
1

An integrative versioning workflow
for 3D City Model maintenance

Konstantinos Mastorakis

Delft, November 2020

Supervisors:

Hugo Ledoux, TU Delft

Stelios Vitalis, TU Delft

Maarten Vermeij, Gemeente Rotterdam

2

• Why maintaining a 3D city model at first place?

 Improve the way they are currently “updated”

 Keep up with reality / Urban fabric changing very fast

 Maximize its value / Attract more users

Introduction

Biljecki, 2015

3

• Design a maintenance workflow for 3D City Models

 Two main components:

 Visual editing platform (Up3date: a Blender add-on)

 Perform all changes via a graphical environment

 Versioning Control System (VCS) for 3D City Models (Git-

based)

 Keeping track of history

 Concurrent Updating

Motivation

4

Research Questions

 To what extent can a Git-based versioning approach be

used for the maintenance of a 3D City Model of a typical

municipality?

 What would be a conceptual workflow that would make this

approach practical and manageable?

 How can the maintenance process be improved by

combining the versioning workflow with 3D visual editing

capabilities of the model?

5

• 3D City Model of the municipality of Rotterdam

 Initiated in 2011 as proof of concept

 Remodeled from scratch in 2016

 Contains LoD 0, 1, and 2 buildings, trees, infrastructure...

 New iterations in a biennial life-cycle

 Outsourced to third parties

Use case (1/2)

6

Use case (2/2)

7

Related work

• CityJSON: A compact and easy-to-use encoding of the

CityGML data model (Ledoux et al, 2019)

• Git: Distributed VCS for source code files

• A data structure to incorporate versioning in 3D city models

(Vitalis et al, 2019)

• CityGML v3.0. versioning module: A data model that

allows versioning in CityGML files

• Scenario ADE: An extension of the CityGML v.2.0 data

model for virtual scenario testing

8

Introducing the workflow

9

The core workflow

 Instance: A 3DCM file representing the model at a given

time point

 Versioned file: A file used as a repository that contains

multiple instances and their metadata.

 The core workflow:

10

The multi-branch structure

 4 conceptual branches: Main, Maintenance, Scenario,

Release

11

• When the VCS does not know how to integrate

information of 2 -to be merged- branches.

 Example: Two maintainers change the same information entity in

two different ways

Merging conflicts
No conflict Conflict

12

• The deepest hierarchical level (within a 3DCM file) at

which the VCS can still “distinguish” the information as of

different kind

 In software development that entity is every line of code

 With 3DCM things are not so trivial

 Nested file structure

 Multiple type of information (descriptive, geometric, semantic)

 Arbitrarily chosen upon the conceptualization of the VCS

 The lower it gets the more complicated it is to make the VCS

robust; but it makes the VCS (potentially) smarter

 The higher it gets the more conflicts will be raised; human

supervision is maximized, and information loss is limited to

human error

The smallest entity

13

• Choosing which instance should be kept

 Programming software to resolve them

 Predefined ways of resolving a conflict from the VCS (not

necessarily meaningful)

 Requires VCS to have cognitive abilities (ΑΙ) which is not the

case at the moment

 Let the user decide how to resolve

 Resolution is guaranteed to be meaningful

 Maximizes human supervision

 Can become time consuming

• In practice, manual resolution superior to “automatic”

Resolving conflicts

14

Workflow Implementation

15

• CityJSON versioning prototype (CJV)
 Software implementation of the data structure for 3DCM

versioning (Vitalis et al 2019)

 Conceptually based on Git’s architecture

 Uses a “versioned” CityJSON file (vCityJSON) as a repository

 Building (CityObject) is the smallest entity

 Command line interface

• Up3date

 Blender add-on able to visualize, edit and (lossless) export multi-

LoD 3DCMs encoded in CityJSON v.1.0

 Saves attributes, semantic information and parent-child relations

 Developed in Python using Blender’s API (v.2.80 or higher)

Implementation components

16

From concept to implementation

17

Testing

18

• Dataset: B-3_18_LoD0_LoD1_LoD2.gml (CityGML v.2.0

encoded)

 Convert to CityJSON v.1.0 with citygml-tools

 Imported into Blender with Up3date

 Export unedited for ordering the CityObjects alphabetically and

remove duplicate vertices (“normalized” dataset)

Data preparation and repository

initialization

19

 Visually adding, deleting and editing (geometries +

attributes) CityObjects via Up3date works seamlessly

 CJV performs as expected “understanding” all

changes correctly

Fundamental operations

20

Simulating the testing and

implementation of new scenarios

21

• The shape of a roof needs to be decided to maximize its

solar capacity depending also on a nearby building which

is going to be extended upwards

 For this scenario two users are considered to be working

on the model concurrently:

 1 user is responsible for re-shaping the roof

 2 user is responsible for extending the nearby building

upwards to the appropriate height

 After both are done working individually they commit the

changes to scenario where a solar capacity analysis can

be performed

Scenario explanation (1/2)

22

•

Scenario explanation (2/2)

23

Committing and merging scenario(s)

24

Simulating Conflict Scenarios

25

• Mingle order of attributes (1/2)

Conflict Scenarios

Original order After re-ordering

26

• Mingle order of faces (1/2)

Conflict Scenarios

Before re-ordering

After re-ordering

27

• Overwrite different “piece of information” within the same

object (1/2)

 Two branches (master and testing) created to simulate the

different instances

• Postal code changed and committed to master

• Street Number changed and committed to testing

Conflict Scenarios

28

Conclusions

29

• Defining the “smallest entity” wisely is crucial!

• Answering the research questions:
• Git-based VCS is a very promising solution for 3DCM versioning

 Increases the 3DCM data value with regular updates

 Τracks history automatically

 Branching is simple / Allows concurrent maintaining

 Git’s built-in operations match Rotterdam’s key points

 Distributed architecture optimal for 3DCM versioning

• Visual editing capabilities are more important than expected

 Simplifies the creation of the next instance of the 3DCM

 Maintainers don’t have to be experts with 3DCM data models

 Complex geometric editing (reshaping a roof) is next to

impossible without a GUI

Conclusions

30

• When mingling its order of attributes and/or faces…

 Can an object be considered the same?

 Open for discussion… but:

 From a developing point of view the answer should be

positive

 For a robust system the answer should be negative but smart

mechanisms should be developed (normalization /

alphabetical / lexicographical ordering might prove useful)

(A bit more philosophical) conclusions

31

 CityGML v.3.0 versioning module
• It introduces information redundancy within the data model which

is not optimal for versioning

• Both versions and transactions between versions have to be

stored alongside and be “synced”

• Creates many potential break points

 Transaction types are also predefined by the data model

which is limiting the versioning robustness without any

significant practical benefit

 Software implementations for gml-based formats are not

straightforward

Practical comparison with other

potential solutions

32

• Pilot testing the workflow for gathering real feedback and

moving the workflow from prototype to more operational

 Defining the optimal “smallest entity” with real world

feedback

 Invest into training practitioners to familiarize with the

technical aspects of the workflow

 Investigate into maintaining the model either in tiles or as a

whole

How can Rotterdam benefit from the

workflow (by investing resources)

33

• No need to outsource

 In house maintaining by visually updating the 3DCM

 Automatic history tracking (of every tile) / No need to

keep previous iterations outside the VCS

 Saves considerable financial resources (approx. 60k

euros every 2 years)

• New ideas and scenarios can now be tested

• Exporting a subset via Up3date (already possible through

their platform)

How can Rotterdam benefit from the

workflow (without investing resources)

34

• 3DCityDB (currently the platform for storing the 3DCM)

might support CityJSON since the former uses citygml4j

which already supports the CityJSON format.

 Integration of the workflow with the currently existing

platform will be significantly simplified

 Ideally the suggested workflow could be further

developed to work directly on the 3DCityDB platform if

CityJSON gets supported

What is likely to be improved anyway

35

• Integrate validity check within the workflow
 val3dity

• Merging subsets back to the repository
 Requires merging 3D geometries

• Combine the add-on with GIS capabilities
 Blender-GIS

• Investigate into updating BAG from the 3DCM

maintenance

• Create an automatic generator of “striped” instances for

the release branch

• Incorporate and handling of building textures

Future work for enhancing the workflow

36

Thank you!

37

The CityGML v.3.0 versioning module

38

CityJSON

• An alternative encoding to the

CityGML data model

• Designed with software

developers in mind

• Based on the JSON notation,

compact and flat

• Supported by all modern

programming languages

39

Git

• Solution developed to maintain

source code files for software

developers

 Distributed architecture

 Most popular VCS

 Stores snapshot of every version

instead of differences (deltas)

between two consecutive ones

 Branching made simple

Driessen, 2010

nobledesktop.com

Driessen, 2010Driessen, 2010

40

A data structure for incorporating

versioning in 3DCM (Vitalis et al, 2019)

• Wraps around the CityJSON v.1.0 data model and

encoding

• All versions of the model stored in one file (repository)

• Each version has metadata (author, date, message)

Vitalis et al, 2019

41

Maintenance iterations frequency

 Fixed number of buildings

 New iteration when a predefined building count (X) is met

 X= Total buildings that need maintenance per year / Working

days of the year

 Favors consistency with respect to workload

 Fixed time interval

 New iteration after a predefined period of time

 Favors consistency with respect to time

42

Visually edit an object’s geometry (1/2)

43

•

Visually edit an object’s geometry (2/2)

44

•

Delete whole object (1/2)

45

•

Delete whole object (2/2)

46



Exporting a subset (outside of VCS)

47

• Edit an attribute of an object

• Edit the geometry of an object

• Delete a whole object

A simple maintenance case

Each edit is independently

committed to maintenance

Maintenance is (fast-forward)

merged into main

48

Merging maintenance into main

49

Log after merging scenario_1 into for scenario Log after merging scenario into main

