the current (partial) track to previously seen (complete) tracks in
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a database and use the best matching exemplar for extrapolation [9]. An alternative is to
perform non-linear regression by means of Gaussian Process Dynamic Models (GPDMs)
[9, 36], Quantile Regression [37], or Recurrent Neural Networks (RNNs) [38–44]. Popular
instantiations of RNNs are Long Short Term Memory networks (LSTMs) and Gated Recur-
rent Units (GRUs). The latter uses fewer parameters than the former while it may keep a
similar performance [45]. An RNN can predict not only a future state but also its uncertainty
(e.g. Gaussian distribution [38], or similar to an IMM filter, a mixture of Gaussians [39]).
RNNs cannot inherently handle missing data (e.g. a frame where the VRU was not de-
tected), and several methods have been proposed to overcome this (e.g. [40]). Posner and
Ondrúška [40] add an extra binary input to each measurement whether the measurement has
data.

Some approaches blur the line between pure physics-based and pattern-based methods.
Fraccaro et al. [41] model the dynamic latent state of an RNN with a Kalman filter, allowing
them to use the exact inference, prediction, and smoothing of a Kalman filter for the dynam-
ics. Li et al. [42] propose to make separate predictions with both a DBN and RNN, and fuse
these afterward in an online adaptive weighting scheme.

Planning-based methods model road users as agents that perform a sequence of decisions
or actions in order to accomplish some goal. The specific behavior of an agent is guided by
a reward function, which captures progress towards the goal and encodes certain agent pref-
erences (e.g. a pedestrian might rather walk on the sidewalk than on the street). This reward
function might not be known, and can be learned off-line from training data by Inverse Rein-
forcement Learning (IRL) [31, 46–50]. The agent’s goal is typically not known either, but it
can be jointly inferred online together with the agent’s behavior. These possible actions of an
agent can be described by a dynamics model, which can be either physics-based (e.g. [47])
or pattern-based (e.g. [48]).

2.3. CONTEXT CUES

O BJECT context cues are those that are directly linked to the object of interest, in addition
to point target kinematics (positions, velocities, and orientation [51]). For example,

Keller and Gavrila [9] use dense optical flow features to improve pedestrian path prediction.
Xiong et al. [52] incorporate a learned feature representation of the VRU related cues, either
through the feature representation of a re-identification network or through the last layer
feature representation of the YOLO object detector [53]. Quintero et al. [36] recover a full
3D articulated pose of a pedestrian.

Static context cues refer to the influence of the world surrounding the VRU on their path.
These are static effects such as an expectation on where VRUs plan to walk to [23], or their
specific location within the scene [10, 54]. For road users, the topological and geometric
layout of crossings can be a powerful cue for future behavior, especially for crossings. This
is the case for both pedestrians [55–57] as well as cyclists [58, 59] A more implicit static
context cue is found by identifying the VRU’s preference to traverse certain kinds of semantic
areas (sidewalks, grass, zebra crossings, etc.). One way of implementing this is through
IRL [46, 47], or with neural networks [60]. Ballan et al. [31] learn preferred routes directly
on top-down image data rather than on a semantic map and show that the learned knowledge
is transferable to new locations. Saleh et al. [61] forego the need for a goal by using IRL only
to learn the reward map of a static scene. Another approach is to directly encode the structure
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of the road ahead [21], or to predict the trajectory along the curvature of the road [62].
Dynamic context cues include whether the VRU is aware of his or her surroundings.

Kooij et al. [20] incorporate both whether the vehicle and the pedestrian are on a collision
course as well as the pedestrian’s awareness thereof into a DBN to predict the future position
of a pedestrian who might cross the road. Neogi et al. [63] leverage the interaction between
ego-vehicle and pedestrian for path prediction near an intersection as well. Other dynamic
objects or VRUs can also influence the future path of VRUs. Social Force Models [43, 44,
50, 64] model the influence that nearby VRUs have on each other.

A closely related field that also uses context cues is intent recognition for VRUs, where
inferring the intent is the goal, rather than the exact future trajectory. Here, many context cues
have been examined as well, such as the pose [65], image data [66, 67], or physical properties:
positions [57], as well as velocity and heading [68]. Intent recognition is sometimes used
as an intermediate goal, where the predicted intent specifies what kind of motion model is
used [9, 11].

2.4. PARAMETER ESTIMATION

M ETHODS with learned state representations optimize their parameters directly by per-
forming gradient descent of an objective loss using training data. This has been greatly

simplified thanks to frameworks such as PyTorch [69] and TensorFlow [70]. The main re-
quirement is that this loss is differentiable. Similarly, the quantile regression forest-based
approach of Völz et al. [37] optimizes all parameters at once. The downside is that while
the learned representation fits the data, it is not necessarily possible to interpret the hidden
state of the learned representation. Being able to interpret why such a model predicts what
it does is an active field, both in path prediction [40] as well as in detection [71]. Attentive
neural networks [72] improve the interpretability of a neural network by forcing the network
to make predictions on only a subset of all available information, such that the “attention” of
the network points to specific areas or moments in time.

Methods with a crafted state representation on the other hand often explicitly fix certain
parameters a priori which ensures that the latent state is interpretable. Kooij et al. [20] fix
the dynamic models in a DBN to a constant-velocity model as well and estimate the other
parameters for the context cues by annotating all context variables at each frame. A similar
approach can be found in [42]. Hashimoto et al. [35] use a DBN and fix its dynamic model to
be a constant-velocity model while optimizing the other parameters through maximum likeli-
hood estimation. Batkovic et al. [23] specifically structure their model so the few parameters
can be tuned by hand. If the goal is to optimize the DBN for estimating the current state (i.e.
filtering) and the DBN only has discrete hidden variables, both the optimal parameters and
structure can be computed [73]. If it has both discrete and continuous hidden variables, pa-
rameter optimization can be done by Expectation-Maximization [74] or gradient descent [75,
p. 169].

2.5. PLANNING

T HE sections above indicated that a large body of work has focused specifically on VRU
path prediction. A similar amount of attention has gone to motion planning for intelligent

vehicles, e.g. [3, 5, 28, 76–78]). One categorization here is whether the goal is ADAS, i.e.
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to reduce the risk of injury in dangerous situations, or full autonomous planning, i.e. to
drive similar to a human driver in a diverse set of situations. As an example of the former,
Rosado et al. presented a pedestrian Automatic Emergency Braking (AEB) analytical model
based on analyzing the pedestrian lateral behavior [76]. As an example of the latter, Ziegler et
al. drove an autonomous vehicle along the 103 km long Bertha Benz Memorial Route, where
they had to deal with VRUs along the way [3].

On the side of ADAS, evasive steering maneuvers are necessary if there is no longitudi-
nal space to brake. In [28], the authors provide a driver-assistant design to decide whether to
brake or evade the crossing pedestrian based on the information provided by the perception
module. Alternatively, Köhler et al. focus on a scenario where there is no time to brake
and propose an autonomous lane-keeping evasive maneuver that relies on the road infrastruc-
ture [78].
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EVALUATION OF LIDAR-BASED

3D PERSON LOCALIZATION

You can observe a lot by just watching.

Yogi Berra

Parts of this chapter have been published in [79].

15
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T HIS chapter investigates the performance of 3D object detectors in the context of intel-
ligent vehicles, as accurate detections are key for successful path prediction: if you do

not detect that someone is there, you cannot predict where they will go. To that extent, this
chapter investigates what these detectors can estimate accurately and what they cannot. This
is done through an experimental study on the 3D localization of pedestrians and cyclists in
traffic scenes, using monocular vision and Lidar data. Two 3D object detection methods are
considered, PointPillars [16] and AVOD [17], which are among the top performers on the
KITTI benchmark [18]. With these object detectors, this chapter investigates the effect of
varying Intersection over Union (IoU) settings on detection performance and quantifies the
errors in terms of 3D bounding box location, extent, and orientation.

Given that the KITTI benchmark contains relatively few 3D person instances, additional
experiments are done on a large subset of the EuroCity Persons 2.5D (ECP2.5D) dataset [19].
Apart from being one order of magnitude larger than KITTI, ECP2.5D has advantages in
terms of diversity (e.g. geographical coverage, time of day/season, weather conditions) and
by being devoid of privacy-driven image blurring. Finally, domain transfer experiments be-
tween KITTI and ECP2.5D examine how these datasets relate to each other.

3.1. 3D OBJECT DETECTION

T HIS section focuses on previous 3D object detection methods that use neural network
architectures, as they are the current best performers in the various benchmarks.

One way to categorize these is by sensor modality, i.e. either a single modality or a
fusion of multiple modalities. The commonly used sensors used are (monocular) camera and
Lidar. However, the RGB-only methods (e.g. Shift R-CNN [80]) are generally outperformed
by methods that instead use Lidar information. These Lidar-only networks map the point
cloud to either a 2D or a 3D representation. Examples of 2D representations are Birds Eye
View (used by e.g. HDNet [81]) and Range View (e.g. LaserNet [82]). Networks can also
map the point cloud to 3D representations like Voxels (e.g. Voxelnet [83]), Pillars (e.g.
PointPillars [16]), or Stixels (e.g. SCNet [84]).

Multi-sensor modality networks, also called fusion networks, use both camera and Lidar.
Here, all the previously mentioned Lidar mappings can be used to fuse with the camera data.
How they are fused exactly falls into four categories. The first category is early fusion, where
the modalities are concatenated before being passed into a neural network. An example of
early fusion is MVX-Net PointFusion [85] where the pointcloud is projected onto an RGB-
image and then concatenated. Secondly, deep fusion networks fuse the modalities after they
have already been processed by a part of the network, for example, PointFusion [86]. Here,
the features from a PointNet [87] and a ResNet-50 are concatenated. With deep fusion, it is
also possible to fuse the various modalities at multiple stages, as is done with AVOD [17].
Within such a deep fusion network, the performance is dependent on the feature encoder
used [88]. Thirdly, late fusion takes the output of two or more independent networks and
fuses the class probabilities [89]. Lastly, sequential fusion processes the sensor modalities in
sequence. For example, Frustum PointNets [29] and Frustrum Convnet [90] use a 2D image
detector to select frustums in a pointcloud, which are then processed separately.

Another way of categorizing previous 3D object detection methods is by the number of
stages used by the network. Two-stage approaches utilize a Region Proposal Network (RPN)
to generate bounding boxes that are individually evaluated (e.g. STD [91]). Single-state
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Figure 3.1: An example of the predicted bounding boxes of PointPillars [16] and AVOD [17] on a scene from the
EuroCity Persons 2.5D [19], along with the annotated ground truth.
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Table 3.1: Comparison of AVOD and PointPillars.

AVOD PointPillars

Modality Lidar + image Lidar
Stages Two-stage Single-stage
Bounding box
regression

four corners, heights,
orientation

3D center point, length,
width, height, orientation

Table 3.2: Overview of traffic-related 3D persons datasets. A dash denotes that the information could not be deter-
mined.

Dataset Waymo nuScenes Argoverse Lyft KITTI ECP2.5D
[4] [93] [32] [94] [18] [19]

# Countries 1 2 1 1 1 12
# Cities 2 2 2 1 1 30
# Imgs 800K 34K 350K 55K 15K 46K
# Peds 2.8M 222K 132K 25K 9.4K 123K
# Riders 67K 24K 11K 22K 3.3K 13K
# Seasons - - 1 1 1 4
Weather dry, rain dry, rain dry dry dry dry, rain
Time of day day, night day, night day, night - day day, night
Unblurred � � � � � �

approaches instead evaluate predetermined bounding boxes (e.g. PointPainting [92]), also
called anchor boxes.

Table 3.1 highlights the differences between PointPillars [16] and AVOD [17], two of the
best performing Lidar and fusion networks, respectively, with code available at the time of
writing. These will be used later in the experiments.

In terms of existing datasets, one of the first 3D object detection benchmarks was an ex-
tension to KITTI [18], released in 2017, which contains around 9400 pedestrians (of which
half in the publicly available training set). Since then, KITTI has become the de facto stan-
dard for 3D object detection. However, because of the relatively small dataset size, perfor-
mances can differ a lot on the validation and test set. More recent dataset additions to KITTI
are significantly larger and more diverse, see table 3.2.

3.2. METHODOLOGY

T HE goal of 3D person detectors is to detect the bounding boxes of Vulnerable Road
Users (VRUs) in the scene. In KITTI, these bounding boxes have seven degrees of

freedom (fig. 3.2). The 3D position is given in a coordinate system with respect to the ego-
vehicle, where x is the position of the bounding box center lateral to the vehicle, z is the
position longitudinal to the vehicle (i.e. depth), and y determines the altitude of the bounding
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Figure 3.2: A visualization of the parameters relevant for computing the IoU of a ground truth and predicted bound-
ing box. The darker shaded area indicates the overlap area Ao . In this figure, the overlapping height ho is equal to
the height of the smaller bounding box.

box center. The bounding box dimensions are specified by a width w, length l, and height h.
Finally, each bounding box has a yaw rotation θ. The top and bottom faces of the bounding
box are assumed to be parallel to the y = 0 plane. The predicted bounding boxes will also
have a detection score d related to them.

3.2.1. INTERSECTION OVER UNION
To evaluate the performance of an object detector, one needs to count a predicted bounding
box as valid or non-valid (i.e. true positive or false positive). In 3D (as well as 2D) object
detection, the method to assess if a proposed bounding box is a true- or false-positive is
based on Intersection over Union (IoU). It is defined as the intersection (or overlap) of a 3D
bounding box prediction (Bp ) and ground truth (Bg t ) divided by the union of the prediction
and ground truth. When both bounding boxes only have a yaw rotation, this can be written
as [95]:

IoU= Bp ∩Bg t

Bp ∪Bg t
= Ao ×ho

Vg t +Vp − Ao ×ho
(3.1)

Where Vp and Vg t are the volumes of the predicted and ground truth bounding box.
The overlap of volumes can be computed from the overlapping top-view area Ao and the
overlapping height (ho), see fig. 3.2. In the KITTI benchmark, a predicted bounding box is
seen as a true positive if it has an IoU of more than 0.5. Only one predicted bounding box
can be marked as a true positive for any ground truth bounding box.

3.2.2. PERFORMANCE METRICS
After the true positives have been determined, it is possible to compute the two metrics as
defined in the KITTI benchmark for 3D object detection: 3D Average Precision (AP3D ) and
Average Orientation Similarity (AOS) [18].

The AP3D averages the maximum attained precision s with at least a recall r for a fixed
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range of recall values [96]:

AP3D = 1

40

∑

r∈{ 1
40 , 2

40 ,...,1}

max
r̄ :r̄≥r

s(r̃ ) (3.2)

As precision and recall both depend on the number of true positives, the AP3D strongly
depends on the IoU threshold.

Where the AP3D verifies whether the bounding boxes are in the correct place, the AOS
additionally verifies the correctness of their orientations:

AOS = 1

40

∑

r∈{ 1
40 , 2

40 ,...,1}

max
r̄ :r̄≥r

s̃(r̃ ) (3.3)

s̃(r ) = 1

|D (r ) |
∑

i∈D(r )

1+cos∆(i )
θ

2
δi (3.4)

Where D (r ) denotes the set of all objects at a specific recall rate r and ∆(i )
θ

the differ-
ence between the estimated and the real orientation. The indicator δi is one if the predicted
bounding box is seen as a true positive, and zero otherwise. If every true positive predicted
bounding box has an orientation error of 0, eq. (3.4) reduces to the precision at that recall
rate.

3.3. EXPERIMENTS

E XPERIMENTS are performed with the codebase of the authors of AVOD1 and the code-
base recommended by the authors of PointPillars2 as is, using the best performing net-

work as reported in their papers. Thus for AVOD, the specific version used is AVOD-FPN,
and PointPillars uses a spatial resolution of 0.16×0.16 m2.

3.3.1. DATASETS OVERVIEW
Figure 3.3 shows the distribution of the VRU locations relative to the vehicle for the publicly
available part of both KITTI and ECP2.5D. The bulk of the detections in the KITTI dataset
lies within 30 m distance of the ego-vehicle. Both datasets have a bias towards VRUs being
on the right side of the ego-vehicle.

This chapter uses the same KITTI 1:1 train/validation split as specified by the AVOD
and PointPillars codebases. The KITTI dataset contains 2.2K/0.7K and 2.3K/0.9K pedes-
trian/cyclist annotations for the train and validation split respectively. The validation split is
divided into three parts, “easy”, “moderate”, and “hard”, as defined by KITTI. The ECP2.5D
dataset has a larger amount of annotations for the 3D position and orientation but lacks width,
length, and height annotation. Instead, the median bounding box dimensions of the train split
of the KITTI dataset are used, so both networks can still regress a full bounding box. This
chapter uses the "Day" subset of ECP2.5D as its basis. Additionally, the underlying Eurocity
Persons (ECP) dataset misses an orientation label for 386 pedestrians and 144 riders, these

1https://github.com/kujason/avod
2https://github.com/traveller59/second.pytorch
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Figure 3.3: The overall distribution over location of pedestrians and cyclists the KITTI dataset as a logarithmic plot.
In all figures, the ego-vehicle is positioned at (0,0), looking upwards. Each pixel in the image corresponds to a
1x1 square meter area. The color indicates the number of ground truth occurences in that location according to the
colorbar on top. The darkest blue region indicates areas with zero occurences.
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Table 3.3: AOS and AP3D performance of PointPillars (PP) and AVOD, trained on KITTI and evaluated on the
moderate part of the KITTI validation split.

Pedestrian Cyclist

IoU AP3D AOS AP3D AOS

PP

0.5 55.8 27.0 58.5 5.8
0.4 71.5 34.5 63.7 6.9
0.3 76.5 37.1 64.9 7.1
0.2 77.1 37.4 66.0 7.2
0.1 77.2 37.5 66.0 7.2

AV OD

0.5 41.2 32.3 35.1 34.8
0.4 50.0 38.3 36.3 35.9
0.3 52.5 40.1 36.3 35.9
0.2 52.7 40.2 36.3 35.9
0.1 52.7 40.3 36.3 35.9

are set to “Don’t Care”. This results in 62.3K/7.3K pedestrian/cyclist annotations in the train-
ing split, and 12.6K/1.3K pedestrian/cyclist annotations in the validation split. The test set
ground truth annotations of both datasets are not made public, so all evaluations done in the
rest of this chapter are done using the validation splits of either dataset as mentioned here.

Both datasets use the Velodyne HDL-64E (Lidar) sensor. The intensity of the Lidar points
in KITTI fall in 100 discrete bins of between 0 and 1. ECP2.5D has an intensity on a contin-
uous range between 1.0 and 255.

3.3.2. EFFECT OF IOU ON PERFORMANCE AND ERROR ANALYSIS

PERFORMANCE WITH LOWER IOU CONSTRAINTS

Table 3.3 shows the performance of PointPillars and AVOD on KITTI for the cyclist and the
pedestrian classes. PointPillars has a higher AP3D than AVOD, even though their scores on
the moderate test split on the KITTI benchmark differ less than one percent. However, the re-
sults for AVOD are comparable to those found on the validation split in the comparison study
of [88]. Lowering the IoU threshold increases the AP3D by a large margin. For example, the
AP3D of PointPillars on pedestrians increases from 55.8 to 77.2 (21 %).

This is further visualized in fig. 3.4, which shows a histogram of the IoU found for all
true positive detections at an IoU threshold of 0.1. This histogram shows that for pedestrians
more than 15% of the detections of PointPillars and 10% of the detections of AVOD had an
IoU between 0.4 and 0.5, just outside the normal IoU threshold. A similar effect is seen for
cyclists, albeit less strongly.

The upper bound of the AOS is the AP3D , as mentioned in section 3.2.2. Table 3.3 shows
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Figure 3.4: PointPillars and AVOD trained on KITTI: a histogram of what fraction of true positive detections had
what IoU (IoU threshold of 0.1).

that even though the general detection accuracy of AVOD is lower than PointPillars, its AOS
is almost perfect, especially for cyclists. The AOS of PointPillars is far worse than the AOS
noted on the online KITTI benchmark. A closer inspection of the distribution of the ori-
entation error (fig. 3.5) shows that for PointPillars, the orientation error peaks around 0 or
180 degrees. In the paper of PointPillars, the authors state that the orientation loss used can-
not distinguish between flipped boxes, for which they use an additional binary classification
loss. The orientation errors of PointPillars shown in fig. 3.5 seem to indicate that while the
original overall orientation loss works as expected, there might be an implementation issue
with the binary classification loss in the codebase of SECOND. As for AVOD, almost all of
the orientation estimates indeed have an error closer to 0 degrees as was expected from their
AOS.

ERROR ANALYSIS OF BOUNDING BOX ESTIMATION

Figure 3.6 shows the error made in position and size of the predicted bounding boxes on
pedestrians by PointPillars. The smallest errors are made on the x and the z estimation: the
lateral and longitudinal position. The largest error is made on the width and length estimation.
These depend on the stride of a pedestrian, as well as the location of their arms, which can
be difficult to infer at larger distances.

The relatively small error in x and the z position (essentially a top-down position esti-
mate) is visualized in fig. 3.7. It shows the x and z position error made for the true positive
detections for the original IoU threshold, as well as the error for the detections between an
IoU of 0.1 and 0.5. A lot of the detections with an IoU below 0.5 are still accurate at estimat-
ing the position. For an IoU threshold of 0.5, nearly all of the true positive detections (1462
of the 1494) lie within a radius of 15 cm. When looking at the detections found with an IoU
threshold of 0.1, a total of 1811 detections lie within a radius of 15 cm. In other words, using
a radius of 15 cm as a metric to determine true positives instead of an IoU of at least 0.5
shows a 23 % increase in the number of detections.

The same data is put more succinctly in fig. 3.8, with cyclists added as well. It shows the
amount of true positive detections that fall below a specific Euclidean position error. Cyclists
see a smaller benefit, but as their annotated bounding boxes are larger, it is possible to make
a larger position error without affecting the IoU as much.
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Figure 3.5: PointPillars and AVOD trained on KITTI: A histogram of the orientation error. The arrows indicate the
fraction of detections of the two bars outside of the y axis range. Most orientation errors lie either between -40 and
40 degrees, or between 140 and -140 degrees.
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Figure 3.6: PointPillars trained on KITTI: the average error between the prediction and the ground truth for the
pedestrian detections on x, z, y, w, l, and h, at different IoUs thresholds. The largest error is made on the altitude
estimation, together with the bounding box width and length.
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Table 3.4: AP3D performance of PointPillars (PP) and AVOD for two IoU thresholds, evaluated on the moderate
part of the KITTI validation split. The networks were trained on the original KITTI ground truth or on the ground
truth with fixed bounding box dimensions.

Pedestrian Cyclist

IoU Original Fixed Original Fixed

PP

0.5 55.8 54.6 58.5 62.6
0.1 77.2 73.3 66.0 68.1

AV OD

0.5 41.2 46.0 35.1 35.5
0.1 52.7 59.6 36.3 38.8

Table 3.5: AP3D performance of PointPillars (PP) and AVOD for an IoU of 0.1 on the moderate validation split of
KITTI and ECP2.5D. Bold indicates the highest performance in that column.

AP3D

Trained network ECP2.5D KITTI

wi th i ntensi t y :

PP on ECP2.5D 34.1 46.7
PP on KITTI 6.9 77.2

w/o i ntensi t y :

PP on ECP2.5D 32.8 55.4
PP on KITTI 26.0 67.5

AVOD on ECP2.5D 26.8 34.0
AVOD on KITTI 5.0 52.7

ACCURACY EVALUATION USING FIXED BOUNDING BOXES DURING TRAINING

The relatively large errors in width and length suggest that these two 3D object detectors
are not able to properly estimate these. To investigate the influence of the dimensions of the
bounding boxes, the model is trained on a version of the KITTI dataset train split where the
dimensions of each VRU have been set to the median dimensions of their respective class.
The resulting network is evaluated on the original KITTI dataset validation split with the
correct dimensions (see Table 3.4). At an IoU of 0.5, the performance of PointPillars on
the pedestrian class drops by 1.2 %. Surprisingly, the performance of the cyclist class even
increases by 3.9 %. Next to that, AVOD shows an increase in both the pedestrian and the
cyclist class.
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3.3.3. CROSS-DATASET EVALUATIONS
To see how well each dataset generalizes, both networks are trained on the one dataset and
evaluated on the other. Because the original PointPillars uses the intensity information of the
points in the point cloud as well, it is trained once with this intensity information present,
and once without. AVOD does not use the intensity information, and therefore only needs to
be trained once on each dataset. To ensure the datasets are compatible, the Lidar intensity
values in each dataset are linearly rescaled to the same range.

Table 3.5 shows the resulting AP3D . PointPillars using Lidar intensity data and the (“na-
tive”) training sets, corresponding to the datasets tested, has the best performance on both
datasets. When not using Lidar intensity data, PointPillars’ performance slightly drops, but
still clearly outperforms AVOD on both datasets, when using the native training sets. Perfor-
mance of both methods was significantly lower on ECP2.5D vs. KITTI,

When non-native training sets are used, performances degrade significantly for both
methods, both when moving from KITTI to ECP2.5D and vice versa. The performance
degradation for PointPillars is less severe when the Lidar intensity data is not used.

3.4. DISCUSSION

T HIS chapter presented an experimental study on 3D person localization in traffic scenes,
on the basis of monocular vision and Lidar data. Experiments on KITTI showed that

whereas headline results (AP3D ) results might seem low, the 3D box center localization ac-
curacies are in fact quite high. The errors lowering AP3D are mostly related to the estimates
of the bounding box extents (especially, width and length). The path prediction methods dis-
cussed so far do not utilize these bounding box extents, and as such these errors are not as
relevant as the 3D box center localization.

PointPillars clearly outperformed AVOD (AP3D of 68% vs. 53% and 33% vs. 27%, for
KITTI and ECP2.5D respectively, when not using Lidar intensity information). Performance
of both methods was significantly lower on ECP2.5D vs. KITTI, this is attributed to a larger
prevalence of distant persons with fewer Lidar points in ECP2.5D.

The domain transfer experiments indicated the two datasets have quite different biases,
in the sense that training on one and testing to the other leads to significantly degraded per-
formance (upwards of AP3D of 6.8%). One could then expect a similar degradation in per-
formance if the target Lidar of the intelligent vehicle is different from the one used in such a
dataset. As such, further research is needed on cross-domain adaptation.

Additionally, the two detection methods discussed here estimate an orientation alongside
the location, as is the standard in 3D object detection. Future work can extend the motion
models used in this thesis to include this as an additional measurement, as suggested in [51],
without needing an additional orientation detector pipeline.

One remaining question is how Lidar-based 3D object detectors compare to pure stereo
camera-based detectors. While Lidar is expected to be more accurate, stereo camera detec-
tion pipelines are shown to be adequate for path prediction [3, 28]. Additionally, current
Lidar sensors are more expensive than stereo camera setups, where the latter are already
implemented in consumer vehicles. Consequently, a prediction method that generates good
results with stereo camera detections will be broadly applicable and is expected to have an
even higher performance when used with Lidar detections. The next chapters therefore opt
for using detections from a stereo camera setup to ensure they are broadly applicable.
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4
USING ROAD TOPOLOGY TO

IMPROVE CYCLIST PATH
PREDICTION

Alice came to a fork in the road.
‘Which road do I take?’ she asked.

‘Where do you want to go?’ responded the Cheshire Cat.
‘I don’t know,’ Alice answered.

‘Then,’ said the Cat, ‘it doesn’t matter.’

from Alice in Wonderland by Lewis Carroll

Parts of this chapter have been published in [97].

29
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T HIS chapter describes various methods to learn motion models for cyclist path prediction
at intersections. Their efficacy is evaluated using real-world tracks obtained from a mov-

ing vehicle, extracted from the Tsinghua-Daimler Cyclist (TDC) benchmark [13]. The trajec-
tories are spatially aligned in the vicinity of curves and crossings where important changes in
dynamics can occur, through a coordinate system related to the road topology. These tracks
are used to learn viewpoint invariant cyclist dynamics. This chapter evaluates standard mo-
tion models for path prediction and proposes an extension to leverage prior knowledge on the
road topology to improve its predictions.

The focus lies on intersections for two reasons. First, this is the location where cyclists
and (intelligent) vehicles interact the most. This makes it a high-risk scenario, calling for
the importance of accurate path prediction. Secondly, cyclists can showcase various kinds of
dynamic behavior at intersections, i.e. they have the option to continue along any of the exit
roads available to them at that intersection. This means it is a difficult scenario, which is why
specialized path prediction methods such as the one laid out in this chapter are needed.

4.1. CYCLIST TRACK DATASET

T HE publicly available real-world TDC benchmark [13] is recorded with a stereo-camera
setup in a moving vehicle in the Tsinghua city area. It contains annotated bounding

boxes for cyclists, together with dense disparity maps of each frame, and camera parameters.
Since the objective is to study predictive motion models instead of object detection, ground
truth track data is extracted from the bounding boxes. Furthermore, all tracks are spatially
aligned based on the road topology to ensure that all tracks have a more similar initial state,
which could aid in path prediction. These tracks are made available for the community1.

4.1.1. EXTRACTING TRACKS FROM THE TDC BENCHMARK
By taking the median disparity in each bounding box, one obtains 2D ground plane positions
(lateral, longitudinal) relative to the ego-vehicle. Since the annotated bounding boxes also
contain track ids, cyclist tracks can be extracted as sequences of 2D positions.

This chapter combines tracks from both the training and test set of the detection bench-
mark. The experiments will use Leave-One-Out cross-validation to separate training and test
tracks. In the test set bounding boxes are provided at 5 fps, but in the training set at 2.5 fps.
The training tracks are therefore interpolated to 5 fps to ensure constant time intervals for all
tracks. All occluded bounding boxes, bounding boxes smaller than 30×30 pixels, or with a
distance greater than 60 meters from the ego-vehicle, are removed.

To learn cyclist motion models, their position and velocities should be expressed in a
ground plane coordinate system independent of vehicle egomotion. Unfortunately, the TDC
benchmark does not provide egomotion information. The vehicle egomotion is therefore
estimated once in an offline process by applying the Iterative Closest Point (ICP) algorithm
(using the Point Cloud Library [98]) on the disparity maps of each pair of subsequent frames,
and accumulating the resulting 3D transformations. For reference, in recording “2014-11-
20_074640” the vehicle starts and finishes at the same spot (i.e. ‘loop closure’) after driving
1.55 km. The traveled distance found by ICP was 1.55 km, with a deviation of only 12.8 m

1This dataset is available for non-commercial research purposes. Follow the links from http://www.gavrila.
net or contact the author.
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Figure 4.1: An example of two cyclists, together with the road annotation. The dotted line shows the center lane
of the road that the cyclist in the blue rectangle is cycling onto, while the solid line shows the center lane of the
road that both the ego-vehicle and the ‘orange’ cyclist follow. Every star is an annotated point on the main road, the
dashed line is the sideroad annotation.

between the start and end points.

4.1.2. ALIGNING TRACKS WITH ROAD TOPOLOGY
The road layout and intersection topology of the driven routes is manually annotated. This
was done by marking points in the video along the centerline of the driven road throughout
the sequences, as well as any side- or crossroads that a cyclist’s path followed. For each
crossing on a cyclist’s path, a label is added to define which directions are available and
which direction the cyclist takes, as five canonical direction classes: a 90◦ left and right
bend, a 45◦ left and right bend, and straight. Finally, each track is labeled as to which main
and sideroad segments it follows, hence it is known where each track passes a crossing. An
example of the annotated scene is shown in fig. 4.1. Section 4.2 shall propose a method to
exploit this topological prior knowledge for path prediction.

All locations where a track follows a bend in the road are located, either by taking a turn
at an intersection, or by following a curved road. If a cyclist track had more than one turn in
it, the tracks are cut into two segments, one for each turn. If a cyclist travels straight longer
than 10 seconds (50 frames), it is cut into smaller segments. Track segments shorter than 1
second are discarded. For the remainder of this chapter, the term ‘tracks’ shall now refer to
the processed track segments.

All tracks are then categorized by the direction that they take on their respective crossings.
The total track count per class label is given in table 4.1. There are much more straight than
bending tracks, therefore bending tracks are extracted from the full TDC benchmark, but
straight tracks only from the TDC test set.
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Table 4.1: The total amount of tracks extracted from the dataset. In total, there are 119 tracks, extracted from 108
cyclists.

90◦ left 45◦ left straight 45◦ right 90◦ right
Track count 16 8 68 10 17
Frame count 136 99 1128 135 167

(a) (b)

Figure 4.2: Three tracks, before (4.2a) and after (4.2b) they have been transformed to the general coordinate system.
The general coordinate system ensures a much more similar initial state between all tracks. The frame where a track
is closest to the thin dotted line is where the Time To Event (TTE) of that track is defined to be 0.

Tracks are then aligned with respect to their local road topology through translation and
rotation. For all curved tracks, the translation is done based on the intersection point of the
center lanes of the incoming and outgoing roads. This point is selected to be the origin point
for the curved track. For straight tracks, the origin is the point at the center lane that is
closest to the average of the track’s start and end position. After the translation, the tracks
are rotated such that the direction from the incoming road towards the intersection point is
pointed directly upward when viewed in a 2D x-y graph. The process is illustrated in fig. 4.2.
The resulting spatially aligned real-world tracks are shown in fig. 4.3.

For temporal alignment, existing literature [8, 20] is followed by expressing frames in
Time To Event (TTE), where the frame with TTE = 0 is when the track crosses the line of
equal lateral and longitudinal distance to the origin (see dotted lines in fig. 4.2b). Earlier
frames have negative TTE (e.g.. cyclist approaching intersection), later frames a positive
TTE (e.g. cyclist leaving intersection).

4.2. METHODOLOGY

T His chapter compares three probabilistic motion models based on linear dynamics for
path predictions. As in [8], observations are filtered online using a recursive Bayesian

filter with the selected motion model. At any frame, a predictive distribution for future posi-
tions is obtained by executing a filter’s ‘predict’ step several times without any ‘update’.

Below, section 4.2.1 will first introduce the considered motion models and explain how to
exploit road topology. Then section 4.2.2 will explain how model parameters are estimated
from the track data, section 4.2.3 will detail online path prediction. Finally, section 4.2.4
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Figure 4.3: Extracted real-world cyclist tracks, aligned with their local road topology which distinguishes five
canonical directions. All tracks start at the bottom and move upward. The figure shows that most (but not all)
cyclists drive on the right side of the road. Note that some cyclists who plan to turn to the left are seen to cycle on
the left side of the road, even before the crossing. Most tracks move straight.

defines the metrics on which the learned models are evaluated.

4.2.1. MOTION MODELS FOR PATH PREDICTION
The following three probabilistic motion models are considered:
Linear Dynamical System (LDS) Previous research on pedestrian path prediction found no
significant benefit of higher-order or constant turn motion models over a constant velocity
model with white noise acceleration [8]. Hence the picked baseline is the constant velocity
LDS. The used recursive Bayesian filter is therefore a common Kalman filter. The predictive
distribution is Gaussian.
Uninformed MoLDS (U-MoLDS) Consider that the cyclist has a latent intent to move into
one of the five canonical directions that could occur in the road topology (see section 4.1.2).
Given this intent, more specific dynamics might be applied. The baseline model is extended
to a five component Mixture of Linear Dynamical Systems (MoLDS), one for each of the five
canonical directions.

Since the cyclist’s intent is unobserved, it must be estimated online. The prior intent is
assumed to be a uniform distribution. This model is called uninformed with respect to the
latent intent. During online inference, both a distribution on the continuous state and the
latent intent is inferred from the past observations.
Informed MoLDS (I-MoLDS) The third model is similar to the U-MoLDS but includes
prior information on which canonical directions are present in a track’s local road topology
(e.g. obtained from map data). Namely, the intent prior is set to zero for road directions that
are not in a track’s local topological layout, the other directions have an equal prior probabil-
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ity.

More formally, at every time step t , the model is defined by two variables: the hidden
state ht ∈ R|h| and the observation yt ∈ R|y |. Their relations are defined by linear dynamics
and Gaussian noise, namely

ht = Aht−1 +B εt εt ∼N (µM
ε ,ΣM

ε ) (4.1)

yt =C ht +ηt ηt ∼N (0,ΣM
η ). (4.2)

Here the vector εt ∈ R|h| is an unknown noise signal affecting the system and matrices A ∈
R|h|×|h| and B ∈ R|h|×|h| define the linear state transition. The measurements y ∈ R|y | are
related to the state through matrix C ∈R|y |×|h|. The variables ε and η are Gaussian noise, and
assumed to be dependent on the intent M ∈ [1, · · · , |M |] of the cyclist. Here, µM

(·) and Σ
M
(·) show

that the process mean and covariance of the noise is dependent on M . In the remainder of
this chapter, the LDS baseline is considered a special case with only one possible intent, i.e.
|M | = 1, while |M | = 5 for the U-MoLDS and I-MoLDS.

The observations are positions in 2D, and the model is a constant velocity model. The
noise that acts on the system is modeled as acceleration as given in eq. (4.3):

B =
[1

2∆T 2 0 ∆T 0
0 1

2∆T 2 0 ∆T

]�
. (4.3)

Here, ∆T is the time difference between consecutive frames.

4.2.2. OFFLINE PARAMETER LEARNING

For each motion model, its parameters consist of the initial state distribution (µM
h1

,ΣM
h1

), pro-

cess noise parameters (µM
ε ,ΣM

ε ), and observation noise Σ
M
η for each intent M . During train-

ing, the model parameters must be determined from the training data, but each track’s intent
M is set to its class label (i.e. the canonical direction the cyclist actually takes).

Due to the difficulty of obtaining large amounts of track data, rare motion patterns could
only have a few examples, and maximum likelihood parameter estimation could overfit the
more complex models with more parameters. Therefore, this chapter follows the approach
in [10] and uses fully Bayesian approximate inference to integrate out the model parameters
in the experiments. More precisely, conjugate priors distributions are placed on the parame-
ters for regularization, namely Normal-Inverse-Wishart (NIW) distributions on (µM

h1
,ΣM

h1
) and

on (µM
ε ,ΣM

ε ), and Inverse-Wishart (IW) on Σ
M
η . Given the training data, Gibbs sampling is

used to sample several probable parameter combinations from their joint posterior. The sam-
pling procedure is explained in appendix 4.A. The same priors will be used for all motion
models.

4.2.3. ONLINE PATH PREDICTION
For a given set of sampled model parameters, online path prediction can proceed by running
‘predict’ steps, as outlined at the start of this section. Conditioned on the intent, all models
reduce to a Kalman filter for which prediction is straightforward. However, since a track’s
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intent is unknown during test time, the on-line method must consider the posterior distribution
on M given all past observations.

At every time step t , the posterior state distribution p
(
ht |y1:t , M

)
is computed separately

for each LDS M , using |M | separate Kalman filters. The posterior on M can be computed
from the past observations and the prior distribution p (M),

p
(
M |y1:t

)∝ p
(
y1:t |M

)
p (M) . (4.4)

Recall that the U-MoLDS assumes a uniform prior p (M) over all 5 intents and I-MoLDS
over only the possible intents. The LDS has only one intent, which always has probability 1.

The posterior state distribution for time t is a mixture of |M | Gaussians, p
(
ht |y1:t

) =∑|M |
M=1 p

(
ht |y1:t , M

)
p

(
M |y1:t

)
. To get a prediction n time steps in the future at time t , the

Kalman prediction step is applied n times to all |M | filters, each resulting in a predictive
distribution p

(
ht+n |y1:t , M

)
. The complete predictive distribution for future time step t +n

is thus again a mixture of |M | Gaussians with weights p
(
M |y1:t

)
:

p
(
ht+n |y1:t

)=
|M |∑

M=1
p

(
ht+n |y1:t , M

)
p

(
M |y1:t

)
. (4.5)

Applying the observation model once more to each filter results in the predictive distribution
p

(
yt+n |y1:t

)
for the future observation yt+n .

4.2.4. EVALUATION
The results on the dataset of this chapter are evaluated with two metrics, each based on
the distribution on the future position given the measurements up to time t : p

(
yt+n |y1:t

)
.

For both metrics, the prediction n is set to five time steps into the future, which equals
one second. The first metric is the Euclidean distance error between the expected future
observations Eyt+n

[
p

(
yt+n |y1:t

)]
and the actual observations. Let ŷ t+n be the true future

observation of the position n time steps ahead of the current time t . For a particular model,
a track’s Euclidean distance at a certain time step is then

er r or (t +n|t ) =
∥∥Eyt+n

[
p

(
yt+n |y1:t

)]− ŷ t+n

∥∥ . (4.6)

For this measure, a lower score indicates a better performance. When the Euclidean error
of entire tracks is given, it shows the average Euclidean error of every time step.

The second evaluation metric is the log-likelihood of the predictions, which is a unitless
measure but is indicative of both accuracy and certainty. The log-likelihood considers the
probability of the actual observation at time step t +n. For each track i , the log-likelihood is
defined as

l l (t +n|t ) = log
(
p

(
yt+n = ŷ t+n |y1:t

))
. (4.7)

For this measure, a higher score indicates a better performance. When the log-likelihood
of entire tracks is given, it shows the summed log-likelihood of every time step. The two
measures are also shown how they evolve over time, based on their TTE which was explained
in section 4.1.2.
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To better assess how the model improves path prediction, the underlying assumption
that cyclist dynamics are distinct for different intents is also tested. The U-MoLDS and
I-MoLDS have a separate intent for the five given directions because it is expected that these
five directions have distinct dynamics. This assumption will be tested as a classification
problem: the most likely intent (i.e. the intent whose motion model has the highest likelihood
over a track’s observations) is compared to the track’s class label. If the assumption of linear
dynamics is reasonable, and the dynamics are distinct, then the classification results should
be good.

4.3. EXPERIMENTS

T HE models explained in section 4.2.2 are trained and evaluated using Leave-One-Out
cross-validation with the measures from section 4.2.4. For each model, and each leave-

one-out iteration, the Gibbs sampler was run for 300 iterations, and every tenth parameters
sample of the last 100 was selected. All predictions are 1 second in the future, n = 5, and
performance measures are computed for all sampled parameters. The performance results of
the sampled parameters are then averaged at each time step.

The same priors are used for all models. The hyperparameters of these prior distributions
(see appendix 4.A) are as follows:

κM ,h1 = 1 µM ,h1 = [
0 0 0 0

]� (4.8)

νM ,h1 = 4 ΨM ,h1 = νM ,h1 diag
([

8 8 0.2 0.2
])

(4.9)

κM ,ε = 1 µM ,ε = [
0 0

]� (4.10)

νM ,ε = 4 ΨM ,ε = νM ,εdiag
([

0.01 0.01
])

(4.11)

νM ,η = 5×105 ΨM ,η = νM ,ηdiag
([

0.2 0.4
])

(4.12)

Here ‘diag’ is a shorthand for a diagonal matrix with the given entries on the diagonal. The
parameters Ψ(·) for both the IW and NIW are given as a matrix, m, multiplied by ν(·). Inter-
pret these priors as if v samples are a-priori known, and their expected covariance is m.

The values for ν in eqs. (4.9), (4.11), and (4.12) mean that there is a weak prior on
initial state distribution ξM ,h1 and the system noise ξM ,ε , while there is a strong prior for the
observation noise ξM ,η . This encodes the notion that different models should have similar
observation noise, though their dynamics may be distinct.

4.3.1. MODEL EVALUATION
The assumption is that the dynamics of each intent are distinct. This is assessed by evaluating
the classification performance given all observations. The U-MoLDS, which does not take
the road topology into account, classifies 82% of all tracks correctly. To compare this with the
I-MoLDS, one should consider that a part of the tracks in the available dataset has only one
destination in their road topology, and as such the I-MoLDS cannot fail on these tracks. To
make a fair comparison between the classification of the I-MoLDS and U-MoLDS, only the
tracks with multiple destinations are considered in table 4.2. On these tracks, the U-MoLDS
classifies 76% correctly which shows that it is reasonable to assume the dynamics are distinc-
tive for their respective intent. However, the I-MoLDS classifies 90% correctly, which means
the model can still benefit from additional prior knowledge.
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Table 4.2: The confusion matrix for all tracks with multiple destinations. The value on the left/right shows the result
for the U-MoLDS/I-MoLDS, respectively. The bold values highlight the best scoring model. Overall, the U-MoLDS
classifies 76% correctly, whereas the I-MoLDS classifies 90% correctly.

Estimate
90◦ left 45◦ left straight 45◦ right 90◦ right

G
ro

un
d

tr
ut

h 90◦ left 14 / 17 3 / 0 0 / 0 0 / 0 0 / 0
45◦ left 0 / 0 2 / 2 0 / 0 0 / 0 0 / 0
straight 1 / 2 2 / 1 13 / 13 1 / 0 0 / 1

45◦ right 1 / 1 0 / 0 1 / 1 3 / 6 3 / 0
90◦ right 0 / 1 0 / 0 0 / 0 3 / 0 13 / 15

Table 4.3: The average Euclidean distance error in meters over all tracks, grouped by true class label. The best
performance is shown in bold.

90◦ left 45◦ left straight 45◦ right 90◦ right
LDS 1.75 1.15 1.19 1.23 2.36

U-MoLDS 1.59 1.11 1.38 1.16 1.99
I-MoLDS 1.51 1.10 1.20 1.08 1.88

4.3.2. PATH PREDICTION
Path prediction is evaluated on the two metrics explained in section 4.2.4, with the results
shown in tables 4.3 and 4.4. The I-MoLDS has the lowest Euclidean distance error for all
intents except straight. This is most evident for the 90-degree angles, where the average error
decreases by 24 cm (14%) and 48 cm (20%) for left and right, respectively. On straight tracks,
the LDS outperforms the I-MoLDS, although only minimally (1%).

On the log-likelihood, the I-MoLDS performs best on all directions, except for 45-degree
turns to the left. Here, the U-MoLDS performs best. Furthermore, when the I-MoLDS per-
forms best, it outperforms the LDS by a large margin, whereas the difference in performance
is not so large for the 45-degree turn to the left. A closer inspection of the likelihoods also
shows that where the log-likelihood for 90-degrees left and right are roughly the same, there
is a large discrepancy between the log-likelihood of 45-degrees left and right.

A more complete picture is painted by plotting the error over time. Figure 4.4a shows the
error over time for tracks bending at a 90-degree angle to the left. At T T E = −1 s, where
the models are predicting the state for T T E = 0 s, the performance diverges. This shows
that the I-MoLDS can predict the change in dynamics that is related to the 90-degree turns.
Consequently, the I-MoLDS improves at a time where it matters the most. The same result

Table 4.4: The mean log-likelihood for all tracks, grouped by true class label. The best performance is shown in
bold.

90◦ left 45◦ left straight 45◦ right 90◦ right
LDS -26.66 -27.27 -29.35 -21.91 -24.09

U-MoLDS -21.72 -26.57 -26.24 -21.93 -19.99
I-MoLDS -20.62 -28.05 -23.65 -20.78 -19.73
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(a) Prediction error over time on 90◦ left turn.
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(b) Prediction error over time on 45◦ left turn.

Figure 4.4: The mean error (thick line) and standard deviation(thin line) over time for all tracks, with respect to the
moment they were predicted. The tracks turning 90 degrees to the left are shown in fig. 4.4a. The tracks turning 45
degrees to the left that show an anomaly (see text) are shown in fig. 4.4b.

was seen for the 90-degree turns to the right. The results for all classes can be found in
appendix 4.B.

The same cannot be said for the 45-degree left turn, however, as is shown in fig. 4.4b.
For this angle, the LDS and U-MoLDS show more accurate predictions. A large spike in
the standard deviation can also be seen around this time, indicating that the large error is not
present for all tracks. Together, this indicates that there are tracks present in the 45 degrees
left class whose dynamics are not represented by the others in their group during training.
This is further illustrated by the anomaly seen in the log-likelihood in table 4.4, where, even
though the I-MoLDS did not perform well on the 45-degree left turn, neither did the others.
This suggests that more data is needed for this class.

4.4. DISCUSSION

T HIS chapter presented a complementary dataset to enrich the TDC Benchmark. On this
dataset, a Mixture of Linear Dynamical Systems that can take the road topology into

account was trained and evaluated. The Euclidean prediction error of the cyclist position one
second into the future is shown to be comparable to a Linear Dynamical System on straight
tracks, and improve when the cyclist is turning left or right. Because this dataset adds to an
existing dataset, future research can consider incorporating the visual features from the video
frames to further improve prediction.

Because the trajectories were extracted from a naturalistic dataset, are representative of
what a real intelligent vehicle would encounter. However, to ensure the evaluation in this
chapter showed the performance of the methods rather than the surrounding software infras-
tructure, three assumptions have been made, and the first two warrant further investigation.

The first assumption is each cyclist is perfectly tracked. Specifically, each detection is
assigned to the correct trajectory, rather than sometimes being either incorrectly assigned
to a different existing trajectory, or incorrectly assigned to a new trajectory. Allowing such
misassignments would harm prediction performance, but they would not shed additional light
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on which prediction methods are preferred to others. Still, an in-depth analysis of what
the effects of realistic tracker performance are on path prediction and the motion planning
afterward would give important insight into the applicability of intelligent vehicles in real-
world situations.

The second assumption concerns the bounding box detections. These are currently based
on human annotations, rather than the output of an object detector. Using an object detector
would increase the measurement noise, especially as the 2D bounding boxes need to be con-
verted to 3D using disparity: an offset in the 2D bounding box causes the wrong disparity
values being queried, which will result in an offset in the final 3D position. As mentioned in
chapter 3, this can also be done with 3D object detectors based on Lidar. While these require
an additional sensor, they remove the need for stereo processing and 2D-to-3D conversion
and have a high 3D localization accuracy.

The third and last assumption is that the road topology is assumed known. This is a valid
assumption, as road layout databases do exist (some datasets include these as well [32]).
Still, the road topology – that is the available directions at an intersection – can sometimes be
different for a cyclist and a vehicle: some alleyways might be too narrow for the intelligent
vehicle, but accessible for the cyclist. Additionally, the traffic rules might disallow entrance
to a road (e.g. a one-way street), but grant an exception to cyclists. Worse yet, cyclists are
prone to disregard traffic rules altogether, resulting in a mismatch between what the map
information states is possible and what is actually possible. Such effects can be integrated
into the I-MoLDS by for example making the intent priors depend on information sources
such as signage. However, as these situations do not arise very often, future work will have
to evaluate the efficacy of such approaches with datasets much larger than the one used here.

Further motivated by the fact that interesting critical situations do not occur that often
naturally, the next chapter will move away from naturalistic data and instead focus on a
single scenario. This also makes it possible to exploit a larger amount of scenario-specific
context cues and investigate what type of prediction method is most suited to easily allocate
for this larger amount of context cues.
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APPENDIX

4.A. GIBBS SAMPLING

T HE distributions over the unknown initial state, µM
h1

and Σ
M
h1

, and each type of dynamics,

µ
M
ε and Σ

M
ε , have a prior NIW distribution, eqs. (4.13) and (4.14). The observation noise

Σ
M
η has an IW distribution as prior, eq. (4.15).

{
µ

M
h1

,ΣM
h1

}
∼NW−1(ξM ,h1 ) (4.13)

{
µ

M
ε ,ΣM

ε

}
∼NW−1(ξM ,ε ) (4.14)

Σz
η ∼W−1(ξM ,η ) (4.15)

The NIW and IW distributions are parametrized by ξ(·) = {
µ(·),κ(·),Ψ(·),ν(·)} and ξ(·) ={

Ψ(·),ν(·)} respectively. The advantage of these two distributions is that when they are updated
with new measurements, their posterior is the same type of distribution. So, from the prior
ξ(·)
− , one can compute the posterior ξ(·)

+ after taking N more samples (q1, . . . , qN ) from the
normal distribution as given in eqs. (4.16) to (4.18). Here, q̄ is the mean of all samples, and
S is the scatter matrix created from all samples.

µ(·)
+ = κ(·)

− µ(·)
− +N q̄

κ(·)− +N
, κ(·)

+ = κ(·)
− +N (4.16)

Ψ(·)
+ =Ψ(·)

− +S + κ(·)
− N

κ(·)− +N

(
q̄ −µ(·)

−
)(

q̄ −µ(·)
−

)�
(4.17)

ν(·)
+ = ν(·)

− +N (4.18)

The intuitive explanation of the parameters is that Ψ(·) is the sampled scatter matrix, taken
from ν(·) samples. Similarly, µ(·) is the sampled mean, taken from κ(·) samples. For the IW
distribution, the same equations apply but it could be said that the prior taken samples κ(·) of
the mean µ(·) is infinite, thereby ensuring that additional measurements will not change the
mean µ(·). In this chapter, an IW or NIW distribution that is updated with additional measure-
ments will be written as a function of both its initial parameters ξ(·) and the measurements
η(·), e.g. W−1(ξM ,η

0 ,ηt ) is the prior IW distribution of the observation noise covariance ma-
trix Σ

M
η that is parametrized by ξ

M ,η
0 , updated with an additional sample of the observation

noise, ηt .
To reiterate, samples from the observation noise η , the system noise ε, and initial state

distribution h1 can be used to improve the distribution over their covariance and, for the
system noise and initial state, their mean. However, it is not possible to sample from these

41
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directly because the true state is not known. Here Gibbs sampling is used to generate the
posterior distributions, as is also done in [10]. An overview is given in algorithm 1, which is
applied for each type of dynamics M , with its own example tracks.

Algorithm 1 The sampling algorithm.

Require: ξ
M ,ε
0 , ξM ,h1

0 and ξ
M ,η
0

Sample initial covariances and means.
Σ

M
ε ,µM

ε ←NW−1(ξM ,ε
0 )

Σ
M
h1
µ

M
h1

←NW−1(ξM ,h1
0 )

Σ
M
η ←W−1(ξM ,η

0 )
repeat

for Each track i do p (h1:T ) y1:T .
Sample state from the posterior
hi

1:T ← p (h1:T ) y1:T

From eq. (4.19)
εi

1:T−1 ← B+(h2:T − Ah1:T−1)

ηi
1:T ← y1:T −C h1:T

end for
Update the inverse Wishart distributions using their initial distributions.
NW−1(ξM ,ε

+ ) ←NW−1(ξM ,ε
0 ,ε1:Ntr acks

1:T−1 )

NW−1(ξM ,h1
+ ) ←NW−1(ξM ,h1

0 ,h1:Ntr acks
1 )

W−1(ξM ,η
+ ) ←W−1(ξM ,η

0 ,η1:Ntr acks
1:T )

Resample the covariances and means
Σ

M
ε ,µM

ε ←NW−1(ξM ,ε
+ )

Σ
M
h1
µ

M
h1

←NW−1(ξM ,h1
+ )

Σ
M
η ←W−1(ξM ,η

+ )
until Satisfied

Initially, there is some prior knowledge over the IW and NIW distributions, given by
ξ

M ,ε
0 , ξM ,h1

0 and ξ
M ,η
0 . A random sample from the prior distributions is an initial estimate for

the entire model. The initial estimate, together with the observations y1:T from each existing
track, can give a posterior distribution on the state of the system through Kalman smoothing:
p (h1:T ) y1:T is known. If the exact state is known at every time step, it is possible to recover
the system noise ε1:T and observation noise η1:T by eq. (4.19), a direct result from eqs. (4.1)
and (4.2).

εt = B +(ht+1 − Aht ), ηt = yt −C ht (4.19)

However, as stated, at each time t only the distribution of the state is known, and not
the actual state. To circumvent this, Gibbs sampling is used again: sample a random poten-
tial state sequence from each track. The sampled state sequence uniquely defines a sampled
system noise sequence and an observation noise sequence, which is used to update the distri-
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bution of the system noise and observation noise, respectively. Similarly, the initial sample
of each sequence is used to update the distribution of the initial state.

A new sample is taken from each distribution to select a system, observation, and initial
state covariance as well as a system and initial state mean, and the algorithm is repeated.

The algorithm is expected to create a random sample of the distribution of the unknown
means and covariances, after the algorithm has gone through a certain "burn-in" period. After
the burn-in period, a more robust set of means and covariances can be retrieved by averaging
the results of multiple iterations.
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4.B. ERROR OVER TIME FOR ALL CLASSES
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(c) The mean error over time on all straight tracks.
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(d) The log-likelihood over time on all straight tracks.
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(e) The mean error over time on all 45◦ right turn tracks.
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(f) The log-likelihood over time on all 45◦ right turn tracks.
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(g) The mean error over time on all 90◦ right turn tracks.
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(h) The log-likelihood over time on all 90◦ right turn tracks.
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5
CYCLIST PATH PREDICTION

USING CONTEXT-BASED
SWITCHING SYSTEMS

To know an object is to lead to it through a context which the world provides.

William James

Parts of this chapter have been published in [20] and [99]

45
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Figure 5.1: Path prediction of a cyclist with switching dynamics. The cyclist approaching an intersection can cycle
straight or turn left. Context includes the vehicle trajectory, the cyclist’s expressed intent by raising an arm, and
distance to the intersection.

T HIS chapter proposes a method for cyclist path prediction that exploits multiple context
cues that are extracted from vision data. The contextual cues and dynamics are modeled

using the Dynamic Bayesian Network (DBN) from [20], where the latent discrete states con-
trol the switching probabilities between the dynamic modes. Existing theory for approximate
posterior inference in DBNs [75] allows for efficient computation of predictive distributions
on the future state of the target.

The approach is evaluated on the scenario of a cyclist cycling in front of the ego-vehicle,
who both approach an intersection where the cyclist may turn left, visualized in fig. 5.1. This
scenario has three predictive cues, namely the cyclist raising an arm to indicate the intent to
turn at the crossing, the cyclist’s proximity to the crossing, and the existence of an approach-
ing vehicle. The approach is general though and can be extended with additional motion
types (e.g. cyclist turning right), or to other application domains, such as robot navigation in
human-inhabited environments. This method also does not prohibit the use of other sensors
or other computer vision methods than the ones considered here.

5.1. DATASET

T HE experiments in this chapter use a dataset of cyclist encounters recorded from a moving
vehicle, from [20]. Due to the focus on potentially critical situations, both driver and

cyclist were instructed during recording sessions. A sufficient safety distance between the
vehicle and VRU was applied in all scenarios recorded. In the following sections, ‘critical
situation’ thus refers to a theoretic outcome where the approaching vehicle does not stop
when the cyclist turns left, which would result in a collision.

This dataset contains 51 tracks of a cyclist approaching an intersection at a steady pace.
These are recorded with a stereo-camera setup at 16 fps from a moving vehicle that drives
behind the cyclist, resulting in 5744 frames total. There are no other traffic participants
nearby. The cyclist is instructed beforehand to either raise their arm or not, and then either
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Figure 5.2: Context observables used in the cyclist scenario. (a): The extrapolated time until ego-vehicle reaches
cyclist. (b): The detection of the cyclist’s raised arm. (c): A static environment map is built offline through SLAM.
The map’s coordinate system is aligned with the intersection center. By projecting tracked cyclist positions to this
coordinate system, their longitudinal distance to the intersection is obtained.

Table 5.1: Breakdown of the number of tracks in the cyclist dataset for the sub-scenarios with normal (above the
line) and anomalous contextual behavior (below the line).

Sub-scenario Occurrences

non-critical arm not raised straight 6
non-critical arm not raised turn 6
non-critical arm raised turn 6

critical arm not raised straight 10
critical arm raised turn 7

non-critical arm raised straight 5
critical arm raised straight 4
critical arm not raised turn 7

turn left or continue straight at the intersection.
The dataset contains the longitudinal and lateral position of each cyclist in a common

reference frame, obtained using a stereo camera setup, as well as measurements on the three
context cues shown schematically in fig. 5.2. The first, T mi n , is the time it takes for the
vehicle to overtake the cyclist if they would both keep moving with the same velocity. The
second, Arm Detector (AD), indicates whether the arm of the cyclist is raised. This is given
as a confidence score as computed by a Naive Bayes classifier. The third is Distance To In-
tersection (DT I ), the distance between the cyclist and the intersection along the longitudinal
axis of the road.

For each of the three context cues given above, the dataset provides an annotated ground
truth value. For example, the arm detector scores come with the annotation on whether the
arm of the cyclist is in fact raised or not. Additionally, the dataset provides an estimate
of the true position of the cyclist, generated from a Kalman smoother run over each of the
trajectories.

The tracks are divided into several sub-scenarios, based on whether the cyclist turned left
or went straight, whether the arm was raised or not, and how critical the situation was. These
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Figure 5.3: A schematic overview of how the DBN incorporates contextual (ct ) and positional (xt ) measurements
to infer the state over time. Each block corresponds to an equation, referenced in brackets. The computations are
done in joint domains (

(
Mt ,t−1

)
and

(
Dt ,t−1

)
) for the bold colored lines and in a single domain (e.g. (Dt−1)) for

the thin black lines.

sub-scenarios are divided into two categories, based on whether the overall combination of
context cues refers to a typical (“normal”) scene in real traffic or not. For instance, raising an
arm in a critical situation before turning left is considered a typical combination of context
cues in such a scenario, whereas not raising an arm in a critical situation is not. The number
of tracks per sub-scenario is given in table 5.1.

Each track involving turning has the frame where the cyclist first visibly starts to turn
manually labeled as TTE = 0. Frames before and after the labeled frame have negative and
positive TTE values, respectively. In the experiments, TTE is used to temporally align tracks
in a meaningful way [9]. For the straight tracks, TTE= 0 is defined as the first frame on which
the cyclist is past the point on the intersection where 25% of all turning tracks have already
started their turn, according to the annotations.

All relevant experimental data (i.e. images, vehicle ego-motion, cyclist detections, ex-
tracted cues, and ground truth) is made available to the scientific community for non-commercial
benchmarking.1

5.2. METHODOLOGY

T HIS section discusses the specific version of a DBN as described in [20], although the
methodology can be used for alternative scenarios as well, e.g. [34]. At any given time

step t , there is a measurement yt = [xt ,ct ] which contains the position xt and Nc context
cues ct = [c1t , . . . ,cNc t ], where ct ∈ RNc . The state of the DBN itself is defined by a partially
observable continuous hidden state ht and discrete hidden state Dt . The discrete hidden
state Dt = [Mt , z1t , z2t . . . zNz t ] specifies the current dynamic mode Mt as well as Nz discrete
variables representing the state of the context cues. For a single time step, there are in total
|D| = |M |× |z1|× · · ·× |zNz | possible combinations for the discrete state. Note that not each

1The dataset is available at http://intelligent-vehicles.org
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discrete state necessarily has a corresponding context measurement, i.e. Nz �= Nc .
In the DBN, the discrete state at time t = 0 follows a categorical distribution D0 ∼

Cat
(
P0

)
with parameters P0, and can stochastically transition at subsequent time steps to

a new value:
Dt ∼Cat

(
P(Dt−1)

)
. (5.1)

Here, P(Dt−1) is a |D|-dimensional parameter vector conditioned on the past discrete state
Dt−1, i.e. the row from a |D|× |D| transition table. Of the Nz discrete variables znt , Nc have
corresponding measurements cnt and their probability distribution p

(
cnt |znt

)
is specific for

that context cue.
The propagation of the continuous state ht over time and the relation between the mea-

surement xt and the continuous state ht are as follows:

ht = A(Mt )ht−1 +εt , εt ∼N
(
µ

(Mt )
ε ,Σ(Mt )

ε

)
(5.2)

xt =C ht +ηt , ηt ∼N
(
0,Ση

)
. (5.3)

Similar to eq. (5.1), the superscript (Mt ) indicates that there is a separate matrix/vector
for each of the NM models Mt . The matrices A and C are model parameters. Both the
measurement and the state are perturbed by Gaussian noise that is not directly measurable, η
and ε, respectively, with parameters µε, Σε, and Ση. Finally, the prior on the continuous state
is normally distributed, p (h0) ∼N (h0,Σ0) with parameters h0 and Σ0.

With this model, inference consists of three main steps: Predict, Update, and Marginal-
ize, see [20]. A schematic overview of the data flow for one time step in the algorithm is
shown in fig. 5.3. At each step, the algorithm computes a new distribution over the latent
state of the DBN. The probability of a discrete state Dt = [Mt , z1t , . . . zNz t ] is expressed with
a scalar d(Dt )

t . The continuous state is represented by NM means h(Mt )
t and covariances

Σ
(Mt )
t , one for each model Mt .

The subsections below list the equations corresponding to each step for the latent states,
and fig. 5.3 also refers to these equations per step.

PREDICT

The predict step computes p(ht ,Dt ,Dt−1|y0:t−1) given p(ht−1,Dt−1|y0:t−1) from the previ-
ous iteration, . Prediction of the next continuous state is done using a Kalman filter, for every
N 2

M combination of current and previous model:

h(Mt ,t−1)
t |t−1 = A(Mt )h(Mt−1)

t−1 +µ
(Mt )
ε (5.4)

Σ
(Mt ,t−1)
t |t−1 = A(Mt )Σ

(Mt−1)
t−1 A�(Mt ) +Σ

(Mt )
ε (5.5)

d(Dt ,t−1)
t |t−1 =P(Dt−1)

Dt
d(Dt−1)

t−1 (5.6)

The superscript (Mt ,t−1) indicates that the predicted state is computed for each possible model
combination at time t and t −1 (i.e. their joint probability). Accordingly, the distribution of
the hidden state is defined as a mixture of N 2

M Gaussians [20]. Similarly, the discrete state

probability d(Dt ,t−1)
t |t−1 is computed for the |D|2 joint discrete state combinations.
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UPDATE
The update step obtains the posterior joint probability p(ht ,Dt ,Dt−1|y0:t ) by incorporating
measurement yt =

[
xt ,c1t , . . . ,cNc t

]
, akin to a Kalman update:

S(Mt ,t−1)
t =CΣt |t−1C�+Σ

(Mt )
η (5.7)

K (Mt ,t−1)
t =Σt |t−1C�S−1

t (5.8)

h(Mt ,t−1)
t = ht |t−1 −Kt (xt −C ht |t−1) (5.9)

Σ
(Mt ,t−1)
t = (I−Kt C )Σt |t−1 (5.10)

d(Dt ,t−1)
t = dt |t−1p

(
xt |ht |t−1,Σt |t−1

) Nc∏
n=1

p
(
cnt |znt

)
(5.11)

Where p
(
xt |ht |t−1,Σt |t−1

)
is the likelihood of the measurement xt for the state h(Mt ,t−1)

t |t−1

with covariance Σ
(Mt ,t−1)
t |t−1 . For readability, the superscript (Mt ,t−1) has been omitted on the

right-hand side for the variables ht |t−1, Σt |t−1, St , and Kt , and d(Dt ,t−1)
t |t−1 is written as dt |t−1.

The update step is only applied for the continuous state when integrating past or current
measurements, and not for predictions. The same applies for updating the discrete state,
unless a reasonable estimate of the future measurement can be made.

MARGINALIZE
Computing the full joint probability by iterating the previous steps would quickly become
intractable, as there are (NM )t motion model combinations after t steps. To make inference
tractable, p(ht ,Dt ,Dt−1|y0:t ) is marginalized over the past discrete state Dt−1 to obtain ap-
proximation p(ht ,Dt |y0:t ). The mixture of Gaussians over joint models

(
Mt ,t−1

)
is therefore

collapsed to a mixture over only the current motion models (Mt ) through moment match-
ing [20]:

d (Mt−1)
t =

∑
Dt ,t−1/(Mt−1)

d(Dt ,t−1)
t (5.12)

h(Mt )
t =

∑
Mt−1

h(Mt ,t−1)
t d (Mt−1)

t (5.13)

e(Mt ,t−1)
t = h(Mt ,t−1)

t −h(Mt )
t (5.14)

Σ
(Mt )
t =

∑
Mt−1

(
Σ

(Mt ,t−1)
t +e(Mt ,t−1)

t e
�(Mt ,t−1)
t

)
d (Mt−1)

t (5.15)

d(Dt )
t =

∑
Dt−1

d(Dt ,t−1)
t (5.16)

Here, in eq. (5.12) the notation Dt ,t−1/(Mt−1) refers to all variables in the joint discrete state
Dt ,t−1 except (Mt−1).

With the general model structure defined, the following sections specify the dynamics and
context used for the VRU scenario of interest, in two parts: first, the sections of the model
that are defined a priori, i.e. the model definition, and secondly the sections of the model that
are estimated from the available data, i.e. the parameter estimation.
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Figure 5.4: The graph representation of the DBN. Rectangular nodes are discrete, round nodes are continuous. Gray
nodes indicate measured values.

5.2.1. MODEL DEFINITION
The cyclist can switch between the motion types cycling straight and turning left. Each of
these motion types is modeled as a constant velocity linear model, which both have their
own latent constant velocity. The elements in the continuous hidden state vector ht ∈ R6 are
then the lateral and longitudinal position, the lateral and longitudinal velocity of the cyclist
if turning left, and the lateral and longitudinal velocity of the cyclist if moving straight. The
noise acting on the latent state is assumed to be zero-mean, only affects the position of the
cyclist, and is equal for both dynamic modes. The matrices from eq. (5.2) are then as follows:

A(1) =



I I 0
0 I 0
0 0 I


 , A(2) =




I 0 I
0 I 0
0 0 I


 , µ

(Mt )
ε =




0
0
0


 , Σ

(Mt )
ε =




(·) 0 0
0 0 0
0 0 0


 (5.17)

Here, I defines as a 2×2 identity matrix, 0 represents a 2×2 matrix of zeros, and (·) indi-
cates this 2×2 matrix will be estimated from the data. The observations xt ∈R2 from eq. (5.3)
are the observed lateral and longitudinal position with observation matrix C = [I 0 0]. The
three contextual measurements are those shown in fig. 5.2. When predicting, the likelihood
of AIt+n is computed using the expected position of the cyclist at that time step.

The discrete hidden state Dt = [Mt , AUt , H AUt , AIt ,SCt ] contains the current model Mt

and four context-related binary variables: whether the cyclist’s arm is raised, AUt , whether
the cyclist’s arm has been raised, H AUt , whether the cyclist is at the intersection, AIt , and
whether the situation is critical, SCt . Each variable in the discrete state is assumed to only
depend on parts of the previous discrete state, as is shown in fig. 5.4. This leads to five
separate transition tables, one for each discrete state: PAU , PH AU , PAI , PSC , and PM . For
PH AU , to represent the notion whether the cyclist has had an arm up, it encodes the following
rule:

p (H AUt |H AUt−1, AUt ) =
{

true if (H AUt−1 ∨ AUt )
false otherwise. (5.18)

5.2.2. PARAMETER ESTIMATION
Parameter estimation for the continuous state priors and their noise distributions is done
using maximum likelihood estimates of the ground truth position and velocity. Because
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Figure 5.5: Histograms and the fitted distributions of the context observations ct for the cyclist scenario, conditioned
on their ground truth context states zt . See fig. 5.2 for a visual description of the context observations. (a): The time
until the ego-vehicle would approach the cyclist, if both kept moving at the same speed, conditioned on SC (critical
vs non-critical). (b): The arm detector’s confidence conditioned on AU (cyclists has arm up vs arm down). (c): The
cyclists’ longitudinal position conditioned on AI (cyclist not at intersection vs at intersection).

of the assumption that noise only affects the position, the ground truth velocities of both
motion types of a trajectory are constant. The ground truth velocity for each motion type per
trajectory is therefore computed as the average change in position for that motion type.

With all continuous states ht fully defined for all tracks, εt is computed using eq. (5.4),
i.e. εt = ht − A(Mt )ht−1. From these εt the process noise covariance Σε is estimated. Like-
wise, observation noise covariance Ση is estimated from the differences between ground truth
and measured positions, since ηt = xt −C ht from eq. (5.5). Finally, the mean and covariance
parameters of the state priors can be estimated from the h0 of all training tracks.

The prior and transition probability tables for the discrete context states AU , AI are ob-
tained by counting and normalizing the occurrences in the ground truth labels. The same
applies to the dynamic switching state M , conditioned on H AU , SC , and AI . The transition
probability for H AU is a logical OR, as described in eq. (5.18). Since there is only got one
SC label per track, the SC transition probability is fixed to 1/100 for changing state.

Estimating the parameters of the conditional distributions is straightforward, as the values
of the latent variables are known. Figure 5.5 shows the empirical distributions of the observ-
ables on the cyclist dataset, with the estimated conditional distributions overlaid. These are
Mixtures of Gaussians (MoGs) for Situation Critical, Situation Not Critical, and At Intersec-
tion. The Expectation-Maximization [100] algorithm is used to fit the Gaussian mixtures.
Arm Down and Arm Up are modeled as beta distributions. At Intersection is modeled as a
single Gaussian.

5.3. EXPERIMENTS

T HE proposed DBN is compared to a variant without cues (a Switching Linear Dynamical
System (SLDS)), and a baseline constant-velocity LDS. Leave-one-out cross-validation

is used to separate training and test sequences. Sequences from anomalous sub-scenarios are
always excluded from the training data.

The metrics used for evaluation are similar to those of the previous chapter. One im-
portant difference, however, is that the measurements now encompass more than just the
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Table 5.2: Log-likelihood at 16 time steps (∼ 1 second) into the future for TTE ∈ [−15,15]. Below sub-scenarios
indicate the expected behavior of a cyclist.

Sub-scenario Full model SLDS LDS
Normal critical arm not raised straight 0.05 -0.23 0.00

non-critical arm raised turn -2.36 -3.19 -22.75
critical arm raised turn -2.38 -2.77 -16.66

non-critical arm not raised straight/turn -2.28 -2.22 -14.88
over all normal sub-scenarios -1.93 -2.22 -14.60

Anomalous critical arm not raised turn -14.33 -4.62 -31.91

position. Given the measurements up to time step t , each model computes a distribution
of the future position xt+n at time step t +n: p

(
xt+n |y0:t

)
. This predictive distribution is

evaluated n = 16 steps (one second) into the future, around the point where the cyclist may
turn left: the range T T E ∈ [−15,15]. Let x̂t+n be the actual future position in the data. Two
different performance metrics are used to evaluate the sequences, namely, the log-likelihood
of this future position under the predicted distribution (higher is better) and the Euclidean
distance between predicted expected position and this actual future position (lower is better).

l l (t +n|t ) = log p
(
xt+n = x̂t+n |y0:t

)
. (5.19)

er r or (t +n|t ) =
∥∥Ext+n

[
p

(
xt+n |y0:t

)]− x̂t+n
∥∥ . (5.20)

5.3.1. COMPARISON WITH BASELINES
The log-likelihoods of the one-second-ahead prediction (16 time steps) are shown in table 5.2,
averaged over TTE ∈ [−15,15], i.e. starting with the prediction for the moment when the cy-
clist either starts to turn or keeps moving straight. Since the cyclist tracks are long and mostly
consist of moving straight, the LDS predictions reflect the common behavior of straight mo-
tion with little variance. As a result, its predictions are accurate when the cyclist indeed
does not turn. As expected, this comes at the cost of inaccurate predictions in normal and
anomalous sub-scenarios where the cyclist does turn.

Compared to the LDS, the switching models demonstrate the benefit of having separate
dynamics for straight and turning motion, as the predictions for turning sub-scenarios are
considerably more accurate. Furthermore, the full model outperforms the SLDS in all but one
normal sub-scenario. On the non-critical sub-scenario where there is ambiguity on whether
the cyclist will turn or go straight, the SLDS performs best. Still, the proposed method
performs best overall on all normal sub-scenarios, demonstrating that context does improve
prediction accuracy generally compared to the LDS and SLDS baselines.

Important to note is that all models obtain a lower predictive likelihood for turning than
for moving straight. This is likely a result of the large variance in how cyclists execute the
turn. The data shows the cyclists vary in when they initiate the turn and in used turning speed
and angle. This variance is also reflected in the predictive distributions, which show larger
uncertainty for turning than for moving straight.

During the evaluation period of table 5.2 around T T E = 0, the cyclist is always near the
intersection. When all earlier predictions (T T E < −15) are included, the full model outper-
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Figure 5.6: Prediction error on the normal sub-scenarios when predicting 16 time steps (∼ 1 s) ahead.

forms the baselines in all sub-scenarios. When the cyclists are still far from the intersection,
the full model benefits from the static environment context which predicts that turning is not
feasible yet.

The final row of the table illustrates the predictive likelihood for the anomalous sub-
scenario where the cyclist turns in a critical situation without raising an arm. Here, the full
model performs more similar to the LDS, as both expect the cyclist to continue moving
straight. The next session will show a more detailed analysis of all sub-scenarios.

COMPARISON OVER TIME
Figure 5.6 compares the prediction error over time around T T E = 0 for all normal sub-
scenarios. For the critical sub-scenario where the cyclist maintains its straight path, Fig-
ure 5.6a, all models demonstrate low prediction errors. The LDS shows the lowest Euclidean
error, but it has larger prediction uncertainty as table 5.2 showed. In the critical and non-
critical sub-scenarios where the cyclist raises an arm, the full model anticipates the turn and
predicts some lateral motion to the left as soon as the cyclist is near the intersection. As a
result, the model has a slightly larger prediction error than the baselines before the turn is
initiated, but yields lower errors as soon as turnings starts, see figs. 5.6b and 5.6c. It keeps
an advantage over SLDS for almost a full second after the turn started, until approximately
T T E = 13. On the critical sub-scenario, the largest difference in average error of 0.41m oc-
curs at T T E = 5. On the non-critical sub-scenario without the cyclist raising an arm, fig. 5.6d,
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Figure 5.7: Prediction likelihood when predicting 16 time steps (∼ 1 s) ahead on critical sub-scenarios where the
cyclist turns. (a): Normal sub-scenario where the arm was raised. (b): Anomalous sub-scenario where the cyclist did
not raise an arm to express intent.

the context cannot uniquely distinguish if the cyclist will turn or continue moving straight.
Indeed, here the SLDS and the full model also show similar performance.

Figure 5.7 shows the prediction log-likelihood for two sub-scenarios where the cyclist
turns in critical situations, namely the normal sub-scenario where the turn happens after
raising an arm (fig. 5.7a), and the anomalous sub-scenario where the turn happens without
raising an arm (fig. 5.7b). In both cases, the LDS likelihood drops fast, as it predicts the
continuation of the past motion instead of turning. The full model also expects moving
straight in case the arm was not raised, therefore its predictive likelihood declines too for
the anomaly. Interestingly, the model does adapt after T T E = 0 when the turning behavior
becomes apparent. Later, at T T E = 10, the predictive log-likelihood of all models drops due
to the variation in turning behavior.

Finally, the LDS shows larger errors for the non-critical sub-scenarios. In these cases,
where the vehicle is generally further away, the longitudinal estimates from stereo-vision are
more unstable. The LDS is more sensitive to such noise as it adapts to all observed speed
changes.

DETAILED ANALYSIS ON A SINGLE TRACK

Figure 5.8 shows two snapshots of the prediction over time for a cyclist who is turning at
the intersection after holding his arm up while the situation is not critical. Before the cyclist
arrives at the intersection, at t = 67, the prediction of the full model is very specific. Even
though it was already detected that the cyclist raised his arm, he is expected to keep moving
straight as he is not yet close enough to the intersection to turn. This prediction is done
with less uncertainty than the baseline LDS because the process noise on the LDS must also
account for the parts where the cyclist is turning left. At t = 132, when the cyclist is at the
intersection, there is an increased probability that he could turn left. As a result, the expected
future position also shifts left, and the uncertainty region of the prediction increases. The one
standard deviation area of the prediction reflects the possibility that the cyclist may still move
straight before turning.
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(a) Situation at t = 67 (TTE=−68). (b) Situation at t = 132 (TTE=−3).
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(e) Predicted position at t = 67 (TTE=−68).
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(f) Predicted position at t = 132 (TTE=−3).

Figure 5.8: Example of a cyclist turning in after holding his arm up, in a non-critical situation. Predictions are
made sixteen time steps (∼ 1 s) into the future. (a): Cyclist with tracking bounding box (red), arm detection (red
line), collapsed predicted distribution of the full model (green ellipsoid shows one standard deviation), and "at
intersection" region (white dotted line). (b): The cyclist enters the intersection region, which results in a wider
predictive distribution shifted to the left. (d): Marginal posterior distributions of the latent variables in the full
model over time. Probabilities range from 0 (black) to 1 (white). Variable labels are True and False, and straight
and turning. (e): Predictions (mean, and shaded std.dev.) made at t = 67 (green diamond) for the lateral position
up to 16 time steps into the future. The red diamond indicates the corresponding future ground truth position.
(f): Predictions made at t = 132, the moment where the cyclist starts turning.
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5.4. DISCUSSION

T HIS chapter investigated the use of the DBN from [20] for path prediction of a cyclist
near an intersection, who may turn left or continue cycling straight. Measurements of

various visual cues inform the model if and when changes in dynamics are likely to occur. An
efficient approximate inference method was presented for online path prediction. Parameters
are estimated on annotated training data.

The DBN provides predictive distributions of the future position of the tracked objects,
reflecting uncertainty on possible trajectories. In the cyclist scenario, there is more variance
in turning behavior than in moving straight ahead, making accurate path predictions for the
anticipated switch in dynamics challenging. The available context may also be insufficient
to unambiguously predict the behavior, as was seen in a cyclist sub-scenario. Here, the
performance of the DBN approximated that of the SLDS baseline.

An advantageous property of this model is that it is not a black box, but explicitly de-
fines the relation between context observables, states, motion modes, and their dynamics.
This ensures that a designer can inspect the system, investigate how it assesses the context,
and determine causes for failure or success. The explicit formulation also facilitates adding
additional cues, or improve individual parts (e.g. using different dynamical models) while
keeping existing parts unchanged. The generic formulation also ensures that many forms of
information can be included, from up-to-date map data to past image classification results.

A downside of the current implementation is that it relies on fully annotated data of all
latent factors for parameter estimation. Annotators may not always be able to determine
the true labels, and human labeling prevents scaling to a larger dataset. Ideally, the training
phase should optimize model parameters on partially or unlabeled data, inferring the latent
variables as part of the optimization process. This will be further investigated in the next
chapter.
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6
CRAFTED VS. LEARNED

REPRESENTATIONS IN
PREDICTIVE MODELS

‘While I’m still confused and uncertain,
it’s on a much higher plane, d’you see,

and at least I know I’m bewildered about
the really fundamental and important facts of the universe.’

Treatle nodded. ‘I hadn’t looked at it like that,’
he said, ‘But you’re absolutely right.

He’s really pushed back the boundaries of ignorance.’
They both savoured the strange warm glow

of being much more ignorant than ordinary people,
who were only ignorant of ordinary things.

from Equal Rites by Terry Pratchett

Parts of this chapter have been published in [99].

59
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T HE models from the previous chapters can be seen as instances of a larger model cate-
gory: one where expert knowledge is explicitly crafted into the state representation, and

thus it is interpretable. On the other hand, methods that learn a state representations are not
easily interpretable, but are more flexible to adapt to the motion and behavioral patterns in
the data. While interpretability is a desirable property in an intelligent vehicle, this raises the
question how large the performance gap is between methods using a crafted and a learned
representation for cyclist path prediction. This chapter therefore compares the performance
of the DBN to a Recurrent Neural Network (RNN), of which the state representation is com-
pletely learned from data. The comparison is made on the cyclist scenario from the previous
chapter.

In order to focus the comparison solely on the state representation, this chapter explains
how to ensure that both models are treated similarly with respect to the use of context cues and
parameter estimation. First, this chapter provides a RNN which can incorporate the context
cues effectively, similar to the DBN. Furthermore, this chapter shows how to employ the
same optimization strategy on the DBN as employed for the RNN, namely gradient descent,
while ensuring that the meaning of its crafted state representation is not lost.

6.1. METHODOLOGY

F OR the path prediction task, both models predict at every time step t a probability dis-
tribution over the top-down 2D position x, n steps into the future, given all previous

measurements y0:t . A measurement yt = [xt ,ct ] contains the position xt as well as multiple
context cue measurements ct = [c1t , . . . ,cNc t ], where ct ∈RNc . In general, the prediction task
can be written as p

(
xt+n |y0:t

)
, and is schematically given in fig. 6.1. This section covers

the structure of the two approaches used to determine p
(
xt+n |y0:t

)
: one RNN-based (sec-

tion 6.1.1) and its training scheme (section 6.1.2), and one DBN-based (section 6.1.3) and its
training scheme (section 6.1.4).

6.1.1. RECURRENT NEURAL NETWORK MODEL
For the RNN, the position is supplied as the difference in position between two time steps,
xt −xt−1, as is done in [38]. The input for the RNN is then ỹt = [xt −xt−1,c1t , . . . ,cNc t ]�. At
t0 the position difference is taken as zero. The architecture of the RNN can be split up into
two parts: the first incorporates inputs ỹt into the hidden state over time (i.e. inference), and
the second predicts a Gaussian distribution as the future trajectory based on the hidden state
at a certain time step.

The first part, the inference architecture, is laid out schematically in fig. 6.2. The main
component is a Gated Recurrent Unit (GRU), which is used because of its relatively low
number of parameters. The hidden layer ht , a vector with Nh elements, is decoded into an
expected input, which is subtracted from the actual input, and the result ut is fed into the
GRU:

ut =Wenc
(
ỹt −Wdec (ht )

)
(6.1)

=Wenc

([
xt −xt−1

ct

]
−

[
Wpos (ht )
Wcues (ht )

])
, (6.2)

where Wenc (ht ) = wenc ht +benc , a linear layer with wenc and benc as trainable parameters.
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Figure 6.1: Context-based cyclist path prediction with an RNN (“black box”, i.e. learned representation) and a DBN
(“white box”, i.e. crafted representation). The context cues are distance to the intersection (static context), time
until the ego-vehicle overtakes (dynamic context), and a possible arm gesture (object context). Predictions involve
distributions over future cyclist positions.
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Figure 6.2: The processing of measurements over time by the RNN. This figure shows the incorporation of inputs
over three time steps.
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Figure 6.3: The prediction of p
(
xt+n |y0:t

)
at time step t by the RNN. The layers Wenc and Wpos are shared with

the temporal update process (see fig. 6.2). The block labeled Comb is the combination of eqs. (6.4) to (6.9).

All other functions W(·)( ) are linear layers as well, with parameters w(·) and b(·). The goal
of the linear layers is solely to scale the internal representation of the GRU, and as such no
nonlinear functions are added.

For prediction, the signal that is fed into the GRU is computed as:

ut =Wenc (0) . (6.3)

All future hidden states ht+2, . . . ,ht+n are then computed as shown in fig. 6.3. The predicted
Gaussian distribution over the future position N (x̂t+n ,Σt+n) is computed as in [38]:

x̂t+n = xt +
n∑

i=1
Wpos (ht+i ) (6.4)

[
l [0] l [1] l [2]

]� =Wcov (ht+n) (6.5)

σ1 = exp(l [0]) (6.6)

σ2 = exp(l [1]) (6.7)

ρ = tanh(l [2]) (6.8)

Σt+n =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
. (6.9)

6.1.2. RECURRENT NEURAL NETWORK TRAINING
The RNN is trained by minimizing the negative log-likelihood of the predicted Gaussian
distribution on the known future position. To ensure that the output of each model is a
consistent path the loss is averaged over each time step and the entire range of 1 time step up
to and including n time steps ahead. The optimized parameters in the RNN are those of the
GRU, the layers Wenc , Wpos , Wcues , Wcov , and h0. Each of these parameters is initialized
randomly using the default PyTorch strategy for such layers.
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Two training strategies will be considered to reduce overfitting and improve convergence.
Firstly, data normalization: The mean and variance of ỹt in the training data are computed.
The input ỹt is scaled and translated accordingly before it is fed to the RNN. The inverse
of the scaling and translation is applied to the output of each prediction step in eq. (6.4),
i.e. Wpos (ht+i ). The covariance matrix predicted by the RNN is not scaled in any way.
Secondly, during training, the hidden state ht is reset back to the initial hidden state h0

with a probability of 5% at every time step. This is to prevent the RNN from overfitting by
recognizing a specific trajectory from just the first few measurements. Experiments showing
the importance of these training strategies are given in section 6.2.1.

6.1.3. DYNAMIC BAYESIAN MODEL
To reiterate section 5.2, the entire state of the DBN is defined by a partially observable con-
tinuous hidden state ht and discrete hidden state Dt for every time t . The discrete hidden
state Dt = [Mt , z1t , z2t . . . zNz t ] specifies the current dynamic mode Mt as well as Nz discrete
variables representing the state of the context cues. For a single time step, there are in total
|D| = |M |× |z1|× · · ·× |zNz | possible combinations for the discrete state.

In the DBN, the discrete state at time t = 0 follows a categorical distribution D0 ∼
Cat

(
P0

)
with parameters P0, and can stochastically transition at subsequent time steps to

a new value:
Dt ∼Cat

(
P(Dt−1)

)
. (6.10)

Here, P(Dt−1) is a |D|-dimensional parameter vector conditioned on the past discrete state
Dt−1, i.e. the row from a |D|× |D| transition table. Of the Nz discrete variables znt , Nc have
corresponding measurements cnt and their probability distribution p

(
cnt |znt

)
is specific for

that context cue.
The propagation of the continuous state ht over time and the relation between the mea-

surement xt and the continuous state ht are as follows:

ht = A(Mt )ht−1 +εt , εt ∼N
(
µ

(Mt )
ε ,Σ(Mt )

ε

)
(6.11)

xt =C ht +ηt , ηt ∼N
(
0,Ση

)
. (6.12)

Similar to eq. (6.10), the superscript (Mt ) indicates that there is a separate matrix/vector
for each of the NM models Mt . The matrices A and C are model parameters. Both the
measurement and the state are perturbed by Gaussian noise that is not directly measurable, η
and ε, respectively, with parameters µε, Σε, and Ση. Finally, the prior on the continuous state
is normally distributed, p (h0) ∼N (h0,Σ0) with parameters h0 and Σ0.

6.1.4. DYNAMIC BAYESIAN NETWORK TRAINING
All inference equations of the DBN as given in section 5.2 consist of basic operations such as
matrix multiplications or additions. All these steps are differentiable and straightforward to
implement in automatic differentiating frameworks, such as Pytorch [69] or TensorFlow [70].
Consequently, the DBN is trained just as the RNN: by minimizing the negative log-likelihood
of the predicted Gaussian distribution. The loss is again averaged over the entire range of 1
to n time steps ahead. During optimization, certain parameters are fixed such that the inter-
pretability of the state is guaranteed. For example, assume that the continuous measurements
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are the top-down 2D positions. If the first two items in the continuous state vector of length
4 should represent the 2D position, then fixing C = [

1 0 0 0
0 1 0 0

]
during optimization ensures a

correct state representation. Exact details are given in section 6.1.5.
Additionally, to ensure that the covariance matrices are positive definite, they are repa-

rameterized as upper-triangular matrices U during optimization, e.g. Ση =U�U [75, p. 169].
To improve numerical stability, all covariance matrices have a small epsilon 10−6 added to
their diagonal.

The initial state distribution and the transition matrices for the discrete variables are also
re-parameterized, using softmax functions [75, p. 169], since optimizing the values in the
probability tables directly could result in invalid values.

For example, a row P(Dt ) from a probability table is re-parameterized with |D| learnable
parameters P̃(Dt ) as follows:

P(Dt )
i =

exp
(
P̃(Dt )

i

)

∑|D|
j=1 exp

(
P̃(Dt )

j

) . (6.13)

Each parameter of the context measurement distributions p
(
cnt |znt

)
that has a limited do-

main can be reparameterized as well. For example, the variance σ of a Gaussian can be kept
positive by reparameterizing it as σ= exp(σ̃).

For the initial value of all parameters, one can select a more reasonable initial estimate
than random values specifically because each parameter and state variable has a certain in-
terpretation assigned to it, unlike the RNN. For certain parameters this is done by defining
them explicitly, such as the motion models A(Mt ) and measurement model C . For the noise
parameters of eqs. (6.11) and (6.12), the discrete measurement likelihoods p

(
cnt |znt

)
, and

the discrete state transition probability P(Dt ), there are two options.
The first option, annotation-based initialization as done in chapter 5, is to estimate these

using additional ground truth annotations for the discrete variables. Those annotations, to-
gether with the context measurements cnt are used to fit the p

(
cnt |znt

)
distributions. The

transition probability P(Dt ) is estimated from the discrete state annotations as well. This
method is explained in detail in section 6.1.5. A downside is that annotating ground truth for
these latent variables is laborious and often ambiguous. The second option, annotation-free
initialization, is to forego the annotations and select initial values for the variables based on
expert knowledge. This has become possible thanks to the optimization step afterward. The
two options are described later in the next section.

6.1.5. DBN SCENARIO-SPECIFIC CRAFTING
This section first explains what parts of the model are kept fixed during training to keep the
model interpretable. What follows is a summary of the annotation-based method from chap-
ter 5 to find the initial estimate for the remaining parameters. Finally, this section explains
the annotation-free method for selecting initial parameters. The training of this method is
identical to the annotation-based method.

MODEL DEFINITION AND TRAINING
The model has two constant-velocity models as dynamic modes: one for when the cyclist
moves straight and one for when the cyclist turns left. Its graph representation is given
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Figure 6.4: The graph representation of the DBN. Rectangular nodes are discrete, round nodes are continuous. Gray
nodes indicate measured values.

in fig. 6.4. The elements in the continuous hidden state vector ht ∈ R6 are the lateral and
longitudinal position, the lateral and longitudinal velocity of the cyclist if turning left, and
the lateral and longitudinal velocity of the cyclist if moving straight. The discrete hidden
state Dt = [Mt , AUt , H AUt , AIt ,SCt ] contains the current model Mt and four context-related
binary variables: whether the cyclist’s arm is raised, AUt , whether the cyclist’s arm has been
raised, H AUt , whether the cyclist is at the intersection, AIt , and whether the situation is
critical, SCt . As each variable in the discrete state is assumed to only depend on parts of
the previous discrete state, there are five separate transition tables, one for each discrete state:
PAU , PH AU , PAI , PSC , and PM . Of these, PH AU is kept fixed during optimization, the others
are optimized.

The optimizable continuous state parameters are shown in table 6.1. When initialized,
the A matrices encode two constant-velocity models. During optimization, the A matrices
are constrained in such a way that the hidden state keeps the representation of position and
velocity, but the constant-velocity assumption is removed. Instead, the velocity at the next
time step can be any linear combination of the previous longitudinal and lateral velocity. In
the initial parameter estimation, the process noise N (µε,Σε) is assumed to only affect the
position and is assumed to be zero-mean. During optimization, N (µε,Σε) can affect both
the position and the velocity, and is not assumed to be zero-mean. The measurement noise
covariance Ση is not constrained. Finally, the continuous initial state distribution N (h0,Σ0)
is defined with the assumption that the initial dynamic mode of the cyclist is moving straight.
Therefore, the position should initially not affect the mean and covariance of the latent turning
speed when moving straight. As such, N (h0,Σ0) is set up so that the position only correlates
with the velocity of the cyclist moving straight. During optimization, the same structure is
kept.

ANNOTATION-BASED INITIAL ESTIMATE

This is a summary of the parameter estimation as it was done in chapter 5. The parameters
from table 6.1 that require an initial estimate are Σε, Ση, h0, and Σ0. These are found by run-
ning a Kalman smoother over the tracks, which gives a ground truth position and velocity at
each time step. The transition tables for PAU , PAI , PSC , and PM are estimated from the an-
notations by counting the number of occurrences where the discrete ground truth annotations
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Table 6.1: The initial estimation and optimization for all parameters in the DBN that relate to its continuous state.
The state vector is, in order: the x and y position, the x and y velocity if turning left, and the x and y velocity if
moving straight. 0 indicates that part is fixed to be zeros, I indicates that part is fixed to be identity. In the left
column, (·) indicates values retrieved from the initial estimation step [20]. In the right column, it indicates which
values are altered during optimization. The size of each (·), 0 or I is 2×2, except for the vectors µε and h0 where it
is 2×1.

Initial estimate Optimization

Kinematic parameters:

A(1)=




I I 0

0 I 0

0 0 I


 A(1) =




I I 0

0 (·) 0

0 0 I




A(2)=




I 0 I

0 I 0

0 0 I


 A(2) =




I 0 I

0 I 0

0 0 (·)




C =
[

I 0 0
]

C =
[

I 0 0
]

Noise parameters:

µε =




0

0

0


 µ(1)

ε =




(·)
(·)
0


,µ(2)

ε =




(·)
0

(·)




Σε =




(·) 0 0

0 0 0

0 0 0


 Σ(1)

ε =




(·) 0 0

0 (·) 0

0 0 0


,Σ(2)

ε =




(·) 0 0

0 0 0

0 0 (·)




Ση =
[

(·)
]

Ση =
[

(·)
]

Initial state parameters:

h0 =




(·)
(·)
(·)


 h0 =




(·)
(·)
(·)




Σ0 =




(·) 0 (·)
0 (·) 0

(·) 0 (·)


 Σ0 =




(·) 0 (·)
0 (·) 0

(·) 0 (·)
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relevant for that transition table switch from one discrete state to another. Finally, p
(
cnt |znt

)
,

the distribution for each context feature measurement given their respective discrete variable,
is fitted using either a single Gaussian, an MoG, or a beta distribution.

ANNOTATION-FREE INITIAL ESTIMATE

For the initial state h0, the initial position is taken from the mean position of all initial posi-
tions. The velocity when cycling straight is assumed to be 18 km/h. The velocity is assumed
to be identical when turning left, albeit at a 45-degree angle. The initial covariance Σ0 is es-
timated as a diagonal matrix. The initial position variance is set to the variance of the lateral
and longitudinal initial position. The initial covariance of the velocity in both directions and
both modes is one-tenth of the initial velocity. The observation noise Ση is set to identity in
meters. The process noise Σε acting on the position is set to one-tenth of the initial velocity.

For the context parameters, the context transition matrices have a 0.01 probability of
transitioning to another binary state,

PAU =PAI =PSC =
[

0.99 0.01
0.01 0.99

]
. (6.14)

The model transition matrix PM is set to have a transition probability from straight to turning
of 0.01 when the conditions of a normal turning subscenario are met, as given in table 5.1,
otherwise it is 0. Finally, the parameters for the conditional probabilities p

(
cnt |znt

)
are se-

lected in an intuitive sense: for example, the “at intersection” normal distribution is centered
at the intersection, with the “not at intersection” MoG before and after the intersection. The
same distribution types from the annotation-based method are used for the annotation-free
method.

6.2. EXPERIMENTS

T HE predictive accuracy of the RNN and the DBN is evaluated in three separate parts.
First, section 6.2.1 evaluates the performance of the RNN and investigates whether in-

corporating context cues improves its predictive accuracy. Secondly, section 6.2.2 evaluates
the performance impact of gradient-based optimization of the DBN parameters in compar-
ison to the previously used annotation-based parameter estimation method. Finally, after
having shown that both the RNN and the DBN can be trained on the same context cues with
the same optimization strategy, the performance of the RNN is compared to that of the DBN
in section 6.2.3.

The RNN and DBN are trained and evaluated on the tracks from the cyclist scenario of
the previous chapter. Some of the tracks from the dataset contain frames without position
information. Because the proposed RNN has no inherent way to handle missing data, the
smoothed tracks as described in section 5.1 are used for both training and evaluation.

Similar to preceding chapters, the predictions are evaluated using the Euclidean distance
error and the log-likelihood. Given the measurements up to time step t , each model computes
a distribution of the future position xt+n at time step t +n: p

(
xt+n |y0:t

)
. The predictive

distribution is evaluated n = 16 steps (one second) into the future, around the point where the
cyclist may turn left: the range T T E ∈ [−15,15]. Let x̂t+n be the actual future position in the
data. The evaluation metrics are then as follows:
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Table 6.2: The log-likelihood of the predictions 16 steps (one second) in the future, averaged over the period T T E ∈
[−15,15]. The models are only trained on tracks from the normal sub-scenarios. For the RNNs, the letters indicate
which context cues were available to the RNN: I if the RNN used the distance to Intersection, a T if the RNN used
the Time until the vehicle could overtake, and an A if it used the probability that the Arm was up.

Sub-scenarios RNN RNNI RNNT RNNA RNNIT RNNIA RNNTA RNNITA

All normal −0.42 0.68 0.40 0.51 0.47 0.57 0.36 0.81
Normal turning −1.21 0.06 −0.58 −0.32 −0.28 −0.17 −0.70 0.34
Normal straight 0.79 1.63 1.90 1.79 1.64 1.73 2.00 1.55

All anomalous −9.47 0.42 −5.54 −5.07 −1.22 −9.72 −8.76 −11.48

l l (t +n|t ) = log p
(
xt+n = x̂t+n |y0:t

)
. (6.15)

er r or (t +n|t ) =
∥∥Ext+n

[
p

(
xt+n |y0:t

)]− x̂t+n
∥∥ . (6.16)

The predictive distribution for the DBN is a mixture of N 2
M Gaussians (NM = 2). It is

a single Gaussian for the RNN. All models are implemented in PyTorch [69] and evaluated
using leave-one-out cross-validation on a Titan X Pascal GPU. For the RNN, after a prelim-
inary hyperparameter search, a hidden layer size of Nh = 32 is selected, and trained using
the Amsgrad [101] algorithm for 2000 iterations with a learning rate of 0.0015, taking 50
minutes per cross-validation fold. The DBN is trained for 1000 iterations with a learning rate
of 0.0001 using the same algorithm, taking 130 minutes per fold. Both models run in real
time: 4 ms per frame for the RNN and 10 ms per frame for the DBN.

6.2.1. RNN EVALUATION
This section evaluates how well the RNN incorporates context cues in its prediction by look-
ing at the performance of the RNN with every combination of context cues as input values.
Next, the effectiveness of the training strategies of section 6.1.2 is analyzed through an abla-
tion study.

INCORPORATING CONTEXT CUES IN AN RNN
If the RNN can properly incorporate the meaning of all context cues, the best performing
RNN is expected to be the one that includes all context cues.

Table 6.2 shows the one-second ahead predictive log-likelihood of RNNs incorporating
different combinations of context cues (the caption defines the naming convention). From
left to right, the table shows RNNs with increasingly more information available to them.
On the normal sub-scenarios, the addition of one cue (columns RNNI, RNNT, and RNNA)
improves the likelihood over the model without any context cues. Using two cues does not
improve performance over using a single cue. Apparently, the additional information does
not outweigh the disadvantage of increasing the input dimensionality. Utilizing all three
context cues (RNNITA), however, does result in the best performance.

The full model also attains the lowest log-likelihood of all models on the anomalous data.
This further shows that it leverages the context information to inform on its predictions, as the
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(b) Normal straight sub-scenarios

Figure 6.5: One second ahead prediction log-likelihood mean (thick line) and one-sigma standard deviation (shaded
area) of RNNs over time. When turning (fig. 6.5a), the RNN with all three context cues (RNNITA, blue line)
performs the best.

only difference between the normal and anomalous sub-scenarios is the validity of the context
cues. The full RNN model thus successfully discriminates between such sub-scenarios and
has shifted the mass of its predictive distribution away from the anomalous cases.

For a more in-depth analysis, fig. 6.5 shows the log-likelihood over time, using the anno-
tated TTE to temporally align the tracks. These graphs show the log-likelihood of a prediction
made at that specific TTE, e.g. the point at TTE = −10 shows the likelihood of the predic-
tion for TTE = 6. Figure 6.5a shows that the RNNs increase in accuracy starting around
TTE=−10, a moment where the RNN predicts what happens after the turn. That means that
the RNN detects that the cyclist will turn over half a second before the annotated point of
turning, TTE= 0.

For the normal sub-scenarios where the cyclist continues straight (fig. 6.5b), all models
perform relatively similarly. The performance of the full model does decrease slightly over
time. This is in line with the results of table 6.2: the main reason for the overall better per-
formance of the full model is the improved performance on the tracks of the normal turning
sub-scenarios, without losing too much performance on the normal straight sub-scenarios.

When comparing the average Euclidean distance error of the predictions, the full model
outperforms the other models as well, albeit only slightly: the average Euclidean distance
error is 33 cm when evaluated on the tracks from the normal sub-scenarios (34 cm/31 cm
on normal turning/straight sub-scenarios, respectively). The other RNNs with one or two
context cues have an error between 34 cm and 35 cm, the RNN with no context cues has an
error of 49 cm.

Overall, the results suggest that the RNN exploits the additional context cues. This mir-
rors the results for the DBN found in : both approaches benefit most from combining all
distinct types of context in the normal sub-scenarios, while as expected both also assign a
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Table 6.3: The categorization of all DBN parameters into distinct groups, to study the effect of optimizing related
parameters. The superscript (·)(Mt−1) indicates that the parameter is distinct for each dynamic mode. The letter in
brackets is used to specify what has been optimized in a DBN.

Name of group Content of group

Context parameters (C) PAU , PAI , PSC , PM , P0, p
(
cnt |znt

)

Noise parameters (N) µ
(Mt )
ε , Σ(Mt )

ε , Ση, Σ0, h0

Kinematic parameters (K) A(Mt )

low probability to the designed anomalous cyclist responses to these context cues. The con-
clusion is that both models have homogenized context input.

RNN TRAINING STRATEGIES

This section demonstrates the importance of the training strategies discussed in section 6.1.2
through an ablation study. The RNN is trained with all three context cues as additional input
and evaluated on all tracks from the normal sub-scenarios. As shown before, the proposed
RNNITA achieves an average prediction log-likelihood of 0.81. Without normalization, the
prediction log-likelihood drops to −5.85. Without resetting the hidden layer during training,
it drops to −0.61. This shows that both training strategies help improve the accuracy of the
RNN.

6.2.2. DBN EVALUATION
The first evaluation of the DBN verifies that the optimization increases the performance com-
pared to the annotation-based initial parameter estimation. The second shows that the opti-
mization improves the alignment of the latent turning probability with the annotated moment
of turning. The final evaluation compares the performance of the annotation-based initial
estimate with the annotation-free initial estimate.

To better understand the effects of the optimization, the relevant parameters are catego-
rized into three groups, see table 6.3. Various combinations of these groups are either fixed
to their initial estimate or optimized. The letter within brackets in the table is used to specify
what has been optimized in a DBN. For example, DBNCN has both the Context and Noise
parameters optimized. DBN (no superscript) refers to the original, unoptimized DBN from
the previous chapter. When optimized, constraints as mentioned in section 6.1.4 apply.

OPTIMIZING THE DBN
Table 6.4 shows the performance of the original and optimized DBNs. Every optimized DBN
improves overall performance compared to the original DBN. Optimizing all parameters
(DBNCNK) results in the best overall performance.

The Euclidean distance error improves for each optimized model, save one. The unop-
timized DBN has an error of 64 cm for the turning sub-scenarios, and 25 cm when moving
straight. All optimized DBNs except DBNC attain an error of 39-42 cm when turning, and
22-24 cm when moving straight. For DBNC, the error increases to 67 cm when turning, and
decreases to 19 cm when going straight.
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Table 6.4: The log-likelihood of the DBNs on their predictions 16 steps (one second) in the future, averaged over the
period T T E ∈ [−15,15]. The models are only trained on tracks from the normal sub-scenarios. The names indicate
which parameter groups were further optimized (see table 6.3).

Sub-scenarios DBN DBNC DBNN DBNCN DBNNK DBNCNK

All normal −1.53 −1.38 −0.22 −0.20 −0.14 −0.12

Normal turning −2.95 −2.63 −1.08 −1.04 −1.02 −1.00

Normal straight 0.84 0.69 1.15 1.14 1.25 1.28

All anomalous −2.40 −2.13 −1.10 −1.12 −1.11 −1.14
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(b) Normal straight sub-scenarios

Figure 6.6: One second ahead prediction log-likelihood mean (thick line) and one-sigma standard deviation (shaded
area) of DBNs over time. In the turning sub-scenarios (fig. 6.6a), the performance of the DBN with no additional pa-
rameter optimization (DBN, red line) deteriorates after TTE= 5. The optimized DBNs do not see this deterioration,
at the cost of a smaller decrease in performance around TTE = 0. In the straight scenario (fig. 6.6b), optimization
steadily improves performance.
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Figure 6.7: The mean (lines) and one-sigma standard deviation (shaded area) of the turning probability for the normal
turning tracks. The turning probability is most in line with the annotated moment of turning when all parameters are
optimized (DBNCNK, green line, and DBNNK, dashed orange line).

To understand the performance over time, fig. 6.6 shows the prediction log-likelihood of
the three best performing optimized DBNs alongside the unoptimized DBN. For the turning
case (fig. 6.6a), the main improvement in performance stems from better modeling of the
turning dynamics. It is not a constant improvement, however, as the performance of the
optimized DBNs dips below the performance of the unoptimized DBN between TTE = −8
and TTE= 2. Because the context cues only inform on the likelihood of switching rather than
the likelihood of the current dynamic mode, the DBN can only infer the cyclist is turning from
position information. For the sub-scenarios where the cyclist continues straight (fig. 6.6b),
optimizing consistently improves the performance.

DETECTION OF DYNAMICS CHANGE

The probability of being in the turning dynamic mode should remain close to zero when the
cyclist moves straight. This is indeed the case: the average probability of turning on straight
scenarios is less than 0.5% for all models.

Conversely, the turning probability should go up for the normal turning tracks around
TTE = 0, the annotated moment of turning. Figure 6.7 shows how this probability changes
over time for the turning scenario. The graph shows that optimizing the context group has no
discernible effect on when the model switches to turning: DBNCNK coincides with DBNNK,
DBNCN with DBNN, and DBNC with DBN. This is because the context cues inform the
model on when the switch from straight to turning is more likely to occur. Whether the
cyclist is actually turning is determined by the likelihood of the position measurements and
therefore by the dynamics.

The other parameter groups do affect the model’s reaction to turning. Optimizing the
noise parameter group moves the moment of turning closer to TTE = 0. Optimizing the
kinematic parameter group moves it even closer.
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Figure 6.8: The mean (lines) and one-sigma standard deviation (shaded area) of the one second ahead prediction
log-likelihood (fig. 6.8a) and Euclidean distance error (fig. 6.8b) for the normal turning sub-scenarios.

ANNOTATION-FREE INITIAL ESTIMATION

To assess the need for annotations, the annotation-free initial estimation scheme laid out in
section 6.1.5 is performed, after which the model is optimized as before, i.e. like DBNCNK.
This leads to an average log-likelihood over all scenarios of −0.2, which still outperforms
the unoptimized DBN (−1.53, see table 6.4), but it is slightly worse than the log-likelihood
of DBNCNK with annotation-based initial estimation (−0.12). At the same time, the average
Euclidean distance error over all normal scenarios did improve from 33 cm to 31 cm. This
shows one can do without the laborious manual annotation step of the latent variables of the
DBN and still obtain a competitive performance.

6.2.3. COMPARISON OF DBN WITH RNN
After having established that both the RNN and the DBN can be trained on the same context
cues using the same optimization strategies, both approaches are compared to assess the per-
formance impact for using either a crafted or a learned state representation. When comparing
the average log-likelihood, the best RNN in table 6.2 outperforms the best optimized DBN
in table 6.4: 0.81 to −0.12. However, at the same time, the average Euclidean distance error
over all normal sub-scenarios is 33 cm for both. The source of the Euclidean distance error
is not equal for both models, however. The average Euclidean distance error made by the
RNN on the turning sub-scenarios and the straight sub-scenarios is almost identical: 34 cm
and 31 cm, respectively. Because the RNN is a generic model, it is reasonable that it has no
bias towards either type of dynamics. In contrast, the linear models of the DBN can directly
encode a cyclist going straight with a constant velocity model, whereas the varying radii of a
cyclist turning left cannot be represented as well. The corresponding error values are 39 cm
and 23 cm, for the best optimized DBN.

More in-depth, fig. 6.8a shows the predicted likelihood over time for all tracks from the
normal turning sub-scenarios, centered around TTE = 0. The results are shown for the best
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performing RNN, RNNITA, as well as the unoptimized DBN and the two best performing
optimized DBNs. From TTE=−10, the performance of the RNN (blue line) starts to diverge
from the two optimized DBNs (green and orange line). While the gap narrows from around
TTE = 0, it never fully closes. When comparing the Euclidean distance errors on the same
tracks (fig. 6.8b), one can observe the same divergence between the RNN and the two opti-
mized DBNs starting at TTE = −10 but find that the difference in Euclidean distance error
returns to almost zero starting at TTE = 2. It seems that the DBN, when its parameters are
optimized, can predict the average position almost as well as the RNN, thus differences in
the log-likelihood are mostly due to larger variance in the predictive distribution required to
compensate the DBN’s linear dynamics.

As a last observation, both the RNN and the DBNs with optimized parameters show a
dip in prediction log-likelihood (fig. 6.8a), but the RNN recovers around 10 frames earlier
than the DBNs: TTE =−10 versus TTE = 0. This seems to indicate that the current context
cues, together with the position information, already contain additional relevant information
to predict when a cyclist will turn, but that the DBN is not yet properly capturing this aspect.

6.3. DISCUSSION

T HIS chapter examined two models for predicting the distribution over the future position
of a cyclist: the RNN and DBN. They use completely different state representations for

the dynamic state of the kinematics and context information. When performance is the only
goal, the RNN is currently the best choice, as it attained the highest average log-likelihood.
By using the right training strategies, the RNN was able to leverage the information present
in the context cues (table 6.2). However, because of the “black-box” nature of the RNN, it is
difficult to inspect the model and explain how the context cues exactly affect its predictions,
other than empirical validation and statistical arguments. On the other hand, the DBN has
the benefit that one can ensure that its discrete latent state is interpretable by appropriately
specifying the structure of the model (fig. 6.7) and its parameters. These results show that
after gradient descent-based optimization similar to the RNN, the performance gap is sig-
nificantly reduced compared to the unoptimized DBN. The optimized DBN even attains a
similar Euclidean distance error (section 6.2.3) as the RNN. Moreover, one can do without
the laborious manual annotation step of all latent variables of the DBN (as is the norm in the
state-of-the-art experimentation) and still obtain similar performance.

An added value of investigating both an approach with a learned representation such as
an RNN and an approach with a crafted representation such as the DBN is that they provide
complementary insights into the task: the former shows if certain measurements or context
cues can help improve prediction, the latter shows how well the assumptions on the mea-
surements and context cues hold. In this case, the similar Euclidean distance error but the
worse log-likelihood of the DBN compared to the RNN leads to the conclusion that the DBN
at times over-estimates the uncertainty in its predictions. This can be attributed to the DBN
using only two linear dynamical models for varying turning behaviors. An important di-
rection to improve the DBN is thus to allow for more varied motion dynamics. This could
be achieved by loosening existing assumptions, e.g. that noise is constant over time, or by
incorporating non-linear motion models with an extended or unscented Kalman filter or par-
ticle filter. Another direction is to learn more varied and specialized dynamic modes from the
track data itself, e.g. by estimating the number of dynamics and their context with appropriate
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priors during model optimization [54, 97].
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INTEGRATED PATH PREDICTION

FOR INTELLIGENT VEHICLES

I couldn’t find the sports car of my dreams, so I built it myself.

Ferdinand Porsche

Parts of this chapter have been published in [2].
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Figure 7.1: The SafeVRU platform for interaction with VRUs on-board the vehicle demonstrator at the start of the
pedestrian scenario. The dummy can be seen in the distance on the right.

T HE previous chapters evaluated the performance of path prediction methods in isolation.
The effectiveness was asserted by evaluating how well it could predict the future loca-

tion. This approach makes it possible to compare various prediction methods to each other
and ascertain which outperforms the others. However, it does not tell whether any prediction
method can benefit an intelligent vehicle, either to assist the driver in emergency situations
or to drive autonomously altogether. This is the topic that this chapter concerns itself with:
the performance of the DBN in the loop, integrated in the research platform SafeVRU, the
converted Toyota Prius depicted in fig. 7.1. Additionally, testing the entire pipeline makes
it possible to make some key observations resulting from the interplay of multiple modules,
paving the way for future work that bridges the gap between their respective disciplines.

First, this chapter explains how the DBN is used to create an early warning system using
the DBN from the previous chapters on the cyclist scenario. For safety, the situation criticality
is taken out of the DBN. Secondly, this chapter presents a self-driving setup, where SafeVRU
is able to plan collision-free trajectories in the presence of VRUs, using a motion planner
based on Model Predictive Contouring Control (MPCC) [102, 103]. This planner allows the
self-driving vehicle to adapt its trajectory to the future trajectory of a VRU predicted by the
DBN. In this case, a pedestrian (for safety reasons played by an automated dummy) will
approach the curbside of a road where the ego-vehicle has right of way, with the intent to
cross. Should the pedestrian be unaware of the ego-vehicle because they have not seen it they
will cross the road, forcing the self-driving vehicle to plan an evasive maneuver.

7.1. SYSTEM ARCHITECTURE

S AFEVRU relies on the following modules: (i) a route planner, (ii) a localization module,
(iii) a perception module, and when driving autonomously (iv) a local motion planner and

(v) real-time PC. Parts (i)-(iv) are implemented in the Robot Operating System (ROS) [104].
Figure 7.2 summarizes the overall structure of SafeVRU. The route planner provides the
motion planner with the global path to follow and the desired speed of the vehicle. Then, the
localization module provides the current position, orientation, and speed of the vehicle to the
perception module and the motion planner. Then, the perception module provides the current
position of the VRUs and their predicted trajectory. Based on the information provided by (i)-
(iii), the motion planner computes a safe (collision-free) trajectory for the vehicle to follow
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Figure 7.2: Overview of the architecture (from [2]).

using the provided acceleration and steering. The remainder of the section provides more
details on the main components of the system architecture.

7.1.1. ROUTE PLANNER

The route planner provides the global path ppath(φ) ∈R2 to the local motion planner. The cur-
rent route planner consists of a set of waypoints selected by the user that connects the current
position of the vehicle to the desired destination. These waypoints are then converted by the
local motion planner into splines that the vehicle can follow. The route planner provides the
desired velocity the vehicle should follow along the path (e.g., according to the rules of the
road). The local motion planner has the task of planning collision-free trajectories along the
desired path, as detailed in section 7.1.4.

7.1.2. LOCALIZATION
The localization module serves as input to the perception and to the motion planning modules.
The perception module needs to correct for the motions of the vehicle to enable tracker-based
intent recognition with respect to a world fixed coordinate system. The motion planning
module requires the current pose and speed of the vehicle in order to plan the acceleration
and steering angle commands.

The ego-vehicle state is estimated using nonlinear state estimation, consisting of an un-
scented Kalman filter. The state of the ego-vehicle consists of the position, velocity, and
angular velocity. The state estimator is implemented using the ROS robot localization pack-
age [105]. The localization module works in 2D, projecting all off-plane values to the ground
plane. As odometry source, the ROS localization module uses a Global Navigation Satellite
System/Inertial Navigation System (GNSS/INS) Combination Advanced Navigation Spatial
Dual which provides position, orientation and angular velocity data.

7.1.3. PERCEPTION MODULE
The perception module provides to the local motion planner a probabilistic prediction of the
future location of the VRUs in the world-fixed coordinate frame (according to the localization
module). This can be separated into the prediction module and the detection module.
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Figure 7.3: The DBN with context cues shown for two consecutive time steps. The discrete, continuous, and
observed nodes are rectangular, circular, and shaded, respectively. The binary context nodes represent the relation
to the static environment ST ATt , and object behavior (i.e. how the VRU acts, AC Tt , or has acted, AC T EDt ).

PREDICTION MODULE

At time t , the goal is to create a distribution over the VRU position xt+n for all n ∈ [1 . . .T ]
time steps into the future. This is done with a modified version of the DBN from the previous
chapters. To reiterate, the linear switching model is defined as follows:

ht = A(Mt )ht−1 +εt εt ∼N (µ(Mt )
ε ,Σ(Mt )

ε ) (7.1)
xt =C ht +ηt ηt ∼N (0,Ση) (7.2)

Dt ∼Cat
(
P(Dt−1)), (7.3)

where ht and Dt are the continuous and discrete state of the model at time t , respectively,
and (·)(Mt ) indicates that at any time step the state propagation is done with the state matrix
A, noise mean µε and noise covariance Σε of LDS model M . Figure 7.3 depicts the graphical
model, which is slightly different from the previous chapters. For one, the context cues in the
DBN are described with general terms to fit with both scenarios. Secondly, the discrete latent
state pertaining to whether the situation was critical is taken out for safety reasons. Instead,
the scenario is assumed to be always critical, no matter the distance of the ego-vehicle.

In general terms, the latent variables are ST ATt and AC Tt /AC T EDt . In particular,
ST ATt indicates the spatial context, and AC Tt /AC T EDt indicates whether the VRU is act-
ing/has acted, respectively. For the cyclist scenario, ST ATt is whether the cyclist is at a loca-
tion on the intersection where they might turn left (i.e. AIt ), and AC Tt /AC T EDt is whether
the cyclist is raising/has raised their arm to indicate they plan to turn left (i.e. AUt /H AUt ).
The parameters for the cyclist are taken from the experiments of chapter 5.

For the pedestrian scenario, ST ATt is whether the pedestrian is at the location on the
curbside where they might stop to wait for the ego-vehicle to pass, and AC Tt /AC T EDt is
whether the pedestrian is looking at/has seen the ego-vehicle. The discrete hidded state is
comprised of the position and velocity of the pedestrian in longitudinal and lateral direction.
The two dynamic modes are defined as “walking” and “stopping”. For the stopping mode,
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Figure 7.4: Pedestrian context. (a): The distributions of how the distance to curb informs ST ATt , i.e. At Curb and
Not At Curb, are modeled as Gaussian distributions. (b): Eight separate classifiers classify whether the pedestrian
is looking in a certain direction, which together make up the measurement c AC T

t . (c): The distributions of how
the classifiers inform the two possible states of AC Tt , i.e. Sees Vehicle and Does Not See Vehicle, are modeled as
multinomial distributions. Images adapted from [20].

the velocity no longer affects the position of the pedestrian. This is modeled as follows:

A(w alki ng ) =
[

I I
0 I

]
, A(stoppi ng ) =

[
I 0
0 I

]
, (7.4)

where 0 and I are a 2×2 zero and identity matrix, respectively. The measurements for the
continuous state are, as before, the 2D position. The parameters for the pedestrian are set and
selected according to [20].

DETECTION MODULE

The detection module gets its required inputs from two data sources: the localization module
and a stereo camera setup consisting of two uEye cameras (model: UI-3060CP-C-HQ R2). A
Single Shot Detector (SSD) [106] trained on the ECP dataset [14] detects the VRU in front of
the vehicle for both scenarios. Using the stereo-camera setup and the absolute location of the
ego-vehicle, the location of the VRU is transformed into a temporally consistent reference
frame.

For the cyclist scenario, the measurement for being at the intersection, cST AT
t , is based

on the distance of the cyclist to the intersection. This is computable thanks to the temporally
consistent reference frame. The measurement related to whether the arm is raised, c AC T

t ,
is detected through a pipeline built on top of the SSD. A crop around the bounding box
that is found by the SSD is fed to a ROS implementation of OpenPose [107] to retrieve the
2D skeleton of the cyclist. Finally, a Support Vector Machine computes the probability the
cyclist has a raised arm, based on the keypoints from the 2D skeleton.

For the pedestrian scenario the, cST AT
t is based on the distance of the pedestrian to the

curbside, and modeled Gaussians (fig. 7.4a). For c AC T
t , the setup from [20] is used: the top

of the SSD detection is cropped, and fed to eight separate classifiers. Each separate classi-
fier is tasked to classify whether the pedestrian is looking in a certain direction, as outlined
in fig. 7.4b. For example, one of the eight classifiers classifies whether the pedestrian is
looking at the vehicle: between −22.5◦ and 22.5◦. The outputs of the eight classifiers to-
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gether constitute the measurement c AC T
t , which then informs the discrete state cST AT

t through
a multinomial distribution (fig. 7.4c).

7.1.4. LOCAL MOTION PLANNER
The local motion planner, as described in [2], takes the predicted future trajectory from the
DBN together with the given trajectory ppath(φ), both given in the temporally consistent
reference frame from the localization module, and uses this to plan the steering angle and
acceleration. The motion planner is based on MPCC for two reasons. The first is that MPCC
acts as both a path-following controller as well as a local motion planner. The second is that
MPCC is a constrained optimization-based method, meaning that the predicted path of the
DBN can be directly integrated.

As mentioned in [2], the planner receives the vehicle’s current state xt = [xt , yt , θt , vt ]T

(i.e. current position, orientation, and forward velocity) at every time step t , from the localiza-
tion module. The predicted Gaussian distributions are incorporated into the path prediction
by using their two-sigma uncertainty region as ellipsoid constraints [103]. An additional con-
straint incorporates road boundaries into the planner by forcing it to find a solution that does
stray further than a fixed distance from the planned trajectory ppath(φ).

When the MPCC optimization problem is solved, it results in the acceleration and steering
input ut = [at , δt ]� for every time step t , up to T steps ahead: ut :t+T = [ut , ...,ut+T ]. The
cost function of the optimization defines a tradeoff between multiple factors: how far the
vehicle strays from the given trajectory, how far it strays from the preferred velocity, how
much acceleration and steering input is needed, and finally a penalty factor based on how
close the resulting trajectory gets to the road boundaries and predicted path of the VRU. The
planner then sends on the current acceleration and steering input ut for time t to the real-
time PC. The control commands for time steps t +1 up to t +T are not used. Instead, the
optimization is run again at time step t +1 to compute the sequence ut :t+T , and again only
the first item ut+1 is used. Exact details are given in [2].

7.1.5. LOW-LEVEL CONTROL SYSTEM
The direct control of the SafeVRU platform is done by a device developed by the Dutch Orga-
nization for Applied Scientific Research (TNO). This device, called the MOVE Box, exploits
the adaptive cruise control of the Prius for longitudinal control and exploits the electric power
steering system for lateral control.

Communication with the MOVE Box is done through CAN. The commands from the
local motion planner are sent to a dSPACE Autobox through Ethernet-UDP, which in turn
transmits the message on its CAN bus. The dSPACE also implements low-level safety mea-
sures, such as limiting the maximum allowed acceleration and steering wheel acceleration.
Additionally, in case the ROS PC fails, or for any other reason no longer transmit steering
and acceleration control messages, the dSPACE will send out a neutral steering command,
along with a braking command to ensure the vehicle comes to a safe standstill.

7.2. EXPERIMENTS

W ITH the components as explained above, the experiments are performed with the SafeVRU
vehicle. The ROS modules run on Ubuntu 18.04.1 LTS, with an Intel(R) Core(TM)
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Figure 7.5: The in-vehicle visualization for the cyclist, intending to turn left. The top left shows the current proba-
bility of the three contextual discrete states, as well as the current dynamic mode. The further the bar is filled green,
the higher the probability. Drawn on the cyclist itself on the cyclist is the detection done by the SSD [106] (red
rectangle), and the estimated skeleton pose from OpenPose [107] (blue lines). Together, these result in the future
trajectory, plotted as green and red squares. The color indicates whether the predicted model at that time step is
going straight (green), or turning left (red).

i7-6900K CPU at 3.20GHz, and 64GB RAM. Stereo matching, VRU detection, head orien-
tation estimation, and skeleton pose estimation are done using two Titan X (Pascal) GPUs.
The DBN predicts the trajectory one second into the future.

7.2.1. SCENARIO DESCRIPTIONS
In the cyclist scenario (fig. 7.5), the ego-vehicle drives manually at a velocity of 10-15 km/h
and is overtaken on the right side by the cyclist going 15-18 km/h. Before the cyclist arrives
at the intersection, the cyclist either raises their arm if they plan to turn left, or refrains from
doing so if they intend to continue straight. If the predicted future location is in the driving
corridor of the ego-vehicle (i.e. the expected future position of the cyclist is on the left side of
the right wheel), the vehicle emits an audio warning signal to indicate the vehicle and cyclist
might collide at the intersection. As a comparison, an LDS predicts the future trajectory
alongside the DBN, which emits a warning tone in a similar fashion. This scenario has been
showcased at the Forum for Integrated and Sustainable Transportation Systems (FISTS) 2020
in Delft.

In the pedestrian scenario, the autonomous vehicle follows a straight path at 20 km/h. For
safety reasons, this scenario is tested with a programmable, actuated dummy from 4Active
Systems, shown in fig. 7.6. The dummy stands on top of a base plate, which can be dragged
over the ground to move the dummy laterally over the road. Additionally, the arms and legs
are actuated to simulate the gait of a normal pedestrian. To simulate whether the dummy sees
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(a) The dummy facing forward. (b) The dummy facing the SafeVRU vehicle.

Figure 7.6: The dummy from 4Active Systems for the pedestrian scenario. The dummy can be moved laterally
automatically: it is pulled over the road through straps attached to the base plate, visible in fig. 7.6a. While it moves
laterally, the arms and legs move along to simulate realistic behavior (fig. 7.6b). The head can be moved to look
straight, left, or right. The exact actions and lateral velocity profile can be programmed. The setup communicates
with a GPS attached to the approaching vehicle, which is used to automatically trigger the dummy to move.

the vehicle or not, the head is actuated as well, making it possible to turn it left or right. The
setup also contains a GPS that is mounted on the vehicle. This is used to trigger the dummy
to start, thereby synchronizing the vehicle and dummy motion to ensure that the scenario
is played as it is supposed to. The dummy is programmed to move at 6 km/h, and to start
walking at the moment that it will end up in front of the vehicle on the right side, should both
the dummy and the vehicle continue moving straight with their set velocity. An example of
the response of the DBN to both the dummy looking as well as the dummy not looking is
shown in fig. 7.7. The pedestrian scenario has been showcased at the Intelligent Vehicles (IV)
conference 2019 in Paris.

7.2.2. RESULTS
In the scenario where the cyclist raises their arm and turns left, the audio signal of the DBN
was heard ahead of the audio signal of the LDS, by 100-200 milliseconds. To ensure the sys-
tem did not give off any false positives, the scenario was repeated with the cyclist continuing
straight without raising their arm. In this case, neither the warning signal of the DBN nor
that of the LDS was heard.

The scenario in which the pedestrian does not see the vehicle and therefore crosses the
road was executed 31 times, of which the DBN was able to correctly predict the outcome 29
times. The scenario in which the pedestrian does see the vehicle and therefore stops at the
curbside was played a total of 31 times, of which 27 runs were predicted correctly.

While evaluating the modules in these two scenarios, the following observations are
made:

• Both the cyclist skeleton pose and the pedestrian head orientation are estimated after
the detections are done, causing additional delay. One solution would be to integrate
all measurements module into a single neural network. However, this would make
experimentation with additional context measurements, as has been done throughout
this thesis, more complex. Instead, the prediction module could be designed with
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the ability to process specific measurements asynchronously, incorporating them the
moment they are available.

• Both scenarios were designed such that they would show a switch in behavior at a
single point in time. However, running the scenarios live indicated that there is another
implicit “behavioral switch” in both scenarios: the moment where the first detection is
made. At this point the DBN does not yet have an accurate estimate of the velocity of
the VRU, making it at this time more difficult to assess whether the dynamics of the
VRU will change.

• Three of the pedestrian scenario runs were done while it rained. The detection module
performed slightly worse, but it was still able to detect the dummy in a large number
of frames. As a result, the whole pipeline was still able to predict the future trajectory
of the dummy. In other words, the temporal integration of the DBN improved the
effectiveness of the detection module. The most disruptive factor while it was raining
was the windshield wiper passing in front of the camera: this caused false positive
detections and distorted the depth estimation from the stereo camera setup.

• For one of the failure cases when the dummy was expected to cross, the cause was
outside the scope of the scenario: the system tracked a spectator nearby spectator in-
stead of the dummy. However, when such a system would run in real traffic, there is
no such thing as out of scope: assessing what scenario is currently relevant for which
VRU needs to happen no matter what.

• When the dummy was looking at the vehicle and intended to stop, two failure cases
were due to a misaligned person detection, causing the head orientation module to
miss the head location altogether. Essentially, the latter module is overly dependent
on a correct output from the former. Either the detection module needs to have a more
consistent output, or the head orientation module must be designed with the assumption
that the person detection can be misaligned, thereby reducing its dependency.

• In the failure cases for the pedestrian scenario where the dummy stopped, the DBN
incorrectly expected the dummy to keep moving forward, causing the vehicle to swerve
unnecessarily. However, the swerve steered away from the dummy, meaning that the
failure response in this scenario was still a safe response. Of course, a swerve to the
left is not always a safe response, and this is something that should ideally be assessed
online as well.

7.3. DISCUSSION

T HIS chapter presented two scenarios in which the DBN was tested to run in real-life
applications in real time. In the first scenario, the DBN was used to aid the human

driver, by issuing a warning signal if a cyclist were to turn left in front of the vehicle at an
intersection. Here, the DBN showed the ability to give a warning 100-200 ms earlier than the
LDS baseline. The experiment must be repeated more often to determine the time advantage
more robustly. In the second scenario, the DBN was placed in the loop with a motion planner
to create a fully autonomous vehicle. Here, the DBN predicted whether a pedestrian – played
by an automated dummy for safety reasons– would cross the road, based on whether the
pedestrian had seen the oncoming ego-vehicle or not. In this scenario, the DBN succeeded

148762 Pool_BNW.indd   99148762 Pool_BNW.indd   99 21-05-2021   14:1721-05-2021   14:17



7

86 7. INTEGRATED PATH PREDICTION FOR INTELLIGENT VEHICLES

(a) The dummy is not looking at the vehicle.

(b) The dummy is looking at the vehicle.

Figure 7.7: The in-vehicle visualization for the pedestrian scenario. The top left of each image shows the probability
of the three contextual discrete states, as well as the dynamic mode. The further the bar is filled green, the higher the
probability. The blue-green circle near the dummy shows the distribution of the head orientation classifiers: blue is
more likely, and the red line is the most likely direction. For this demonstration, the dashed centerline of the road
acts as the curbside location. (a): Because the DBN currently considers it a low probability that the dummy has seen
the vehicle, the DBN’s predictions of the future trajectory (blue to yellow line on the ground plane) of the dummy
continue past the curbside. In reaction to this, the planner computes a trajectory (blue to yellow trajectory coming
from the ego-vehicle’s perspective) to the left to evade. (b): The DBN considers it a high probability that the dummy
has seen the vehicle, and predicts that the dummy will not move beyond the curbside.
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to properly predict the intention of the pedestrian in almost all cases where the pedestrian
crossed and succeeded in the stopping case 27 out of 31 times.

Evaluating these scenarios in the loop made it possible to make some observations about
the system as a whole. First, when the DBN failed in the stopping scenario, it predicted that
the pedestrian would cross. The result is an unnecessary swerve away from the pedestrian.
The difficulty lies in the fact that whether such a swerve is safe depends on the scenario
definition: if the swerve brings the ego-vehicle onto the lane of oncoming traffic, it would
be unsafe. Here, one solution would be to expand the DBN and additionally predict the
trajectory of potential oncoming traffic, as the DBN can be extended to predict the action
(and interaction) of multiple agents at once [34]. However, this approach does not scale:
there are too many scenarios to model every single one separately. Another consequence
of a scenario-based solution to autonomous driving is that one needs to somehow decide
which traffic participant is in which potential scenario and then predict accordingly. A trivial,
but exemplary situation is one of the failure cases when the pedestrian was crossing. In
this failure case, the system decided to predict the future trajectory of an audience member
instead of the pedestrian dummy. To combat this, future work can investigate methods to
automatically learn the different scenarios from the data, through clustering or otherwise.

Furthermore, combining all modules showed a more robust system than expected in some
cases, and a less robust system in others. The whole system still worked well when it was
raining, as the temporal integration of measurements in the DBN reduced the impact of the
lower performance of the detection module. On the other hand, the head orientation module
needed the location of 2D bounding boxes to be accurate to assess the position of the head in
the image. Additionally, the latency of the whole system was affected by the fact that the head
orientation and arm angle measurements were dependent on the detections. In reality, it will
always be the case that measurements arrive at different moments in time, however. Future
methods should explicitly take this into account, thereby improving the responsiveness of the
whole system.
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Meaning lies as much
in the mind of the reader

as in the Haiku.

Douglas Hofstadter
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T HE preceding chapters have investigated cyclist path prediction and its usage in intel-
ligent vehicles. These chapters can be categorized into three subjects. First, chapter 3

investigated the efficacy of 3D person localization for usage in the intelligent vehicle domain.
Next, the majority of this thesis (chapters 4 to 6) proposed methods to improve the accuracy
of cyclist path prediction. Third and finally, chapter 7 directly studied the applicability of one
of the proposed path prediction methods for intelligent vehicles by implementing it in a test
vehicle. This chapter will summarize the main findings of those previous chapters. Next, it
proposes future work based on the new questions that arose from them, grouped by the three
subjects just mentioned.

EVALUATION OF LIDAR-BASED 3D PERSON LOCALIZATION

Chapter 3 presented an experimental study on 3D person localization in traffic scenes using
Lidar instead of stereo vision. Experiments on KITTI [18], the de-facto standard for 3D
object detection, indicated that the 3D box center localization accuracies were quite high. The
biggest contributors to the relatively low AP3D (the performance metric of KITTI) were found
to be to the estimates of the bounding box extents, especially width and length. The path
prediction methods discussed in this thesis do not utilize these bounding box extents, meaning
that the performance metric of KITTI would underestimate the expected performance of the
detectors used in conjunction with these path prediction methods.

Of the two evaluated methods, PointPillars [16] and AVOD [17], the former outperformed
the latter. Comparing the two datasets, EuroCity Persons 2.5D (ECP2.5D) [19] and KITTI,
the performance of both methods was significantly lower on the former. This is attributed to
a larger prevalence of distant persons with fewer Lidar points in ECP2.5D, making it not only
a larger but also a more challenging dataset. Still, using Lidar-based 3D object detectors is
recommended for path prediction.

USING ROAD TOPOLOGY TO IMPROVE CYCLIST PATH PREDICTION

Chapter 4 presented an extension to the Tsinghua-Daimler Cyclist (TDC) benchmark: it ex-
tracted trajectories from the TDC benchmark and aligned them with respect to the intersection
they were near. For each of these trajectories, the dataset extension also provides information
on the road topology, together with what direction the cyclist eventually travels. The chapter
provided a prediction method based on a Mixture of Linear Dynamical Systems (MoLDS)
that can take the road topology into account and evaluated it on the presented dataset. Com-
pared to the baseline Linear Dynamical System (LDS), it provided an improvement of up to
20% on the Euclidean distance error when predicting one second ahead, showing that such
spatial context information can improve path prediction accuracy.

CYCLIST PATH PREDICTION USING CONTEXT-BASED SWITCHING SYSTEMS

Chapter 5 then zoomed in on a specific scenario in order to expand the number and diver-
sity of the considered context cues. It provided and described a dataset that contains the
scenario of a cyclist who may cycle straight or turn left on an oncoming intersection, with
the ego-vehicle behind said cyclist. The dataset contained annotations and measurements on
three contextual cues, namely the interaction of the cyclist with the ego-vehicle as a dynamic
environment context, the location of the cyclist with respect to the intersection, and whether
the cyclist was raising their arm. The chapter described how to apply the Dynamic Bayesian
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Network (DBN) from [20] on this scenario, and evaluated it on the provided dataset. Com-
pared to the Switching Linear Dynamical System (SLDS), when predicting up to ∼ 1 s ahead,
the DBN improved up to 0.41 m.

CRAFTED VS. LEARNED REPRESENTATIONS IN PREDICTIVE MODELS
The models used in the previous chapters relied on a manually crafted representation, which
provides interpretability and few model parameters. Chapter 6 contrasted this representation
to that of a Recurrent Neural Network (RNN) with a learned representation. Both models
provide predictions as Gaussian-based distributions over the future position of a cyclist that
incorporate various context cues and learn distinct dynamic modes. For the model with a
learned state representation, the RNN, the chapter showed that it could leverage the context
cues to improve its path prediction. For the model with a crafted representation, the DBN, it
explained how to optimize it while keeping its latent state interpretable.

Comparing the two models thus at a level playing field, results indicated that the RNN
attained the best predictive performance overall. It significantly outperformed the optimized
DBN on the log-likelihood measure and performed similarly on the Euclidean distance er-
ror measure, i.e. 31–34 cm vs. 23–39 cm for the DBN. This suggests, more broadly, that
if performance is the only relevant metric (and sufficient data is available), a learned state
representation is the preferable choice. On the other hand, results showed that optimizing the
DBN did partially close the performance gap with the RNN, even without a laborious manual
annotation of all latent variables. The conclusion is that crafted state representations remain
suitable for safety-critical applications where it is important to understand why a model be-
haves the way it does, or for those cases where one wishes to further scientific understanding
of the underlying causalities.

INTEGRATED PATH PREDICTION FOR INTELLIGENT VEHICLES
Chapter 7 presented two scenarios in which the DBN from chapter 5 was tested to run in
real-life applications in real time. It was used for an early warning system in one scenario
and for a fully autonomous vehicle in another.

The early warning system was used in conjunction with the cyclist scenario from the pre-
vious chapters, warning the driver when the cyclist was predicted to cycle into the driving
space of the ego-vehicle. Compared to the baseline LDS, it was able to provide a warning
100-200 milliseconds earlier. Neither the DBN nor the LDS resulted in false positive warn-
ings. For the fully autonomous vehicle, a scenario was played out in which a pedestrian
approached the curbside and would cross if it failed to see the approaching ego-vehicle. A
set of eight classifiers used visual information of the approaching pedestrian retrieved from
a camera to determine in what direction the pedestrian was looking. From this, the system
determined whether the pedestrian had seen the ego-vehicle or not, and predicted the future
trajectory accordingly. The intent of the pedestrian was properly predicted in almost all cases
where the pedestrian crossed and in 27 cases out of 31 total when the pedestrian stopped.

Integrating the DBN in an intelligent vehicle together with the detection and planning
modules made it possible to draw additional observations that spanned the entire pipeline.
Running the modules together made modules more robust in some cases, and less in oth-
ers. The head orientation estimation module appeared less robust, as it depended heavily
on accurate 2D bounding boxes. A failure to accurately detect the latter caused the failure
of the former. On the other hand, the detection module appeared more robust: its relatively
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poor performance during rain was remedied by the temporal integration of the detections
in the DBN. Furthermore, datasets imply that every measurement type is accessible at the
same moment, and as such most prediction methods are design with that assumption built
in. Running the entire perception pipeline online made it apparent that each measurement
type, contextual and otherwise, had a different processing time. Consequently, the latency of
the prediction pipeline was determined by the measurement that was the slowest to process,
which does not necessarily need to be the case.

8.1. FUTURE WORK
This section specifies the future work along the three main subjects touched upon in this
thesis: 3D person localization, cyclist path prediction, and online path prediction.

3D PERSON LOCALIZATION

Chapter 3 posits that correct bounding box extent estimation is less relevant to current path
prediction methods than correct localization and that the metric used to evaluate 3D object
detectors should reflect this. Using a position-only metric, future work could compare the
Lidar-based detectors to the stereo camera-based 3D position estimation used in this thesis
(e.g. section 4.1) to evaluate their respective performance for path prediction.

The cross-dataset evaluation showed a drop in performance when an object detector was
evaluated on a different dataset than the one it was trained on. One could then expect a similar
degradation in performance if the target Lidar on an intelligent vehicle is different from the
one in the dataset used for training. As such, further research is needed on cross-domain
adaptation.

Finally, the two detection methods discussed here estimate an orientation alongside the
location. While some 2D detectors also directly estimate the orientation (e.g. [108]), it is
the standard in 3D object detection. Future work can extend the motion models used in this
thesis to include the orientation as an additional measurement, as suggested in [51].

PATH PREDICTION METHODS

Chapter 4 pointed out that using trajectories of a naturalistic dataset gives an accurate as-
sessment of the actual performance, but that some assumptions are still made to facilitate the
evaluation of the path prediction method rather than a full prediction pipeline. The three
assumptions were the assumption that the road topology is known, that the detected 2D
bounding boxes were perfect, and that objects were tracked perfectly. The first was also
present in the other two chapters that proposed cyclist path prediction methods (chapters 5
and 6). This is generally a valid assumption, considering road layout datasets exist and some
datasets even directly include road layouts [32]. The other two assumptions do affect the
performance, however. For example, chapter 6 used the ground truth positions where chap-
ter 5 did not, resulting in a different performance for the unoptimized DBN. Evaluating the
performance impact of such assumptions and from that generate rule-of-thumb performance
multipliers would be valuable future work, as it could allow for a better comparison between
various proposed methods: not all methods are evaluated with the same assumptions in place,
as this thesis already shows.

An observation of chapter 5 was that the performance for trajectories of turning cyclists
was generally lower than those of cyclists continuing straight. Chapter 6 shows that this is

148762 Pool_BNW.indd   106148762 Pool_BNW.indd   106 21-05-2021   14:1721-05-2021   14:17



8.1. FUTURE WORK

8

93

still the case for the log-likelihood performance of both the optimized DBN and RNN, but
not so much for the Euclidean distance error of the RNN. The suggested cause was the higher
variance in the motion of the turning trajectories. This raises the question of whether path
prediction for cyclists going straight is inherently easier, or whether this is a consequence of
the used model. A suggestion for future work is to investigate whether this performance bias
is also present in humans, who are at this moment still the most performant path predictors
available.

More generally, future work could focus on models that better combine data adaptation
and expert knowledge. The DBN and Informed MoLDS (I-MoLDS) could be allowed more
flexibility to adapt to the data by means of automatic motion model discovery and to allow
more dynamic models [54, 97]. Additionally, they could be extended to higher-order motion
models or by introducing non-linear effects, for example by using a non-linear motion model.
Another approach is to remove the assumptions that the process and measurement noise have
a Gaussian distribution and that they stay constant over time. Introducing non-linear effects
would require a different inference approach, however, such as an extended or unscented
Kalman filter, or a particle filter. Conversely, the RNN could be more strongly regularized by
explicitly encoding physical models or relevant (infrastructure or otherwise) context known
to a human expert.

An open challenge is to create predictive methods that scale to a more diverse set of
real-life traffic conditions (i.e. multiple scenarios, different road users) while remaining in-
terpretable and incorporating a rich set of context cues. For the DBN, the computational com-
plexity can be partially curbed by limiting the dependencies between discrete states (fig. 6.4),
though it may be necessary to learn these dependencies from data instead of designing these
relations manually as was done in this study. The interesting alternative is to take a learned
representation method and encode expert knowledge in specific areas of the model, thereby
making it interpretable and keeping its high performance. Possible directions include com-
bining learned context representations to predict distributions over a fixed set of predefined
dynamics [109] and incorporating agent interaction explicitly as a graph structure in the neu-
ral networks [44, 110]. In contrast, attentive networks [72] provide interpretability through
inspection of node activations for specific inputs, rather than through explicit encoding of
expert knowledge.

The advent of large-scale naturalistic datasets such as Argoverse [32] will be important
to further these future research directions. Even so, the current findings on the impact of
gradient-based optimization are also relevant to other scenarios where DBNs have already
been successfully applied without such optimization strategies, such as signalized [35] and
non-signalized [20, 42] pedestrian crossing, and in joint pedestrian-driver awareness collision
risk estimation [34]. This approach of studying the representation in isolation may be useful
for other applications too, such as surveillance with path prediction in crowds, where tradi-
tional expert-designed representations [111] have been fully replaced by learned representa-
tions [44]. Ideally, expert-knowledge and semantic concepts can be seamlessly incorporated
into the learned representation and optimized jointly, potentially resulting in the best of both
worlds.

ONLINE PATH PREDICTION
The online path prediction done in this thesis considered a single scenario at a time. Future
work could extend the number of scenarios that the DBN can handle at once. This brings
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along the complication of how to determine which scenario could potentially play out at a
given time. One approach would be to encase all scenarios in the I-MoLDS from chapter 4, in
which additional contextual cues inform which scenarios are more likely. Another suggestion
is to extend the complexity of the given scenarios, for example jointly predict the future action
of multiple agents as done in [34]. One interesting choice for the extended scenario would
be to integrate potential oncoming traffic, which would make an evasive maneuver from the
motion planner no longer the preferred action in every situation.

Furthermore, because of a difference in processing time, not all measurements and con-
textual cues arrived at the same moment during online path prediction. The method presented
in this thesis assume that they arrive synchronously, so the resulting prediction pipeline was
delayed based on the longest measurement processing time. Ideally, prediction methods
process every separate measurement whenever it arrives, thereby giving the most accurate
prediction it can as quickly as possible.

Finally, cross-domain adaptation was already mentioned in the section on 3D person
detection. Evaluating a path prediction model online after optimizing it on an offline dataset
is essentially the same cross-domain adaptation problem. There is an interesting difference,
however: path prediction attempts to predict the future, and as such can retrieve ground
truth labels for its own predictions after some time has passed. Future work on online path
prediction could therefore go one step further than only evaluating the performance of a
model online, and instead also improve it by adapting to observed behaviors.
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