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Abstract
Bayesian Optimisation (BO) is a sample-efficient method for optimising expensive black-box
functions, making it particularly suitable for engineering problems where gradients are unavail-
able and evaluating the objective or constraints is computationally costly. However, such problems
often involve high-dimensional inputs and a large number of constraints, posing significant chal-
lenges for standard BO frameworks. While prior research has addressed scalability with respect to
high-dimensional inputs in constrained settings, efficiently handling large numbers of constraints,
i.e. high-dimensional outputs, remains an open problem. This work introduces Autoencoder-
Enhanced Joint Dimensionality Reduction for Constrained BO (AERO-BO), a framework that
performs dimensionality reduction in both the input (design variable) and output (objective and
constraint) spaces via autoencoders. These autoencoders are trained online, requiring no pre-
training, and their respective latent representations are connected through Gaussian Processes,
which serve as surrogate models during optimisation. By operating in a joint latent space, AERO-
BO enables scalable and efficient optimisation in settings with hundreds of design variables and
thousands of black-box constraints.

1. Introduction

Engineering problems often aim to optimise performance, cost, and other objectives. In many cases, it
is not straightforward to explore the global design space to identify the best combination of parameters.
These challenges arise, for example, in the design of aerospace structures, where numerous constraints
must be satisfied to ensure stability (Maathuis et al 2025), or in drug design, where factors such as syn-
thesisability and the compounds toxicity may impose additional restrictions (Heifetz 2024). However,
many of those problems involve complex models where obtaining analytical or numerical gradients is
impractical or impossible. The objective function and constraints in such problems are not only com-
putationally expensive to evaluate but may also be noisy, further complicating the optimisation process.
These challenges, often encountered in engineering disciplines, give rise to so-called black-box problems,
where only the input–output relationship of the model can be observed. Bayesian optimisation (BO)
has emerged as a powerful and efficient method for addressing this challenge. It leverages a probabil-
istic model, frequently a Gaussian Process (GP), to approximate the objective function and constraints
and intelligently guide the search for optimal solutions. By balancing exploration of the search space
and exploitation of promising regions, BO is particularly well-suited for problems where function eval-
uations are costly. However, the aforementioned engineering problems are frequently characterised by a
high number of decision variables (inputs), as well as often involving thousands of constraints (outputs),
incorporating diverse disciplines to analyse and ensure feasibility. This high dimensionality of the input
and output space renders traditional optimisation methods computationally prohibitive. The problem at
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hand can be formulated as

min
x∈X⊆RD

f(x)

subject to ci (x)⩽ 0, i = 1, . . . ,G
(1)

with x ∈ X ⊆ RD denoting a design point in the input space, f : X → R being the objective function
mapping from the input space to a scalar value and c : X →Y ⊆ RG being a collection of constraints
c(x) ∈ RG. The scalability of the BO methodology for these types of problems remains limited.

Despite the fact that high-dimensional BO in unconstrained settings is already challenging to optim-
ise, Eriksson and Poloczek (2021) propose scalable constrained BO (SCBO), a promising method for
efficiently handling high-dimensional and constrained optimisation problems. However, problems with
possibly hundreds of design variables and thousands of constraints remain prohibitive due to computa-
tional resources. This limitation arises because SCBO builds the probabilistic surrogate models in the full
input space and requires a separate surrogate model for every constraint.

To address these computational challenges, this work aims to jointly reduce the dimensionality of
both. The goal is to construct a joint latent space, or in other words a space of reduced dimensional-
ity, in which the probabilistic models for the objective and the constraints are built and learned online
directly from the acquired data. In this context, we propose a novel framework called Autoencoder-
Enhanced Joint Dimensionality Reduction in Constrained Bayesian Optimisation (AERO-BO), which
integrates autoencoders for dimensionality reduction in both input and output spaces. Autoencoders
are neural networks designed to learn low-dimensional representations of high-dimensional data in an
unsupervised manner. By combining autoencoders with GPs, we aim to develop a scalable and efficient
optimisation framework that is well-suited for high-dimensional input–output problems.

Our main contributions are:

1. Introducing AERO-BO for high-dimensional input–output problems
2. Demonstrating performance and scalability on benchmark cases
3. Applying AERO-BO on a multi-disciplinary real-world design problem from aerospace engineering

Structure of this article. The remainder of this article is structured as follows. First, we introduce the
theoretical fundamentals and review the relevant literature. Next, we define autoencoders for dimen-
sionality reduction. This is followed by the presentation of AERO-BO and an evaluation of its perform-
ance against a selection of existing methods. Finally, we conclude with a summary and discussion of the
findings.

2. Constrained BO via GPs

Consider the constrained optimisation problem in equation (1). The optimal solution x∗ ∈ Xf ⊆X lies
within the feasible space Xf defined by the constraints:

Xf = {x ∈ X | ci (x)⩽ 0, i = 1, . . . ,G} . (2)

In many practical applications, evaluating f(x) and especially ci(x) ∀ i = 1, . . .,G can be computationally
expensive or analytically intractable. BO, firstly introduced in Kushner (1962, 1964), addresses this by
using probabilistic surrogate models to approximate the objective and constraints, allowing for efficient
exploration and exploitation of the design space. GPs are frequently employed due to their flexibility
and ability to provide uncertainty estimates (Frazier 2018).

Commonly, in constrained BO, separate GPs are used to model the objective function and each con-
straint function. Let D = {(xj, fj,cj)}Nj=1 be the dataset of N observations. Based on this data set we fur-

ther define the observation vector f= [f1, . . . , fN]⊤ or for the ith constraint ci = [ci,1, . . . , ci,N]⊤ and the
corresponding input matrix X= [x1, . . . ,xN]⊤. The GP model is defined by a mean function µ : X → R
and a covariance (kernel) function k : X ×X → R, written as

f(x) |D ∼ GP (µ(x) ,k(x,x ′)) . (3)

Similarly, each constraint ci(x) is modelled using a separate GP :

ci (x) |D ∼ GP (µi (x) ,ki (x,x
′)) ∀i = 1, . . .,G. (4)

2
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The models are trained by optimising the marginal likelihood (Rasmussen and Williams 2006), written
as

logp(f | X,θ) =−1

2
f⊤K−1f− 1

2
log |K| − N

2
log2π, (5)

with θ being some trainable hyperparameters. This expression penalises both poor data fit and high
model complexity, preventing overfitting. After training the model, the posterior distributions for both
the objective and each constraint at a new query point x+ ∈ X remain Gaussian:

f(x+) |D,x+ ∼N
(
µ(x+) ,σ

2 (x+)
)

ci (x+) |D,x+ ∼N
(
µi (x+) ,σ

2
i (x+)

)
∀i = 1, . . . ,G.

(6)

The posterior predictive distribution of a GPs is analytically tractable due to the conjugacy of the
Gaussian prior and likelihood. Common choices for the kernel function include the squared exponen-
tial, Matérn, and rational quadratic kernels, each parametrised by hyperparameters θ. Then, for any new
query point x+, the GP predictive posterior mean µ(x+) and variance σ2(x+) are given by:

µ(x+) = k(x+,X)K
−1y,

σ2 (x+) = k(x+,x+)− k(x+,X)K
−1k(X,x+) ,

(7)

where K ∈ RN×N is the kernel matrix with entries Kij = k(xi,xj) and k(x+,X) ∈ RN is the covariance
between the new point and the training data.

Next, an acquisition function α(x;Dn) : X → R makes use of the probabilistic surrogate model by
encoding a utility policy to guide the selection of the next query point x+, balancing exploration and
exploitation. For constrained BO, the acquisition function needs to account for both the objective and
the constraints, thus trying to find a next feasible query point:

x+ = argmax
x∈Xf

α(x;Dn) . (8)

Examples of constrained acquisition functions, such as constrained Expected Improvement (cEI)
(Gardner et al 2014, Gelbart et al 2014) and their logarithmic extension log-cEI (logCEI) (Ament
et al 2023), predictive entropy Search with constraints (Hernández-Lobato et al 2016) or constrained
Thompson Sampling, as used in SCBO (Eriksson and Poloczek 2021). These methods incorporate prob-
abilistic estimates from GPs to guide the search towards regions that improve the objective while satisfy-
ing the constraints. By iteratively updating the GP models, constrained BO efficiently explores the design
space.

However, high-dimensional input and output spaces introduce significant challenges, primarily due to
the curse of dimensionality and storage limitations. As noted in equation (6), the objective and all con-
straints needs to be modelled via a separate or correlated GP . When dealing with potentially thousands
of outputs, this becomes computationally infeasible, as GPs scale cubically with the number of sample
points O(N3) and storage requirements of O(N2). Since high-dimensional problems normally require
hundreds up to thousands of samples, the development of alternative approaches becomes necessary,
which are discussed in the following section.

3. BO in high dimensions

This section reviews recent developments in BO for tackling problems with high-dimensional inputs and
outputs, for unconstrained and constrained settings.

3.1. BO with high-dimensional inputs
Scaling BO to high-dimensional input problems poses three main challenges: increased predictive uncer-
tainty, more model hyperparameters, and computational difficulty in optimising the acquisition function
(Binois and Wycoff 2022).

A prominent line of research to mitigate these problems focuses on reducing the dimensionality of
the input space. Linear projection methods such as REMBO (Wang et al 2016), ALEBO (Letham et al
2020), and HeSBO (Nayebi et al 2019) assume the objective varies in a lower-dimensional subspace.
These methods rely on random or adaptive linear projections to restrict the search domain. Given a
random matrix A ∈ Rd×D, optimisation is performed in the subspace X̃ ⊆ Rd, where d≪ D, with the
function approximated as g(x̃)≈ f(Ax).

3
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More recent work has explored non-linear dimensionality reduction techniques in the input space.
Notably, autoencoder-based methods (Gómez-Bombarelli et al 2018, Tripp et al 2020, Grosnit et al 2021,
Maus et al 2023) have been proposed, leveraging their ability to learn more flexible, data-adaptive rep-
resentations of the optimisation space. For example, Gómez-Bombarelli et al (2018) pioneered latent
space optimisation for molecular design, using a variational autoencoder to encode discrete molecular
graphs into a continuous latent manifold. Tripp et al (2020) and Grosnit et al (2021) extended this idea
to more general structured and high-dimensional inputs, demonstrating improved sample efficiency and
optimisation in learned latent spaces. Maus et al (2023) further propose the use of encoders to reduce
the dimensionality of high-dimensional intermediate components in composite functions, improving the
efficiency in grey-box BO. However, these methods have primarily addressed unconstrained optimisa-
tion tasks and focus exclusively on input space compression. They do not account for high-dimensional
constraint outputs or incorporate feasibility modelling into the latent optimisation loop.

SAASBO (Eriksson and Jankowiak 2021) takes a different approach, using a sparsity-inducing prior
over GP lengthscales to identify relevant dimensions, gradually expanding the subspace as more data
becomes available. Although effective, this approach incurs significant overhead. Trust region-based
methods such as TuRBO (Eriksson et al 2019) and BAxUS (Papenmeier et al 2023) limit the search to
a local region, balancing exploration and exploitation. BAxUS combines this with gradually expanding
subspaces. More recently, Hvarfner et al (2024) demonstrated that standard GPs with scaled lengthscale
priors can perform well in high-dimensional settings without embedding.

In constrained settings, SCBO (Eriksson and Poloczek 2021) extends TuRBO by using trust regions
and constrained Thompson sampling, training one GP per constraint. Similarly, vanilla BO with logCEI
(Ament et al 2023) provides a scalable baseline but also requires a separate GP for each constraint, lim-
iting applicability in problems with many constraints. Section 4 details how AERO-BO addresses these
issues through joint input–output dimensionality reduction.

3.2. BO with high-dimensional outputs
When multiple outputs (e.g. objectives and constraints) are involved, a straightforward approach is to
model each independently using batched GPs, as in SCBO. However, modelling cross-output correlations
can yield performance improvements.

Multi-task GPs (MTGPs) (Bonilla et al 2007) model output dependencies via structured covariance
matrices using the Intrinsic or linear co-regionalisation model. When all outputs are observed at all
points, the full covariance adopts a Kronecker structure KXX⊗Kf ∈ RNG×NG, enabling some computa-
tional savings. Nevertheless, their inference and memory complexity O(N3G3) and O(N2G2), respectively
remains prohibitive for large-scale problems. High-Order GPs (Zhe et al 2019) extend GPs to matrix and
tensor outputs. Maddox et al (2021) improved sampling efficiency using Matheron’s rule, reducing com-
plexity to O(N3 +G3) in the MTGP case, but scalability remains limited.

Another direction is output space dimensionality reduction. Higdon et al (2008) proposed using
principal component analysis (PCA) to project outputs onto a lower-dimensional space, where GPs are
trained. Variants include kPCA-GP and IsoMap-GP (Xing et al 2015, 2016). These reduce inference costs,
but rely on linear (or fixed non-linear) embeddings. Maathuis et al (2025) combine PCA-GP with SCBO
to handle many constraints efficiently. However, these methods assume fixed embeddings and are not
learned adaptively during BO.

AERO-BO builds upon this line of work by jointly learning input and output embeddings via
autoencoders during optimisation. This enables tractable modelling of high-dimensional constraints and
scalable acquisition in joint latent spaces.

4. AERO-BO: constrained BO in a joint input–output latent space

As outlined earlier, only a few methods have been proposed for high-dimensional constrained BO. These
include SCBO and standard BO with scaled lengthscale priors and logCEI (Hvarfner et al 2024), here
referred to as vanilla BO. Both approaches construct one surrogate model per constraint in addition to
the objective. However, most high-dimensional BO methods reviewed in section 3 target unconstrained
problems. When constraints are considered, they are often handled using soft formulations such as pen-
alty terms, as in BAxUS (Papenmeier et al 2023) and SAASBO (Eriksson and Jankowiak 2021). BAxUS,
for instance, shows that combining subspace modelling with trust region strategies improves scalabil-
ity. Nevertheless, extending random subspace methods to constrained settings remains challenging: as
the number of constraints and the dimensionality grow, the likelihood of a randomly projected sub-
space containing feasible points declines significantly, limiting their applicability. In such cases, addi-
tional supervision during subspace construction may be required.

4
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Figure 1. AERO-BO Architecture: Two autoencoders map the high-dimensional input and constraint output spaces to corres-
ponding latent spaces which are connected via GPs. These latent space surrogates are then used within the acquisition of the next
points.

In parallel, dimensionality reduction using autoencoders has gained traction for addressing the curse
of dimensionality in BO. Yet, prior work has focused exclusively on unconstrained problems and com-
pressed only the input space. Reducing the dimensionality of the output space, particularly in the pres-
ence of numerous constraints, remains underexplored, despite its potential to yield substantial compu-
tational savings. We address this gap by employing autoencoders to reduce both the input and output
dimensions, enabling BO for problems with hundreds of design variables and thousands of constraints.

This is achieved using two autoencoders (section 4.1): one for the inputs and one for the outputs.
Each maps the high-dimensional data into a lower-dimensional latent representation that retains essen-
tial structural information. GPs are trained to model the relationships between the latent input and out-
put spaces, as illustrated in figure 1. Following Maus et al (2024), the autoencoders and GPs are trained
jointly to ensure that the latent representations remain coherent and aligned with the optimisation task.
This joint training allows the latent spaces to adapt dynamically based on surrogate model feedback. The
decoders are then used to project the optimised latent variables back into the original high-dimensional
space for training purposes.

Additionally, AERO-BO trains both autoencoders in an online manner during the optimisation pro-
cess, relying exclusively on data gathered within the BO loop. This eliminates the need for a costly off-
line pre-training phase, which may be impractical when function evaluations are expensive or data is
limited. The online training scheme is a further novelty of our approach, enabling the latent represent-
ations to adapt in response to the evolving optimisation landscape. While autoencoders have been used
previously in unconstrained BO, AERO-BO is, to our knowledge, the first to extend this concept to con-
strained high-dimensional problems by jointly learning latent representations for both design variables
and constraint responses. This allows BO to scale to problem sizes that are otherwise intractable with
existing methods.

In the following, we briefly introduce autoencoders before presenting our proposed method in detail.

4.1. Manifold-learning via autoencoders
This section briefly introduces autoencoders (Rumelhart et al 1986) as a manifold learning technique for
non-linear dimensionality reduction. Unlike PCA, which is limited to linear transformations via eigen-
decomposition, autoencoders are capable of capturing non-linear data structures by learning mappings
from the high-dimensional input space to a lower-dimensional latent space. This enables the representa-
tion of complex data manifolds that PCA may fail to model.

An autoencoder A(x) = ψ ◦ϕ(x) consists of two components: an encoder ϕ : RK→ Rk that maps
the input x ∈ RK to a lower-dimensional latent representation x̃ ∈ Rk, and a decoder ψ : Rk→ RK that
reconstructs an approximation of the original input. The input dimensionality K is determined by the
data, while the latent dimension k≪ K is a user-defined parameter. Throughout this work, both encoder
and decoder are implemented as single-layer feedforward neural networks. The encoder applies a linear

5
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transformation followed by a rectified linear unit (ReLU) activation:

ϕ(x;θϕ) = ReLU(Wϕx+ bϕ) , (9)

where θϕ = {Wϕ,bϕ} with Wϕ ∈ Rk×K, bϕ ∈ Rk and ReLU(·) : R→ R denotes the element-wise ReLU
defined by ReLU(z) =max(0,z). The decoder performs a similar transformation using a sigmoid activa-
tion to constrain outputs to [0,1]K:

ψ (x̃;θψ) = σ (Wψ x̃+ bψ) , (10)

with θψ = {Wψ,bψ}, where Wψ ∈ RK×k, bψ ∈ RK and σ(·) : R→ R is the sigmoid activation function
applied element-wise, defined as σ(z) = [1+ exp(−z)]−1. Together, these network components define a
parametrised non-linear mapping A(x) = ψ ◦ϕ(x) from the input space to an approximation of itself.
The autoencoder is trained to minimise the reconstruction loss:

L(x;θϕ,θψ) = ||x−ψ (ϕ(x;θϕ) ;θψ) ||2, (11)

using stochastic gradient-based optimisation. This results in a compact representation that preserves the
essential structure of the input data. Once trained, the encoder ϕ serves as a dimensionality reduction
tool, efficiently mapping new samples x∗ to their corresponding latent representations x̃∗ = ϕ(x∗;θϕ).

4.2. AERO-BO: architecture
As previously mentioned, we employ two autoencoders to efficiently reduce the dimensionality of the
input X and output Y spaces, respectively, defined as AX (x) = ψX ◦ϕX (x) and AY(y) = ψY ◦ϕY(y).
The encoders map data to lower-dimensional latent spaces, ϕX : X ⊆ RD→ X̃ ⊆ Rd and ϕY : Y ⊆ RG→
Ỹ ⊆ Rg, while the decoders reconstruct approximations of the original data:

x̃= ϕX (x;θϕ,X ) , ỹ= ϕY (y;θϕ,Y)

x ′ = ψX (x̃;θψ,X ) , y ′ = ψY (ỹ;θψ,Y) .
(12)

We denote the reconstructed data as x ′ and y ′, respectively, acknowledging that reconstruction
may introduce an error, which the training process aims to minimise. The trainable parameters,
θϕ,X ,θϕ,Y ,θψ,X ,θψ,Y , govern the encoding and decoding transformations, ensuring optimal representa-
tion learning. When trained independently, these models remain decoupled. To address this, we adopt
the approach proposed by Maus et al (2024) to couple them through variational GPs, modelling the
constraints in this joint latent space and train all models together. Specifically, we construct an approx-
imate GP (Hensman et al 2014) for the objective function f, mapping from the latent input space X̃ to
a scalar value f̂ : X̃ → R. Additionally, we construct independent approximate GPs for the constraints
c, mapping from the latent input space to the latent output space ĉ : X̃ → Ỹ . In total, this results in
nm = 2+ 1+ g interconnected models: two autoencoders, one objective GP and g GPs for the latent
space constraints.

These relationships can be expressed as:

f̃ | X̃∼ GP
(
µ
(
X̃
)
,k
(
X̃, X̃

))
c̃i | X̃∼ GP

(
µi
(
X̃
)
,ki

(
X̃, X̃

))
∀i = 1, . . . ,g.

(13)

The nm models are trained by minimising the joint loss:

L(θ) = logp
(
f | ϕX (x;θϕ,X ) ,θf

)
+ logp(ϕY (c;θϕ,Y) | ϕX (x;θϕ,X ) ,θci)

+ ||x−ψX (ϕX (x;θϕ,X ) ;θψ,X ) ||2 + ||c−ψY (ϕY (c;θϕ,Y) ;θψ,Y) ||2
(14)

where the terms ensure the accurate reconstruction of inputs and outputs while maintaining the coher-
ence of GP predictions. Here, θ = {θf,θci ,θϕ,X ,θψ,X ,θϕ,Y ,θψ,Y} represents not only the aforemen-
tioned hyperparameters of the autoencoders but also the ones of the GPs. By leveraging automatic dif-
ferentiation alongside the Adam optimiser (Kingma and Ba 2017), we efficiently train these interconnec-
ted models. We embed this modelling strategy into a trust region heuristic, akin to SCBO (Eriksson and
Poloczek 2021). The proposed method is summarised in algorithm 1.

During the acquisition strategy we first sample from each latent space model’s posterior to obtain
ˆ̃f, ˆ̃c1, . . ., ˆ̃cg. Subsequently, a set of randomly sampled candidate points Xc is mapped to the latent space
X̃c ∈ X̃ using the encoder ϕX which allows us to conduct constrained Thompson Sampling within the

6



Mach. Learn.: Sci. Technol. 6 (2025) 045028 H Maathuis et al

Algorithm 1. AERO-BO.

Require: Input space X , Number of initial samples N, Number of candidates Nc, batch size qc, SCBO hyperparameters
1: Compute initial DoED0 = {xi, f(xi),c(xi)}i=1:N

2: Initialise SCBO state
3: Initialise models f̃, c̃,AX andAY
4: k= 0
5: while Computational budget is not exhausted do
6: x+← ACQUISITIONSTRATEGY (see algorithm 2)
7: Evaluate x+ and observe f(x+), c(x+)
8: Dk+1 =Dk ∪{x+, f(x+),c(x+)}
9: Update SCBO state

10: Update models f̂, ĉ,AX ,AY jointly (see equation (14))
11: k← k+ 1
12: end while

Algorithm 2. AcquisitionStrategy in AERO-BO.

Require: Input space X , Number of candidates Nc, batch size qc, acquisition function α(•), Samples form the GP pos-

teriors in latent space (ˆ̃f, ˆ̃c1, · · · , ˆ̃cg), autoencoder modelsAX ,AY

1: Generate Nc candidate Xc ∈ RD×Nc with xic ∈ Xtr

2: Map candidates into latent space X̃c = ϕX (Xc)

3: Construct acquisition function Ã= α(X̃c;Dk) (see equation (15))
4: Choose the q next points X+← Xc[argmin Ã]

joint latent space, employing the aforementioned latent space GPs (equation (13)) for the objective and
constraints. Therein, we use an utility function α(x̃), written as

α(x̃;D) =

argminx̃∈X̃
ˆ̃f(x̃) if F ̸= ∅

argminx̃∈X̃
∑g

j=1max
{
ˆ̃cj (x̃) ,0

}
else

(15)

with the set of feasible points, defined as F = {x̃i | ˆ̃cj(x̃i)⩽ 0, j = 1, . . .,g}. By solving

x̃+ = argmin
x̃∈X̃ f

α(x̃,D) (16)

a batch of q points in the latent space X̃ can be obtained. Instead of using the decoder to map the
points back, the indices are used to select the corresponding points in the original space to ensure they
lie within the bounds (Maus et al 2024).

Summarising, from equations (15) and (16) it can be seen that the constrained Thompson sampling
(Thompson 1933, Eriksson and Poloczek 2021) is performed in the latent space, making use of the
encoded inputs x̃i and outputs c̃i. This heuristic is summarised in algorithm 2.

During the first iteration of the BO algorithm, when k= 0, all four models are initialised and
trained, then continuously updated after each batch of q new points is acquired. The trust region in
this process acts to restrain the Nc candidate points locally by using a hyperrectangle. Thus, if we denote
Xtr as the trust region-confined subspace of the original design space X , we can write Xc ∈ Xtr ⊆X .
This trust region is centred around the current best point in the original space x∗ ∈ X . Initialised with
an initial length L= L0, the length is increased or decreased according to the progress of the optimisa-
tion. Therefore, the algorithm counts the number of successes and failures which record whether a bet-
ter point has been found or not. In doing so, the centre of the trust region moves with success. Once a
defined number of failures τf or successes τs is exceeded, the trust region length is either decreased in
size L← L

2 or increased L←min{2L,Lmax}. If L< Lmin, a new trust region is initialised.

5. Experiments

In the following, we evaluate AERO-BO on a range of high-dimensional input–output benchmark prob-
lems, as well as a real-world aircraft design task. As described in section 4.1, both encoder and decoder
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Figure 2. Collection of five physics-based and synthetic benchmarks all embedded in a higher dimensional space and augmented
with synthetic constraints.

are implemented as single-layer feedforward neural networks. To assess performance, AERO-BO is com-
pared against several baseline methods, including PCA-GP SCBO (Maathuis et al 2025), soft constraint
handling via quadratic penalty terms (Eriksson and Jankowiak 2021), constrained optimisation by linear
approximation (COBYLA) (Powell 1994), the covariance matrix adaptation evolution strategy (CMA-ES)
(Hansen 2006), and a random search heuristic. Since SCBO and vanilla BO require training a separ-
ate surrogate model for each constraint, quickly exceeding memory limitations in large-scale problems,
comparisons to these methods are discussed separately in section 5.3. AERO-BO is implemented using
GPyTorch (Gardner et al 2018) and BoTorch (Balandat et al 2020). The code for reproducibility is avail-
able at: https://github.com/haukemaa/aerobo.

In line with Hernández-Lobato et al (2016), we adopt the principle that a feasible solution is always
preferable over an infeasible one when comparing optimisation outcomes. Therefore, infeasible solutions
are assigned the value of the worst feasible objective value found. Additionally, since PCA-GP SCBO also
operates with a user-defined output latent dimension, we select the same latent dimension for PCA-GP
SCBO as we do for AERO-BO, ensuring a fair comparison between the two methods.

5.1. Benchmarks
We adopt four physics-based test problems: the Speed Reducer (Lemonge et al 2010), Pressure Vessel
(Coello Coello and Mezura Montes 2002), Welded Beam Design (Hedar and Fukushima 2006) and
Tension Compression String (Hedar and Fukushima 2006). Additionally, we consider the 128D
MOPTA08 problem with 68 black-box constraints (Anjos 2008). For more information, please refer to
appendix A.1. To emulate the characteristics of many engineering problems having high-dimensional
inputs and outputs, all benchmark problems are embedded in a D= 200 space and the number of con-
straints is artificially increase to G= 500 without altering the feasible optimal value of the optimisa-
tion problems (see appendix A.2). Thus, the original dimensionality (reduced space) and number of
constraints of these problems are denoted by di and gi, respectively, while D and G represent the new,
extended dimensionality (original space) and number of constraints.

Physics-based and synthetic benchmarks. The results for the four physics-based test problems and the
synthetic Ackley function are summarised in figure 2. We use a total budged of 300 evaluations, a batch
size of q= 5, 10 initial samples and perform 20 experiments per method and benchmark. For the sake
of generality, we apply the same hyperparameters for all benchmarks, namely learning rate α= 0.01,
number of epochs Ne = 10, dimension of the input latent space dim(X̃ ) = 50, dimension of the out-
put latent space dim(Ỹ) = 10. For the Speed Reducer problem, we note that while PCA-GP SCBO and
CMA-ES initially converge slightly faster, AERO-BO ultimately identifies a superior solution compared
to the other two methods. All other competing methods either fail to find a feasible point or struggle
to make meaningful progress. In the pressure vessel problem, AERO-BO and PCA-GP SCBO deliver the
best performance, closely followed by the Random Search heuristic. By contrast, constraints handled via
Penalties, Cobyla, and CMA-ES either fail to identify a feasible point or remain stuck, unable to improve
further. The Welded Beam benchmark, on the other hand, appears challenging for all algorithms, exhib-
iting large variances across methods. While PCA-GP SCBO and Cobyla fail to find a feasible point and
Penalties stagnates, CMA-ES is ultimately outperformed by AERO-BO. In the Tension-Compression
String benchmark, AERO-BO and CMA-ES demonstrate strong performances, dominating the results.
PCA-GP SCBO and Random Search perform slightly worse, while Cobyla and Penalties show limited
progress. Lastly, the synthetic Ackley function is dominated by PCA-GP SCBO, followed by AERO-BO
and Penalties, while all other methods fail to locate a feasible solution. Additionally, we observe that
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Figure 3. (left) 124DMOPTA08 benchmark with 68 black-box constraints. (right) 108D Aeroelastic Tailoring problem with
1786 black-box constraints arising form two different cases. The constraints ensure static strength, buckling, aeroelastic stability,
aileron effectiveness and local angle of attack of the system.

the Cobyla algorithm struggles with optimising the extended benchmark problems (we verified this by
testing on the original benchmarks, where it could identify feasible points). However, it is important to
emphasise that the same hyperparameters and architectures, such as latent input and output dimension-
alities, were applied across all methods. As demonstrated in the ablation study in section A.3, further
improvements can be achieved by varying these parameters.

MOPTA08 benchmark. The MOPTA08 benchmark, proposed by Anjos (2008), originates from the auto-
motive industry and is widely used for testing optimisation algorithms. The problem entails 124 dimen-
sions and 68 black-box constraints. Again, we embed this benchmark into a 200D space and increase
the number of constraints to 500. We utilise a total evaluation budget of 2000 samples, a batch size of
q= 15, 100 initial samples and run 10 experiments. Furthermore, we set the latent dimension of the
input autoencoder to dim(X̃ ) = 60 and for the latent output dimension to dim(Ỹ) = 20. For train-
ing of AERO-BO we use α= 0.01 and Ne = 10. The results of the MOPTA08 benchmark are shown in
figure 3(left). Most methods fail to locate a feasible point under these challenging conditions, with the
exception of AERO-BO and PCA-GP SCBO. Notably, AERO-BO outperforms PCA-GP SCBO, further
reinforcing the findings from the previously discussed benchmarks.

5.2. Aeroelastic tailoring: a multi-disciplinary design optimisation problem
Finally, we test AERO-BO and the aforementioned methods on a real-world aircraft wingbox design
problem. The objective is to optimise the weight of a wingbox while satisfying thousands of constraints.
The wingbox is divided into multiple design regions, with its stiffness and thickness adjustable through
the use of composite materials. The thousands of constraints that need to be satisfied, arise from mul-
tidisciplinary analyses, namely constraining the minimum strength of the structure, ensuring structural
stability via a buckling analysis, as well as ensuring dynamic stability by analysing the dynamic aer-
oelastic capabilities of the structure, leading in total to G= 1786 constraints while D= 108 design vari-
ables describe the aforementioned structural properties. More on this problem can be found in Maathuis
et al (2024).

In figure 3(right) the corresponding results are presented. AERO-BO and PCA-GP SCBO successfully
identify a feasible solution after approximately 200 evaluations, even in this highly constrained design
space. In contrast, all other methods fail to locate a feasible point, highlighting the robustness and effect-
iveness of AERO-BO. We use a total evaluation budget of 1500 samples, a batch size of q= 15, 100 ini-
tial samples and run 10 experiments. Furthermore, we set the latent dimension of the input autoencoder
to dim(X̃ ) = 60 and the latent output dimension to dim(Ỹ) = 30.

5.3. Comparison with SCBO and Vanilla BO
To evaluate the capabilities and limitations of AERO-BO, we compare its performance with two baseline
methods: (i) SCBO (Eriksson and Poloczek 2021), which constructs a GP for each constraint and the
objective in the full input space using a trust region heuristic, and (ii) a vanilla BO setup using the
logCEI acquisition function, together with a scaled lengthscale prior, as proposed in Hvarfner et al
(2024). While AERO-BO is specifically designed for high-dimensional and large-constraint settings
where SCBO and vanilla BO becomes computationally intractable, this comparison serves to illustrate
where each method excels, and how approximation errors introduced by latent modelling affect per-
formance. We assess performance on two benchmark problems: the 7D Speed Reducer problem with
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Figure 4. Comparison of AERO-BO with SCBO and Vanilla BO. (left) 7D Speed Reducer benchmark with 11 black-box con-
straints. Lemonge et al (2010) (centre) Example of an optimised trajectory. The green boxes are the impassable objects whereas
the tanned objects are passable while adding a penalty to the objective function. (right) 60D Rover trajectory optimisation with
15 black-box constraints. Wang et al (2018).

11 black-box constraints (evaluated without up-projecting the input dimension and constraints), and
the 60D Rover benchmark from Wang et al (2018). In the latter, the task is to optimise a robot traject-
ory encoded by 30 spline control points, each consisting of an (x, y) coordinate. Following the setup in
Eriksson and Poloczek (2021), we introduce impassable rectangular obstacles as constraints (visualised in
figure 4, centre).

For the Speed Reducer benchmark, we initialise with 20 samples and use a batch size of q= 1.
AERO-BO uses arbitrary latent spaces of dimension dim(X̃ ) = 4 and dim(Ỹ) = 7. For the Rover bench-
mark, we start with 100 initial samples and set q= 100, using latent dimensions dim(X̃ ) = 20 and
dim(Ỹ) = 8. The results, shown in figure 4, reveal that AERO-BO underperforms relative to both SCBO
and vanilla BO on the Speed Reducer benchmark. This is expected, as the additional approximation
introduced by output-space compression may lead to reduced accuracy in low-data regimes. Vanilla BO
with logCEI, performs best in this case, likely due to the modest problem dimensionality and constraint
count, which allow full-dimensional GP modelling without significant computational burden. SCBO also
performs well, likewise benefiting from constructing the constraint surrogates directly. In contrast, on
the high-dimensional Rover benchmark, vanilla BO fails to scale effectively, while AERO-BO performs
almost as good as SCBO despite training significantly fewer surrogate models, demonstrating improved
scalability. This comparison underscores several important insights. First, SCBO remains a strong choice
for problems of moderate dimensionality and constraint count, particularly in early optimisation stages
where surrogate models benefit from low uncertainty. However, its scalability is fundamentally limited,
as it constructs and updates one full-dimensional GP per constraint. Second, AERO-BO introduces a
trade-off: by reducing the dimensionality of the constraint space, it enables optimisation in previously
intractable regimes, but at the cost of introducing an approximation. The quality of this approxima-
tion depends on the existence of a meaningful low-dimensional manifold in the output space, as well
as the availability of sufficient training data. If these conditions are not met, as appears to be the case in
the Speed Reducer problem, AERO-BO may fail to model high-frequency or strongly coupled constraint
behaviour accurately, resulting in diminished performance.

These results highlight a fundamental limitation of latent-space BO approaches: if the effective
dimensionality of the output space is high or the autoencoder is not trained with adequate data, com-
pression may lead to loss of information and poor surrogate performance. This effect is explicitly visible
in the reconstruction loss (see equation (14)) and is further compounded when the latent embedding is
poorly aligned with the constraint geometry. Conversely, when a low-dimensional structure exists and is
well captured, as in the Rover benchmark, AERO-BO offers a scalable alternative to conventional meth-
ods, maintaining competitive optimisation performance while drastically reducing the number of GPs.

In summary, AERO-BO fills a practical niche in the constrained BO landscape: it enables efficient
optimisation in settings characterised by high input dimensionality and a large number of black-box
constraints. However, its success is contingent upon the representational capacity of the autoencoders
and the quality of the learned latent spaces. In settings where the number of constraints is low, methods
such as SCBO or standard BO may still offer superior performance.

5.4. Ablation study
To better understand the behaviour and design trade-offs of AERO-BO, we conduct a series of ablation
studies focusing on its key components and hyperparameters. In this subsection, we investigate the influ-
ence of the latent input space dimensionality, i.e. the output size of the encoder ϕX , on optimisation
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Figure 5. Input Dimension variation, investigating the influence of the input reduction on the performance of the method.

performance. Figure 5 presents results for the previously introduced, up-projected benchmark problems.
We also include a baseline that omits input dimensionality reduction altogether, replacing the encoder
ϕX with the identity function. This baseline corresponds to a variant of SCBO that compresses only the
output (constraint) space using an autoencoder rather than PCA.

The results show that input compression via AX is beneficial in most cases. However, the optimal
choice of latent dimension is problem-specific. In the first two benchmarks (Speed Reducer and Pressure
Vessel), performance differences between latent dimensions are relatively small. This suggests that the
problems either admit a wide range of effective latent dimensionalities or that the search space is not
strongly sensitive to compression in those cases. Consequently, no single latent size clearly domin-
ates, and several configurations yield near-equivalent performance. In contrast, the third and fourth
benchmarks (welded beam and tension-compression string) exhibit more distinct trends, depicting that
performance can benefit from input dimensionality reduction. In the third case, a larger latent space
(dim(X̃ ) = 100) performs best, followed dim(X̃ ) = 25, while dim(X̃ ) = 50 underperforms. This non-
monotonic behaviour likely reflects trade-offs between expressiveness and regularisation: dim(X̃ ) = 100
may better capture complex interactions, whereas dimension dim(X̃ ) = 25 may promote smoother, more
regular models. In the fourth benchmark, a smaller latent space (dim(X̃ ) = 25) yields the best perform-
ance, followed by dimension dim(X̃ ) = 100, then dim(X̃ ) = 50. This inversion indicates that for some
problems, aggressive compression may help by suppressing noise and preventing overfitting.

As is common in latent variable modelling, the optimal latent dimensionality is both problem- and
data-dependent. When the input–output mapping lies on a well-defined low-dimensional manifold
and enough training data are available, small latent spaces can suffice. However, for intrinsically high-
dimensional problems or in low-data regimes, excessive compression may discard informative variation,
impairing surrogate fidelity and optimisation performance. These findings underscore the importance
of selecting the latent dimension carefully. While AERO-BO is generally robust to this parameter, prac-
titioners may benefit from heuristic guidance such as examining PCA eigenvalue spectra or monitoring
surrogate reconstruction loss.

Further ablation studies on learning rate, training epochs, training window size, and the use of the
trust region heuristic (Eriksson and Poloczek 2021) are provided in appendix A.3. These experiments
confirm that AERO-BO performs robustly across a wide range of configurations, reinforcing its suitabil-
ity for practical use.

6. Conclusion

In this work, we introduce AERO-BO, a novel approach for high-dimensional BO that effectively handles
problems with hundreds of design variables as well as thousands of constraints. Unlike many tradi-
tional high-dimensional BO methods, which rely on random input embeddings and face challenges in
constrained settings, AERO-BO employs a unique strategy: two jointly trained autoencoders that map
both inputs and outputs to lower-dimensional latent spaces. This approach eliminates the need to con-
struct separate surrogate models for each constraint, making it computationally efficient and scalable.
We demonstrate the effectiveness of AERO-BO across a variety of benchmarks, including existing and
extended high-dimensional test problems and a complex real-world multidisciplinary design optim-
isation problem from aerospace engineering. The results showed that AERO-BO consistently outper-
forms competing methods in finding feasible solutions for highly constrained problems, which are often
encountered in engineering optimisation. This capability is particularly crucial when other methods
struggle to find feasible points, highlighting the reliability and robustness of AERO-BO.
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Appendix

A.1. Benchmark problems
This section briefly describes the in this work used benchmark cases.

7D Speed Reducer with 11 black-box constraints. This benchmark poses an optimisation problem to
minimise the weight of the so-called speed reducer. The design variables include geometrical measures
like the length of two shafts and the width of the face also the number of teeth on a pinion and the
module of teeth (Lemonge et al 2010).

4D Pressure Vessel with 4 black-box constraints. The goal of this benchmark is to minimise the cost of
the design. The design variables include the shell and head thicknesses, as well as the inner radius and
length of the cylindrical section including some bounds (Coello Coello and Mezura Montes 2002).

4DWelded Beamwith 5 black-box constraints. The Welded Beam benchmark aims to minimise the cost
by considering mechanical limits on the structure, such as shear stress, bending stress, buckling load and
the deflection of the beam (Hedar and Fukushima 2006).

3D Tension-Compression Spring with 4 black-box constraints This problem also takes into account
mechanical constraints such as a limit on the deflection, shear stress and surge frequency. In addition
a geometrical parameter is added, describing the outside diameter. While considering these constraints,
the aim is to minimise the weight of the tension compression string (Hedar and Fukushima 2006).

10D Ackley with 2 black-box constraints. This benchmark is a synthetic function, considering two black-
box constraints and is known to be difficult to optimise taken from Eriksson and Poloczek (2021).

128DMOPTA08 with 68 black-box constraints. Lastly, the MOPTA08 benchmark was proposed by Anjos
(2008) and stems form the automotive industry. The design variables herein describe the material and
shape of the structure as well as gages while taking into account some performance constraints.

60D Rover with 15 black-box constraints. This problem was originally considered by Wang et al (2018),
optimising the trajectory of a rover by fitting a B-spline to 30 design points, described by x and a y
coordinate. The objective function is f(x) = c(x)+ 5 where c(x) penalises collisions with objects by −20.
Additionally, Eriksson and Poloczek (2021) propose to add 15 impassible objects. More on the constraint
formulation can be found in their paper.

A.2. Extending benchmark problems
To evaluate the performance of optimisation algorithms in high-dimensional and highly constrained
scenarios, we extend existing benchmark problems in terms of dimensionality and the number of con-
straints. Considering a di-dimensional optimisation problem including gi black-box constraints as follows

min
x∈X

f(x) s.t. c(x)⩽ 0, (A1)
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with c ∈ Rgi . The goal is to extend the existing problem to D dimensions and G constraints, where di ≪
D and gi ≪ G. To achieve this, two projection matrices are defined: Pd : RD→ Rdi , mapping the high-
dimensional input space back to the original space, and Pgi : RG→ Rgi , mapping the extended constraint
space to the original constraint space. Using these projections, the extended optimisation problem can be
written as

min
x ′⊆X ′∈RD

f(Pdix
′) s.t. c(Pdix

′)⩽ 0, (A2)

where Pdi retains only the original di dimensions, ensuring that the objective function f(Pdix
′) = f(x) is

unchanged. Similarly, the constraints satisfy c(Pdix
′) = c(x). Here, the extended variable x ′ is decom-

posed into x ′ = [x⊤, x̃⊤]⊤ where x̃ ∈ R(D−di) represents some artificial dimensions. To introduce addi-
tional constraints, we define the artificial constraints as follows:

c̃(x̃) = Ax̃− b, (A3)

where A ∈ R(G−gi)×(D−di) and b ∈ R(D−di) are a random matrix and vector, respectively, where b ensures
that the artificial constraints are non-violated by construction. The extended constraints are then formu-
lated by combining the original and artificial constraints:

c ′(x ′) = [c⊤(Pdix
′), c̃⊤(x̃)]⊤ ∈ RG. (A4)

Thus, the final extended optimisation problem becomes:

min
x ′⊆X ′∈RD

f(x ′) s.t. c ′(x ′)⩽ 0. (A5)

This approach ensures that the characteristics of the original problem are preserved, while allowing for
scalability in terms of dimensionality and constraint complexity.

A.3. Additional ablation studies and sensitivity analyses
In this section we present some additional ablation studies to investigate the performance of AERO-BO
with respect to some of its hyperparameters as well as the influence of the trust region heuristic.

A.3.1. Training hyperparameters
We analyse the performance of AERO-BO concerning the learning rate α, used to jointly train the mod-
els. Figure A1 shows that the algorithm exhibits robustness across different values of α, with the best
performance achieved at α= 0.001. The impact of the number of training epochs Ne is investigated
while keeping the learning rate fixed. Figure A2 demonstrates robust performance across different val-
ues of Ne. Notably, when the models are not updated (Ne = 0), performance significantly deteriorates
in some cases, underscoring the importance of periodic updates. Lastly, the influence of the training
window size or also called lookback factor Nb is investigated, inspired by Maus et al (2024). The look-
back factor determines the number of recent samples within the current dataset D used during training.
Figure A3 illustrates that utilising all samples (Nb = N) generally yields the best results, except for the
Welded Beam benchmark. However, considering all samples may increase training costs.

A.3.2. Influence of the trust region heuristic
The role of the trust region heuristic is evaluated, as introduced by Eriksson et al (2019) and extended
for constrained problems in Eriksson and Poloczek (2021). Figure A4 compares two scenarios: Enforcing
that Nc candidate points lie within a trust region centred around the best solution so far and allow-
ing candidate sampling across the entire design space. The use of perturbation probability, as noted by
Rashidi et al (2024), remains integral to the SCBO framework and is used in both cases. The results in
figure A4 suggest that while the trust region heuristic has limited impact on the speed of finding a feas-
ible point, it plays a crucial role in identifying higher-quality solutions later in the optimisation process.
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Figure A1. Sensitivity analysis of the learning rate α.

Figure A2. Sensitivity analysis of the number of training epochs Ne.
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Figure A3. Ablation study of the lookback factor Nb with Nb = N denoting the case where all samples within the currentD are
taken into account for training.

Figure A4. Ablation study investigating the influence of the trust region heuristic on the performance of AERO-BO
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