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particles, the properties of rubber can be 
significantly altered, producing compounds 
of practical importance for many applica-
tions such as automobiles, aircraft and 
in the biomedical industry. There are a 
number of filler particle options available 
for filled elastomer compounds. Automo-
bile tyres are filled with carbon black[1–8] 
or silica.[4,5,9–16] For most applications, 
carbon black or silica tend to be exclusively 
employed, although mixtures of these mate-
rials have also been used in order to exploit 
the advantages of both filler types.[10,17] Clay 
offers an alternative filler option, but its 
reinforcing capability is poor in comparison 
to both carbon black and silica.[18] Graphite, 
graphene, and carbon nanotubes have also 
been considered as alternative filler parti-
cles[15,19,20] given the environmental[21] and 
health[22] repercussions of using carbon 
black in tyre products.

While the goal is to improve some properties, there are a 
number of negative effects that may develop in crosslinked filled 
elastomer matrices, due in part to the presence of filler particles, 
such as the Payne effect[23] and the Mullins effect.[24,25] In the 
former, the storage modulus decreases when the sample is sub-
ject to oscillatory perturbations of increasing strain amplitude; the 
severity of the effect depends on the amount of filler in the mate-
rial. The Mullins effect is the softening of the stress–strain curve 
below the all-time maximum deformation, relative to the first 
deformation to that maximum.[24,26,27] Unlike the Payne effect, the 
Mullins effect also occurs in elastomers without filler. The inclu-
sion of filler particles in elastomers can also lead to a shift in the  
glass transition temperature near the particles[28,29] where the poly-
 mer matrix is glassy in nature.[30] The physisorption of polymers 
by the fillers promotes the development of a network connecting 
the fillers, the so-called bound rubber layer, the elastomer that is 
nonextractable from a filled elastomer even with a good solvent 
such as toluene.[31–34] Of particular relevance to this study is the 
material strengthening of filled compounds in comparison to 
unfilled elastomers.[1,2,7,8,28,35,36] In fact, material reinforcement in 
a filled crosslinked compound is due to both the vulcanization of 
the rubber and the filler particle inclusion.[1,32]

In this study, we will focus on the filler particle concentra-
tion and its effect on the mechanical properties of unvulcanized  
filled elastomers using both experimental and computa-
tional approaches. We are specifically interested in the 
mechanical strengthening, as characterized by the shear 
relaxation modulus, that results from the inclusion of varying 
amounts of carbon black filler in high temperature flowing 

Mesoscale Simulation

The ability of a highly coarse-grained polymer model is explored to simulate 
the impact of carbon black (CB) filler concentration on the rheological 
properties of unvulcanized styrene–butadiene melts—an intermediate 
stage in the production of styrene–butadiene rubber (SBR) commonly 
used in tyres. Responsive particle dynamics (RaPiD), previously used to 
study dilute polymeric systems, models entire polymers as single particles 
interacting through a combination of conservative interactions and transient 
entanglement-mimicking forces. The simulation parameters are tuned to 
the linear rheology of the unfilled melt, as measured using a rubber process 
analyzer (RPA). For the filled compounds, only the interaction between the 
polymers and fillers is varied. On top of excluded volume interactions, a 
slight attraction (≈0.1 kBT) between polymers and fillers is required to attain 
agreement with RPA measurements. The physical origins of the small 
strength of this interaction are discussed. This method offers potential for 
future numerical investigations of filled melts.

1. Introduction

Rubber, both natural and synthetic, is soft and fragile and there-
fore unsuitable for applications where materials resistant to abra-
sion are required. With crosslinking and the addition of filler 
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unvulcanized elastomer matrices as encountered in the produc-
tion process of tyre rubber. In particular we are interested in 
the viscoelastic response for timescales up to 1 s, a timescale 
over which the compound does not yet undergo significant 
relaxation when subject to processing. The mechanical behavior 
and inelastic features of filled elastomers have previously 
been studied numerically using continuum models,[27,29,37–39] 
microscopic molecular dynamics (MD)[40–44] and mesoscopic 
dissipative particle dynamics (DPD).[2,28,45,46] Due to the exten-
sive time and length scales that are needed to resolve the 
macroscopic mechanical properties, some degree of coarse 
graining is a necessity. One such approach explicitly models 
only the filler particles while the rubber–filler interactions are 
included through micromechanical considerations[2] or in the 
interaction potential for the rubber itself.[28] In this feasibility 
study, we apply, for the first time, the highly coarse-grained 
approach known as responsive particle dynamics (RaPiD)[47–51] 
to simulate filled SBR compounds. In RaPiD, each elastomer 
or polymer is represented as a point particle with the dynam-
ical effects of the eliminated degrees of freedom retained to 
describe the viscoelastic response within and between particles. 
Using the RaPiD approach, we explicitly model all interaction 
types, i.e., polymer–polymer, polymer–filler, and filler–filler 
in the compound. In particular we will explore the effect of 
varying the interaction potential between the filler particles and 
the surrounding elastomer on the mechanical properties.

This paper is arranged as follows. In Section 2 we describe the 
materials used in this study, i.e., the styrene–butadiene melt and 
the carbon black, and the experimental apparatus, a rubber pro-
cess analyzer (RPA), used to measure the viscoelastic response 
of the samples. In Section 3 we outline the RaPiD algorithm. 
Comparison of the experimental and computational data is 
presented in Section 4.1 for the pure elastomer. In Section 4.2, 
we study the impact of the carbon black filler concentration on 
the mechanical properties of filled rubber compounds in both 
experiments and simulations. For the simulations, we vary the 
filler–rubber interaction potential to ascertain its relevance in 
strengthening the filled compounds. We end in Section 5 with a 
discussion of the simulation results and an outlook.

2. Experimental Section

2.1. Samples

The elastomer used in this study was a random non-crosslinked 
copolymer of styrene and 1,3-butadiene (SBR) rubber with a 
molecular weight Mw in the range 370 kg mol−1, a polydispersity 
index (PDI) of ≈2.1, and a glass transition temperature Tg ≈ 253 K. 
In measurements of the elastomer in tetrahydrofuran (THF) solu-
tion using gel permeation chromatography (GPC), the radius of 
gyration, Rg, of the polymers varied between 10 and 20 nm, with 
a small amount having an Rg up to 40 nm. Under melt condi-
tions, the size of the polymers was expected to be slightly smaller 
than in THF solution. Unfilled samples consisted of the SBR only 
without additives such as aromatic oils, hydrocarbon resins, plas-
ticizers, and liquid or rubber soluble chemicals.

For the filled SBR compounds, CORAX N660 carbon black 
(CB) supplied by Orion Engineered Carbons as was used as the 

filler component. The primary N660 particle was roughly spher-
ical with a mean radius of ≈31.5 nm. During production, however, 
these particles tend to fuse together to form “aggregates,” where 
the mean diameter of the aggregates is ≈85 nm, which in turn can 
coalesce to form larger filler “agglomerates.” Five batches of filled 
SBR samples with differing filler concentration were prepared, as 
qualified by the parts per hundred rubber (phr), or the filler mass 
added to every 100 g of SBR. All batches were prepared subject 
to the same mixing procedure on a Brabender 350 S using the 
following protocol. First, the elastomer was loaded into the mixer. 
After 90 s half of the carbon black was added and a further 60 s 
later the second half of the carbon black filler was loaded. After 
3 min 30 s the mixtures were subjected to a frequency sweep pro-
tocol, before dumping of the mixed compounds after 6 min. All 
mixtures were then processed on a two-roll mill. The mass of each 
unvulcanized sheet was ≈280 g. Each filled sample consisted of 
two components only—SBR polymer and the CB filler particles.

2.2. Measurements

The linear viscoelastic response of both filled and unfilled 
SBR samples was measured on the rubber process ana-
lyzer RPA 2000 produced by Alpha Technologies Co. (UK).[52] 
This RPA can be used to measure the dynamic properties of 
uncured rubber as well as rubber during cure and post-cure, 
and it is viewed as a world standard by many industrial and 
research organizations.[52] A smaller sample of mass 5 g was 
cut from each prepared mixture. This sample was then con-
tained within a die configuration consisting of two conical 
dies. Both dies can be heated using a direct contact foil heater, 
covering temperatures from room temperature to 503 K, with 
a resolution of ±0.3 K. In this study, the temperature in all 
measurements was maintained at 373 ± 0.3 K, which is rep-
resentative of the processing temperatures for these mate-
rials in manufacturing. The RPA applies strain to a sample 
by oscillating the lower die at frequencies in the range 
0.03–32 Hz (angular frequencies in the range 0.2 –200 rad s−1)  
at a strain of ≈1%. Torque transmitted from the lower die 
through the sample was measured by a torque transducer in 
the fixed upper die. In this study, interest was principally taken 
in the storage G′(ω) and loss G″(ω) moduli as functions of the 
angular frequency ω, or the related stress relaxation function 
G(t) as a function of time t (see the Appendix) for both filled 
and unfilled SBR samples. The measured torque values were 
converted into these moduli by the RPA’s internal computer 
system. Typical results for the unfilled sample and two filled 
samples are presented in Figure  1, where both moduli are seen 
to follow an ≈ω0.3 power law over the range from 1 to 200 rad s−1  
(Figure  1 a,b). With increasing filler fraction, the moduli are 
seen to rise and the gap between the moduli widens, while the 
power law exponent decreases to ω0.15 (Figure  1 c).

3. The RaPiD Algorithm

In the RaPiD model,[47–50,53–55] polymers are highly coarse grained 
to spherical point particles. The coordinates of the particles rep-
resent the center of mass positions of the polymers. Accounting 
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for the slowest eliminated internal coordinates of the polymers, 
i.e., the entanglement effects, is crucial to obtain the correct 
bulk rheological properties. As described in more detail below, 
this is realized by introducing auxiliary dynamical coordinates 
whose deviations from their equilibrium values creates a tran-
sient viscoelastic response. RaPiD has been successfully applied 
for the simulation of shear banding effects,[50] particle alignment 
in sheared viscoelastic fluids,[56,57] entangled polymer melts,[58] 
nonlinear flow rheology in polymer solutions[49] and star polymer 
melts,[47] flow of polymer solutions near solid interfaces[55] and 
anomalous polymer chain diffusion.[59] Since RaPiD is new to the 
rubber field, we present a brief overview of the RaPiD algorithm; 
the reader is referred to earlier work for further details.

3.1. Potential of Mean Force

Flory–Huggins theory[60–62] was originally developed for 
polymer-solvent lattice models. In this study it is used—off 
lattice and in the absence of solvent—as an effective density-
dependent potential with an asymmetric response to fluctua-
tions around the average. Its lattice gas analogue reproduces 
the equation of states of many molecular liquids reasonably 
well.[63,64] In RaPiD, the local polymer volume fraction φi near 
the center of the ith polymer is calculated using

∑φ
ρ

=
=

1
( )

max 1

p

w ri

j

N

ij  (1)

where ρmax is the maximal polymer melt density, the sum runs 
over all Np polymers in the system including polymer i, rij 
denotes the distance between two polymer centers, and w(rij) 
is an appropriately normalized weight function describing 
the density distribution associated with a polymer. As it is 
difficult to derive a precise function for w(rij), we selected a 
monotonically decaying function smoothly approaching zero 
at the cut-off distance rc = 2.5Rg. Details of this function are 
provided in ref. [56]. The total free energy of the system is cal-
culated by inserting the local densities in the theoretical expres-
sion from Flory–Huggins
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where p represents the number of Kuhn segments per 
polymer, kB is Boltzmann’s constant, T the temperature, and 
the Flory–Huggins parameter χ determines the fluctuations 
in the density inhomogeneity. Note that the above expres-
sion excludes the translational entropy of the polymers, as 
these are already accounted for by the simulated particles. 
A full derivation of this expression, starting from Flory–
Huggins theory, is provided in the Appendix of ref. [56]. The 
above equations define the thermodynamic behavior of the 
simulated polymer melt.

Macromol. Theory Simul. 2018, 27, 1800014

Figure 1. Frequency sweep measurement using a rubber process analyzer of the storage G′(ω) (open red circles) and loss G″(ω) (filled blue squares) 
moduli for a) an unfilled SBR polymer melt and for identical melts with b) 20 phr, and c) 100 phr N660 Carbon Black. Each curve represents an average 
over three samples. The dashed lines are ωγ power laws, where γ is the exponent and in (a) and (b) γ = 0.3 while in (c) γ = 0.15. The variances in the 
measurements over the three samples in all cases are up to 10% for all frequencies. Error bars are not included given that the markers are larger than 
the variances.
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3.2. Transient Forces

Central to RaPiD is the description of the viscoelastic response 
that arises in any polymer system when disturbed from equilib-
rium. In an equilibrium melt, adjacent polymers will impose 
topological constraints on each other. These can be referred to 
as entanglements, and develop since polymers cannot cross 
each other. Clearly, these entanglements are lost when a coarse-
grained model describes a polymeric system in terms of the 
polymers’ centers of mass coordinates only. In RaPiD, the 
number of entanglements between any pair of adjacent poly-
mers i and j is qualitatively accounted for by introducing the 
dynamical scalar variable nij. The reader is referred to a recent 
publication on extending this description to vectors.[54,65] The 
average number of entanglements between two polymers, in a 
melt in equilibrium, varies with the distance and is denoted by 
n0(rij). We assume that SBR polymers are well approximated as 
Gaussian chains, and hence that the monomers are Gaussian 
distributed around the center of mass of a polymer. The overlap 
of the monomer distributions of two polymers is then approxi-
mately a Gaussian in the distance rij between the two chains.[66] 
To avoid vanishing derivatives for short distances, we use the 
quadratically decaying approximation

( )
1 / for

0 for
0

c
2

c

c

n r
r r r r

r r
ij

ij ij

ij

( )= − ≤
>






 (3)

For two polymers in an equilibrium melt, their average number 
of entanglements as a function of the distance recovers 
〈nij(rij)〉 = n0(rij). Nonequilibrium conditions and thermal fluc-
tuations will cause nij to deviate from n0(rij) and thereby induces 
forces on the system. We define the “transient” potential

∑α [ ]Φ = −
<

1
2

( )t 0
2

n n rij ij

i j  

with the positive α denoting the strength, to derive the forces 
acting on the particles and on their number of entanglements. 
This quadratic function was introduced by van den Noort et al.[50] 
and represents the tendency of the system to relax to equilib-
rium by simultaneously adjusting the polymer positions and 
their number of entanglements. The relative relaxation rates of 
these two processes, to be discussed in the next section, deter-
mines which process dominates. The additional potential, with 
contributions for every particle pair with rij ⩽ rc, does not alter 
the thermodynamic behavior set by the Flory–Huggins potential.

3.3. Propagator

Configurations are propagated in time by a Brownian dynamics 
scheme, subject to the two potentials discussed above.[50] The 
displacement of particle i over a time step dt reads as
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The first term on the righthand side represents (minus) the 
total potential force on the particle, and translates into a drift 
velocity upon division by the particle-dependent friction coef-
ficient. The latter varies with the particle’s entanglements via

∑ξ ξ= | | ( )e 0n n ri ij ij

j  
(6)

where ξe represents the friction per entanglement. The second 
term in the equation of motion accounts for the position-
dependence of this friction coefficient in the Itô representation, 
i.e., all terms are evaluated at the same time t, followed here. 
The final term in Equation (5) represents the erratic Brownian 
motion of the particle, where Θi  is a time-dependent Marko-
vian random vector composed of three independent compo-
nents with unit variance, zero mean and without correlations 
across particles. The strength of these stochastic contributions 
is related to the friction and temperature by the fluctuation–dis-
sipation theorem, which is included in the last term.

The evolution of the number of entanglements nij follows 
the expression

ατ ατ
= − ∂Φ

∂
+ Θd

1
d

2 dt Bn
n

t
k T t

ij
ij

ij

 
(7)

where the first term on the righthand side results in the exponen-
tial relaxation of nij to n0(rij) with a characteristic relaxation time τ, 
while the second term describes Brownian fluctuations. The time-
dependent Markovian random numbers Θij have zero mean, unit 
variance, and are uncorrelated across particle pairs. Again, a fluc-
tuation–dissipation theorem couples the strength of the stochastic 
term to the friction (ατ) in the first term. Since polymers in close 
proximity to each other tend to be more interwoven, and conse-
quently relax their entanglements slower than the less entangled 
polymers at larger separations, the relaxation time is expressed as

τ τ
λ

= −






( ) exp0r

r
ij

ij

 
(8)

with τ0 the relaxation time at zero distance and λ the decay  
distance of the relaxation time.

3.4. Filler Particles

For this study, the carbon black filler particles are approximated as 
spherical colloids. To keep the computational demands manage-
able, the radius of these particles was taken as Rf = 2Rg = 20 nm, 
about two-thirds of the radius of the primary carbon black parti-
cles. Two particles i and j interact by a purely repulsive potential

φ =






�( )ff ff
ff

8

r
a

d
ij

ij  

(9)

based on the nearest distance between their surfaces, dij = rij − 2Rf. 
The strength and length scale are set as εff = 4kBT and aff = 0.1Rg, 
respectively. The filler particles are propagated by conventional 
Brownian dynamics, with a friction constant ξf = 7 × 10−7 kg s−1, 
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a value previously used in simulations of colloids in a wormlike 
micellar solution.[56] This value is also comparable to the SBR 
entanglement friction given in Table  1. In simulations with inert 
filler particles, their interaction with the polymers is described by a 
potential based on the sphere-polymer distribution function[67]

( )
Φ = −

+ −











�( ) exp
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rep g f

2

pf
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r R R

b
ij

ij
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with strength =� 100pf
rep

Bk T  and decay distance = 1
2

pf gb R . The 

conformational flexibility of the polymer makes this potential 
very soft; a polymer’s center of mass may even reside within 
a filler’s excluded volume—while the polymer’s atoms clearly 
may not—for a polymer wrapped around a filler particle. 
Reversible attachment of polymers at the fillers surface is mod-
eled by a standard Lennard-Jones potential

σ σ
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with strength �pf
LJ and radius σpf = Rf = 2Rg. Since the bound 

rubber layer surrounding a filler particle typically measures 

around 10 nm in thickness,[1,9,28–30,35] the potential is smoothly 
truncated at a distance of Rf + 10 nm = 3Rg. This approach does 
not account for individual monomers of a particular polymer 
being closer to the filler than the center of mass of the polymer.

3.5. Simulation Set Up

The model parameters entering the simulations were, as much 
as possible, based on the properties of the experimental sam-
ples. An overview of these parameters is provided in Table  1. 
For convenience, the polymers are assumed monodisperse. The 
monomer density in a melt will be close to ρmax, resulting in 
local volume fractions φi close to unity. Since this leads to the 
divergence of the Flory–Huggins free-energy, see Equation (2), 
we use the expedient of reducing the average mass density to 
ρp = 0.9ρmax. A satisfying homogeneous melt was obtained by 
selecting χ = 0.5. The simulation parameters relating to the 
entanglements are less straightforwardly related to the poly-
 mer characteristics. Instead, the values of α, ξe, τ0, and λ are 
obtained by tuning the stress relaxation modulus of the simu-
lated melt to the experimental counterpart, as discussed in the 
results section.

All simulations were performed using cubic boxes subject to 
periodic boundary conditions. For the unfilled melt, the system 
was initialized by randomly distributing 1500 polymer particles 
in a box with sides of L = 8Rg. Filled systems were initiated by 
randomly placing Nf = 40 spherical filler particles in the box, 
subject to excluded volume constraints. Boxes with a filler con-
tent of x phr have edges of length

π ρ
ρ

= +


















4
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100

g f
f
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1
3

L R N
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(12)

Polymer particles are placed randomly, at a density ρp, 
throughout the volume not already occupied by the filler par-
ticles. With x varying from 20 to 100, box sizes range from 
≈16 to ≈25Rg and the number of polymers varies from 8805 to 
44028.

4. Results

4.1. Rheology of Unfilled SBR

The experimental storage and loss moduli of the unfilled 
SBR sample are presented in Figure  1 a. The corresponding 
stress relaxation function, requiring four Maxwell modes (see 
Appendix) for a good fit over the frequency range, is shown 
in Figure 2, with the coefficients of ( )4

expG t  summarized in  
Table 2. The fit reveals that the relaxation time of the fourth 
mode is considerably longer than that of the three other 
modes, and thereby presents a severe challenge to the simula-
tions. Rather than being diverted by the very long simulations 
required to establish simulation parameters that reproduce 
this wide range of time scales, we suppress the fourth mode 
to gain access to our research question, the impact of filler 
particles on the melt rheology in RaPiD. To retain the plateau 
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Table 1. Summary of the properties of the styrene–butadiene rubber 
(SBR), the N660 Carbon Black filler particles, and the parameters 
entering the simulation. The experimental linear rheology of the unfilled 
SBR is reproduced in the simulations by tuning the bulk parameters α, 
ξe, τ0, and λ.

Description Symbol Value Unit

Polymer characteristics

Molecular weight Mw 370 kg mol−1

Polydispersity index 2.1 –

Radius of gyrationa) 10, 20, 40 nm

Radius of gyration in simulations Rg 10 nm

Kuhn segments per polymer p 3000 –

Bulk parameters

Flory–Huggins parameter χ 0.5 –

Entanglement fluctuations α 15 kBT

Entanglement friction ξe 1 × 10−6 kg s−1

Maximum relaxation time τ0 5 s

Decay length of relaxation time λ 0.5 Rg

Mass density of polymer melt ρmax 900 kg m−3

Glass transition temperature Tg 253 K

Experimental conditions

Temperature T 373 K

Filler particles (CB N660)

Average particle radiusb) 31.5 ± 18 nm

Particle radius in simulations Rf 20 nm

a)Measured in THF solution using GPC.; b)CORAX technical datasheet.
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value of ( )4
expG t  at low times, we construct ( )3

expG t  by copying 
the parameters of the first three modes and adding the ampli-
tude of the fourth mode to the amplitude of the third mode  
(see Table  2). Plots of the resulting stress relaxation modulus 
and of the storage and loss moduli are presented in Figure  2 
and Figure  3, respectively. In the time domain, it is clear that the 
short-time response has been conserved while the slow decay 
beyond 0.1 s scale has been curtailed. In the frequency domain, 
the four-mode fit closely follows the experimental data over the 
entire frequency domain of the measurements With the exclu-
sion of the fourth mode, the crossover frequency shifts from 
ω ≈ 10−2 rad s−1 (outside the experimental range) to ω ≈ 3 rad s−1.  
More importantly, the three-mode Maxwell model gives a rea-
sonable description of the experimental storage and loss moduli 
for 3 ⩽ ω ⩽ 102 rad s−1, with the most pronounced deviation 
at the low frequency end. We will therefore focus on this fre-
quency range in simulations and experiments of unfilled and 
filled SBRs.

The dynamics-related parameters of the RaPiD model are 
obtained by trial-and-error optimization of the agreement 
between the simulated stress relaxation function Gsim(t) and 
the three-mode experimental curve ( )3

expG t . To outline the 

optimization process we summarize here the findings of an 
extensive parameter study with RaPiD.[49] First, the initial pla-
teau value of Gsim(t) increases with the strength α of the tran-
sient forces. Second, slowing of the dynamics can be achieved 
by increasing the time constant τ0 and/or the friction coeffi-
cient ξe, thus shifting the curve to longer timescales. Finally, 
the transition from plateau to the tail becomes smoother with 
the introduction of more relaxation times by decreasing the 
relaxation distance λ.

The best fit for the data set from Figure  1 a is presented in 
Figures  4 and 5 in the time and frequency domain, respectively 
with the parameter values given in Table  1. Good correspond-
ence is achieved between the simulated stress relaxation  
function and the target function ( )3

expG t , while a satisfactory 
agreement is obtained for the storage and loss moduli for  
ω > 3 rad s−1. First, the strengths of the dominant mechanisms, 
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Table 2. Coefficients obtained by fitting the experimental storage and 
loss moduli of the unfilled SBR melt with a four mode Maxwell model 
(see Equations (A.5) and (A.6)) and their reduction to a three mode 
model.

n = 4 n = 3

i Gi [Pa] τi [s] Gi [Pa] τi [s]

1 125.3 0.011 125.3 0.011

2 31.9 0.038 31.9 0.038

3 54.3 0.287 80.9 0.287

4 26.6 7.511

Figure 3. The storage (red) and loss (blue) moduli calculated from the 
four-mode ( )4

expG t  (solid lines) and three-mode ( )3
expG t  (dashed lines) fits 

to the experimental data (markers) for the unfilled SBR melt. The solid 
black line is approximately the lowest frequency of relevance in this study.

Figure 4. Stress relaxation moduli for the unfilled SBR melt in the RaPiD 
simulations, Gsim(t) (open red circles), and the target ( )3

expG t  extracted 
from the experiments (solid line). The slight step in ( )3

expG t  around  
5 × 10−2 s is an artefact reflecting the low number of Maxwell modes, and 
therefore was ignored when tuning the simulation model.

Figure 2. The stress relaxation moduli ( )4
expG t  of the unfilled sample 

(solid line), obtained by fitting the experimental data in Figure  1 with 
four Maxwell modes. The slowest mode has been removed in ( )3

expG t  
(dashed line), while increasing the weight of the slowest-but-one mode, 
see Table  2. The fluctuations in the curves result from the limited number 
of Maxwell modes in the fits.
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i.e., viscous response below the crossover frequency and elastic 
response above this frequency, are well described by the simula-
tion model. Second, the crossover frequency for the simulation 
trends is slightly higher than for 3

expG . Third, the low frequency 
range of 3

expG  is well-fitted. Only for the loss modulus at high fre-
quencies do we observe an appreciable deviation, approaching 
an order of magnitude at the end of the experimental frequency 
range. We do not expect to recover agreement at this large fre-
quency range, i.e., ω > 100 rad s−1, as RaPiD is unable to resolve 
this range due to the coarse-graining of all degrees of freedom 
associated with a high frequency response. This behavior has 
been observed in previous studies with RaPiD.[47,49] In conclu-
sion, the model provides an adequate description of the linear 
rheological response of an unfilled SBR melt over the time and 
frequency ranges of interest in this study.

4.2. Rheology of Filled SBR

We now turn our attention to the impact of filler particles on 
the rheological properties of the SBR melt. We highlight that 
for simplicity the filler particles are represented as individual 
spherical particles rather than nonspherical aggregates as in the 
experimental samples, as we are principally interested in a qual-
itative description of the rheological properties. Experimental 
data on two filled samples are provided in Figure  1 b,c. These 
figures clearly show that the inclusion of filler particles and 
the introduction of interfacial bound rubber layers, both with 
their own rheological properties, affect the overall viscoelastic 
response of the samples. The generalized Maxwell model is 
again applied to convert the moduli into a stress relaxation func-
tion, this time requiring five modes for an adequate descrip-
tion over the entire frequency range. Akin to the situation for 
the unfilled sample, the last mode is considerably slower than 
the preceding modes. Since we are mainly interested in the 
angular frequency range accessible by simulations, from 1 to 
100 rad s−1, we once more eliminate the last mode after adding 

its weight to that of the penultimate mode to retain the short-
time plateau in G(t). The four-mode stress relaxation functions 

( )4
expG t  extracted from the experiments on the filled samples 

are collected in Figure  6. With increasing filler fraction, the 
short-time plateau steadily increases in height and lasts for 
longer times. The rise of the plateau value with filler concentra-
tion is monotonic, though the samples with 20 and 40 phr are 
remarkably similar up to the 0.1 s time scale, while the onset 
of the decaying tail is less regular. The changes in the moduli 
are in part due to the rigid filler particles and in part due to the 
interaction between fillers and polymers. In exploring whether 
these effects can be described qualitatively and quantitatively by 
the RaPiD model, it is assumed that the parameters of the melt 
remain unchanged. We impose the restriction that the freedom 
in optimizing the agreement between experiments and simula-
tions is limited to the polymer–filler interaction from now on.

The simulated stress relaxation functions of filled melts with 
the filler particles interacting by excluded volume interactions 
only, see Equations (9) and (10), are presented in Figure  7. With 
increasing filler concentration the initial plateau rises and the 
onset of the tail is delayed, but the shifts are less pronounced 
than for the experimental samples. The nonmonotonic incre-
ment of the plateau value probably reflects the limited length 
of the simulations. The inclusion of polymer–filler binding 
appears to be imperative to recover quantitative agreement with 
the experimental data.

The effect of an attractive CB–SBR interaction on the stress-
relaxation functions of the filled SBR compounds is shown in 
Figure  8. By varying �pf

LJ  we explored its effect on Gsim(t) for all 
filler concentrations. Interestingly, a small interaction strength 
of =� 0.1pf

LJ
Bk T  suffices to quantitatively recover the experi-

mental material reinforcement with increasing filler concentra-
tion, see Figure  6, unlike the modest increase obtained with 
purely repulsive CB–SBR interaction. To highlight this effect, 
the plateau values of G(t) at t = 10−3 s for the experimental and 
simulated systems are collected in Figure  9. The system with 
a weakly attractive CB–SBR interaction qualitatively reproduces 
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Figure 5. The storage (red) and loss (blue) moduli of the unfilled SBR 
melt as obtained by experiments (markers), the three-mode approxima-
tion 3

expG  (dashed lines) and the RaPiD simulations (solid lines). The 
solid black line is approximately the lowest frequency of relevance in this 
study.

Figure 6. Stress-relaxation functions ( )4
expG t  constructed by fitting the 

experimental data with a generalized Maxwell model, for SBR melts 
containing 20–100 phr N660 Carbon Black (see legend). The relaxation 
function ( )3

expG t  of the unfilled melt (0 phr) is included for comparison 
purposes (dashed line).
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the trend of increasing the plateau by over an order of magni-
tude with the inclusion of 100 phr filler particles, even obtaining 
near quantitative agreement at both 20 and 100 phr, while the 
system with a purely repulsive CB–SBR interaction shows in a 
substantially smaller increment of the plateau. Comparing the 
experimental stress-relaxation functions of Figure 6 with their 
simulation counterparts in Figures  7 and 8, one notices that 
the onset of the exponential tail becomes modestly delayed with 
increasing filler fraction in the experimental systems, the delay 
has largely vanished in the simulated systems with excluded 
volume interactions, while the simulated systems with weak 
attractions show an earlier onset of the exponential decay. The 
earlier onset of the exponential decay in Figure  8 in comparison 
to the case with a repulsive polymer-filler interaction (Figure  7) 
may be due to a number of factors such as the nature of the 

polymer–filler attraction. Further exploration of this interac-
tion potential and also the filler geometry in future simulations 
would prove useful towards understanding this response.

The storage and loss moduli for the 100 phr compounds 
with weakly attractive CB–SBR interactions have been calcu-
lated from Gsim(t) using Equations (A.3) and (A.4). The results 
are presented in Figure  10, along with the experimental 
storage and loss moduli at 100 phr and the moduli extracted 
from ( )4

expG t . Recall that the low-frequency terminal region to 
( )4

expG t  is artificial as we have excluded the slowest relaxation 
mode from the generalized Maxwell fit to the experimental data, 
and a similar procedure was applied to obtain the target stress-
relaxation function at 0 phr to which the simulation parameters 
of the melt were tuned. Given these conditions, the agreement 
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Figure 7. Stress relaxation functions G(t) in RaPiD simulations for SBR 
melts containing inert spherical filler particles at concentrations from 20 
to 100 phr (see legend). The relaxation function ( )3

expG t  of the unfilled 
melt (0 phr) is included for comparison purposes (dashed line).

Figure 8. Stress relaxation functions G(t) in RaPiD simulations for SBR 
melts containing noninert spherical filler particles, at concentrations 
from 20 to 100 phr (see legend), for a filler–polymer binding strength 

0.1pf
LJ

B=� k T . The relaxation function ( )3
expG t  of the unfilled melt (0 phr) 

is included for comparison purposes (dashed line).

Figure 9. Comparison of the magnitudes of the plateau values of G(t) 
at t = 10−3 s from experiments (Figure  6), from simulations with purely 
repulsive CB–SBR interactions (Figure  7) and from simulations with 
weakly attractive CB–SBR attractions (Figure  8, 0.1pf

LJ
B=� k T ).

100 101 102

ω [rad/s]
104

105

106

107

G
’(ω

), 
G

’’(
ω

) [
Pa

]

G’(ω)

G’’(ω)

Figure 10. Comparison of the storage (in red) and loss (in blue) moduli 
from experiments (open circles), Fourier transform using Equation (A.3) 
and Equation (A.4) of ( )4

expG t  (dashed lines) and from RaPiD simula-
tions (solid lines) for 100 phr. The CB–SBR interaction is the attractive 
Lennard-Jones potential given by Equation (11). The solid black line is 
approximately the lowest frequency of relevance in this study.
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in Figure  10 is reasonable, with the simulated moduli being 
of the same order as the experimental moduli over nearly two 
decades in frequency space, although it is also evident that the 
model does not capture the approximately power-law behavior 
of the experimental data. The best qualitative agreement is 
observed for G′(ω) where simulations replicate the experi-
mental data well within an order of magnitude for ω > 6 rad s−1. 
The simulations overestimate G″(ω) over the frequency range 
up to the maximum frequency accessible to experiments ω ≈ 
200 rad s−1. However, it does so by less than an order of magni-
tude in this frequency regime. Quantitative differences between 
the simulations and experiments, particularly in relation to the 
crossover of G′ and G″ in Figure  10, can in part be attributed 
to differences in the description of the filler particles. The accu-
rate inclusion of filler aggregates, such as those found in the 
laboratory experimental samples, may also require changes to 
the filler–polymer interaction. A description of filler aggregates 
is outside the scope of this preliminary study but will be consid-
ered in the next model iteration.

5. Discussion and Conclusion

In this proof-of-concept study, RaPiD was applied for the first 
time to SBR melts and SBR-melts filled with CB. In RaPiD, an 
entire polymer is modeled as a single anisotropic particle inter-
acting with its neighbors by a conservative potential as well as 
by transient forces qualitatively accounting for entanglement 
effects; the fillers are represented here as spherical inclusions. 
The standard potentials used here could be tuned to yield sat-
isfactorily qualitative agreement with experimental data on 
the pure melt, suggesting that further improvements can be 
achieved by continued development of these potentials. Upon 
inserting filler particles in the simulations, only the polymer–
filler interactions were tuned to obtain qualitative agreement 
with experimental data on filled melts.

Of general interest is the interaction between the filler par-
ticles and the polymers. The simulations indicate that merely 
accounting for the excluded volume interactions does not suf-
fice to explain the increase of the plateau value of the stress 
relaxation function with increasing filler fraction. Instead, 
an attraction between fillers and polymers is required. The 
optimum interaction strength established in this study, 

=� 0.1pf
LJ

Bk T , indicates that this strength is not related to the 
polymer–filler binding interaction, which clearly is much 
stronger. We surmise that this low value reflects the effective 
strength of the interaction between two filler particles gener-
ated by the intermediate polymers. At the atomistic level the 
attraction results from polymer bridges connecting two filler 
particles acting as entropic-springs between the filler particles, 
whereas in the highly coarse-grained simulations this effect is 
mimicked by polymer particles positioned between two filler 
particles exerting weak attractive forces on both filler particles.

Having established that RaPiD can qualitatively capture the 
main features of an SBR melt and CB-filled SBR melts, the 
challenge for future work is to improve the model to obtain 
a more quantitative agreement with predictive potential. 
This model could be used to study the distribution of filler 
clusters, to investigate the effect of differing filler types and 

geometries on the material strengthening and to explore the 
emergence of the Payne and Mullins effects in crosslinked 
filled elastomers. Investigation of the Payne and Mullins 
effects will require the inclusion of irreversible breaking 
interactions. We could also use the model to calculate esti-
mates of the confidence intervals for the RaPiD parameters 
in a similar manner to our previous study.[49] In addition, 
the nonlinear rheological response of the crosslinked filled 
elastomers will be explored. Earlier simulations with the 
RaPiD model indicated that the conservative potential affects 
the storage and loss moduli at high frequencies, hence fur-
ther developments in that area are needed to improve agree-
ment with experiments on melts for high frequencies. At 
low frequencies, the procedure to remove the slowest mode 
must be reconsidered and the frequency range of the model 
should be extended to include more slow modes. The filler 
particles in the simulations were simple spherical particles, 
whereas carbon black used in SBR melts consists of fractal 
aggregates of near-spherical primary particles. These complex 
shapes are likely to affect their ability to bind polymers, con-
tributing to the so-called occluded rubber, and will alter the 
steric interactions between the aggregates. Using a recently 
developed algorithm for the translational and rotational 
Brownian dynamics of arbitrarily shaped rigid clusters,[68] it is 
becoming possible to explore the impact of (distribution of)  
filler clusters on the rheology of melts. The effect of variable 
filler particle geometry and size on the material strengthening 
will be explored in a future investigation. This is currently 
a highly debated topic in the field of filled elastomers.[69–72] 
However, additional developments of the model will be nec-
essary to include the presence of permanent crosslinks in 
rubber. 

Appendix: Moduli 

In RaPiD simulations, the stress tensor at time t is calculated as

∑σ = −αβ α β
<

( )
1

, ,t
V

r Fij

i j

ij

 
(A.1)

where V denotes the volume of the system, the sum runs over 
all particle pairs, rij, α denotes the α component of the vector 
connecting two particles i and j, and Fij, β is the β component of 
the conservative forces between these two particles. The stress 
relaxation modulus is obtained as the autocorrelation of the off-
diagonal elements of the stress tensor

σ τ σ τ= +( ) ( ) ( )sim

B

G t
V

k T
txy xy

 
(A.2)

where the average is over the time τ. The storage and loss 
moduli, as measured by the RPA, then follow from

∫ω ω ω′ =
∞

( ) sin( ) ( )d
0

G t G t t
 

(A.3)

( ) cos( ) ( ) d
0

G t G t t∫ω ω ω′′ =
∞

 
(A.4)
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In practice, this requires the judicious fitting of the slowly 
decaying noisy tail to Gsim(t) with a decaying exponential, fol-
lowed by combined numerical and analytical evaluation of the 
integrals. The alternative sees the measurement data converted 
from the frequency domain to the time domain by fitting the 
data over the available frequency range with an n mode general-
ized Maxwell model,

∑ω τ ω
τ ω

′ =
+=

( )
11

2 2

2 2G Gi

i

n
i

i  
(A.5)

∑ω τ ω
τ ω

′′ =
+=

( )
11

2 2G Gi

i

n
i

i  
(A.6)

where Gi and τi are the strength and characteristic time of the 
ith Maxwell mode respectively. Using the 2n parameter values 
obtained by a least squares fit of the logarithm of the theoretical 
moduli to their experimental counterparts, the stress relaxation 
modulus is calculated as

∑ τ= −
=

( ) exp( / )exp

1

G t G tn i

i

n

i

 
(A.7)

Both conversions are used in this study.
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