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Abstract  
 

Efficient scheduling of services for customers poses significant challenges in various real-life systems, 
such as accoun�ng for changes in resource availability, stochas�c customers, and op�mizing for 
mul�ple contradic�ve objec�ves. Rule-based scheduling models can be limited and produce bad 
results.  

This thesis focuses on a case study of a company installing hea�ng and cooling systems at individuals 
homes. This includes dealing with different installa�on difficulty levels, mul�ple depots, and teams 
with varying skill levels located at each depot. Installa�on comple�on �mes depend on installer skill 
and installa�on difficulty. The schedule consists of all working days of a week, excluding na�onal 
holidays, and teams communicate their availability by pre-no�fying vaca�on or off days, thus reducing 
scheduling op�ons. The goal for an op�mized schedule is to minimize opera�onal cost. From this goal, 
the two objec�ves are derived: (1) minimizing transporta�on cost and (2) maximizing human resource 
u�liza�on. Two extra requirements are constructed regarding client sa�sfac�on: (1) adding a new 
client to the schedule in the range of seconds and (2) a fixed date assignment once a client is scheduled. 
This will prevent possible re-op�miza�on from altering the agreed upon date with the client. 

Next, scien�fic literature on the topic of dynamic scheduling with stochas�c customers is studied. A 
combina�on of a dynamic scheduling model based on op�miza�on in combina�on with re-
op�miza�on for dynamic events is derived as a promising method. Both risk minimiza�on (RM) and 
chance constrained programming (CCP) are studied for providing a promising solu�on for the 
requirements and objec�ves. Risk minimiza�on is chosen as the most promising method for modelling 
the mul�ple objec�ves. Finally, mul�ple solu�on methods, such as exact, metaheuris�cs and learning 
based algorithms are discussed. Since the problem size is rela�vely small, exact methods are chosen 
as the most promising solu�on method.  

The methodology defines the dynamic scheduling model with a number of constraints, such as the 
consecu�vely of mul� period installa�ons and considera�on for team capabili�es. This mathema�cal 
model is implemented using linear programming to be solved with a MILP solver. A total of four 
decision variables are constructed. Two of which represent the client-team and client-period 
assignment and two for construc�ng a number of constraints. The objec�ve func�on consist parts: (1) 
transporta�on cost, divided into �me and distance with accompanying weight factors and (2) a risk 
cost func�on with accompanying weight factor to maximize the human resource u�liza�on. Next the 
re-op�miza�on model is defined, which is based on the dynamic scheduling model. A constraint for 
client-period assignment is implemented in order to ensure the fulfillment of the second requirement. 
Another two decision variables are added to ensure only scheduling changes lowering the objec�ve 
func�on can be executed. Finally, the real-life implementa�on of both models is discussed in detail, 
including proposing structures with mul�ple modules. 

A number of experiments are designed in order to inves�gate the performance of the proposed 
methods on real-life and synthe�c scenarios. The first experiments for the dynamic scheduling model  
vary the number of teams and depots, gathering insights into the models performance. Next, a 
promising risk cost func�on is determined by a pareto analysis and inves�ga�ng the impact of different 
risk cost func�ons. The last experiments regarding the dynamic scheduling model increase the 
problem size up to 250 clients, 7 depots and 18 teams. Next, the performance of the re-op�miza�on 
model is inves�gated by re-op�mizing a selec�on of schedules produced by earlier experiments. The 
op�mal determinis�c solu�on is discussed, followed by recommenda�ons for real life implementa�on.  



 
 

The first results showed the poten�al of the proposed models by decreasing the travel cost by up 17 
percent, but also emphasized the importance of trade-off between the mul�ple objec�ves. The 
analysis of the risk cost func�on showed the most promising cost func�on to be the logarithmic 
func�on. Next, the larger experiments showed an improvement of up to 25 percent in terms of travel 
cost, and a reduc�on of 21 periods of unused human resources. The re-op�miza�on model showed a 
decrease of up to 6.7 percent for travel cost. The computa�onal performance for both models exhibits 
a close to quadric increase in �me when increasing the number of teams. Finally the complexity of 
finding the op�mal determinis�c solu�on is emphasized by the inability to find the solu�on withing 22 
hours of computa�onal �me. 

The methodology and results are discussed with the most important points of discussion being the 
possibility for significantly different results with different client data sets and the lack of considera�on 
of the risk cost func�on for the re-op�miza�on model. Future recommenda�ons include the 
implementa�on of flexible clients, the grouping of clients and a variable cost func�on per team as the 
most promising direc�ons.  
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1 Introduc�on 

Efficient scheduling of services for customers poses a big challenge in real life situa�ons for various 
systems. Changes in resource availability, predic�ng future customer requests and customer 
cancella�ons are some examples. Stakeholders can have different and some�mes even contradic�ve 
requirements for an op�mized planning. Finding the op�mal solu�on for such a planning should 
include all of the requirements and constraints. Manually op�mizing such a schedule is possible when 
the problem size is small and the number of constraint or requirements is low. For larger or more 
complicated problems a computer model is needed to op�mize the planning. A rule-based method 
can be used, but the limita�ons of such a model can lead to a sub op�mal planning.  

1.1 Scope 
The problem defini�on for this thesis is based on a company installing hea�ng and cooling systems at 
individuals homes. Different type of installa�ons are carried out by the company, resul�ng in different 
installa�on difficulty levels. Mul�ple depots are available where the systems are stored and the teams 
depart from. The workforce consists of mul�ple teams with accompanying vans, each team located at 
one of the depots. Teams can have a different level of experience or skill level. Installa�ons can have a 
different comple�on �me, caused by the skill level of the installer, or the difficulty level of the 
installa�on. The schedule consists of all the working days in a week, excluding the na�onal holidays. 
The teams can determine their own availability by communica�on their vaca�on or off days in 
advance. This reduces the number of available op�ons in the schedule.  
One of the companies goals is genera�ng profit, as a result, the minimiza�on of opera�onal cost is one 
of the goals for an op�mized schedule. This cost is simplified by breaking it down into two main 
contribu�on factors: transporta�on cost and human resource cost. Minimizing the transporta�on cost 
can be done by reducing the �me and distance traveled by the vans. The human resource cost is 
constant, even when no work is available for the installers. As a result, the maximiza�on of human 
resources is the second goal for minimizing the opera�onal cost. The combina�on of these two goals 
results in a mul� objec�ve scheduling problem. The two objec�ves are as follows:  

- Minimize transporta�on cost
- Maximize human resource u�liza�on

Another important aspect of crea�ng an schedule is customer sa�sfac�on. The goals for this aspect 
are scheduling the client within seconds and not changing the assigned day(s) once the client is 
scheduled. This results in two extra requirements listed below 

- The scheduling of a new client must be realized within seconds a�er receiving the request
- The assigned period of a client cannot be changed by re-op�miza�on
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1.2 Research ques�ons  
A main research ques�on is derived based on the scope. Sub ques�ons divide the main research 
ques�ons into smaller sec�ons, to be answered individually in this thesis.  
“How can the dynamic scheduling with stochastic customers be solved efficiently using a real 
transportation network ?” 
In the way to answer the main research question, the following sub questions are considered:  

1. What is a promising method for the dynamic scheduling problem to be modelled?
2. How can the dynamic scheduling problem be solved efficiently?
3. How can the re-op�miza�on of the schedule be modelled and solved?
4. What are the requirements for integra�ng the models with a real life system?
5. What is the performance of the proposed method compared to the rule-based model under

different scenarios?

1.3 Methodology 
The scien�fic methodology applied for developing the proposed methods is shown in Figure 1. A�er 
determining a promising type of scheduling model, the model is designed and tested. This itera�ve 
process resulted in the proposed final model presented in Chapter 3.  

Figure 1: Scientific methodology for the scheduling problem 

1.4 Thesis outline 
First a literature review in Chapter 2 is conducted to inves�gate the current proceedings in the 
scheduling field. Relevant variants with their accompanying solu�ons and future direc�ons will be 
discussed. In Chapter 3 the current rule based scheduling solu�on is explained and its shortcomings 
elaborated. Chapter 3 con�nues with the new op�miza�on model for both the dynamic client 
scheduling and the re-op�miza�on of the schedule. To incorporate the models into the real-life 
environment, a structure is proposed for the communica�on, integra�on and data storage. To evaluate 
the models, numerous simula�ons are done in Chapter 4, both with real and synthe�c scenarios. The 
results, including important findings are discussed in Chapter 5, followed by future recommenda�ons 
and a conclusion. 
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2 Theory on modelling approaches 

The logis�cs industry is rapidly gaining importance with the increasing connec�vity of our digital world. 
To meet this demand, scheduling problems (SP) aim to op�mize the alloca�on of resources for a set of 
clients to a set of vehicles or teams. Each client can have different atributes such as: type , travel �me 
and procession �me. Generally, solving this problem to op�mality can result in a 5-20% reduc�on in 
opera�onal cost (Toth & Vigo, 2002). Scheduling can be divided into two classes, predic�ve and 
reac�ve scheduling (P. Burke & Prosser, 1991). In predic�ve scheduling all informa�on about the clients 
is determinis�c and known in advance. On the other hand, in reac�ve scheduling not all the 
informa�on is known in advance, such as the arrival �me of new clients or their service �me. This 
increases the difficulty to model and solve such a problem.  
Trends in research include the minimiza�on of global warming or reducing emissions (Nura & 
Abdullahi, 2022). Another trend is finding good quality solu�ons within a reasonable �me by 
developing efficient solu�on algorithms. The SP is a NP-Hard problem (Lenstra & Kan, 1981), meaning 
it gets increasingly more difficult when the number of vehicles and/or clients increases. This led 
researchers to study innova�ve methods for solving the SP, such as meta heuris�cs and learning based 
op�miza�on, with gene�c algorithms being the most widely used method (Chaudhry & Khan, 2016).  
Most research test the feasibility and effec�veness of the proposed model and algorithm on 
standardized or adapted test cases. This leads to an easy comparability between different models and 
solu�on algorithms. A big opportunity lies in applying the models and solving methods to a real-life 
case to inves�gate its effec�veness and value to real-life problems.  
This literature review is performed considering the problem of a company that needs to install systems 
at individuals’ homes. Installa�ons are executed with mul�ple vans, with visits planned for a single or 
mul�ple days. The vans have mul�ple depots to depart from. The scope of the literature review is 
determined based on this explained case and the relevant variants of the SP are inves�gated together 
with the solu�on methods proposed for them. The objec�ve of this literature review is to get a clear 
understanding of the current solu�ons to relevant problems in the literature.  
First the fundamentals of the scheduling problem are explained in detail, to be extended with the 
relevant variants according to the defined scope. For each variant a comparison is made, explaining 
the tradeoffs and benefits for each variant. Next, the solu�on methods for solving the scheduling 
problem are explained and compared. Throughout the review, gaps and future direc�ons will be 
explained and elaborated on.  

2.1 Variants of the scheduling problem 
The scheduling problem is defined by the alloca�on of resources in order to minimize or maximize an 
objec�ve func�on. There are three main categories of approaches to the scheduling problem: 
conven�onal, rule-based and distributed solving (Suresh & Chaudhuri, 1993). The conven�onal 
approach consists of developing a mathema�cal model and op�mizing for the objec�ve func�on. Rule 
based is constraint-directed and rule-based. Those rules are o�en found by simula�on or 
experimenta�on. Lastly, distributed solving implements uses a mul�-agent approach. Each agent has 
its own set of tasks and responsibility. Construc�on of different layers with agents using bi-direc�onal 
communica�on o�en part of the implementa�on. Conven�onal modeling arises as the most promising 
approach to the scheduling problem defined in chapter 1.1. This choice is based on the unfavorable 
results produced by previously developed rule-based model. Distributed solving is o�en used for more 
complex processes, involving mul�ple decision layers.  
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2.1.1 Mul� objec�ve problems 
The objec�ve func�on o�en includes minimizing the total comple�on �me of all the tasks to be done 
(Hartmann & Briskorn, 2022). Other frequently used objec�ve func�ons can include the maximiza�on 
of resource u�liza�on or the minimiza�on of total opera�onal costs. A mul� objec�ve func�on o�en 
has mul�ple contradic�ng objec�ves. An example of this is both minimizing the environmental impact 
and maximizing profit. In almost all cases, if the environmental impact is minimized, the profit will also 
go down. To mi�gate this problem, a tradeoff needs to be made between the different objec�ves.  
A Pareto set is o�en used to get useful insights into the tradeoffs between the different objec�ves.. 
Each solu�on in this set is non-dominated, meaning that for all the solu�ons inside of the pareto set, 
there exists no solu�on that can improve on all objec�ves. The pareto fron�er, see Figure 2, is a 
graphical representa�on of this set, 
showcasing the op�mal tradeoffs 
between the different objec�ves. 
Using this pareto fron�er has 
mul�ple benefits, such as the trade-
off analysis or a sensi�vity analysis. 
The later can be used to asses 
changing parameters in the model 
and evaluate how the fron�er shi�s. 
Useful insights can be extracted and 
informed adjustment can be made.   

2.1.2 Stochas�c scheduling 
In many real life applica�ons, not all of the informa�on about the SP is known in advance resul�ng in 
a stochas�c SP (SSP). Travel �me, new customer arrival �me and the customer job dura�on are some 
examples of stochas�city in the SP. It is important to make a dis�nguishment between dynamic and 
stochas�c informa�on. Dynamic informa�on only becomes available during the execu�on of the 
schedule, for example, the next customer cancelled their order unexpectedly. Stochas�city indicates 
the uncertainty of the data itself, e.g., the travel �me between client 1 and 2 is not known exactly. In 
other words, stochas�city is about an�cipa�on to uncertainty and a dynamic problem is about reac�ng 
to changes in the environment. Reac�ng to changes can be real-�me, but is o�en at specific �me 
points. A mul� period schedule could be reop�mized at the end of each period, based on informa�on 
collected during the previous period. To make maters a bit more complicated, the dynamic 
informa�on can also be stochas�c. For example, dynamic informa�on, revealed during the execu�on 
of an schedule could be: the comple�on �me of the current customer is expected to take one to two 
hours longer. To summarize:  

- Stochas�c = take the uncertainty of the environment into account 
- Dynamic = react to changes in the environment   
- Stochas�c- Dynamic  = react to changes in the environment while taking the 

uncertainty of the environment into account 
In this chapter, only the stochas�c nature of the client data such as, travel �me and the arrival �me is 
taken into account.  

Figure 2 Pareto frontier (Kacem et al., 2002) 
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Literature shows two different methods for 
modeling stochas�city: Risk minimiza�on (RM) and 
Chance constrained programming (CCP) (Ehmke et 
al., 2015). A simple overview is shown in Figure 3: 
Two methods of modelling stochas�city: RM and 
CCP.  

2.1.2.1 Risk minimiza�on  
The risk or probability of the uncertainty in data 
causing a constraint to be violated can be 
calculated based on the probability distribu�on on 
the data.  This risk can be included into the objec�ve func�on in order to minimize it. Combining this 
risk minimizing objec�ve with the opera�onal cost minimizing objec�ve results in contradic�on. As an 
extreme example, if one want to minimize the risk of open spots in the schedule, one could always 
plan a new client into the spot closest to today. This will result in the other part in the objec�ve 
func�on to be much higher. A prac�cal example of implemen�ng RM in scheduling is the use of a cost 
func�on (Im et al., 2013). This cost func�on can relate the risk of keeping an open spot to other parts 
of the objec�ve func�on, such as travel �me and distance. Tuning this cost func�on, either by 
simula�on or calcula�on is of great importance to the op�miza�on of the en�re scheduling problem.  

2.1.2.2 Chance constrained programming  
With change constrained programming, the probability of constrain viola�on is bounded. This method 
ensures clients are not exposed to risk above a certain level. A possibility with this approach is to 
dis�nguish between premium and standard customers with a difference in allowable risk exposure. 
Compared to RM, CCP is much more computa�onally intensive because of the extra constraint(s), 
while RM only adds to the objec�ve func�on. 

2.1.2.3 Challenges in stochas�c scheduling 
Most research is focused on tes�ng the developed algorithm on benchmark or generated problems 
(Chaudhry & Khan, 2016). A big opportunity lies in solving a prac�cal problem and tes�ng its solu�on. 
Another gap and promising future direc�on is increasing the number of constraints in the scheduling 
problem (Miyata & Nagano, 2019). Another gap and future direc�on is the use of mul�-objec�ve 
func�ons (Miyata & Nagano, 2019). When taking stochas�city into account, it is of great importance 
that the data and distribu�ons used for the modal are of good quality. If the data can not be reliably 
fited to a distribu�on or model it can o�en even make the scheduling model perform worse than not 
including the stochas�city (Pit & Myung, 2002).  

Table 1: Comparison for modelling approaches for SSP 

Pro Con 
RM -Lower computational time

-Easier to implement
-Easier to combine with other
constraints

-Possible big risk variation
between customers
-No bounds on maximum risk

CCP -Amount of maximum risk can
be controlled

-More complicated
-More computational intense

Figure 3: Two methods of modelling stochasticity: RM and CCP 
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2.1.3 Dynamic scheduling 
Reac�ng to the changes in the environment can be done by making the scheduling problem dynamic. 
Examples of such dynamic events are a change in the constraints of the resources or an increase in 
availability. This new informa�on can be used to execute a re-op�miza�on of the schedule. Another 
dynamic aspect of the scheduling problem is the dynamic reveal of job or client arrival �mes. This 
results in the need for inser�ng this new client into the new schedule. This dynamic client arrival differs 
from the other dynamic events, because there is no need to re-op�mize the en�re schedule. There are 
different methods to determine when to update the model and what to do when the model is updated. 
Both are explained and compared in this chapter.  

2.1.3.1 Re-op�miza�on  
Re-op�miza�on can be done for adjus�ng the current schedule to beter fit the newly available 
informa�on. This could be the change of a resource constraint, a client cancelling or an increase in 
availability of one of the installa�on team members. The first ques�on we need to ask ourselves is: 
what do we want to re-op�mize? 
Regarding the scope of this literature review, only 1 parameter is suitable for re-op�miza�on. This 
parameter is the assignment of a client to a specific installa�on team. The period or installa�on date 
in other words is already communicated with the client and cannot be changed anymore. The second 
ques�on we need to ask ourselves is: when to re-op�mize? 
Literature shows four main methods for when to re-op�mize the model (Zhang et al., 2022). The 
methods are explained below to be compared in Table 2. 
Periodic update – A period is defined which splits up the schedule in mul�ple periods. This method 
makes the problem effec�vely a normal schedule. Defining a new problem at the beginning of each 
period. Periodic update was first implemented by Kuo et al., (2016) 
Dynamic update – When new informa�on is available, the model is immediately reevaluated. One 
could argue that this method had the most reevalua�ons to do, but if there is only one new piece of 
informa�on, the periodic update will have more reevalua�on moments. Dynamic update was first 
implemented by Taillard & Badeau, (1997)  
Customer update – When the clients job is finished, the re-op�miza�on is triggered. This method 
ensures re-op�miza�on only when no client is being served. This could improve safety and 
communica�on between the driver and the planners. Customer update is applied by  Campos et al., 
(2008) and  Pillac et al., (2012) 
Key point update – New informa�on is collected at predefined key points. An example of such a key 
point could be at break �mes for employees driving the vehicles or running the machines. Maybe some 
repairs at the machine are dynamically revealed just before the break . Upda�ng at a strategic key 
point could also have a �me advantage for calcula�ons the best schedule, if the point is combined with 
lunch �me for example, a calcula�on �me of 10 or 20 minutes is acceptable in that case. Key point 
update is implemented by AbdAllah et al., (2017) 
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Table 2: Comparison for dynamic update moment for DSP 

Pro Con 
Periodic update -Easy adjustment for the

number of updates
-Known update time

-Receive crucial updates late
-Hard to predict update
location

Dynamic update -Respond direct to update -Likely to require the most
computation time

Customer update -Predictable update place
-Easier implementation for the
driver side

-Update intervals can vary
widely – high/low distance
-Receive crucial updates late

Key point update -Choose the best point (time,
location) to update

-Receive crucial updates late

2.1.3.2 Dynamic job arrival �mes   
Another aspect of dynamic scheduling is the possibility of dynamic job arrival �mes. This means that 
the number of jobs and when they arrive are not known in advance. This greatly increases the difficulty 
of the scheduling problem. This is the real-life situa�on in most cases. Mul�ple methods can be 
adopted to solve this challenge (Mohan et al., 2019). 
Stochas�c informa�on about the number of jobs and expected arrival �mes can be used to make 
informed decisions when not all of the informa�on is know in advance. It is of great importance that 
the informa�on used in the model is of good quality.  
Job priori�za�on can be implemented to make sure dynamically arriving high priority job can be 
executed when they arrive. This would mean low priority job will be put on hold for a certain �me in 
order to leave resources available for a possibly arriving high priority job.  
A online scheduling model will make a decision once a new job arrives with the limited informa�on 
available. This means scheduling the job as soon as it arrives. This could result in a non op�mal 
schedule because of the lack of overall schedule informa�on being used.  

2.1.3.3 Challenges in dynamic scheduling 
One of the big challenges in dynamic scheduling is finding a solu�on within reasonable computa�onal 
�me (Hartmann & Briskorn, 2022). These re-op�miza�on calcula�ons for the dynamic problem o�en 
need to be done within the order of minutes and some�mes even seconds. Mohan et al., 2019 states 
that a big challenge and opportunity lies in the combina�on of exact algorithms and heuris�cs for 
solving the DSP. The algorithms could benefit from each others advantages. Another challenge is 
making the DSP networked (Mohan et al., 2019). This means crea�ng mul�ple agent that are 
interconnected and communicate with each other using a network. These agents could represent 
processes, machines or many other parts of the problem. The agents make their decisions based on 
constraints and interdependencies between agents. 
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2.2 Solu�on methods for the scheduling problem. 
Firstly, the different types of solving are explained, to be 
extended in their own chapters with more detail on 
useability and challenges. Lastly the different approaches 
are compared. Since the SP is closely related to the 
Vehicle rou�ng problem (VRP) references and solu�ons 
from both problems are used 
Approaches to solving the SP can be divided into two main 
categories: Exact/op�mal solu�ons and approximate 
solu�ons as seen in Figure 4. Exact solu�ons are 
generated by an exact algorithm, resul�ng in the best solu�on possible. This type of a method is 
computa�onally intensive, therefore approximate solu�on methods were developed for large scale 
problems. An approximate solu�on is generated for example by a (meta)heuris�c algorithm or a 
learning-based op�miza�on (LBO) algorithm. Heuris�cs make use of problem specific tricks to get very 
close to the op�mal solu�on in the frac�on of the �me of exact algorithms. LBO uses machine learning 
to learn a mapping func�on from the input to the output of the VRP. A simple comparison on a 
capacitated SP with 20 clients can be seen in Table 3. Note that this data is based on a single instance, 
results can vary greatly based on problem size and complexity, but it illustrates the huge difference 
between exact and approximate solu�ons in terms of calcula�on �me. 

Table 3: Comparison of different solution methods (Li et al., 2022) 

Objective (lower is better) Calculation time (s) (lower is better) 
Exact (ILP) 5.74 1800 
Approximate heuristic (LNS) 6.12 1.25 
Approximate LBO 6.41 0.25 

2.2.1 Exact solu�on methods 
An exact solu�on is generated by an exact algorithm, such as direct tree search or integer linear 
programming (ILP). In simple terms, an exact algorithm checks all the possible solu�ons to exactly find 
the best and op�mal solu�on. This method takes a lot of �me which increases exponen�ally when the 
problem size increases, since the SP is an NP-Hard problem (Lenstra & Kan, 1981). When the problem 
size increases beyond 200 clients, with only a capacity constraint, exact methods are struggling (Pecin 
et al., 2017).  
Research into exact algorithms can be divided into two categories: decreasing computa�onal �me and 
increasing the complexity of the SP. Pecin et al., (2017) adopted a problem specific branch-cut-and-
price (BCP) algorithm to solve a SP with up to 360 clients, almost doubling the previous limit of 200 
clients. This result was achieved by combining different improvements by different authors on the 
algorithm. A generic BCP algorithm was proposed by Pessoa et al., (2020), able to solve many different 
types of SPs. Which showed very good results, in some instances even beter than exact problem 
specific solvers. Computa�onal �me is also greatly reduced, a 100 client SP which took a couple hours 
a few years ago, can now be solved in minutes (Pessoa et al., 2020). SPs with many constraints are 
researched at a small size. This research can give insight on the op�mal solu�on and how to develop 
heuris�cs approxima�ng the op�mal solu�on. High performing exact algorithms are difficult to extend 
when the problem formula�on changes (Fakhravar, 2022). This could make the implementa�on 
challenging when a company wants to extend the algorithm in the future. 

Figure 4: Classification of solving methods for the SP . 
Adapted form (Li et al., 2022) 
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2.2.2 Approximate solu�on methods 
This sec�on studies the relevant approximate solu�on methods for the dynamic scheduling problem. 
First, heuris�cs are inves�gated followed by the combina�on of metaheuris�cs and exact algorithms. 
Finally the learning based algorithms are studied. 

2.2.2.1 Heuris�cs  
Heuris�cs are simple, rule-based strategies that can be used to solve problems quickly and efficiently. 
They involve making decisions based on experience or intui�on rather than a rigorous analysis of all 
available op�ons. Meta heuris�cs are more complex problem-solving techniques which use heuris�c 
methods as building blocks for genera�ng higher quality solu�ons, generally improving 3-7% (Laporte, 
2001). Meta heuris�cs employ addi�onal search techniques such as simulated annealing, tabu search 
and gene�c algorithms in order to explore the solu�on space more thoroughly and find beter 
solu�ons than those found using basic heuris�c methods alone. A very simple example of a heuris�c 
rule: the 2 client points furthers away from each other probably won’t be on the same route. Rules 
like this nudge the search in a certain direc�on, greatly reducing the search �me. However, it is 
unknown if the solu�on found is also the op�mal solu�on. To combat this problem, many researchers 
(Li et al., 2022), (Daniele & Paolo, 2014) compare the solu�ons obtained by the heuris�c to the known 
op�mal solu�on. For new problems, with unknown op�mal solu�on an es�ma�on of the op�mality 
gap can be made.  
Heuris�cs are mostly problem specific since they rely on rules, based on certain characteris�cs of the 
SP. Most heuris�cs only tackle up to 3 variants at the same �me (Konstantakopoulos et al., 2022), but 
Penna et al., (2019) developed an algorithm for 6 variants, including backhauls, mul�ple depots, split 
deliveries, open routes, dura�on limits, and �me windows.  
A big challenge is the development of a (meta)heuris�cs able to solve a wide varie�es of SPs (Vidal et 
al., 2020). Furthermore, mul� constraint, mul� objec�ve SPs remain a big challenge to solve with 
(meta)heuris�cs (Zhang et al., 2022)  

2.2.2.2 Combining metaheuris�c and exact algorithms 
Heuris�cs and exact algorithms are combined in order make use of the advantages of both type of 
algorithms. Puchinger & Raidl, (2005) proposed two different classifica�ons: Collabora�ve – and 
integrated combina�ons.   With collabora�ve combina�on, informa�on is exchanged between two or 
more algorithms. Klau et al., (2004) implemented the following: firstly finding non op�mal solu�ons 
with a metaheuris�c algorithm. Next, using the non op�mal solu�on as a star�ng point, an exact 
algorithm is used to find the op�mal solu�on. This way, speed (the advantage of the metaheuris�c) 
and precision (the advantage of the exact algorithm) are used. Integrated combina�on consists of one 
master algorithm, this can be both an exact or a metaheuris�c algorithm. To improve certain parts or 
steps within the master algorithm, one or more slave algorithms are implemented. Burke et al., (2001) 
implemented an exact algorithm in the local search part of a local and variable neighborhood search 
algorithm. This approach results in a known op�mum within the local search.  

2.2.2.3 Learning based op�miza�on algorithms 
Learning based op�miza�on algorithms use machine learning, a form of ar�ficial intelligence (AI) to 
approximate a mapping func�on between the in and output of a SP. This is a rela�vely new field 
compared to the other methods and it can be divided into step-by-step and end-to-end approaches. 
The former is genera�ng a solu�on and itera�vely improving it whereas the later directly outputs a 
feasible solu�on. This approach is rela�vely new and is currently only suitable for small scale problems 
with one or two constraints. Another implementa�on of LBO is selec�ng or genera�ng a heuris�c (Li 
et al., 2022), this is considered as a hyper-heuris�c. Okulewicz & Mańdziuk, (2020) implemented such 
a hyper-heuris�c to solve a dynamic SP with an improvement of 2,8% over pervious methods. 
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2.3 Summary  
The literature review explores the scheduling problem (SP) witch a focus on dynamic scheduling with 
stochas�c customers for a real-life applica�on. The review discusses mul�ple aspects of the SP, 
including different variants, solu�on methods, its relevance and challenges. 
The logis�cs industry is gaining importance in the digital and connected  world, and the SP aims to 
op�mize the alloca�on of resources to meet the increasing demand. Solving the SP to op�mally can 
result in a significant reduc�on in opera�onal costs and increase efficiency. The SP can be divided into 
two classes: predic�ve scheduling, where all informa�on known in advance, and reac�ve scheduling, 
where not all informa�on is known in advance, making the problem more challenging to model and 
solve. 
Trends in research include minimizing global warming and reducing emissions, as well as developing 
efficient models accompanied by solu�on algorithms to find high-quality solu�ons within a reasonable 
�me. The SP is known as an NP-Hard problem, leading researchers to explore innova�ve solu�on 
methods such as metaheuris�cs and learning-based op�miza�on, with gene�c algorithms being 
widely used. Most research in the field tests proposed models and algorithms on standardized or 
adapted test cases for comparability. However, there is a significant opportunity to apply these models 
and solu�on methods to real-life cases to inves�gate their effec�veness and relevance. 
The literature review focuses on a specific case of a company installing hea�ng and cooling systems at 
individuals' homes using mul�ple vans and depots. The scope of the review includes relevant variants 
of the SP and the solu�on methods proposed for them. The review outlines the research approach, 
star�ng with an explana�on of the fundamentals of the scheduling problem and its relevant variants. 
It then discusses solu�on methods for the SP and compares them. Throughout the review, gaps and 
future direc�ons in the literature are iden�fied and discussed. The stochas�c nature of the scheduling 
problem is explored, highligh�ng the relevant aspects. 
Two methods for modeling stochas�city, risk minimiza�on (RM) and chance constrained programming 
(CCP), are discussed and compared. The challenges in stochas�c scheduling are highlighted, including 
the lack of real-life problem-solving and the need to increase the number of constraints in the 
scheduling problem. The use of mul�-objec�ve func�ons and the importance of high-quality data for 
modeling stochas�city are also emphasized. 
Dynamic scheduling is addressed, considering the reac�ons to changes in the environment and the 
dynamic job arrival �mes. Different methods for re-op�mizing the model are discussed, along with the 
challenges of finding solu�ons within reasonable computa�onal �me. The literature review concludes 
by discussing the different approaches to solving the scheduling problem, including exact/op�mal 
solu�ons and approximate solu�ons. The advantages and challenges of each approach are examined 
and compared. Furthermore, references and solu�ons from the Vehicle Rou�ng Problem are also 
considered. 
Overall, the literature review provides insights into the scheduling problem, focusing on dynamic 
scheduling with stochas�c customers for a real-life applica�on. It explores relevant variants, solu�on 
methods, challenges, and future direc�ons, aiming to contribute to the understanding of the current 
models,  solu�ons and gaps in the literature.  
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3 Methodology 
The rule-based model is first explained, followed by its shortcomings. A dynamic scheduling model is 
proposed to provide a solu�on for these limita�ons. Different types of risk cost func�ons are 
developed to op�mize the trade-off between mul�ple objec�ves. Finally, a re-op�miza�on model is 
proposed in order to further improve the scheduling performance. A�er defining these models, 
recommenda�ons on the implementa�on are given. This implementa�on refers to when to do the re-
op�miza�on and the integra�on of the proposed models into a real-life system.  

3.1 Rule-based scheduling model  
The rule-based model works based on a set of condi�ons. Those condi�ons are based on the constraint 
deducted from the limita�ons and parameters of the clients and the installa�on teams. All of the open 
spots in the schedule are first retrieved from the open schedule with all the informa�on of the new 
client. Next the condi�ons are applied to all of the open spots to reduce the number of op�ons to one. 
The five condi�ons shown in Figure 5 are explained below. 
Condi�on 1: The first condi�on checks if the distance and driving �me to a client does not exceed the 
limita�ons of the teams. Condi�on 1 also ensures the lowest �me and distance are selected, including 
distances and �mes within a certain threshold. Simula�ons with earlier versions of the rule-based 
model showed undesirable results for not including this threshold. 
Condi�on 2: The second condi�on checks if each team possesses the required skill level to match or 
exceed the difficulty level of the client. 
Condi�on 3: The third condi�on checks if the length of the client installa�on does not exceed the 
maximum installa�on length the team can execute.  
Condi�on 4: The fourth condi�on picks all of the earliest dates in the remaining op�ons. If there is 
only one op�on, condi�on 5 is skipped and the sugges�on is sent straight to the customer. 
Condi�on 5: The fi�h and last condi�on calculates the overall team u�liza�on, since fair distribu�on 
among the teams is required. If there are mul�ple op�ons remaining from condi�on 4, the team with 
the lowest u�liza�on is selected to execute the clients installa�on. 

Figure 5: Rule-based scheduling model structure 
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3.1.1 Limita�ons of the rule-based model  
Mul�ple problems arise while using and tes�ng the rule-based model. Since the model only checks 
one condi�on at a �me, it is impossible to op�mize for mul�ple objec�ves at the same �me. We could 
take an extreme case as an example:  

- Two  teams are available, one at the Utrecht depot and one at the Del� depot 
- All new clients are significantly closer to the Utrecht depot, exceeding the loca�on threshold  

With this example, no open spots for the Del� team will get accepted by Condi�on one. Therefore all 
new clients will get assigned to open spots belonging to the Utrecht team. This results in the Utrecht 
team having a full schedule and the Del� team a complexly empty schedule. This of course is an 
undesirable result. The threshold somewhat mi�gates this problem, but it can s�ll have a significant 
nega�ve impact on the overall scheduling performance. 
Another problem arises regarding the minimiza�on of overall travel �me and distance. Condi�on 4 
simply picks the earliest date, even though another loca�on within the threshold will result in a lower 
�me and distance 
The final problem is regarding the risk of unu�lized human resources. The rule-based model has no 
tools to make a considera�on between reducing the travel cost and maximizing the human resource 
u�liza�on. To summarize, the problems with the rule-based model are: 

- Poor results in extreme client cases  
- No considera�on between risk of lowering human resource u�liza�on and minimizing �me 

and distance  
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3.2 Dynamic scheduling model 
In order to address the limita�ons of the rule-based model, a dynamic scheduling model based (DSM) 
on op�miza�on is proposed. The dynamic scheduling model is first formulated as a mathema�cal 
model with accompanying indices, (sub)sets, variables and constraints. An open-source mixed integer 
linear programming (MILP) exact solver called PULP is selected as solu�on method. This requires all 
the constraints to be linear. The constraints are implemented one by one in order to itera�vely develop 
the model. 

3.2.1 Indices and (sub)sets 
Firstly, the client ID 𝑖𝑖 is constructed, it consists of a client number 𝑚𝑚 and a type or difficulty 𝑗𝑗 as shown 
in Table 5. This nota�on is chosen for the model and solver to be able to dis�nguish between clients 
with the same number but with a different type. The teams are indexed by 𝑠𝑠 with the total number of 
teams denoted by 𝑘𝑘. The model considers a planning horizon denoted by 𝑓𝑓 with periods denoted by 
𝑝𝑝. In order to formulate a number of consecu�vely constraints, mul�ple subsets of 𝑝𝑝, indexed by team 
𝑠𝑠 are created. In combina�on with the alterna�ve periods 𝑞𝑞𝑠𝑠, these sets will be used for the 
consecu�ve constraints for mul� period installa�ons. Set 𝑄𝑄𝑠𝑠 includes one up  to  𝑒𝑒𝑠𝑠 = 𝑓𝑓 or smaller and 
is based on the input variable 𝑤𝑤𝑠𝑠𝑠𝑠. The construc�on and rela�on between the period sets 𝑃𝑃,𝑃𝑃�𝑠𝑠 and 𝑄𝑄 
are best explained with a simple example, shown in Table 4. The purpose of 𝑃𝑃�𝑠𝑠  is rela�ng 𝑞𝑞𝑠𝑠 to 𝑝𝑝, the 
first entry in the subset �̂�𝑝𝑠𝑠 relates the first entry in the alterna�ve period 𝑞𝑞 to the real period 𝑝𝑝. 
Table 4: Example of a 4 period schedule with 1 team, showing the relation of p, �̂�𝑝𝑠𝑠 and q 

𝑞𝑞𝑠𝑠 1 𝑞𝑞𝑠𝑠 =  𝑒𝑒𝑠𝑠 = ∑  𝑓𝑓
𝑠𝑠=1 𝑤𝑤𝑠𝑠𝑝𝑝 = 2 

�̂�𝑝𝑠𝑠 2 3 
𝑝𝑝 1 2 3 4 
𝑤𝑤𝑠𝑠𝑠𝑠 𝑤𝑤11 = 0 𝑤𝑤12 = 1 𝑤𝑤13 = 1 𝑤𝑤14 = 0 

𝑠𝑠 = 1 𝑋𝑋𝑋𝑋𝑋𝑋 𝐴𝐴 − 12 𝑋𝑋𝑋𝑋𝑋𝑋 

Table 5: Indices and sub sets for the dynamic scheduling model 

𝐼𝐼 = 𝑖𝑖(𝑖𝑖 = 1,2, … ,𝑛𝑛) Client ID: 𝑖𝑖 =  𝑗𝑗𝑚𝑚   (𝑗𝑗 = 1) 

(𝑚𝑚 = 123)  (𝑖𝑖 = 1123) 

𝑛𝑛 Total no. of clients IDs 

𝑆𝑆 = 𝑠𝑠(𝑠𝑠 = 1,2, … , 𝑘𝑘) Team number 𝑘𝑘 Total no. of teams 

𝐽𝐽 = 𝑗𝑗(𝑗𝑗 = 1,2, … , 𝑙𝑙) Type 𝑙𝑙 Total no.  of types 

𝑀𝑀 = 𝑚𝑚(𝑚𝑚 = 1,2, … , 𝑜𝑜) Client number 𝑜𝑜 Total no. of client numbers 

𝑃𝑃 = 𝑝𝑝(𝑝𝑝 = 1,2, … , 𝑓𝑓) Period 𝑓𝑓 Horizon: number of periods 
considered for the planning 

𝑃𝑃�𝑠𝑠 ⊆ 𝑃𝑃 Subset with rule:  
if 𝑤𝑤𝑠𝑠𝑠𝑠 = 1 include 𝑝𝑝 in 𝑃𝑃�𝑠𝑠 

Periods which are free or where 
another team is planned  
(used to link  𝑥𝑥 to 𝑥𝑥� ) 

𝑄𝑄𝑠𝑠 = 𝑞𝑞𝑠𝑠(𝑞𝑞𝑠𝑠 = 1,2, … , 𝑒𝑒𝑠𝑠) With 𝑒𝑒𝑠𝑠 = ∑  𝑓𝑓
𝑠𝑠=1 𝑤𝑤𝑠𝑠𝑝𝑝 Periods 𝑞𝑞  
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3.2.2 Input variables  
The first 8 input parameters, shown in Table 7 are generated based on client and team data inputs. 
The cost for an open spot 𝐶𝐶𝑠𝑠𝑠𝑠 can be different for each team and period. The defini�on of the func�on 
determining this cost is one of the most important aspect for op�mizing the schedule. This func�on 
influences the considera�on between minimizing the �me and distance versus the increased risk of 
lower human resource u�liza�on. An in depth explana�on of the cost func�on can be found in Chapter 
3.5. 
Both the binary input parameters 𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠 and  𝑤𝑤𝑠𝑠𝑠𝑠 are derived directly from the current schedule. An 
illustrated example in Table 6 explains the deriva�on of the two binary input parameters. Vaca�on days 
or days where the team is not available are indicated by: 𝑋𝑋𝑋𝑋𝑋𝑋. A scheduled client is denoted by its ID 
with first the type in the form of a string, followed by the client number 𝑚𝑚. In the first period, team 
one is not available, resul�ng in the value of zero for both 𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠 and  𝑤𝑤𝑠𝑠𝑠𝑠. A client is scheduled in the 
second period, resul�ng in no availability for team one, therefore 𝑤𝑤𝑤𝑤12 = 0. However, team one is 
scheduled for a client, so 𝑤𝑤12 = 1. 
Table 6: Example of 4 period schedule with 1 team, w and 𝑤𝑤𝑤𝑤 

𝑤𝑤11 = 0 𝑤𝑤12 = 1 𝑤𝑤13 = 1 𝑤𝑤14 = 0 

𝑤𝑤𝑤𝑤11 = 0 𝑤𝑤𝑤𝑤12 = 0 𝑤𝑤𝑤𝑤13 = 1 𝑤𝑤𝑤𝑤14 = 0 

𝑝𝑝 = 1 𝑝𝑝 = 2 𝑝𝑝 = 3 𝑝𝑝 = 4 

𝑠𝑠 = 1 𝑋𝑋𝑋𝑋𝑋𝑋 𝐴𝐴 − 12 𝑋𝑋𝑋𝑋𝑋𝑋 

3.2.3 Decision variables 
A total of 4 decision variables are needed to implement all of the necessary constraints. The decisions 
for the period and team assigned to a new client are indicated by 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠. With a value of 1 if the client is 
visited on period 𝑝𝑝 by team 𝑠𝑠. For the alterna�ve periods 𝑞𝑞𝑠𝑠, the alterna�ve binary decision variable 
𝑥𝑥�𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 is constructed. This variable is defined in the same way as 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠.  

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠  Binary decision variable indicating if team 𝑠𝑠 is planned to service client 𝑖𝑖 in period p 
𝑥𝑥�𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 Binary decision variable indicating if team 𝑠𝑠 is planned to service client 𝑖𝑖 in period 𝑞𝑞𝑠𝑠 
𝑦𝑦𝑠𝑠𝑠𝑠  Binary decision variable indicating if team 𝑠𝑠 is servicing client 𝑖𝑖 
𝑟𝑟𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 Binary decision variable indicating if 

x�sqsi = 1, has already occurred for team 𝑠𝑠, client 𝑖𝑖 in period 𝑞𝑞𝑠𝑠 

Table 7: Input parameters of the dynamic scheduling model 

𝑑𝑑𝑠𝑠𝑠𝑠  Distance of traveling from client 𝑖𝑖 to team 𝑠𝑠 𝐷𝐷𝑠𝑠  Maximum travel distance for team 𝑠𝑠 

𝑡𝑡𝑠𝑠𝑠𝑠 Time of travelling  from client 𝑖𝑖 to team 𝑠𝑠 𝑇𝑇𝑠𝑠 Maximum travel time for team 𝑠𝑠  

ℎ𝑠𝑠  Difficulty for client  𝑖𝑖 𝐻𝐻𝑠𝑠  Skill level of team 𝑠𝑠  

𝑙𝑙𝑠𝑠  Number of periods for client 𝑖𝑖 𝐿𝐿𝑠𝑠 Maximum periods for a client for  
team 𝑠𝑠   

𝐶𝐶𝑠𝑠𝑠𝑠 Risk cost function value for team 𝑠𝑠 on period 𝑝𝑝 

𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠 Binary parameter indicating if team 𝑠𝑠 is available on 
period  𝑝𝑝 

𝑤𝑤𝑠𝑠𝑠𝑠 Binary parameter indicating if team 𝑠𝑠 is  available or 
scheduled for a client on period  𝑝𝑝 
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3.2.4 Objec�ve func�on 
The objec�ve func�on is based on the scope defined in chapter 1.1. Maximizing human resource 
u�liza�on is implemented by the risk cost func�on: 𝑎𝑎𝐶𝐶𝑠𝑠𝑠𝑠. The cost func�on has its own weight factor: 𝑎𝑎
in order to balance the trade-off related to the other objec�ves in the objec�ve func�on. The travel
�me and distance cost: 𝑏𝑏𝑑𝑑𝑖𝑖𝑠𝑠 +  𝑤𝑤𝑡𝑡𝑖𝑖𝑠𝑠 are both represented by different factors with their own weight
factor. This weight factor for the travel cost can be deducted from the real-life costs. The cost func�on
weight factor can be determined by experimental results for mul�ple objec�ves.

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 � 
𝑘𝑘

𝑠𝑠=1

�
𝑓𝑓

𝑠𝑠=1

 � 
𝑛𝑛

𝑠𝑠=1

𝑥𝑥𝑠𝑠𝑝𝑝𝑖𝑖 ∗ (𝑎𝑎𝐶𝐶𝑠𝑠𝑝𝑝 + 𝑏𝑏𝑑𝑑𝑖𝑖𝑠𝑠 +  𝑤𝑤𝑡𝑡𝑖𝑖𝑠𝑠)

3.2.5 Constraints  
A total of 13 constraints are constructed and verified, each constraint is explained separately. The first 
six constraint do not need further elabora�on then simply sta�ng the func�on of the constraint. 
Constraint 7 up to 13 are further elaborated by examples and the explana�on of the necessity of an 
extra decision variables. 
Every client needs to be visited the correct number of periods.  

� 
𝑘𝑘

𝑠𝑠=1

�  
𝑓𝑓

𝑠𝑠=1

𝑥𝑥𝑠𝑠𝑝𝑝𝑖𝑖 = 𝑙𝑙𝑖𝑖, 𝑖𝑖 ∈ (1,2, … ,𝑛𝑛)        (1)

Every team can only service 1 client in 1 period 

� 
𝑛𝑛

𝑠𝑠=1

𝑥𝑥𝑠𝑠𝑝𝑝𝑖𝑖 = 1, 𝑠𝑠 ∈ (1,2, … ,𝑘𝑘),𝑝𝑝 ∈ (1,2, … ,𝑓𝑓)        (2)

The difficulty level of an installa�on cannot exceed the skill level of a team 

𝐻𝐻𝑠𝑠 ≥ ℎ𝑠𝑠 ∗ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠 ∈ (1,2, … , 𝑘𝑘),𝑝𝑝 ∈ (1,2, … , 𝑓𝑓) , 𝑖𝑖 ∈ (1,2, … , 𝑛𝑛)        (3)
The driving distance to a client cannot exceed the max team driving distance 

𝐷𝐷𝑠𝑠 ≥ 𝑑𝑑𝑖𝑖 ∗ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠 ∈ (1,2, … , 𝑘𝑘), 𝑝𝑝 ∈ (1,2, … , 𝑓𝑓) , 𝑖𝑖 ∈ (1,2, … , 𝑛𝑛)        (4) 

The driving �me to a client cannot exceed the max team driving �me 
𝑇𝑇𝑠𝑠 ≥ 𝑡𝑡𝑠𝑠 ∗ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠 ∈ (1,2, … , 𝑘𝑘), 𝑝𝑝 ∈ (1,2, … , 𝑓𝑓), 𝑖𝑖 ∈ (1,2, … , 𝑛𝑛)        (5)

The number of periods for a client cannot exceed the maximum number periods a team can service 

� 
𝑓𝑓

𝑠𝑠=1

𝑥𝑥𝑠𝑠𝑝𝑝𝑖𝑖 ≤ 𝐿𝐿𝑠𝑠, 𝑠𝑠 ∈ (1,2, … ,𝑘𝑘), 𝑖𝑖 ∈ (1,2, … ,𝑛𝑛)        (6) 

A client cannot be scheduled on vaca�on or off day. If 𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠 = 0,  team 𝑠𝑠 is not available on that specific 
period, as a result,  𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 can only be 0 as well. If 𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠 = 1, 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠  can be either 0 or 1, making it possible 
to schedule a client at that period.  

� 
𝑛𝑛

𝑠𝑠=1

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠, 𝑠𝑠 ∈ (1,2, … ,𝑘𝑘),𝑝𝑝 ∈ (1,2, … ,𝑓𝑓)        (7)
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A client requiring mul�ple periods can only be scheduled for one team. An extra binary decision 
variable  𝑦𝑦𝑠𝑠𝑠𝑠  is created, which has the value 1 if client 𝑖𝑖 is assigned to team 𝑠𝑠. The constraint enforces 
only 1 team assignment per client. This constraint is not possible with using the other decision variable 
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠  to our knowledge. One could sum over all the periods for each team and count the number of 
nonzero sums, but this would also require an extra decision variable to indicate f a sum is nonzero or 
not.  

� 
𝑘𝑘

𝑠𝑠=1

𝑦𝑦𝑠𝑠𝑖𝑖 = 1, 𝑖𝑖 ∈ (1,2, … ,𝑛𝑛)        (8)

All periods of an client must be done by the same team. Constraint 9 is an extension of constraint 8, 
linking 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑦𝑦𝑠𝑠𝑠𝑠.  

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑦𝑦𝑠𝑠𝑖𝑖, 𝑠𝑠 ∈ (1,2, … , 𝑘𝑘), 𝑝𝑝 ∈ (1,2, … , 𝑓𝑓), 𝑖𝑖 ∈ (1,2, … , 𝑛𝑛)         (9)
All periods of a client have the be consecu�ve, meaning no other installa�on is allowed in between 
the periods of a single client. Constraint 10 and 11 ensure 𝑟𝑟𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 = 1 when 𝑥𝑥�𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 has been 1 in the 
current or past periods.  

𝑟𝑟𝑠𝑠(𝑞𝑞𝑠𝑠+1)𝑠𝑠 ≥ 𝑟𝑟𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 , 𝑠𝑠 ∈ (1,2, … , 𝑘𝑘), 𝑞𝑞𝑠𝑠(𝑞𝑞𝑠𝑠 = 1,2, … , 𝑒𝑒𝑠𝑠 − 1), 𝑖𝑖 ∈ (1,2, … , 𝑛𝑛)  (10) 

𝑟𝑟𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 ≥ 𝑥𝑥�𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 , 𝑠𝑠 ∈ (1,2, … , 𝑘𝑘), 𝑞𝑞𝑠𝑠(𝑞𝑞𝑠𝑠 = 1,2, … , 𝑒𝑒𝑠𝑠), 𝑖𝑖 ∈ (1,2, … , 𝑛𝑛)  (11) 

Constraint 12 ensures all of the nonzero values of 𝑥𝑥�𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 are consecu�ve. With 𝑞𝑞𝑠𝑠 indexing only the 
periods where either an installa�on is scheduled, or there is an op�on in the schedule.  

𝑟𝑟𝑠𝑠(𝑞𝑞𝑠𝑠+1)𝑠𝑠 + 𝑟𝑟𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 + 𝑥𝑥�𝑠𝑠(𝑞𝑞𝑠𝑠+1)𝑠𝑠 − 𝑥𝑥�𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠  ≤ 2,
𝑠𝑠 ∈ (1,2, … , 𝑘𝑘),𝑞𝑞𝑠𝑠(𝑞𝑞𝑠𝑠 = 1,2, … , 𝑒𝑒𝑠𝑠 − 1), 𝑖𝑖 ∈ (1,2, … ,𝑛𝑛)         (12) 

The best way to illustrate this constraint is though an example of 2 scenarios. Table 8 shows a schedule 
which does not sa�sfy constraint 12, client: 𝐴𝐴 − 2 is scheduled in between two periods of client 
𝐴𝐴 − 1. If we fill in constraint 12 for 𝑞𝑞𝑠𝑠 = 2, we get the equa�on below. In Table 9, the planning does 
sa�sfy constraint 12. 

𝑟𝑟𝑠𝑠(𝑞𝑞𝑠𝑠+1)𝑠𝑠 + 𝑟𝑟𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 + 𝑥𝑥�𝑠𝑠(𝑞𝑞𝑠𝑠+1)𝑠𝑠 − 𝑥𝑥�𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 = 1 + 1 + 1 − 1 = 3 <≠ 2

Table 8: Example of a schedule not satisfying constraint 12 

𝑟𝑟111 = 1 𝑟𝑟121 = 1 𝑟𝑟131 = 1 
𝑥𝑥�111 = 1 𝑥𝑥�121 = 0 𝑥𝑥�131 = 1 
𝑞𝑞 = 1 𝑞𝑞 = 2 𝑞𝑞 = 3 

𝑝𝑝 = 1 𝑝𝑝 = 2 𝑝𝑝 = 3 𝑝𝑝 = 4 𝑝𝑝 = 5 

𝑠𝑠 = 1 𝑋𝑋𝑋𝑋𝑋𝑋 𝐴𝐴 − 1 𝐴𝐴 − 2 𝑋𝑋𝑋𝑋𝑋𝑋 𝐴𝐴 − 1 
Table 9: Example of a schedule satisfying constraint 12 

𝑟𝑟111 = 1 𝑟𝑟121 = 1 𝑟𝑟131 = 1 
𝑥𝑥�111 = 0 𝑥𝑥�121 = 1 𝑥𝑥�131 = 1 
𝑞𝑞 = 1 𝑞𝑞 = 2 𝑞𝑞 = 3 

𝑝𝑝 = 1 𝑝𝑝 = 2 𝑝𝑝 = 3 𝑝𝑝 = 4 𝑝𝑝 = 5 

𝑠𝑠 = 1 𝑋𝑋𝑋𝑋𝑋𝑋 𝐴𝐴 − 2 𝐴𝐴 − 1 𝑋𝑋𝑋𝑋𝑋𝑋 𝐴𝐴 − 1 

The last constraint links 𝑥𝑥�𝑠𝑠𝑞𝑞𝑠𝑠 to 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠  using the subset of 𝑃𝑃:𝑃𝑃�𝑠𝑠. 
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥�𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠 , 𝑠𝑠 ∈ (1,2, … , 𝑘𝑘), 𝑝𝑝 ∈ �̂�𝑝𝑠𝑠 ,  𝑞𝑞𝑠𝑠(𝑞𝑞𝑠𝑠 = 1,2, … , 𝑒𝑒𝑠𝑠), 𝑖𝑖 ∈ (1,2, … , 𝑛𝑛) (13)



17 

3.3 Re-op�miza�on model 
A re-op�miza�on model is proposed to further improve the performance of the scheduling model. 
This model can re-op�mize the client-team assignment, with no other variables to be changed. The re-
op�miza�on model uses all of the constraints, indices and variables the dynamic scheduling model 
uses, with a few addi�ons explained below. 

3.3.1 Input parameters 
Informa�on about the schedule is inserted into the re-op�miza�on model using two input parameters. 
Firstly 𝑚𝑚𝑝𝑝𝑖𝑖, which indicates if client 𝑖𝑖 is scheduled for period 𝑝𝑝. Secondly the integer variable 𝑢𝑢𝑠𝑠, 
indica�ng the assignment of team number to the client. If client 1 is scheduled to team 2 on period 4, 
the two input variables would be: 𝑚𝑚41 = 1 and 𝑢𝑢1 = 2. 

3.3.2 Decision variables 
Only one decision needs to be made: the client-team assignment. However, two decision variables are 
needed in order to get an op�mized schedule. The first decision variable  
𝑢𝑢𝑚𝑚𝑠𝑠 is created to represent the absolute value between the assigned team number before and a�er 
the re-op�miza�on. If this variable would be used in the objec�ve func�on, it would s�ll be possible 
to make to make unnecessary team switches. The observed phenomenon arises from the absence of 
dis�nc�veness in the transi�on of a single client with a difference of 3 team numbers, in contrast to 
the transi�ons of three clients altering their team by a single unit in an upward or downward direc�on. 

𝑢𝑢𝑚𝑚𝑠𝑠 Integer decision variable, indicating the difference between the newly assigned team 
𝑠𝑠 and the previously assigned team 𝑠𝑠 for client 𝑖𝑖 

𝑢𝑢𝑤𝑤𝑠𝑠 Binary decision variable, indicating if client 𝑖𝑖 is assigned a new team 𝑠𝑠 

3.3.3 Objec�ve func�on  
One term is added to the objec�ve func�on of the dynamic scheduling model: the minimiza�on of the 
number of new team assignments.  

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 � 
𝑘𝑘

𝑠𝑠=1

�  
𝑓𝑓

𝑠𝑠=1

 � 
𝑛𝑛

𝑠𝑠=1

𝑥𝑥𝑠𝑠𝑝𝑝𝑖𝑖 ∗ (𝑎𝑎𝐶𝐶𝑠𝑠𝑝𝑝 + 𝑏𝑏𝑑𝑑𝑖𝑖𝑠𝑠 +  𝑤𝑤𝑡𝑡𝑖𝑖𝑠𝑠) + � 
𝑛𝑛

𝑠𝑠=1

𝑢𝑢𝑤𝑤𝑖𝑖 

𝑚𝑚𝑠𝑠𝑠𝑠 Binary parameter indication if client I is serviced in period p 

𝑢𝑢𝑠𝑠 Integer parameter indicating which team  𝑠𝑠  𝑖𝑖𝑠𝑠 assigned to client  𝑖𝑖 in the un-optimized 
planning 
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3.3.4 Constraints 
The client-period assignment must be constrained. An appointment with the client has been made on 
a specific period, this period can not be changed anymore. Constraint 1 ensures the period assignment 
is constrained, but the team assignment can s�ll be changed.  

�  
𝑠𝑠

𝑘𝑘=1

𝑥𝑥𝑠𝑠𝑝𝑝𝑖𝑖 = 𝑚𝑚𝑝𝑝𝑖𝑖  𝑠𝑠 ∈ (1,2, … ,𝑘𝑘),𝑝𝑝 ∈ (1,2, … ,𝑓𝑓), 𝑖𝑖 ∈ (1,2, … ,𝑛𝑛)        (1) 

Changing the team assignment is only allowed if it does benefit the objec�ve func�on. Constraints 2 
and 3 ensure the absolute value of the difference between the old scheduled team 𝑢𝑢𝑠𝑠 and the new 
team 𝑠𝑠 is constructed. By also minimizing the integer decision variable:  𝑢𝑢𝑚𝑚𝑠𝑠, no unnecessary team 
switches are made.  

𝑦𝑦𝑠𝑠𝑠𝑠 ∗ (𝑢𝑢𝑠𝑠 − 𝑠𝑠) ≤ 𝑢𝑢𝑚𝑚𝑠𝑠, 𝑠𝑠 ∈ (1,2, … ,𝑘𝑘), 𝑖𝑖 ∈ (1,2, … ,𝑛𝑛)  (2) 
−𝑦𝑦𝑠𝑠𝑠𝑠 ∗ (𝑢𝑢𝑠𝑠 − 𝑠𝑠) ≤ 𝑢𝑢𝑚𝑚𝑠𝑠, 𝑠𝑠 ∈ (1,2, … ,𝑘𝑘), 𝑖𝑖 ∈ (1,2, … ,𝑛𝑛)  (3) 

The last constraint is a binary variable for minimizing the total number of team switches. Since the 
integer variable 𝑢𝑢𝑚𝑚𝑠𝑠 does not differen�ate between 4 �mes a 1 team difference and 1 �me a 4 team 
difference, binary decision variable 𝑢𝑢𝑤𝑤𝑠𝑠 is introduced. This variable has the value 1 if 𝑢𝑢𝑚𝑚𝑠𝑠 is nonzero 
and the value 0 if 𝑢𝑢𝑚𝑚𝑠𝑠is also 0.  

𝑢𝑢𝑤𝑤𝑠𝑠 ∗ 𝑘𝑘 ≥ 𝑢𝑢𝑚𝑚𝑠𝑠 (4) 
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3.4 Determinis�c model 
The op�mal solu�on for the determinis�c scenario can be inves�gated by crea�ng a determinis�c 
model. This model could be used to compare the dynamic and stochas�c solu�on to a determinis�c 
solu�on. The determinis�c model will be based on the re-op�miza�on model with a few adjustments. 
First, constraint 1 from the re-op�miza�on model will be removed in order to give the determinis�c 
model the op�on to change the client-period assignment. However, a client cannot be assigned to any 
period in the schedule. A client cannot be scheduled before its know arrival �me or period. As a result, 
an new input parameter and constraint are created.  

3.4.1 Input parameter 
The new binary input parameter 𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠 is created. This parameter has the value 0 if the arrival period is 
higher than the current period. If the arrival period is the same or smaller than the current period, the 
value of 𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠 is 1.  

3.4.2 Constraint  
The extra constraint will ensure no client can be scheduled before its arrival period. The decision 
variable 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠  can only equate the value 1 for periods a�er the arrival period of the client 

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠   𝑠𝑠 ∈ (1,2, … , 𝑘𝑘),𝑝𝑝 ∈ (1,2, … , 𝑓𝑓), 𝑖𝑖 ∈ (1,2, … , 𝑛𝑛)        (1) 

3.4.3 Objec�ve func�on 
The objec�ve func�on is iden�cal to the objec�ve func�on of the dynamic scheduling model in 
Chapter 3.2 

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 � 
𝑘𝑘

𝑠𝑠=1

�
𝑓𝑓

𝑠𝑠=1

 � 
𝑛𝑛

𝑠𝑠=1

𝑥𝑥𝑠𝑠𝑝𝑝𝑖𝑖 ∗ (𝑎𝑎𝐶𝐶𝑠𝑠𝑝𝑝 + 𝑏𝑏𝑑𝑑𝑖𝑖𝑠𝑠 +  𝑤𝑤𝑡𝑡𝑖𝑖𝑠𝑠) 

𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠 Binary parameter indication if the arrival period has ben passed at the current period 
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3.5 Risk cost func�on  
The risk cost func�on contains the rela�on between the risk of lower team u�liza�on and minimizing 
the travel �me and distance. Finding a robust and reliable rela�on between these two contradic�ng 
objec�ves is important. In order to inves�gate this rela�on, different types of cost func�ons are 
constructed. Each type of cost func�on can be adjusted by changing its parameters. Another important 
aspect of the cost func�on is that it cannot contain any sec�ons with a deriva�ve of zero. A sec�on 
with a deriva�ve of zero will result in clients being inserted into the planning at random spots, 
increasing the risk of open spots and a higher objec�ve func�on. This is caused by a constant value of 
the objec�ve func�on for the sec�on in the cost func�on where the deriva�ve is zero. To mi�gate this 
problem, a very small term is added to the cost func�on. This term increases slightly when 𝑝𝑝 increases. 
As a result, the cost for the func�on in Figure 7 has the value 1 for 𝑝𝑝 = 30 and 1,001 for 𝑝𝑝 = 40. This 
is true for any value 𝑝𝑝 > ℎ, up to 𝑝𝑝 = 𝑓𝑓. With 𝑓𝑓 being the horizon the schedule considers for the 
op�miza�on and ℎ defined as the value of 𝑝𝑝 where the risk cost func�on equals 1.  
The trade-off influenced by the cost func�on can be best explained by an example. Figure 6 shows a 
linear and a logarithmic cost func�on with their rela�ve costs of 0.14 and 0.47 at 𝑝𝑝 = 5. This cost 
value is mul�plied by the cost weight factor, in this case 800. This results in a rela�ve weighted cost of 
112 and 376 for linear and logarithmic respec�vely. In this example, a new client must be scheduled 
with two available op�ons. One op�on with a travel cost of 300 at 𝑝𝑝 = 1, the other op�on containing 
a travel cost of 100 at 𝑝𝑝 = 5. Combining these costs in Table 10 results in the linear cost func�on 
favoring op�on 2 and the logarithmic cost func�on favoring op�on 1.  

Figure 6: Cost function comparison between linear and logarithmic  
with cost values at p=5 

Figure 7: Linear cost function with (h=30) up to p=40 

Table 10: Costs for 2 options and 2 cost functions 

Linear Log 

Opt 1 Opt 2 Opt 1 Opt 2 
Travel 
cost 

300 100 300 100 

Risk cost 
function 

0 112 0 376 

Total 
cost 

300 212 300 476 
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3.5.1 Linear cost func�on 
The linear cost func�on is constructed using a horizon for when the cost should be one. The cost for 
inser�ng a client at 𝑝𝑝 = 1 is zero and the cost at 𝑝𝑝 = ℎ is one. The equa�on below shows the complete 
formula�on. Figure 9 shows a graphical representa�on of the linear cost func�on. 

𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡 =  �

𝑝𝑝 − 1
ℎ

ℎ ≥ 𝑝𝑝 > 0

1 +
𝑝𝑝 − ℎ
𝑀𝑀

𝑝𝑝 > ℎ

Figure 8: Linear cost function (h=30) 
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3.5.2 Logarithmic cost func�on 
The logarithmic cost func�on will increase the cost significantly at low values of 𝑝𝑝 and increase less at 
higher values of 𝑝𝑝. Increasing 𝑎𝑎 will result in an decreasing cost at 𝑝𝑝 = 1, this decrease will favor 
inser�ng a new client in an open spot if it is only a few periods in the future. Figure 10a shows the 
logarithmic cost func�on with 𝑎𝑎 = 1. Comparison of this func�on to the func�on with 𝑎𝑎 = 5 in Figure 
9b presents a graphical representa�on of the decreased cost at 𝑝𝑝 = 1. The equa�on below shows the 
complete formula�on. 

𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡 =  

⎩
⎨

⎧ 
log(𝑎𝑎 ∗ (ℎ − 1) + 1) − log (𝑎𝑎)

log(𝑎𝑎 ∗ ℎ) − log (𝑎𝑎)
ℎ ≥ 𝑝𝑝 > 0

1 +
𝑝𝑝 − ℎ
𝑀𝑀

𝑝𝑝 > ℎ

Figure 10a: Logarithmic cost function (a=1) (h=30) 

Figure 9b: Logarithmic cost function (a=5) (h=30) 
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3.5.3 Piecewise linear cost func�on 
The piecewise linear cost func�on is an alterna�ve to the linear cost func�on with more customiza�on 
possibili�es. Each line segment can be adjusted to emphasize specific trad-offs or objec�ve priori�es. 
This approach is more suited to real-life applica�ons. A visual representa�on of this func�on is shown 
in Figure 10 The complete formula�on is shown in the equa�on below. 

𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡 =  

⎩
⎪⎪
⎨

⎪⎪
⎧

0 0 < 𝑝𝑝 < 𝑎𝑎

𝑤𝑤 ∗
𝑝𝑝 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎

𝑏𝑏 ≥ 𝑝𝑝 ≥ 𝑎𝑎

𝑝𝑝 − 𝑏𝑏
ℎ − 𝑏𝑏

∗ (1 − 𝑤𝑤) + 𝑤𝑤 ℎ ≥ 𝑝𝑝 > 𝑏𝑏

1 +
𝑝𝑝 − ℎ
𝑀𝑀

𝑝𝑝 > ℎ

 

Figure 10: Piecewise linear cost function (a=3) (b=10) (c=0,9) (h=30)



24 
 

3.5.4 Piecewise logarithmic cost func�on 
The piecewise logarithmic cost func�on is created to inves�gate the combina�on of the linear and 
logarithmic func�ons. Parameter 𝑎𝑎 has the same func�onality as the parameter 𝑎𝑎 defined in the 
logarithmic cost func�on in chapter 3.5.3. Parameter 𝑏𝑏 defines the 𝑝𝑝 value at which the cost equals 𝑤𝑤. 
A graphical representa�on of this cost func�on is shown in Figure 11. The complete formula�on is 
shown in the equa�on below.  
 

𝐶𝐶𝑜𝑜𝑠𝑠𝑡𝑡 =  

⎩
⎪⎪
⎨

⎪⎪
⎧

log(𝑎𝑎 ∗ (ℎ − 1) + 1) − log (𝑎𝑎)
log(𝑎𝑎 ∗ ℎ) − log (𝑎𝑎)

ℎ ≥ 𝑝𝑝 > 0

𝑝𝑝 − 𝑏𝑏
ℎ − 𝑏𝑏

∗ (1 − 𝑤𝑤) + 𝑤𝑤 ℎ ≥ 𝑝𝑝 > 𝑏𝑏

1 +
𝑝𝑝 − ℎ
𝑀𝑀

𝑝𝑝 > ℎ

 

 

 
Figure 11: Piecewise logarithmic cost function with (a=1) (b=10) (c=0,9) (h=30) 
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3.6 Summary  
This scien�fic methodology proposes a solu�on to the limita�ons of a rule-based scheduling model by 
proposing a dynamic scheduling model based on op�miza�on. The rule based model uses a set of 
Condi�ons in order to schedule clients. As a result, the use of these Condi�ons introduce several 
limita�ons, including lack of considera�on between mul�ple objec�ves and poor results for real-life 
scenarios.  
The dynamic scheduling model addresses these limita�ons by formula�ng a mathema�cal model with 
an objec�ve func�on, containing mul�ple objec�ves. The model uses a mixed-integer linear 
programming solver to find the op�mal value for the objec�ve func�on. The model considers client 
and team data inputs to generate input parameters, including distance and �me of travel, skill levels, 
and maximum installa�on lengths. 
The objec�ve func�on of the model aims to balance mul�ple objec�ves, including maximizing human 
resource u�liza�on and minimizing travel �me and distance. Constraints are implemented to ensure 
that each client is visited for the correct number of periods, teams can only service one client per 
period, difficulty levels are matched with team skill levels, and driving distances and �mes do not 
exceed team limita�ons. Addi�onal constraints enforce consecu�ve periods for each client and ensure 
that all periods of a client are done by the same team. 
The re-op�miza�on model can change the client-team assignment in order to further reduce the travel 
cost. A number of decision variables and constraints are added to the formula�on of the dynamic 
scheduling model to create the re-op�miza�on model.  
The determinis�c model will receive all of the informa�on at once through the addi�on of a input 
parameter, containing the inser�on dates of all of the clients. This model is similar to the re-
op�miza�on model, but with removal of the client-period assignment constraint. 
Different risk cost func�ons are designed, including linear, logarithmic and piecewise variants. The 
parameters in the cost func�on can be adjusted, such as the value of 𝑝𝑝 where the cost equals one and 
the length of each sec�on in the piecewise variants. 
Overall, this methodology provides a systema�c approach to address the limita�ons of a rule-based 
scheduling model through a dynamic scheduling model based on op�miza�on. The proposed models 
takes into account various constraints and objec�ves to effec�vely schedule clients while considering 
factors such as the trade-off between different objec�ves, skill levels, and travel limita�ons. 
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4 Case study 
A case study is conducted to evaluate the performance of the proposed methods under different 
scenarios. The exact scenario at the case-study company will be inves�gated, combined with ar�ficial 
scenarios. First the scope is determined, followed by the construc�on of the key performance 
indicators (KPI). The proposed models are verified using a wide variety of tests. Next, the risk cost 
func�on is explained and defined. Different types of this cost func�on are formulated. Mul�ple 
experiments are conducted to inves�gate different aspects of the model performance. The objec�ve 
func�on parameters and the risk cot func�on types are compared in different experiment to determine 
the desired trade-off between the mul�ple objec�ves. Next, the re-op�miza�on model is evaluated by 
re-op�mizing schedules from the previous experiments. Data about the models performance is 
analyzed and compared. Finally finding the op�mal determinis�c solu�on is discussed.  

4.1 Overview 
The defini�on of the scope for the case study is an extension of the problem defini�on defined in 
chapter 1.1. Specifics about loca�ons, team parameters and clients are elaborated on. This scope is 
based on the case study at a start-up installing two types of hea�ng and cooling systems with different 
technologies. The two types are: the Pump-AO, referred to in the schedule with: “A” and the Heat-
cycle, referred to with: “C”. The first system u�lizes the more common air-water heat pump principle. 
As a result, this system generally requires less �me and a lower skill level to install compared to the 
second type of system. The second system uses a water-water heat pump with filtered sewage water 
as a heat source. The installa�on teams are all driving electric vehicles and are spread across the 
depots. Three teams are located at Utrecht and three at Del�, the seventh and last team is located at 
Geldrop.  

- 7 electric vans with installa�on teams
- 3 depots at Utrecht, Del� and Geldrop
- 2 different types of installa�ons: Pomp-AO (skill level: 1) and Heat-cycle (skill level: 2)
-

The schedule is realized in the online version of google sheets, shown in Figure 12. This implementa�on 
realizes easy access to all of the employees, in combina�on with easy manual adjustments and 
historical data. The rule-based model is already implemented in this real-life environment. New 
schedule entries are generated by the rule based model. Employees can enter the required data into 
the rule based model. Future goals include the client being able to directly schedule their own 
installa�on using the dynamic scheduling model. As a result, the following steps are required to be 
handled by the implemented model. 

- 1: A new client sends a request for planning a new installa�on
- 2: A date proposal is sent to the customer
- 3: If the customer declines, a new date proposal is sent
- 4: If the customer declines mul�ple �mes, the client can choose from any available spot
- 5: The accepted date is inserted into the schedule contained in google sheets
-

Figure 12 Schedule in google sheets: A or C denoting the type, followed by the client number 
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These steps result in a number of requirements for the real-life implementa�on of the proposed 
models. The client cannot received the same date sugges�on mul�ple �mes. This introduces a problem 
if mul�ple teams are available on the same date or period. The mul�ple succeeding solu�ons 
generated by the dynamic scheduling model could share the same period. A func�on called declined 
dates is introduced as a solu�on to this problem. This func�on contains a list of declined suggested 
dates for each new client. The implemented dynamic scheduling model can use this list of declined 
dates for the elimina�on of op�ons in the schedule sharing this same date. Furthermore, a client can 
suggest to be scheduled a�er a specific date. The minimal date func�on provides a solu�on for this 
requirement. All dates before the minimal date are eliminated before the op�ons for the schedule are 
inserted into the proposed model. In conclusion, two func�ons for real-life implementa�on need to 
be considered: Declined dates and minimal date 

4.2 Verifica�on  
The verifica�on is divided into two sec�ons: verifica�on of the constraints and of the func�ons 
required for real-life implementa�on. First the verifica�on of the constraints is explained, followed by 
an explana�on for the verifica�on for the real-life implementa�on. Finally the results of the verifica�on 
are discussed.  
The proposed models have undergone verifica�on through mul�ple tests, which are documented in 
detail in appendix 6.2. Each constraint is subjected to a minimum of two test in order to assess the 
performance under different scenarios. To ensure the validity of each tested scenario, only one input 
parameter is adjusted in between tests. The verifica�on of constraint 3 in chapter 3.2.5 is explained in 
detail as an example. This constraint ensures the difficulty level of a client cannot exceed the skill level 
of the scheduled installa�on team. A test scenario is considered where no available team possesses 
the required skill level for the new client. This test is expected to result in no possible solu�on. This 
test scenario is slightly adjusted for the next test for this constraint 
Func�ons for the real-life implementa�on of the proposed models are tested.  The declined date s 
func�on is tested by decline mul�ple succeeding  sugges�ons generated by the proposed model. The 
scenario for this test is constructed such that mul�ple teams are available on the same date. The 
expected result is no repe��on of already suggested dates or periods.   
The realized results for all of the test scenarios men�oned above did correspond to the expected 
results. No undesirable results were found, as a result, the proposed models are successfully verified
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4.3 KPIs 
The performance of the models will be measured and compared using four different KPIs, provided in 
Table 13. These KPIs are derived from the problem defini�on and the scope of the case study. Both 
travel �me and distance are derived from the objec�ve of minimizing the opera�onal cost. Distance 
and �me are separated for the reason different costs being associated to them. Since most of the 
travelling will be done during or close to rush hour, the separa�on of �me is even more significant. 
Driving to the city center of Amsterdam can be much shorter in distance compared to driving to a small 
village, while the �me to reach the center of Amsterdam can be greater. Both the rule-based and 
dynamic scheduling model take the travel �me and distance with traffic predic�ons into account.  

The third KPI is the number of open spots in the schedule up to the date of the last client inser�on into 
the schedule. An open spot means a team is not working on that day and thus cos�ng money without 
crea�ng revenue, in other words: Unu�lized resources (UR). Lastly the makespan KPI is created. This 
value represents the risk of unu�lized resources (RUR). Once the schedule is finished the value of this 
KPI becomes the highest period in which a client is planned. A higher makespan means a higher chance 
of an open spot in the schedule. This is best illustrated with an simple example.Table 11 and Table 12 
show a schedule with a high and a low makespan respec�vely, with the current day at period 4. Imagine 
a new client request arrives which can only be scheduled with the Utrecht team. The schedule in Table 
11 will now have unu�lized human resources (open spot) when the current day passes, while the 
schedule in Table 12 will not have an open spot. The open spot and makespan KPIs are defined as the 
unu�lized resources and the risk of not u�lizing those human resources. 

Table 11: Schedule with high makespan (p=8) 

𝑝𝑝 1 2 3 4 (today) 5 6 7 8 
Team 1 - Delft A-9 A-9 XXX XXX 
Team 2 - Utrecht A-15 A-15 XXX XXX A-32 A-32 A-45 A-63

Table 12: Schedule with low makespan (p=6) 

𝑝𝑝 1 2 3 4 (today) 5 6 7 8 
Team 1 - Delft A-9 A-9 XXX XXX A-45 A-63
Team 2 - Utrecht A-15 A-15 XXX XXX A-32 A-32

Table 13: The four KPIs used for evaluation of the models 

KPI Definition Measuring range 
Travel distance (km) Travel cost All clients 
Travel time (hrs) Travel cost All clients 
Open spots (periods) Unutilized resources (UR) Up to date of last new client 

insertion  
Makespan (periods) Risk of a lower utilization of 

resources (RUR) 
Last period in the schedule 
where a client is scheduled 
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4.4 Dynamic scheduling experiments 
The proposed models are evaluated using a number of different experiments. Real-life scenarios are 
simulated for the first two experiments. These experiments are conducted to gather useful insights 
about the dynamic scheduling models behavior. Next, the impact of the risk cost func�on in different 
scenarios is inves�gated. This influence is further inves�gated by a pareto analysis in the next chapter. 
The scenarios are expanded in order to inves�gate the performance on larger and more complicated 
scenarios in the next chapter. Finally a very large scenario with 250 clients and 18 teams is simulated 
in order to get insights into the performance of the proposed models with large problems.  

4.4.1 Number of teams and depots varia�on 
In the first experiments the number of teams and depots are variated for both the rule-based and 
op�miza�on model. Star�ng with the simplest scenario with only one depot and two teams. The last 
scenario has seven teams distributed over three depots as defined by the scope in chapter 1.1. The 
input parameters subjected to change can be found in Table 14. No constraints on team parameters 
are included in this experiment. The clients do not decline any of the suggested dates, meaning the 
first solu�on of the model is accepted and inserted into the schedule. In order to balance the rela�ve 
size of the client set and the number of teams, the number of clients per period is increased as the  of 
teams increases. All of the input parameters that are changed in-between experiments are  in bold 
text. The risk cost func�on used for these first experiments is the linear cost func�on with the 
parameters shown in Table 15, combined with the weight factors for the objec�ve func�on. Real life 
client data is used for the dura�on and loca�on of the clients. The clients are inserted into the models 
star�ng from period one. Once the first client is scheduled, the next client is inserted un�l all of the 
clients for the experiment are scheduled. A�er the scheduling the KPIs are calculated and presented 
in tables and graphs, including important findings.  

Table 14: Varying input parameters for the team and depot variation experiments 

Table 15: Fixed input parameters for the team and depot variation experiments 

Risk cost function type Linear 
Risk cost function ℎ 30 
Risk cost function weight factor (objective 𝑎𝑎) 800 
Travel distance cost (objective 𝑏𝑏) 0,8 
Travel time cost (objective 𝑤𝑤 ) 100 

x-1 x-2 x-3 x-4 x-5
Number of depots 1 2 2 2 3 
Number of teams 2 2 4 6 7 
Team – depot assignment 1,1 1,2 1,1,1,2 1,1,1,2,2,2 1,1,1,2,2,2,3 
Arrival frequency of new 
clients  

1 per day 1 per day 2 per day 2 per day 2 per day 
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4.4.1.1 Without vaca�on or off days 
The first experiment is performed on an empty schedule without any vaca�on or off days. A simple 
representa�on is given in Table 16, with an empty cell represen�ng an op�on in the schedule. A 0 is 
represen�ng the weekends.  

Table 16: Part of an open schedule without vacation or off days 

𝑝𝑝 1 2 3 4 5 6 7 8 
Team 1 0 0 
Team 2 0 0 

Table 17 and Figure 13 show the results of the first experiment. The results for experiment 1-1 are 
iden�cal for both the rule-based and the op�miza�on model, as expected. There is only one depot 
with two teams with no difference between them in terms of objec�ve func�on influencing 
parameters. This results in every decision being an op�mal decision as long as the client is scheduled 
with the lowest period possible. Both model succeeded in performing this.  

Table 17: Results for experiment 1: team and depot variation without vacation or off days 

Travel 
distance 
(km)  

Diff  
(%) 

Travel 
time 
(hrs) 

Diff  
(%) 

Open 
spots 
(periods) 

Diff  
(%) 

Make 
span 
(periods) 

Diff  
(%) 

R-B DSM R-B DSM R-B DSM R-B DSM 
1-1 4708 4708 0,0% 55,8 55,8 0,0% 0 0 0 75 75 0,0% 
1-2 3601 3400 -5,6% 43,4 41,0 -5,5% 0 0 0 75 75 0,0% 
1-3 3807 3827 0,5% 45,7 45,9 0,4% 0 0 0 55 49 -12,8% 
1-4 3526 3281 -6,9% 42,6 39,6 -7,0% 0 1 1 31 33 8,7% 
1-5 3138 2828 -9,9% 38,9 35,3 -9,3% 0 4 4 27 31 21,1% 

Figure 13: Graph of results for varying depots and teams for an schedule without vacation days 
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For experiment 1-2 an extra depot is added with one team at each depot, here a difference between 
the models is expected. The op�miza�on model shows around a five percent lower travel �me and 
distance compared to the rule-based model. This can be explained by the op�miza�on model being 
able to schedule a new client at the depot with lower travel cost at the cost of a higher risk of lower 
team u�liza�on. The rule-based model cannot make this tradeoff since it can only select for one 
condi�on or objec�ve at a �me in chronological order.  
Experiment 1-3 shows interes�ng results with higher travel cost and a lower makespan. With this 
experiment the tradeoff between travel cost and the risk of open spot gets very clear.  The cost func�on 
for the op�miza�on model for both 1-2 and 1-3 is the same, while the rela�ve number of teams per 
depot differs from 50-50 to 75-25. This greatly influences the risk of an open spot per team. This 
tradeoff with be inves�gated further in chapter 4.4.2. 
The last two parts of the experiment: 1-4 and 1-5 show improvements in travel cost at the expense of 
the makespan. The op�miza�on model also resulted in 1 and 4 open spots respec�vely. This can be 
explained by the number of clients almost matching the number of available spots in the schedule. 
When the inser�on period of new clients is very close to the available spots, the risk of an open spot 
increases. This result can also be contributed to the linear cost func�on, which makes no dis�nc�on 
between periods far in the future compared to periods near in the future in terms of rela�ve cost 
difference.  
Overall the results for experiment 1 show the capability of the op�miza�on model to lower the travel 
cost or to lower the makespan. The importance of a well defined and reliable cost func�on is shown 
clearly in the results.  

4.4.1.2 With vaca�on or off days 
In the second experiment, the schedule is changed to represent the real-life use case. This includes 
vaca�on days. This decreases the total number of available spots for a given number of periods. The 
rest of the input parameters is the same. A simple representa�on of an schedule with vaca�on days is 
given in Table 18, with a 0 represen�ng the weekends and three Xs represen�ng the added vaca�on 
or free days compared to Table 16 in the previous Chapter 4.4.1.1. 

Table 18: Part of an open schedule without vacation or off days 

𝑝𝑝 1 2 3 4 5 6 7 8 
Team 1 XXX 0 0 XXX 
Team 2 XXX 0 0 

The second experiment shows similar results to the first experiment, shown in Table 19 and Figure 14. 
A slightly smaller improvement is made in terms of travel cost, but the trend is the same. Experiment 
2-2 shows an improvement in terms of one open spot. This can be explained by the rule-based model
u�lizing one team significantly compared to the other team at a certain point in �me. An example of
this can be found in chapter 4.3.
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Experiment 2-4 and 2-5 show a great improvement in terms of open spots for the op�miza�on model 
compared to the results form experiment 1. The average amount open op�ons per period is lower in 
the schedule for experiment 2 compared to the schedule of experiment 1. This decreases the risk for 
open spots in the schedule, since new clients are scheduled further into the schedule. This effect can 
also be iden�fied in the larger makespan throughout experiment 2 compared to 1. The op�miza�on 
model has a number of constraints and decision variables to ensure all possible combina�ons are an 
op�on.   

Table 19 Results for experiment 2: team and depot variation with vacation or off days 

Figure 14: Graph of results for varying depots and teams for a schedule with vacation days 

Travel 
distance 
(km)  

Diff  
(%) 

Travel 
time 
(hrs) 

Diff  
(%) 

Open 
spots 
(periods) 

Diff  
(%) 

Make 
span 
(periods) 

Diff  
(%) 

R-B DSM R-B DSM R-B DSM R-B DSM 
2-1 4708 4708 0,0% 55,8 55,8 0,0% 0 0 87 87 0,0% 
2-2 3583 3432 -4,2% 43,1 41,3 -4,2% 0 0 87 87 0,0% 
2-3 3560 3827 7,5% 42,6 45,9 7,7% 1 0 75 56 -25,3% 
2-4 3647 3322 -8,9% 43,8 40,1 -8,4% 0 0 38 39 2,6% 
2-5 3520 2883 -18,1% 42,9 35,8 -16,6% 0 0 34 38 10,5% 
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4.4.2 The impact of different risk cost func�ons 
The tradeoff between the risk unu�lized resources (UR) and minimizing the travel cost is inves�gated 
using different cost func�ons. A total of two experiments is conducted on the most complicated 
scenario in the first experiment and the second experiment. The different types of cost func�ons are 
explained in detail in chapter 1.1. All 4 different func�ons are included in the experiment, the 
logarithmic func�on is included twice, but with a different parameter. This func�on is expected to 
generate the best results. The benchmark case of experiment 1-5 is chosen for the reason of the 
op�miza�on model resul�ng in four open spots, while the rule-based model did not have any. Both 
the rule-based and op�miza�on results of the benchmark case are compared with the results of all 
the cost func�ons. The varying input parameters can be found in Table 20. The objec�ve func�on 
weight factors are iden�cal to the previous experiments. All of the other input parameters are iden�cal 
and thus not repeated in. All of the cost func�ons are ploted in Figure 15 with the linear cost used in 
the precious experiments as reference. The steepness of the cost func�on closer to 𝑝𝑝 = 1 is an 
indica�on of a higher risk of unu�lized resources (RUR).  

Figure 15: Cost function plots for experiment 3 and 4 (linear cost for reference) 

Table 20: Varying input parameters for the risk cost functions experiments 

Experiment x-1 x-2 x-3 x-4 x-5
Benchmark 1-5 1-5 1-5 1-5 1-5
Risk cost function type Log Log PW lin PW log PW log 

Risk cost function 𝑎𝑎 1 5 3 1 1 
Risk cost function 𝑏𝑏 - - 10 10 20 
Risk cost function 𝑤𝑤  - - 0,95 0,95 0,95 
Risk cost function ℎ 30 30 30 30 30 
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Experiments 3-1, 3-2 and 3-5 show iden�cal results, finding a “middle ground” between the rule-based 
model and the op�miza�on with the linear cost func�on. As shown in Table 21 and Figure 16, the 
travel cost increase, but open spots and makespan decrease compared to the linear cost op�miza�on. 
This can be explained by the cost func�on causing the op�miza�on to strongly favor op�ons with a 
lower period  as the period approaches one. The cost func�on in experiment 3-2 even has a nega�ve 
cost for period 1, minimizing the risks of open spots even further. Table 21 shows iden�cal results in 
terms of travel distance for both logarithmic cost func�ons and the piecewise logarithmic func�on 
with the 𝑏𝑏 parameter with a value of 20. This could be explained by all three cost func�ons providing 
a trade-off characteris�c within a certain range for all the new clients presented.  

Table 21 Results for experiment 3: cost functions comparison  

Figure 16: Results for experiment 3: cost functions comparison  

Travel 
distance 
(km)  

Travel 
time 
(hrs) 

Open 
spots 
(periods) 

Make 
span 
(periods) 

R-B Opti 
linear  

DSM R-B Opti 
linear 

DSM R-B Opti 
linear 

DSM R-B Opti 
linear 

DSM 

bm 3138 2828 38,9 35,3 0 4 27 31 
3-1 -4,5% 6,0% 2998 -4,4% 5,4% 37,2 0 -4 0 0,0% -12,9% 27 
3-2 -4,5% 6,0% 2998 -4,4% 5,4% 37,2 0 -4 0 0,0% -12,9% 27 
3-3 7,4% 19,2% 3370 5,9% 16,7% 41,2 0 -4 0 0,0% -12,9% 27 
3-4 4,3% 15,7% 3273 3,3% 13,9% 40,2 0 -4 0 0,0% -12,9% 27 
3-5 -4,5% 6,0% 2998 -4,4% 5,4% 37,2 0 -4 0 0,0% -12,9% 27 
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In experiment 4, all cost func�ons improve over the rule-based model in term of RUR and travel cost, 
see Table 22 and Figure 18. No improvements on travel cost are made over the op�miza�on model 
with the new cost func�ons. This result is iden�cal to the previous experiments and as expected. The 
makespan KPI is decreased overall with four periods.  
The piecewise linear cost func�on performs the worst, followed by the piecewise logarithmic func�on. 
This can be explained by strongly favoring minimizing the risks for open spots, especially for the 
piecewise linear func�on. With this func�on the sacrifice made for the trade-off is the same for 2 
op�ons at 𝑝𝑝 = 10 and 𝑝𝑝 = 8 versus 𝑝𝑝 = 3 and 𝑝𝑝 = 1. Logically, the risk of crea�ng an open spot at 
𝑝𝑝 = 1 is much greater than at 𝑝𝑝 = 8, but this cost func�on does not differen�ate and increases the 
travel cost to avoid a poten�ally very low risk, this is unnecessary. For the piecewise logarithmic 
func�on with 𝑏𝑏 = 10, there is some devia�on between lower and higher periods, but the overall risk 
avoidance is the highest of all func�ons.  
Both logarithmic func�ons perform the same regarding the KPIs. This can be explained by both 
func�ons having almost iden�cal shapes with one excep�on: the log(5) func�on has a nega�ve cost 
for 𝑝𝑝 = 1. This nega�ve cost makes the poten�al sacrifice in travel cost the biggest of all the func�ons 
and thus very unlikely to result in open spots if the total number of clients is sufficient. The reason 
both func�ons do not differ in result can be explained by the absence of the need to make a bigger 
sacrifice in travel cost than the log(1) func�on already supplied.  
In order to find the best fi�ng cost the results from experiment 3 and 4 are combined.  From 
experiment 3, cost func�on 1,2 and 5 are selected based on their result on decreasing the open spots 
to zero and their iden�cal travel cost results. From experiment 4, cost func�on 1, the logarithmic cost 
with 𝑎𝑎 = 1 is selected based on the best performance on travel cost, while having iden�cal 
performance in the other KPIs compared to the other cost func�ons.   

Figure 17: Results for experiment 4: cost functions comparison 
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Table 22 Results for experiment 4: cost functions comparison 

 Travel 
distance 
(km)  

  Travel 
time 
(hrs) 

  Open 
spots 
(periods) 

  Make 
span 
(periods) 

  

 R-B  DSM DSM-c R-B  DSM DSM-c R-B  DSM DSM-c R-B  DSM DSM-c 
bm 3520 2883  42,9 35,8  4 0  34 38  
4-1 -8,1% 12,2% 3236 -7,5% 10,9% 39,7 0 0 0 0,0% -2,9% 34 
4-2 -7,0% 13,5% 3273 -7,0% 11,5% 39,9 0 0 0 0,0% -2,9% 34 
4-3 -2,4% 19,1% 3435 -1,9% 17,6% 42,1 0 0 0 0,0% -2,9% 34 
4-4 -4,6% 16,5% 3359 -5,4% 13,4% 40,6 0 0 0 0,0% -2,9% 34 
4-5 -7,0% 13,5% 3273 -7,0% 11,5% 39,9 0 0 0 0,0% -2,9% 34 
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4.4.3 Pareto analysis 
The interac�on between the two contradic�ng objec�ves is inves�gated using a pareto analysis. A 
pareto front will be constructed from mul�ple simula�ons. The weight factor of the objec�ve to 
maximize the human resource u�liza�on is varied, this influences the tradeoff between the two 
objec�ves. Table 23 shows the different values for the cost func�on weight factor. Experiment 1-3, 
from chapter 4.4.1 is chosen as a benchmark case for the reason of its devia�ng behaviors compared 
to the other simula�ons in experiment 1. The rest of the input parameters and se�ng are iden�cal to 
experiment 1.  
 
Table 23 Varying input parameters for pareto analysis experiments 

Experiment  5-1 5-2 5-3 5-4 
Benchmark 1-3 1-3 1-3 1-3 
Cost function weight factor  100 250 400 800 

 

The results shown in Table 24 show a clear trade-off between the RUR and the travel cost. A higher 
open spot cost func�on as input parameter results in a higher travel cost and a lower makespan KPI. 
These data point are inserted into a graph in Figure 18 and fited with a second order polynomial curve. 
A good fit, shown by the blue line, is found for the four data points. Any point on this pareto front 
represents a solu�on where it is impossible to decrease one objec�ve without increasing the other. 
The result for the rule-based model is represented by the green dot. From this solu�on, improvements 
can be made in either 1 of the objec�ves, or both. If we move down from the rule-based solu�on, the 
height of the makespan is reduced, without increasing the travel �me. If we move le� from the rule-
based solu�on, the travel �me is reduced without increasing the makespan. The last possibility would 
be to move anywhere in between down and le� to improve on both solu�ons. This pareto front proves 
the capability of the op�miza�on model to give beter solu�ons compared to the rule-based model. 
However, it is very important to understand the trade-off between the different objec�ve to make an 
informed decision on the cost func�on and accompanying weight factor.  

With this knowledge, a cost weight factor could be chosen for similar situa�ons as the one of this 
experiment. The choice can be made between a factor of 800, favoring a low makespan and a factor 
400, favoring a low travel �me and cost. When implemen�ng this model into a real-life situa�on it is 
important to generate a new pareto front for the current configura�on of teams, depots and 
constraints. Based on this new front, a selec�on between new weight factors can be made  
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Figure 18: Results for the optimization model with different weights for 1 objective (risk cost function) 

Table 24: Results of pareto analysis  

 Travel 
distance (km) 

Travel time 
(hrs) 

Open spots 
(periods) 

Make span 
(periods) 

Optimization 
model: cost 
function weight  

    

100 3200 38,7 6 91 
250 3425 41,6 0 69 
400 3724 44,5 0 53 
800 3827 45,9 0 49 
Rule-based 3807 45,7 0 55 
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4.4.4  Combining team constraints and client differen�a�on  
The combina�on of more clients, different clients and input parameters for the teams are inves�gated 
in this experiment. Clients input parameters include a varying number of periods and difficulty level. 
Table 25 shows all of the input parameters for each team individually. Team input parameters are 
separated by commas, with “,-,” implying no limit or constraint for the par�cular team on that place in 
the series. For example: -,-,75,- implies team 1,2, and 4 don’t have a limit on that par�cular constraint, 
but team 3 has a 75 kilometer driving distance limit. The best performing cost func�on from previous 
experiments 3 and 4  is selected. For the clients, both one and two period clients are selected at 
random from the real-life client database.  
 

Table 25: Varying input parameters for experiment 6: Combining team constraints and client 
differentiation 

Experiment 6-1 6-2 6-3 
Number of depots  2 2 3 
Number of teams 4 6 7 
Team – depot assignment  1,1,2,2 1,1,1,2,2,2 1,1,1,2,2,2,3 
Team max driving time (min) 60,-,-,- 60,-,-,-,-,- 60,-,-,-,-,-,45 
Team max driving distance (km) -,-,75,- -,-,75,-,-,- -,-,75,-,-,-,60 
Team max periods  2,2,2,1 2,2,2,1,2,2 2,2,2,1,2,2,1 

 
Table 26 shows the results of the three simula�ons, with the first one, 6-1 showing the most 
improvement over the rule-based model. This can be explained if we look at the cost func�on in 
Chapter 3.5. The client inser�on rate per period is higher than the available periods per day. This causes 
new client to be inserted further from the current period. On the cost func�on graph in Chapter 3.5.2, 
higher periods are on the right side, with a lower deriva�ve of the cost func�on. The maximum sacrifice 
of travel cost made is lower and therefore a bigger advantage over the rule-based model can be made. 
This comes at the small cost of the makespan being one period higher.  
Both 6-2 and 6-3 operate more on the right side of the cost func�on and therefore do not increase on 
the makespan KPI. Improvements are made on travel cost consistently as well as a significant 
improvement in the number of open spots. The biggest challenge for the number of open spots was 
the 7th team with both �me, distance and the number of periods per client limita�ons. This is the 
where the majority of the open spots occurred for both models. In the client set, there were exactly 
enough clients that sa�sfied the constraints given for team 7. The op�miza�on model only le� two of 
the possible 23 spots open for team 7 compared to the 7 open spots for the rule-based model. The 
low performance of the rule-based model can be explained by the elimina�on of team 7 in one of the 
first condi�ons based on the driving distance.  
 
Table 26: Results for experiment 6: Combining team constraints and client differentiation 

 Travel 
distance 
(km)  

 Diff  
(%) 

Travel 
time 
(hrs) 

 Diff  
(%) 

Open 
spots 
(periods) 

 Diff  
(%) 

Make 
span 
(periods) 

 Diff  
(%) 

 R-B  DSM  R-B  DSM  R-B  DSM  R-B  DSM  
6-1 10504 9026 -14,1% 128,8 111,7 -13,3% 0 0 0 89 90 1,1% 
6-2 8768 8426 -3,9% 109,9 105,9 -3,6% 2 0 -2 55 55 0,0% 
6-3 8526 7903 -7,3% 107,1 100,2 -6,4% 7 2 -5 53 53 0,0% 
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4.4.5 Large scale problem   
The performance of the dynamic scheduling model on a large scenario is inves�gated. A total number 
of 250 clients from the case study are used for this simula�on, as shown in Table 27. Mul�ple 
constraints for team driving �me, distance and the maximum number op periods are added to increase 
the difficulty of the simula�on. Both types of clients are used, with different required skill levels. 
Another addi�on over previous experiments is the ability of a client declining a solu�on or suggested 
date, resul�ng in the request for a new date. This increases the difficulty of op�mizing for a lower risk 
of unu�lized resources (RUR). The same risk cost func�on is used as in the previous experiment, the 
reason for this is the excellent performance in previous experiments. The schedule used for this 
simula�on is an extension of the type one used in previous experiments. The schedule is copied 
mul�ple �mes to accommodate  18 teams, distributed over 8 different depots. The depot loca�ons 
are spread randomly throughout the Netherlands, but with a higher density of depots where the 
popula�on density is higher.   
 

Table 27: Input parameters for the large simulation 

Number of depots  7 
Number of teams 18 
Number of clients 250 
Type of clients  1 (“A”), 2(“C”) 
Periods per client  1 or 2 
Declined suggestions per client 0 or 1  
Insertion rate of new clients 14 per day  
Objective function weight 𝑎𝑎  800 
Risk cost function type Log 
Risk cost function 𝑎𝑎 1 
Risk cost function ℎ 30 

 

The results of the large simula�on are shown in Table 28. The op�miza�on model is performing 
significantly beter on all of the KPIs. An improvement of over 25 percent on transporta�on cost 
combined with no open spots in the schedule exceeds all previous results.  
This improvement could be explained by how the rule-based model deals with mul�ple op�ons for 
assigning a depot loca�on. The earliest possible op�on is selected from the set of available depots 
within the driving �me threshold of 2000 second. If all 8 depots are within the threshold, the chance 
of picking the closest e.g. with the lowest transporta�on cost is only 12,5%. This effect is much less 
pronounced when the total number of depots is only two or three. The dynamic scheduling model can 
be a trade-off decision between the closest depot and the earliest �me, therefore having a significantly 
improved decision. 
 

Table 28: Results of the large simulation 

 Travel 
distance 
(km)  

 Diff  
(%) 

Travel 
time 
(hrs) 

 Diff  
(%) 

Open 
spots 
(periods) 

 Diff  
(%) 

Make 
span 
(periods) 

 Diff  
(%) 

 R-B  DSM  R-B  DSM  R-B  DSM  R-B  DSM  
 23156 17265 -25,4% 265,2 197,5 -25,5% 21 0 -21 62 57 -8,1% 
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4.5 Re-op�miza�on experiments 
A selec�on of resul�ng schedules from the previous experiments is made in order to inves�gate the 
performance of the re-op�miza�on model. The most demanding experiment form the depots and 
team varia�on experiments: 1-5 is chosen as a first schedule. Next, two itera�ons on 1-5: 3-3 and 3-5 
are chosen. Those experiments used a different cost func�on in order to inves�gate the performance 
and gather insights about the risk-cost trade-off. All of the experiments from 4 are chosen to inves�gate 
the effec�veness on varying team and depot input parameters The en�re schedule generated by the 
dynamic scheduling model is re-op�mized. A�er the re-op�miza�on the new KPIs are calculated and 
compared with the old KPIs. The number of open spots and the makespan will not change. This is a 
result of the client-period assignment being constraint for the re-op�miza�on. 

Table 29 shows the results of the re-op�miza�on experiments with an improvement over all of the 
experiments. An improvement of 0,2% up to 6,7% is made, with an average of 2,6%. This experiment 
shows the capabili�es of the re-op�miza�on model for different scenarios. 
 
Table 29: Results of the re-optimiztion model on different schedules from previous experiments. 

 Travel 
distance  
(km) 

 Diff (%) Travel 
time 
(hrs)  

 Diff (%) 

 Old   Re-opt  Old  Re-opt  

1-5 3138  3080 -1,8% 38,9 38,1 -2,1% 
3-3 3370  3144 -6,7% 41,2 39 -5,3% 
3-5 2998 2964 -1,1% 37,2 36,9 -0,8% 
4-1 3236 3206 -0,9% 39,7 39,3 -1,0% 
4-2 3273 3242 -0,9% 39,9 39,4 -1,3% 
4-3 3435 3331 -3,0% 42,1 40,9 -2,9% 
4-4 3359 3319 -1,2% 40,6 40,5 -0,2% 
4-5 3273 3242 -0,9% 39,9 39,4 -1,3% 

 

4.6 Computa�onal performance  
The computa�onal performance is inves�gated by comparing the data on computa�onal �me for a 
different number of teams and depots. Se�ngs for the team parameters and depot loca�on are 
iden�cal to the large simula�on in chapter 4.4.5. The influence of the number of teams and the 
number of depots is inves�gated. Two important factors influence the overall computa�on �me. These 
two factors are the data gathering and the solving itself. The data gathering includes reading the 
databases and reques�ng data from the APIs followed by conver�ng this gathered data into a usable 
format for the solver to use. Examples of this are the crea�on of the input variables 𝑤𝑤𝑤𝑤𝑠𝑠𝑝𝑝 and 𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠. 
Performance is inves�gated for both the dynamic scheduling model as well as for the re-op�miza�on 
model. Lastly, a comparison with the rule-based model in terms of solving �me is made.  
No significant differences in computa�onal �me were found regarding the number of depots. The 
number of teams does have a very significant impact on the computa�onal �me. Figure 19, shows the 
results for 3 teams up to 18 teams. The computa�onal �me is mul�plied by a factor slightly  lower than 
four if the number of teams doubles. The polynomial fit, generated in python is represented by the 
following equa�on: 

 𝑡𝑡 = 0.0324029𝑥𝑥2  −  0.221052𝑥𝑥 +  0.82781 
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With 𝑥𝑥 being the number of teams and 𝑡𝑡 the required computa�onal �me. When using the dynamic 
scheduling model for a large scale problem it is important to consider the rapidly increasing 
computa�onal �me.  
The data gathering �me, shown in green in Figure 19  increases almost linear with the number of teams 
increasing. This can be explained by the size of the matrices and sets also increasing linear with the 
number of teams. If the number of teams is doubles, the program in python also has to go though 
double the loops to created the matrices.  

 
Figure 19: Computational time with an increasing number of teams for the dynamic scheduling model 

The computa�onal performance of the re-op�miza�on is measured by the number of total client that 
are re-op�mized. Figure 20 shows the results for solving and data gathering �me. The behavior  data 
gathering �me is very similar to the behavior with the dynamic scheduling model. The �me increases 
almost linear with the number of clients increasing. The polynomial fited to the solving �me data 
points is defined by the equa�on:  

𝑡𝑡 = 0.00232892𝑥𝑥2  − 0.0537021𝑥𝑥 +  2.44445 
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Figure 20: Computational time with an increasing number of clients for re-optimization 

4.7 Op�mal determinis�c solu�on  
The difference between the determinis�c op�mal solu�on and the results from the dynamic 
scheduling model in combina�on with the re-op�miza�on are inves�gated. This could give useful 
insights about the performance of both proposed models.  
The schedule from the third experiment in Chapter 4.4.2, with the piecewise linear cost func�on  is 
chosen for the reason of significantly worse performance compared to the other experiments in the 
chapter. Once the schedule is inserted into the solver, a �me limit of 24 hours is set. No op�mal 
solu�on is found within this �me unfortunately.  
This could be explained by the number of op�ons increasing significantly. The schedule contained a 
total of 100 clients. Chapter 4.6 stated that the re-op�miza�on of 100 clients takes an average of 
around 20 second. However, not only the team-client assignment can be decided, also the period-
client assignment. This could increase the computa�onal �me to a equivalent of 100*90 = 9000 clients, 
when the model considers an horizon of 90 periods. If we subs�tute this number into the equa�on of 
the polynomial from Chapter 4.6 we get: 
 

0.00232892 ∗ 90002  − 0.0537021 ∗ 9000 +  2.44445 ≈ 187.000 𝑠𝑠 
 
The absolute validity of this comparison may be subject to discussion, yet it may offer insight into the 
progression of computa�onal �me as the number of op�ons increases. The calculated computa�onal 
�me equates to over 2 en�re days of computa�on.  
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4.8 Real-life implementa�on 
In this sec�on, the real-life implementa�on of both models is explained. Data gathering and the 
communica�on between different data bases and algorithms are illustrated. For the re-op�miza�on a 
recommenda�on on when and how to re-op�mize is proposed  

4.8.1 Dynamic scheduling model  
In order to implement the model into a real-life organiza�on, mul�ple coopera�ng python scripts using 
a database and a variety of APIs are developed, see Figure 21. Star�ng at the botom le�, a new client 
or job can be inserted by providing the relevant informa�on to the client planner module. 
 

Figure 21: Real-life implementation structure of the dynamic scheduling model 

The client planner module will create an object for the new client with all the relevant client 
informa�on. It will receive the �me, distance and loca�on from the DB link module. It also converts 
the prefix in the ID string to the type 𝑗𝑗, with “A” being type 1 and “C” being type 2. This could be 
expanded or changed for future needs of course.  
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A �mestamp is being created for the day a�er 1 January 2023 in order to link the periods in the solver 
to real word dates. This �mestamp is being updated with every new request date to ensure correct 
period, real date matching.  
A�er receiving or conver�ng all the correct data, the client planner will execute the func�on: request 
date. This data stream is shown explicitly in the diagram since it is one of the most important ones.  
The solver receives the request date data and the schedule data and creates all of the sets and sub 
sets needed to solve the scheduling problem. The solver is a MILP programmed in python using the 
open source PULP solver. Once the solver has found the op�mal solu�on, it is sent to the client planner, 
where the date sugges�on can be accepted or declined. If the date is declined, the sugges�on is added 
to the declined dates atribute in the client planner. The solver can interpret this declined dates and 
converts them to 𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠 = 𝑤𝑤𝑠𝑠𝑠𝑠 = 0 for all the teams. This ensures no date can be suggested twice, since 
this would be unfavorable from the sales stakeholder goal. If a date is accepted, it will be writen to 
the schedule stored in google sheets. This opera�on is executed by the DB link  
The DB link handles all of the communica�on, conversion and data gathering between the different 
modules APIs and databases. One of the most important func�ons is the loca�on and driving distance 
and �me func�on. If a request for a loca�on is made, the module first checks in chronological order: 
Local DB, CRM So�ware and as last the user can input the loca�on. The local DB is used to speed up 
the gathering of loca�ons when re-op�miza�on is executed, see next chapter. Once the loca�on is 
known the driving �me and distance during the rush hours are gathered from the google maps API. 
The next important func�on is the conversion of the schedule data to input variables for the 
mathema�cal model inside the solver. A series of filters and condi�onal statements convert the cell 
data to the correct format.  

4.8.2 Re-op�miza�on model 
First, the update policy of the re-op�miza�on is proposed using the literature review in Chapter 2.1.3 
as a reference. Next, the structure of the real-life implementa�on is explained. The literature review 
in explored mul�ple op�ons of implemen�ng a re-op�miza�on model. Periodic update, key-point 
update or client update are not relevant for this specific implementa�on. A�er a certain �me span, as 
with periodic update, there might not be any new informa�on available and thus nothing to re-
op�mize. The re-op�miza�on could be most effec�ve using the dynamic update policy. This policy can 
be triggered by any of the following 3 dynamic events 
Event 1: An en�re week is scheduled, meaning no more open spots to be filled in that par�cular week. 
The probability of possible improvements is very high, as shown in chapter 0. The re-op�miza�on 
model will reconsider every client, team assignment in order to op�mize for the lowest objec�ve 
func�on possible. 
Event 2: A manual adjustment in the schedule is made by one of the employees of the company. This 
could be the cancella�on of a client, the addi�on or removal of vaca�on days or the manual addi�on 
of a new client. A�er such an manual adjustment is made, the re-op�miza�on model can be triggered 
to find a beter solu�on for the current schedule with the newly added informa�on  
Event 3: A team input parameter is adjusted, such as the maximum driving �me. Such a dynamic event 
can have a great influence on the performance of the schedule. Once a parameter is adjusted, the re-
op�miza�on model can re-op�mize for a certain range of periods for which the parameter(s) are 
changed  
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The re-op�miza�on model can be implemented using the structure in Figure 22. Once the re-
op�miza�on in triggered by one of the three events explained above, the solver will gather the 
necessary data for the specified range of periods. The DB Link script ensures all the data is gathered 
and checked, with sources being the different APIs or databases.  
Once all the required data is gathered, the sets and sub sets are created by the solver module. These 
sets include the client-team and client-period assignments of the current, pre op�miza�on schedule. 
The solver finds the lowest possible objec�ve func�on and finds the resul�ng team changes. If no 
beneficial changes are found, the solver terminates and waits for the next trigger  
If the solver finds team changers that improve the objec�ve func�on, the suggested team switches are 
sent to the DB link script to write it to the google sheets. The DB link script first removes all of the old 
assignments of the clients. Next, the new assignments are inserted into the google sheets and the 
solver is terminated, wai�ng for the next trigger. 
 

 
Figure 22: Real-life implementation structure of the re-optimization model 
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5 Conclusions and Future Recommenda�ons  
Mul�ple aspects of the methodology and the case study will be discussed in this chapter. 
Shortcomings, observa�ons and poten�al areas to be improved upon will be highlighted. First the 
methodology is discussed, followed by the case study and accompanying results and finally the future 
recommenda�ons. Next, future recommenda�ons for model improvements, or promising direc�ons 
are made. Finally, the chapter is concluded with answering the research ques�on with its 
accompanying sub ques�ons. 

5.1 Conclusion  
The sub ques�ons to the main research ques�on: “How can the dynamic scheduling with stochastic 
customers be solved efficiently using a real transportation network?” are answered. The main 
research question can be answered after formulation the answers to the sub questions.  
What is a promising method for the dynamic scheduling problem to be modelled? 
Mul�ple approaches for modeling the dynamic scheduling problem are explored in chapter 2 by 
reviewing relevant literature. Different aspects of the problem are inves�gated with their 
accompanying modeling methods. A promising method is proposed based on the combina�on of the 
reviewed literature and the problem defini�on. As a result, an op�miza�on model with the dynamic 
inser�on of clients is chosen over a rule-based or agent based approach. This method provides a 
promising method for modelling the dynamic scheduling problem 
How can the dynamic scheduling problem be solved efficiently? 
Different solu�on methods for the proposed dynamic scheduling model are reviewed in chapter 2.2. 
Exact, (meta) heuris�cs, learning based algorithms and a combina�on of these op�ons are explored. 
Solu�on methods are reviewed in depth for their underlying working principles and applica�on 
scenarios. Finally the methods are compared based on complexity and computa�onal performance. A 
exact solu�on method is chosen based on the combina�on of the literature review and the problem 
defini�on. The overall complexity and size of the problem is rela�vely small, rendering exacts solu�on 
methods the most promising op�on in terms of computa�onal performance with respect to �me.  
How can the re-op�miza�on of the schedule be modelled and solved? 
Dynamic scheduling modelling methods are inves�gated regarding the implementa�on of re-
op�miza�on. Different methods for re-op�mizing a schedule are: key-point, client, periodic and 
dynamic upda�ng. A�er careful considera�on, including requirements from the problem defini�on 
and case study, dynamic update is chosen as the promising  method. Re-op�mizing the schedule is 
only required when a dynamic event takes place. Next, the solu�on methods are inves�gated. Re-
op�miza�on of a complete schedule increases the complexity in rela�on to the stepwise inser�on of 
clients with the dynamic scheduling model. However, exact solu�on methods remain a viable op�on. 
The availability of computa�onal �me is greater compared to the dynamic scheduling model, thus 
poses the added complexity and increased computa�onal �me no problem to mee�ng the 
requirements.  
 
What are the requirements for integra�ng the models with a real life system? 
The real-life implementa�on of the dynamic scheduling model and re-op�miza�on model has been 
explained supported by an illustra�on of the implementa�on structure. The dynamic scheduling model 
involves the use of mul�ple coopera�ng Python scripts, a database, and various APIs to handle data 
gathering and communica�on between different modules. The client planner module receives new 
client informa�on, retrieves relevant data from the database, and executes func�ons to generate date 
sugges�ons. The solver, implemented as a Mixed Integer Linear Programming (MILP) model using the 
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PULP solver, receives the request for a new date and schedule data, creates necessary sets and subsets, 
and finds an op�mal solu�on for the scheduling problem. The client planner module accepts or 
declines the date sugges�on, updates the declined dates, and communicates with the DB link module 
to write the accepted dates to the schedule stored in Google Sheets. 
The DB link module plays a crucial role in handling communica�on and data gathering between 
different modules, APIs, and databases. It retrieves client loca�on informa�on from the local database, 
CRM so�ware, or user input and obtains driving �me and distance during rush hours from the Google 
Maps API. Addi�onally, it converts the schedule data stored in google sheets to the correct format for 
input variables in the solver through filters and condi�onal statements. 
For the re-op�miza�on model, the literature review iden�fied the dynamic update policy as the most 
promising approach. Three dynamic events trigger the re-op�miza�on: when an en�re week is 
scheduled, when a manual adjustment is made to the schedule, or when a team input parameter is 
adjusted. In each event, the solver gathers necessary data, creates sets and sub-sets, and op�mizes for 
the lowest objec�ve func�on based on the specified range of periods. If beneficial team changes are 
found, they are sent to the DB link script, which updates the assignments in Google Sheets. If no 
beneficial changes are found, the solver waits for the next dynamic event. 
What is the performance of the proposed methods under different scenarios? 
The performance of the proposed methods was evaluated under different scenarios. In the first set of 
experiments the varia�on of the number of teams and depots are explored. The op�miza�on model 
outperformed the rule-based model in most scenarios by reducing the travel cost up to 17 percent. 
This can be contributed to the op�miza�on models’ ability to make a trade-off between the risk of an 
open spot and travel cost. The rule-based model cannot make this trade-off due to its chronological 
order of decision making. It is important to note the op�miza�on model decreased the travel cost at 
the expense of the risk of lower human resource u�liza�on. As a result, the importance of a properly 
tuned cost func�on by performing worse compared to the rule-based model on specific scenarios is 
emphasized.  
In the second set of experiments in chapter 4.4.2 and 4.4.3 the cost func�ons defini�on and weight 
factor are inves�gated. Logarithmic and a piecewise combina�on of logarithmic and linear showed 
consistently improved performance compared to the linear cost func�on. The two promising cost 
func�ons beter represented the desired trade-off between human resource u�liza�on and travel cost. 
A pareto analysis is conducted, resul�ng in a graphical representa�on of the trade-off between travel 
cost and the risk lower human resource u�liza�on.  
In the third and fourth set of experiments, the models performance on larger and more complex 
scenarios is inves�gated. The op�miza�on model showed the largest improvement of 25% for travel 
cost for the largest scenario. This can again be contributed to the ability to make a calculated trade-
oof between the mul�ple objec�ves, where the rule-based model cannot. 
The re-op�miza�on model showed a consistent improvement over the exis�ng schedule. An 
improvement of 0,2% up to 6,7% for the travel cost was made. No improvements over the open spots 
or risk of lower human resource u�liza�on could be made. This is a result of the re-op�miza�on model 
defini�on based on the problem formula�on.  
How can the dynamic scheduling with stochastic customers be solved efficiently using a real 
transportation network ? 
In conclusion, the dynamic scheduling model can significantly improve the schedule for a real 
transportation network. The re-optimization model can further improve this performance by a small 
number of reduction in travel cost. Finding suitable parameters for the risk cost function is of great 
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importance to balance the trade-off between the multiple objective. The models can be implemented 
in a real-life scenario using multiple python modules and APIs.  

5.2 Discussion of methodology  
The �me for development and implementa�on was 6 weeks for the rule-based model, compared to 
24 weeks for the op�miza�on model. This could have given the op�miza�on model an advantage. If 
more �me was available for the rule-based model improvements could be made to its shortcomings. 
Selec�ng the depot with the lowest travel cost without selec�ng the earliest period is one of the main 
factors for its underperformance. This factor became more significant when to number of depots 
increased. Efforts could be made to design a condi�on that could combine both travel cost and the risk 
of unu�lized resources.  
The computa�onal �me of the dynamic scheduling model is could possibly be decreased by a more 
simple formula�on. The model is formulated with four decision variables, this greatly increases 
computa�onal �me. The re-op�miza�on model is formulated with 6 decision variables, increasing the 
computa�onal �me even more.  
The re-op�miza�on method could interfere with the influence of the risk cost func�on. The u�liza�on 
of teams will be altered if team-client assignments are changed by the re-op�miza�on. it is important 
to recognize that the cost func�on has been me�culously tuned using the Pareto analyses presented 
in chapter 4.4.3. Pareto analyses involve evalua�ng and op�mizing for mul�ple objec�ves 
simultaneously, considering trade-offs between conflic�ng objec�ves. The careful calibra�on of the 
cost func�on ensures that it adequately reflects the projects priori�es and goals. However, introducing 
the re-op�miza�on method may introduce changes to the system that could poten�ally disrupt the 
delicate balance achieved through the Pareto analyses. As a result, the influence and effec�veness of 
the cost func�on may be compromised, necessita�ng a careful evalua�on of the implica�ons of re-
op�miza�on on the overall project outcomes. 
The current implementa�on of the re-op�miza�on model introduces a risk of resul�ng in a non-valid 
schedule. A mul� period client could be only par�ally included in the re-op�miza�on when a start or 
end period in between the client periods is selected. As a result, the re-op�miza�on can only safely be 
used for the en�re exis�ng schedule. Efforts could be made to check if a client had mul�ple periods, 
follow by including all of the clients periods into the re-op�miza�on.  

5.3 Discussion of case study and results  
All of the experiments are conducted on a set of real-life clients. This client set contained 250 clients 
with their loca�ons and arrival date. A chronological or random selec�on was made if the experiment 
required less than 250 clients. A different client set could result in significantly different performance 
when comparing the rule-based to the op�miza�on model. Efforts could be made to generate new 
client sets or select a different set of real clients.  
In scien�fic experiments or studies, it is important to consider various factors that can poten�ally have 
an impact on the outcomes. One such factor is the ra�o of clients per day to the number of teams. 
This ra�o is not constant throughout the experiments, meaning that the number of clients arriving per 
day may vary in rela�on to the number of available teams. This fluctua�on in the ra�o could have a 
significant impact on the performance of the models being studied. This effect could be inves�gated 
further in order to get insights about this impact  
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5.4 Future recommenda�ons  
Throughout the development of the proposed models and wri�ng the thesis, mul�ple areas to improve 
upon are iden�fied. A number of recommenda�ons stems from problem encountered during the 
tes�ng or implementa�on phase. Other recommenda�ons are insights or new ideas to further improve 
the proposed models.  
 
Client self scheduling: A (part of) all the available op�ons in the schedule could be presented to the 
client, if mul�ple op�ons from the dynamic scheduling model are declined. The challenge is 
determining which op�ons to present to the client. This could be based on stochas�c customer 
informa�on as an example, but mul�ple op�ons should be explored to determine the best method  
Flexible clients: Improvements in the scheduling model could be made by introducing flexible clients. 
These clients will be assigned a range of periods, where the exact period is yet unknown. The exact 
period assignment of a flexible client can be communicated later. The flexibility of these clients can 
improve the performance of both the dynamic scheduling and the re-op�miza�on models. Since the 
period assignment for a flexible client is not fixed, the number of available op�ons for the scheduling 
model is larger. As a result, beter decisions can be made. The re-op�miza�on model can also consider 
an increased number of op�ons, expanding its decision capabili�es from only team assignments to 
both team and period assignments.  
Predic�on of new client loca�ons: Using client loca�on data to predict where new clients are most 
likely to be located could poten�ally increase the performance of the models. However, careful 
considera�on and tes�ng needs to be done in order to verify the effec�veness of this implementa�on.  
Variable cost func�on per team: The result in chapter 4.4.1 show significantly different results when 
the ra�o of teams per depot changes. This could possibly be resolved by implemen�ng a variable cost 
func�on per team. This cost func�on could be different for every team, instead of iden�cal for each 
team such as the current cost func�on. Informa�on about a number of input parameters should be 
included. The number of teams and the distribu�on of the teams over the depots is one of the most 
important factors. Other factors include informa�on about the team constraints such as maximum 
driving distance or the maximum number of periods for one installa�on. Lastly, the overall future team 
u�liza�on could also be taken into considera�on. A lower number of available periods meaning a 
higher u�liza�on.   
Flexible constraints: Team constraints are implemented as rigid, meaning absolutely no viola�on of 
the constraints can be made. This could eliminate good solu�ons which are only a very small viola�on 
of the team constraints. Most MILP solvers allow for the implementa�on of flexible constraints. A 
penalty can be set in case of the viola�on of a constraint, to ensure a constraint is only violated if the 
overall solu�on improves 
Mul�ple periods in one day: The current implementa�on uses one period for one day. This fulfills the 
requirements of the case study at the moment of conduc�ng this research. However, future 
requirements can include the separa�on of one day into mul�ple periods. The installa�on �me will get 
shorter with increasing experience, opening up the possibility of mul�ple installa�ons in one day. This 
could be implemented by expanding the current schedule for mul�ple cells or entries per day. 
Constraints could be added to differen�ate between morning and a�ernoon periods for example.  
Grouping clients: Clients with rela�vely close loca�ons could be grouped together. Grouping could be 
implemented in a model with a single period per day or mul�ple periods per day. In a single period per 
day this could be beneficial if the transporta�on cost is very high for all of the clients in a group. A team 
could stay close to the client loca�on in-between days to save on transporta�on costs. With mul�ple 
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periods per day the teams could drive from one loca�on to the other in a short number of �me, leaving 
enough �me for the installa�ons themselves. 
Dynamic constraints: Team constraints can change over �me, different agreements can be made about 
cost, maximum driving �me or other parameters. This can be implemented by adding the team index 
to the already exis�ng team input parameters. Careful considera�on is needed when implemen�ng 
dynamic constraints with the current model formula�on. Matching the period of the dynamic 
constraints to the period nota�on of the schedule has to be taken into account. The schedule always 
starts at 𝑝𝑝 = 1 with the current formula�on. A conversion between the actual period, e.g. day of the 
year, to the schedule period needs to be made.  
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Dynamic scheduling with stochastic customers for a real-life application
with multiple depots

J.M. van Beem
Supervisor: Dr. B. Atasoy

Abstract— This paper presents a dynamic scheduling model
based on optimization and a re-optimization model in order to
address the limitations of a rule-based scheduling model for a
real-life application. In the problem at hand, a number of teams
depart from a number of depots to install systems at clients’
homes. The two contradicting goals are minimizing trans-
portation costs and maximizing human resource utilization.
Experiments show a reduction of up to 25 % in transportation
costs while also realizing improved resource utilization. The
importance of defining a risk cost function to balance the
trade-off between the objectives is emphasized with experiments
and a Pareto analysis. Re-optimizing schedules generated by
the dynamic scheduling model result in an improvement in
travel cost of up to 6.7 %. Computational time increases
almost quadratically with the number of teams. Finally, future
recommendations include the implementation of flexible clients
and grouping clients as the most promising directions.

I. INTRODUCTION

Efficient scheduling of services for customers poses a
big challenge in real-life situations for various systems.
Changes in resource availability, predicting future customer
requests, and customer cancellations are some examples
[6]. Stakeholders can have different and sometimes even
contradicting requirements for an optimized schedule. The
optimal solution for such a schedule should include all
requirements and constraints. Manually optimizing such a
schedule is possible when the problem size is small and the
number of constraints or requirements is low [7]. For larger
or more complicated problems, a computer model is needed
to optimize the planning. A rule-based method can be used,
but the limitations of such a model can lead to a sub-optimal
schedule.

This paper focuses on a case study at a company installing
heating and cooling systems at individuals homes. Different
type of installations are carried out by the company, resulting
in different installation difficulty levels. Multiple depots
are available where the systems are stored and the teams
depart from. The workforce consists of multiple teams with
accompanying vans, each team located at one of the depots.
Teams can have a different level of experience or skill level.
Installations can have a different completion time, caused
by the skill level of the installer, or the difficulty level of
the installation. The schedule consists of all the working
days in a week, excluding the national holidays. The teams
can determine their own availability by communication their
vacation or off days in advance. This reduces the number of
available options in the schedule.

One of the companies goals is generating profit, as a result,
the minimization of operational cost is one of the goals for

an optimized schedule. This cost is simplified by breaking
it down into two main contribution factors: transportation
cost and human resource cost. Minimizing the transportation
cost can be done by reducing the time and distance traveled
by the vans. The human resource cost is constant, even
when no work is available for the installers. As a result,
the maximization of human resources is the second goal for
minimizing the operational cost. The combination of these
two goals results in a multi objective scheduling problem.
The two objectives are as follows:

• Minimizing transportation costs
• Maximizing human resource utilization

Another important aspect of creating an schedule is customer
satisfaction. The goals for this aspect are scheduling the
client within seconds and not changing the assigned day(s)
once the client is scheduled. This results in two extra
requirements listed below

• Scheduling of a new client within seconds
• Fixed client-period assignment

A research question is defined based on the problem defini-
tion and requirements: “How can the dynamic scheduling
with stochastic customers be solved efficiently using a
real transportation network ?”

The remainder of this paper is organised as follows: Sec-
tion II presents a literature review to investigate the current
proceedings in the scheduling field. Relevant variants with
their accompanying solutions are discussed as will as the
contribution of this paper to the current literature. In Section
III the current rule based scheduling solution is explained
and its shortcomings elaborated. Section III continues with
defining a optimization model for both the dynamic client
scheduling and the re-optimization of the schedule. To incor-
porate the models into the real-life environment, a structure
is proposed for the communication, integration and data
storage. To evaluate the models, numerous simulations are
done in Section IV, both with real and synthetic scenarios.
Section V presents a discussion about the proposed methods
and results, followed by future recommendations and a
conclusion.
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II. LITERATURE REVIEW

The scientific literature on the topic of dynamic scheduling
with stochastic customers is studied as it directly related to
the problem at hand. The scheduling problem is defined by
the allocation of resources in order to minimize or maximize
an objective function. There are three main categories of
approaches to the scheduling problem: conventional, rule-
based, and distributed solving [1]. The conventional approach
involves developing a mathematical model and optimizing
for the objective function. Rule-based is constraint-directed
and rule-based. Those rules are often found by simulation
or experimentation. Lastly, distributed solving implements
use a multi-agent approach. Each agent has its own set of
tasks and responsibilities. The construction of different layers
with agents using bi-directional communication is often
part of the implementation. Conventional modeling arises
as the most promising approach to the scheduling problem
defined in the introduction [5]. This choice is based on the
unfavorable results produced by the previously developed
rule-based model. Distributed solving is often used for more
complex processes involving multiple decision layers [4].
A combination of a dynamic scheduling model based on
optimization and re-optimization for dynamic events arises
as a promising method.

The objective function often includes minimizing the
total completion time of all the tasks to be done [2].
Other frequently used objective functions can include the
maximization of resource utilization or the minimization of
total operational costs. A multi objective function often has
multiple contradicting objectives. An example of this is both
minimizing the environmental impact and maximizing profit.
In almost all cases, if the environmental impact is minimized,
the profit will also go down. To mitigate this problem, a
trade-off needs to be made between the different objectives.
A Pareto analysis is often used to get useful insights into the
trade-offs between the different objectives.. Each solution in
this set is non-dominated, meaning that for all the solutions
inside of the Pareto analysis, there exists no solution that
can improve on all objectives. Using this Pareto analysis
has multiple benefits, such as the trade-off analysis or a
sensitivity analysis. The latter can be used to asses changing
parameters in the model and evaluate how the frontier shifts.
Useful insights can be extracted and informed adjustment
can be made.

Both risk minimization (RM) and chance-constrained pro-
gramming (CCP) are studied as promising solutions for the
requirements and objectives [3]. Risk minimization arises the
most promising method for modeling multiple objectives.
Finally, multiple solution methods are discussed, such as
exact, meta-heuristics, and learning-based algorithms. Since
the problem size is relatively small, exact methods are chosen
as the most promising solution method.

Four types of modeling dynamic events are studied: peri-
odic, key point, dynamic and client update [8]. The dynamic
update is chosen as the promising method after careful
consideration, including requirements from the problem def-

inition and case study. Re-optimizing the schedule is only
required when a dynamic event takes place.

Two models based on optimization are chosen as a promis-
ing method for providing a solution for the problem at hand.
The first model is a multi objective dynamic scheduling
model, which will schedule new clients within seconds. The
second is a re-optimization model that can change client-
team assignment in order to further reduce travel costs.
Stochastic customers can be modeled with risk minimization
by including the risk in the objective function. The trade-
off between the multiple objectives can be investigated with
a Pareto analysis Dynamic events can be modeled by re-
optimizing for dynamic events. Exact methods are chosen as
a promising solution methods, resulting from the relatively
small problem size.

The contribution of this paper to the current literature is
twofold. Firstly, existing models are tailored to the specific
case study presented in this paper. This produces insights
into the models behaviours and limitations. Secondly, a novel
constraint is formulated and evaluated in order to ensure
consecutive multi period installation scheduling.

III. METHODOLOGY

This scientific methodology proposes a solution to the
limitations of a rule-based scheduling model by proposing a
dynamic scheduling model based on optimization. The rule-
based model uses a set of conditions in order to schedule
clients. As a result, using these Conditions introduces sev-
eral limitations, including a lack of consideration between
multiple objectives and poor results for real-life scenarios.

A. Rule-based model

The rule-based model (R-B) is developed and implemented
to provide a solution for the limitations of manual schedul-
ing. This model is in use by the company from the case
study for over 6 months at the time of writing. This model
works by scheduling clients based on five conditions, with
each condition reducing the number of options until the best
option is found. The five conditions are:

• Travel time and distance limitations
• Skill level limitations
• Installation length limitations
• Selection of earliest option
• Selection of lowest team utilization

Multiple problems arise when using or simulating a scenario
for the rule-based model. Since the model only checks one
condition at a time, it is impossible to optimize for mul-
tiple objectives at the same time. Two main limitations are
identified: Poor results in specific cases and no consideration
between two objectives.
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B. Dynamic scheduling model

The dynamic scheduling model (DSM) addresses these
limitations by formulating a mathematical model with an
objective function containing multiple objectives. The model
uses a mixed-integer linear programming solver to find the
optimal value for the objective function. The model considers
client and team data inputs to generate input parameters,
including distance and time of travel, skill levels, and max-
imum installation lengths.

First, a set of periods P = p(p = 1, 2, . . . , f) is defined,
with f being the horizon considered for the schedule. Next,
a set of teams S = s(s = 1, 2, . . . , k) is constructed, with
k being the total amount of teams. Client set I = i(i =
1, 2, . . . , n), with n being the total number of clients is de-
fined. The input variable wsp indicates if team s is available
or scheduled for another client by taking the value one. The
decision variable xspi, shown in equation 1 indicates if client
i is scheduled to be serviced by team s in period p.

The objective function in equation 1 aims to balance
multiple objectives, including maximizing human resource
utilization and minimizing travel time and distance. The
objectives have a weight factor in order to balance their trade-
off. The risk cost function in section III-D is represented
by aCsp is used to balance this trade-off with respect to
period p. The travel cost is represented by the distance and
time with their own weight factors: bdis + ctis Constraints
are implemented to ensure that each client is visited for
the correct number of periods, teams can only service one
client per period, difficulty levels are matched with team skill
levels, and driving distances and times do not exceed team
limitations.

minimize

k∑
s=1

f∑
p=1

n∑
i=1

xspi ∗ (aCsp + bdis + ctis) (1)

The consecutive constraint ensures all the periods of a
multi period installation can have weekends or vacation
periods in between them, but no other installation periods.
Alternative period qs is created, along with subset P̂s ⊆
P , linking qs to p. Input variable es is defined as es =∑f

p=1 wsp. Finally, two decision variables are created rsqsi
which is constrained to have the value one for any p after
the value of xspi has been one and x̂sqsi, which is xspi, but
with the alternative period. With these, the following two
constraints can be formulated:

rs(qs+1)i + rsqsi + x̂s(qs+1)i − x̂sqsi ≤ 2

s ∈ (1, ..k), qs (qs = 1, ..es − 1) , i ∈ (1, ..n)
(2)

xspi = x̂sqsi

s ∈ (1, ..k), p ∈ p̂s, qs (qs = 1, ..es) , i ∈ (1, ..n)
(3)

Equation 2 ensures all nonzero values of x̂sqsi are consec-
utive by eliminating the possibility of x̂s(qs+1)i = 1, while
x̂sqsi = 0. Equation 3 relates xspi to x̂sqsi, ensuring the
periods and alternative periods are both representing the same
day in the schedule.

C. Re-optimization model

The re-optimization model (ROM) is based on the DSM,
with a few adjustments. All clients for a certain range of
periods are inserted at once, providing the ROM with all
the information needed for re-optimization. The model can
change the client-team assignment to further reduce the
travel cost. Client-period assignment is represented by input
variable zpi in equation 4. This constraint ensures the re-
optimization model cannot alter the client-period assignment.
Furthermore, the number of client-team assignments changes
is represented by the decision variable uci shown in equation
5. Client-team changes that do not reduce the travel cost are
undesirable, therefor an extra term is added to the objective
function. This term is shown in equation 1, representing the
sum of total client-team assignment changes.

s∑
k=1

xspi = zpis ∈ (1, ..k), p ∈ (1, ..f), i ∈ (1, ..n) (4)

n∑
i=1

uci (5)

D. Risk cost function

Different risk cost functions are designed, including linear,
logarithmic, and piece-wise variants, shown in Figure 1. The
parameters in the cost function can be adjusted, such as
the value of p where the cost equals one and the length
of each section in the piece-wise variants. The risk cost
function has an impact on the trade-off between multiple
objectives. This impact is different from the weight factors
in the objective function. The risk cost function alters the
weight in the objective function based on the amount of
periods an available option in the schedule is. This allows
for a lowering in the risk of unutilized resources. If two
options in the schedule exist, one at p = 1 and one at
p = 30, the relative weights become 0 and a. This results in
the possibility to schedule a new client in the closest spot,
regardless the travel cost.

Fig. 1: Different risk cost functions
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E. KPIs

The performance of the models will be measured using
four different KPIs. The risk of unutilized resources (RUR)
is defined as the period of the last client in the schedule. The
unutilized resources (UR) are defined as the number of open
spots in the schedule up to the arrival time of the last client.
A list of the KPIs is shown below:

• Travel time
• Travel distance
• UR (open spots)
• RUR (makespan)

IV. CASE STUDY

The proposed models are evaluated using a number of
different experiments. A data-set containing 250 real clients
is gathered from the companies database. The client data
includes: client arrival date, type, location, preferred instal-
lation date, the number of declined date proposals by the
client and installation length. The clients are inserted into
the schedule by the dynamic scheduling model one at a
time. Two types of schedules are used: firstly a schedule
with full availability on weekdays. The second type of
schedule includes historical off days and vacation days of
the installation teams. The situation from the case study is
defined as follows:

• 7 electric vans with installation teams
• Amount of teams per depot: (depot 1: 3), (depot 2: 3),

(depot 3: 1)
• 3 depots at different locations
• 2 different installation difficulty levels

The scheduling of a new client is implemented by following
a number of steps. This approach was used for manual
scheduling, the rule based model as well as for the new
proposed model. The steps are listed below:

• A new client sends a request for scheduling a new
installation

• A date proposal is sent to the customer
• If the customer declines, a new date proposal is sent
• The accepted date is inserted into the schedule

The case study scenario is used for experiments in Chapter
IV-A. This includes the amount, location and skill levels
of the teams to be an exact copy of the situation at the
case study. These experiments are conducted to gather useful
insights into the dynamic scheduling models’ behavior. Next,
the impact of the risk cost function in different scenarios
is investigated in Chapter IV-B . This influence is further
investigated by a Pareto analysis. Chapter IV-C investigates
an artificially expanded scenario by adding more teams and
depots in order to investigate the performance on larger and
more complicated scenario. Chapter IV-D shows the results
for the re-optimization model, followed by the computational
performance of the dynamic scheduling model in Chapter
IV-E. Finally, the method for real life implementation is
presented in Chapter IV-F along with the structured design.

TABLE I: Makespan and UR for the rule-based model
compared to the dynamic scheduling model: Chapter IV-A

Makespan Open spots
R-B DSM R-B DSM

2(1) 87 87 0 0
2(2) 87 87 0 0
4(2) 75 56 1 0
6(2) 38 39 0 0
7(3) 34 38 0 0

A. Number of teams and depots variation

The performance of the dynamic scheduling model is
compared to the rule-based model on a different number of
teams and depots. The first scenario only includes one depot
with two teams and is expanded up to the actual situation at
the case study with seven teams and three depots. The linear
risk cost function, shown in Figure 1 is used. A total of 50
clients from the case study are inserted individually into the
schedule. Figure 2 shows the potential of the proposed model
to improve on both objectives.

The third experiment, with four teams and two depots,
shows interesting results with higher travel costs and a lower
RUR. This can be explained by looking at the first condition
from the rule based model in combination with the team-
depot distribution of three to one. The rule-based model
can completely eliminate the possibility of one depot with
the first condition. This means only one depot is left as an
option for scheduling, as a result the makespan is increased
significantly by one depot being assigned new clients further
into the future. I shows this effect clearly with only a small
reduction in makespan, while the amount of teams is doubled
from experiment 2(2) to 4(2). This experiment clarifies the
importance of defining a fitting trade-off between travel cost
and the risk of unutilized resources (RUR).

Fig. 2: Results for varying the number of teams and depots

B. Impact of the risk cost function

The trade-off between the objectives is investigated by
analyzing the impact of different risk cost functions. The
third experiment with four teams and two depots from
section A is chosen as the benchmark. Figure 3 shows a
great improvement for the RUR however, all alternative cost
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functions result in a higher travel distance. This can be
explained by examining the different risk cost functions in
Figure 1. All alternative cost functions show a higher cost
difference between lower periods, resulting in the dominance
of the objective minimizing RUR. The logarithmic risk cost
function arises as the most promising variant, balancing the
trade-off between the objectives.

Fig. 3: Results for different risk cost functions

Fig. 4: Pareto analysis for cost weight factor

C. Performance on a large scale problem

The performance of the dynamic scheduling model on a
large problem is investigated by designing a simulation with
250 clients, 18 teams, and 7 depots. The logarithmic risk
cost was implemented due to the excellent performance in
previous experiments. Team input parameters such as maxi-
mum driving distance and a maximum number of periods per
client are included to increase this large problem’s difficulty.
The results of the dynamic scheduling model compared to
the rule-based model for the large simulation are shown in
Table II. The increased performance compared to previous
experiments can be explained by the increased benefit of
an optimized trade-off between the objectives for a larger
amount of depots. The dynamic scheduling model can reduce
travel costs by scheduling clients on a team with lower travel
costs.

TABLE II: Performance of the DSM vs R-B for a large scale
problem

R-B DSM Difference
Travel time (hrs) 265,2 197,5 -25,4%
Travel distance (km) 23156 17265 -25,5%
UR: open spots (periods) 21 0 -21
RUR: makespan (periods) 62 57 -8,1%

TABLE III: Results of re-optimizing a selection of schedules
generated by the DSM

No of teams Travel distance (km) Travel time (hrs)
Old Re-opt Difference Old Re-opt Difference

2 (exp 1) 3138 3080 -1,8% 38,9 38,1 -2,1%
2 (exp 2) 3370 3144 -6,7% 41,2 39 -5,3%
4 (exp 1) 2998 2964 -1,1% 37,2 36,9 -0,8%
4 (exp 2) 3236 3206 -0,9% 39,7 39,3 -1,0%
6 (exp 1) 3273 3242 -0,9% 39,9 39,4 -1,3%
7 (exp 1) 3435 3331 -3,0% 42,1 40,9 -2,9%
7 (exp 2) 3359 3319 -1,2% 40,6 40,5 -0,2%
7 (exp 3) 3273 3242 -0,9% 39,9 39,4 -1,3%

D. Re-optimization

The performance of the re-optimization model is evaluated
by re-optimizing complete schedules generated by previous
experiments. No input parameters are changed, and the re-
optimization model can exclusively alter the client-team
assignment. The model showed a consistent improvement
in travel cost of up to 6.7 %, show in Table III. No
improvements on UR and RUR are made; this is a result
of the fixed client-period assignment in equation 4.

E. Computational performance

The computational performance is investigated by compar-
ing the data on computational time for a different number
of teams and depots. The influence of the number of teams
and number of depots is investigated. Two important factors
influence the overall computation time. These two factors are
the data gathering and the solving itself. The results in Figure
5 show an almost quadratic increase in solving time as the
number of teams increases. The number of depots has no
significant impact on performance. The data gathering time
is almost linear to the number of teams in Figure 5.

Fig. 5: Computational performance for the DSM
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F. Real-life implementation

Both proposed models are implemented in a real-world
environment. In order to implement the dynamic scheduling
model into a real-life organization, multiple cooperating
python scripts using a database and a variety of APIs are
developed, see Figure 6. Starting at the bottom left, a new
client or job can be inserted by providing the relevant
information to the client planner module.The client planner
module will create an object for the new client with all the
relevant client information. It will receive the time, distance
and location from the DB link module. It also converts the
prefix in the ID string to the type j, with “A” being type one
and “C” being type two. This could be expanded or changed
for future needs of course.

A timestamp is being created for the day after 1 January
2023 in order to link the periods in the solver to real word
dates. This timestamp is being updated with every new
request date to ensure correct period, real date matching.
After receiving or converting all the correct data, the client
planner will execute the function: request date. This data
stream is shown explicitly in the diagram since it is one of
the most important ones.

The solver receives the request date data and the schedule
data and creates all of the sets and sub sets needed to solve
the scheduling problem. The solver is a MILP programmed
in python using the open source PULP solver. Once the
solver has found the optimal solution, it is sent to the
client planner, where the date suggestion can be accepted
or declined. If the date is declined, the suggestion is added
to the declined dates attribute in the client planner. The solver
can interpret this declined dates and inserts it into the input
variables. This ensures no date can be suggested twice, since
this would be unfavorable from the sales stakeholder goal. If
a date is accepted, it will be written to the schedule stored
in google sheets. This operation is executed by the DB link

The DB link handles all of the communication, conversion
and data gathering between the different modules APIs and
databases. One of the most important functions is the location
and driving distance and time function. If a request for a
location is made, the module first checks in chronological
order: Local DB, CRM Software and as last the user can
input the location. The local DB is used to speed up the
gathering of locations when re-optimization is executed, see
next chapter. Once the location is known the driving time and
distance during the rush hours are gathered from the google
maps API. The next important function is the conversion
of the schedule data to input variables for the mathematical
model inside the solver. A series of filters and conditional
statements convert the cell data to the correct format.

The re-optimization model is implemented in a similar
way to the DSM in Figure 6. The literature review identified
the dynamic update policy as the most promising approach
for the re-optimization model. Three dynamic events trigger
the re-optimization: when an entire week is scheduled, when
a manual adjustment is made to the schedule, or when a team
input parameter is adjusted. In each event, the solver gathers

necessary data, creates sets and sub-sets, and optimizes for
the lowest objective function based on the specified range of
periods. If beneficial team changes are found, the schedule
is updated.

Fig. 6: Real life implementation structure

V. CONCLUSIONS AND FUTURE RECOMMENDATIONS

First, two discussion points are highlighted, followed by
the two most promising future recommendations.

The development time for the optimization models was
six times greater than the rule-based model. Efforts could be
made to improve the performance of the rule-based model.

The re-optimization model does not consider the trade-off
between multiple objectives. This could influence decisions
made by the dynamic scheduling model and disturb the fine-
tuned balance realized by the risk cost function

The first future recommendation is the implementation of
flexible clients. These clients will be assigned a range of
periods where the exact period is unknown. The exact period
assignment of a flexible client can be communicated later.
The flexibility of these clients can improve the performance
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of both the dynamic scheduling and the re-optimization
models. Since the period assignment for a flexible client is
not fixed, the number of available options for the scheduling
model is larger.

The grouping of clients could be implemented for clients
with relatively close locations. Grouping could be imple-
mented in a model with single or multiple periods per day.
In a single period per day, this could be beneficial if the
transportation cost is very high for all clients in a group.
A team could stay close to the client location in-between
days to save on transportation costs. With multiple periods
per day, the teams could drive from one location to the other
quickly, leaving enough time for the installations themselves.

The main research question defined in Section I is an-
swered:

In conclusion, the dynamic scheduling model can sig-
nificantly improve the schedule for a real transportation
network. The re-optimization model can further improve this
performance with a small reduction in travel cost. Finding
suitable parameters for the risk cost function is important to
balance the multiple objectives’ trade-offs. The models can
be implemented in a real-life scenario using multiple Python
modules and APIs.
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6.2 Model verifica�on 
Constrain
t  

Client 
input  

Sch
edu
le 
inp
ut  

Team 
input   

Accept/declin
e 

Expected output  Realized output  

C1 ("A-
177", 1, 
0) 

- Only 
team 1  

Accept X_1_1_1177 = 1 X_1_1_1177 = 1 

C1 ("A-
177", 2, 
0) 

- Only 
team 1  

Accept X_1_1_1177 = 1 
X_1_2_1177 = 1 

X_1_1_1177 = 1 
X_1_2_1177 = 1 

C1 ("A-
177", 3, 
0) 

- Only 
team 1  

Accept X_1_1_1177 = 1 
X_1_2_1177 = 1 
X_1_3_1177 = 1 

X_1_1_1177 = 1 
X_1_2_1177 = 1 
X_1_3_1177 = 1 

C2 ("A-
177", 1, 
0) 
("A-
178", 1, 
0) 

- Only 
team 1 

Accept X_1_1_1177 = 1 
X_1_2_1178 = 1 

X_1_1_1177 = 1 
X_1_2_1178 = 1 

C2 ("A-
178", 1, 
0) 
("A-
177", 1, 
0) 

- Only 
team 1 

Accept X_1_1_1178 = 1 
X_1_2_1177 = 1 

X_1_1_1178 = 1 
X_1_2_1177 = 1 

C3 ("C-
177", 1, 
0) 
 

- Only 
team 1 
and 2 
𝐻𝐻1
= 1,𝐻𝐻2
= 2 

Accept X_2_1_2177 = 1 
 

X_2_1_2177 = 1 
 

C3 ("A-
177", 1, 
0) 

- Only 
team 1 
𝐻𝐻1 = 2 

Accept X_1_1_1177 = 1 
 

X_1_1_1177 = 1 
 

C4 ("A-
177", 1, 
0) 

𝑑𝑑1177,1
= 176 
 𝑑𝑑1177,2
= 176 

- Only 
team 1 
and 2 
𝐷𝐷1
= 200,𝐷𝐷2
= 100 

Accept X_1_1_1177 = 1 
 

X_1_1_1177 = 1 
 

C4 ("A-
177", 1, 
0) 

𝑑𝑑1177,1
= 176 

- Only 
team 1 
𝐷𝐷1
= 100 

Accept No solution  No solution  

C5 ("A-
177", 1, 
0) 

- Only 
team 1 
and 2 

Accept X_1_1_1177 = 1 
 

X_1_1_1177 = 1 
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𝑡𝑡1177,1
= 1.94 
 𝑡𝑡1177,2
= 1.94 

𝑇𝑇1
= 2,𝑇𝑇2
= 1 

C5 ("A-
177", 1, 
0) 
𝑡𝑡1177,1
= 1.94 

- Only 
team 1 
𝑇𝑇1 = 1 

Accept No solution  No solution  

C6 ("A-
177", 2, 
0) 
 

- Only 
team 1 
and 2 
𝐿𝐿1
= 2, 𝐿𝐿2
= 1 

Accept X_1_1_1177 = 1 X_1_1_1177 = 1 

C6 ("A-
177", 2, 
0) 
 

- Only 
team 1 
𝐿𝐿1 = 1 

Accept No solution  No solution  

C7 ("A-
177", 1, 
0) 

𝑤𝑤𝑤𝑤1,1
= 𝑤𝑤1,1
= 0 

Only 
team 1 
 

Accept X_1_2_1177 = 1 X_1_2_1177 = 1 

C7 ("A-
177", 1, 
0) 

𝑤𝑤𝑤𝑤1,1
= 𝑤𝑤1,1
= 0 

Only 
team 1 
and 2 
 

Accept X_2_1_1177 = 1 X_2_1_1177 = 1 

C7 ("A-
177", 2, 
0) 
 

𝑤𝑤𝑤𝑤1,2
= 0 

Only 
team 1 
 

Accept X_1_1_1177 = 1 
X_1_3_1177 = 1 

X_1_1_1177 = 1 
X_1_3_1177 = 1 

C8 + C9 ("A-
177", 2, 
0) 

𝑤𝑤𝑤𝑤1,1
= 𝑤𝑤1,1
= 0 
𝑤𝑤𝑤𝑤2,2
= 𝑤𝑤𝑤𝑤2,
= 0 
 

Only 
team 1 
and 2 
 

Accept X_2_1_1177 = 1 
X_2_3_1177 = 1 

X_2_1_1177 = 1 
X_2_3_1177 = 1 

C8 + C9 ("A-
177", 3, 
0) 

𝑤𝑤𝑤𝑤1,1
= 𝑤𝑤1,1
= 0 
𝑤𝑤𝑤𝑤2,2
= 𝑤𝑤𝑤𝑤2,
= 0 
𝑤𝑤𝑤𝑤2,3
= 𝑤𝑤2,3
= 0 

Only 
team 1 
and 2 
 

Accept X_1_1_1177 = 1 
X_1_3_1177 = 1 
X_1_4_1177 = 1 

X_1_1_1177 = 1 
X_1_3_1177 = 1 
X_1_4_1177 = 1 

C9 – C13 ("A-
177", 2, 
0) 
 

𝑤𝑤1,2
= 1,𝑤𝑤
= 0 

Only 
team 1 
 

Accept X_1_3_1177 = 1 
X_1_4_1177 = 1 

X_1_3_1177 = 1 
X_1_4_1177 = 1 

C9 – C13 ("A-
177", 2, 
0) 

𝑤𝑤1,2
= 1,𝑤𝑤
= 0 

Only 
team 1 

Accept X_1_4_1177 = 1 
X_1_5_1177 = 1 

X_1_4_1177 = 1 
X_1_5_1177 = 1 
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𝑤𝑤1,3
= 𝑤𝑤𝑤𝑤1,
= 0 

C9 – C13 ("A-
177", 2, 
0)

𝑤𝑤1,2
= 𝑤𝑤𝑤𝑤1,
= 0 
𝑤𝑤1,3
= 1,𝑤𝑤
= 0 

Only 
team 1 

Accept X_1_4_1177 = 1 
X_1_5_1177 = 1 

X_1_4_1177 = 1 
X_1_5_1177 = 1 

C9 – C13 ("A-
177", 9, 
0)

𝑤𝑤1,9
= 1,𝑤𝑤
= 0 

Only 
team 1 

Accept X_1_10_1177…
…. 
X_1_18_1177 = 
1 

X_1_10_1177…
…. 
X_1_18_1177 = 
1 

Table 30 

Constrain
t 

Client input Schedul
e input 

Tea
m 
input  

Accept/declin
e 

Expected 
output 

Realize
d 
output 

Declined 
days 

("A-177", 1, 
0)

- Only 
team 
1 

Decline 
Decline 
Accept 

X_1_1_1177
, 
X_1_2_1177
, 
X_1_3_1177 

Declined 
days 

("A-177", 1, 
0) 

𝑑𝑑1177,1 = 176 
 𝑑𝑑1177,2 = 100

- Only 
team 
1 and 
2 

Decline 
Accept 

X_2_1_1177
, 
X_1_1_1177 

Min date ("A-177", 1, 
[today+10days]
) 

- Only 
team 
1 

Accept 
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