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CHAPTER 1 

INTRODUCTION 

1.1 The Global Landmine Problem1 

First improvised landmine forms appeared in European warfare in the early 18th century. 
Often going by the French term fougasse, these improvised landmines were shallowly buried 
bombs covered with scrap metal or gravel to serve as shrapnel. Similar forms of landmines 
were also used in the 19th century in the American Civil War. Modern mechanically fused 
antitank (AT) landmines were first introduced by Imperial Germany during World War I in 
response to Britain’s invention of the tank. These mines were large devices, which were easily 
detected, removed and redeployed by the enemy. To address this problem, smaller 
antipersonnel (AP) landmines were developed for deployment around AT mines, thereby 
preventing their removal. By the end of World War I, all major participants had started 
manufacturing and using landmines. During World War II, landmines became an integral 
weapon on the battlefield. Not only had their design by then been refined, military forces also 
started to use AP landmines as a weapon in their own right. Originally developed as a tactical, 
defensive weapon intended to slow down enemy troops and protect military bases and 
infrastructure, the introduction of landmines that are deployable by air in the 1960s led to the 
use of landmines for military offensives, e.g. during the Vietnam War. Furthermore, 
landmines were increasingly used against civilian populations, terrorizing communities and 
rendering agricultural land unusable. Landmines have since then been widely used during 
internal and independence conflicts in all regions of the world. Especially in less developed 
countries, landmines became the weapon of choice for government troops, paramilitaries and 
guerilla forces since they are cheap, readily available and effective. 

Today more than 80 countries are affected to some degree by landmines and/or unexploded 
ordnance (see figure 1.1). Countries that are most severely landmine contaminated are 
Afghanistan, Angola, Burundi, Bosnia & Herzegovina, Cambodia, Chechnya, Colombia, Iraq, 
Nepal and Sri Lanka. The total number of landmines that remain deployed in post-conflict 
areas is estimated at around 60 million, causing more than 15,000 new casualties every year. 

The negative impact of landmines on communities in (post)-conflict areas is severe and 
diverse. Beyond living with the constant danger of getting injured or killed and associated 
psychological trauma, landmine contamination has a strong adverse economical effect. It 
costs between $ 300 and $ 1000 to remove a landmine and $ 100 to $ 3000 to provide an 
artificial limb. Agricultural fields, farming land, road networks and water resources usually 
remain unusable or inaccessible, greatly impeding recovery from the conflict. In addition, 
landmines hinder the work of help organizations, e.g. the delivery of help supplies, as well as 
the work of international peacekeeping troops. 

Reducing the impact of landmines requires a variety of related activities, which are generally 
summarized under the term Mine Action. Naturally, a key task of Mine Action is demining2. 
Other important activities are mine awareness training and social work to help landmine 
                                                 
1 This information has been compiled from the websites of the following organizations: The Canadian Landmine 
Foundation (www.canadianlandmine.org), The International Campaign  to Ban Landmines (www.icbl.org), UN 
Mine Action Service (www.mineaction.org). 
2 Demining includes activities which lead to the removal of landmine hazards, including technical survey, 
mapping, clearance, marking, post-clearance documentation and handover of cleared land. 
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victims and their families. Complementary to these activities, the international community 
seeks a long-term solution to the landmine problem by imposing a ban on landmines. A first 
step to restrict the use of landmines was achieved in 1981 through the UN Convention on 
Certain Conventional Weapons, Protocol II, which was amended 1996 and signed by 67 
countries as of January 2002. In 1999, a complete ban on AP landmines including their use, 
development, stockpile and transfer entered into force as the Ottawa Treaty on the 
Antipersonnel Mine Ban Convention, signed by 143 countries as of September 2004. 

 

Figure 1.1: Map of mine affected countries. (source: Landmine Monitor Report 2003). 

1.2 Current Demining Techniques3 

Demining is an important part of Mine Action. Today most humanitarian mine clearance is 
carried out using a combination of manual demining and dog detection, with mechanical 
demining gaining more and more share. For quality control, demining organizations tend to 
employ a combination of these techniques before an area is declared free of mines. 

Manual demining 

In manual demining (figure 1.2a), the deminer uses an electromagnetic induction metal 
detector and a prodding stick to investigate every square centimeter of ground in front of him. 
The metal detector gives an audible alert when metal is present in the ground. The deminer 
                                                 
3 The information has been compiled from the websites of the following organizations: MgM People Against 
Landmines (www.mgm.org), Geneva International Centre for Humanitarian Demining (www.gichd.org). 
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then uses the prodding stick to probe the ground and feel for the side of the suspected mine. 
Manual demining can be applied almost everywhere and is usually reliable. However, it has 
the disadvantage of being a very dangerous, slow and hence expensive procedure. A severe 
limitation of the metal detector is its inability to distinguish between landmines and harmless 
pieces of metal, e.g. junk or metal shrapnel from former bomb explosions. As a result, metal 
detectors give rise to a high number of false alarms, each of which need to be carefully 
examined as if it was a landmine, thereby slowing down the clearing process tremendously. 
Furthermore, some landmines contain very little metal, so-called low-metal content 
landmines, or no metal at all, making their detection extremely difficult or impossible, 
respectively. 

Dog detection 

Dogs have the skill to scent explosive molecules that leak out of landmines and migrate 
slowly to the surface of the ground, and can be trained to locate landmines. The search is 
conducted with the dog on a long leash (figure 1.2b). If the dog detects the scent of 
explosives, it lies down with its nose pointing to the origin of the “signal”. The spot is marked 
and later investigated by manual demining. Apart from detecting individual landmines, dogs 
are also used for the important task of determining which areas are not mined, an activity 
referred to as area reduction. Dog detection has the advantage of being faster than manual 
demining and, since it is based on explosive detection, false alarms are much less likely. The 
main limitations are that dogs can only concentrate for a few hours and that it is not well 
understood under which conditions a dog will miss a landmine. In addition, in tropical 
climates dogs are prone to illness. 

Mechanical demining 

Until the late 1980s, mechanical demining machines were primarily used by the military in 
situations where speed of clearance was a priority over reliability. Since then demining 
machines have been developed specifically for the purpose of humanitarian demining and 
new improved systems are continuously emerging on the commercial market (figure 1.2c). 
The main applications of demining machines are for area reduction and ground preparation 
for manual demining. The latter includes vegetation removal, breaking-up hard soil, as well as 
metal contamination reduction through the use of magnets. In addition, machines are starting 
to be used for mine clearance and, as the understanding of their performance grows, clearance 
machines are gaining more and more acceptance by the demining community. The main 
disadvantages of mechanical demining are that sometimes machines are unreliable, require 
repair and, due to their size, cannot access all areas. 

Manual demining with the metal detector, dog detection and mechanical demining will most 
likely continue to be the preferred techniques for mine clearance in the time to come. 
However, these techniques have their limitations and there is great interest to develop new 
landmine detection sensors for both military and humanitarian needs, which can provide fast 
and reliable clearance with a low false alarm rate. The challenge to technology and science in 
developing landmine detection sensors is immense. Not only do more than 350 different types 
of landmines exist, but also they are buried at different depths, in different soils, in different 
terrains affected by varying weather conditions. Clearly, no one sensor will work well under 
all these conditions. Hence, future landmine detection systems are likely to use combinations 
of different types of sensors to increase the detection and reduce the false alarm rate 
(MacDonald et al, 2003). A sensor that has demonstrated great potential for use in such a 
multi-sensor system is Ground Penetrating Radar (GPR). 
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(a) 

 
(b) 

 
(c) 

Figure 1.2: Current demining techniques:                                                                                              
(a) Manual demining with the metal detector.                                                                                        
(b) Dog detection.                                                                                                                                    
(c) Mechanical demining. The MgM ROTAR sieves the soil for landmines. 
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1.3 Ground Penetrating Radar (GPR) for Landmine Detection and 
Identification 

Ground Penetrating Radar is a non-invasive sensing technique, which uses electromagnetic 
waves to locate and characterize objects or interfaces beneath the surface of the ground or 
manmade structures. First successful uses of GPR go back to as early as the 1930s, mainly as 
a technique for ice depth probing (Stern, 1930). With the introduction of commercial systems 
in the 1970s, the range of applications of GPR technology has been ever expanding. 
Application examples include the location of buried utilities, the inspection of highways and 
airport runways, the detection of underground tunnels and subsurface voids and archeological 
surveys. 

The main components of a typical GPR system are illustrated in figure 1.3. The transmitter 
generates an electric signal, which is radiated by the transmitting antenna. Reflections of the 
radiated wave from above and below the ground are measured by the receiving antenna, 
digitized by the receiver, and stored on a computer for further processing and interpretation. 

Based on the type of signals used to probe the subsurface, a distinction is made between 
pulsed (time-domain) GPR systems and stepped frequency (frequency-domain) GPR systems. 
Most GPR antenna systems are bistatic consisting of one transmitting and one receiving 
antenna. During the data acquisition, which is generally done along straight scanning lines, 
the two antennas are kept at a constant distance (offset) and orientation from each other. 
Variations to this simple bistatic antenna configuration exist in the form of array systems, 
which use multiple transmitting and receiving antennas for either fast data acquisition and/or 
multi-offset measurements, and polarimetric systems, which measure both the co- and cross-
polar components of the reflected wavefield for two-orthogonal transmitting polarizations. 

Fueled by the successful application in a wide a range of subsurface investigation problems, 
since the mid-1990s there are has been an increased interest to develop GPR technology for a 
challenging new application: Landmine detection.4 The potential benefits of a demining GPR5 
can be summarized as follows: 

• Reduction of the false alarm rate by target identification6 based on measured target 
responses. 

• Ability to detect both plastic and metal cased landmines. 

• Ability to detect both surface-laid and buried landmines. 

• Ability to determine the depth and the horizontal position of an object. 

• Possibility to scan the ground with the antennas elevated at a safe distance from the 
ground surface. 

• Possibility for combination with other sensor technology. 

                                                 
4 Actually, some research on landmine detection with GPR started as early as the late 1970s, e.g. Chan et al 
(1979). 
5 The term demining GPR is used throughout this thesis to describe a GPR system that supports demining 
operations. 
6 In this thesis, identification is understood as “the process of estimating whether a detected object is a landmine” 
and not “the process of determining the landmine type, e.g. PMA-3”. This usage is in agreement with the IEEE 
standard definition of identification: “The knowledge that a particular radar return signal is from a specific 
target.” (source: The IEEE Standard Dictionary of Electrical and Electronic Terms, 6th Edition) 
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An existing and promising sensor combination, in which GPR is utilized, is with the metal 
detector, e.g. the Minetect system from ERA Technology (UK) or the AN/PSS-14 (formerly 
HSTAMIDS) system from CyTerra Corporation (USA). In this combination the target 
identification capability of GPR is used to reduce the number of false alarms of the metal 
detector and to detect completely non-metal mines. This combination constitutes an 
improvement to the well-established stand-alone metal detector and hence leads to easier 
acceptance by the demining community. When used in the combination with the metal 
detector, the GPR acts mostly as a support sensor, which means that it is used to confirm a 
detection of the primary sensor, in this case the metal detector. Most likely in the near future 
this will be the main role of GPR in landmine detection, stressing the importance of the 
development of reliable GPR target identification methods. 

As reflected by current research trends, a demining GPR can be used as what I call a probing 
sensor, an imaging sensor or a combination of both. 

• When used as a probing sensor, the GPR data is analyzed on the basis of individual 
A-scans7. The objective is to detect and/or identify an object that is buried at the 
position where the analyzed A-scan was measured. 

• When used as an imaging sensor, the objective is to create a focused 2D or 3D 
image of the subsurface from multiple A-scans measured over a grid. The image is 
then used to detect, locate and characterize buried objects that lie below the 
measurement area. The imaging sensor approach also includes inversion-based 
techniques that aim to reconstruct the spatial distribution of the constitutive 
parameters (dielectric permittivity, magnetic permeability and conductivity) in the 
subsurface. 

In either approach, it is important to have accurate information on the radiation characteristics 
of the GPR antennas. Furthermore, imaging requires knowledge of the wave velocity 
distribution in the ground and accurate antenna positioning. As a consequence, the use of a 
demining GPR as an imaging sensor is more restrictive than when being used in the localized 
probing mode. In this thesis, the attention is focused on GPR as a probing sensor. 

transmitter receiver computer

object

ground

receiving 
antenna

transmitting 
antenna

transmitter receiver computer

object

ground

receiving 
antenna

transmitting 
antenna

 

Figure 1.3: Illustration of a typical GPR system. 

                                                 
7 The term A-scan refers to a time sampled GPR return measured at one antenna position. 



INTRODUCTION 
 
 

7 

1.4 The GPR Response of a Landmine and its Use for Target 
Identification 

Early-time versus late-time target response 

Target identification in the probing mode is based on the concept of a target response, also 
commonly referred to as target signature. The target response contains two components, 
namely the early-time (forced) and late-time (natural) response of the target (Kostylev, 1994). 
The early-time response has a finite duration and is formed while the incident wave passes 
through and along the outside of the target. The late-time response refers to the target’s 
natural modes, which build up after the target has been illuminated by the incident wave. 
Landmine and unexploded ordnance (UXO) identification based on complex natural 
resonances (CNR) computed from the late-time response has been the topic of extensive 
research throughout the years (Chen and Peters, 1997; Baum, 1998). The motivation to work 
with CNR stems from the fact that the resonances are target orientation independent and lead 
to a small number of characterizing parameters. However, the resonances of a buried target 
are generally highly damped compared to those in air and thus may be extremely difficult, if 
not impossible, to measure. This is especially true for plastic cased landmines (Huynen, 
2003). Hence, the research described in this thesis is entirely based on the early-time target 
response, which is much stronger than the late-time response. 

The early-time response of a landmine depends on its size, shape and internal structure. 
Consequently, the early-time response carries valuable target information and can be used for 
landmine identification. However, it is well known that the early-time response depends not 
only on the electromagnetic properties of the landmine, but also on those of the soil in which 
the landmine is buried. In addition, the early-time response is dependent on the orientation of 
the landmine with respect to the incident and scattering directions. For these reasons, simple 
target identification techniques based on template matching or feature based classification 
become unreliable or might even fail completely. Clearly, in order to design a reliable 
identification algorithm or specify the conditions under which an identification algorithm will 
fail, it is important to understand the factors that determine the early-time response of a 
landmine. 

Up to now the understanding of the early-time response of landmines is mostly limited to 
knowledge obtained from numerical simulations (Geng and Carin, 1999; Sullivan et al, 1999; 
Roth et al, 2001; Strifors et al, 2002; Johnson and Burkholder, 2004) and experience from 
actual GPR measurements (Carin et al, 1999; Zanzi et al, 2002; Kovalenko and Yarovoy, 
2003; JRC Landmine Signature Database). Although this knowledge is very useful to evaluate 
or predict sensor performance and landmine responses under varying burial conditions, it does 
not lend itself naturally to establish a direct link between measured GPR responses and target 
characteristics, e.g. target size and depth of burial. A different strategy with which this link is 
easily made is convolutional GPR modeling introduced below. 

Since this thesis is solely concerned with the early-time target response, in the 
remainder of the text the prefix early-time will be omitted for convenience. 
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Convolutional models & the target impulse response 

To identify landmines from GPR data, it is necessary to have practical models relating the 
measured target response to the main response determining factors and associated data 
processing algorithms, which ideally allow for real-time target identification. These 
requirements suggest representing the measured target response through a convolutional 
model, which describes the sequence of radiation, propagation, target scattering and receiving, 
and using deconvolution to estimate the target impulse response, which embodies information 
on target characteristics (e.g. outer dimensions, contrast, internal structure). 

The concept of convolution and deconvolution in GPR applications is not new (Daniels et al, 
1988). However, up to now research in this area has focused on impulse response 
characterization of the antennas (Scheers et al, 2000) and the development of GPR specific 
deconvolution algorithms (Turner, 1994; Scheers et al, 2001; Savelyev et al, 2003), leaving 
the target impulse response and its relation to target characteristics mostly unexplored. 
Furthermore, all these works impose a convolutional representation of the GPR data by 
definition rather than deriving it from physical principles. 

The first of a few notable contributions towards a better understanding of the impulse 
response of a buried target was made by Chan et al (1981) who used the well-established 
Physical Optics (PO) approach in radar target impulse response modeling (Kennaugh and 
Moffatt, 1960) to derive a simple analytical expression for the impulse response of a metal 
target buried in a lossy ground. Twenty years later, Nag and Peters (2001) extended the work 
of Chan et al for application to buried homogeneous dielectric targets that are rotationally 
symmetric. For both types of targets (metal and dielectric), PO predicts a simple relationship 
between the target impulse response and the cross-section profile of the “illuminated” part of 
the target. This profile is commonly known as the target profile function. Based on their 
findings, Chan et al postulated the possibility to image a buried target based on a few A-scans 
or, if the target is rotationally symmetric, one single A-scan. Nag and Peters applied this idea 
to image a buried PMA-3 landmine with limited success. One of the limitations they faced 
was that the operating band of their GPR system did not include frequencies below 1.2 GHz, 
which are necessary to reconstruct the target profile function. In addition, the validity of PO 
for scattering from a plastic cased landmine is fundamentally limited by its inability to 
describe scattering from the bottom of the landmine and from internal mine structure. Hence, 
it is questionable whether PO provides a good approximation to the target impulse response of 
a buried plastic cased landmine. It should also be noted that, as in the work of Chan et al, the 
derivations of Nag and Peters neglect the radar hardware and assume the target in an 
unbounded host medium with the same properties as the ground, i.e. the ground surface is not 
accounted for. 

Summarizing, these shortcomings establish a need for further scientific developments in the 
area of convolutional GPR modeling, especially the derivation of impulse response models 
for plastic cased landmines. Other important factors that need to be modeled are the presence 
of the ground surface and the radar hardware. Complementary to this, a deconvolution based 
target characterization procedure should be developed, which estimates important target 
characteristics that ultimately allow identifying whether a detected target is likely to be a mine 
or no mine. Target characteristics that are useful in this respect are the outer dimensions of the 
target, its material properties (e.g. its dielectric permittivity), a description of its internal 
structure (e.g. the presence of an air gap), and its depth of burial. 
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1.5 Scope of the Research 

This thesis provides a comprehensive treatise of new developments in the area of 
convolutional GPR modeling and deconvolution with application to AP landmine 
identification, which are the outcome my PhD research. The treatise addresses all major 
aspects of the problem: 

• The derivation of frequency- and time-domain convolutional models8 describing 
electromagnetic scattering from a buried minelike target9. Novelties include simple 
analytic expressions for the target transfer function/impulse response, a previously 
unpublished far-field backscattering representation of the half-space electric 
Green’s tensor, and a host medium transformation law, which relates the response 
of a minelike target buried in a lossless ground to its response in a lossy ground. 

• The introduction of point source/receiver models for the GPR antennas and the 
receiver chain, thereby extending the time-domain convolutional scattering model 
to account for the radar hardware. The so-obtained convolutional GPR model is the 
first of its kind, which gives analytic expressions for all components of the GPR 
chain (hardware, propagation to and from the target, the target impulse response). 
The model is formulated for both buried and surface-laid minelike targets. 

• The development of preprocessing algorithms that extract the response of the target 
to be identified from the measured GPR data. Novelties include a weighted moving 
average background subtraction (WMA-BS) technique, which accurately recovers 
the amplitude and shape of the target response along the entire diffraction 
hyperbola, and a transformation of the measured scattering matrix, termed target 
frame transformation with which a target orientation independent target response is 
obtained. 

• The development of a deconvolution based target characterization procedure. 
Novelties include a deconvolution algorithm, termed subset selection 
deconvolution, which significantly reduces the ill-posedness and ill-conditioning of 
the radar signal deconvolution problem. As a further novelty, the estimated impulse 
responses can be inverted for target characteristics, e.g. its outer dimensions and its 
depth of burial. 

Together these new developments form a framework of theoretical models and data 
processing algorithms, which opens the possibility to identify plastic and metal cased AP 
landmines from GPR data within a very short computation time. This possibility has been 
verified with success based on 3D finite-difference time-domain (FDTD) and experimental 
GPR data. 

                                                 
8 A convolutional model describes a linear time-invariant process as the convolution of a number of time 
functions. The terms frequency-domain convolutional model and time-domain convolutional model are used in 
this thesis to distinguish between the frequency-domain and time-domain representations of a convolutional 
model, respectively. Note that convolution in the time-domain is equivalent to multiplication in the frequency-
domain. 
9 The term minelike target describes a target whose size, shape and electromagnetic properties resemble those of 
a landmine. 
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1.6 Thesis Outline 

Following this introduction, chapter 2 presents a detailed analysis of scattering from 
homogeneous minelike target. The analysis consists of two parts, first the development of the 
relevant electromagnetic scattering theory, and second, application of this theory for target 
characterization based on deconvolution processing. Starting from source-type integral 
representations of the scattered field, I derive frequency- and time-domain convolutional 
models describing plane wave backscattering from a homogeneous minelike target including 
expressions for its target transfer function/impulse response. To account for the different 
scattering behavior of plastic and metal cased landmines, two types of minelike targets are 
considered, the dielectric minelike target and the metal minelike target. Essential steps in the 
derivation are the linearization of the scattering problem through either the Born or the PO 
scattering approximation, depending on whether a dielectric or a metal target is considered, 
and application of a new far-field backscattering representation of the half-space Green’s 
tensor. The derivation of the convolutional models is followed by a review of common 
deconvolution algorithms, i.e. Wiener filtering and ridge regression, and some of their 
shortcomings for use in target characterization are pointed out. These shortcomings lead to the 
development of the new subset selection deconvolution algorithm that uses the derived target 
impulse response expressions as a priori information on the specific form of the impulse 
response to be recovered. The estimated impulse responses can be inverted for either target 
size or material properties using the derived time-domain convolutional scattering model, and 
a target characterization procedure based on this idea is proposed. The proposed target 
characterization procedure and the validity of the underlying scattering models are then tested 
using simulated data examples obtained by 3D FDTD modeling. At the end of the chapter, 
attention is drawn to the influence of losses in the ground on the target response. Here I use 
similarity analysis in the Laplace domain to derive a host medium transformation law, which 
relates the time-domain response of a homogeneous dielectric minelike target buried in a 
lossless ground to its time-domain response in a lossy ground. The working of the 
transformation law is illustrated using a 3D FDTD data example. 

In chapter 3, I further take up dielectric minelike target and generalize the scattering theory 
of chapter 2 to account for internal mine structure, specifically a thin air gap or a small piece 
of metal. The generalization follows directly from a Born-type linearization of the volume 
integral representation of the scattered field in which the contrast of the inclusion has been 
defined by means of the Rayleigh scattering approximation. As a result of the generalization, 
the target impulse response of the dielectric minelike target is simply augmented by an 
additional term describing the effect of the inclusion, thus making it straightforward to extend 
the target characterization procedure for homogeneous minelike targets, proposed in chapter 
2, to targets with internal structure. Again, the validity of scattering models and the 
performance of the now extended target characterization procedure are demonstrated using 
3D FDTD data examples. 

For application of the derived scattering models and the target characterization procedure to 
GPR data, the radar hardware needs to be considered and data preprocessing algorithms need 
to be developed. Both these issues are addressed in chapter 4. After presenting a polarimetric 
video impulse GPR system developed by IRCTR10, models for its transmitting antenna and 
receiver chain are introduced, which enter as additional terms in the time-domain 
convolutional scattering model of chapters 2 and 3. In this way, a convolutional model for the 
                                                 
10 International Research Centre for Telecommunications-Transmission and Radar, Delft University of 
Technology. 
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GPR response of buried minelike target is obtained. In addition, a convolutional model for the 
GPR response of a surface-laid minelike target is presented, which follows from similar 
considerations. Following the derivation of the convolutional GPR models, a simple, yet 
accurate calibration procedure is introduced, which estimates important hardware 
characteristics, namely the effective radiated waveform and the direct wave signal, both of 
which are required for subsequent data (pre)processing. The data preprocessing is primarily 
concerned with the extraction of target responses that are suitable for target identification. To 
this end, two new algorithms are introduced, the WMA-BS technique, which removes the 
direct wave signal and the ground reflection signal from each measured A-scan, and the target 
frame transformation, a polarimetric preprocessing step required for the identification of 
targets with a preferential scattering axis, e.g. an elongated bombshell. The workings of both 
preprocessing algorithms are illustrated using data acquired with the IRCTR video impulse 
GPR. Finally, a slightly modified version of the subset selection based target characterization 
procedure of chapters 2 and 3 is presented which operates on the preprocessed A-scan at the 
apex of the target response hyperbola and, as before, provides information on either target 
size or target material properties. 

To validate the full data processing chain consisting of the radar calibration, preprocessing 
and target characterization, I acquired data with the IRCTR video impulse GPR at a controlled 
indoor environment over a variety of dielectric and metal minelike targets, both surface-laid 
and buried. The data acquisition and the results from the data processing are detailed in 
chapter 5. 

Finally, in chapter 6, I give an overview of the most important results that were achieved and 
formulate some conclusions that can be drawn from this research. Here I also point out some 
of the limitations of the presented material with regard to application in real minefields and 
solutions to these limitations are suggested in the form of recommendations for future 
research. 
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CHAPTER 2 

SCATTERING FROM A HOMOGENEOUS MINELIKE TARGET 

This chapter presents a detailed treatment of plane wave scattering from a buried AP 
landmine, which for simplicity is approximated here as either a homogeneous dielectric or 
metal minelike target. The objectives of the treatment are twofold. The first objective is to 
represent the scattering through a convolutional model and derive target transfer 
function/impulse response approximations, which describe the scattering behavior of the 
target and are simple closed-form expressions in terms of target size, shape and 
electromagnetic contrast. The second (and complementary) objective is the development of a 
deconvolution based target characterization procedure, which uses knowledge of the incident 
and the scattered field to estimate target characteristics, e.g. its outer dimensions. 

The unifying element of all scattering models presented in this chapter is that they are derived 
from source-type integral representations of the scattered field (Chew, 1990, ch. 8) and 
assume a linear relationship between the scattering currents and the incident field. The 
scattering from a dielectric minelike target is formulated using the volume integral 
representation in combination with the Born approximation, an approach which can easily be 
extended to account for internal mine structure as will be described in more detail in chapter 
3. The scattering from a metal minelike target is formulated using the surface integral 
representation in combination with the Physical Optics (PO) approximation. Apart from this 
difference, great care is taken to treat the scattering from dielectric and metal minelike targets 
in a uniform manner, thereby yielding target transfer functions/impulse response models of 
the same form. 

The development of the deconvolution based target characterization procedure is to a great 
part driven by the necessity to reduce the ill-posedness1 and the ill-conditioning2 inherent to 
the deconvolution of band-limited signals. A number of deconvolution algorithms designed to 
improve the conditioning exist among which Wiener filtering and ridge regression, but, as 
will be demonstrated, these algorithms are unable to provide the amplitude information and 
the temporal resolution required for target characterization. To overcome these problems, a 
new deconvolution algorithm is devised, termed subset selection deconvolution, which uses 
the derived target impulse response models for minelike targets as a priori information on the 
specific form of the impulse response to be estimated. The target characterization procedure, 
which builds on the subset selection deconvolution algorithm, inverts the impulse response 
obtained by deconvolution for target characteristics. 

The chapter is organized as follows. In section 2.1, frequency- and time-domain convolutional 
models for plane wave backscattering from a buried minelike target are derived, including 
expressions for the target transfer function/impulse response. Essential steps in the derivation 
are the linearization of the scattering problem through either the Born or the PO scattering 
approximation, as described above, and application of a new far-field backscattering 
representation of the half-space Green’s tensor, which is derived in section 2.1.3. In section 
2.2, a review of common deconvolution algorithms is given, which illustrates their 
unsuitability for target characterization based on simple synthetic data examples. Following 
this review, the subset selection deconvolution algorithm is developed and integrated into a 
target characterization procedure, which uses the derived convolutional scattering models to 

                                                 
1 A problem is ill-posed if it has no exact or unique solution. 
2 A problem is ill-conditioned if its solution varies widely in response to small errors in the measurements. 
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estimate a target’s outer dimensions or, in the case of a dielectric minelike target, its 
permittivity. In section 2.3, the performance of the proposed target characterization procedure 
and the validity of the underlying scattering models are demonstrated using 3D finite-
difference time-domain (FDTD) data examples. Section 2.4 takes a little side step and derives 
a host medium transformation law, which relates the time-domain response of a dielectric 
minelike target buried in a lossless ground to its time-domain response in a lossy ground. The 
working of the transformation law is illustrated using a 3D FDTD data example. In section 
2.5, the main contributions of the material presented in this chapter are highlighted and 
discussed. 

2.1 Convolutional Models for Backscattering from a Buried Minelike 
Target 

In this section, source-type integral representations of the scattered field are used to derive 
frequency- and time-domain convolutional models for backscattering from a buried minelike 
target illuminated by a downward propagating (locally) uniform plane wave. As shown in 
figure 2.1, the ground is modeled as a half-space with admittivity 1 1 1ŷ = ωε + σi  and 
impedivity 1 0 0ˆ ˆz z= = ωµi , where i is 1− , ω denotes angular frequency, 1ε    is the ground 
dielectric permittivity, 1σ  is the ground conductivity, and 0µ  is the vacuum magnetic 
permeability. To account for the different scattering behavior of plastic and metal cased 
landmines, two target types will be distinguished: the dielectric minelike target and the metal 
minelike target. 

• The dielectric minelike target, treated in subsection 2.1.1, is characterized by the 
permittivity tε  and constitutes an admittivity contrast t 1ˆ ˆ ˆy y y∆ = − , where 

t tŷ = ωεi . Its permeability is assumed to be equal to that of the ground, i.e. 0µ . 

• The metal minelike target, treated in subsection 2.1.2, is assumed to be a perfect 
electrical conductor (PEC). 

The target is located on the z-axis at a depth d and we are interested in the backscattered field 
at a height h above the ground. Note that the z-axis is pointing downward. 

2.1.1 The dielectric minelike target 

Frequency-domain formulation 

The field sE  scattered by the dielectric minelike target may be represented through the 
volume integral 

 ( ) ( ) ( )
 target
volume

,s s dV′ ′ ′= ∫∫∫E G J�x x x x  (2.1) 

in which sJ  is the volume scattering current within the target and G�  is the half-space electric 
Green’s tensor. 
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Figure 2.1: Backscattering from a buried minelike target illuminated by a downward propagating 
plane wave. In the figure, l denotes the target height whereas sl  is the distance from the onset of the 
target to its shadow boundary. 

Plastic cased landmines are often composed of materials with permittivities close to that of 
the ground (Dasgupta et al, 1999). We therefore consider the target to be a weak scatterer, 
allowing the assumption of a linear relationship between the scattering current sJ  and the 
plane wave incident field iE : 

 ( ) ( ) ( ) ( )1

t
k z ds i i e− −= χ = χJ E E ix x x  , (2.2) 

where 1/ 2
1 1 1ˆˆ( )k z y= −  is the wavenumber in the ground, t (0,0, )d=x  refers to the target 

location, and χ denotes a generalized contrast whose functional form depends on the specific 
weak scattering approximation considered, viz. the Born approximation with which 

 ŷχ = ∆  (2.3) 

or the modified Born approximation (Van der Kruk, 2001, p. 87-90) with which 

 
ˆ3

ˆ
ˆ ˆ3

y
y

y y
χ = ∆

∆ +
 . (2.4) 

The Born approximation assumes that the electric field within the target is equal to the 
incident field iE . At radar frequencies, this assumption is considered to be valid as long as the 
magnitude of the complex phase difference between the wave propagating through the target 
and the incident field is much less than unity. As shown by Habashy et al (1993), this is 
equivalent to requiring 

 1 1ˆ ˆ( / ) 1k D y y∆ �  , (2.5) 
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where D is the characteristic size of the target, in our case its height l (see figure 2.1). The 
modified Born approximation is derived from the assumption that the target can be considered 
as being made up of non-interacting point scatterers. Note that as the magnitude of the 
admittivity contrast ŷ∆  decreases, the generalized contrast χ given by the modified Born 
approximation reduces to that of the Born approximation. Since both approximations are 
closely related, let us proceed for simplicity by considering the Born approximation only. 

Next, we would like to find a suitable representation of the Green’s tensor G� . Assuming a 
horizontal polarization for the incident field in eq. (2.2), only the first and the second column 
of the Green’s tensor are relevant. The general formulae for the tensor elements of these two 
columns are given in subsection 2.1.3. They involve Hankel transforms 

 ( ) ( )
0

nf J d
∞

λ λρ λ∫  (2.6) 

in which f are singular complex kernel functions, nJ  (n = 0,1,2) are Bessel functions of the 
first kind and order n, ρ  is the horizontal distance between the observation point x  and the 
source point ′x , and the integration variable λ  is the horizontal wavenumber. In their general 
form, the Green’s tensor elements can only be evaluated numerically (Xiong and Tripp, 
1997). However, as shown in section 2.1.4, the complexity of the Green’s tensor reduces 
significantly for backscattering from a small target (0ρ ≈ ) and far-field observation 
( 0 1k h � ), leading to the approximation 

 ( ) ( )
( )

( )
0 1

0

1 0

ˆ, , 0 1
4

0 0

k h k z

g a

e
z T h d

h d

′− +

→

 
 ′ ≈ − ζ  π +
  

G�
i

x x  , (2.7) 

where 1/2
0 0 0( )k = ω µ ε  is the wavenumber in air, g aT →  is the normal incidence ground-to-air 

Fresnel transmission coefficient given by 

 1

0 1

2
g a

k
T

k k→ =
+

 (2.8) 

and ζ is a coefficient accounting for the refraction related spreading at the ground surface and 
is defined as 

 ( )
1

0

,
h d

h d
k

h d
k

+ζ =
+

 . (2.9) 

Substituting the scattering current given by eq. (2.2) and the backscattering Green’s tensor for 
far-field observation given by eq. (2.7) into eq. (2.1) and integrating over x and y, the 
backscattered field at a height h above the ground can be written as 

 ( ) ( ) ( )

( )
( ) ( )

0 1

t t

,
H

2

k h k d
g as iT h d e

h d

− +
→ ζ

= ω
π +

E E
i

x x  (2.10) 

with 
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 ( ) ( ) ( )120
t

ˆ
ˆH

2

d l
k z d

xy

z d

z
y e S z dz

+
′− −

′=

′ ′ω = − ∆
π ∫ i  , (2.11) 

where the function ( )xyS z  describes the vertical profile of the horizontal cross-section of the 
target and l, as before, refers to the target height. 

Equation (2.10) represents a convolutional model in the frequency-domain relating the 
scattered field sE  at the observation point to the incident field iE  at the target location. The 
first term on the right-hand side simply describes the phase shift, the propagation loss, the 
spreading loss and the ground-to-air transmission associated with the one-way propagation 
from the target to the observation point. The quantity ( )tH ω  is the target transfer function. 
Note from eq. (2.11) that the target transfer function is independent of the target depth d and 
the height h of the observation point. 

For ease of evaluation, let us use integration by parts to rewrite eq. (2.11) in the equivalent 
form 

 ( ) ( ) ( )1

( )
20

t

1

ˆ
ˆH

4

d l
k z d

z xy

z d

z
y e S z dz

k

+

−

+
′− −

′
′=

′ ′ω = ∆ ∂
π ∫ ii

 (2.12) 

from which it is possible to “read off” the transfer function of targets whose shape is 
characterized by sharp jumps in cross-section because then ( )z xyS z′ ′∂  simply becomes a 
series of delta functions. 

Time-domain formulation 

The frequency-domain convolutional scattering model given by eqs. (2.10)-(2.12) is valid for 
any type of soil as long as it is non-magnetic. Analytical transformation of the model into the 
time-domain, however, requires that the velocity 1v  and the attenuation 1α  in the ground, 
which are related to the wavenumber by 

 1 1
1

k
v

ω= − αi  , (2.13) 

are frequency independent. 

Therefore, transformation into the time-domain is generally only possible when the ground is 
lossless. Both polarization losses and conduction losses3 will generally cause 1v  and 1α  to be 
functions of frequency. It is important to note that both types of losses also result in the 
transmission coefficient g aT →  and the refraction related spreading term ζ to be complex and 
frequency dependent. Accordingly, in the time-domain they become functions of time and 
their effect on the scattered field is no longer a simple multiplication but a convolution 
operation. 

                                                 
3 Conduction losses are associated with charge transport phenomena, whereas polarization losses refer to the 
energy dissipation associated with polarization processes. In soils, conduction losses can predominantly be 
attributed to ionic conduction in water and polarization losses to the orientational polarization of water 
molecules. The overall strength of these losses is therefore directly related to water content. Dry soils are 
generally characterized by very low losses. Due to polarization losses, the soil permittivity becomes complex and 
frequency dependent. Conduction losses are described by a non-zero conductivity. 
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To analytically transform the convolutional model into the time-domain, let us therefore 
consider a simplified lossy ground model, which is commonly assumed in GPR problems and 
for which the velocity 1v  and the attenuation 1α  remain frequency independent. The 
underlying assumptions are as follows: 

1) The polarization losses are negligible. 

2) The conduction loss term 1 0/( )σ ε ω  is smaller than one. 

With these assumptions, 1v  and 1α  are simply 

 1

,1r

c
v =

ε
 (2.14) 

and 

 0
1 1 12

v
µα = σ  , (2.15) 

where 1/ 2
0 0( )c −= µ ε  is the wave velocity in air and ,1rε  is the relative permittivity of the 

ground. Then, using eq. (2.13) in eq. (2.10), we find the time-domain convolutional scattering 
model 

 ( ) ( )
( )

( ) ( )
1

t t
1

,
, h ,

2

d
g as iT h d e h d

t t t t
c vh d

−α
→ ζ  

= δ − − ⊗ ⊗ π +  
e ex x  , (2.16) 

where ( )tδ  is the delta function, ( )th t  is the target impulse response, and ⊗  denotes 
convolution.4 

It is important to point out that this result is not entirely correct, since we have neglected the 
time-dependence of the transmission coefficient g aT →  and the refraction related spreading 
term ζ, which does not necessarily vanish even for the simplified lossy ground model, and we 
assume their expressions for a lossless ground, i.e. 

 
,1

,1

2

1

r

g a

r

T →

ε
=

+ ε
 (2.17) 

 ( )
,1

,
r

h d
h d

h d

+ζ =
ε +

 , (2.18) 

to be adequate approximations for their lossy counterparts. This approach is in line with that 
followed by other researchers, e.g. Scheers (2001, p. 5-12). 

To find the target impulse response, we make the substitution 1 / 2z v t d′ = +  in (2.11), which, 
considering the transformation pair ( ) tiω ↔ ∂ , implies that 

 ( ) 1 121 1
t 2

0

h
24

v t
r t t xy

v v t
t S d e

c
−α  ∆σ  = − ∆ε ∂ + ∂ +    επ    

 . (2.19) 

                                                 
4 Throughout this thesis, upper and lower case letters are used to distinguish between frequency- and time-
domain representations of the same quantity/function. 
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Here r∆ε  and ∆σ  denote the contrasts in relative permittivity and conductivity between the 
target and the ground. In the case of no losses, the target impulse response reduces to 

 ( ) 21 1
t 2

h
24

r t xy

v v t
t S d

c

 = − ∆ε ∂ + π  
 . (2.20) 

Equation (2.19) states that, under the Born approximation, the time function of the impulse 
response resulting from the relative permittivity contrast r∆ε  is determined by the 2nd 
derivative of the target’s cross-section profile along the vertical. On the other hand, the part of 
the target impulse response associated with the conductivity contrast ∆σ  is determined by the 
1st derivative of the target’s cross-section profile along the vertical. This difference is a direct 
result of the difference in how r∆ε  and ∆σ  enter the admittivity contrast 

0 0ˆ ( / )ry∆ = ε ω∆ε + ∆σ εi . 

In summary, losses in the ground generally lead to frequency dependent scattering, 
propagation and transmission behavior which is difficult, if not impossible, to describe 
analytically in the time-domain. Due to this limitation, in the remainder of this thesis, I will 
mainly consider time-domain scattering for the case of a lossless ground. An exception 
forms section 2.4, where I will develop a theoretical framework based on similarity analysis 
for transforming the time-domain response of a dielectric minelike target buried in a lossless 
ground to its time-domain response in a lossy ground. For the reader who is interested in more 
detailed information about electromagnetic properties of lossy soils, I recommend the treatises 
by Olhoeft (1998), Powers (1995) and Keller (1987). 

Target transfer function/impulse response of a circular dielectric disk 

In view of landmine identification, an important special case is that of a circular disk with 
constant cross-section xyS , which is a representative shape for a large class of landmines, e.g. 
PMA-3 and Type 72 (see figure 2.2). From eq. (2.12), the disk’s transfer function is simply 

 ( ) ( )120
t

1

ˆ
ˆH 1

4
k l

xy

z
y S e

k
−ω = ∆ −

π
ii

 , (2.21) 

which, for a lossless ground, corresponds to the target impulse response 

 ( ) ( ) ( )( )1
t 12

h 2 /
4

r xy

v
t S t t l v

c
= − ∆ε δ − δ −

π
� �  . (2.22) 

Here ( )tδ�  denotes the 1st time derivative of the delta function, i.e. a differentiation operator. 
Looking at eq. (2.22), we see that the disk differentiates the waveform of the incident 
field. The first differentiation operator at 0t =  relates to backscattering from the top of the 
target whereas the second at 12 /t l v=  relates to backscattering from the bottom of the target. 
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                                           (a)                                                                    (b) 

Figure 2.2:  Examples of circular disk-shaped AP landmines: (a) PMA-3, (b) Type 72.              
(source: Website of the Canadian Forces National Defence Mine/countermine Information Centre, 
http://ndmic-cidnm.forces.gc.ca) 

Demining GPR systems generally use ultra-wide bandwidths extending beyond the frequency 
range in which the phase criterion of eq. (2.5) underlying the Born approximation is satisfied. 
To extend the applicability of eq. (2.22) to demining GPR systems, two phenomenological 
modifications are therefore introduced. First, the velocity of the wave propagating through the 
target is allowed to be different to that in the ground by introducing the effective target 
velocity t

effv . And second, an attenuation factor 1Γ ≤  is introduced, which accounts for the 
weakening of the backscattering from the bottom of the target. With these modifications, eq. 
(2.22) becomes 

 ( ) ( ) ( )( )t
t t2

h 2 /
4

eff
eff

r xy

v
t S t t l v

c
= − ∆ε δ − Γδ −

π
� �  . (2.23) 

Simply speaking, the value of Γ  is just an indicator of the extent to which the Born 
approximation is valid, with good validity being expressed by values close to one. 
Interestingly, the FDTD simulation and experimental results presented in this chapter and 
chapter 5, respectively, indicate that Γ  is related to the target’s aspect ratio, defined as the 
ratio of its radius over its height. Specifically, the results suggest that the Born approximation 
becomes less valid as the aspect ratio decreases. This may be explained by the contribution of 
the edge-diffracted wave to the field inside the target during the time it takes for the incident 
wave to pass through the target. Clearly, this contribution may not be neglected as the target 
aspect ratio decreases, making the Born assumption break down. 

2.1.2 The metal minelike target 

Frequency-domain formulation 

The field sE  scattered by the metal minelike target may be represented through the surface 
integral 

 ( ) ( ) ( )
 target
surface

,s s dS′ ′ ′= ∫∫E G J�x x x x  , (2.24) 
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in which sJ  is the surface scattering current and, as in eq. (2.1), G�  is the half-space electric 
Green’s tensor. 

We make use of the fact that the casings of many landmines have flat or smooth surfaces. 
Neglecting the creeping wave, we can then use Physical Optics (PO) to approximate the 
surface scattering current sJ  as 

 ( ) ( )2 illuminated side of the target

0 shadow side of the target     

i
s  ×

= 


H
J

n x
x  (2.25) 

(Damarla et al, 2000), where n  denotes the unit vector normal to the surface of the target and 
iH  is the incident magnetic field. The incident magnetic field is related to the incident electric 

field through one of Maxwell’s equations, viz. 

 ( ) ( ) ( ) ( )11
t

1 1ˆ ˆ

i
k z di i

z

k
e

z z
− −∇×

= − = ×
E

H E ix i
x u x  , (2.26) 

so that on the illuminated side of the target 

 ( ) ( ) ( )11
t

1

0

2 0
ˆ

z
k z ds i

z

x y

k
e

z
− −

 − ⋅
 = − ⋅ 
 ⋅ ⋅ 

J E i

n u
i

x n u x

n u n u

 . (2.27) 

Here xu , yu  and zu  refer to the unit vectors in the x, y, and z directions, respectively. 

Substituting the approximations (2.27) and (2.7) for the surface scattering current sJ  and the 
half-space Green’s tensor G�  into eq. (2.24) and following the surface integration procedure 
set forth by Kennaugh and Moffatt (1965), it is found that the convolutional scattering model 
for the dielectric minelike target given by eq. (2.10) also holds for the metal minelike target, 
only that now the target transfer function ( )tH ω  is 

 ( ) ( ) ( )1

( )
21

tH

sd l
k z d

z xy

z d

k
e S z dz

+

−

+
′− −

′
′=

′ ′ω = − ∂
π ∫ ii

 . (2.28) 

Note that the transfer function integral in eq. (2.28) is identical to that in eq. (2.12) for the 
dielectric minelike target, except for the upper integration limit now being determined by sl , 
which is the distance from the onset of the target to its shadow boundary (see figure 2.1). 

It is important to point out that in obtaining this result we were able to neglect the 
contribution of the z-component of the surface scattering current sJ  to the scattered field as a 
result of the far-field assumption. As such, PO effectively does not account for any 
depolarization phenomena and therefore is more suited for describing the backscattering 
behavior of rotationally symmetric metal minelike targets. 

Time-domain formulation 

By analogy to finding the time-domain counterpart of eq. (2.12), the target transfer function 
given by eq. (2.28) can be transformed to yield the target impulse response 
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 ( ) ( )( )2
t 1

1

1
h min / 2 , s

t xyt S v t d l d
v

= − ∂ + +
π

 , (2.29) 

where, as before, the ground is assumed lossless. 

Target transfer function/impulse response of a circular metal disk 

Let us again consider the special case of a circular disk with constant cross-section xyS . From 
(2.28), its transfer function is 

 ( ) 1
tH xy

k
Sω = −

π
i

 . (2.30) 

Given a lossless ground, its target impulse response immediately follows as 

 ( ) ( )t

1

1
h xyt S t

v
= − δ

π
�  . (2.31) 

We see that specular scattering from a circular metal disk differentiates the waveform of 
the incident field, just as is the case for a circular dielectric disk. 

2.1.3 Exact and approximate representations of the half-space electric Green’s tensor 

Since the far-field backscattering approximation of the half-space electric Green’s tensor 
given by eq. (2.7) is fundamental to the convolutional scattering models presented in the 
previous sections, it is important that its derivation be specified and that the differences with 
previously published half-space Green’s tensor approximations are pointed out. 

Let us write 

 ( )
G G

, G G

G G

xx xy

yx yy

zx zy

 
 ′ =  
  

G� x x  (2.32) 

for the first two columns of the half-space electric Green’s tensor, where, e.g., Gyx  is the y-
component of the electric field due to a buried x-directed point electric dipole of unit strength. 
The tensor elements may be derived from the electric vector potential (also commonly 
referred to as Hertz vector) obtained from solving the two-media boundary value problem, as 
described for example by Baños (1966) or Raiche (1974). The resulting general formulae for 
the tensor elements are 

( ) ( ) ( ) ( )( )
0 1 0 1

30
0 0 22 2

0 1 1 0 0 10 0

ˆ 1
G cos 2

2 2

u h u z u h u z

xx

z e e
J d J J d

u u k u k u

∞ ∞′ ′− − − − 
= − λρ λ λ − λρ − φ λρ λ λ π + + 

∫ ∫  (2.33a) 

( ) ( )
0 1

30
22 2

1 0 0 10

ˆ
G sin 2

4

u h u z

yx

z e
J d

k u k u

∞ ′− −

= − φ λρ λ λ
π +∫   (2.33b) 

( ) ( )
0 1

20
1 12 2

1 0 0 10

ˆ
G cos

2

u h u z

zx

z e
u J d

k u k u

∞ ′− −

= φ λρ λ λ
π +∫   (2.33c) 
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G Gxy yx=   (2.33d) 

( ) ( ) ( ) ( )( )
0 1 0 1

30
0 0 22 2

0 1 1 0 0 10 0

ˆ 1
G cos 2

2 2

u h u z u h u z

yy

z e e
J d J J d

u u k u k u

∞ ∞′ ′− − − − 
= − λρ λ λ − λρ + φ λρ λ λ π + + 

∫ ∫  (2.33e) 

( ) ( )
0 1

20
1 12 2

1 0 0 10

ˆ
G sin

2

u h u z

zy

z e
u J d

k u k u

∞ ′− −

= φ λρ λ λ
π +∫   (2.33f) 

The integration variable 2 2 1/ 2( )x yk kλ = +  is the horizontal wavenumber, and 2 2 1/2
0 0( )u k= λ −  

and 2 2 1/ 2
1 1( )u k= λ −  are the corresponding vertical propagation constants in air and in the 

ground, respectively. The functions nJ  (n = 0,1,2) are Bessel functions of the first kind and 
order n. Furthermore, polar coordinates (ρ,φ) with respect to the source point ′x  have been 
introduced, which satisfy cos( )x x′− = ρ φ  and sin( )y y′− = ρ φ . 

Next, we take advantage of the fact that we consider backscattering, i.e. 0x y= = , and that 
antipersonnel landmines are small, i.e. 0x′ ≈  and 0y′ ≈  for all points of the target, by letting 
the radius ρ go to zero. As a result, the tensor elements given by eqs. (2.33a)- (2.33f) reduce 
to 

 
0 1 0 1

30
2 2

0 1 1 0 0 10 0

ˆ 1
G G

2 2

u h u z u h u z

xx yy

z e e
d d

u u k u k u

∞ ∞′ ′− − − − 
= = − λ λ − λ λ π + + 

∫ ∫  (2.34a) 

 G G G G 0yx zx xy zy= = = = . (2.34b) 

It should be noted that eqs. (2.34a) and (2.34b) are exact and valid for all frequencies and 
field regions (near-, intermediate-, and far-field). Accordingly, for small targets, a cross-polar 
component in the backscattered field can only originate from a cross-polar component in the 
scattering current. Expanding on this thought a bit further, within the range of validity of eq. 
(2.2) the cross-polar backscattered field vanishes completely even for non-rotationally 
symmetric dielectric targets. This should be kept in mind when using polarimetric information 
to distinguish between plastic cased landmines and other buried objects. 

To find an approximate far-field expression for Gxx  and Gyy , let us use the fundamental 
integrals 

 ( ) ( )
0 1

0
0 10

, , 2
u h u ze

U z h J d
u u

∞ ′− −

′ ρ = λρ λ λ
+∫  (2.35) 

and 

 ( ) ( )
0 1

02 2
1 0 0 10

, , 2
u h u ze

V z h J d
k u k u

∞ ′− −

′ ρ = λρ λ λ
+∫  (2.36) 

introduced by Baños to rewrite eq. (2.34a) as 

 ( ) ( ) ( )2 20
1

ˆ 1
G G , ,0 , ,0

4 2xx yy z

z
U z h k V z h′

 ′ ′= = − − + ∂ π  
 . (2.37) 



CHAPTER 2 
 
 

24 

On the basis of Baños’ series expansions of the fundamental integrals for points near the z-
axis, i.e. Baños’ eqs. (5.33) and (5.38), U and V can be represented in terms of reciprocal 
powers of 0k hi  to obtain 

 ( )
( )

( ) ( )
0 1

1 2
2

0 0

2
, ,0 1

1

k h k z U Ue E nE
U z h n

n h k h k h

′− +  
′  = − +

 +  
��

i

i i
 (2.38) 

with expansion coefficients 

 2
1 1UE n n= − + + α  (2.39a) 

 ( ) ( ) ( )2 3 2
2 2 1 3 1 2UE n n n= − + − α + + α + α + α  (2.39b) 

and 

 ( )
( )

( ) ( )
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1 2
22

1 0 0

2 1
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1

k h k z V Ve nE nE
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n h k k h k h

′− +  
′  = − +

 +  
��

i

i i
 (2.40) 

with expansion coefficients 

 ( )1 1 1VE n= − + + α  (2.41a) 

 ( ) ( ) ( )2 3 2
2 2 4 5 2 3 3VE n n n= − + − α − + α + + α + α  , (2.41b) 

where 0 1/n k k=  is the complex index of refraction and 1k z′α = i . Note that since this thesis 
assumes a te ωi  time dependence in the frequency domain in contrast to Baños who assumes a 

- te ωi  time dependence, Baños’ expansions and those given here are complex conjugates of 
each other. Neglecting terms containing non-canceling negative powers of 0k h  in accordance 
with the far-field assumption 0 1k h � , eq. (2.38) can be approximated as 

 ( )
( )

( )
0 1

2
2

, ,0 1
1

k h k ze z z
U z h n n n

n h h h

′− +  ′ ′ ′ ≈ − +   +   
��

i

 , (2.42) 

which for 
1

/z h n
−′ <  suggests 

 ( )
( )

( )
0 1

1
2

, ,0 1
1

k h k ze z
U z h n n

n h h

−′− + ′ ′ ≈ + +  

i

 . (2.43) 

In the same manner, from eq. (2.40) it can be shown that in the far-field 

 ( ) ( )2 2
1 , ,0 0zk V z h′ ′+ ∂ ≈  . (2.44) 

Substituting eqs. (2.43) and (2.44) into eq. (2.37), we find that the first two columns of the 
Green’s tensor for the case of backscattering from a small target and far-field observation can 
be approximated as 

 ( ) ( )
( )

( )
0 1

0

1 0

ˆ, , 0 1
4

0 0

k h k z

g a

e
z T h z

h z

′− +
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 
 ′ ′≈ − ζ  ′π +
  

G�
i

x x , (2.45) 
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where, as before, 2 /(1 )g aT n→ = +  is the normal incidence ground-to-air Fresnel transmission 
coefficient and ζ  is the refraction spreading term defined by eq. (2.9). 

Further simplification is achieved by assuming that ( ) /( ) 1z d h d′ − + � , which is reasonable 
for antipersonnel landmines whose height max( )l z d′= −  is usually not greater than a few 
centimeters, e.g. 5 cm. Then, from Taylor series expansions, 1/( ) 1/( )h z h d′+ ≈ +  and 

( ) ( ), ,h z h d′ζ ≈ ζ  with which eq. (2.45) becomes the Green’s tensor approximation 
underlying the convolutional scattering models presented in sections 2.1.1 and 2.1.2, i.e. eq. 
(2.7). 

As a final remark, it is important to point out the differences with the approximate field 
expressions initially given by Baños and later refined by King and Shen (1979). Their 
approximations are derived from the same series expansions of U and V that are used here. 
However, contrary to the approach followed above, they simplify based on the assumption 

1n � , which Baños motivates by his interest in describing the low-frequency case, where, 
for earth materials, conduction currents dominate over displacement currents. At radar 
frequencies, however, 1n �  is usually not satisfied, e.g. 0.5n ≈  for a lossless ground with a 
relative permittivity of 4. As a consequence, the applicability of King and Shen’s far-field 
approximation given by 

 
( )0 1

0ˆG
4

k h k z

xx g a

e
z T n

h

′− +

→≈ −
π

i

 (2.46) 

is more limited than for the far-field approximation given by eq. (2.45). It is interesting to 
note that, in contrast to King and Shen’s approximation, eq. (2.45) agrees with the widely 
used far-field approximation of the free-space Green’s tensor, as can be observed immediately 
by simply setting 1 0k k= . From eq. (2.45), King and Shen’s far-field approximation is found 
to be valid high above the ground (h → ∞ ), in which case ( ),h z n′ζ ≈  and 1/( ) 1/h z h′+ ≈ . 

2.1.4 Special case: A minelike target in an unbounded host medium (air) 

This section gives a brief discussion of scattering from a minelike target embedded in an 
unbounded host medium (full-space) such as air. Although this scattering problem might 
seem far-fetched from any realistic landmine scattering scenario, it has practical use for the 
derivation of an approximate convolutional model for the GPR response of a surface-laid 
minelike target. Furthermore, if the relation between the half-space and the full-space problem 
is well understood, results and insight which have been obtained for the full-space problem, 
e.g. through simulations, can be easily transferred to the half-space problem. 

Scattering from a minelike target in an unbounded host medium may be treated as a special 
case of scattering from a buried minelike target, in which the properties of the “air” are equal 
to those of the ground. Hence, setting 0 1k k=  in eq. (2.10) and introducing the distance 

tr h d= + , which is the radial distance between the target and the observation point, directly 
yields a far-field backscattering convolutional model for the full-space problem: 

  ( ) ( ) ( )
1 t

t t

t

H
2

k r
s ie

r

−

= ω
π

E E
i

x x  . (2.47) 

An important result is that the target transfer function ( )tH ω  remains unchanged and is given 
by either eq. (2.12) or eq. (2.28), depending on whether a dielectric or a metal minelike target 
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is considered. Alternatively, eq. (2.47) can be derived using the same procedure as outlined in 
sections 2.1.1 and 2.1.2, but, instead of using the half-space Green’s tensor, we now make use 
of the full-space Green’s tensor 

( )

( ) ( )( ) ( )( )

( )( ) ( ) ( )( )

( )( ) ( )( ) ( )

1
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1 2 1 12 2 2
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4
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x x y y y y y y z ze
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+ 

 
 ′ ′ ′ ′ ′− − − − − ′ = − +
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 ′ ′ ′ ′ ′− − − − − +   
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x x  , (2.48a) 

where 

 r ′= −x x  (2.48b) 
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3 3
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k r k r
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( ) ( )2 2

1 1

1
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k r k r
= − −i

 (2.48d) 

(Ward and Hohmann, 1987, p. 181), which for the case of far-field backscattering from a 
small target simplifies to 

 ( )
1

0
t

1 0 0

ˆ, 0 1 0
4

0 0 0

k re
z

r

−  
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i
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The details of this derivation can be found in Roth et al (2002). 

If the host medium is air, eq. (2.47) can be transformed into the time-domain to yield 

 ( ) ( ) ( )t
t t

t

1
, h ,

2
s ir

t t t t
cr

 = δ − ⊗ ⊗ π  
e ex x  . (2.50) 

This result will be used in chapter 4 to derive a convolutional model for the GPR response of 
a surface-laid minelike target. Clearly, this is a rather crude way of dealing with the problem 
of scattering from a surface-laid minelike target, and a more elegant derivation would involve 
the half-space Green’s tensor for the case that both the source and the observation point are 
located in the air. 

2.2 Deconvolution and Target Characterization 

2.2.1 Formulation of the deconvolution problem 

To begin with, we might ask ourselves the question, what we would like deconvolution to do 
for us. In seismic deconvolution, which has been studied extensively over the decades 
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(Yilmaz, 1987), the main objective is to improve the temporal resolution of the data by 
compressing the source wavelet, thereby resolving closely spaced layering. Accordingly, 
whether the output of the deconvolution describes the true impulse response of the earth is 
usually not considered as important as that the data look “better” in some sense, the latter 
usually being the criteria for judging the performance of a seismic deconvolution algorithm. 
Clearly, for buried target characterization improving the temporal resolution is not the only 
objective. Rather, we wish to use deconvolution to accurately estimate the target impulse 
response ( )th t , which carries information on target size and contrast, and is independent of 
target depth and the height at which the scattered field is observed. In practice, however, it is 
impossible to directly estimate ( )th t , as can be seen from the convolutional scattering model 
given by eq. (2.16): The best we can do is to estimate a scaled and shifted version of the target 
impulse response, which hereinafter will be denoted as ( )h t . Although this might seem 
undesirable at first, it has the advantage that the time shift can be used to determine the depth 
of burial, which is useful information for AP landmine identification since these types of 
mines are usually buried no deeper than 10 cm. Furthermore, the target depth information can 
be used to undo the spherical and refraction induced spreading effects, which ultimately 
allows us to recover the target impulse response ( )th t  and to determine target properties. 

Whenever deconvolution is applied, a convolutional model needs to be invoked. The 
following discussion on deconvolution algorithms is based on a generic convolutional model, 
which simply assumes a linear time-invariant process creating an output signal ( )y t  in 
response to an input signal ( )x t . Mathematically, the input-output relationship of the process 
is expressed as 

 ( ) ( )y h x( )t t t= ⊗  , (2.51) 

where ( )h t  is the impulse response of the process. 

An example of such a process is backscattering from a buried minelike target. Comparing the 
convolutional scattering model given by eq. (2.16) to eq. (2.51), the input signal ( )x t  can be 
identified with the incident field ( )te ,i tx  and the output signal ( )y t  with the scattered field 

( )e ,s tx . Other examples are the convolutional GPR signal models for surface-laid and buried 
targets, which will be introduced in chapter 4. In this case, the input signal ( )x t  is the 
effective radiated waveform and the output signal ( )y t  is the measured target response 
signal. 

Based on the generic convolutional model of eq. (2.51), the general formulation of the 
deconvolution problem then is to estimate the unknown impulse response ( )h t  from an input-
output pair ( ( )x t , ( )y t ). Alternatively, the deconvolution of the input signal ( )x t  from the 
output signal ( )y t  may be viewed as a filtering operation, which when applied to ( )y t  yields 
the unknown impulse response ( )h t . 

In section 2.2.2, a review of some of the most commonly used frequency- and time-domain 
deconvolution algorithms is given. Using simple synthetic data examples, it will be shown 
that for ultra-wideband (UWB) radar signals these methods fail to accurately estimate the 
impulse response ( )h t , hence making them unsuitable for buried target characterization. This 
shortcoming led to the development of a new deconvolution method, termed subset selection 
deconvolution, which uses a priori information on the specific form of the impulse response 

( )h t  to be estimated and is presented in section 2.2.3. Following the general description of 
subset selection deconvolution, section 2.2.4 describes how subset selection deconvolution 
can be used to characterize buried disk-shaped minelike targets. 
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2.2.2 Review of common deconvolution algorithms 

Inverse and Wiener filtering in the frequency-domain 

Suppose that a filter operator ( )f t  exists which compresses the input signal ( )x t  into a spike, 
i.e. 

 ( ) ( )x f ( )t t t⊗ = δ  . (2.52) 

The filter ( )f t  is called inverse filter and when applied to the output signal ( )y t  given by 
eq. (2.51), the impulse response ( )h t  is obtained. Inverse filtering is most conveniently 
carried out in the frequency-domain according to 

 ( ) ( ) ( )H Y Fω = ω ω  , (2.53) 

where ( )F ω  is simply the inverse of the complex spectrum of the input signal ( )x t : 

 ( ) ( ) ( )
( )x

1 1
F

X X
e− φ ωω = =

ω ω
i  . (2.54) 

Here, ( )X ω  and ( )xφ ω  represent the amplitude and phase spectra of ( )x t . In practice, radar 
signals are always band limited. Hence to avoid dividing by values close to zero in eq. (2.54), 
a small positive constant ε is usually added to the amplitude spectrum before division. 
Equation (2.54) then takes the form 

 ( ) ( )
( )x

1
F

X
e− φ ωω =

ω + ε
i  . (2.55) 

Adding a small positive constant ε to the amplitude spectrum is commonly referred to as 
prewhitening (Yilmaz, 1987, p. 103). 

So far noise-free output signals have been assumed. In practice, however, we will always deal 
with noisy signals, e.g. as a result of external electromagnetic interference (EMI) or receiver 
noise. Even when synthetic data examples are considered, some noise is introduced in the 
form of round-off errors that are caused by the limited machine precision. It is therefore 
important to understand how the inverse filter performs given noisy output signals. Usually 
there is added noise, and hence the noisy output signal ( )ŷ t  can be written as 

 ( ) ( ) ( ) ( ) ( )ŷ y n h x( ) nt t t t t t= + = ⊗ +  , (2.56) 

where ( )n t  denotes the noise. In the frequency-domain, eq. (2.56) is 

 ( ) ( ) ( ) ( )Ŷ H X Nω = ω ω + ω  . (2.57) 

Looking at eq. (2.55), we see that the amplitude spectrum of the (approximate) inverse filter 
applies a large gain to those frequencies of the output signal where the input signal has low 
energy. Hence, when applied to a noisy output signal the effect of the filter on the noise is to 
blow up the noise at frequencies where the input signal is weak. To overcome this problem, 
the Wiener filter has been developed, which is an optimal filter in the sense that it minimizes 
the least squares error between the desired filter output ( )H ω  and the actual filter output 

( ) ( ) ( )ˆ ˆH Y Fω = ω ω , viz. 
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 ( ) ( )
21

Ĥ H  min
2

d
∞

−∞

ω − ω ω =
π ∫ . (2.58) 

(Note that this is equivalent to requiring that the total energy of the error between the desired 
and the actual filter output is minimized.) If the output signal ( )Y ω  and the noise ( )N ω  are 
uncorrelated, it is straightforward to show that the filter ( )F ω  satisfying eq. (2.58) is 

 ( )
( ) ( ) ( )

( )x

2 2

1 1
F

X1 N / Y
e− φ ω

 
 ω =
  ω+ ω ω 

i  (2.59) 

(Press et al, 1992, p. 547-549). Since ( ) ( ) ( )2 *X X Xω = ω ω , the Wiener filter may also be 
written as 

 ( ) ( )
( ) ( ) ( )

*

2 2 2

X
F

X N / H

ω
ω =

ω + ω ω
 , (2.60) 

which is how it usually appears in the literature. Here, the asterisk is used to denote the 
“complex conjugate”. Notice that the term ( ) ( )2 2

N / Yω ω  in eq. (2.59) can be interpreted as 
the reciprocal of the signal-to-noise ratio. Accordingly, the Wiener filter will approach the 
inverse filter given by eq. (2.55) at frequencies where the noise is negligible and approach 
zero at frequencies where the noise dominates. This is how the Wiener filter avoids blowing 
up the noise. 

Implementation of the Wiener filter as in eq. (2.59) requires knowledge of the signal und 
noise power spectral densities ( ) 2

Y ω  and ( ) 2
N ω . This is the main drawback of the Wiener 

filter, since there is no way to do this from the noisy output signal ( )ŷ t  alone without some 
assumption or additional information. The most commonly applied solution to this problem is 
to simply assume that the unknown impulse response ( )h t  and the noise ( )n t  both represent 
white processes. Under this assumption, the reciprocal of the signal-to-noise ratio 

( ) ( )2 2
N / Yω ω  may be replaced by the ratio ( ) 2

/ Xλ ω , where λ is a properly chosen 
regularization parameter. Thus, the Wiener filter becomes 

 ( )
( ) ( )

( )x

2

1 1
F

X1 / X
e− φ ω

 
 ω =
  ω+ λ ω 

i  (2.61) 

or equivalently, when written in the form of eq. (2.60), 

 ( ) ( )
( )

*

2

X
F

X

ω
ω =

ω + λ
 . (2.62) 

To illustrate the working of the Wiener filter, let us consider the synthetic data example of 
figure 2.3. The input signal ( )x t  (figure 2.3a) is the effective radiated waveform of an actual 
demining GPR, the IRCTR video impulse radar, which will be described in more detail in 
chapter 4. It covers a bandwidth of 0.6-2.7 GHz (-10 dB level) and has been sampled using a 
time interval of 6.8 pst∆ = . The impulse response ( )h t  (figure 2.3b) has two spikes and is 
zero otherwise. The first spike occurs at time sample 50i =  and has an amplitude of 

( )h 1it = ; the second spike occurs at time sample 125j =  and has an amplitude of 
( )h 0.5jt = − . The temporal distance j it t−  between the two spikes has been chosen such that 
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it is small compared to the duration of the main pulse of the input signal. The output signal 
( )y t  (figure 2.3c) has been obtained by convolving ( )x t  with ( )h t . 

Figure 2.4 summarizes the results of applying the Wiener filter to the output signal ( )y t  for 
increasing values of the regularization parameter ( 101 10≤ λ ≤ ). The left column displays the 
estimated impulse response ( )ĥ t  obtained from inverse Fourier transforming the Wiener 
filter output ( )Ĥ ω , whereas the right column displays the data fit between the predicted and 
the actual output signal. The quality of the data fit is quantified using the relative error defined 
as 

 
( ) ( ) ( )

( )
ˆ ˆ ˆh x y

rel. error
ŷ

t t t

t

⊗ −
=  , (2.63) 

where ( )x̂ t  and ( )ŷ t  are the input and output signals that are used in the estimation of ( )ĥ t , 
and  denotes the 2�  norm. The relative error will be used throughout this thesis to 
quantify the deconvolution data fit. In the example of figure 2.4, ( )x̂ t  and ( )ŷ t  are the true 
input and output signals, i.e. ( ) ( )x̂ xt t=  and ( ) ( )ŷ yt t= . 

Here a few observations: 

• The regularization parameter λ needs to be at least 610  in order for the two-spike 
structure of the impulse response to become clearly visible. Hence, even in this (in 
theory) noise-free synthetic data example the regularization is not just necessary to 
avoid division by zero, but also to counteract the computer round-off errors (see 
above). 

• A good data fit does not necessarily mean that the estimated impulse response ( )ĥ t  
resembles the true impulse response ( )h t  of figure 2.3b. 

• The Wiener Filter has the tendency to smear out the impulse response, resulting in 
underestimation of amplitudes and reduced temporal resolution. Note that the 
smearing becomes stronger with increasing λ. This smearing is caused by the term 
in parentheses in eq. (2.61), which is close to unity at frequencies where the power 
spectral density ( ) 2

X ω  of the input signal is strong and close to zero at 
frequencies where it is weak, i.e. the term acts as a bandpass filter. As a 
consequence, the Wiener Filter always produces a bandpass filtered version of the 
true impulse response. As λ increases, the frequency band, which the Wiener filter 
passes, becomes narrower. 

Probably the optimal solution in terms of similarity between the estimated and the true 
impulse response and in terms of data fit is the one obtained for 610λ = . However, different 
data noise levels require different choices of λ. To illustrate this non-uniqueness of the 
optimal value for λ, the Wiener filtering was repeated, but with the output signal of figure 
2.3c contaminated by white Gaussian noise5. The Wiener filter results for an output signal-to-

                                                 
5 White Gaussian noise is characterized by a flat frequency spectrum and a Gaussian amplitude distribution in 
the time-domain. To avoid misunderstandings, it is important to point out that this type of random noise is used 
in this section only as a convenient tool to analyze the noise sensitivity of deconvolution algorithms. It is not 
suggested here that white Gaussian noise is fully representative for the noise typically present in GPR data. In 
fact, a major source of noise in GPR data is clutter, i.e. unwanted reflections, which in a physical sense may be 
viewed as deterministic rather than random. As such, the noise sensitivity results presented in this section should 
be understood as indicative rather than quantitative. More information on clutter and a way to minimize it are 
presented in section 4.3. 
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noise ratio of 20dB are presented in figure 2.5. The results demonstrate that in this case 
choosing 610λ =  is insufficient and suggest choosing 810λ =  instead. 

In conclusion, even in the noise-free case, Wiener filtering is incapable of recovering the true 
impulse response, but only a bandpass filtered version thereof. Probably the biggest difficulty 
in dealing with the Wiener filter is choosing a regularization parameter λ, which works for 
different operating scenarios in terms of noise level, output signal shape and output signal 
strength. Working with a varying regularization parameter has the disadvantage of making it 
difficult to compare estimated impulse responses, which after all is what we would like to do 
for target characterization/identification. 

 

Figure 2.3: Synthetic data example used for the deconvolution analysis:                                             
(a) input signal ( )x t                                                                                                                                
(b) two-spike impulse response ( )h t                                                                                                       
(c) output signal ( )y t  obtained from convolving ( )x t  with ( )h t . 
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Figure 2.4: Wiener filter deconvolution of the input signal of figure 2.3a from the output signal of 
figure 2.3c. The left column shows the estimated impulse response for increasing λ and the right 
column shows the associated data fits between the predicted and the actual output signal. 
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Figure 2.5: Wiener filter deconvolution as in figure 2.4, but with white Gaussian noise added to the 
output signal (output SNR: 20 dB). 
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Least squares deconvolution in the time-domain 

In practice, we always deal with sampled signals. The convolutional model of eq. (2.51) can 
therefore be expressed in matrix form as 

 =y Xh , (2.64) 

where ( ) ( )1y y
T

Mt t=   y �  and ( ) ( )1h h
T

Nt t=   h �  are vector representations of the output 
signal and the unknown impulse response, respectively, and X is the convolution matrix 
defined as 
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     (N M≤ ) , (2.65) 

i.e. its column vectors  ( 1, ,)i i N=x �  are simply shifted (delayed) and truncated versions of 
( ) ( )1x x

T

Mt t=   x � , which is the vector representation of the input signal. Here, the 
superscript T is used to denote the “transpose”. 

Equation (2.64) describes an overdetermined linear system of equations, whose solution is the 
unknown impulse response. Accordingly, the time-domain deconvolution problem can be 
stated as follows: Find a vector h such that =Xh y  or nearly so. This problem may be 
formulated as a least squares problem, which tries to minimize the error between the predicted 
and the true output signal, i.e. 

 
2

min −
h

Xh y  . (2.66) 

Differentiating eq. (2.66) with respect to h and setting the result equal to zero, the least 
squares solution LSh  is found to satisfy the so-called normal equations  

 yT T
LS =X Xh X  . (2.67) 

Note from eq. (2.65) that the convolution matrix X has full column rank by definition, i.e. its 
column vectors are linearly independent. Thus TX X  is invertible and the least squares 
solution is simply 

 ( )-1
yT T

LS =h X X X  . (2.68) 

Before presenting some least squares deconvolution examples, it is worth examining some 
analytical properties of the least squares problem that are specific to time-domain 
deconvolution of ultra-wideband radar signals. 

• Zero residual – The linearity and time invariance of the underlying process, e.g. 
backscattering from a buried minelike target, guarantees that y lies in the column 
space of the convolution matrix X. Therefore, in principle, time-domain 
deconvolution is a so-called zero residual least squares problem (Golub and Van 
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Loan, 1983, p.139), meaning that the residual of the least squares solution defined 
as 

 LS= −r Xh y  (2.69) 

is zero. In practice, a non-zero residual of the least squares solution can therefore 
always be attributed to inaccurate knowledge of the input and output signals, e.g. as 
a result of noise or clutter. 

• Ill-posedness and ill-conditioning – From the definition of the convolution matrix 
X, we see that neighboring columns only differ by very small time shifts, thereby 
making each column nearly dependent on its neighboring columns. This near rank 
deficiency of X causes ambiguity in the least squares solution because the norm of 
the residual does not have a well-defined minimum. Hence, the deconvolution 
problem is ill-posed. Moreover, due to the near rank deficiency of X, even small 
errors in the output signal y induce large errors in the estimate of the unknown 
impulse response vector h. In other words, the deconvolution problem is not just ill-
posed but also ill-conditioned. The best way to illustrate this is through the singular 
value decomposition of X, i.e. 

 
1

R
T T

i i i R R R
i=

= σ =∑X u v U � �  , (2.70a) 

where 

 [ ]1
M R

R R
×= ∈U u u� �  (2.70b) 

 [ ]1
N R

R R
×= ∈V v v� �  (2.70c) 

 
1 0

0
R

R

σ 
 =  
 σ 

	Σ    1 2 ( 0)Rσ ≥ σ ≥ ≥ σ >�  (2.70d) 

 ( )rankR = X  (2.70e) 

(Golub and Van Loan, 1983, p. 16-20), with which the least squares solution of eq. 
(2.68) may be written as 

 1

1

TR
T i

LS R R R i
i i

−

=

= =
σ∑ u y

h V � � � �  . (2.71) 

Here, the iσ  are the non-zero singular values of X and the vectors iu  and iv  are 
the corresponding left and right singular vectors, respectively. Note that, since X 
has full column rank, R N= . The expansion of the least squares solution given by 
eq. (2.71) immediately shows that small errors in the output signal y can cause large 
changes in LSh  if the smallest singular value Rσ  is close to zero, which is the case 
when X is nearly rank deficient. A measure for this error sensitivity is provided by 
the condition number of X, defined as the ratio 

 ( ) 1

R

σκ =
σ

X  . (2.72) 
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As an example, the convolution matrix corresponding to the input signal of figure 
2.3a has a condition number of ( ) 72.9 10κ ≈ ∗X  (assuming 250 columns), which is 
extremely large and hence indicates that the deconvolution problem is very ill-
conditioned. 

Let us now return to the synthetic data example of figure 2.3. In the absence of noise, least 
squares deconvolution is able to exactly recover the true impulse response, as shown in figure 
2.6. However, adding as little as –70 dB of white Gaussian noise to the output signal of figure 
2.3c results in an impulse response estimate that is completely wrong, as shown in figure 2.7. 
This immediately rules out application of simple least squares deconvolution to demining 
GPR systems whose dynamic range with respect to the receiver noise level is typically of the 
order of 70 dB (see section 4.1.1). Two observations are worth pointing out. First, note that, 
although the estimated impulse response is completely wrong, the data fit is essentially 
perfect. And second, the impulse response estimate has extremely large coefficients. A simple 
trick to get a better result is to add white Gaussian noise to the input signal, thereby improving 
the conditioning of the convolution matrix. In essence, this is identical to prewhitening for a 
stable inverse filter (see eq. (2.55)). An example of the improvement to the solution is given 
in figure 2.8, showing the deconvolution result obtained when –40 dB of white Gaussian 
noise is added to the input signal of figure 2.3a. The condition number of the perturbed 
convolution matrix now is only 1489 (compare this to 72.9 10∗  for the noise-free input 
signal), leading to a much more stable solution. The two-spike structure of the impulse 
response is now visible, however, as was the case with the Wiener filter, the estimate is 
smeared, leading to an underestimation of the amplitudes of the spikes as well as a limited 
temporal resolution. 

From these examples, it is clear that simple least squares deconvolution in the time-domain 
will only work properly in the absence of noise and hence is of no practical use for ultra-
wideband radar signals. 
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Figure 2.6: Least squares deconvolution of the input signal of figure 2.3a from the output signal of 
figure 2.3c. Shown are the estimated impulse response and the associated data fit between the 
predicted and the actual output signal. Note that the actual output signal is not visible due to the 
essentially perfect data fit. 
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Figure 2.7: Least squares deconvolution as in figure 2.6, but with white Gaussian noise added to the 
output signal (output SNR: 70 dB). 
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Figure 2.8: Least squares deconvolution as in figure 2.6, but with white Gaussian noise added to the 
output signal (output SNR: 70 dB) and to the input signal (input SNR: 40 dB). 

Regularized least squares deconvolution in the time-domain (ridge regression) 

In the previous section, we saw that simple time-domain least squares deconvolution is very 
sensitive to additive noise and has the tendency to produce impulse response estimates with 
extremely large coefficients (see figure 2.7). Therefore, it makes sense to regularize the least 
squares problem by penalizing impulse responses whose total power is “out of bounds”. This 
can be achieved by solving the following minimization problem: 

 ( )2 2
min − + λ

h
Xh y h  , (2.73) 

where λ is a properly chosen regularization parameter. Increasing λ pulls the solution away 
from minimizing the squared norm of the residual 

2−Xh y  in favor of minimizing the total 
power 

2
h  of the impulse response. This type of regularization is commonly referred to as 

ridge regression. The normal equations for the regularized deconvolution problem may be 
found by rewriting eq. (2.73) as a regular least squares minimization problem 
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2

min
   

−   λ   h

X y
h

0I
 , (2.74) 

implying that 

 

T T

RR

       =       λ λ λ       

X X X y
h

0I I I
 (2.75) 

or equivalently 

 yT T
RR + λ = X X I h X  . (2.76) 

Here, RRh  is the ridge estimate of the unknown impulse response and I denotes a N N×  
identity matrix. The solution of the normal equations is 

 
1

yT T
RR

−
 = + λ h X X I X  . (2.77) 

Looking at these equations, we see that, not only does ridge regression penalize impulse 
responses with large total power, it also counteracts the ill-conditioning of the deconvolution 
problem. Augmenting X by the regularization term λI  improves the condition number of 
the convolution matrix, therefore resulting in normal equations that are less ill-conditioned. 
Consequently, the ridge estimate RRh  is less sensitive to errors in the input and output signals. 
The disadvantage of ridge regression is that the regularization term also introduces an error in 
the impulse response estimate. Therefore, the choice of the regularization parameter λ is a 
trade-off between the error in the impulse response estimate resulting from errors in the input 
and output signals and that introduced by the regularization term itself. Procedures for 
determining an optimal regularization parameter exist (Astanin and Kostylev, 1997; Savelyev 
et al, 2003), however all of them require knowledge of the size of the errors in the input and 
output signals, which are not known a priori and may differ from one operating scenario to the 
next. Hence, the choice of the regularization parameter is non-unique, just as it is for the 
Wiener filter. 

Figure 2.9 shows the results of applying ridge regression deconvolution to the synthetic data 
example of figure 2.3 for the case that the output signal is contaminated by white Gaussian 
noise with a signal-to-noise ratio of 70 dB. The deconvolution was carried out for increasing 
values of the regularization parameter ( 100 10≤ λ ≤ ). Note that for 0λ =  ridge regression 
becomes simple least squares, the results for which have already been presented in figure 2.7. 
The results show that ridge regression acts very much like the Wiener filter. It smears out the 
impulse response, thereby loosing amplitude information and temporal resolution. The 
smearing becomes stronger with increasing λ. The optimal value for λ is by no means 
indicated by the data fit between the predicted and the actual (noisy) output signal. In fact, all 
values of λ yield a near-to-perfect data fit, with the exception of 1010λ = . The choice of the 
optimal value for λ is further complicated by its dependence on the noise level, as indicated 
by figure 2.10, showing the ridge regression deconvolution results for the case that the output 
signal-to-noise ratio is 20 dB. In this case, in order for the two-spike structure of the impulse 
response to become clearly visible, λ needs to be at least 810  in contrast to 210  for the output 
signal-to-noise ratio of 70dB (see figure 2.9). Hence, as for the Wiener filter, no one value of 
λ  will work well for all operating scenarios. 
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Figure 2.9: Ridge regression deconvolution of the input signal of figure 2.3a from the output signal of 
figure 2.3c to which white Gaussian noise has been added (output SNR: 70 dB). The left column 
shows the estimated impulse response for increasing λ and the right column shows the associated data 
fits between the predicted and the actual (noisy) output signal. 
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Figure 2.10: Ridge regression deconvolution as in figure 2.9, but with an output SNR of 20 dB. 
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2.2.3 Subset selection deconvolution 

The review of deconvolution algorithms in the previous section showed that Wiener filtering 
and ridge regression have the general tendency to produce smeared out versions of the true 
impulse response. Therefore, any impulse response amplitude information, which may be 
related to target size or contrast, is lost. Their use for target characterization is further 
hampered by their reliance on a regularization parameter, whose optimal choice is non-
obvious. Different regularization parameters lead to different impulse response estimates and 
hence the question “which is the better answer?”. Clearly, for the purpose of target 
characterization, we ideally seek a deconvolution method, which is insensitive to errors in the 
input and output signals, gives an accurate estimate of the magntitude of the impulse response 
and provides good resolution in time. In the following, a deconvolution algorithm satisfying 
these criteria is presented. 

The ill-posedness of the least squares deconvolution in the time-domain may be viewed as a 
problem of redundancy. The redundancy expresses itself through the fact that it suffices to use 
only a few columns of the convolution matrix X to obtain very close predictions of the output 
signal vector y. Hence, rather than using all N columns of X, the least squares problem may 
be constrained by seeking an impulse response with at most n N�  non-zero coefficients. 
The positions of the non-zero coefficients determine which columns of X are used for the 
approximation of y. The process of selecting the columns is usually referred to as subset 
selection (Golub and Van Loan, 1983, p. 415). 

Meaningful6 application of subset selection to deconvolution requires that the following two 
criteria be satisfied: 

• The true impulse response h is sparse or at least adequately represented so. 

• Some a priori knowledge on the form of the impulse response h exists, such as the 
number of non-zero coefficients and how they are arranged. 

For GPR signal deconvolution, the first criterion is equivalent to requiring that the output 
signal is primarily a result of scattering from sharp layer boundaries or interfaces, e.g. the top 
and the bottom surface of a target. The second criterion requires that we have some idea of the 
type of target we wish to characterize, e.g. a landmine, or of the number of layers in the 
ground. More specifically, for the characterization of minelike targets, the impulse response 
models derived in section 2.1 can be used to specify an appropriate number of non-zero 
impulse response coefficients, as will be explained in more detail in the following section. 

Of primary importance for the work described in this thesis is the estimation of impulse 
responses with one or two non-zero coefficients. In these two cases, subset selection can be 
achieved by permutation, i.e. solving a reduced least squares problem for all possible 
positions of the non-zero impulse response coefficients and then selecting the solution which 
gives the smallest residual overall. Thus, subset selection deconvolution may be formulated as 

 
( )

( ) 2

h
min min h        (1 )

i
i i

i t
t i N − ≤ ≤  

x y  (2.78) 

or 

                                                 
6 Meaningful in the sense that the estimated impulse response is not just a mathematical curiosity. 
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x x y  , (2.79) 

depending on whether one or two non-zero impulse response coefficients are considered. 

Clearly, computation time will generally prohibit the use of simple permutation for subset 
selection deconvolution involving more than two non-zero impulse response coefficients if 
the processing is to be done in real-time. Other subset selection strategies then become 
necessary. One possible strategy is to start off with an impulse response consisting of one or 
two non-zero coefficients and then iteratively select the position for the next non-zero 
coefficient, while keeping the previous selected positions fixed. Note that this approach will 
usually produce a sub-optimal selection. Alternatively, it is possible to use templates, which 
describe predefined arrangements of impulse response coefficients. Detailed information on 
the use of iterative methods and templates for subset selection deconvolution of GPR signals 
can be found in the work of Van der Lijn (2002). 

To illustrate the advantages of subset selection deconvolution, let us again consider the 
synthetic data example of figure 2.3. The result of applying subset selection deconvolution in 
the absence of noise is shown in figure 2.11, whereas the result for the case that the output 
signal is contaminated by white Gaussian noise with a signal-to-noise ratio of 20 dB is shown 
in figure 2.12. Remarkably, even in the noisy case subset selection is able to exactly recover 
the true impulse response. As such, subset selection clearly outperforms Wiener filtering and 
ridge regression. The two latter algorithms required the use of a large regularization parameter 
to be able to deal with an output signal-to-noise ratio of 20 dB, causing strong smearing of the 
impulse response, as illustrated in figures 2.5 and 2.10. The robustness of the subset selection 
algorithm to noise is further demonstrated by figure 2.13, showing the size of the residual of 
the reduced least squares solution for each position index pair ( , )i j  searched by the 
algorithm. The size of the residual has a well-defined minimum at ( , ) (50,125)i j = , which are 
the true positions of the two spikes in the impulse response. 

Thus, subset selection provides a robust tool for the estimation of sparse impulse responses. 
Both amplitude and temporal information of the impulse response can be recovered very 
accurately. Therefore, subset selection deconvolution is well suited for target characterization, 
as shall be explained further in the following section. 
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Figure 2.11: Subset selection deconvolution of the input signal of figure 2.3a from the output signal of 
figure 2.3c. Shown are the estimated impulse response and the corresponding data fit between the 
predicted and the actual output signal. Note that the actual output signal is not visible due to the 
essentially perfect data fit. 
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Figure 2.12: Subset selection deconvolution as in figure 2.11, but with white Gaussian noise added to 
the output signal (output SNR: 20 dB). 
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Figure 2.13: Relative error function for the subset selection deconvolution example shown in figure 
2.12. 

2.2.4 Target characterization 

This section describes how subset selection deconvolution can be used to characterize circular 
disk-shaped minelike targets. Because the impulse response of these types of targets consists 
of just one (metal disk) or two (dielectric disk) differentiation operators, they naturally lend 
themselves to characterization by subset selection deconvolution. The following 
characterization procedure pertains to the configuration shown in figure 2.1, i.e. plane wave 
backscattering for which the convolutional model of eq. (2.16) has been derived, and assumes 
knowledge of the incident and the scattered fields. In chapter 4, the characterization procedure 
will be generalized for application to measured GPR responses of both surface-laid and buried 
minelike targets. 

The primary processing step of the characterization procedure is the deconvolution of the 
incident field ( )te ,i tx  from the backscattered field ( )e ,s tx . The underlying convolutional 
model is 

 ( ) ( ) ( )te , h e ,s it t t= ⊗x x  , (2.80) 

which is simply eq. (2.51) with the input signal ( )x t  replaced by ( )te ,i tx  and the output 
signal ( )y t  replaced by ( )e ,s tx . 

Subset selection deconvolution requires a sparse parameterization of the impulse response 
( )h t  to be estimated. Appropriate parameterizations directly follow from substitution of the 

target impulse response models given by eqs. (2.23) and (2.31) into the convolutional 
scattering model of eq. (2.16). Doing so for the circular dielectric disk yields the 
parameterization 

 ( ) ( ) ( )1 1 2 2h h ht t tτ τ= δ − + δ −� �  , (2.81) 

where 

 
( )

( )
t

1 2

,
h

8

eff
g a

r xy

T h d v
S

h d c
→ ζ

= − ∆ε
π +

 , (2.82a) 
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 1
1

h d

c v
τ = +  , (2.82b) 

 2 1h h= −Γ  , (2.82c) 

 2 1
t

2
� �

eff

l

v
= +  . (2.82d) 

Likewise, the parameterization for the buried circular metal disk is found to be 

 ( ) ( )1 1h ht t τ= δ −�  (2.83) 

where 

 
( )

( )1
1

, 1
h

2
g a

xy

T h d
S

h d v
→ ζ

= −
π +

 , (2.84a) 

 1
1

h d

c v
τ = +  . (2.84b) 

These parameterizations suggest using the time derivative of the incident field to create the 
convolution matrix X, because then the subset selection deconvolution equations (2.76) and 
(2.77) can be used directly to estimate of the impulse response parameters 1h  & 1τ  and 2h  & 

2τ  (if applicable). Equivalently, as shown by Van der Lijn et al (2003), it is possible to 
introduce discrete representations for the differentiation operators7, leading to subset selection 
deconvolution equations of the same form as (2.78) and (2.79). In this thesis, mainly the first 
approach has been used. Another practical thing to do when dealing with dielectric disks is to 
constrain the subset selection by discarding solutions for which 1 2h h 0> , i.e. for which the 
two differentiation operators in eq. (2.81) have the same polarity, since this would contradict 
eq. (2.82c) (remember that Γ is positive by definition). Furthermore, note from eq. (2.84a) 
that the impulse response coefficient 1h  obtained for a circular metal disk will always be 
negative. 

Once the impulse response parameters have been estimated by subset selection deconvolution, 
they can be related to target characteristics by means of eqs. (2.82) and (2.84). Note from eq. 
(2.82a) that, for a dielectric disk, target size and target contrast are inherently unresolved, i.e. 
an increase in target cross-section xyS  cannot be distinguished from an increase in target 
contrast r∆ε . The same ambiguity exists between the target height l and the effective target 
velocity t

effv  both of which determine the impulse response length 2 1−τ τ , as can be seen from 
eq. (2.82d). Consequently, it is only possible to infer possible combinations of target 
characteristics. This means that in practice two types of inversions are possible. These are 
inversion for target size and inversion for material properties: 

• Inversion for target size refers to the estimation of the cross-section xyS  (or radius 
for that matter) and the target height l from the impulse response coefficient 1h  and 
the impulse response length 2 1−τ τ  by specifying a target relative permittivity ,trε  
and an effective target velocity t

effv  that are generic for the type of target to be 
characterized. 

                                                 
7 A discrete differentiation operator can be represented as a pair of neighboring spikes of opposite polarity and 
equal magnitude 1/ t∆  with t∆  being the time sampling interval. 
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• Inversion for material properties refers to the estimation of the target relative 
permittivity ,trε  and the effective target velocity t

effv  from the impulse response 
coefficient 1h  and the impulse response length 2 1−τ τ  by assuming a cross-section 

xyS  and a target height l. 

In contrast, for a metal disk, it only makes sense to invert the impulse response for target size, 
in this case estimating its cross-section xyS  from the impulse response coefficient 1h . 

An indication of the nature of the target, i.e. whether it is made of dielectric material or metal, 
is given by the generally strong target response magnitude that can be expected from a metal 
target and the fact that in most soils the contrast r∆ε  of the main constituents of a plastic 
cased landmine (plastic, explosive, air) is negative. Hence, the polarity of the target response 
of a plastic cased landmine is generally reversed to that of a metal cased landmine, which is 
also reflected by the impulse response coefficient 1h  being positive. The sign of 1h  obtained 
by subset selection deconvolution can therefore be used as an indicator whether the 
appropriate impulse response parameterization was selected out of the two possible ones, i.e. 
eq. (2.81) or eq. (2.83). 

2.3 3D Finite-Difference Time-Domain (FDTD) Simulation Results and 
Verification 

In the previous section, a target characterization procedure was presented, which combines 
subset selection deconvolution with the time-domain convolutional scattering model and the 
target impulse response models derived in section 2.1 to estimate the size or the material 
properties of a buried circular disk-shaped minelike target. To check the accuracy of the target 
characterization procedure as well as the validity of the underlying the scattering models, the 
responses of 6 buried circular disks were simulated using a 3D FDTD modeling program 
(Mur, 2001). 

The FDTD program uses a total field formulation and allows for excitation by a plane wave 
incident field originating from outside the computational domain through the use of Mur’s 
total field absorbing boundary conditions (ABCs) (Mur, 1998). Scattered fields are obtained 
by simply repeating a simulation for the case that there is no target (with everything else 
unchanged) and then subtracting the so-obtained incident field data from the previously 
modeled total field data. Since the original implementation of the total field ABCs assumed a 
target in air, they were modified here for a half-space background medium, i.e. air and 
ground. This generalization was readily achieved by reevaluating the incident field terms in 
the ABCs, as suggested in Mur (1998). With this modification, it was then possible to do the 
simulations for exactly the same configuration as the one for which the convolutional 
scattering models and target impulse response models were derived, i.e. plane wave 
backscattering as shown in figure 2.1. For the plane wave incident field, a linear polarization 
in the x-direction and a waveform equal to a Ricker wavelet (2nd derivative of a Gaussian 
pulse) with a peak amplitude frequency of 1.5 GHz was selected. Accordingly, the simulated 
target responses shown and analyzed in this section refer to the x-component of the scattered 
field. To ensure good simulation accuracy, a very small cell size of 2.5 mm was used in all 
three coordinate directions together with the corresponding Courant time step. 

Of the simulated disks, five were dielectric and one was metal. The dielectric disks included 
three with a relative permittivity of 2.8 (similar to the explosive TNT) (Bruschini et al, 1998), 
one with a relative permittivity of 2.1 (Teflon) (Von Hippel, 1954, p. 332), and one with a 
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relative permittivity of 1.0 (air). The metal disk was modeled as a perfect electrical conductor 
(PEC). The disks - hereinafter referred to as TNT Disk 1 through 3, Teflon Disk 1, Air Disk 1, 
and Metal Disk 1 - were given a radius between 3 and 7.5 cm and a height of either 4 or 6 cm, 
which are typical for AP landmines. The disks were considered at depths between 2.5 and 10 
cm in a lossless ground with a relative permittivity of 2.5 (Teflon Disk 1 and Air Disk 1) and 
4.0 (TNT Disk 1 through 3 and Metal Disk 1). The ground relative permittivity of 2.5 is 
representative for the sand at the experimental facility where the GPR data presented in 
chapter 5 were acquired. The reason for this choice was to determine the effective target 
velocities of Teflon Disk 1 and Air Disk 1 for later use in the analysis of the experimental 
data.8 The ground relative permittivity of 4.0 chosen for the other four disks is representative 
for dry sandy and dry loamy soils (Daniels, 1996, p.33). A list of all simulated disks, their 
properties and the conditions under which they were simulated is given in table 2.1. 

A requisite for the target characterization procedure to work is that the spreading term 

 
( )
( ) ( ),1

, 1

2 2 r

h d

h d h d

ζ
=

π + π ε +
 (2.85) 

in the convolutional scattering model of eq. (2.16) accurately describes the dependency of the 
target response magnitude on observation height and target depth. To analyze the accuracy of 
the spreading term, the peak-to-peak amplitude of the simulated target response of TNT Disk 1 
and eq. (2.85) were plotted against each other as a function of observation height and target 
depth, the result of which is shown in figure 2.14. To make a comparison possible, the peak-
to-peak amplitude and the spreading term were both normalized with respect to 50 cmh =  
and 2.5 cmd = . Looking at figure 2.14a, we observe that eq. (2.85) well predicts the increase 
in target response magnitude that results from a decrease in observation height down to 

10 cmh = . When going even closer to the ground, the predicted increase in target response 
magnitude starts to deviate from the simulated increase because then the far-field observation 
assumption is violated. The decrease in target response magnitude resulting from an increase 
in target depth is well predicted for all target depths, as can be seen from figure 2.14b. It is 
interesting to note that, in the depth range that is typical for antipersonnel landmines, the 
target response magnitude is only slightly affected by target depth. In contrast, the magnitude 
can be increased multifold by measuring the scattered field closer to the ground. 

Performing subset selection deconvolution as outlined in section 2.2.4 on the simulated target 
responses gave the impulse response parameters listed in table 2.2. Figure 2.15 gives three 
examples of the generally good data fit between the responses predicted by the impulse 
response estimates and the simulated responses, the first of TNT Disk 1, the second of Metal 
Disk 1, and the last of Teflon Disk 1. The good data fit demonstrates that the axial response of 
a buried circular disk-shaped minelike target is well modeled by an impulse response as in 
eqs. (2.81) and (2.83), respectively, consisting of one or two differentiation operators. Note 
that the specular response of Metal Disk 1 is followed by a multiple reflection between the 
target and the ground surface and the creeping wave, both of which in this particular case 
arrive at about the same time. Additional simulations of buried metal disks showed that for 
smaller target depths (e.g. 2.5 cmd = ) and disk sizes (radius  5 cm< ) the first multiple and 
the creeping wave generally overlap with the specular response, making waveform based 
identification of metal targets a non-trivial task. 

                                                 
8 In fact, later on it was learned that the sand at the experimental facility has a slightly different relative 
permittivity, namely 2.6. 
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Figure 2.16 illustrates the relationship between the impulse response parameters of the TNT 
disks obtained by deconvolution and their size. We see that there is indeed a linear 
relationship between the coefficient 1h  and the cross-section xyS , and between the impulse 
response length 2 1−τ τ  and the disk height l, as predicted by eq. (2.82). Fitting a straight line 
to the data points in figure 2.16b gives the effective target velocity t 16.6 cm/nseffv ≈ , which is 
higher than the wave velocity in the ground, 1 15.0 cm/nsv ≈ , but lower than the intrinsic 
target velocity, t 17.9 cm/nsv ≈ . 

The linear relationships between 1h  and the cross-section xyS  and between 2 1−τ τ  and the 
disk height l (dielectric disk only) form the basis for inverting the estimated impulse response 
parameters for target size. Doing the inversion for the TNT disks and Metal Disk 1 yielded the 
disk radii and heights listed in table 2.3. The inversions were carried out using eqs. (2.82) and 
(2.84) and assumed knowledge of the observation height h and the target depth d. The size 
inversion for the TNT disks additionally required the specification of their relative 
permittivity ,t 2.8rε =  and their effective target velocity t 16.6 cm/nseffv = .9 The good 
agreement between the estimated and the true disk dimensions (shown in parentheses) 
demonstrates that the convolutional scattering model of eq. (2.16) together with the target 
impulse response models of eqs. (2.23) and (2.31) accurately describes the scattering from a 
buried circular disk. Furthermore, the inversion results demonstrate that it is possible to 
estimate disk radius and height with millimeter accuracy. 

Table 2.4 lists the results of inverting the impulse response parameters obtained for the 
dielectric disks for material properties, i.e. target relative permittivity ,trε  and effective target 
velocity t

effv . The inversions were carried out using eq. (2.82) in which the true disk 
dimensions had been substituted, i.e. they are assumed known. We see that the relative 
permittivities of all disks were recovered with an error of less than 11 % with respect to the 
permittivity contrast, the only exception being Air Disk 1 when buried 2.5 cm deep, in which 
case the inversion error was 19 %. Most likely this error can be attributed to the estimated 
effective target velocity t

effv  being too low, since the inversion for Air Disk 1 when buried 10 
cm deep, which involved a higher t

effv , worked fine. This hints to one of the problems of the 
inversion for material properties. Not only do we need to know the disk dimensions (as well 
as the observation height h and the target depth d for that matter), also the estimation of t

effv  
needs to be sufficiently good for an accurate recovery of the disk permittivity. This problem is 
mostly relevant when the impulse response length 2 1−τ τ  is short since then the estimation of 

t
effv  becomes more sensitive to errors.10 This is further aggravated by the fact that subset 

selection deconvolution has a harder time estimating very short impulse responses than it has 
estimating longer ones. Still, the inversion results demonstrate that in theory the relative 
permittivity of a buried dielectric disk can be estimated very accurately. Furthermore, they 
demonstrate that the convolutional scattering model of eq. (2.16) together with the target 
impulse response model of eq. (2.23) accurately describes the scattering from a buried 
dielectric disk, just as the results of the inversion for target size did. 

Some interesting observations can be made from looking at the values of the attenuation 
factor Γ in table 2.2. As may be expected, Γ is closest to one for Teflon Disk 1 and closest to 
zero for Air Disk 1, which demonstrates that Γ truly is a measure of the extent to which the 
Born approximation is valid. Furthermore, TNT Disk 3 has a smaller Γ than TNT Disk 1 

                                                 
9 Unfortunately, no estimate of t

effv  other than that from fitting the data points in figure 2.16b was available, 

limiting the significance of the estimated disk heights. 
10 This follows immediately from the derivative of t

effv  with respect to 2 1−τ τ : 
2 1

2
t 2 12 /( )effv l−∂ = − −τ τ τ τ . 



SCATTERING FROM A HOMOGENEOUS MINELIKE TARGET 
 
 

49 

although both have the same height l. This suggests that the validity of the Born 
approximation deteriorates as the target aspect ratio decreases. This phenomenon shall be 
looked at further in chapter 5 when analyzing experimental GPR data. Interestingly, even 
though the Born approximation was not satisfied for any of the simulations (this would 
require 1Γ = ), the non-validity did not negatively affect the inversion for target size and the 
inversion for material properties. 

In this context, the inversion for target size and the inversion for material properties were also 
carried out under the modified Born approximation which simply requires the substitution 

 
3

3
r

r r
r r

ε∆ε → ∆ε
∆ε + ε

 (2.86) 

in eq. (2.82a). No significant changes or improvements in the inversion results were observed. 
In general, the estimated radii and the estimated relative permittivity contrasts were slightly 
lower than those estimated under the “standard” Born approximation. Therefore, the 
“standard” Born approximation will continue to be the “workhorse” in this thesis. 

As a final remark, it should be mentioned that, when dealing with measured GPR signals, the 
reliance of the target characterization procedure on knowledge of the observation height as 
well as target depth presents no limitation as these can be estimated from the arrival time of 
the ground reflection and that of the target response. In fact, as the experimental results of 
chapter 5 will show, observation height and target depth can be estimated with millimeter 
accuracy, which is sufficiently accurate for use in the inversions. 
 
 

Table 2.1: Description of the circular disks and the conditions under which they were simulated. 

Target Dimensions 
Ground Rel. 
Permittivity 

Target Depths 
Target Name 

Target Material 
Type radius 

[cm] 
height l 

[cm] 
aspect 
ratio* ,1rε  d [cm] 

TNT Disk 1 dielectric, ,t 2.8rε =  5.0 4.0 1.25 4.0 2.5, 5.0, 7.5 & 10.0 

TNT Disk 2 dielectric, ,t 2.8rε =  7.5 6.0 1.25 4.0 2.5 & 10.0 

TNT Disk 3 dielectric, ,t 2.8rε =  3.0 4.0 0.75 4.0 2.5 & 10.0 

Teflon Disk 1 dielectric, ,t 2.1rε =  5.0 4.0 1.25 2.5 2.5 & 10.0 

Air Disk 1 dielectric, ,t 1.0rε =  5.0 4.0 1.25 2.5 2.5 & 10.0 

Metal Disk 1 PEC 5.0 4.0 1.25 4.0 2.5 & 10.0 
* Ratio of the radius over the height. 
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                                          (a)                                                                                   (b) 

Figure 2.14: Peak-to-peak amplitude of the simulated response of TNT Disk 1 [stars] versus the 
spreading term of eq. (2.85) [line] displayed as a function of (a) observation height given  = 2.5 cmd  
and (b) target depth given  = 50 cmh . 

Table 2.2: Subset selection deconvolution results. 

Target 
Depth 

Obs. 
Height 

Impulse Response Parameters 

1τ  2 1−τ τ  Target 
Name 

d [cm] h  [cm] 
1h  

4[ 10 ]−∗  samples [ns] 

2h  
4[ 10 ]−∗  samples [ns] 

Γ  

Rel. 
Error 

2.5 30.0 15.5 123 1.184 -11.2 50 0.482 0.73 0.07 TNT Disk 1 
10.0 30.0 14.0 175 1.685 -10.0 50 0.482 0.72 0.05 
2.5 30.0 34.4 123 1.184 -22.3 73 0.703 0.65 0.08 

TNT Disk 2 
10.0 30.0 31.3 175 1.685 -20.7 73 0.703 0.66 0.06 
2.5 30.0 5.5 122 1.175 -3.2 53 0.510 0.58 0.12 

TNT Disk 3 
10.0 30.0 5.0 174 1.676 -2.9 53 0.510 0.58 0.10 
2.5 30.0 6.9 119 1.146 -5.8 43 0.414 0.83 0.06 

Teflon Disk 1 
10.0 30.0 6.1 160 1.541 -5.0 43 0.414 0.83 0.04 
2.5 30.0 39.4 119 1.146 -12.4 32 0.308 0.31 0.05 

Air Disk 1 
10.0 30.0 32.5 160 1.541 -12.7 29 0.279 0.39 0.05 
2.5 30.0 -197.6 126 1.213 n/a n/a n/a n/a 0.17 

Metal Disk 1 
10.0 30.0 -159.8 177 1.704 n/a n/a n/a n/a 0.08 
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Figure 2.15: Examples of the data fit between the predicted (deconvolution) and the simulated 
response:                                                                                                                                                  
(a) TNT Disk 1 (  = 2.5 cmd  &  = 30 cmh )                                                                                           
(b) Metal Disk 1 (  = 10 cmd  &  = 30 cmh )                                                                                          
(c) Teflon Disk 1 (  = 2.5 cmd  &  = 30 cmh ).                                                                                     
The dashed lines define the part of the response, which was fit by the deconvolution algorithm. 
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                                         (a)                                                                                   (b) 

Figure 2.16: Deconvolution results for the TNT disks ( = 2.5 cmd  &  = 30 cmh ):                            
(a) 1h  vs. xyS                                                                                                                                            
(b) 2 1τ τ−  vs. l.                                                                                                                                      
The straight lines represent least squares fits to the data points. 

Table 2.3: Results of the inversion for target size. 

Target 
Depth 

Observation 
Height 

Inversion for Target Size* 

Target Name 
d [cm] h  [cm] 

target radius 
[cm] 

target height l 
[cm] 

2.5 30.0 5.1  (5.0) 4.0  (4.0) TNT Disk 1 
10.0 30.0 5.2  (5.0) 4.0  (4.0) 
2.5 30.0 7.6  (7.5) 5.8  (6.0) 

TNT Disk 2 
10.0 30.0 7.7  (7.5) 5.8  (6.0) 
2.5 30.0 3.1  (3.0) 4.2  (4.0) 

TNT Disk 3 
10.0 30.0 3.1  (3.0) 4.2  (4.0) 
2.5 30.0 5.3  (5.0) n/a  (4.0) 

Metal Disk 1 
10.0 30.0 5.0  (5.0) n/a  (4.0) 

                       The values included in parentheses are the true values. 
                       * For the TNT disks the inversion was based on 2.8 4 1.2r∆ε = − = −  and t 16.6effv = cm/ns. 
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Table 2.4: Results of the inversion for material properties. 

Target 
Depth 

Observation 
Height 

Inversion for Material 
Properties * Target Name 

d [cm] h  [cm] ,trε  
t
effv  [cm/ns] 

2.5 30.0 2.74  (2.8) 16.6 TNT Disk 1 
10.0 30.0 2.72  (2.8) 16.6 
2.5 30.0 2.79  (2.8) 17.1 

TNT Disk 2 
10.0 30.0 2.77  (2.8) 17.1 
2.5 30.0 2.69  (2.8) 15.7 

TNT Disk 3 
10.0 30.0 2.67  (2.8) 15.7 
2.5 30.0 2.08  (2.1) 19.3 

Teflon Disk 1 
10.0 30.0 2.08  (2.1) 19.3 
2.5 30.0 0.72  (1.0) 26.0 

Air Disk 1 
10.0 30.0 0.97  (1.0) 28.6 

                       The values included in parentheses are the true values. 
                       * Based on the true disk dimensions. 

2.4 Host Medium Transformation of the Response of a Dielectric 
Minelike Target 

The motivation for the work described in this section has been the following question: Is it 
possible to predict the target response of a buried plastic cased landmine given its response in 
another soil? The usefulness of such a prediction would be tremendous. Suppose the response 
of a buried landmine for a specific soil type is known from laboratory measurements. We 
could then use this knowledge to identify the same type of landmine in a minefield where the 
soil properties are different to those in the laboratory, e.g. because the soil type is different or 
due to weather related changes in soil water content. 

The following analysis is primarily concerned with how the response of a landmine changes 
when the soil becomes lossy. A similar problem, though for the late-time response, has been 
addressed by Baum (1998), who derived an expression relating the free space natural 
frequencies of a perfectly conducting target to those in a simple lossy medium characterized 
by a static conductivity and a relative dielectric permittivity. Baum’s transformation is an 
example of a well-studied procedure for EM field transformation based on similarity analysis 
in the Laplace domain. Similarity analysis has been used to derive transformations for 
tensorial Green’s functions (De Hoop, 1996), (Verweij, 2001), and primary (incident) fields 
(Gershenson, 1997). In section 2.4.1, it shall be demonstrated that a transformation law for the 
field scattered by a buried dielectric minelike target can be derived in an analogous manner by 
relating the scattering currents using the Born approximation. The derived transformation law 
is then illustrated in section 2.4.2 for a circular dielectric disk whose response has been 
simulated by FDTD for both a lossless and a lossy host medium. 

2.4.1 Theory 

Formulation of the scattering problem 

The transformation law is derived for plane wave scattering from the homogeneous dielectric 
target, introduced in section 2.1, fully embedded in the lth layer of an n-layered host medium, 
as shown in figure 2.17. The dielectric permittivities of the layers are iε  ( 1, ,i n= � ). For 
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simplicity, the magnetic permeability of all layers is assumed to be that of vacuum, i.e. 0µ . A 
global loss model is introduced by considering layer conductivities that are related to the layer 
permittivities by ( )i iσ γ = γε , where the parameter γ is an arbitrary positive constant with units 
of reciprocal time. Setting γ equal zero defines a corresponding lossless host medium. 

In the Laplace domain, the volume integral representation of the scattered field sE  is of the 
same form as in the frequency domain, i.e. it is of the same form as eq. (2.1). Thus, for any 
observation point x we have 

 ( ) ( ) ( )
 target
volume

; , , ; ;s ss s ,s dV′ ′ ′γ = γ γ∫∫∫E G J�x, x x x  , (2.87) 

where, for clarity, the dependencies on the Laplace transform parameter s and the loss scaling 
factor γ have been indicated explicitly. Note that here G�  is no longer the half-space electric 
Green’s tensor but the electric Green’s tensor for the n-layered host medium. The objective of 
the transformation law is to express ( );s ,s γE x  in terms of ( );0s ,sE x . 
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Figure 2.17: A homogeneous dielectric minelike target embedded in a layered host medium is 
illuminated by plane wave. 
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Derivation of the transformation law: Lossless to lossy host medium 

The starting point of the derivation is the following relationship for the Green’s tensor: 

 ( ) ( )2 1/2
2 1/2

, , ; , , ( ) ;0
( )

s
s s s

s s
′ ′γ = + γ

+ γ
G G� �x x x x  . (2.88) 

This relationship follows directly from the similarity between the lossless and the lossy 
electromagnetic field equations in the Laplace domain. The similarity may be found following 
a procedure analogous to the one put forth by De Hoop (1996) in his derivation of a 
transformation law between diffusion in a conductive medium and wave propagation in a 
corresponding lossless configuration. 

The next step is to find a similar transformation for the scattering current sJ . This can be 
achieved through the Born approximation which in the Laplace domain relates sJ  to the plane 
wave incident field iE  according to 

 
( ) ( ) ( )
( ) ( ) ( );

t

; ( ) ;

( ) E ; l i

s i

k si
i

,s s ,s

s ,s e− γ

γ = ∆ε + ∆σ γ γ

= ∆ε + ∆σ γ γ

J E
i a x

x x

x p
 , (2.89) 

where t l∆ε = ε − ε  and ( ) ( )l∆σ γ = −σ γ  are the target permittivity and conductivity contrasts, 
tx  denotes the target location, ip  and ia  are the unit vectors describing the polarization and 

the direction of propagation of the incident field, and 

 ( ) 1/ 2 2 1/ 2
0; ( ) ( )l lk s s sγ = − µ ε + γi  (2.90) 

is the wavenumber of layer l.11 Note that without loss of generality it has been assumed that 
the target is located at the origin of the coordinate system. Assuming further that ip  and ia  
are independent of γ, the transformation for the scattering current is found to be 

 ( ) ( )
( ) ( )t 2 1/ 2

2 1/ 2 2 1/ 2
t

E , ;( )
; ( ) ;0

( ) E , ( ) ;0

i
s s

i

ss
,s , s s

s s s s

γ∆ε + ∆σ γγ = + γ
+ γ ∆ε + γ

J J
x

x x
x

 , (2.91) 

which is readily verified using eq. (2.89). 

Substituting eqs. (2.88) and (2.91) into eq. (2.87) yields the wanted expression for the 
scattered field transformation: 

 ( ) ( )
( ) ( )

2

t 2 1/ 2
2 2 1/ 2

t

( )
E , ;

, ; , ( ) ;0
E ,( ) ;0

i
s s

i

s s
s

s s s
s s s s

∆σ γ +   γ∆ε γ = + γ
+ γ + γ

E E
x

x x
x

 . (2.92) 

An interesting way to look at this result is to introduce the vectorial transfer function 

 ( ) ( )
( )t

, ;
;

E , ;

s

i

s
,s

s

γ
γ =

γ
E

H
x

x
x

 , (2.93) 

                                                 
11 These Laplace domain expressions follow from their frequency-domain counterparts by simply substituting 

sω →i . 
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with which eq. (2.92) can be rewritten as 

 ( ) ( )
2

2 1/ 2
2

( )

, ; , ( ) ;0
s s

s s s
s s

∆σ γ +  ∆ε γ = + γ
+ γ

H Hx x  . (2.94) 

We see that the transfer function for the lossy host medium (0γ > ) is related to the transfer 
function for the corresponding lossless host medium (0γ = ), in which the Laplace transform 
parameter s is replaced by 2 1/2( )s s+ γ . 

Equation (2.94) can be transformed to the time-domain using the Schouten-Van der Pol 
theorem in the theory of the Laplace transformation (Schouten, 1961, p. 124-126), which for a 
given transform pair ( ) ( )f t F s↔  presents a general procedure for finding the time-domain 
counterpart of ( )( )F sϕ , where ( )sϕ  is some suitable function of the Laplace transform 
parameter s. The resulting time-domain transformation law is 

 ( ) ( ) ( )2
10

( )
, ; , ; , ;0t tt U t d

τ
τ τ τ

∞

−=

 ∆σ γ  γ = ∂ + ∂ γ  ∆ε   ∫h hx x  (2.95) 

where the kernel function 1U−  is given by 

 ( ) ( )1 00
, ; , ;U t U t d

τ
τ τ τ− ′ ′γ = − γ∫  (2.96) 

with 

 ( ) ( ) ( )0.5 2 2 1/2
0 0, ; 0.5 ( )tU t e I t S tτ τ τ− γγ = γ − −  . (2.97) 

Here, 0I  denotes the modified Bessel function of the first kind and order zero and S is the 
Heaviside unit step function. 

Equation (2.95) presents a transformation law relating the impulse response ( ), ;0th x  for the 
lossless host medium to the target impulse response ( ), ;t γh x  for the corresponding lossy 
host medium. In addition to being straightforward to implement on a computer, the 
transformation law has the following useful properties: 

• It acts locally, i.e. its evaluation only requires knowledge of the impulse response 
( ), ;0th x  at the particular observation point of interest. 

• It is valid for all field regions (near-, intermediate-, and far-field). 

• It is valid for arbitrary incidence and scattering directions. 

• Its applicability is not limited to low conduction losses ( 0/( ) 1σ ε ω < ), as is the case 
for the time-domain convolutional scattering model and the target impulse response 
models presented in section 2.1. 

An example application of the transformation law is given in the following section. 
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2.4.2 FDTD example 

To illustrate and affirm the derived transformation law, the axial backscattering response of a 
circular dielectric disk embedded in an unbounded homogeneous host medium was simulated 
by FDTD. 

The simulations were carried out using the 3D FDTD modeling program developed by Mur 
(2001). As for the testing of the target characterization procedure in section 2.3, this required 
some minor modifications to Mur’s total field absorbing boundary conditions (ABCs) (Mur, 
1998) to allow modeling plane wave illumination of a target embedded in a lossy host 
medium. In this context, it is important to note that in principle Mur’s ABC equations for 
lossless media equally apply to lossy media since they are only used to model wave 
propagation across the grid cells, which form the boundary of the computational domain, i.e. 
over a very short distance, where losses may be neglected. Consequently, as before, the 
modification only involved reevaluating the incident field terms in the ABCs. This, however, 
is where limitations as to the size of the losses are introduced since the evaluation ideally 
requires an analytic time-domain expression for the plane wave incident field, which only 
exists when the conduction losses are low. A possible work-around for this limitation is to 
analytically evaluate the incident field terms of the ABCs in the frequency-domain and then 
use the Fast Fourier Transform (FFT) to transform them to the time-domain. However, to 
keep things simple, for the present example the ABCs were only modified for the case of low 
conduction losses. 

The disk was given a radius of 5 cm, a height of 4 cm, and a relative permittivity of 5.0. The 
host medium relative permittivity was set to 6.25 and for the lossy case a conductivity of 20 
mS/m was considered. This corresponds to a γ of 0.36 ns-1. For the incident plane wave, a 
linear polarization in the x-direction and a waveform equal to a Ricker wavelet (2nd derivative 
of a Gaussian pulse) with a peak amplitude frequency of 650 MHz was selected. Accordingly, 
only the x-component of the scattered field was analyzed. Note that in selecting the model 
parameters an attempt was made to satisfy both the phase criterion of eq. (2.5) underlying the 
Born approximation as well as the low conduction loss criterion. The incident fields at the 
disk location were obtained by simply repeating the simulations without the disk. 

Figure 2.18 shows the simulated target response at a distance of 50 cm above the disk for both 
the lossless and the lossy host medium. Note that the losses do not just result in a decrease in 
amplitude but also a change in pulse shape. Since for low conduction losses the velocity and 
attenuation are frequency independent, the difference in pulse shape is not a result of 
dispersive wave propagation from the disk to the observation but can be attributed entirely to 
a difference in the target impulse response. 

To check whether the transformation law can predict these changes in the target response, we 
first estimate the axial impulse response ( )h , ;0tx  on the right-hand side of eq. (2.95). To do 
this, we make use of the fact that the target impulse response of the disk is the same in an 
unbounded host medium than when it is buried in the ground (see section 2.1.4), i.e. the target 
impulse response model of eq. (2.23) consisting of two differentiation operators is applicable. 
Thus, ( )h , ;0tx  may be estimated by following the subset selection deconvolution procedure 
described in section 2.2.4 using the same parameterization as if the disk was buried in the 
ground, i.e. eq. (2.81). The resulting impulse response ( )h , ;0tx  is shown in figure 2.19, 
where this time the subset selection was formulated using discrete representations for the 
differentiation operators, as suggested on p. 45. Hence, rather than obtaining two spikes, the 
estimated impulse response consists of two discrete differentiation operators, the first of 
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which corresponds to backscatter from the top of the disk and the second to backscatter from 
the bottom of the disk. 

Evaluation of the integral in eq. (2.95) for the estimated impulse response ( )h , ;0tx  gives the 
time function shown in figure 2.20. The result indicates that the integration with the kernel 
function 1U−  is effectively equivalent to a double integration followed by a multiplication 
with an exponential decay function, which agrees well with the previously derived lossy and 
lossless target impulse response models of eqs. (2.19) and (2.20). 

Subsequent differentiation of the integration result as prescribed in eq. (2.95) yields the 
transformed impulse response ( )h , ;t γx  shown in figure 2.21. 

Finally, convolving the transformed impulse response with the incident field in the lossy host 
medium produces the transformed target response of figure 2.22. For comparison, the 
simulated target response for the lossy host medium is displayed as well, showing that the 
transformation law accurately predicts the changes in the target response caused by the losses. 
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Figure 2.18: Simulated axial response of the disk in the lossless (6.25rε = ) and the lossy ( 6.25rε = , 
20 mS/mσ = ) host medium. 
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Figure 2.19:  Axial impulse response ( )h , ;0tx  for the lossless host medium ( 6.25rε = ). 
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Figure 2.20: Evaluation of the integral in eq. (2.95) for the impulse response of figure 2.19. 
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Figure 2.21: Axial impulse response ( )h , ;t γx  for the lossy host medium ( 6.25rε = , 20 mS/mσ = ) 
as predicted by eq. (2.95) ( 10.36 ns−γ = ). 
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Figure 2.22: Transformed and simulated axial response of the disk in the lossy host medium 
( 6.25rε = , 20 mS/mσ = ). 
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2.4.3 Some concluding remarks 

Understanding the influence of soil properties on the target response of a buried landmine is 
very important for GPR landmine detection and identification. To this end, the presented 
transformation law describes how the time-domain response of a dielectric minelike target 
embedded in a lossless host medium is related to its time-domain response in a lossy host 
medium. The relationship is fairly simple and hence well suited to gain insight in how the 
target response changes as a result of losses. Nevertheless, the applicability of the presented 
transformation law is limited by a number of factors. First, the global conduction loss model 
is not readily applicable to a half-space host medium consisting of an air and a ground layer, 
since the model would also introduce some losses in air. And second, losses are to a great part 
associated with soil water, which also causes polarization losses and raises the real part of the 
permittivity, neither of which is modeled by the transformation law. Further complexity is 
introduced by the fact that wet soils are likely to be characterized by an inhomogeneous water 
distribution, which in turn results in an increased clutter level (Kovalenko and Yarovoy, 
2003). These limitations underline the complexity of the landmine detection problem. Clearly, 
for a complete understanding of the problem, measurements of target responses for different 
soils remain indispensable. 

2.5 Discussion 

This chapter has laid the theoretical and conceptual foundation for the convolutional GPR 
modeling and the target identification approach described in this thesis. In this respect, three 
contributions of the material presented so far are instrumental. These are: 

• Convolutional models describing plane wave backscattering from a buried 
homogeneous minelike target. In these models the scattering behavior of the target 
is described through a target transfer function/impulse response for which simple 
closed-form expressions in terms of target size, shape and electromagnetic contrast 
have been presented. Evaluation of these expressions for a circular disk lead to the 
interesting result that a minelike target of this shape differentiates the waveform of 
the incident field, i.e. its target impulse response consist of one or two 
differentiation operators, depending on whether the target is from metal or 
dielectric. 

• Subset selection deconvolution. This time-domain algorithm constrains the 
deconvolution problem by assuming a sparse parameterization for the impulse 
response to be recovered, which is specific to the problem at hand. For the 
characterization of circular disk-shaped minelike targets, appropriate 
parameterizations follow from the derived target impulse response models. Doing 
so, subset selection deconvolution provides physical amplitude information and 
high temporal resolution, which is essential if the estimated impulse responses are 
to be related to target characteristics. Hence, for target characterization purposes, 
subset selection clearly outperforms deconvolution algorithms based on Wiener 
filtering or ridge regression, which were shown to produce smeared impulse 
responses and rely on a regularization parameter whose optimal choice is non-
obvious. 

• A target characterization procedure for buried circular disk-shaped minelike 
targets. The procedure uses subset selection deconvolution to estimate an impulse 
response, which is inverted for target characteristics on the basis of the derived 
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time-domain convolutional scattering model. Two types of inversions are possible: 
inversion for target size or, in the case of a dielectric minelike target, inversion for 
material properties. 

The validity of the convolutional scattering models and the subset selection deconvolution 
based target characterization procedure has been confirmed by the FDTD simulation results. 
More specifically, the FDTD results demonstrated that, despite their simplicity, the 
convolutional scattering models adequately describe 

• the target impulse response of a homogeneous circular disk-shaped minelike target 
and its relation to target size and contrast 

• the dependency of the target response magnitude on target depth and observation 
height. 

The FDTD results further showed that the proposed target characterization procedure is in 
principle able to estimate the outer dimensions of a homogeneous circular disk-shaped 
minelike target with millimeter accuracy (error  0.5 cm< ) or, given that the target is 
dielectric, produce very accurate estimates of its relative permittivity (error  11 %<  with 
respect to the permittivity contrast). 

A fundamental problem, which has been encountered, is that for a dielectric minelike target 
the inversion of the impulse response obtained by subset selection deconvolution is inherently 
unresolved. As a consequence, the inversion for target size is only possible after specification 
of target material properties and vice versa. This raises the question whether target 
characterization based on no more than the vertical backscattering target response is a valid 
approach and whether including target responses for different incident/scattering directions in 
the inversion will be able to resolve target size and contrast. To find answers to these 
questions, imagine a B-scan12 of GPR data acquired over a buried dielectric target with the 
antennas on the ground. In the B-scan the target will be visible as a diffraction hyperbola and 
it is intuitively clear that the arrival times along the hyperbola carry information on the size of 
the target and its depth. This fact is sometimes used to determine the radius of a buried 
pipeline from GPR data. Hence, in this scenario it is reasonable to assume that an inversion, 
which considers the entire diffraction hyperbola, will be able to resolve the size of the target 
and its contrast. Now let us elevate the antennas above the ground. In this case, the vertical 
becomes the main direction of propagation in the ground simply because at the ground surface 
the radiated wave is refracted towards and the scattered wave away from the vertical. As a 
result, the arrival times along the diffraction hyperbola become primarily a function of the 
depth of the target, so that target size and contrast are again practically unresolved by the GPR 
data. From this imaginary experiment, it becomes clear that inversion of GPR data acquired 
with the antennas above the ground, as is the case in landmine detection, is an ill-posed 
inverse problem even if target responses for different incident/scattering directions are 
considered. In fact, as will be demonstrated by experimental data in chapter 5, not just the 
arrival times but also the shape of the target response, which is measured as the antenna 
system is moved away from the target, carries very little additional target information. To deal 
with this ill-posedness, the following line of reasoning is suggested: 

Start by assuming that the detected target is an AP landmine, which tells us which 
material properties or target sizes to expect. Then fix one of these sets of target 
characteristics and invert for the other. If the inferred characteristics match those of an 
AP landmine, than the detected target should be treated as potentially dangerous. 

                                                 
12 The term B-scan refers to a set of A-scans (see p. 6) measured along a line. 
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This line of reasoning will be illustrated in section 5.3, where it is used to identify Teflon 
disks of a prescribed size from GPR data. 

In the following two chapters, the theory and concepts introduced in this chapter will be 
extended to account for internal mine structure (chapter 3) and the radar hardware (chapter 4), 
both of which are essential for application of the scattering models and the target 
characterization procedure to GPR data. 



 
 

CHAPTER 3 

SCATTERING FROM A MINELIKE TARGET WITH INTERNAL STRUCTURE 

An important aspect that needs to be considered when studying scattering from plastic cased 
landmines is their internal structure. Each type of landmine has its own operation principle 
and hence internal structure varies. Nevertheless, certain common characteristics may be 
identified. For a pressure actuated blast mine1, which is the most common type of 
antipersonnel mine, the internal structure may roughly be subdivided into the following four 
components: the casing, the explosives, the fuse, and air. Since plastics have permittivities 
similar to those of explosives (Von Hippel, 1954; Bruschini et al, 1998), from an 
electromagnetic point of view, the casing and the explosives may be considered as one. The 
explosives include the main charge, which is set off by a smaller amount of explosive called 
the detonator. Sometimes the firing train also contains a booster charge to amplify the ignition 
by the detonator. Different types of fuse mechanisms exist, such as the mechanical pressure 
fuse or the chemical pressure fuse. Usually the fuse is the only component of a plastic cased 
landmine that contains parts of metal, however its metal content may be limited to no more 
than a small firing pin or a striker spring (Fortuny-Guasch et al, 2001). Furthermore, 
landmines contain air gaps, e.g. below a Belleville spring. As an example of internal mine 
structure, figure 3.1 shows an illustration of the inside of an M14 landmine. 

As a result of the internal structure, a plastic cased landmine cannot necessarily be 
approximated as a homogeneous dielectric target. Especially the presence of an air gap is said 
to amplify the target response when the mine is buried and hence should facilitate its detection 
with GPR. However, to my knowledge, the effect of internal structure on the target response 
of a landmine has never been analyzed quantitatively or expressed by models. 

This chapter presents a generalization of the scattering theory for the homogeneous dielectric 
minelike target, developed in the previous chapter, to account for internal structure. The 
generalization is achieved by introducing an inclusion, which may be either dielectric or 
metal, for which a generalized contrast is defined based on the Rayleigh scattering 
approximation. This generalized contrast is then used with a Born-type linearization of the 
volume integral representation of the scattered field to give a convolutional model for 
backscattering from a buried dielectric minelike target with internal structure, including 
expressions for the target transfer function/impulse response. These models are then used to 
extend the target characterization procedure for homogeneous disk-shaped minelike targets, 
described in section 2.2.4, to targets with internal structure. 

The chapter is organized as follows. In section 3.1, the convolutional model for backscattering 
from a buried dielectric minelike target containing an inclusion is derived. As for the 
homogeneous target, the derivation is first carried out in the frequency-domain and the 
resulting convolutional model and target transfer function are then transformed to the time-
domain. As a special case, we shall again look at a circular dielectric disk, which is now 
considered with a thin air gap or a small piece of metal. Furthermore, as a side product of the 
derivation, expressions for the target transfer function/impulse response of a small metal 
sphere are presented. In section 3.2, the target impulse response model for the circular 

                                                 
1 Blast mines are designed to injure a person’s foot or leg. Typically, they are triggered by stepping on a pressure 
plate, thereby initiating the fuse mechanism. Other types of mines are bounding mines, which propel themselves 
into the air and are designed to injure a person’s head or chest, and fragmentation mines, which release metal or 
glass fragments during explosion. (source: http://science.howstuffworks.com) 
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dielectric disk with an air gap/metal piece is used to specify an impulse response 
parameterization suitable for subset selection deconvolution based target characterization. In 
particular, the possibility to determine target size is discussed. The derived scattering models 
and the proposed target characterization procedure are then validated using FDTD data 
examples in section 3.3. Finally, in section 3.4, an overview of the main results achieved and 
a discussion of their significance to landmine identification are given. Note that since the 
material presented in this chapter builds on sections 2.1, 2.2.4, and 2.3 of the previous 
chapter, it is strongly recommended to read these sections first. In addition, most of the 
notation used in this chapter has been explained in the previous chapter, and hence shall not 
be redefined here. 

 

Figure 3.1: Internal structure of an M14 landmine. (source: http://science.howstuffworks.com) 

3.1 Convolutional Models for Backscattering from a Buried Dielectric 
Minelike Target with Internal Structure 

Frequency-domain formulation 

It is straightforward to generalize the previous results for the homogeneous dielectric minelike 
target to account for internal structure. The key to this generalization is the linear relationship 
between the volume scattering current sJ  and the incident field iE , namely 

 ( ) ( ) ( )s i= χJ Ex x x  , (3.1) 

which has been assumed throughout this work, only that now the generalized contrast χ is 
considered spatially varying. As a result of the linear relationship expressed by eq. (3.1) and 
the linear form of the volume integral representation 

 ( ) ( ) ( )
target

,s s dV′ ′ ′= ∫∫∫E G J�x x x x , (3.2) 

the target can be thought of as being made up of non-interacting building blocks. Summation 
of the individual scattering responses of these building blocks gives the total target response. 
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To illustrate this concept, let us consider a dielectric minelike target made of a material with 
contrast tχ  having an inclusion associated with the contrast iχ  but otherwise homogeneous. 
Using eqs. (3.1) and (3.2), the total response of this target can be written as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

target

t i

target \ inclusion inclusion

t i t

target inclusion

         ,

         , ,

                   , ,  .

s i

i i

i i

dV

dV dV

dV dV

′ ′ ′ ′= χ

′ ′ ′ ′ ′ ′= χ + χ

′ ′ ′ ′ ′ ′= χ + χ − χ

∫∫∫

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

E G E

G E G E

G E G E

�

� �

� �

x x x x x

x x x x x x

x x x x x x

 (3.3) 

The backslash operator is used to indicate omission. According to eq. (3.3) the target response 
is the sum of two responses: the response, which would be observed if the target had no 
inclusion and the response of the inclusion alone with the contrast being replaced by ( )iχ − χ . 

If the contrasts tχ  and iχ  are known, eq. (3.3) can be used to approximate the total target 
response. For the moment, let us assume that appropriate contrasts can be defined and apply 
eq. (3.3) to the case of plane wave backscattering from a buried dielectric minelike target with 
internal structure, as shown in figure 3.2. The configuration is identical to the one of figure 
2.1 underlying the analysis of scattering from a homogeneous dielectric minelike target, 
except that now the target contains an inclusion of volume iV  at a distance il  below the top 
surface of the target. Substituting 

 ( ) ( ) ( )1

t
k z di i e

′− −′ =E E ix x  (3.4) 

for the plane wave incident field iE  and using the far-field backscattering representation of 
the half-space electric Green’s tensor G�  given by eq. (2.7), it is easy to show that eq. (3.3) 
leads to the familiar frequency-domain convolutional scattering model of eq. (2.10), 

 ( ) ( ) ( )

( ) ( ) ( )
0 1

t t

,
H

2

k h k d
g as iT h d e

h d

− +
→ ζ

= ω
π +

E E
i

x x  , (3.5) 

where now the target transfer function ( )tH ω  is the sum of two terms: 

 ( ) ( ) ( )hom. incl.
t t tH H Hω = ω + ω  (3.6) 

with 

 ( ) ( ) 1 i2incl. 0
t i t i

ˆ
H

2
k lz

V e−ω = − χ − χ
π

i  . (3.7) 

The term ( )hom.
tH ω  is simply the transfer function of the corresponding homogeneous 

dielectric minelike target, whereas the term ( )incl.
tH ω  is a transfer function accounting for the 

presence of the inclusion. Note that the approximations ( ) ( )i, ,′ ≈G G� �x x x x  and 
( ) ( )i

i i′ ≈E Ex x  have been made for all points ′x  within the inclusion, where ix  refers to the 
location of the inclusion. Hence, eq. (3.7) is only valid for inclusions whose height is small 
compared to the wavelength λ of the incident field in the ground. 
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Figure 3.2: Plane wave backscattering from a buried dielectric minelike target ( t 0,ε µ ) containing a 
dielectric ( i 0,ε µ ) or metal (PEC) inclusion. The body and the inclusion of the target are associated 
with the generalized contrasts tχ  and iχ , respectively. 

Definition of the generalized contrasts of the target body and the inclusion 

Of course now the question arises as to what are appropriate generalized contrasts for the 
target body and its inclusion. As demonstrated in chapter 2, the Born approximation 
adequately defines the generalized contrast of a homogeneous dielectric minelike target and 
allows for accurate estimations of its size and its permittivity. This suggests using the Born 
approximation to define the generalized contrast tχ  of the target body, i.e. 

 t t t 1ˆ ˆ ˆy y yχ = ∆ = −  . (3.8) 

Note that with this definition of tχ , the “homogeneous” target transfer function ( )hom.
tH ω  in 

eq. (3.6) is given by eq. (2.11). 

The case for the generalized contrast iχ  of the inclusion, which may be either dielectric or 
metal, is less straightforward. The reason for this is that eq. (3.1) describes a volume current 
distribution and hence does not lend itself naturally to treat a metal inclusion. An exception is 
the case of a small metal sphere (or spherical inclusion for that matter) for which a 
generalized contrast can be derived using the Rayleigh scattering approximation. While 
strictly speaking this contrast, which hereinafter will be referred to as the Rayleigh contrast, 
only applies to spherical metal inclusions, it does provide a physically motivated definition of 

iχ  even when the inclusion is non-spherical. Another useful property of the Rayleigh contrast 
is that it may also be derived for a small dielectric sphere, allowing for a unified treatment of 
the dielectric and the metal inclusion. 
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The derivation of the Rayleigh contrasts proceeds as follows. Consider a small dielectric or 
metal sphere (PEC), respectively, with radius a embedded in an unbounded host medium with 
admittivity 1 1 1ŷ = ωε + σi  and impedivity 1 0ẑ = ωµi . The sphere is illuminated by a plane 
wave propagating in the z-direction and polarized in the x-direction. Because the sphere is 
very small ( 0.1 a < λ ) it behaves like a secondary point source. The x-directed incident 
electric field induces an x-directed electric dipole moment Il, whereas for a metal sphere the 
y-directed incident magnetic field induces a y-directed magnetic dipole moment Kl in addition 
to the x-directed electric dipole moment Il. Following Kong (1986, p. 482-485), the dipole 
moments can be determined by enforcing boundary conditions on the surface of the sphere. 
Once the dipole moments are known, the scattered field is obtained from the radiation 
equations for electric and magnetic dipoles. Doing so, the backscattered electric field in the 
far-field region of the sphere is found to be 

 ( ) ( )
1 s

2 3s
1 s

s 1 s

ˆ

ˆ ˆ3

k r
s iy e

k a
y y r

−∆=
∆ +

E E
i

x x  (3.9) 

for the case of a dielectric sphere and 

 ( ) ( )
1 s

2 3
1 s

s

3

2

k r
s ie

k a
r

−

=E E
i

x x  (3.10) 

for the case of a metal sphere. In both equations sr  is the distance between the observation 
point x  and the location sx  of the center of the sphere. Furthermore, s s 1ˆ ˆ ˆy y y∆ = −  is used to 
denote the admittivity contrast between the dielectric sphere and the host medium. On the 
other hand, by analogy to the analysis of a minelike target in an unbounded host medium 
discussed in section 2.1.4, from the volume integral representation of the scattered field we 
find that the backscattered electric field in the far-field region of a small sphere with a 
generalized contrast sχ  is given by 

 ( ) ( )
1 s

3
1 s s

s

4
ˆ

4 3

k r
s ie

z a
r

−  = − χ π π  
E E

i

x x  . (3.11) 

Equating eq. (3.11) with eq. (3.9), under consideration of 1/ 2
1 1 1ˆˆ( )k z y= − , then yields the 

Rayleigh contrast of a dielectric sphere, which is 

 1
s s

s 1

ˆ3
ˆ

ˆ ˆ3

y
y

y y
χ = ∆

∆ +
 . (3.12) 

Likewise, by equating eq. (3.11) with eq. (3.10), the Rayleigh contrast of a metal sphere is 
found to be 

 s 1

9
ˆ

2
yχ =  . (3.13) 

Interestingly, the Rayleigh contrast of a dielectric sphere equals the generalized contrast of the 
modified Born approximation given by eq. (2.4), although the latter is derived using an 
entirely different procedure, namely from solving the volume integral equation for the total 
electric field within a point scatterer (Van der Kruk, 2001, p. 87-90). 

Based on the Rayleigh contrasts of eqs. (3.12) and (3.13), the generalized contrast iχ  of the 
inclusion may then be defined as 
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1
i

i 1
i

1

ˆ3
ˆ    for a dielectric inclusion

ˆ ˆ3

9
ˆ               for a metal inclusion .

2

y
y

y y

y

∆ ∆ +χ = 



 (3.14) 

This completes the frequency-domain analysis of backscattering from a buried minelike target 
with internal structure. Before proceeding to the analysis in the time-domain, let us quickly 
write out the far-field backscattering target transfer function/impulse response of a small 
metal sphere embedded in an unbounded host medium, which shall be used in the analysis of 
some of the experimental data in chapter 5. The transfer function of the sphere follows 
immediately from substituting the Rayleigh contrast of eq. (3.13) into eq. (3.11) and 
comparing the resulting expression with the full-space convolutional scattering model of eq. 
(2.47), yielding 

 ( )
2

1
t s

9

4

k
Vω =

π
H  , (3.15) 

where sV  denotes the volume of the sphere. Inverse Fourier transformation of eq. (3.15) gives 
the target impulse response 

 ( ) ( )t s2
1

9

4
V t

v
ω = − δ

π
h ��  , (3.16) 

where ( )tδ��  denotes the 2nd derivative of the delta function, i.e. it is a double differentiation 
operator. As usual, to make the inverse Fourier transformation tractable, the host medium has 
been assumed lossless. Looking at eq. (3.16), three interesting observations can be made: 

• Under the Rayleigh approximation, a small metal sphere differentiates the 
waveform of the incident field twice. 

• The magnitude of the metal sphere’s impulse response is proportional to its volume 
sV . Hence, a small change in radius can lead to significant increases in the 

magnitude of the sphere’s response. 

• The magnitude of the metal sphere’s impulse response is inversely proportional to 
the square of the wave velocity 1v  in the host medium. Accordingly, the magnitude 
of the sphere’s impulse response is smallest when the host medium is air, i.e. when 

1v c= . Note that this phenomena is a direct result of the Rayleigh contrast sχ  being 
proportional to the permittivity of the host medium, as indicated by eq. (3.13). 

Time-domain formulation 

Let us now look at backscattering from a buried minelike target with internal structure in the 
time-domain. All this requires is inverse Fourier transformation of eqs. (3.5)-(3.7), where the 
generalized contrasts tχ  and iχ have been replaced by those of eqs. (3.8) and (3.14). For a 
lossless ground, this transformation is readily carried out and therefore here only the results 
shall be summarized: 

 ( ) ( )
( )

( ) ( )t t
1

,
, h ,

2
g as iT h d h d

t t t t
c vh d

→ ζ  
= δ − − ⊗ ⊗ π +  

e ex x  (3.17) 
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in which 

 ( ) ( ) ( )hom. incl.
t t th h hω = ω + ω  , (3.18) 

where the “homogeneous” target impulse response ( )hom.
th ω  given by eq. (2.20) and 

 ( ) ( )incl.
t i i 12

1
h 2 /

2
V t l v

c
ω = − ξ δ −

π
��  . (3.19) 

with 

 

,1
,i ,t

,i ,1

,1 ,t

3
   for a dielectric inclusion

3

9
                 for a metal inclusion .

2

r
r r

r r

r r

ε∆ε − ∆ε ∆ε + εξ = 
 ε − ∆ε

 (3.20) 

Here, ,t ,t ,1r r r∆ε = ε − ε  and ,i ,i ,1r r r∆ε = ε − ε  refer to the relative permittivity contrasts of the 
target and the inclusion with respect to the ground. 

We see that, as a result of the inclusion, the target impulse response is simply augmented by 
an additional term ( )incl.

th ω  describing the impulse response of the inclusion and consisting of 
one double differentiation operator. In other words, the inclusion differentiates the waveform 
of the incident field twice, just as a small metal sphere does. The magnitude of the impulse 
response of the inclusion is proportional to its volume iV  and a factor ξ, which is a measure of 
the difference in contrast between the inclusion and the target body. 

Target impulse response of a circular dielectric disk containing a thin air gap or a small 
piece of metal 

The analysis to this point is general and applies to any target shape and any type of inclusion. 
As an important special case, let us approximate the target impulse response of a circular 
dielectric disk having a constant cross-section xyS , which for the homogeneous target case has 
been studied extensively in chapter 2 and will now be considered with a thin air gap or a small 
piece of metal, respectively, both of which are practically always present in landmines. 

The target impulse response ( )th t  follows immediately from previous results, since we may 
adopt eq. (2.23) for the “homogeneous” target impulse response ( )hom.

th ω . Thus, from eqs. 
(3.18)-(3.20), we find 

 ( ) ( ) ( )( ) ( )t
t ,t t i i t2 2

1
h 2 / 2 /

4 2

eff
eff eff

r xy

v
t S t t l v V t l v

c c
= − ∆ε δ − Γδ − − ξ δ −

π π
� � �� , (3.21) 

with 

 
( ) ( )

,1
,1 ,t

,1 ,1

,1 ,t

3
1    for a thin air gap 

1 3

9
           for a small piece of metal.

2

r
r r

r r

r r

ε − ε − ∆ε − ε + εξ = 
 ε − ∆ε

 (3.22) 
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Note that the phenomenological modifications, which had been introduced to the impulse 
response of a homogeneous circular dielectric disk, are also used here and have been extended 
to the impulse response ( )incl.

th ω  of the air gap/metal part by replacing 1v  in eq. (3.19) by an 
effective target velocity t

effv . 

An important result is that the introduction of a thin air gap or a small piece of metal did not 
change the overall simple form of the target impulse response. It consists of two single 
differentiation operators describing the backscattering from the top and the bottom of the disk, 
and one double differentiation operator describing the backscattering from the air gap/metal 
piece. Consequently, the impulse response is still suitable for use with subset selection 
deconvolution (recall the two applicability criteria put forth in section 2.2.3). This fact shall 
be used in the following section to develop a deconvolution based target characterization 
procedure for circular disk-shaped minelike targets with internal structure. 

3.2 Deconvolution and Target Characterization 

The time-domain convolutional scattering model of eq. (3.17) and the target impulse response 
model of eq. (3.21) can be used together with subset selection deconvolution to characterize a 
buried circular disk-shaped minelike target with internal structure. All this requires is a simple 
extension of the target characterization procedure for homogeneous minelike targets, which 
was put forth in section 2.2.4. 

Again, the primary processing step is the use of subset selection to deconvolve the incident 
field ( )te ,i tx  from the backscattered field ( )e ,s tx , thereby yielding an impulse response 

( )h t , which satisfies the convolutional model of eq. (2.80) and may be related to target 
characteristics. As for the homogeneous minelike targets, the parameterization of ( )h t  for the 
subset selection deconvolution is found from substituting the target impulse response model 
into the convolutional scattering model and comparing the resulting equation with eq. (2.80). 
The parameterization thus obtained is 

 ( ) ( ) ( ) ( )1 1 2 2 3 3h h h ht t t tτ τ τ= δ − + δ − + δ −� � ��  (3.23) 

where 

 
( )

( )
t

1 ,t2

,
h

8

eff
g a

r xy

T h d v
S

h d c
→ ζ

= − ∆ε
π +

 , (3.24a) 

 1
1

h d

c v
τ = +  , (3.24b) 

 2 1h h= −Γ  , (3.24c) 

 2 1
t

2
eff

l

v
τ τ= +  , (3.24d) 

 
( )

( )3 i2

, 1
h

4
g aT h d

V
h d c

→ ζ
= − ξ

π +
 , (3.24e) 
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 i
3 1

t

2
eff

l

v
τ τ= +  . (3.24f) 

Note that eqs. (3.24a) through (3.24d) are identical to eqs. (2.82a) through (2.82d) and have 
been included here for the sake of completeness and clarity. 

The subset selection deconvolution for this parameterization may be implemented by 
considering two convolution matrices X�  and X��  created from the 1st and the 2nd time 
derivative of the incident field ( )te ,i tx , respectively. The subset selection is then formulated 
as the minimization 

 
1

2

3

2

1

2h, ,

h
3

h

h
1

min min   h        

h
i j k

i j k

i j N

i k j 
 
 
  

 
   ≤ < ≤    −     < <
   

 

x x x y� � ��  (3.25) 

where nx�  and nx��  ( 1,...,n N= ) refer to the column vectors of X�  and X�� , and y is the vector 
representation of the scattered field ( )e ,s tx . Note that since now the subset selection 
deconvolution involves three non-zero impulse response coefficients, in contrast to one or two 
for the homogeneous minelike targets, the selection by permutation has become 
computationally expensive and hence does no longer lend itself to real-time data processing. 

Once the impulse response parameters have been estimated by subset selection deconvolution, 
they can be inverted for target size using eqs. (3.24a)-(3.24f). The inversion for target size 
proceeds in essentially the same way as for the homogeneous dielectric minelike target, in that 
generic material properties of the target to be characterized need to be specified, i.e. the 
relative permittivity ,trε  of the target body and the effective target velocity t

effv . The 
specification of these properties then permits estimation of the target cross-section xyS , the 
target height l, the inclusion volume iV , and the position of the inclusion as specified by the 
distance il . Note from eqs. (3.22) and. (3.24e) that the inclusion type may be derived from the 
sign of the impulse response coefficient 3h , i.e. 3h 0>  for an air gap and 3h 0<  for a small 
piece of metal. In principle, it is also possible to invert the impulse response parameters for 
material properties, e.g. the relative permittivity ,irε  of a dielectric inclusion. However since 
this would require specification of the inclusion volume in addition to the outer dimensions of 
the target, all of which cannot be specified generically, this does not seem like a sensible thing 
to do and hence has not been attempted in this work. 

3.3 3D Finite-Difference Time-Domain (FDTD) Simulation Results and 
Verification 

To verify the derived scattering models and to test the target characterization procedure, the 
FDTD simulation of TNT Disk 1 described in section 2.3 was repeated, first with a thin 
circular air gap and then with a small cubical metal inclusion. The air gap (figure 3.3a) had a 
radius of 4 cm, a thickness of 1 cm and was included at a distance of i 1.5 cml = below the top 
surface of the disk. The cubical metal inclusion (figure 3.3b), modeled as a PEC, had a side 
length of 1 cm and was considered at a distance of i 0.5 cml = . The simulations were carried 
out under exactly the same conditions as those for the homogeneous TNT Disk 1 (see table 
2.1), except that now only a target depth of 10 cm was considered. 
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The target responses that resulted from these simulations are shown in figure 3.4, where the 
homogeneous target response of TNT Disk 1 has been included as a reference for comparison. 
We see that the air gap leads to a strong increase in the magnitude of the target response and 
also changes its shape. In contrast, with the small metal inclusion the magnitude remains 
practically the same and only a very small change in the shape of the target response is 
observed. 

It is convenient first to analyze just the effect of the inclusions. For this purpose, the responses 
of the air gap and the metal inclusion were isolated from the total target responses by simply 
subtracting the homogeneous target response. The isolated responses were then fit with the 2nd 
derivative of the incident Ricker wavelet, yielding independent estimates of the impulse 
response parameters 3h  & 3τ  without having to concurrently estimate the other four 
parameters of the impulse response ( )h t . The impulse response parameters so obtained are 
listed in table 3.1. For both types of inclusions the data fit between the predicted and the 
simulated response was good and is shown in figure 3.5. The good data fit confirms that an 
inclusion differentiates the waveform of the incident field twice, as predicted by the inclusion 
impulse response model of eq. (3.19). The impulse response parameters of table 3.1 were 
inverted for the inclusion volume iV  and the distance il  using eqs. (3.24e) and (3.24f), the 
results of which are listed in table 3.2. For the inversion, the material properties of TNT Disk 1 
were specified as ,t 2.8rε =  and t 16.6 cm/nseffv = , which are the same as those used in chapter 
2. The relatively good agreement between the estimated and the true inclusion volumes 
( error  15 %< ) indicates that the Rayleigh contrast of eq. (3.14) is well suited to define the 
generalized contrast of the air gap and that of the metal inclusion. Furthermore, we observe 
that the locations of the inclusions have been recovered with millimeter accuracy. 

Let us now consider the full target characterization procedure. The results of applying subset 
selection deconvolution to the total target responses are listed in table 3.3 and the 
corresponding data fits are shown in figure 3.6. As may be expected from the previous results, 
the data fit is good and demonstrates that the axial response of a buried circular disk-shaped 
minelike target containing an air gap or a metal inclusion is adequately modeled by an 
impulse response as in eq. (3.23), consisting of two single differentiation operators and one 
double differentiation operator. Ideally, the impulse response parameters 1h  & 1τ  and 2h  & 

2τ  should equal those estimated from the homogeneous target response of TNT Disk 1, which 
are listed in table 2.2 and have been repeated in table 3.3 for easy comparison. Moreover, the 
parameters 3h  & 3τ  should equal those in table 3.1 estimated from the response of the air gap 
and the response of the metal inclusion alone. Doing the comparison, we see that the times 1τ , 

2τ  and 3τ  at which the differentiation operators occur have been estimated well. The impulse 
response coefficients 1h , 2h  and 3h , however, deviate from their expected values, although 
their sizes are still of the same order of what they should be. In general, an increase in 1h  is 
observed, which is compensated for by commensurate changes of 2h  and 3h . This 
“redistribution” of energy points to the fact that introducing a third degree of freedom in the 
subset selection brought back some of the ill-posedness of the deconvolution problem. In 
other words, there are a number of solutions that all give rise to more or less the same error 
between the predicted and the actual target response. 

Table 3.4 lists the results of inverting the impulse response parameters of table 3.3 for target 
size. As before, the material properties of TNT Disk 1 were specified as ,t 2.8rε =  and 

t 16.6 cm/nseffv = . The inversion results demonstrate that in the presence of a thin air gap or a 
small metal inclusion, it is still possible to recover the outer dimensions of TNT Disk 1 with 
reasonable accuracy ( error  1 cm< ). The abovementioned deficiency of the subset selection 
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deconvolution primarily led to a degradation of the estimation of the inclusion volume 
( error  35 %< ). 
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Figure 3.3: Vertical cross-section views of the targets considered in the 3D FDTD simulations:        
(a) TNT Disk 1 with a thin circular air gap                                                                                              
(b) TNT Disk 1 with a small cubical metal inclusion. 

 

 

Figure 3.4: Simulated response of TNT Disk 1 with and without internal structure ( 10 cmd =  & 
  30 cmh = ). 
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Table 3.1: Subset selection deconvolution results for the air gap and the metal inclusion. 

Impulse Response Parameters 

3τ  
Target Name 3h  

5[ 10 ]−∗  samples [ns] 

Rel. Error 

air gap 20.6 192 1.849 0.13 

metal 
inclusion 

-3.7 183 1.762 0.12 
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                                            (a)                                                                            (b) 

Figure 3.5: Data fit between the predicted (deconvolution) and the simulated response:                     
(a) thin air gap                                                                                                                                         
(b) small metal inclusion.                                                                                                                      
The dashed lines define the part of the response, which was fit by the deconvolution algorithm. 

Table 3.2: Results of inverting the impulse response parameters of table 3.1. 

Inversion for Target Size* 

Target Name 
volume iV [ 3cm ] il  [cm] 

air gap 43.6  (50.3) 1.36  (1.5) 

metal inclusion 1.14  (1.0) 0.64  (0.5) 

The values included in parentheses are the true values. 
* Based on ,t 2.8 4 1.2r∆ε = − = − , t 16.6effv = cm/ns, and 1 175τ =  samples (table 2.2). 
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Table 3.3: Subset selection deconvolution results for TNT Disk 1 with and without internal structure 
( 10 cmd =  &   30 cmh = ). 

Impulse Response Parameters 

1τ  2 1−τ τ  3 1τ τ−  
Target Name 1h  

4[ 10 ]−∗  samples [ns] 

2h  
4[ 10 ]−∗  samples [ns] 

Γ  
3h  

5[ 10 ]−∗  samples [ns] 

Rel. Error 

TNT Disk 1 
homogeneous * 14.0 175 1.685 -10.0 50 0.482 0.72 n/a n/a n/a 0.05 

TNT Disk 1 
with air gap 

18.2 175 1.685 -7.0 47 0.453 0.38 16.0 17 0.164 0.02 

TNT Disk 1 
with metal 
inclusion 

15.2 175 1.685 -10.2 50 0.482 0.67 -4.3 9 0.087 0.03 

* Taken from table 2.2. 
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                                            (a)                                                                             (b) 

Figure 3.6: Data fit between the predicted (deconvolution) and the simulated response:                     
(a) TNT Disk 1 with the thin air gap ( 10 cmd =  &   30 cmh = )                                                         
(b) TNT Disk 1 with the small metal inclusion ( 10 cmd =  &   30 cmh = ).                                       
The dashed lines define the part of the response, which was fit by the deconvolution algorithm. 

Table 3.4: Results of the inversion for target size for TNT Disk 1 with internal structure (d = 10 cm & 
h = 30 cm). 

Inversion for Target Size* 

Target Name 
target radius [cm] targt height l [cm] volume iV  [ 3cm ] il  [cm] 

TNT Disk 1 
with air gap 

5.9  (5.0) 3.8  (4.0) 34.0  (50.3) 1.36  (1.5) 

TNT Disk 1 
with metal inclusion 

5.4  (5.0) 4.0  (4.0) 1.34  (1.0) 0.72  (0.5) 

The values included in parentheses are the true values. 
* Based on ,t 2.8 4 1.2r∆ε = − = −  and t 16.6effv = cm/ns. 
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3.4 Discussion 

This chapter presented a generalization of the scattering models for a homogeneous dielectric 
minelike target to account for the presence of an inclusion, specifically an air gap or a small 
piece of metal. The generalization makes use of a Born-type linearization of the volume 
integral representation of the scattered field in which the generalized contrast for the inclusion 
is defined by means of the Rayleigh scattering approximation. This approach allows for a 
unified treatment of dielectric and metal inclusions and leads to the fundamental result that an 
inclusion differentiates the waveform of the incident field twice. In particular, it is found that 
the impulse response of a minelike target with an inclusion is simply the sum of the impulse 
response, which would be observed if the target had no inclusion and an impulse response 
describing the effect of the inclusion, the latter consisting of no more than a double 
differentiation operator. This result forms the basis of the extension of the target 
characterization procedure for homogeneous disk-shaped minelike targets to targets with an 
inclusion. 

Based on the FDTD simulation results, a couple of important conclusions can be drawn: 

• Internal mine structure does influence the target response. Especially the presence 
of an air gap was found to significantly increase the magnitude of the target 
response and alter its shape. The presence of an air gap therefore facilitates the 
detection of buried plastic cased landmines with GPR. In comparison with an air 
gap, a small metal inclusion has a very weak effect on the target response. 

• The derived target impulse response model adequately describes the contribution of 
a thin air gap or a small metal inclusion to the target response. 

• The proposed target characterization procedure is able to determine the outer 
dimensions of a buried circular disk-shaped minelike target containing an inclusion 
with reasonable accuracy ( error  1 cm< ). 

Hence, the material presented in this chapter opens the possibility to identify minelike targets 
with internal structure. This possibility, however, is not without a price to be paid. First, the 
extended subset selection deconvolution algorithm no longer lends itself to real-time 
processing if the selection is carried out by permutation. And second, introducing a third 
degree of freedom, i.e. a third non-zero impulse response coefficient, brought back some of 
the ill-posedness of the deconvolution problem, resulting in a degradation of the accuracy 
with which the target dimensions can be estimated. Especially the estimation of the inclusion 
volume was found to be affected by this degradation. 

These two problems will only get worse if more complicated internal structure than just a 
single inclusion is considered, e.g. the combination of an air gap with metallic and non-
metallic parts of a fuse mechanism. This inevitably raises the question whether we are really 
interested in resolving the internal structure of a plastic cased landmine. For the purpose of 
determining the outer dimensions of a landmine, the answer to this question is more likely 
“No”. Hence, we should think of ways to make the effect of internal structure more 
manageable. A possible solution might be the use of lower frequencies, resulting in 
approximately coherent scattering from all parts of the landmine, i.e. its body and internal 
structure. Similar to the case of a small dielectric sphere under the Rayleigh scattering 
approximation, we may then set ( ) ( )t, ,′ ≈G G� �x x x x  and ( ) ( )t

i i′ ≈E Ex x  for all points ′x  
of the landmine, leading to a landmine impulse response which is directly proportional to its 
volume and consists of one double differentiation operator. Hence, an impulse response, 
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which primarily carries information about the outer dimensions of the landmine is obtained. 
Furthermore, the subset selection deconvolution would then only have to solve for a single 
non-zero impulse response coefficient, which is as fast and robust as it gets. 

The discussion on alternative approaches to dealing with internal structure will be picked up 
again in chapter 6. For now let as continue to use the scattering models as they have been 
derived in this chapter and the previous chapter and draw our attention to two other important 
aspect of GPR landmine identification, which are the radar hardware and preprocessing of the 
data. These aspects shall be discussed in detail in the next chapter. 
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CHAPTER 4 

GPR LANDMINE IDENTIFICATION 

In developing the theory of scattering from a minelike target, two important aspects of the 
GPR landmine identification problem have not yet been addressed. These are the radar 
hardware and the fact that a GPR system does not just measure the electric field scattered by 
the target, i.e. the target response, but also the direct wave between the transmitting and the 
receiving antenna, the ground reflected wave, as well as fields scattered from other 
objects/inhomogeneities below or above the ground. In EM modeling terms, these latter three 
components of the electric field are jointly referred to as the primary field, which is the field 
that would exist if the target were absent. 

Thus, some further theoretical developments are necessary before the derived convolutional 
scattering models and the proposed target characterization procedure for circular disk-shaped 
minelike targets can be applied to GPR data: 

• The development of hardware models describing the radiation and reception 
characteristics of the demining GPR and incorporation of these hardware models 
into the convolutional scattering models. 

• The development of a calibration procedure, which determines the radiation and 
reception characteristics of the demining GPR. 

• The development of preprocessing algorithms, which aim to remove the primary 
field from the GPR data, a process commonly referred to as background 
subtraction. 

This chapter addresses these three issues, ultimately leading to a slightly modified version of 
the target characterization procedure, which accounts for the GPR hardware and operates on a 
single preprocessed A-scan. 

The term “preprocessing” may be somewhat misleading, suggesting that it is merely a side 
issue. On the contrary, for the purpose of GPR landmine identification, careful preprocessing 
without loosing information on the amplitude and the shape of the target response is of 
fundamental importance. This requirement led to the development of a new background 
subtraction technique, termed weighted moving average background subtraction (WMA-BS), 
which first finds the anomalies in the data and then suppresses them in the estimation of the 
background to be subtracted. Besides background subtraction, this chapter also discusses a 
polarimetric preprocessing algorithm termed target frame transformation, which transforms 
the measured target response into the coordinate frame defined by the two main scattering 
axes of the target, thereby obtaining a target response that is independent of target orientation. 
This transformation is essential to the identification of targets having a preferential scattering 
axis, e.g. an elongated bombshell. 

The chapter is organized as follows. In section 4.1, GPR hardware requirements are discussed 
in the light of the landmine identification problem and the demands imposed by the proposed 
target characterization procedure. Furthermore, a polarimetric video impulse GPR system 
developed by IRCTR is presented. In section 4.2, point source/receiver models are introduced 
for the transmitting antenna and the receiver chain (including the receiving antenna), which 
are then used to derive convolutional models for the GPR response of a surface-laid or buried 
minelike target. In these convolutional GPR models, the hardware characteristics are 
represented by a single term, called the effective radiated waveform, and a simple calibration 
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procedure to determine this waveform will be presented. Section 4.3 is devoted to GPR data 
preprocessing. Here, the WMA-BS technique and the target frame transformation are 
introduced and their workings are illustrated using data acquired with the IRCTR video 
impulse GPR. In section 4.4, the convolutional GPR models are used to modify the target 
characterization procedure for circular disk-shaped minelike targets such that it accounts for 
the GPR hardware. Finally, section 4.5 gives a brief review of the material that has been 
presented. 

4.1 GPR Hardware 

4.1.1 General hardware considerations 

It is difficult to set up universal rules for the hardware requirements a demining GPR has to 
meet as these depend on many factors such as the operation environment and the kind of data 
processing anticipated. With regard to the maximum allowable equipment weight, distinction 
needs to be made between systems designed for hand-held use and vehicle/platform mounted 
systems. The following discussion focuses on the requirements for applicability of the 
scattering models and the target characterization procedure presented in chapters 2 and 3. 

Antenna system 

Since all scattering models presented in this thesis are based on backscattering along the 
vertical direction, the antenna system should ideally be monostatic (Lambot et al, 2004) or 
configured such that the receiving antenna is positioned right below the transmitting antenna. 
Bistatic systems consisting of two horizontally displaced antennas should be positioned high 
above the ground. Note that the latter configuration is more susceptible to surface clutter and 
poses higher demands on dynamic range due to increased spreading losses. 

The footprint of the transmitting antenna should be small to reduce the effect of unwanted 
clutter but big enough to give rise to a target response hyperbola, which is a robust feature for 
target detection and localization (Daniels, 2003; Yarovoy et al, 2003). Low antenna ringing is 
desirable as it may mask target responses and makes detection more difficult. It should be 
noted though that, if accurately determined and taken into account in the subset selection 
deconvolution, antenna ringing does not negatively affect the proposed target characterization 
procedure. 

The receiving antenna should be designed to measure the scattered field at a local point rather 
than average over a surface. Hence it should have a small effective aperture. This requirement 
becomes more important the closer the receiving antenna is kept to the ground. In addition, in 
order to receive also very weak scattered fields, it is important that the receiving antenna 
provides high sensitivity in the frequency band covered by the radiated pulse. 

A polarimetric antenna system measuring both the co-polar and cross-polar component of the 
scattered field provides additional information on the scattering behavior of the target under 
investigation. Unlike rotationally symmetric targets, for targets with a preferential scattering 
axis measurement of the full scattering matrix is a requisite for obtaining a target response, 
which is independent of target orientation. A detailed discussion on the benefit of polarimetric 
information for target identification and associated processing is given in section 4.3.3. 
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Frequency band 

The frequency band of operation suitable for the proposed target characterization procedure is 
mainly restricted by the assumption of a linear relationship between the scattering current and 
the incident electric field on which the scattering models of this thesis are based. Hence, 
whether using a Born-type or the PO scattering approximation, as a qualitative rule the 
frequencies should be low enough to keep edge diffractions and mutual interaction of 
different parts of the target minimal. Note that the optimal frequency range, as such, depends 
on the expected target dimensions and contrast. For the Born approximation, a theoretical 
upper frequency limit, which takes the target dimensions and contrast into account, is defined 
by eq. (2.5). For practical purposes, however, this limit is too restrictive, as indicated by the 
FDTD simulation results of section 2.4. The simulations showed that both the inversion for 
target size and the inversion for material properties work well under the Born approximation 
even beyond this limit. 

Additional factors determining the optimal frequency band of operation are related to the 
environment in which the demining GPR is to be employed. In areas where clutter due to a 
rough terrain or an inhomogeneous ground is a problem, low frequencies (< 1 GHz) should be 
used as these are less susceptible to clutter. The same is true in areas with lossy soils, since 
attenuation increases with frequency (Roth et al, 2001). In these areas low frequencies offer 
higher probing depths. 

The frequency band should be chosen in accordance with the abovementioned theoretical and 
environmental considerations. As a rule of thumb, the bandwidth need not exceed 2 GHz 
since subset selection reduces the ill-posedness and ill-conditioning of the deconvolution 
problem resulting from the limited bandwidth of the radar system. 

It is important to note that these guidelines are specific to the proposed target characterization 
procedure and its underlying scattering models. Other data processing modalities can have 
different requirements. This is especially true when the demining GPR is used as an imaging 
sensor, where the trend is to use ultra-wide bandwidths extending way beyond the frequency 
range of validity for the Born and the PO approximation (Zanzi et al, 2002; Van Dongen et al, 
2003; Alli et al, 2004). Through the use of high frequencies (> 1.5 GHz) in combination with 
an ultra-wide bandwidth of the order of 3-4 GHz the lateral and the depth resolution of a GPR 
image is increased. 

Linear dynamic range 

Landmine detection requires a receiver chain with a high linear dynamic range, e.g. 69 dB 
(Yarovoy et al, 2002a), for receiving the weak response of plastic cased AP mines while at 
the same time avoiding receiver saturation by the strong direct wave. For target identification, 
where accurate signal shape information is crucial, linearity over the entire dynamic range 
becomes very critical since, depending on whether a landmine is surface-laid or buried, its 
response may or may not be superimposed on the direct wave. 

The dynamic range of the receiver chain is usually referenced to the receiver noise level. It is 
important to understand that such a specification does not refer to the possibility to extract 
from the measured data a target response whose signal strength is approaching the dynamic 
range of the receiver. At most it refers to the possibility to detect such a target in a clutter free 
environment. Clutter can never be removed completely from the measured data and hence 
constitutes an additional source of noise. This additional noise limits the detection 
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performance and, even more so, the possibility to extract “clean” target responses, which can 
be used for identification. 

System stability 

Minimal time and amplitude drift is important in two ways. First, it is the prerequisite for a 
good background subtraction with few residuals from the direct wave (see section 4.3.2). And 
second, amplitude stability is necessary if the impulse responses estimated by subset selection 
deconvolution are to be related to target characteristics such as size and permittivity. 

Time drift can generally be corrected for by simple A-scan alignment. The case for amplitude 
drift is more complicated. To limit the effect of amplitude drift on system performance, any 
demining GPR should be calibrated regularly. A simple but accurate calibration procedure is 
presented in section 4.2.4. 

4.1.2 Video impulse radar for landmine detection 

As an example of a GPR system that is suitable for the proposed target characterization 
procedure, this section describes a polarimetric video impulse GPR developed at IRCTR. The 
radar has been used for experimental validation of the scattering models and to determine the 
accuracy with which target characteristics can be estimated from measured GPR data, the 
results of which are presented in chapter 5. 

The IRCTR video impulse GPR with an effective bandwidth of 0.6-2.7 GHz (-10 dB level; 
see section 4.2.4) consists of the following hardware components: a 0.8 ns pulse generator, a 
polarimetric antenna system, a signal conditioner and a multi-channel sampling converter 
connected to a computer. A schematic illustration of the radar is given in figure 4.1. The 
signal conditioner in the receiver chain improves the signal-to-noise ratio and makes sure that 
the 66 dB linear dynamic range of the A-D converter is used efficiently by limiting the large 
amplitude of the direct wave. Detailed descriptions of the pulse generator, the signal 
conditioner and the sampling converter are given by Yarovoy et al (2000a). 

A unique feature of the IRCTR video impulse GPR is its antenna design. As shown in figure 
4.2, the antenna system consists of a transmitting dielectric wedge antenna (Yarovoy et al, 
2002b) and two small receiving loops (Yarovoy et al, 2000b). The receiver loops are 
positioned 30.5 cm below the aperture of the dielectric wedge antenna using long leads, which 
extend downwards from the open sides of the dielectric wedge. The loops are oriented such 
that one measures the co-polar and the other the cross-polar component of the scattered field. 
Since both loops are located close (8.5 cm) to the boresight axis of the transmitting antenna, 
the antenna system essentially performs a local polarimetric measurement of backscattering 
along the vertical when the transmitting antenna is positioned right above the target. Of 
course, in practice, it is not always possible to tell from the data when the transmitting 
antenna is positioned right above the target and the measurement will never be exactly local 
due the horizontal offset between the loops. The implications this has on polarimetric data 
processing are discussed in more detail in section 4.3.3. 
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Figure 4.1: Schematic illustration of the IRCTR video impulse GPR. 

 

Figure 4.2: The antenna system of the IRCTR video impulse GPR. 

4.2 Convolutional GPR Models 

In this section, the previously presented time-domain convolutional scattering model is 
extended to account for the GPR hardware. For this purpose, the concept of the virtual source 
of the transmitting antenna (Scheers, 2001) is introduced, yielding a simple but adequate time-
domain description of the antenna’s far-field radiation characteristics. The receiver chain 
including the receiving antenna is modeled by a receiver impulse response relating the electric 
field at the receiving antenna to the measured A-scan. These hardware models enter as 
additional terms in the convolutional scattering model, resulting in expressions for the GPR 
response of surface-laid and buried minelike targets. Even though the hardware models have 
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been developed with the IRCTR video impulse GPR in mind, an attempt is made to keep the 
treatise general and applicable to other pulsed (time-domain) GPR systems. The hardware of 
stepped-frequency (frequency-domain) GPR systems may be described in an analogous 
manner. 

4.2.1 Hardware models 

Transmitting antenna 

The virtual source point of a time-domain antenna is a reference point from which the 
wavefront of the radiated far-field seems to emanate spherically with a 1/r amplitude decay. 
Accordingly, when referenced to the virtual source point, the radiated electric field rade  at a 
point x in the far-field of the antenna in air can be written as 

 ( ) ( )0

1
, , ,rad r
t t t

r c
 = − ⊗  

e ex δ θ φ  , (4.1) 

where ( , , )r θ φ  are the spherical coordinates of x, and ( )0 , ,te θ φ  is a vector with units of V 
(Volt) describing the polarization, amplitude and shape of the pulse radiated in the direction 
specified by the angles θ and φ. 

Since in this thesis we are primarily interested in radiation along the vertical, i.e. 0= =θ φ , 
and assume a predominant linear polarization, eq. (4.1) can be rewritten as 

 ( ) ( )0 TX

1
, erad r
t t t

r c
 = δ − ⊗  

e x u  . (4.2) 

Here, TXu  is a unit vector describing the polarization of the radiated wave. 

Receiver chain 

Rather than modeling each component of the receiver chain separately, we take the approach 
of the user, who is primarily interested in the relationship between “what comes in” and “what 
comes out”. Assuming that all components of the receiver chain are linear devices, the entire 
chain can be modeled by one cumulative impulse response ( )RXh t . This impulse response 
relates the measured A-scan ( )RXs ,tx  to the total electric field ( )RX,te x  at the receiving 
antenna position RXx  according to 

 ( ) ( ) ( ) ( )RX RX RX RX ns , h , sTt t t t= ⊗ +ex u x  , (4.3) 

where the unit vector RXu  is used to describe the polarization of the receiving antenna. The 
time function ( )ns t  has been introduced to account for random noise such as receiver noise or 
external electromagnetic interference EMI. The superscript T denotes transpose. 

The total electric field can be split into three parts: the field scattered by the target, the direct 
wave between the transmitting and the receiving antenna, and unwanted reflections from the 
ground surface and from objects/inhomogeneities above and below the ground, i.e. 

 ( ) ( ) ( ) ( )RX RX RX RX, , , ,s rad ct t t t= +e e + e ex x x x  . (4.4) 
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Here, the superscript c stands for clutter and refers to the unwanted reflections. Each part of 
the total electric field can be associated with its own signal part, which contributes to the 
measured A-scan. These are the target response signal ( )t RXs ,tx , the direct wave signal 

( )ds t  and the clutter signal ( )c RXs ,tx  defined as 

 ( ) ( ) ( )t RX RX RX RXs , h ,T st t t= ⊗ ex u x  , (4.5) 

 ( ) ( ) ( )d RX RX RXs h ,T radt t t= ⊗ eu x  , (4.6) 

 ( ) ( ) ( )c RX RX RX RXs , h ,T ct t t= ⊗ ex u x  . (4.7) 

Note that the receiving antenna position vector RXx  has been omitted on the left-hand side of 
the definition of the direct wave signal to acknowledge the constant offset between the 
transmitting antenna and the receiving antenna. 

Using these definitions, eq. (4.3) can be rewritten as 

 ( ) ( ) ( ) ( ) ( )RX t RX d c RX ns , s , s s , st t t t t= + + +x x x  . (4.8) 

Equation (4.8) summarizes the information content of the measured A-scan and is the basis 
for GPR signal processing. For target identification, we are solely interested in the target 
response signal and convolutional models describing its relation to the target impulse 
response will be presented in sections 4.2.2 and 4.2.3. However, eq. (4.8) also underlines the 
necessity to estimate and remove the other signal parts from the measured A-scan before the 
target response signal can be analyzed. How this is done will be discussed in section 4.3. 

4.2.2 GPR response of a surface-laid minelike target 

Let us consider the configuration of figure 4.3 showing the antenna system of the GPR, 
indicated as a point source and a point receiver, right above a surface-laid minelike target. The 
transmitting antenna is positioned at a height TXh  above the ground and the receiving antenna 
is positioned below the transmitting antenna at a height RXh . As before, the “depth” d of the 
target is measured from the top of the target. Note that for a surface-laid target d is negative. 
What we would like to have is a convolutional model for the target response signal ( )t RXs ,tx  
measured by the GPR. For a surface-laid target, such a model is easily derived from the time-
domain convolutional model for backscattering from a minelike target in air, i.e. eq. (2.50). 

Let us start by describing the incident field ie  at the target location. Using eq. (4.2), we have 

 ( ) ( )TX
t 0 TX

TX

1
, ei h d
t t t

h d c

+ = δ − ⊗ +  
e x u .  (4.9) 

Then, from eq. (2.50), the scattered field at the receiving antenna is found to be 

( )
( )

( ) ( )RX TX
RX t 0 TX

TXRX

1 1
, h e

2
s h d h d

t t t t t
c h d ch d

+ +   = δ − ⊗ ⊗ δ − ⊗   +π +    
e x u , (4.10) 

which according to eq. (4.5) produces the target response signal 
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( )

( )
( )

( ) ( )

t RX

RX TX
RX t 0

TXRX

s ,

1 1
h h e

2

t

h d h d
t t t t t

c h d ch d

=

+ +   ⊗ δ − ⊗ ⊗ δ − ⊗   +π +    

x

 (4.11) 

when a co-polar receiving antenna is used (RX TX 1T =u u ) and no signal when a cross-polar 
receiving antenna is used (RX TX 0T =u u ). Equation. (4.11) can be written in a more compact 
way if we introduce the effective radiated waveform ( )w t , which is defined as 

 ( ) ( ) ( )RX 0w h et t t= ⊗  (4.12) 

and embodies both the characteristics of the actual radiated waveform and the receiver chain. 
The effective radiated waveform is sometimes also referred to as the radar impulse response 
(Kostylev, 1994, p. 264; Savelyev et al, 2003). Thus 

 ( )
( )( )

( ) RX TX
t RX t

RX TX

1 2
s , h w

2

h h d
t t t

ch d h d

+ + = ⊗ − π + +  
x . (4.13) 
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Figure 4.3: The antenna system of the GPR above a surface-laid minelike target (0!d < ). 

4.2.3 GPR response of a buried minelike target 

A convolutional model for the target response signal ( )t RXs ,tx  of a buried minelike target 
can be derived in the same manner as for a surface-laid minelike target, only that now we 
make use of the time-domain convolutional model for backscattering from a buried minelike 
target, i.e. eq. (2.16). In the following, we consider the configuration of figure 4.4, which, 
apart from the target now being buried, is identical to the one considered for the surface-laid 
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minelike target (see figure 4.3). As usual in the time-domain analysis of scattering from a 
buried minelike target, the ground is assumed to be lossless. 

Let us again start by describing the incident field. Based on eq. (4.2), the incident field ie  at 
the target location can be written as 

 ( ) ( )TX
t 0 TX

TX 1

, ea gi T h d
t t t

h d c v
→  

= δ − − ⊗ +  
e x u  , (4.14) 

where now the normal incidence Fresnel transmission coefficient a gT →  for transmission into 
the ground, given by 

 
,1

2

1
a g

r

T → =
+ ε

 , (4.15) 

needs to be included. It is important to note that, in writing eq. (4.14), the transmitting 
antenna is assumed to be elevated high above the ground (0 TX 1k h � ) and the target to be 
buried shallow, making the inclusion of a refraction spreading1 term such as eq. (2.18) 
unnecessary. 

Substituting eq. (4.14) into eq. (2.16), the scattered field at the receiving antenna is given by 

 

( )
( )

( )
( ) ( )

RX

RX RX TX
t 0 TX

1 TX 1RX

,

,
h e

2

s

g a a g

t

T h d Th d h d
t t t t

c v h d c vh d
→ →

=

ζ    
δ − − ⊗ ⊗ δ − − ⊗   +π +    

e x

u
 (4.16) 

so that, from eq. (4.5), the target response signal when using a co-polar receiving antenna 
( RX TX 1T =u u ) is 

 

( )

( ) ( )
( )

( ) ( )

t RX

RX RX TX
RX t 0

1 TX 1RX

s ,

,
h h e  .

2
g a a g

t

T h d Th d h d
t t t t t

c v h d c vh d
→ →

=

ζ    
⊗ δ − − ⊗ ⊗ δ − − ⊗   +π +    

x

(4.17) 

When using a cross-polar receiving antenna (RX TX 0T =u u ), no target response signal is 
measured. Rearranging and making use of the definition of the effective radiated waveform, 
eq. (4.12), gives the more compact expression 

 ( ) ( )
( )( )

( )RX RX TX
t RX t

1RX TX

, 2
s , h w

2
g a a gT h d T h h d

t t t
c vh d h d

→ →ζ  += ⊗ − − π + +  
x . (4.18) 

Note the close similarity with the convolutional model for the target response signal of a 
surface-laid minelike target, i.e. eq. (4.13). 

                                                 
1 To be precise, for the transmission into the ground it would be more correct to say focusing. 
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Figure 4.4: The antenna system of the GPR above a buried minelike target. 

4.2.4 Calibration: Estimation of the effective radiated waveform and the direct wave 
signal 

The effective radiated waveform and the direct wave signal can be estimated from a set of 
metal sheet reflection measurements with varying antenna heights. The basic idea underlying 
this calibration is that the reflection from the metal sheet depends on antenna height, whereas 
the measured direct wave signal does not. Given A-scans measured at two or more antenna 
heights, this difference allows us to separate the reflection signal from the direct wave signal. 
Since the metal sheet is a perfectly reflecting surface, i.e. its reflection coefficient is equal to 
minus one, the reflection signal can be related to the effective radiated waveform. In the 
following, the theory underlying the estimation is outlined and calibration results for the 
IRCTR video impulse GPR are presented. 

Consider the configuration of figure 4.5 showing the antenna system of the GPR above a flat 
metal sheet, which is assumed to be infinite in extent. Here, the receiving antenna, positioned 
at a height RXh  above the metal sheet, is oriented such that it acts as a co-polar receiver. Given 
this configuration, the GPR measures an A-scan, which, neglecting noise, is the sum of two 
signals 

 ( ) ( ) ( )RX d m RXs , s s ,h t t h t= + , (4.19) 

namely the direct wave signal ( )ds t  and the metal sheet reflection signal ( )m RXs ,h t . 

An expression for the metal sheet reflection signal can be obtained by application of image 
theory (Balanis, 1989, p. 314-323). According to this theory, the reflected wave may be 
thought of as originating from an image source positioned at a distance TXh  below the metal 
sheet. In order to satisfy the boundary conditions, the strength of this image source needs to 
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be scaled by the Fresnel reflection coefficient. Then, assuming that the receiving antenna lies 
in the far-field of the image source, eq. (4.2) can be used to represent the reflected wave field, 
which produces a metal sheet reflection signal according to the right-hand side of eq. (4.6). 
Thus 

 

( ) ( ) ( )

( )

TX RX
m RX RX 0

TX RX

RX

RX

1
s , h e

1 2
               w  ,

2

h h
h t t t t

h h c

o h
t t

o h c

− + = ⊗ δ − ⊗ +  
+ = − δ − ⊗ +  

 (4.20) 

where we made use of the definition of the effective radiated waveform ( )w t , eq. (4.12), and 
introduced the vertical antenna offset TX RXo h h= − . We see that the metal sheet reflection 
signal is simply a scaled and shifted version of the effective radiated waveform. 

The metal sheet reflection signal can be separated from the direct wave signal by considering 
the difference ( ) ( )RX, RX,s , s ,i jh t h t−  between two A-scans measured at two different antenna 
heights RX,ih  and RX, jh , respectively. Based on eqs. (4.19) and (4.20), this difference can be 
written as 

 

( ) ( )

( )

RX, RX,

RX,RX,

RX, RX,

s , s ,

221 1
w  .

2 2

i j

ji

i j

h t h t

o ho h
t t t

o h c o h c

− =

 ++   
− δ − + δ − ⊗    + +    

 (4.21) 

Given that the vertical antenna offset o is known, eq. (4.21) can be solved for the effective 
radiated wavelet ( )w t  in a least squares sense. To reduce ambiguity, it is advisable to use 
multiple A-scan combinations in the formulation of the least squares problem and solve for an 
optimal ( )w t  simultaneously. Finally, once ( )w t  has been estimated, it can be used together 
with eqs. (4.19) and (4.20) to estimate the direct wave signal ( )ds t . 

The virtual source point of a horn type antenna lies somewhere between its feed point and its 
aperture (Scheers, 2001). However, its exact position is usually unknown and therefore also 
the vertical antenna offset. A way to work around this is to solve eq. (4.21) for various 
antenna offsets and choose the solution that gives the smallest data misfit overall. Like this, 
an optimal combination of o and ( )w t  can be found. This approach has been tested for the 
IRCTR video impulse GPR and lead to the observation that the problem of estimating the 
vertical antenna offset is very ill-posed, even if the estimation uses multiple A-scan 
combinations. Hence, for the calibration of the IRCTR video impulse GPR, the antenna offset 
has been set with reference to the center point of the transmitting antenna’s aperture, i.e. 

30.5 cmo = . 

Figure 4.6 shows the effective radiated waveform and the direct wave signal of the IRCTR 
video impulse GPR estimated using five A-scans measured at receiving antenna heights of 
12.5, 15, 17.5, 20 and 22.5 cm. The corresponding data fit is shown in figure 4.7, which 
demonstrates that all five A-scans can be accurately modeled from the estimated signals. Note 
that the calibration procedure is not only capable of determining the main pulse of the 
effective radiated waveform, but also the antenna ringing. This antenna ringing is a result of a 
wave, which bounces between the aperture and the top edge of the transmitting antenna before 
being radiated (Yarovoy et al, 2002b). From the amplitude spectrum of the effective radiated 
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waveform, shown in figure 4.8, its peak amplitude frequency was determined as 1.8 GHz and 
its bandwidth as 0.6-2.7 GHz (-10 dB level). 

Note that it is also possible to do the calibration using the ground as a reflecting surface as 
long as the ground is sufficiently flat and the reflection coefficient is known. This approach 
gives a better estimate of the direct wave signal but a worse estimate of the effective radiated 
waveform. 
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Figure 4.5: Setup for the metal sheet calibration. A-scans are measured for varying antenna heights. 
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Figure 4.6: Calibration results for the IRCTR video impulse GPR: (a) effective radiated waveform 
( )w t , (b) direct wave signal ( )ds t . 
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Figure 4.7: Data fit for the five A-scans used in the calibration of the IRCTR video impulse GPR 
(amplitudes in mV). 
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Figure 4.8: Amplitude spectrum of the effective radiated waveform of the IRCTR video impulse 
GPR. 
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4.3 Preprocessing 

The main objective of preprocessing is to isolate from each measured A-scan the target 
response signal, which in section 4.2 has been defined as the signal produced by the field 
scattered from the target. The preprocessing sequence through which this is achieved consists 
of two stages, which in order application are: 

1) DC offset and noise reduction, which are discussed in section 4.3.1. 

2) Background subtraction, which aims at removing the direct wave signal and 
reflections from the ground surface or subsurface layering, and is covered in detail 
in section 4.3.2. 

The target response signal of a target with a preferential scattering axis, e.g. an elongated 
bombshell, depends on target orientation. Therefore, in order to be able to correctly identify 
these types of targets, an additional preprocessing step referred to as target frame 
transformation is required. This transform rotates the target response into the coordinate frame 
defined by the main scattering axes of the target, yielding an orientation independent 
response. Details of how this transform works and some transform examples are presented in 
section 4.3.3. 

The preprocessing algorithms presented in this section have been developed with target 
identification in mind. Hence an important requirement is that they preserve both the 
amplitude and the shape of the target response signal. In this sense the demands are much 
higher than those for target detection, where, bluntly speaking, the objective is to highlight 
anomalies. 

4.3.1 DC offset and noise reduction 

The first preprocessing step is to estimate and subtract from each A-scan its DC offset. 
Generally, it is sufficient to simply average the part of the A-scan before the arrival of the 
direct wave to obtain a usable DC offset estimate. 

The next step then is to reduce the random noise, whose main contribution is usually caused 
by timing jitter in the sampling converter. The frequency spectrum of this noise is much wider 
than that of the radiated pulse. Hence most of the noise can be removed by careful low-pass 
filtering. In terms of the A-scan model of eq. (4.8), low-pass filtering minimizes the term 

( )ns t . 

4.3.2 Background subtraction 

To understand background subtraction, it is useful to discuss what we mean by background 
and what are its differences to clutter. 

A definition of clutter in the context of ground penetrating radar is given by Daniels (1996, p. 
23), who states that “clutter are those signals that are unrelated to the target scattering 
characteristics but occur in the same sample-time window and have similar spectral 
characteristics to the target wavelet”. Accordingly, for a demining GPR the following primary 
clutter signals can be identified: 

1) The direct wave. 
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2) The ground reflection and reflections from subsurface layering (if present). 

3) Natural clutter such as scattering from soil inhomogeneities, rocks, tree roots, 
surface vegetation, etc. 

4) Anthropogenic2 clutter above or below the ground such as metal shrapnel, waste, 
pipelines, walls, etc. 

Despite the fact that all these clutter signals have in common that they might mask (part of) 
the target response signal, a distinction can be made between the direct wave signal, which is 
independent of antenna position, and the remaining clutter signals, which generally are not. 
This difference has led us to treat them separately in the A-scan model of eq. (4.8), by 
introducing ( )ds t  for the direct wave signal and ( )c RXs ,tx  for all unwanted reflection 
signals. 

Background, as the name suggests, can be defined as all those signal components, which are 
laterally invariant or only slightly varying, i.e. everything that is not an anomaly. Defined as 
such, the background forms a subset of clutter. Of the above clutter signals only the direct 
wave, the ground reflection and reflections from subsurface layering make part of the 
background, and this only if the ground surface and the layering are sufficiently flat. Thus 
background subtraction only removes part of the clutter. What remains are anomalous signals, 
which should be treated as potentially dangerous targets and require identification. 

Background subtraction techniques make use of the lateral invariance property of background. 
In addition, it is customary to assume that the targets are isolated scatterers. By far the most 
applied background subtraction technique is average background subtraction (A-BS) 
(Daniels, 1996, p. 150). This technique estimates the background by averaging all A-scans in 
an area of interest and then subtracts this estimate from each A-scan. A variant of this 
technique is moving average background subtraction (MA-BS) (Roth et al, 2003; 
Groenenboom and Yarovoy, 2002), which averages all A-scans within a data window to 
obtain a background estimate for the A-scan at the center of the window. The window is then 
moved over the data to find a background estimate for each A-scan. By doing so, the moving 
average background subtraction tries to account for local variations in the background and 
consequently results in less residuals of the ground reflection signal. Another background 
subtraction technique is polynomial background subtraction (P-BS) (Roth et al, 2003). This 
technique estimates the background by fitting a low degree polynomial in a least squares 
sense to each time slice3 of the data. A similar technique is sometimes used in gravity data 
processing to estimate and remove the regional gravity field, leaving over local gravity 
anomalies, which are associated with masses close to the earth’s surface (Telford et al, 1990, 
p. 26-27). Note that polynomial background subtraction using a zero degree polynomial, i.e. a 
straight line, is equivalent to average background subtraction, since least squares has the 
tendency to average. All these background subtraction techniques can be implemented in 1 D 
(along the scanning line) or, if data has been acquired over a grid, in 2D (over the horizontal 
plane). 

The quality of the background subtraction generally depends on the choice of the width of the 
averaging window or the degree of the polynomial, respectively. However, even when a 
careful choice has been made, these techniques have fundamental drawbacks, which make 
them unsuitable for target identification. In the following, these drawbacks will be illustrated 

                                                 
2 Originating in human activity. 
3 A time slice is an ensemble of data samples associated with the same arrival time. 
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using MA-BS as an example. Experience has shown that P-BS suffers from similar 
limitations. 

Moving average background subtraction is essentially a “catch-22”4: 

• Using a large averaging window, containing both background and target 
information, usually leads to ground reflection residuals, which mask part of or the 
entire target response signal. Even if the ground surface were perfectly flat, 
problems arise due to horizontal smearing of the target response. To get a better 
estimate of the local variations of the ground surface and to avoid smearing, there is 
a common tendency to work with a smaller averaging window. 

• When using a small averaging window, containing mostly or only target 
information, less smearing and ground reflection residuals occur but now the target 
response signal is likely to become weaker and its shape is changed considerably. 
For small averaging windows, the horizontal smearing takes the form of two weak 
“ghost” hyperbolae, one above and the other below the actual target response 
hyperbola. These “ghost” hyperbolae are processing artifacts but might be mistaken 
as being part of the target response. 

Figure 4.9 shows four synthetic B-scans illustrating some of these problems. The included A-
scans are taken from the centers of the B-scans. The first B-scan (figure 4.9a) shows a 
diffraction hyperbola representative for the type of target response hyperbola observed in 
GPR data. The second B-scan (figure 4.9b) shows the same diffraction hyperbola but now 
superimposed with a horizontal event, simulating a perfectly flat ground reflection. The result 
of applying MA-BS with a large averaging window (extending over most of the B-scan) is 
shown in figure 4.9c. We see that the target response signal, while quite well recovered at the 
apex of the diffraction hyperbola, is smeared out to neighboring A-scans. The result of using a 
small averaging window (extending over a small fraction of the B-scan) is shown in figure 
4.9d. In this case, we see from the A-scan that the target response signal at the apex of the 
hyperbola is not well recovered at all: both its amplitude and its shape differ considerably 
from those of the actual target response signal, i.e. the A-scan in figure 4.9a. Furthermore, two 
weak “ghost” hyperbolae have become visible. In conclusion, no matter how the width of the 
averaging window is chosen, moving average background subtraction will never be able to 
accurately recover the amplitude and the shape of the target response signal along the entire 
diffraction hyperbola. 

                                                 
4 A dilemma or circumstance from which there is no escape because of two mutually incompatible conditions, 
both of which are necessary. The phrase comes from the title of a novel by Joseph Heller, set in the US air force 
in the Second World War: the hero, an American bombardier, wishes to avoid combat duty, to do which he has 
to be adjudged insane; but since anyone wishing to avoid combat duty is sane, he must therefore be fit for duty. 
(source: The Oxford Encyclopedic English Dictionary) 
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Figure 4.9: Illustration of the effect of window width on MA-BS: (a) Original diffraction hyperbola, 
(b) superposition of the hyperbola of (a) and a horizontal reflection event, (c) MA-BS result using a 
large averaging window, (d) MA-BS result using a small averaging window. The displayed A-scans 
are from the centers of the B-scans. A large window causes horizontal smearing of the target response, 
whereas a small window alters the amplitude and the shape of the target response. 

These drawbacks led to the development of a new variant of MA-BS termed weighted moving 
average background subtraction (WMA-BS). As its name suggests, this technique uses 
weighted averaging5 in the estimation of the background, thereby emphasizing A-scan 
samples that are part of the background while suppressing those that contain target 
information. Rather than being a one-step processing routine, this technique works in two 
stages: a preliminary background subtraction, which is used to find the anomalies and forms 
the basis for computing appropriate weights, and the weighted background subtraction. 
Besides, some auxiliary processing steps are necessary. The complete processing sequence 
goes as follows: 

Step 1: Subtraction of the direct wave signal ( )ds t  determined from the metal sheet 
calibration from each A-scan of the data. 

                                                 
5 The weighted average of a set of numbers xn ( 1, , )n N= �  given the weights Wn ( 1, , )n N= �  is defined as 

 ( )
1 1

W x W
N N

n n n
n n= =
∑ ∑ . 

If all weights are set equal, the weighted average reduces to the mean. 
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Step 2: Alignment of the ground reflection signal to compensate for the effect of 
varying antenna height above the ground surface (either due to topography or 
antenna movement by hand). As a reference for the alignment a zero-crossing 
of the ground reflection signal is used. Depending on the expected depth of the 
target, a bias may have to be added to each A-scan to ensure that the reference 
zero-crossing occurs before the arrival of the target response signal. After the 
alignment, this bias is subtracted again. 

Step 3: Application of conventional moving average background subtraction (MA-BS) 
on the output data of step 2 using a small averaging window to locate targets 
and other anomalies. The window width should be chosen such that little 
horizontal smearing occurs. 

Step 4: Computation of the envelope of each A-scan of the output data of step 3 using 
the Hilbert transform. The envelope represents the instantaneous amplitude and 
essentially measures the reflectivity strength, which is proportional to the 
square root of the total energy of the signal at an instant in time (Yilmaz, 1987, 
p. 484). 

Step 5: Repetition of the moving average background subtraction on the output data of 
step 2 but this time using a large averaging window and weighted averaging, 
the weights for which are estimated from the output data of step 4. The weight 

( )n iW t  applied to the ith data sample of the nth A-scan is computed as the ratio 
of the total instantaneous amplitude within the averaging window over the 
instantaneous amplitude associated with the data sample, i.e. 

 ( )
( )

( )
window

k i
k

n i
n i

A t
W t

A t
∈=
∑

     ( windown ∈ ), (4.22) 

where ( )k iA t  (k = A-scan number) denotes instantaneous amplitude. Equation 
(4.22) assigns large weights to data samples with a small contribution to the 
total instantaneous amplitude within the averaging window, i.e. they are treated 
as background. In contrast, smaller weights are assigned to data samples that 
have a significant contribution to the total instantaneous amplitude within the 
averaging window, i.e. they are treated as an anomaly. As a result of the 
weights less smearing occurs during the background subtraction and the 
amplitude and the shape of the target response signal is retained. 

This procedure can also be implemented as an iterative procedure in which the background 
subtraction result of the previous iteration is used to compute the weights for the current 
iteration. 

Let us return to the previous synthetic example to demonstrate the improvement achieved by 
using weights in the averaging process. Using the small window result of figure 4.9d to 
compute the weights for the weighted background subtraction yields the B-scan shown in 
figure 4.10. Comparison with the original diffraction hyperbola of figure 4.9a demonstrates 
that the WMA-BS managed to recover both the amplitude and the shape of the target response 
signal in all A-scans. 
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Figure 4.10: WMA-BS applied to the B-scan of figure 4.9b. The displayed A-scan is from the center 
of the B-scan. Comparison with figure 4.9a shows that the amplitude and shape of the target response 
signal are accurately recovered in all A-scans of the diffraction hyperbola. 

Another example of WMA-BS is given in figure 4.11 detailing the various processing steps, 
from the initial B-scan to the final background subtraction result. The data, showing the co-
polar response of a circular EPS (Expandable Polystyrene) disk buried 5 cm deep in dry sand, 
has been acquired with the IRCTR video impulse GPR. Note that the direct wave signal 
dominates over the ground reflection signal, which in turn dominates over the target response 
signal. More precisely, the peak-to-peak amplitude of the target response signal at the apex of 
the hyperbola is as low as –24 dB with respect to the direct wave signal, which gives an idea 
of the importance and challenge of a good background subtraction. 

For comparison, figure 4.12 shows the much inferior background subtraction result obtained 
by a conventional MA-BS. For consistency, the latter used the same window width as the 
weighted background subtraction of the WMA-BS. While the conventional approach gives 
rise to residuals of both the direct wave signal and the ground reflection signal, as well as 
smears out the target response signal into neighboring A-scans, the WMA-BS is able to 
reduce these effects considerably. 
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Figure 4.11: Illustration of the various processing steps of WMA-BS using data acquired over a 
buried EPS disk: (a) Data after DC offset and noise reduction, (b) after the subtraction of the direct 
wave signal, (c) after the alignment of the ground reflection signal, (d) after MA-BS with a small 
averaging window, (e) after Hilbert transformation, (f) after the weighted background subtraction. The 
displayed A-scans are those at the apex of the target response hyperbola. The sloping reflection events 
at the lower corners of the B-scans are caused by the sidewalls of the sandbox in which the data were 
acquired. 
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Figure 4.12: The inferior background subtraction result obtained by applying conventional MA-BS to 
the B-scan of figure 4.11a. The MA-BS used the same window width as the weighted background 
subtraction, which yielded the B-scan of figure 4.11f. 

4.3.3 Target frame transformation 

The target frame transformation algorithm is closely related to the physics of backscattering 
from an elongated target and hence this will be our starting point for explaining what the 
algorithm does and how it works. Since the target frame transformation involves coordinate 
transformations that are carried out in the frequency-domain, the backscattering is best 
described using the target transfer function. 

In contrast to the target transfer function of a rotationally symmetric target, which may be 
represented as a scalar function such as eq. (2.12) or eq. (2.28), the target transfer function of 
an elongated target is a matrix 

 ( ) ( ) ( )
( ) ( )

t , t ,
t

t , t ,

H H

H H
xx xy

yx yy

 ω ω 
ω =  ω ω 

H  (4.23) 

(Astanin and Kostylev, 1997, p.111), whose off-diagonal elements account for depolarization, 
i.e. cross-polar components in the backscattered field. In analogy to the scalar target transfer 
function, the target transfer function matrix relates the electric field iE  that is incident on the 
target to the backscattered field sE  according to the frequency-domain convolutional 
scattering model of eq. (2.10). Note that ( ) ( )t , t ,H Hxy yxω = ω  as a result of reciprocity (Ulaby 
and Elachi, 1990), i.e. the target transfer function matrix is symmetric. 

An important property of the target transfer function matrix is that its elements depend on the 
reference frame in which the scattering is analyzed. In polarimetric GPR measurements, this 
reference frame is naturally defined by the two orthogonal linear polarizations, which are 
radiated and received. In the following, this reference frame will be called the antenna frame. 
When the antenna system of the GPR rotates with respect to the target, the antenna frame 
rotates with it and different matrix elements apply. Thus, the measured target response 
becomes a function of the orientation of the antenna system with respect to the target. Clearly, 
for target identification an orientation dependent target response is not very useful. In this 
case, it is necessary to analyze the scattering not in the antenna frame, but in a reference frame 
that is intrinsic to the target. This reference frame, called the target frame, is defined by the 
two natural polarization of the target, which are orthogonal to each other, though both may be 
elliptical. In the case of an elongated target, the natural polarizations are approximately linear 
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and coincide with the long and short axis of the target. When the incident and backscattered 
fields are expressed in terms of the two natural target polarizations, the target transfer function 
matrix is diagonal, i.e. 

 ( ) ( )
( )

1TF
t

2

0

0

λ ω 
ω =  λ ω 

H  , (4.24) 

where the superscript TF is used to specify the target frame and ( ) ( )1 2λ ω ≥ λ ω  is assumed. 
Accordingly, if the incident field is polarized parallel to one of the natural target polarizations, 
no cross-polar field will be scattered. This is precisely what makes the target frame so special. 
The natural polarization that is associated with ( )1λ ω  corresponds to the preferred natural 
polarization, which defines the preferential (long) scattering axis of the target. The target 
transfer function matrix in the target frame is related to the target transfer function matrix in 
the antenna frame through the target frame transformation, which is 

 ( ) ( )TF
t t

Tω = ωH V H V  , (4.25) 

where the columns of V are simply the polarization vectors 1v  and 2v  describing the two 
natural polarizations of the target. Note that 1 T− =V V  as a result of the two natural 
polarizations being orthogonal to each other, i.e. V is a complex orthogonal matrix. 

Now that the target frame transformation is defined, let us take a look at how we can apply it 
to scattering matrices measured with a polarimetric deming GPR system. For this purpose, we 
first need to define hardware models for a polarimetric transmitter and a polarimetric receiver. 
Such models may be obtained from simple generalizations of the point source/receiver models 
given by eqs. (4.2) and (4.3), namely from replacing the polarization vectors TXu  and RXu  of 
the transmitting and receiving antennas by a polarization matrix as follows: 

 TX RX

1 0

0 1

 
= =  

 
u u  . (4.26) 

Note that the hardware models thus obtained represent an idealized polarimetric GPR system 
since the two transmitting channels are assumed to exhibit identical radiation characteristics 
and the two receiving channels identical reception characteristics. In practice, any differences 
in these characteristics need to be carefully compensated for, as will be discussed in more 
detail later on in the text. 

Based on these polarimetric transmitter/receiver models and the frequency-domain 
convolutional scattering model of eq. (2.10), the measured polarimetric backscattering 
response of a buried elongated target may be written as 

 ( ) ( )
( )( )

( ) ( ) ( )0 RX 0 TX 12RX
t RX t

RX TX

,
, W

2
k h k h k dg a a gT h d T

e
h d h d

− + +→ →ζ
ω = ω ω

π + +
S H ix  , (4.27) 

where ( )t RX ,ωS x  is the scattering matrix whose elements are the target response signals 
measured for the four possible transmitting-receiving polarization combinations, i.e. 

 ( ) ( ) ( )
( ) ( )

t , RX t, RX
t RX

t, RX t, RX

S , S ,
,

S , S ,
xx xy

yx yy

 ω ω 
ω =  ω ω 

S
x x

x
x x

 (4.28) 
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and ( )W ω  refers to the effective radiated waveform in the frequency-domain. Note that since 
the target transfer function matrix ( )t ωH  is symmetric, the same holds for the measured 
scattering matrix ( )t RX ,ωS x . 

If we now apply the target frame transformation directly to the measured scattering matrix 
( )t RX ,ωS x , we obtain 

 

( ) ( )

( )
( )( )

( )
( ) ( ) ( )

( )
( )

0 RX 0 TX 1

TF
t RX t RX

2RX 1

2RX TX

1

2

, ,

, 0
W

02

K 0
                  

0 K

T

k h k h k dg a a gT h d T
e

h d h d
− + +→ →

ω ω

ζ λ ω 
= ω λ ωπ + +  

ω 
≡  ω 

S = V S V

                   i

x x

 (4.29) 

which is the diagonal scattering matrix that would have been measured if the GPR had 
radiated and received the two natural polarizations of the target, i.e.  

 [ ]TX RX 1 2= = =v v Vu u . (4.30) 

Accordingly, the scattering matrix in the target frame ( )TF
t RX,ωS x  is independent of the 

orientation of the target with respect to the antenna frame and hence well suited for target 
identification. 

The question that remains to be answered is how can we find the polarization vectors 1v  and 
2v  describing the two natural polarizations of the target. The answer follows from rewriting 

eq. (4.29) as 

 
( )

( ) ( )1
t RX

2

K 0
,

0 K

ω 
ω ω 

V = S Vx  , (4.31) 

demonstrating that 1v  and 2v  are in fact the complex eigenvectors of the measured scattering 
matrix ( )t RX ,ωS x , and ( )1K ω  and ( )2K ω  are its complex eigenvalues. 

For a pulsed (time-domain) polarimetric GPR system the complete processing sequence to 
obtain an orientation independent target response goes as follows: 

1) Combine the target response signals ( )t , RXs ,xx tx , ( )t , RXs ,xy tx , ( )t , RXs ,yx tx  and 
( )t , RXs ,yy tx  measured for the four different transmitting-receiving polarization 

combinations into the time-domain scattering matrix in the antenna frame 
( )t RX ,ts x . 

2) Transform ( )t RX ,ts x  to the frequency-domain to obtain the frequency-domain 
scattering matrix in the antenna frame ( )t RX ,ωS x . 

3) Diagonalize ( )t RX ,ωS x , i.e. find its two eigenvalues ( )1K ω  and ( )2K ω . 

4) Transform ( )1K ω  and ( )2K ω  back to the time-domain to obtain the time-domain 
scattering matrix in the target frame ( )TF

t RX ,ts x . 

It is important to understand that the target frame transformation in principle only applies 
to backscattering, i.e. a monostatic configuration, since the symmetry property of the 
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backscattering matrix ( )t RX ,ωS x  is necessary to ensure that its eigenvectors are 
orthogonal and hence specify the natural polarizations of the target. A non-symmetric 
scattering matrix obtained from a bistatic configuration may be diagonalizable, however its 
eigenvectors will not be orthogonal and hence are not related to the target frame. 

To give an example of target frame transformation, in the following results from analyzing 
polarimetric data of a buried metal tube acquired with the IRCTR video impulse GPR are 
presented. The metal tube, shown in figure 4.13, has a length of 11 cm, a diameter of 2 cm 
and was buried 10 cm deep in dry sand. Full polarimetric information was obtained by 
acquiring data for two orientations of the antenna system, one rotated 90 degrees from the 
other, yielding a total of four B-scans (two co-polar and two cross-polar ones). This was 
done for two different orientations of the metal tube. The first orientation, specified as       
0 degrees, corresponds to the situation where the long axis of the tube lies parallel to the y 
axis of the antenna frame, and the second orientation, specified as 45 degrees, corresponds 
to the situation where the long axis of the tube lies at 45 degrees between the x and y axis 
of the antenna frame. 

The polarimetric data for each orientation of the tube was then processed as follows. After 
initial DC offset correction and noise filtering, the background in each B-scan was 
removed using a two-iteration WMA-BS. Next, the target response signals ( )t ,s xx t , 

( )t ,s xy t , ( )t ,s yx t , ( )t ,s yy t  for transmitting antenna positions right above the middle of the 
metal tube were combined into the scattering matrix ( )t ts , as illustrated in figure 4.14. 
The scattering matrices thus obtained for the two different orientations of the metal tube 
are compared in figure 4.15. As expected, 

• the two scattering matrices are different (demonstrating the need for target frame 
transformation) 

• the scattering matrices are symmetric 

• the cross-polar elements ( )t ,s xy t and ( )t ,s yx t  vanish for the tube orientation of 0 
degrees. 

The latter observation indicates that for the tube orientation of 0 degrees the antenna frame 
coincides with the target frame. Hence, target frame transformation of the scattering matrix 
for the tube orientation of 45 degrees should produce the scattering matrix for the tube 
orientation of 0 degrees. That this is actually the case is shown in figure 4.16, demonstrating 
that target frame transformation is capable of providing an orientation independent target 
response. 

These are very good results, yet they do not give the complete picture. In practice, it is highly 
likely that when working with a “quasi-monostatic” antenna configuration such as that of the 
IRCTR video impulse GPR, there will be problems due to time offsets between the four target 
response signals that are combined into the scattering matrix. These time offsets are caused by 
small differences in, e.g., length of the connecting cables, but also by differences in length of 
the propagation paths to and from the target. The first source of error can be corrected for by 
calibration of the receiving channels and in fact, the target frame transformation example 
shown in figure 4.16 is the result of such a calibration, i.e. the timing in the cross-polar 
receiving channel was adjusted until the best transformation result was obtained. From the 
calibration, it was learned that time offsets as small as 50 ps degrade the transformation result 
noticeably. This is what makes the second source of error a serious limitation, because we 
have no good handle on it. To ensure that the propagation paths have equal length in the 
experiment with the metal tube, it was decided to combine the target response signals 
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measured with the transmitting antenna right above the middle of the tube. This was possible 
because the data were acquired in a controlled indoor laboratory environment (described in 
more detail in chapter 5), where accurate knowledge of both the location of the metal tube and 
the position of the antenna system was available. In a real measurement scenario this will not 
be possible because obviously the exact location of the target is unknown and antenna 
positioning may be less accurate. Even if data is acquired on a very dense grid to determine 
the exact location of the target, it is unlikely that the target frame transformation result will be 
of the same quality as the one presented. 

A workaround to this timing problem is to only apply the target frame transformation to the 
amplitude spectrum of the measured scattering matrix, i.e. to neglect the phase information, 
which is useful if the analysis of the target response continues in the frequency-domain. This 
concept was demonstrated with success by Farinelli and Roth (2003) who used the 
eigenvalues and the eigenvectors of the amplitude spectrum of the scattering matrix to 
determine the linearity and the orientation of targets. 
 
 
 
 
 

 

Figure 4.13: The metal tube used in the target frame transformation example. 
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Figure 4.14: Illustration of how the target response signals measured by the IRCTR video impulse 
GPR are combined into the time-domain scattering matrix ( )t ts . Each rectangle represents the antenna 
system, consisting of a transmitting antenna and two receiving loops (see figure 4.2), for one of the 
two antenna orientations for which data were acquired. The long arrow indicates the position and the 
polarization of the transmitting antenna and the small arrows indicate the positions and the 
polarizations of the receiving loops. The displayed x and y coordinate axes are those of the antenna 
frame. 
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Figure 4.15: Comparison of the time-domain scattering matrices ( )t ts  obtained for the two 
orientations of the metal tube (depth of burial: 10 cm). 
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Figure 4.16: Results of transforming ( )t ts  for the tube orientation of 45 degrees into the target frame. 

4.4 Deconvolution and Target Characterization 

4.4.1 General 

After preprocessing, the target response signal ( )t RXs ,tx  at the apex of the target response 
hyperbola can be further processed to determine target characteristics, which in turn provide 
information on the likely identity of the target. Examples of such characteristics are the outer 
dimensions of the target, the target permittivity and the target depth. This section explains 
how the target characterization procedure for plane wave backscattering (sections 2.2.4 and 
3.2) can be used with some modifications to estimate target characteristics from the extracted 
target response signal. 

The first step is to fit the target response signal with an impulse response model 
approximating the scattering behavior of the target to be identified. The fitting is achieved 
through subset selection deconvolution of the effective radiated waveform, determined from 
the metal sheet calibration, from the target response signal, thereby yielding an impulse 
response ( )h t , which satisfies 

 ( ) ( ) ( )t RXs , h wt t t= ⊗x  . (4.32) 

The impulse response ( )h t  consists of a fixed number of differentiation operators, the exact 
number of which is determined by the particular type of minelike target that is being assumed. 
A list of possible parameterizations for ( )h t  and their relation to target characteristics is 
given in section 4.4.2. 

Once the impulse response ( )h t  has been estimated by subset selection deconvolution, its 
parameterization is used to invert for target size, e.g. the target cross-section, or for target 
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material properties (dielectric minelike targets only), e.g. the relative permittivity of the 
target. As in the target characterization procedure for plane wave backscattering, for a 
dielectric minelike target the inversion is subject to ambiguity since the size and the material 
properties of the target are inherently unresolved. Accordingly, it is only possible to infer 
possible combinations of target characteristics. As before, this is achieved by specifying 
generic target material properties in the inversion for target size and vice versa. 

As an alternative to inversion, the parameters of the estimated impulse response ( )h t  may be 
used as features in a classification scheme. As shown in chapters 2 and 3, differences in target 
size have a proportional effect on the impulse response parameters (see, e.g., figure 2.16), 
making it possible, in principle, to distinguish between targets. Note, however, that since the 
impulse response parameters also depend on antenna height, target depth and contrast (or soil 
properties for that matter), it is important that the classification rules take these dependencies 
into account or use feature combinations that are invariant to these factors, e.g. the length of 
the impulse response. Due to these reasons, feature based target classification is difficult to 
implement and has not been attempted in this thesis. 

For either target identification approach (inversion or feature based classification), knowledge 
of antenna height6 as well as target depth is required. The antenna height follows directly 
from the arrival time of the ground reflection signal and the target depth can be computed 
from the difference between the arrival time of the ground reflection signal and that of the 
target response signal. Whereas the arrival time of the target response signal is estimated as 
part of the impulse response estimation, the arrival time of the ground reflection signal needs 
to be estimated from a separate subset selection deconvolution of the effective radiated 
waveform from the background signal (excluding the direct wave signal). Alternatively, the 
arrival time of the ground reflection signal may be found from simple cross-correlation of 
these two signals. Subset selection deconvolution has the advantage of providing additional 
information on reflection strength, which may be related to the permittivity of the ground. 

If the GPR is part of a multi-sensor system, the target depth information obtained like this 
may also be used to evaluate the information provided by the other sensors. As an example, 
let us consider the combination with an infrared camera. The depth range of operation of an 
infrared camera is limited to surface-laid targets and targets that are buried flush with the 
ground (Cremer, 2003). Hence the GPR depth estimate can be used to determine whether the 
target should or should not also be visible in the infrared images. This additional information 
is extremely useful to reinforce agreeing GPR and infrared detections and to correctly 
interpret GPR-only detections. For example, a surface-laid GPR-only detection is likely to be 
a false alarm. A deep GPR-only detection however should not be discredited unless other 
target information allows us to do so. 

4.4.2 Impulse response models and their relation to target characteristics 

As before, the subset selection deconvolution requires a priori information on the specific 
form of the impulse response ( )h t  to be estimated. Which form to choose depends on the 
type of minelike target that is considered to represent the scattering behavior of the target to 
be characterized. In chapters 2 and 3 a number of minelike targets have been introduced and 

                                                 
6 Since the vertical offset between the transmitting antenna and the receiving antenna is constant, the heights of 
both antennas are fully determined by that of the receiving antenna, i.e. RXh . Hence, in this thesis antenna 
height always refers to RXh . 
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models for their target impulse responses have been derived. The general procedure for 
finding appropriate parameterizations for ( )h t  is to substitute these target impulse response 
models into the convolutional GPR models for surface-laid and buried minelike targets, eqs. 
(4.13) and (4.18), and compare the resulting equations with eq. (4.32). The parameterizations 
that follow are specified below. Note that these parameterizations are very similar to the ones 
presented in chapters 2 and 3 for the case of plane wave backscattering, where no GPR 
hardware is considered. 

The circular metal disk 

The target impulse response ( )th t  of a circular metal disk is given by eq. (2.31). 
Accordingly, an appropriate parameterization for the impulse response ( )h t  is one that 
consists of one differentiation operator, i.e. 

 ( ) ( )1 1h ht t τ= δ −�  . (4.33) 

For a surface-laid metal disk, the coefficient 1h  and the time shift parameter 1τ  are 

 ( )( )1
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2h h d
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whereas for a buried metal disk, 
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Remember that the depth d of a surface-laid target is negative by convention. 

The homogeneous circular dielectric disk 

The target impulse response ( )th t of a homogeneous circular dielectric disk is given by eq. 
(2.23), suggesting the parameterization 

 ( ) ( ) ( )1 1 2 2h h ht t tτ τ= δ − + δ −� � .  (4.36) 

Note that this parameterization is only applicable when the disk is buried since eq. (2.23) has 
been derived from the Born approximation, which is strongly violated when the host medium 
is air, despite the phenomenological modifications that have been introduced. The impulse 
response parameters are 
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 2 1h h= −Γ  , (4.37c) 
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The circular dielectric disk containing a thin air gap or a small piece of metal 

When the circular dielectric disk contains an air gap or a small piece of metal, its target 
impulse response is given by eqs. (3.21)-(3.22). Accordingly, the parameterization for ( )h t  
consists of two single and one double differentiation operator, i.e. 

 ( ) ( ) ( ) ( )1 1 2 2 3 3h h h ht t t tτ τ τ= δ − + δ − + δ −� � ��  . (4.38) 

Here, the impulse response parameters 1h  & 1τ  and 2h  & 2τ  relate to scattering from the disk 
body and are again given by eq. (4.37). The parameters 3h  & 3τ , describing the scattering 
from the air gap/metal piece, are 
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As for the homogeneous circular dielectric disk, this parameterization is only valid when the 
disk is buried. 

The small metal sphere 

The target impulse response ( )th t  of a small metal sphere is given by eq. (3.16). The 
parameterization for ( )h t  that follows consists of a one double differentiation operator, i.e. 

 ( ) ( )1 1h ht t τ= δ −��  (4.40) 

For a surface-laid sphere, the coefficient 1h  and the time shift parameter 1τ  are 
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whereas for a buried sphere, 
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4.5 Discussion 

This chapter introduced point source/receiver models and preprocessing algorithms that make 
the convolutional scattering models and the target characterization procedure presented in 
chapters 2 and 3 applicable to GPR data, thus opening the possibility to characterize a disk-
shaped minelike target based on a single A-scan. 

The presented point source/receiver models were easily incorporated into the time-domain 
convolutional scattering model derived in chapter 2. The resulting convolutional models for 
the GPR response of a surface-laid or buried minelike target constitute one of the main 
contributions of this thesis, since they represent the first convolutional GPR models, which 
give closed-form expressions for all components of the GPR chain, i.e. the hardware, the 
propagation to and from the target, and the target impulse response.7 A useful property of 
these convolutional GPR models is that the radiation characteristics of the transmitting 
antenna and the reception characteristics of the receiver chain are conveniently expressed 
through a single term, namely the effective radiated waveform, which can be estimated 
accurately and fast using the presented metal sheet calibration procedure. 

The point receiver model also allowed us to formulate an A-scan model, which represents the 
various signal components that contribute to a measured A-scan. These are the target response 
signal, which for backscattering along the vertical is described by the derived convolutional 
GPR models, the direct wave signal, the clutter signal, and noise. Prior to target 
characterization, all signal components other than the target response signal should be 
removed from the GPR data. It was shown that this is a very challenging preprocessing task, 
especially removing the direct wave signal and the ground reflection signal. Since these two 
signals dominate over the target response signal, it is important that they are removed well, 
albeit without changing the amplitude and shape of the target response signal, as this would 
render any target characterization attempt useless. In this respect, the weighted moving 
average background subtraction (WMA-BS) technique proved superior performance over 
other commonly used background subtraction techniques. The WMA-BS technique does not 
require straight-line data acquisition or a constant spatial sampling between A-scans and 
hence may well be used with handheld demining GPR systems. Since background subtraction 
is also required in many other GPR applications, e.g. locating buried utilities, the WMA-BS 
technique can be considered a very useful contribution to GPR data processing in general. 
Note, however, that when the GPR data are acquired with the antennas close to or on the 
ground, the first step of the algorithm, i.e. subtraction of the direct wave signal, needs to be 
omitted because then the coupling between the transmitting and the receiving antenna 
depends on the ground properties. 

The target characterization procedure itself operates only on the A-scan at the apex of the 
target response hyperbola, an approach that is potentially very attractive for use with handheld 
demining GPR systems, where accurate antenna position information is unavailable. The 
procedure works in the same manner as the target characterization procedure for plane wave 
backscattering introduced in chapters 2 and 3, i.e. subset selection deconvolution followed by 
an inversion of the estimated impulse response. 

The discussion on the target frame transformation may be considered a little side step, as this 
thesis is mostly concerned with rotationally symmetric targets. Still, it becomes an important 
issue when dealing with targets having a preferential scattering axis since their target response 
                                                 
7 This is somewhat ironic, considering the basic form of these convolutional GPR models. 
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varies with orientation. Hence, measuring the full scattering matrix and transforming it into 
the target frame is essential to the correct identification of such targets. The target frame 
transformation examples of the buried metal tube demonstrated that an orientation 
independent target response can be obtained from polarimetric data acquired with the IRCTR 
video impulse GPR. Nevertheless, despite its seeming straightforwardness, routine application 
of target frame transformation is a non-trivial task simply because the co- and cross-polar 
components of the scattered field are measured at two distinct receiver positions. Hence, even 
after careful calibration of the receiving channels, small offsets in time remain a problem 
when combining target response signals measured by the different receiving loops into a 
scattering matrix. This problem can be avoided by applying target frame transformation only 
to the amplitude spectrum of the scattering matrix in which case timing becomes irrelevant. 

This chapter completes the theoretical part of this thesis and we now have a set of tools 
consisting of 

• a metal sheet calibration procedure (section 4.2.4) 

• data preprocessing algorithms (section 4.3) 

• a target characterization procedure (section 4.4) 

which together can be used to determine the size or the material properties of a circular disk-
shaped minelike target from GPR data and estimate its depth of burial. The following chapter 
describes laboratory measurements with the IRCTR video impulse GPR that were carried out 
to further validate these tools and determine the accuracy with which target characteristics and 
depth can be estimated. 



 
 

CHAPTER 5 

EXPERIMENTAL RESULTS AND VALIDATION 

This chapter presents the results of a series of GPR experiments, which was designed to 
evaluate the performance of the target characterization procedure presented in the previous 
chapter (section 4.4) and validate the convolutional GPR models on which it is founded. 
These experiments are complementary to the FDTD results presented in chapters 2 and 3, 
which already demonstrated that in principle it is possible to characterize a buried minelike 
target very accurately from its backscattering response. The test conditions for the 
experimental validation, however, are much more challenging since the performance of the 
target characterization procedure does not only relate to the soundness of the procedure itself 
but also depends on the quality of the radar calibration and that of the GPR data after 
preprocessing, i.e. the level of clutter and noise that could not be removed. In addition, the 
characterization procedure now relies on antenna height and target depth estimates, which are 
determined from the arrival times of the ground reflection and the target response. 

The experiments were carried out with the IRCTR video impulse GPR at an indoor 
experimental facility, where data were acquired over a set of surface-laid and buried minelike 
test targets. The test targets included a circular metal disk, two small metal spheres, a set of 
four differently-sized circular EPS (Expandable Polystyrene) disks, and a set of three circular 
Teflon disks with and without internal structure. The reason for working with these targets 
rather than mine simulants used in other mine detection research (Fortuny-Guasch et al, 2001) 
was that they were readily available and with precisely known size and material properties. 
Knowledge of these properties is important in two ways. First, to have a reference against 
which the output of the target characterization procedure can be compared, and second, to be 
able to specify the generic material properties, which are required in the inversion for target 
size. 

The chapter is divided into three sections. Section 5.1 describes the data acquisition including 
information about the experimental facility, a detailed description of the test targets and an 
overview of the data acquisition parameters. The acquired data were analyzed using the 
preprocessing algorithms and the target characterization procedure described in sections 4.3 
and 4.4, respectively, the results of which are presented in section 5.2. The presented results 
include examples of target responses after preprocessing, subset selection deconvolution 
results and inversion results. The overall performance of the target characterization procedure 
is summarized in section 5.3. 

5.1 Data Acquisition 

5.1.1 Description of the experimental facility 

The data were acquired at the indoor experimental facility shown in figure 5.1 consisting of a 
2.5 m by 2.5 m sandbox made of plywood and a computer controlled x-y-z scanner for sub-
millimeter accurate antenna positioning. 

For convenience, the wording of this chapter will not distinguish between the target 
response, i.e. the scattered field, and the target response signal, i.e. the signal 
produced by the scattered field, since this chapter deals exclusively with GPR data. 
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The sandbox is filled with fine dry sand. Its relative dielectric permittivity rε  in the frequency 
range of 0.5-3.0 GHz was estimated from laboratory coaxial waveguide measurements 
(Gorriti, 2004), the results of which are shown in figure 5.2. As expected for dry sand, rε  is 
fairly constant over the measured frequency band with losses close to zero. The small 
permittivity “jumps” are likely a result of sample inhomogeneities in the form of air gaps. 
Averaging over frequency yields a permittivity estimate of 2.58 0.045rε ≈ − i . Based on this 
estimate, it is reasonable to treat the sand as a lossless host medium. For comparison, the sand 
permittivity was also estimated from the magnitude of the ground reflection signal in the GPR 
data, which, neglecting losses, gave 2.6rε ≈ . All inversion results presented in this chapter 
have been obtained with this real value for the sand permittivity. 

 

Figure 5.1: The indoor experimental facility. 
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Figure 5.2: Laboratory estimates of the real (energy storage) and the imaginary (energy dissipation) 
part of the relative dielectric permittivity of the sand at the experimental facility. 
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5.1.2 Description of the test targets and burial conditions 

Based on their material composition, the test targets form three groups: 

• Metal targets 

• Expandable Polystyrene (EPS) disks 

• Teflon disks. 

The metal targets (figure 5.3) include a circular metal disk and two small metal spheres. The 
metal disk has the same dimensions as Metal Disk 1 whose response has been simulated by 
FDTD (see section 2.3), and accordingly is referred to by that same label. The small metal 
spheres – hereinafter referred to as Metal Sphere 1 and Metal Sphere 2 – have a radius of 0.8 
and 0.95 cm, respectively. 

The EPS disks (figure 5.4) - hereinafter referred to as EPS Disk 1 through 4 - have a radius 
between 4 and 6.25 cm, and a height of either 3.8 or 4.8 cm. The disks have been cut out of 
sheets of Expandable Polystyrene having a relative dielectric permittivity of ,t 1rε ≈  and 
negligible losses as indicated by its low loss tangent, 5tan 5*10−δ <  (BASF, 2001). 
Consequently, the EPS disks can be treated as homogeneous dielectric disks with no losses. 

The three Teflon disks (figure 5.5) – hereinafter referred to as Teflon Disk 1 through 3 - were 
used to study the effect of internal target structure on the target response. All three disks have 
a radius of 5 cm and a height of 4 cm but differ internally: Teflon Disk 1 is solid, Teflon Disk 
2 contains a thin circular air gap ( 2

i 50.3 cm  1 cmV = × , i 1.5 cml = ), and Teflon Disk 3 has a 
small cylindrical metal insert ( 3

i 2.7 cmV = , i 0.75 cml = ). Teflon has very well-defined 
electrical properties and is known for its almost frequency independent relative dielectric 
permittivity of ,t 2.1rε ≈  and its small loss tangent, 4tan 2*10−δ <  (Von Hippel, 1954, p.332). 

The material compositions, shapes and sizes of all test targets are summarized in table 5.1. 

Data were acquired for several different target depths. In general, each test target was 
considered both surface-laid and when buried 5 cm deep with the exception of the EPS disks, 
which were only considered buried. For EPS Disk 1 additional data were acquired for a burial 
depth of 10 cm for which the ground reflection and the target response are separated in time. 
For the buried Metal Disk 1, measurements were only done for target depths of 10 and 15 cm 
in order to avoid its target response being “polluted” by strong multiple reflections between 
the target and the sand surface. 

To avoid ambiguities due to unknown burial conditions, great care was taken when burying 
the targets. First, a bucket without bottom was pushed into the sand to provide side support 
while digging a hole. The target was then placed into the hole and a level was used to ensure 
that it is not tilted. Next, the target was covered by sand and the bucket removed slowly. After 
burial, the sand was flattened by sweeping the edge of a large metal plate across the sand 
surface. The actual target depth was measured by sticking a ruler into the sand until it touched 
the target. The depth was measured after GPR data had been acquired to avoid additional 
disturbance of the sand. In all cases the actual target depths differed only by a few millimeters 
from the anticipated target depths. 
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Figure 5.3: The metal targets. 

 

Figure 5.4: The Expandable Polystyrene disks. 

 

Figure 5.5:  The Teflon disks. The small metal cylinder can be inserted into Teflon Disk 1, which is 
then referred to as Teflon Disk 3. 
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Table 5.1: Description of the test targets. 

Outer Dimensions 
Target Name Material Composition Shape 

radius 
[cm] 

height l 
[cm] 

aspect 
ratio* 

Metal Disk 1 metal circular disk 5.0 4.0 1.25 

Meta Sphere 1 metal sphere 0.8 n/a n/a 

Metal Sphere 2 metal sphere 0.95 n/a n/a 

EPS Disk 1 Expandable Polystyrene circular disk 5.0 3.8 1.32 

EPS Disk 2 Expandable Polystyrene  circular disk 5.0 4.8 1.04 

EPS Disk 3 Expandable Polystyrene  circular disk 4.0 3.8 1.05 

EPS Disk 4 Expandable Polystyrene  circular disk 6.25 4.8 1.30 

Teflon Disk 1 Teflon circular disk 5.0 4.0 1.25 

Teflon Disk 2 Teflon with thin air gap circular disk 5.0 4.0 1.25 

Teflon Disk 3 Teflon with small metal insert circular disk 5.0 4.0 1.25 

      * Ratio of the radius over the height. 

5.1.3 Data acquisition procedure and parameters 

The data were acquired with the IRCTR video impulse GPR presented in section 4.1.2 using 
the procedure illustrated in figure 5.6. 

For each target, a 1.1 m long B-scan traversing the center of the target was taken in step mode 
along the x-direction of the scanner with a spatial sampling interval x∆  of 1 cm between A-
scans. The A-scans were acquired using a 7 ns time window of 1024 time samples 
corresponding to a time sampling interval t∆  of approximately 6.8 ps. Stacking of 128 was 
applied to each A-scan sample to reduce random noise. For buried targets, B-scans were taken 
at two antenna heights, namely 15 cm and 20 cm; for surface-laid targets, an antenna height of 
25 cm was chosen. Since all test targets are rotationally symmetric, only one orientation of the 
antenna system was considered, namely the one in which the transmitting antenna radiates a 
y-polarized wave. All examples and results presented in this chapter refer to the data acquired 
with the co-polar receiving loop of the antenna system. 

The experiments were carried out over several days. Hence, to avoid degradation of 
performance due to system instabilities, the IRCTR video impulse GPR was calibrated on 
every measurement day using the procedure described in section 4.2.4. 
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Figure 5.6: Illustration of the measurement procedure. 

5.2 Data Analysis 

5.2.1 General 

The acquired data were processed using the algorithms presented in sections 4.3 and 4.4. This 
included DC offset correction, noise reduction, background subtraction, subset selection 
deconvolution, antenna height and target depth estimation, and inversion for target size and 
material properties (EPS disks only). 

In the following sections, the results of the analysis are presented and illustrated by selected 
data examples. The results are presented by target type, since this was found most suitable for 
elucidating target specific scattering behavior. But before going over to the results, some 
general remarks concerning all targets are discussed below. 

Since the scattering models underlying the target characterization procedure apply to 
backscattering along the vertical, only the target response at the apex of the target response 
hyperbola was analyzed. To give an idea of how the target response changes away from the 
apex, figure 5.7 shows the response of Metal Disk 1, in this case buried 10 cm deep, for 
increasing distances (0 to 15 cm) from the apex of the target response hyperbola measured 
using an antenna height of 15 cm. For the purpose of comparison, the responses have been 
aligned (figure 5.7a) and normalized with respect to the peak-to-peak amplitude (figure 5.7b). 



EXPERIMENTAL RESULTS AND VALIDATION 
 
 

117 

We see that the shape of the target response is hardly changed as the distance from the apex 
increases, while its magnitude experiences a rapid decay down to less than half of its value at 
the apex. This is to be expected, since at the air-sand interface the radiated wave is refracted 
towards and the scattered wave away from the vertical, thus making the wave propagation 
along vertical the dominant propagation in the ground. Another factor, which contributes to 
this observation, is that any receiving antenna has a tendency to average the scattered field 
over its aperture. In conclusion, the example indicates that the target response away from the 
apex carries little additional target information. The extraction of this additional target 
information is complicated by the fact that any observed change in the target response is also 
in part due to the non-isotropic radiation characteristics of the transmitting antenna. Hence, in 
view of target identification, the vertical backscattering response is by far the most important 
target response. 

Depending on whether a buried or a surface-laid test target was analyzed, different 
background subtraction techniques were used. A two-iteration WMA-BS (section 4.3.2) with 
an initial window of 21 A-scans and a window of 101 A-scans for the weighted subtraction 
was applied to the data acquired over the buried test targets. In contrast, when the test targets 
were surface-laid, the background was measured by taking a B-scan without the target being 
present and then subtracted from the B-scan measured in the presence of the target. Doing so, 
a near-to-perfect isolation of the target response can be achieved. Needless to say, this 
background subtraction technique can only be applied in the laboratory. 

Despite the careful burial of the targets, some disturbance of the sand could not be avoided 
and resulted in clutter, which the WMA-BS was unable to remove. The clutter manifested 
itself as additional amplitude peaks before the arrival of the actual target response, an example 
of which is given in figure 5.8a showing the response of EPS Disk 1 when buried 5 cm deep 
for an antenna height of 15 cm. Besides the additional amplitude peaks, the sand disturbance 
is also likely to cause some distortion of the first part of the target response. Consequently, it 
was decided to let the subset selection deconvolution algorithm only fit the part of the target 
response following its first peak, as illustrated in figure 5.8b. Experience showed that the 
omission resulted in a less well-posed subset selection deconvolution but nevertheless gave 
better impulse response estimates, especially with regard to the impulse response length. The 
omission of the first amplitude peak was not necessary for Metal Disk 1 exhibiting a very 
strong target response for which the distortion becomes negligible. 

The inversion of the impulse response obtained by subset selection deconvolution for target 
characteristics and target depth requires knowledge of the antenna height above the ground. 
For all inversions, the antenna height was estimated from the GPR data itself. This was 
achieved by estimating the arrival time of the ground reflection with a separate subset 
selection deconvolution of the effective radiated waveform from the ground reflection signal, 
an example of which is given in figure 5.9. To model the ground reflection signal, the subset 
selection deconvolution assumes an impulse response model consisting of a single spike, i.e. 
the impulse response is assumed to have one non-zero coefficient. The ground reflection 
signal to which the deconvolution is applied is determined as part of the background 
subtraction. Note that apart from its use to estimate antenna height, the arrival time of the 
ground reflection can be used together with the arrival time of the target response to 
determine whether a target is surface-laid or buried, allowing to choose the appropriate 
impulse response parameterization for the inversion. Of course this was not an objective of 
the analysis presented here, but would be so for field operation of the GPR, where no 
information on whether the target is surface-laid or buried is available. 
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                                             (a)                                                                             (b) 

Figure 5.7: Response of Metal Disk 1 ( 10 cmd ≈ & RX 15 cmh ≈ ) at various distances 
( 0, 5, 10 & 15 cm) from the apex of the target response hyperbola:                                                     
(a) aligned                                                                                                                                                
(b) aligned and normalized with respect to the peak-to-peak amplitude. 
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                                            (a)                                                                               (b) 

Figure 5.8: Response of EPS Disk 1 ( 5 cmd ≈ & RX 15 cmh ≈ ):                                                          
(a) The sand disturbance causes additional amplitude peaks before the arrival of the actual target 
response.                                                                                                                                                  
(b) Data fit between the predicted (deconvolution) and the measured target response. Only the part of 
the response between the dashed lines was fit by the subset selection deconvolution algorithm. 
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Figure 5.9: Example of deconvolving the effective radiated waveform from the measured ground 
reflection signal (determined as part of the background subtraction). The figure shows the data fit 
between the predicted (deconvolution) and the measured ground reflection signal. The dashed lines 
define the part of the signal, which was fit by the subset selection deconvolution algorithm. Note that 
the predicted ground reflection also well describes the reflected antenna ringing (between time 
samples 750 and 900). The time shift obtained from this type of deconvolution was used to estimate 
the antenna height RXh . 

5.2.2 Metal targets 

Circular metal disk 

Figure 5.10 gives an example of the response of Metal Disk 1, in this case buried 10 cm deep 
and measured with an antenna height of 15 cm. According to the convolutional GPR model 
for buried targets, eq. (4.18), the shape of the target response is independent of the burial 
depth and the antenna height. Measurements for other depths and/or antenna heights 
demonstrated that the shape of the response is indeed consistent if the depth is large enough 
for the response to be unaffected by multiple reflections between the target and the sand 
surface. The shape consistency is illustrated in figure 5.11 showing the response of Metal 
Disk 1 for various depths and antenna heights. For easy comparison, the responses have been 
aligned and normalized with respect to the peak-to-peak amplitude. 

The results of applying subset selection deconvolution to the responses of Metal Disk 1 are 
listed in table 5.2. The differences in the impulse response coefficient 1h  can solely be 
attributed to the different target depths and antenna heights and in principle should obey the 
spreading term in eq. (4.18), which is 
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. (5.1) 

To analyze the ability of the spreading term to predict the changes in 1h , the coefficients 1h  
from table 5.2 were plotted against eq. (5.1), the result of which is shown in figure 5.12. To 
make a comparison possible, the coefficients 1h  and the spreading term were normalized with 
respect to 10 cmd =  & RX 15 cmh = . From the figure, we see that the spreading term well 
predicts the differences in 1h  that result from changes in target depth and antenna height. 
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The response of Metal Disk 1 is well modeled by an impulse response consisting of one 
differentiation operator, as indicated by figure 5.13 showing the deconvolution data fit for the 
target response of figure 5.10. This confirms again that specular scattering by a circular metal 
disk differentiates the waveform of the incident field. 

The deconvolution results of table 5.2 were inverted for target depth and target size (disk 
radius) using the impulse response parameterizations of eqs (4.34)-(4.35) and antenna height 
estimates obtained from the arrival time of the ground reflection. The inversion results thus 
obtained are listed in table 5.3 and demonstrate a good agreement between the inferred and 
the true1 values (shown in parentheses). Overall, the inversion results demonstrate that 

1) it is possible to infer antenna height, target depth and disk radius with millimeter 
accuracy 

2) there is a tendency to slightly overestimate the disk radius, especially when Metal 
Disk 1 is surface-laid. 
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Figure 5.10: Response of Metal Disk 1 ( 10 cmd ≈ & RX 15 cmh ≈ ). 

 
 
 
 
 
 
 
 
 
 
                                                 
1 The “true” target depths and antenna heights were measured with a ruler and hence are not entirely free of 
measurement error. 
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Figure 5.11: Comparison of the responses of Metal Disk 1 for various depths and antenna heights. The 
responses have been aligned and normalized with respect to the peak-to-peak amplitude. 

Table 5.2:  Subset selection deconvolution results for Metal Disk 1.                                          
Assumed impulse response model: eq. (4.33). 

Target 
Depth 

Antenna 
Height Impulse Response Parameters 

1τ  
d [cm] RXh  [cm] 1h  

5[ 10 ]−∗  samples [ns] 

Rel. 
Error 

-4.0* 25.0 -50.0 362 2.470 0.12 

10.1 14.9 -36.3 460 3.141 0.11 

10.1 19.9 -27.0 508 3.469 0.12 

15.0 15.0 -31.2 536 3.661 0.14 

15.0 20.0 -23.9 583 3.982 0.14 

                                  * Surface-laid. 
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Figure 5.12: Estimates of 1h  from table 5.2 (diamonds) versus the spreading term of eq. (5.1) 
displayed as a function of target depth and antenna height. For the purpose of comparison, both were 
normalized with respect to 10 cmd = & RX 15 cmh = . 

100 200 300 400 500 600 700 800 900 1000
−30

−20

−10

0

10

20

30

time samples (∆t = 6.8 ps)

am
pl

itu
de

 [m
V

]

measured 
predicted

 

Figure 5.13: Data fit between the predicted (deconvolution) and the measured response of           
Metal Disk 1 ( 10 cmd ≈ & RX 15 cmh ≈ ). The dashed lines define the part of the response, which was 
fit by the deconvolution algorithm. Note that the predicted response also reasonably describes parts of 
the target response outside these limits. 
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Table 5.3: Results of the inversion for target size for Metal Disk 1.                                                 
Based on eqs. (4.34)-(4.35). 

Target Depth 
Estimation 

Antenna Height 
Estimation 

Inversion for Target Size 

d [cm] RXh  [cm] target radius [cm] 

-3.3  (-4.0) 24.8  (25.0) 5.8  (5.0) 

10.1  (10.1) 15.2  (14.9) 5.3  (5.0) 

10.2  (10.1) 20.1  (19.9) 5.2  (5.0) 

14.9  (15.0) 15.1  (15.0) 5.4  (5.0) 

15.0  (15.0) 19.8  (20.0) 5.4  (5.0) 

                          The values included in parentheses are the true values. 

 

Small metal spheres 

Probably the most interesting result of the analysis of the data acquired over the metal spheres 
is that their response is stronger when buried than when surface-laid. This is illustrated in 
figure 5.14 showing two examples of the very weak response of Metal Sphere 2. The first was 
measured with the sphere surface-laid and an antenna height of 25 cm, whereas the second 
was measured with the sphere buried 5 cm deep and an antenna height of 20 cm. Note that in 
both cases the total distance between the target and the sphere is the same. The surface-laid 
response is of course much cleaner than the buried response, which contains clutter; 
nevertheless, there is a clear indication of the buried response being stronger. This fact is also 
reflected in the subset selection deconvolution results summarized in table 5.4, which show 
that the buried Metal Sphere 2 exhibits a larger impulse response coefficient 1h . 

The explanation of this rather unintuitive result is given by eq. (3.13) for the Rayleigh 
contrast of a small metal sphere, which states that the contrast is proportional to the 
permittivity of the host medium. Ergo, the contrast of the buried metal sphere is 2.6 times 
larger than that of the surface-laid sphere. The larger contrast compensates for the losses that 
incur as a result of the transmission at the air-sand interface and the refraction induced 
divergence, resulting in an overall stronger response of the buried sphere. 

The response of the spheres is well modeled by an impulse response consisting of one double 
differentiation operator, as indicated by figure 5.15a showing the deconvolution data fit for 
the surface-laid response of Metal Sphere 2. This confirms that a small sphere differentiates 
the waveform of the incident field twice. When buried, the data fit is much worse due to 
clutter, as shown in figure 5.15b. 

Despite the extremely weak response of the spheres and the rather “loose” data fit obtained 
for the buried spheres, the radii of the spheres can be estimated with sub-millimeter accuracy 
using the impulse response parameterizations of eqs. (4.41)-(4.42), as demonstrated by the 
results of the inversion for target size listed in table 5.5. The possibility to determine the 
radius with such high accuracy stems from the fact that the impulse response coefficient 1h  is 
proportional to the volume of the sphere. Consequently, a small change in radius is associated 
with a much greater change in 1h , allowing for a robust estimation of the radius. 
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                                            (a)                                                                              (b) 

Figure 5.14: Response of Metal Sphere 2:                                                                                             
(a) surface-laid & RX 25 cmh ≈                                                                                                               
(b) 5 cmd ≈ & RX 20 cmh ≈ . 

Table 5.4: Subset selection deconvolution results for the small metal spheres.                           
Assumed impulse response model: eq. (4.40). 

Target 
Depth 

Antenna 
Height 

Impulse Response Parameters 

1τ  Target Name 
d [cm] RXh  [cm] 1h  

7[ 10 ]−∗  samples [ns] 

Rel. 
Error 

Metal Sphere 1 0.0* 25.0 -5.8 388 2.648 0.14 

0.0* 25.0 -10.0 389 2.655 0.10 

5.0 15.0 -23.7 387 2.641 0.60 Metal Sphere 2 

5.0 20.0 -16.6 433 2.956 0.43 

                  * Surface-laid. 
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                                            (a)                                                                              (b) 

Figure 5.15: Data fit between the predicted (deconvolution) and the measured response of Metal 
Sphere 2:                                                                                                                                                  
(a) surface-laid & RX 25 cmh ≈                                                                                                               
(b) 5 cmd ≈ & RX 20 cmh ≈ .                                                                                                                
The dashed lines define the part of the response, which was fit by the deconvolution algorithm. 

Table 5.5: Results of the inversion for target size for the small metal spheres.                                
Based on eqs. (4.41)-(4.42). 

Target Depth 
Estimation 

Antenna Height 
Estimation 

Inversion for Target Size 
Target Name 

d [cm] RXh  [cm] target radius [cm] 

Metal Sphere 1 -0.4  (0.0) 24.6  (25.0) 0.77  (0.80) 

-0.3  (0.0) 24.6  (25.0) 0.93  (0.95) 

5.4  (5.0) 15.3  (15.0) 0.96  (0.95) Metal Sphere 2 

5.5  (5.0) 20.0  (20.0) 0.95  (0.95) 

           The values included in parentheses are the true values. 

 

5.2.3 EPS disks 

Figure 5.16 gives an example of the type of target response that was measured for the EPS 
disks, in this case the response of EPS Disk 2 buried 5 cm deep for an antenna height of 20 
cm. Fitting the measured target responses with an impulse response model consisting of two 
differentiation operators yielded the subset selection deconvolution results listed in table 5.6. 
The generally good deconvolution data fit, such as that shown in figure 5.17, demonstrates the 
suitability of the impulse response model for explaining the measured responses. 

The impulse response parameters obtained by subset selection deconvolution reflect the 
different sizes of the EPS disks. To illustrate this, figure 5.18 shows three plots of their 
relation to target size: 
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• In the first plot (figure 5.18a), the impulse response coefficients 1h  are plotted 
against the disk cross-sections xyS . Since 1h  depends on both the target depth and 
the antenna height, only the coefficients obtained for a depth of 5 cm are plotted 
and the antenna heights of 15 cm and 20 cm are considered separately. The plot 
clearly shows that 1h  is proportional to xyS , as predicted by eq. (4.37a). 

• The second plot (figure 5.18b) displays the impulse response length 2 1τ τ−  versus 
the disk height l. The plot shows that larger disks heights are associated with longer 
impulse responses, though the displayed relationship is not entirely linear, as 
predicted by eq. (4.37d). This deviation from linearity may be attributed to the high 
effective target velocity t

effv  of the EPS disks, which makes their impulse responses 
very short and therefore the time shift parameter 2τ  very difficult to estimate 
accurately. By fitting a straight line to the data points in a least squares sense, as 
shown in the figure, we find t 28.9 cm/nseffv ≈ , which is slightly lower than the 
intrinsic target velocity tv c= . This is in good agreement with the effective target 
velocity of Air Disk 1 (same permittivity as EPS), which from FDTD simulations 
with a ground relative permittivity of 2.5 was found to be t 28.6 cm/nseffv ≈  (see 
table 2.4). 

• In the third plot (figure 5.18c), the attenuation factors Γ  are plotted against the 
target aspect ratios. The plot demonstrates that Γ , which can be considered an 
indicator of the extent to which the Born approximation is valid, decreases with the 
target aspect ratio, thereby confirming the result obtained from the FDTD analysis 
of the TNT disks (see section 2.3). In other words, the validity of the Born 
approximation deteriorates as the aspect ratio of the target decreases. As mentioned 
before in section 2.1, this may be explained by the contribution of the edge-
diffracted wave to the field inside the target during the time it takes for the incident 
wave to pass through the target. This contribution becomes more significant as the 
target aspect ratio decreases, making the Born assumption break down. Note that 
the scatter of the data points belonging to the same disk can again be attributed to 
the high effective target velocity of the EPS disks, which makes it difficult to 
accurately estimate the second impulse coefficient 2h . 

The impulse response parameters of table 5.6 were inverted for target depth, target size (disk 
radius and disk height) and target material properties (target relative permittivity and effective 
target velocity) using eq. (4.37) and antenna height estimates obtained from the arrival time of 
the ground reflection. In the inversion for target size, the target material properties were 
specified as ,t 1.0rε = , i.e. the true target relative permittivity, and t 28.5 cm/nseffv = . The 
choice of t

effv  was based on the effective target velocity of Air Disk 1, which had been 
estimated from FDTD simulations (see above). In the inversion for material properties, the 
true disk dimensions were used to specify target size. The inversion results thus obtained 
together with the true target characteristics (shown in parentheses) are listed in table 5.7. 
Here, a few observations: 

1) It is possible to infer target depth and antenna height with millimeter accuracy (as 
was the case for the metal targets). 

2) The inversion for target size yielded disk radii and heights that are in close 
agreement with the true values (error  0.6 cm< ), with a tendency to slightly 
overestimate the disk radius (as was the case for Metal Disk 1). 

3) The inversion for material properties yielded estimates of the target relative 
permittivity that were close to 1, though the accuracy of the estimation was not 
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consistently of the same order, with errors ranging between 2 and 28 % with respect 
to the permittivity contrast. In general, there was a tendency to slightly 
underestimate the target permittivity, i.e. overestimating the contrast. The large 
permittivity errors, e.g. for EPS Disk 3, were accompanied by an underestimation of 
the effective target velocity, an observation that was already made when analyzing 
the FDTD data (see section 2.3). 

In conclusion, the inversion for material properties was found to be less robust than the 
inversion for target size, which in all cases provided millimeter accurate disk dimensions, and 
that despite the fact that the Born approximation was always violated (0.55Γ < ). Hence in 
view of landmine identification, inversion for target size is more promising. This conclusion 
is reinforced by the fact that AP landmines exist in all different sizes, making the assumption 
of a generic target size impossible. On the other hand, it seems plausible to assume a generic 
set of material properties, which is valid for a class of AP landmines, and invert for target 
size. 
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Figure 5.16: Response of EPS Disk 2 ( 5 cmd ≈  & RX 20 cmh ≈ ). 
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Table 5.6: Subset selection deconvolution results for the EPS disks.                                          
Assumed impulse response model: eq. (4.36). 

Target 
Depth 

Antenna 
Height 

Impulse Response Parameters 

1τ  2 1−τ τ  Target 
Name 

d [cm] RXh  

[cm] 
1h  

5[ 10 ]−∗  samples [ns] 

2h  
5[ 10 ]−∗  samples [ns] 

Γ  

Rel. 
Error 

4.9 15.1 10.2 379 2.587 -4.2 39 0.267 0.42 0.06 

4.9 20.1 6.9 426 2.908 -3.7 38 0.260 0.53 0.05 

10.0 15.0 9.2 455 3.107 -4.4 40 0.274 0.48 0.03 
EPS Disk 1 

10.0 20.0 7.3 502 3.428 -3.2 40 0.274 0.44 0.03 

4.9 15.1 11.1 378 2.580 -2.7 47 0.322 0.25 0.07 
EPS Disk 2 

4.9 20.1 7.6 425 2.901 -2.4 44 0.301 0.31 0.04 

5.3 14.7 7.2 384 2.621 -1.2 43 0.294 0.16 0.13 
EPS Disk 3 

5.3 19.7 5.1 430 2.935 -1.1 43 0.294 0.22 0.12 

5.4 14.6 16.8 386 2.634 -6.6 46 0.315 0.39 0.04 
EPS Disk 4 

5.4 19.6 12.2 431 2.942 -5.6 47 0.322 0.46 0.02 
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Figure 5.17: Data fit between the predicted (deconvolution) and the measured response of EPS Disk 2 
( 5 cmd ≈  & RX 20 cmh ≈ ). The dashed lines define the part of the response, which was fit by the 
deconvolution algorithm. 
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Figure 5.18: Relation between the impulse response parameters obtained by subset selection 
deconvolution and target size:                                                                                                                 
(a) 1h  vs. xyS  ( 5 cmd ≈  only)                                                                                                               
(b) 2 1τ τ−  vs. l                                                                                                                                         
(c) Γ  vs. target aspect ratio.                                                                                                                  
The straight lines represent least squares fits to the data points. 
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Table 5.7: Results of the inversions for target size & material properties for the EPS disks.            
Based on eq. (4.37). 

Target 
Depth 

Estimation 

Antenna 
Height 

Estimation 
Inversion for Target Size* Inversion for Material 

Properties§ Target 
Name 

d [cm] RXh  [cm] target radius 
[cm] 

target height l 
[cm] ,trε  

t
effv  

5.0  (4.9) 15.2  (15.1) 5.0  (5.0) 3.8  (3.8) 0.97  (1.0) 28.5 

5.0  (4.9) 20.1  (20.1) 4.9  (5.0) 3.7  (3.8) 1.10  (1.0) 29.2 

9.7  (10.0) 15.3  (15.0) 5.4  (5.0) 3.9  (3.8) 0.67  (1.0) 27.8 
EPS Disk 1 

9.8  (10.0) 20.1  (20.0) 5.6  (5.0) 3.9  (3.8) 0.56  (1.0) 27.8 

5.0  (4.9) 15.0  (15.1) 5.2  (5.0) 4.6  (4.8) 0.94  (1.0) 29.9 
EPS Disk 2 

5.0  (4.9) 19.9  (20.1) 5.1  (5.0) 4.3  (4.8) 1.02  (1.0) > 29.97 

5.2  (5.3) 15.3  (14.7) 4.3  (4.0) 4.2  (3.8) 0.57  (1.0) 25.8 
EPS Disk 3 

5.2  (5.3) 20.1  (19.7) 4.2  (4.0) 4.2  (3.8) 0.62  (1.0) 25.8 

5.5  (5.4) 15.0  (14.6) 6.5  (6.25) 4.5  (4.8) 0.94  (1.0) > 29.97 
EPS Disk 4 

5.5  (5.4) 19.7  (19.6) 6.5  (6.25) 4.6  (4.8) 0.95  (1.0) 29.9 

The values included in parentheses are the true values. 
* Specified material properties: 1.0 2.6 1.6r∆ε = − = −  and t 28.5 cm/nseffv =  (from FDTD simulations). 
§ Specified target size: true disk dimensions. 

 

5.2.4 Teflon disks 

The data acquired over the Teflon disks show that the target response is noticeably influenced 
by the presence of the air gap and to a much lesser extent by the small metal insert. This 
follows from comparison of their surface-laid responses shown in figure 5.19 and comparison 
of their buried responses shown in figure 5.20. In both figures, the response of Teflon Disk 1 
(homogeneous) serves as a reference for comparison. When surface-laid, the presence of the 
air gap weakens the target response. In contrast, when buried, the air gap leads to a much 
stronger target response in addition to significantly changing its shape, which confirms the 
observations of the FDTD analysis in section 3.3. 

The target responses of the buried Teflon disks were further analyzed by subset selection 
deconvolution, the results of which were inverted for target depth and target size (disk radius, 
disk height, inclusion volume and inclusion position) using eqs. (4.37) & (4.39) and antenna 
height estimates obtained from the arrival time of the ground reflection. In the inversion for 
target size, the target material properties were specified as ,t 2.1rε = , i.e. the true target 
relative permittivity, and t 19.3 cm/nseffv = . The latter is the effective target velocity estimate 
of Teflon Disk 1 obtained from FDTD simulations with a ground relative permittivity of 2.5 
(see table 2.4). The deconvolution and inversion results are summarized in tables 5.8 and 5.9. 

In principle, the impulse response coefficients 1h  & 2h  and the impulse response length 
2 1τ τ− , which describe the scattering from the disk body, should be identical for the three 

disks. However, looking at table 5.8, we see that these parameters are varying, especially 1h  
and 2 1τ τ− . Two reasons for this can be identified. The first reason is the very weak target 
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response of Teflon Disk 1 whose magnitude is of the same order as the clutter caused by the 
disturbance of the sand, as a result of which its impulse response parameters are likely to be 
inaccurate. This problem also manifests itself in the rather “loose” deconvolution data fit for 
Teflon Disk 1 shown in figure 5.21a. The second reason is that the subset selection 
deconvolution for Teflon Disk 3 failed, as indicated by the attenuation factor Γ  of only 0.05 
and the fact that the time shift parameters 2τ  and 3τ  are practically equal. This shows that the 
deconvolution algorithm was looking for the weak response of the metal insert but due to 
clutter confused it with the backscattering from the bottom of the disk. This did not happen 
with the air gap in Teflon Disk 2 because it is a dominant feature. It can be concluded that 
using an impulse response model consisting of three differentiation operators in the subset 
selection deconvolution is only appropriate when there are three distinct responses to fit; 
otherwise the deconcolution becomes ill-posed and is likely to return the wrong answer. 

Despite these problems with the subset selection deconvolution, the inversion for target size 
gave reasonable estimates of the outer disk dimensions, with excellent, millimeter accurate 
inversion performance achieved for Teflon Disk 2. Even the volume of the air gap could be 
determined with an error of only 9 % (as opposed to 35 % in the FDTD analysis of TNT Disk 
1; see table 3.4). This demonstrates that the impulse response parameters for Teflon Disk 2 are 
very accurate, which also shows in the good deconvolution data fit that was obtained for it 
(figure 5.21b). The radius of Teflon Disk 1 (homogeneous) was estimated with an error of 2 
cm due to clutter, yet its height could still be recovered exactly. 
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                                            (a)                                                                              (b) 

Figure 5.19: Comparison of the responses of the surface-laid Teflon disks (RX 25 cmh ≈ ):                
(a) Teflon Disk 2 (with air gap) and Teflon Disk 1 (homogeneous)                                                        
(b) Teflon Disk 3 (with metal insert) and Teflon Disk 1 (homogeneous). 
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                                            (a)                                                                              (b) 

Figure 5.20: Comparison of the responses of the buried Teflon disks (5 cmd ≈  & RX 15 cmh ≈ ):     
(a) Teflon Disk 2 (with air gap) and Teflon Disk 1 (homogeneous)                                                        
(b) Teflon Disk 3 (with metal insert) and Teflon Disk 1 (homogeneous).                                            
Note that the first two amplitude peaks of all three responses are a result of sand disturbance. 

Table 5.8: Subset selection deconvolution results for the buried Teflon disks ( 5 cmd ≈  & 

RX 15 cmh ≈ ).                                                                                                                                
Assumed impulse response models: eq. (4.36) and eq. (4.38). 

Impulse Response Parameters 

1τ  2 1−τ τ  3 1τ τ−  
Target Name 1h  

5[ 10 ]−∗  samples [ns] 

2h  
5[ 10 ]−∗  samples [ns] 

Γ  
3h  

6[ 10 ]−∗  samples [ns] 

Rel. 
Error 

Teflon Disk 1 
homogeneous 4.0 383 2.616 -2.3 60 0.411 0.58 n/a n/a n/a 0.30 

Teflon Disk 2 
with air gap 

2.4 381 2.600 -2.1 54 0.370 0.87 3.8 11 0.075 0.08 

Teflon Disk 3 
with metal 

insert 
3.9 393 2.682 -1.8 73 0.500 0.05 -2.0 72 0.493 0.18 
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Table 5.9: Results of the inversion for target size for the buried Teflon disks.                                
Based on eqs. (4.37) and (4.39). 

Target 
Depth 

Estimation 

Antenna 
Height 

Estimation 
Inversion for Target Size* 

Target Name 

d [cm] RXh  [cm] target radius 
[cm] 

targt height l 
[cm] 

volume iV  

[ 3cm ] 
il  [cm] 

Teflon Disk 1 
homogeneous 

5.2  (4.8) 15.2  (15.2) 6.9  (5.0) 4.0  (4.0) n/a n/a 

Teflon Disk 2 
with air gap 

5.0  (4.5) 15.3  (15.5) 5.4  (5.0) 3.6  (4.0) 45.9  (50.3) 0.7  (1.5) 

Teflon Disk 3 
with metal 

insert 
5.8  (5.0) 15.3  (15.0) 7.0  (5.0) 4.8  (4.0) 3.1  (2.7) 4.8  (0.75) 

The values included in parentheses are the true values. 
* Specified material properties ,t 2.1 2.6 0.5r∆ε = − = −  and t 19.3 cm/nseffv =  (from FDTD simulations). 
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                                            (a)                                                                       (b) 

Figure 5.21: Data fit between the predicted (deconvolution) and the measured target response:          
(a) Teflon Disk 1 (homogeneous) ( 5 cmd ≈  & RX 15 cmh ≈ )                                                                   
(b) Teflon Disk 2 (with air gap) ( 5 cmd ≈  & RX 15 cmh ≈ ).                                                               
The dashed lines define the part of the response, which was fit by the deconvolution algorithm. 
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5.3 Discussion 

The experimental results presented in this chapter confirm the validity of the convolutional 
GPR models for surface-laid and buried minelike targets presented in chapter 4. Overall, these 
models were shown to adequately describe 

• the target impulse response of a disk-shaped minelike target and its relation to 
target size and target material properties, thus affirming the results of the FDTD 
analysis in chapters 2 and 3 

• the dependency of the target response magnitude on target depth and the height of 
the antenna system 

• the radiation and reception characteristics of the IRCTR video impulse GPR. 

This makes the convolutional GPR models well suited for use with subset selection 
deconvolution to characterize a minelike target from its vertical backscattering response, 
which in terms of signal shape was found to be representative for the entire target response 
hyperbola (see figure 5.7). 

In general, the inversion for target size estimated the outer disk dimensions (radius and 
height) with millimeter accuracy (error < 0.5 cm). A particularly encouraging result is that 
such precision was also achieved for Teflon Disk 2 containing an air gap. Even the volume of 
the air gap could be estimated very accurately (error  9 %≈ ), which is better than the results 
obtained in the FDTD analysis presented in chapter 3. Problems were encountered with those 
targets whose target response magnitude was of the same order as the clutter resulting from 
the disturbance of the sand, i.e. Teflon Disk 1 and Teflon Disk 3. The estimation errors caused 
by the clutter were most noticeable in the disk radius (error  2 cm≈ ). Yet, these inversion 
results are still reasonable and demonstrate the robustness of the inversion for target size. That 
a weak target response does not rule out estimation of target size per se is demonstrated by the 
sub-millimeter (!) accurate recovery of the radii of the two small metal spheres. 

The accuracy with which the inversion for material properties estimated the target relative 
permittivity varied from very good (error  2 %≈ ) to reasonable (error  28 %≈ ). Here both 
errors are specified with respect to the permittivity contrast. The results indicate that the large 
errors occurred when the estimated effective target velocity was too low. This sensitivity of 
the estimated target permittivity to errors in the estimated effective target velocity makes the 
inversion for material properties less robust than the inversion for target size. Note that in the 
latter, the estimations of disk radius and disk height are decoupled. 

All presented inversion results were achieved using antenna height and target depth estimates 
obtained from the arrival times of the ground reflection and the target response, i.e. 1τ . In 
general, the antenna height and the target depth were estimated with millimeter accuracy 
( error < 0.5 cm), which is a direct result of the excellent temporal resolution provided by the 
subset selection deconvolution. 

It should be noted that the generally good inversion results also speak for the good 
performance of the metal sheet calibration procedure and of the WMA-BS technique, which 
was used to extract the responses of the buried targets from the GPR data. 

Before closing this chapter, let us get an idea of what happens when the wrong target material 
properties are specified in the inversion for target size. More specifically, let us assume that 
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we are looking for Teflon disks with radii between 3 and 7.5 cm and heights between 3.5 and 
6 cm, which is representative for AP landmines in terms of both dielectric permittivity and 
size. From table 5.9, we see that based on their estimated outer dimensions, all three Teflon 
disks would have been identified as such. If we now redid the inversion for target size for the 
data of the EPS disks but this time assuming the material properties that are generic for Teflon 
disks, i.e. ,t 2.1rε =  and t 19.3 cm/nseffv = , we would find that none of the EPS disks is 
identified as a Teflon disk of the prescribed dimensions. In fact, the smallest disk radius 
obtained would be 9.2 cm (EPS Disk 3) and the greatest disk height would be 3.1 cm (EPS 
Disk 2 and EPS Disk 3). This example demonstrates that even though the inversion for target 
size is inherently unresolved, i.e. it requires the specification of material properties, it is still 
possible to identify targets as belonging to a certain target class based on estimates of their 
outer dimensions. 
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CHAPTER 6 

OVERVIEW OF THE RESEARCH RESULTS AND RECOMMENDATIONS 

The research results of this thesis demonstrate the possibility of using deconvolution to 
identify AP landmines from GPR data within a very short computation time. A number of 
new developments in the theory of electromagnetic scattering from landmines and in GPR 
data processing were necessary to perform this type of target identification, specifically the 
derivation of convolutional models describing the GPR response of a plastic or metal cased 
AP landmine, the design of preprocessing algorithms that extract the target response signal 
from the measured data, and the development of a deconvolution based target characterization 
procedure. The target characterization procedure and the underlying convolutional models 
have been validated with success based on 3D finite-difference time-domain (FDTD) 
simulations and experimental data acquired with the IRCTR video impulse GPR. This chapter 
summarizes the most important research results that have been achieved and formulates some 
conclusions. At the end of the chapter, the application of the research results to identify 
landmines in real minefields is discussed and some recommendations for future research are 
given. 

Convolutional models & target transfer function/impulse response models 

One of the main scientific contributions of this thesis is the derivation of convolutional 
models describing the response of a minelike target as measured by GPR. The derivation 
proceeded in two stages, which are reviewed below. 

In the first stage of the derivation, frequency- and time-domain convolutional models for 
plane wave backscattering were derived. These convolutional scattering models describe the 
scattering behavior of the target through a target transfer function/impulse response and the 
propagation of the scattered field from the target to the observation point, i.e. the position of 
the receiving antenna, through a phase/time shift in combination with a scaling factor. The 
convolutional scattering models are based on source-type integral representations of the 
scattered field in which a linear relationship between the scattering current and the incident 
field is invoked by making use of either the Born and Rayleigh approximations or the 
Physical Optics (PO) approximation, depending on the material composition of the target 
considered. Furthermore, the half-space electric Green’s tensor is approximated by a new far-
field backscattering representation. Hence, the convolutional representation of the scattered 
field is derived from physical principles and is not imposed, as is usually the case in 
convolutional GPR modeling. The new far-field backscattering approximation of the half-
space electric Green’s tensor was obtained from a reordering of Baños series expansion of the 
electric field due to a horizontal point electric dipole in the ground. An important term in the 
Green’s tensor approximation is the coefficient ζ  describing the spreading loss caused by the 
refraction at the ground surface, which acts in addition to the spherical spreading loss. The 
coefficient ζ  is indispensable for accurate modeling of the dependency of the scattered field 
amplitude on both the depth of the target and the height of the observation point, which in 
turn is a requisite for determining target size or target contrast. 

In the second stage of the derivation, point source and receiver models were introduced to 
account for the radar hardware and the propagation of the radiated field from the transmitting 
antenna to the target. These hardware models enter as additional terms in the time-domain 
convolutional scattering model, thereby yielding a convolutional GPR model, which for the 
first time gives analytical expressions for all components of the GPR chain, i.e. the hardware, 
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the propagation to and from the target and the target impulse response. In this model, the 
radiation characteristics of the transmitting antenna and the reception characteristics of the 
receiver chain (including the receiving antenna) are conveniently expressed through a single 
term, namely the effective radiated waveform, which can be estimated accurately and fast 
from a simple metal sheet reflection calibration measurement. Wide applicability of the 
convolutional GPR model is provided for by its formulation for both surface-laid and buried 
minelike targets. 

A useful property of the integral representation approach to convolutional GPR modeling is 
that it directly yields simple closed-form expressions for the target transfer function/impulse 
response of a minelike target. The expressions thus obtained demonstrate that the target 
transfer function/impulse response of a homogeneous minelike target (dielectric or metal) is 
closely related to the target’s cross-section profile and hence its size and shape. Furthermore, 
it was found that the magnitude of the target transfer function/impulse response is determined 
by both the contrast and the maximum cross-section of the target. For the dielectric minelike 
target, the target contrast is mainly determined by the difference in relative permittivity 
between the target and the host medium, i.e. the ground, whereas for the metal target, the 
target contrast is inversely proportional to the wave velocity in the host medium. In the 
presence of a dielectric or metal inclusion (e.g. an air gap or a small piece of metal), the target 
transfer function/impulse response of the homogeneous dielectric minelike target is simply 
augmented by an additional term describing the transfer function/impulse response of the 
inclusion. The transfer function/impulse response of the inclusion differentiates the waveform 
of the incident field twice, and its magnitude is proportional to the inclusion volume and the 
difference in contrast between the inclusion and the target body, for which explicit 
expressions have been presented. Note that, since the target impulse response model for a 
dielectric minelike target derived in this thesis is able to describe scattering from the bottom 
of the target and from internal mine structure, it is a better approximation to the target impulse 
response of a plastic cased AP landmine than the only earlier existing target impulse response 
model published by Nag and Peters (2001). 

Much of the research presented in this thesis focuses on circular disk-shaped minelike targets, 
which are representative for a large class of AP landmines. Interestingly, it was found that a 
minelike target of this shape differentiates the waveform of the incident field rather than just 
reflecting it. Accordingly, the target impulse response of a circular metal disk consists of one 
differentiation operator, which describes specular scattering from the top of the target. The 
target impulse response of a circular dielectric disk consists of two differentiation operators, 
of which the first, again, describes scattering from the top of the target and the second 
describes scattering from the bottom of the target. When a thin air gap or a small piece of 
metal is present inside the dielectric disk, its target impulse response also includes a double 
differentiation operator, i.e. in this case its target impulse response consists of a total of three 
differentiation operators. 

The derived frequency-domain convolutional scattering model and target transfer functions 
apply to minelike targets buried in any type of ground (as long as it is non-magnetic), whereas 
the validity of their presented time-domain counterparts is limited to a lossless ground. The 
reason for this is that losses lead to frequency dependence, which does not lend itself to 
analytical transformation to the time-domain. An exception is the case where the polarization 
losses are negligible and the conduction losses are either low or can be described through a 
global conduction loss model. In the latter case, similarity analysis in the Laplace domain can 
be used to derive a host medium transformation law, which relates the time-domain response 
of a dielectric minelike target buried in a lossless ground to its time-domain response in a 
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lossy ground, as described in section 2.4. The relationship is fairly simple and its validity has 
been affirmed based on a FDTD data example. As a result of its simplicity, the transformation 
law is well suited to gain insight in how the time-domain target response changes as a result 
of losses, however its applicability to real GPR data is strongly limited by the global nature of 
the loss model that it assumes. Considering the difficulties in describing scattering from a 
target buried in a lossy ground in the time-domain, it may be concluded that under conditions 
where losses prevail, GPR data processing such as deconvolution should be carried out in the 
frequency-domain and not in the time-domain. More specifically, it should be possible to 
design a frequency-domain analog to the time-domain target characterization procedure 
presented in this thesis, which makes use of the derived frequency-domain convolutional 
scattering model and target transfer functions to estimate target characteristics such as size 
and material properties. Exploiting the possibility to account for losses in the frequency-
domain, however, is by no means trivial since it requires knowledge of the complex 
permittivity of the ground as a function of frequency (Gorriti, 2004). Clearly, to properly 
address all these issues, more research is necessary, including a series of GPR experiments 
with targets buried in well-characterized lossy soils. 

It is important to emphasize that all convolutional models and target transfer function/impulse 
response models presented in this thesis have been derived for backscattering along the 
vertical, i.e. the transmitting and the receiving antenna are both positioned right above the 
target. The reason for this is twofold. First, the backscattering condition tremendously 
simplifies the half-space electric Green’s tensor such that a non-numerical treatment of the 
scattering problem becomes feasible. And second, as confirmed by the experimental data, the 
shape of the measured target response signal hardly changes as the antenna system is moved 
over the target. Hence, it can be concluded that the target response signal measured at a 
horizontal offset from the target carries very little additional target information. These 
observations can be explained by the fact that at the ground surface the radiated wave is 
refracted towards and the scattered wave away from the vertical, making the wave 
propagation along the vertical the dominant propagation in the ground. 

Preprocessing 

The data preprocessing algorithms developed in this thesis minimize unwanted signal 
components that carry no target information, and compute a target response signal that is 
independent of the orientation of the target with respect to the antenna system. The first is 
achieved through low-pass noise filtering and weighted moving average background 
subtraction (WMA-BS), and the latter is achieved through the target frame target 
transformation. These algorithms are designed carefully to keep the loss of amplitude and 
shape information of the target response signal at a minimum, which is of utmost importance 
for target identification. 

The newly developed WMA-BS technique is designed to remove the direct wave signal and 
the ground reflection signal from each measured A-scan. It works in an iterative manner by 
first finding the anomalies in the GPR data and then suppressing them in the estimation of the 
background to be subtracted. As a result, WMA-BS does not smear out the target response 
signal to neighboring A-scans or change its amplitude and shape, both of which are problems 
usually encountered with other background subtraction techniques, e.g. standard moving 
average background subtraction. The WMA-BS was used in the preprocessing of the 
experimental data acquired with the IRCTR video impulse GPR, yielding target response 
signals that were well suited for target characterization. 
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The target frame transformation is essential to the identification of a target having a 
preferential scattering axis since the measured response of such a target varies with target 
orientation. The transformation requires measurement of the co- and cross-polar components 
of the target response for two orthogonal transmit polarizations, which are combined into a 
scattering matrix. Under the backscattering condition, the so-obtained scattering matrix is 
symmetric and matrix diagonalization can be applied to transform the target response into the 
coordinate frame defined by the two natural polarizations of the target, called the target frame. 
In the target frame the cross-polar components vanish and the target response becomes 
independent of target orientation. The target frame transformation, i.e. the matrix 
diagonalization, is carried out in the frequency-domain and time-domain results are obtained 
by inverse Fourier transformation. 

The concept of the target frame transformation has been tested using polarimetric data 
acquired over a buried metal tube and demonstrated the capability to accurately recover the 
target response signals, which would have been measured if the tube had been oriented with 
its preferential scattering axis aligned with the antenna system. Unfortunately, routine 
application of the target frame transformation to data acquired with the IRCTR video impulse 
GPR is subject to some practical complications. First, since the target response is measured 
with two physically distinct receiving loops, careful calibration for amplitude and timing is 
crucial. Even after calibration, timing can still be a problem simply due to the fact that the two 
receiving loops measure at different positions in space. Hence, it is important that the length 
of the propagation path to and from the target is exactly the same for both loops, which is 
difficult to achieve in a real measurement scenario. A workaround is to diagonalize only the 
amplitude spectrum of the scattering matrix, i.e. to neglect the phase information, which is 
possible if the analysis of the target response proceeds in the frequency domain (Farinelli and 
Roth, 2003). 

Deconvolution & target characterization 

A target characterization procedure has been developed, which makes use of the new subset 
selection deconvolution algorithm and the derived convolutional models to determine target 
characteristics, e.g. the outer dimensions, which in turn provide information on the likely 
identity of a detected target. The target characterization procedure lends itself to real-time 
implementation and operates on a single A-scan, viz. the preprocessed A-scan at the apex of 
the target response hyperbola. This makes the characterization procedure very attractive for 
potential use with handheld demining GPR systems. 

The novelty of the subset selection deconvolution algorithm is that it uses the target impulse 
response models derived for circular disk-shaped minelike targets as a priori information on 
the specific form of the impulse response to be recovered. In other words, the algorithm 
assumes that the scattering behavior of the target to be characterized is well approximated by 
an impulse response consisting of one, two or three differentiation operators, depending on 
whether a circular metal disk or a circular dielectric disk with or without inclusion is assumed 
for the data fitting. By doing so, subset selection deconvolution provides physical amplitude 
information and excellent temporal resolution, both of which is crucial if the estimated 
impulse response is to be related to target characteristics. In addition, subset selection 
deconvolution reduces the ill-conditioning of the radar signal deconvolution problem, making 
it a robust tool for the estimation of sparse impulse responses. Hence, for target 
characterization purposes, subset selection clearly outperforms deconvolution algorithms 
based on Wiener filtering or ridge regression, which were shown to produce smeared out 
impulse responses and rely on a regularization parameter whose optimal choice is non-
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obvious. A disadvantage of subset selection deconvolution based on the impulse response 
model of circular dielectric disk with an inclusion is that it becomes computationally 
intensive, and hence is less suited for real-time processing. It is therefore advisable to limit the 
support1 of the sought impulse response based on an initial guess of the arrival time of the 
target response. 

The impulse responses obtained by subset selection deconvolution can be inverted for target 
size or, in the case of a dielectric minelike target, for target material properties. For a 
dielectric minelike target, target size parameters that can be estimated are the target cross-
section, the target height, the inclusion volume and the inclusion position, whereas for a metal 
minelike target the target size inversion is limited to the estimation of the target cross-section. 
Target material properties that can be estimated are the relative permittivity of the target 
(body) and the effective target velocity. Since for the dielectric minelike target the inversion is 
inherently unresolved, it is only possible to invert for possible combinations of target 
characteristics. Accordingly, the inversion for target size requires specification of generic 
target material properties and vice versa. Since plastic cased AP landmines come in all 
different sizes, yet they have similar material properties, clearly the inversion for target size 
has more practical use than the inversion for target material properties. 

The inversion of the impulse responses requires knowledge of the antenna height above the 
ground and target depth, with negative depths indicating that the target is surface-laid. These 
can be estimated from the GPR data itself, namely from the arrival time of the ground 
reflection and that of the target response. Here, the high temporal resolution provided by the 
subset selection deconvolution algorithm is very beneficial, ensuring accurate estimates of 
both arrival times. 

Validation 

The validation of the proposed target characterization procedure and its underlying 
convolutional models consisted of two parts: validation based on 3D FDTD simulations and 
experimental validation based on GPR data acquired with the IRCTR video impulse GPR at 
an indoor experimental facility. The FDTD simulations were done for exactly the same 
configuration as the one for which the convolutional scattering models were derived, i.e. 
plane wave backscattering. This offered the possibility to focus the analysis on the scattering 
from the target alone and to neglect the radar hardware and other factors that come into play 
when dealing with real GPR data, e.g. clutter. Furthermore, the simulations eliminated the 
need for preprocessing and the estimation of antenna height and target depth. As such, the 
FDTD validation should be understood as an analysis under ideal conditions. In contrast, the 
experimental validation was carried out to test the full processing chain consisting of the radar 
calibration, data preprocessing and target characterization. Both types of validations yielded 
good target characterization results and lead to similar observations. Hence, in the following 
the main results of the two types of validations will be presented together with differences 
pointed out as necessary. 

In general, a very good deconvolution data fit was obtained. The deconvolution data fit for the 
measured target responses was almost as good as for the simulated target responses, with the 
exception of those targets whose response when buried had a magnitude of the same order as 
the clutter resulting from the disturbance of the sand. This was the case for, e.g., Teflon Disk 
1. The generally good data fit demonstrates that very simple impulse response models 
                                                 
1 The time window in which the impulse response is allowed to take on non-zero values. 
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consisting of one, two or three differentiation operators are fully sufficient to explain the axial 
backscattering response of a circular disk-shaped minelike target. 

The results of the inversions for target size demonstrate that in most cases the outer 
dimensions of a homogeneous circular disk (metal or dielectric) can be estimated with 
millimeter accuracy ( error  0.5 cm< ). Given internal structure, i.e. a thin air gap or a small 
metal inclusion, the accuracy with which the outer dimensions of a circular dielectric disk can 
be estimated is lower but still reasonable ( error  1 cm< ). The estimation of the volume of the 
air gap or the metal inclusion inside the disk generally works less well ( error  35 %< ), with 
the best volume estimate obtained for the air gap inside Teflon Disk 2 ( error  9 %≈ ). For 
targets whose response is very weak, i.e. Teflon Disk 1 and Teflon Disk 3, clutter can seriously 
degrade the quality of the inversion for target size, most noticeable in the estimation of disk 
radius ( error  2 cm≈ ); however this is not necessarily so, as demonstrated by the sub-
millimeter accurate (!) recovery of the radii of the two small metal spheres. 

The results of the inversions for material properties obtained for the simulated dielectric disks 
demonstrate that in principle it is possible to estimate the relative permittivity of a 
homogeneous circular dielectric disk very accurately ( error  11 %<  with respect to the 
permittivity contrast). However, such excellent inversion accuracy was not always attained 
with the measured data, where in some cases relative permittivity errors of up to 28 % were 
observed (again with respect to the permittivity contrast). These errors were a result of the 
estimated effective target velocity being too low. The sensitivity of the estimated target 
permittivity to errors in the estimated effective target velocity reinforces the conclusion made 
earlier that the inversion for target size is more robust and has more practical use than the 
inversion for target material properties. 

The experimental validation further demonstrated the possibility to determine antenna height 
and target depth with millimeter accuracy ( error  0.5 cm< ). This confirms the capability of 
subset selection deconvolution to provide excellent temporal resolution. Since the estimation 
worked well for all targets, both surface-laid and buried, it may be concluded that determining 
antenna height and target depth is very robust. 

Both the FDTD and the experimental data showed that internal target structure does influence 
the target response. Especially the presence of an air gap was found to significantly increase 
the target response magnitude of a buried dielectric minelike target. The presence of an air 
gap therefore facilitates the detection of buried plastic cased landmines with GPR. In contrast, 
a small metal inclusion has a very weak effect on the target response. 

Application of the research results to landmine identification in real minefields & 
recommendations for future research 

Based on the validation results, it can be concluded that out of all possible target 
characteristics that can be estimated with the proposed target characterization procedure, the 
outer target dimensions, i.e. cross-section and height, and target depth are the best candidates 
for AP landmine identification. This choice is based on the fact that their estimation never 
failed and in many cases gave millimeter accurate estimates. Furthermore, the outer target 
dimensions and the target depth are both very useful information for deciding whether a target 
is likely to be an AP landmine or not. If the GPR is part of a multi-sensor system, these target 
characteristics can be easily combined with target information obtained from other sensors, 
e.g. the presence of metal as indicated by a metal detector. In addition, target depth estimates 
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may have practical use for assigning confidence values to detections by sensors whose 
performance is strongly depth dependent, e.g. an infrared camera. 

Application of the research results in real minefields is not without reservation, mainly 
because the conditions in a minefield are far more complex than those for which the 
experimental validation was carried out. Hence, further research including experiments with 
real landmines under real minefield conditions remains indispensable. The following 
problems should be addressed in particular: 

• Identification of a tilted AP landmine. 

• Identification of an AP landmine buried under a rough ground surface. 

• Identification given more complicated internal structure than just a single inclusion, 
e.g. the combination of an air gap with metallic and non-metallic parts of a fuse 
mechanism. 

• Identification of an AP landmine based on a cluttered target response signal. 

The following discussion takes a closer look at these problems and gives some ideas on how 
they could be approached from the material presented in this thesis. 

To begin with, it should be noted that the general target transfer function/impulse response 
expression derived for a homogeneous dielectric minelike target can also be evaluated for a 
tilted dielectric disk. Considering the cross-section profile of a tilted disk, it is intuitively clear 
that the tilt will smear out the two differentiation operators of the target impulse response, the 
amount of smearing being determined by the amount of tilt. Hence, it needs to be analyzed up 
to which amount of tilt it is still reasonable to fit the target response signal with “non-
smeared” differentiation operators, as subset selection deconvolution does. Clearly the easiest 
way to do such an analysis would be to use 3D FDTD modeling to simulate the response of a 
circular dielectric disk for increasing tilt angle. 

When the ground surface is rough, the transmission through the ground surface becomes a 
random and frequency dependent process, which may only be described through statistical 
measures. Assuming that the target has the tendency to spatially average the incident field 
over its cross-section and that the receiving antenna does the same over its aperture, a rough 
ground surface may likely be incorporated into the derived convolutional models by simply 
replacing the flat surface transmission coefficients, a gT →  and g aT → , by frequency dependent 
rough surface transmission coefficients , r

a gT → and r
g aT → , which describe the spatially averaged 

transmission through the rough ground surface. Such rough surface transmission coefficients 
may be derived using the phase screen approximation, which, for normal incidence and 
assuming a Gaussian surface height distribution, yields 

 r rTa g a gT T→ →=      &    r rTg a g aT T→ →=  (6.1a) 

with 

 ( )2 2
1 00.5rT k ke− − ∆=  (6.1b) 

(Kyle et al, 1996; Casey, 2001; Johnson and Burkholder, 2004), where 2∆  is the variance of 
the ground surface height ∆ . The effect of the surface roughness is accounted for by the 
multiplicative factor rT , which becomes equal to one for a smooth ground surface and 
approaches a value of zero for increasing frequencies. A useful property of these rough 
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surface transmission coefficients is that, given a lossless ground, rT  may be transformed to 
the time-domain: 

 ( )
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2

21 1 2
12r

2 1 1
1

1
t

2

t

v c
t e

v c

− −
−

− ∆

− −
=

π∆ −
 (6.2) 

(Campbell and Foster, 1948, p. 85). It is important to note here that these rough surface 
transmission coefficients only provide an approximation for the coherent components of the 
transmitted field, i.e. those components that contribute in the vertical direction, and they do 
not account for the incoherent components of the transmitted field, i.e. those components that 
contribute in all directions. For a very rough ground surface, the incoherent components can 
make a significant contribution to the transmitted field in which case they cannot be 
neglected. 

More advanced convolutional modeling of internal structure is less straightforward. Hence, 
rather than trying to develop more complex generic target impulse response models that 
would result in a very ill-posed deconvolution problem, one is most likely better off 
deconvolving landmine type specific target signatures from the measured target response 
signal. In terms of the target impulse response and the effective radiated waveform, the target 
signature of a specific landmine type may be defined as 

 ( ) ( )ttarget signature h wt t≡ ⊗  . (6.3) 

The deconvolution of the target signature from the target response signal can be achieved 
through subset selection with a single non-zero impulse response coefficient. Now there are 
two indicators whether the detected target is a landmine of the type associated with the target 
signature. The first indicator is the deconvolution data fit and the second indicator is the 
scaling factor in the convolutional GPR model, i.e. 

 
( )

( )( )
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RX TX

,

2
g a a gT h d T

h d h d
→ →ζ

π + +
 (6.4) 

for a buried target and accordingly for a surface-laid target. If the impulse response coefficient 
obtained from the subset selection deconvolution is close or equal to the scaling factor, than 
the detected target is potentially a landmine of the type associated with the target signature. 
On the other hand, if there is a big discrepancy between the two, than this is likely not the 
case. As before, the antenna height and the target depth to evaluate the spreading term can be 
estimated from the arrival time of the ground reflection and that of the target response. This 
advanced “template matching” procedure has a couple of useful features. First, there is no 
ambiguity as to the number of non-zero impulse response coefficients, which the subset 
selection needs to solve for: it is always just one. And second, since the subset selection 
deconvolution only has to solve for one non-zero impulse response coefficient, it is extremely 
fast and more robust with regard to clutter than subset selection deconvolution based on the 
impulse response model of a circular dielectric disk with an inclusion, which involves three 
non-zero coefficients. The disadvantage of this identification procedure is that more than 350 
types of landmines exist. Hence, it is necessary to build up an extensive database of reference 
target signatures. Knowledge of which types of landmines were deployed in a certain region is 
very important. Since the target signature of a buried landmine depends also on the properties 
of the soil, it is important that the reference target signatures are measured in an environment 
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similar to the one where the demining GPR is used. Note that identification of surface-laid 
landmines requires its own specific database of reference signatures. 

Alternatively, as indicated before in section 3.4, one may approach the problem of 
complicated internal structure by arguing that it is unnecessary, if not undesirable, to resolve 
internal structure if all one is after are the outer dimensions of the detected target. 
Accordingly, for the estimation of the outer dimensions of a target, it may be sufficient to 
work at lower radar frequencies than the IRCTR video impulse GPR, close to the upper limit 
of the Rayleigh scattering regime. I would suggest a GPR operating with a peak amplitude 
frequency which satisfies 0.1 / 0.15a< λ < , where a  is the radius of the landmine and λ is the 
wavelength at the peak amplitude frequency. For example, given typical landmine radii (3-5 
cm) and a ground with a relative dielectric permittivity of 4.0, a suitable peak amplitude 
frequency would be 500 MHz. At those frequencies, constant values may be assumed for the 
Green’s tensor and the electric field at points within the landmine. As a result, the impulse 
response of the landmine consists of just one double differentiation operator and has a 
magnitude that is directly proportional to the product of its volume and its average 
generalized contrast (taken over the volume of the landmine), regardless of its internal 
structure, shape and tilt. Assuming that a generic average contrast exists, which is 
representative for a number of AP landmines, target volume can be estimated from the 
impulse response obtained by subset selection deconvolution based on an impulse response 
model consisting of one double differentiation operator. Again, this would be extremely fast 
and more robust with regard to clutter than subset selection deconvolution based on impulse 
response models consisting of multiple differentiation operators. Other benefits would be 
lower propagation losses and reduced sensitivity to roughness of the ground surface. A 
disadvantage of working at lower frequencies is that the height of the receiving antenna would 
have to be increased such that the far-field backscattering approximation of the half-space 
Green’s tensor remains valid. 

As a final remark, I believe that clutter will always limit the target identification capabilities 
of GPR (even if some of the ideas suggested above turn out to be good ones). Clutter 
represents the most important physical limitation of GPR target identification and this 
limitation cannot be removed by data processing. Hence, an important topic of future research 
should be the experimental estimation of the minimum allowable signal-to-clutter ratio for 
which the target characterization procedure presented in this thesis will still produce useful 
results. 
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SUMMARY 

Future landmine detection systems are likely to use combinations of different types of sensors 
to increase the detection and reduce the false alarm rate. Ground penetrating radar (GPR) has 
great potential for use in such a multi-sensor system due to its ability to detect, localize and 
identify both plastic and metal cased landmines, whether surface-laid or buried. 

This thesis presents new developments in the area of target identification with GPR, which 
open the possibility to identify plastic and metal cased antipersonnel (AP) landmines from a 
single measured GPR return signal, called A-scan, within a very short computation time. The 
underlying basis of these developments is to formulate the target identification as a 
convolution-deconvolution problem. This entails representing the measured target response 
through a convolutional model, which describes the sequence of radiation, propagation, target 
scattering and receiving, and using deconvolution to estimate an impulse response from which 
target characteristics (its outer dimensions or material properties) and target depth may be 
inferred. These characteristics in turn provide information on the likely identity of the 
detected target. 

The three main contributions of this thesis are: 

• The systematic derivation of a convolutional GPR model including closed-form 
expressions for the target transfer function/impulse response of an AP landmine in 
terms of its size, shape, electromagnetic contrast and internal structure. 

• The development of a deconvolution based target characterization procedure for 
circular disk-shaped minelike targets, which are representative for a large class of 
AP landmines. The target characterization procedure operates on the target 
response at the apex of the target diffraction hyperbola. 

• The design of preprocessing algorithms that extract a target response suitable for 
target characterization from the measured GPR data. 

The derivation of the convolutional GPR model is based on source-type integral 
representations of the scattered field in which a linear relationship between the scattering 
current and the incident field is invoked by making use of either the Born and Rayleigh 
approximations or the Physical Optics (PO) approximation, depending on the material 
composition of the landmine, i.e. plastic cased or metal cased. Furthermore, the half-space 
electric Green’s tensor is approximated by a new far-field backscattering representation. The 
GPR hardware is modeled by introducing point source/receiver models. Doing so, the 
radiation characteristics of the transmitting antenna and the reception characteristics of the 
receiver chain, which includes the receiving antenna, are conveniently expressed through a 
single term, namely the effective radiated waveform. This waveform can be estimated from a 
simple metal sheet reflection calibration measurement. An important result of this derivation 
is that a homogeneous circular disk-shaped minelike target buried in a lossless ground 
differentiates the waveform of the incident field rather than just reflecting it. A similar 
scattering behavior was found for internal mine components, specifically an air gap or a small 
piece of metal, both of which differentiate the waveform of the incident field twice. 
Accordingly, the target impulse response of a circular disk-shaped minelike target is sparse, 
consisting of only a few differentiation operators. 
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The target characterization procedure builds on a new time-domain least squares 
deconvolution algorithm, termed subset selection deconvolution, which is used to deconvolve 
the effective radiated waveform from the measured target response. The novelty of the subset 
selection deconvolution algorithm lies in the fact that it uses the sparse target impulse 
response models that have been derived for circular disk-shaped minelike targets as a priori 
information on the form of impulse response to be estimated. As a result, subset selection 
deconvolution provides physical amplitude information and excellent temporal resolution, 
which are essential for inferring target characteristics and depth from the estimated impulse 
response. This approach also reduces the ill-posedness and noise sensitivity inherent to the 
deconvolution of band-limited signals. Based on the derived convolutional GPR model, two 
types of impulse response inversions are formulated: the inversion for target size and the 
inversion for target material properties. The inversion for target size estimates the outer 
dimensions of the target and, given a dielectric minelike target, the volume of its internal 
components. The inversion for material properties estimates the relative permittivity of the 
body of a dielectric minelike target. 

Preprocessing is an important aspect of GPR target identification. The thesis introduces two 
new preprocessing algorithms, which are the weighted moving average background 
subtraction (WMA-BS) and the target frame transformation, and illustrates their workings 
using experimental data acquired with an ultra-wideband polarimetric video impulse GPR 
developed at the International Research Centre for Telecommunications-Transmission and 
Radar (IRCTR). The WMA-BS algorithm is designed to remove the direct wave signal and 
the ground reflection signal from each measured A-scan. The algorithm works in an iterative 
manner by first finding the anomalies in the GPR data and then suppressing them in the 
estimation of the background to be subtracted. As a result, WMA-BS does not smear out the 
target response to neighboring A-scans or change its amplitude and shape, both of which are 
problems usually encountered with conventional moving average background subtraction. 
The target frame transformation rotates the polarimetric target response, i.e. the scattering 
matrix, into the coordinate frame defined by the two natural polarization of the target. Like 
this a target response that is independent of target orientation is obtained, which is essential to 
the identification of targets with a preferential scattering axis, e.g. an elongated bombshell. 

The target characterization procedure and its underlying convolutional GPR model are 
validated for a number of circular disk-shaped minelike targets, with and without internal 
structure, using data from 3D finite-difference time-domain (FDTD) simulations and indoor 
experiments with the IRCTR video impulse GPR. The FDTD and experimental results 
demonstrate that the inversion for target size can estimate the outer dimensions of a 
homogeneous minelike target (metal or dielectric) with millimeter accuracy 
( error  0.5 cm< ). In the presence of internal structure, the accuracy with which the outer 
dimensions of a dielectric minelike target can be estimated is lower but still reasonable 
( error  1 cm< ). The estimation of the volume of an air gap or a small piece of metal inside a 
dielectric minelike target generally works less well ( error  35 %< ). The results of the 
inversions for material properties obtained with the FDTD data demonstrate that in principle it 
is possible to estimate the relative permittivity of a homogeneous dielectric minelike target 
very accurately ( error  11 %<  with respect to the permittivity contrast). However, such 
excellent inversion accuracy was not always attained with the experimental data 
( error  28 %<  with respect to the permittivity contrast). The experimental validation further 
demonstrated the possibility to determine target depth with millimeter accuracy 
( error  0.5 cm< ). 
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In conclusion, the inversion performance achieved for the experimental data demonstrates that 
the proposed target characterization procedure has a lot of potential for AP landmine 
identification. To this end, estimates of the outer dimensions of the target and depth are 
considered particularly useful. Not only do these characteristics provide information for 
deciding whether a detected target is likely to be an AP landmine or not, but their estimation 
also never fails in the data examples considered and in many cases gives millimeter accurate 
estimates. If the GPR is part of a multi-sensor system, these target characteristics can be easily 
combined with target information obtained from other sensors, e.g. the presence of metal as 
indicated by a metal detector. In addition, target depth estimates may have practical use for 
assigning confidence values to detections by sensors whose performance is strongly depth 
dependent, e.g. an infrared camera. 

Unquestionably, the research results presented in this thesis are not fully representative for the 
target characterization performance that can be attained in a real minefield simply because the 
conditions in a minefield are far more complex than those for which the experimental 
validation was carried out. Hence, further research including experiments with real landmines 
under real minefield conditions remains indispensable. Since clutter represents the most 
important physical limitation to GPR target identification, one of the primary topics of future 
research should be the experimental estimation of the minimum allowable signal-to-clutter 
ratio for which the target characterization procedure presented in this thesis will still produce 
useful results. 

Despite these limiting factors, it is important to note that the systematic approach in the 
development of the convolutional GPR model and of the target characterization procedure 
allows for their adaptation to more complex GPR scenarios than the ones considered in this 
thesis. Some conceivable adaptations are the introduction of rough surface transmission 
coefficients to account for a rough ground surface and the use of the derived frequency-
domain convolutional scattering model to characterize targets buried in a lossy ground. 
Another interesting adaptation would be the use of the convolutional GPR model to develop a 
target identification scheme that is based on the deconvolution of landmine type specific 
target signatures. 

                                                                                                                               Friedrich Roth 
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SAMENVATTING 

Convolutiemodellen voor de identificatie van landmijnen met behulp van grondradar 

Toekomstige landmijndetectiesystemen zullen waarschijnlijk verschillende typen sensoren 
combineren om zo de detectie te verbeteren en het aantal valse alarm meldingen te 
verminderen. Grondradar (GPR) biedt goede mogelijkheden voor integratie in een dergelijk 
multisensor-systeem vanwege zijn mogelijkheid om zowel kunststof- als metaalbehuisde 
landmijnen te detecteren, lokaliseren en identificeren, of het nu gaat om op de oppervlakte 
geplaatste mijnen of begraven mijnen. 

Dit proefschrift toont nieuwe ontwikkelingen op het gebied van GPR doelidentificatie 
toegepast op de identificatie van kunststof- en metaalbehuisde antipersoneels (AP) 
landmijnen. De identificatie maakt gebruik van één enkel gemeten GPR reflectiesignaal, A-
scan genaamd, en heeft een zeer korte berekentijd. De basis van deze ontwikkelingen is de 
formulering van het doelidentificatieprobleem als een convolutie/deconvolutie-probleem. Dit 
houdt in dat de gemeten doelresponsie door een convolutiemodel wordt gerepresenteerd die 
de achtereenvolgende stappen van uitstraling, voortplanting, doelverstrooiing en ontvangst 
beschrijft en dat deconvolutie gebruikt wordt om een schatting te verkrijgen van de 
impulsresponsie. Hieruit kunnen vervolgens doeleigenschappen (uitwendige afmetingen en 
materiaaleigenschappen) en doeldiepte worden afgeleid. Deze eigenschappen leveren tenslotte 
informatie over de waarschijnlijke identiteit van het gedetecteerde doel. 

De drie hoofdbijdragen van dit proefschrift zijn: 

• De systematische afleiding van een GPR convolutiemodel inclusief analytische 
uitdrukkingen voor de doeloverdrachtsfunctie/impulsresponsie van een AP 
landmijn als functie van zijn afmetingen, vorm, electromagnetische contrast en 
interne structuur. 

• De ontwikkeling van een op deconvolutie gebaseerde doelkarakteriserings-
procedure voor mijnachtige doelen in de vorm van een ronde schijf, welke 
representatief zijn voor een grote klasse van AP landmijnen. De procedure maakt 
gebruik van de doelresponsie op het hoogste punt van de doeldefractiehyperbool. 

• De ontwikkeling van voorbewerkingsalgoritmen die de GPR meetgegevens 
dusdanig voorbewerken dat ze geschikt worden voor doelkarakterisering. 

De afleiding van het GPR convolutiemodel is gebaseerd op bron-type integraalrepresentaties 
van het verstrooide veld waarbij een lineair verband tussen de verstrooistroom en het 
invallende veld wordt verondersteld. Hierbij worden hetzij de Born- en Rayleigh-
benaderingen gebruikt, hetzij de fysisch optische (Physical Optics, PO) benadering, 
afhankelijk van de materiële samenstelling van de landmijn, dat wil zeggen kunststofbehuisd 
of metaalbehuisd. Bovendien wordt de elektrische Green’s tensor voor halfruimten benaderd 
door een nieuwe verre-veld terugverstrooiingsrepresentatie (backscattering representation). 
Het GPR systeem wordt gemodelleerd door puntbron/puntontvanger modellen. Op deze 
manier worden de zendeigenschappen van de zendantenne en de ontvangsteigenschappen van 
de ontvangstketen met inbegrip van de ontvangstantenne, eenvoudig uitgedrukt door één 
enkele term, namelijk de effectief uitgestraalde golfvorm. Deze golfvorm kan simpelweg 
geschat worden aan de hand van een calibratiemeeting waarbij de reflectie door een metalen 
plaat wordt gemeten. Een belangrijk resultaat van deze afleiding is dat een schijfvormig 
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mijnachtig doel begraven in een verliesvrije ondergrond resulteert in een golfvorm die de 
afgeleide is van de golfvorm van het invallende veld. Een overeenkomstig 
verstrooiingsgedrag wordt gevonden voor interne onderdelen van mijnen, met name voor een 
luchtgevulde holte of voor een klein metalen onderdeel. Beide resulteren in golfvormen die 
overeenkomen met de tweede afgeleide van de golfvorm van het invallende veld. Zodoende is 
de doelimpulsresponsie van een schijfvormig mijnachtig doel ijl (sparse) en bestaat deze uit 
slechts enkele differentiaal operatoren. 

De doelkarakteriseringsprocedure borduurt voort op een nieuw tijdsdomein kleinste-
kwadraten deconvolutie-algoritme genaamd subset selection deconvolution die gebruikt wordt 
om de effectief uitgestraalde golfvorm van de gemeten doelresponsie te deconvolueren. Het 
nieuwe van de subset selection deconvolution is gelegen in het feit dat dit algoritme gebruik 
maakt van de ijle doelimpulsresponsie-modellen die zijn afgeleid voor schijfvormige 
mijnachtige doelen. Deze modellen worden gebruikt als a priori informatie voor de vorm van 
de te schatten impulsresponsie. Op deze manier levert subset selection deconvolution fysische 
amplitude-informatie en voortreffelijke temporele resolutie, welke essentiëel zijn bij het 
afleiden van doeleigenschappen en doeldiepte uit de geschatte impulsresponsie. Deze 
benadering vermindert ook de slecht gesteldheid en de ruisgevoeligheid inherent aan de 
deconvolutie van bandbegrensde signalen. Op basis van het afgeleide GPR convolutiemodel 
worden twee typen inversies van de impulsresponsie geformuleerd: de inversie voor 
doelafmetingen en de inversie voor doelmateriaaleigenschappen. De inversie voor 
doelafmetingen leidt tot een schatting van de uitwendige afmetingen van het doel en, gegeven 
dat het een diëlektrisch mijnachtig object betreft, het volume van haar interne onderdelen. De 
inversie voor materiaaleigenschappen leidt tot een schatting van de relatieve permittiviteit van 
het lichaam van een diëlektrisch mijnachtig doel. 

Voorbewerking van de data is een belangrijk aspect van GPR doelidentificatie. In het 
proefschrift worden twee nieuwe voorbewerkingsalgoritmen geïntroduceerd te weten de 
weighted moving average background subtraction (WMA-BS) en de target frame 
transformation. Ook wordt geïllustreerd hoe deze werken gebruikmakend van experimentele 
data verkregen met een ultra-breedband polarimetrische video impuls GPR die ontwikkeld is 
bij het International Research Centre for Telecommunications-Transmission and Radar 
(IRCTR). Het WMA-BS algoritme is ontwikkeld om het direkte golfsignaal en het 
grondreflectiesignaal uit elke gemeten A-scan te verwijderen. Het algoritme werkt op een 
iteratieve manier door eerst de anomalien in de GPR data te lokaliseren en deze vervolgens te 
onderdrukken bij het schatten van de achtergrond die van de data dient te worden afgetrokken. 
Zodoende smeert het WMA-BS algoritme de doelresponsie niet uit naar naburige A-scans 
noch verandert het haar amplitude en vorm. Beide problemen treft men vaak aan bij het 
conventionele moving average background subtraction algoritme. De target frame 
transformation roteert de polarimetrische doelresponsie, dat wil zeggen de 
verstrooiingsmatrix, naar het coördinatenstelsel gedefiniëerd door de twee natuurlijke 
polarisaties van het doel. Hiermee wordt een doelresponsie verkregen die onafhankelijk is van 
de doeloriëntatie, wat essentiëel is voor de identificatie van doelen met een 
voorkeursverstrooiingsas zoals een langwerpige granaathuls. 

De doelidentificatieprocedure en het ten grondslag liggende GPR convolutiemodel zijn 
gevalideerd voor een aantal schijfvormige mijnachtige doelen, met en zonder interne 
structuur, aan de hand van 3D eindige-differentie tijdsdomein (FDTD) simulaties en 
laboratoriumexperimenten met de IRCTR video impuls GPR. De FDTD en experimentele 
resultaten tonen aan dat de inversie voor doelafmetingen waarden voor de uitwendige 
afmetingen van homogene mijnachtige doelen (metaal of diëlektrisch) oplevert met hoge 
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nauwkeurigheid ( fout  0.5 cm< ). In het geval dat de doelen interne structuur bevatten, 
vermindert deze nauwkeurigheid maar blijft zij nog steeds heel redelijk ( fout  1 cm< ). De 
schatting van het volume van een luchtholte of een klein metalen deel in een diëlektische 
mijnachtig doel lukt over het algemeen minder goed ( fout  35 %< ). De resultaten van de 
inversies voor materiaaleigenschappen, verkregen op basis van FDTD data, tonen aan dat het 
in principe mogelijk is de relatieve permittiviteit van een homogeen diëlektrisch mijnachtig 
doel zeer nauwkeurig te schatten ( fout  11 %<  t.o.v. het permittiviteitscontrast). Echter met 
experimentele data werd deze nauwkeurigheid niet gehaald ( fout  28 %<  t.o.v. het 
permittiviteitscontrast met de achtergrond). De experimentele validatie toonde verder aan dat 
de doeldiepte met hoge nauwkeurigheid kan worden bepaald ( fout  0.5 cm< ). 

De inversieprestaties bereikt met experimentele data tonen aan dat de voorgestelde 
doelkarakteriseringprocedure goede mogelijkheden biedt voor AP landmijnidentificatie. 
Vooral de schattingen van de uitwendige afmetingen en de doeldiepte worden als bijzonder 
waardevol gezien. Ze geven niet alleen nuttige informatie om te beslissen of een gedetecteerd 
doel een AP landmijn is of niet, maar ze waren ook nooit volledig verkeerd en gaven in veel 
gevallen waarden met een nauwkeurigheid in de orde van millimeters. Bovendien kunnen 
deze schattingen eenvoudig gecombineerd worden met doelinformatie verkregen met behulp 
van andere landmijndetectiesensoren, bijvoorbeeld informatie over de aanwezigheid van 
metaal verkregen door een metaaldetector. Een andere mogelijke toepassing is het gebruik 
van de doeldiepte om vertrouwenswaarden te verbinden aan detecties door sensoren waarvan 
de prestatie diepteafhankelijk is. Een voorbeeld van zo een sensor is een infrarood camera. 

Er moet echter wel worden opgemerkt dat de aangetoonde prestatie van de 
doelkarakteriseringsprocedure niet helemaal representatief is voor hetgeen in een echt 
mijnenveld kan worden bereikt. De reden hiervoor is simpelweg het feit dat de 
omstandigheden in een mijnenveld veel complexer zijn dan die in een laboratorium. Verder 
wetenschappelijk onderzoek inclusief GPR experimenten met echte landmijnen onder 
omstandigheden van een echt mijnenveld blijft daarom ongetwijfeld noodzakelijk. Aangezien 
clutter de primaire fysische begrenzing aan doelidentificatie met behulp van GPR is, is het 
vooral belangrijk om de minimale signaal-clutter verhouding te bepalen waarvoor de 
voorgestelde doelkarakteriseringsprocedure nog steeds bruikbare schattingen oplevert. 

Ondanks deze beperkingen maakt de systematische aanpak in de ontwikkeling van het GPR 
convolutiemodel en van de doelkarakteriseringsprocedure de aanpassing mogelijk aan 
complexere GPR omstandigheden dan degene die in dit proefschrift zijn behandeld. Denkbare 
aanpassingen zijn de invoering van transmissiecoëfficiënten voor ruwe oppervlakten en het 
gebruik van het afgeleide frequentiedomein verstrooiings-convolutiemodel voor de 
karakterisering van doelen begraven in een verliesgevende ondergrond. Een verdere 
mogelijke aanpassing is het gebruik van het GPR convolutiemodel om een 
doelidentificatieschema te ontwikkelen dat gebaseerd is op de deconvolutie van 
doelsignaturen van specifieke landmijntypen. 
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