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Abstract

The curse of dimensionality poses a fundamental challenge in autonomous negotiations: as the
number of issues and their interdependencies increase, exhaustive evaluation of the outcome
space quickly becomes infeasible. This thesis addresses this problem by introducing a surrogate-
based method that approximates uncertain hypercubic constraint-based utility functions with
quadratic polynomials. An autonomous negotiation agent can then search for high-utility
outcomes in this surrogate model. The research objective was to investigate how efficiently an
autonomous negotiation agent can identify high-utility bids with this approach, and how this
approach compares to linear approximations and established benchmark agents.

The main contributions of this thesis are threefold. First, it introduces a probabilistic complexity
measure for these hypercubic functions, capturing how parameters such as dimensionality,
constraint width, the number of constraints, and the number of issues interact to shape the
function’s complexity. Second, it develops a novel agent that leverages a regression model with
quadratic basis functions to construct a surrogate model of a hypercubic constraint-based utility
function. Third, it evaluates the agent through extensive experiments, demonstrating how
performance scales with complexity. Following the steps outlined in this thesis, the performance
of surrogate models can be directly compared.

The results demonstrate that the surrogate-based method is a promising approach, as the agent
constructed in this thesis outperforms the agents from the 2014 Automated Negotiating Agent
Competition which used similar scenarios as those considered in this thesis. These agents all
have in common that they directly search the utility function as opposed to a surrogate model of
it. Furthermore, the results indicate that simple basis functions, such as quadratic ones, enable
the agent to reach the global maximum of its utility function in low-complexity hypercubic cases,
with performance scaling reasonably well up to medium complexity. Beyond this point, however,
performance deteriorates rapidly, clearly signaling the need for more expressive surrogate models.
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Introduction

Negotiation is a process where a joint decision is made by two or more parties who begin by
expressing conflicting demands and then move towards agreement by a process of concession
making [35]. Following this definition, the study of negotiations has applications in a much
larger domain than just negotiating, such as procurement [13], supply chain management [57],
resource allocation [2], and even communication between Mars rovers [16]. In fact, designing a
vehicle can even be thought of as a negotiation [36]. In recent years, there has been a growing
interest in the design of automated negotiators, i.e., autonomous computer systems, referred to
as agents, capable of negotiating on behalf of humans.

There are several benefits to delegating a negotiation to an agent. Agents can work much faster
than humans, which helps reduce the cognitive load involved. This becomes especially important
in negotiations over multiple interdependent issues. In addition, agents are not subject to
psychological biases and are expected to produce consistent outcomes (except in cases where
stochastic behavior is intentionally programmed or the agent is deliberately designed to act
unpredictably [8]).

During a typical automated negotiation, two or more agents propose various resolutions, also
called bids, to the issues being negotiated. Any bid proposed by an agent should reflect its
preferences — or the preferences of the human(s) the agent represents. Ultimately, all agents
either reach an agreement or fail to do so before a termination criterion is met.

To reach an agreement, agents must be able to find bids that all negotiating agents are willing
to accept. However, in negotiations over multiple interdependent issues, even finding a bid that
the agent itself would accept can become difficult. Exhaustively evaluating each possible bid
can become intractable due to the curse of dimensionality, requiring them to conduct a strategic
search. The aim of this thesis is to explore previous efforts in working with this problem, and to
contribute to the existing literature with a new method aimed at finding bids that the agent itself
deems good, and to evaluate and report on its performance.

This chapter begins by covering the relevant terminology from the field of autonomous ne-
gotiations, defining the negotiation scenario and its building blocks. This is followed by an
introduction into modeling outcome preferences of a negotiation with utility functions, where
the constraint-based utility function — the class of functions considered for this thesis — is
introduced. This is followed by a discussion of the mathematical challenges involved in working
with such functions, along with the motivation behind the chosen approach to address them.
This chapter then concludes on the research question and the thesis outline.
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1.1. Terminology

This section covers the relevant terminology from the field of autonomous negotiations that will
be referred to in this thesis. This covers the negotiation domain, the negotiation protocol, and
preference profiles. Together, the three terms make up the negotiation scenario.

Autonomous negotiations are first and foremost categorized by the number of negotiating agents
and the number of issues to be negotiated on. When there are two negotiating agents, the
negotiation is referred to as a bilateral negotiation; while if there are more than two agents, it is
referred to as multilateral negotiation. Similarly, when there is a single issue being negotiated
on, the negotiation is referred to as a single-issue negotiation; while if there are more than a
single issue, it is referred to as a multi-issue negotiation.

Assumption 1:

This thesis is exclusively focused on bilateral multi-issue negotiations.

1.1.1. Negotiation domain

A possible resolution to the issues under negotiation is referred to as a contract and is of the
form x = (z1,...,24), where x; € I; for all i = 1, ..., d where I; denotes i-th issue domain. When
an agent proposes a contract to its opponent as a solution to the negotiation, the contract is
referred to as a bid. The set of all possible bids in a given negotiation is called the negotiation
domain and is denoted by

d
1=1

The size of the negotiation domain — or the number of possible bids — is denoted by ||, and
the size of the ith issue domain — or the number of possible values the ¢th issue can take — is
denoted by |I;|.

For instance, in a negotiation between a car salesman and a potential buyer on whether a car
should be high tier or low tier, and whether it should include a warranty or not, the negotiation
domain would be the set

Q2 = {(high, warranty); (high, no warranty); (low, warranty); (low, no warranty)}.

The size of this domain is [Q| = 4, and the sizes of the issue domains are |I1]| = 2 and |I3| = 2.

Assumption 2:

The negotiation domains used in this thesis are integer domains where any two issues I;
and I; have the same domain size. That is, In a negotiation over d issues, |I;| = || for all
i,j=1,...,d and i # j. Thus, |I| will be used to denote the issue domain size.

1.1.2. Negotiation protocol

The negotiation protocol defines the structure of the negotiation mechanism, specifically which
actions agents are permitted to take and at what times, as well as the termination criteria.

According to the Stacked Alternating Offers Protocol (SAOP) [6], turns are taken in a clockwise
manner, where each agent gets a single action per round. One of the negotiating agents starts
the negotiation with an bid that is immediately observed by all agents. The next agent in line
is then allowed to either accept the bid, override the bid with a counteroffer, or terminate the
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negotiation. A turn finishes when all agents have performed one action. This process is repeated
until either a unanimous agreement is reached, a deadline is met, or one of the negotiating
parties terminates the negotiation. The deadline is prespecified as either a time limit or a limit
on the number of rounds.

Assumption 3:

The negotiation protocol exclusively used in this thesis is the SAOP.

1.1.3. Preference profiles

Each negotiating agent has their own preference profile, which is an ordering of the agent’s
preferences of the possible bids. The preference profile is characterized by three preference
relations: >, >, and ~, which ensure that the agent has a way of choosing between any two
contracts.

For any two contracts x’ and x, an agent is said to weakly prefer contract x’ over x if x' = x.
If x % x’ also holds, the agent is said to strongly prefer contract x’ over x, denoted as x’ > x.
However, if x’ = x and x = x’ both hold, then the agent is said to be indifferent to the two
contracts, denoted as x’ ~ x.

In some cases, an agent’s preference profile will also specify a reservation value which is "as low
as the agent will go", so to speak. That is, the set of all contracts that a rational agent would
not offer nor accept has a theoretical least upper bound, measured by the preference relations,
which depends on this value.

1.2. Utility functions

There are six constraints, the azioms of utility theory [66], that any preference relation is required
to obey: orderability, transitivity, continuity, substitutability, monotonicity, and decomposability.
These are all reasonable assumptions that ensure that the preference relation is consistent, and
the first three ensure rationality. For instance, the transitivity constraints state that given any
three choices, if an agent prefers the first one to the second one and prefers the second one to
the third one, then the agent must prefer the first one to the third one.

Assumption 4:

An autonomous negotiation agent’s preferences obey the axioms of utility theory.

The rationality assumption in negotiations is first proposed by co-founders of the Harvard
Negotiation Project, Fisher and Ury, in their book Getting to Yes [20]. The book was a
groundbreaking treatise on negotiations at the time, notably introducing the concept of
BATNA: the Best Alternative To a Negotiated Agreement, which is related to the reservation
value in the field of autonomous negotiations. However, Kahneman, who, from years in
psychology, knew that, in his words, "It is self-evident that people are neither fully rational
nor completely selfish, and that their tastes are anything but stable" [42]. Through decades
of research with the economist Amos Tversky, the pair would later launch the field of
behavioral economics — which Kahneman received a Nobel prize for 6 years after the passing
of Tversky — by showing in his book Thinking, Fast and Slow [42], that man is in fact
irrational. For instance, Chris Voss, the FBI’s chief international hostage and kidnapping
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negotiator from 2003 to 2007, notes in his memoir Never Split the Difference [75] that after
he and his colleagues had studied getting to yes, they found that its methods were not
working in the field. The reason: hostage takers do not act rationally.

In their 1944 book Theory of Games and Economic Behavior [7/], who many would say is the
defining book for game theory, Von Neumann and Morgenstern derived from these six axioms
the following consequence (for the proof, see [74])

e Existence of Utility Function: If an agent’s preferences obey the axioms of utility,
then there exists a function u such that u(x’) > u(x) if and only if x’ is preferred to x,
and u(x’) = u(x) if and only if the agent is indifferent between x” and x. That is,

w(x') > u(x) <= x' = xand u(x') = u(x) <= x' ~x.

"Many economists will feel that we are assuming far too much... We have practically defined
numerical utility as being that thing for which the calculus of mathematical expectations is
legitimate” - [74], § 3.1.1 p.16 and § 3.7.1 p. 28

This consequence, along with Assumption 4, merits the formulation of an agent’s preferences by
means of a utility function. These functions can then be optimized to find highly preferable
contracts, as opposed to searching for them through exhaustive enumeration. Constructing
these functions is a whole field in itself. Some notable literature covering the formulation of
utility functions includes utility theory, e.g. [74, 66, 10]; risk analysis, e.g. [10, 11]; and the work
of Keeney and Raiffa [43]. Notably, however, there are alternatives to formulating preferences,
such as graph-based, which can also be manipulated to find good bids [65].

A negotiating agent’s utility function, as previously mentioned, represents its preferences over a
set of issues being negotiated. Utility functions can be either cardinal or ordinal. For an ordinal
utility function u, the magnitude of the difference between u(x’) and u(x), for any two contracts
x’ and x, has no meaningful interpretation. Whether u(x’) > u(x) or u(x’") < u(x) bears the
only meaning. These functions do not measure the intensity of preferences. Cardinal utility
functions, on the other hand, do measure the intensity of preferences. For instance,

0 < u(x) —u(x') = 2[u(x) — u(x")] (1.1)

implies that the preference of x over x’ is twice as strong as the preference of x over x”. However,
in the case of ordinal utility functions, Expression (1.1) only implies that x is preferred both
over x’ and x”

Cardinal utility functions are commonly constructed to map to the unit interval; that is,
u: Q+ [0,1]. This is to ensure comparability across outcomes and to simplify interpretation,
where 0 represents the least preferred and 1 the most preferred option.

When the negotiation domain is intractably large, formulating the preferences in terms of a
cardinal utility function and optimizing that function is much more efficient than exhaustively
evaluating each outcome. Humans tend to simplify the structure of their preferences and prefer
to negotiate one issue at a time [71], treating each issue as an independent contributor to the
total utility. Under these independence assumptions, the utility of a bid on d issues can be
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formulated as a linear additive function of the form
d
u(x) = Zwiei(xi) (1.2)
i=1

where e; are the evaluation functions [35, 41|, each acting as a utility function for the correspond-
ing issue, and wj is the corresponding weight. Functions of the form (1.2) can be optimized in
linear time with respect to d by simply optimizing each e; individually.

However, when issues are interdependent, the utility contribution of some issues may be
conditioned on the value of others. Consider, for example, the car example from Section 1.1.1:
if a car is of a low tier, perhaps a warranty is unnecessary, and vice versa. As functions of the
form (1.2) do not capture interaction effects, they cannot be used in negotiations involving
multiple interdependent issues, as nonlinearities need to be introduced.

1.2.1. Hypercubic constraint-based utility functions

The class of utility functions that will be considered for this thesis is constraint-based utility
functions [37, 31|. Having a constraint-based utility function, each agent has their own unique
set of constraints C'; where each constraint ¢, € C represents a region in the negotiation domain
and an associated utility value. The dimensionality of a region represented by a constraint
thereby constitutes the level of issue interdependency associated with that constraint. An
agent’s utility for a contract is then defined as the sum of the utilities of all the constraints it
satisfies. That is, the utility function takes the form:

u(x) = Y wlcp,x) (1.3)

cpeC

where w(+) is defined by the shape of the constraint, i.e., the shape of the region represented by
the constraint. These can theoretically be any shape, with the most prominent in the literature
reviewed for this thesis being cube-shaped, also referred to as hypercubic constraints. These are
formally defined in Chapter 3.

Assumption 5:

This thesis is exclusively focused on hypercubic constraints.

Informally, a hypercubic constraint-based utility function is the same as placing some number of
hypercubes into the negotiation domain and assigning to each one a utility. Then, a contract’s
utility is the sum of the utilities of the hypercubes it intersects with. Figure 1.1 illustrates this
with an example.
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Figure 1.1: A pension fund is negotiating with the government over the purchase of a custom-
designed bond product. The negotiation focuses on two key features: the coupon rate and the maturity
period. Given its long-term liabilities, the fund places a high value on long maturities as they align
well with its financial obligations. As a result, any bond with a 15-30-year maturity is considered
ideal, regardless of the coupon rate. This is captured by constraint cs, with an outcome such as x1
yielding the maximum utility of 1.0. In contrast, short- and mid-term bonds with low coupon rates
are generally undesirable. However, short-term bonds with high coupon rates, while not preferred,
may still be acceptable. These are represented by constraint c¢;. Meanwhile, mid-range combinations
of coupon rates and maturities are considered reasonably attractive and are captured by constraint cz.
For instance, an outcome like x3 might yield a utility of 0.5 under this constraint. Certain outcomes
satisfy multiple constraints. For example, an offer that fulfills both ¢; and c2, such as x2, may be
particularly appealing, resulting in a combined utility of 0.9.

1.3. Problem definition

A problem that arises in autonomous negotiations is that the search space grows exponentially
with the number of issues. This is a concrete manifestation of the curse of dimensionality, which
makes exhaustively evaluating each possible outcome intractable.

Consider, for example, the pharmaceutical sector, where companies commonly procure tens or
hundreds of products from various suppliers [45]. Suppose a company is interested in procuring
25 products from a vendor, where the unit quantity of each product can be negotiated. Even if
each product can be configured by choosing one of 10 possible unit quantities, the company has
a total of 10%® possible options to evaluate. Even attempting to evaluate 1% of such a space
would require more computational resources than are feasible with modern hardware.

A prominent approach to circumvent this problem is to frame the negotiators’ preferences
in terms of a utility function and then to optimize that function. A large body of literature
covers this process with linear additive functions of the form (1.2), which can be optimized
in linear time. For the pharmaceutical company, this means finding the global optimum in
milliseconds on modern hardware, or even in a few seconds with a pen and paper. However,
once interdependencies are introduced into the function through nonlinearities, a combinatorial
explosion occurs, as each issue can no longer be optimized independently.

Negotiation scenarios with large domains and interdependencies in preferences commonly occur
in various fields, including e-commerce, Manufacturing and production planning, vehicle design,
logistics and supply chains, Energy systems, resource allocation, and more. This, in turn,
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requires agents to negotiate simultaneously on each issue, creating a combinatorial explosion.
The particular class of utility functions that is commonly used to model these scenarios is
constraint-based functions. Of particular interest in this thesis is the hypercubic function, which
was the most prominent constraint-based function in the literature reviewed for this thesis.

Optimizing these functions to find high-utility contracts is a combinatorial optimization problem
which are known to be NP-hard. These functions can, however, sometimes present structures
that can be manipulated; mainly, constraints being grouped. To direct this thesis towards a
more general approach, the final assumption of this chapter is as follows:

Assumption 6:

The agent knows the parameters of its utility function but not its analytical form.

This assumption means that the utility function is treated as uncertain [66]: the agent can
query it but cannot observe the underlying structure, such as the positions of the individual
hypercubes and their sizes. What is known are the high-level parameters of the function, which
are the topic of Section 3.1. For instance, even if the function were as simple as u(z) = 2, the
agent would need to infer its behavior by evaluating individual values of z.

The theoretical groundwork outlined in this chapter leads directly to a core practical problem:

How can an agent identify high-utility contracts in a megotiation domain when
endowed with an uncertain hypercubic constraint-based utility function?

1.4. Motivation

Of the existing approaches that were reviewed for this thesis, most of them apply some
optimization algorithm directly to the utility function in an attempt to find "good bids",
however they are defined. However, not many of them take the approach of first attempting
to simplify the utility function by approximating it, creating, in a sense, a surrogate utility
function that is then optimized.

A complex utility function can be approximated by a simpler one, which, in turn, is easier to
optimize. One such approach, developed by Hindriks, Jonker, and Tykhonov [35], provided the
initial inspiration for this work. The method, discussed in more detail in Section 2.2, involves
linearizing the utility function by averaging out interdependencies, resulting in an approximation
similar in form to Equation (1.2), which, as noted earlier, can be easily optimized in linear time.
This section of the literature — specifically, the optimization of surrogate utility functions in
autonomous negotiation — is sparse, and it is the section this thesis aims to contribute to.

When taking the approach of optimizing a surrogate model, there is a certain balance that needs
to be considered:

An overly accurate approximation may replicate the original function’s complexity,
providing little benefit in terms of optimization. On the other hand, an overly
simplistic approximation may lose too much information, making the optimization
irrelevant.

This thesis extends the linearization idea of Hindriks, Jonker, and Tykhonov to constraint-
based utility functions and to introduce second-order interactions. This is done with quadratic
polynomials, which can be viewed as decomposing higher-dimensional dependencies into pairwise
interactions. Quadratic polynomials strike a balance between expressiveness and tractability,
which makes them suitable for the task at hand.
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The appeal of quadratic functions can be understood by considering Bézout’s theorem from
algebraic geometry, which describes the number of intersections of polynomial curves.

Theorem 1: Bézout’s theorem [21]

If C and D are complex projective (algebraic) curves with no common components, then

> i(CND,P)=(degC)(degD)
PeCND

where i(C' N D, P) is the intersection multiplicity of C' and D at point P.

Now, finding the optima of an d-variate polynomial of degree k can be done by setting the d
univariate partial derivatives to zero, or

o __

dor =0

o _

Oxo

o~ 0.

In the case of cubic polynomials, these are quadratic equations, but linear in the case of quadratic
polynomials. By Bézout’s theorem, this means that linear polynomials do not have an optimum,
and that quadratic polynomials have at most one optimum. For cubic polynomials, however,
the system becomes quadratic, and Bézout’s theorem implies up to 2¢ possible optima. Thus,
restricting to degree-2 polynomials gives a unimodal® surrogate for the original utility functions,
avoiding an exponential explosion in local optima. As quadratic polynomials are smooth and
unimodal, the stationary point is unique. When the polynomial is concave, this point is a global
maximum. In the case where it is not concave, second-order optimization algorithms can be
used, which are ideal for quadratic functions.

1.5. Research Objective

The objective of this thesis is to explore how efficiently an agent can identify high-utility bids
by searching within a quadratic surrogate model of its utility function, which is of a hypercubic
constraint-based form. Since these utility functions can range from very simple to highly complex
— as will be discussed in Section 3.1 — it is necessary to evaluate the agent’s performance
relative to the complexity of the underlying utility function. Accordingly, the following question
summarizes the central research objective of this thesis:

Main Research Question:

How does the efficiency of an autonomous negotiation agent in finding high-utility bids
using quadratic surrogate models of uncertain hypercubic constraint-based utility functions
scale with increasing utility function complexity, and how does it compare to using linear
surrogate models?

This question breaks down into the following subquestions:

'A unimodal function has at most a single optimum. The quadratic polynomial does not technically have a
single optimum when it is indefinite, but rather a single flat region of optima.
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1.6. Thesis outline

Research Subquestion 1:

How can the complexity of a hypercubic constraint-based utility functions be measured?

Research Subquestion 2:

How can quadratic polynomials be effectively constructed and used as surrogates for uncertain
hypercubic constraint-based utility functions in negotiations?

1.6. Thesis outline

The structure of this thesis is as follows:

Chapter 1: Introduction

Introduces the relevant terminology from the field of autonomous negotiations, with a focus on
utility functions, particularly hypercubic constraint-based utility functions. It then examines
the mathematical difficulties these functions pose in a negotiation setting, particularly those
stemming from the curse of dimensionality. Finally, the research objective is outlined.

Chapter 2: Literature review
Covers the ways researchers have approached the challenges of using nonlinear utility functions
in autonomous negotiations, from both the mechanism design and agent design perspectives.

Chapter 3: Mathematical Background

Addresses Subquestion 1 and Subquestion 2 and the relevant mathematical considerations
for answering the Main Research Question. These include quantifying the complexity of the
utility function, determining how and where to sample, and how to construct and optimize the
surrogate.

Chapter 4: Method
The considerations and conclusions from Chapter 3 are implemented into a functioning au-
tonomous negotiation agent.

Chapter 5: Experiments
The experimental setup designed to address the Main Research Question is presented, and the
agent’s parameters are calibrated accordingly.

Chapter 6: Results
The results of the numerical experiments described in Chapter 5, conducted with the agent
introduced in Chapter 4, are presented and discussed at a high level.

Chapter 7: Discussion and Conclusion

The results presented in Chapter 6 are interpreted in light of the mathematical foundations
established in Chapter 3. This chapter provides direct answers to the research questions and
outlines the methodological limitations of the study and potential directions for future work.

Appendices

The appendices include information on the simulation environment used for experiments, the
agents performance in a real negotiation setting, proofs, and additional figures that were not
included in the main chapters.



Literature review

Research on automated negotiations, where utility functions capture preferences with interde-
pendencies between issues, has primarily concentrated on two areas [38]: mechanism design
and agent design. This chapter reviews both strands of the literature that inform this thesis,
addressing each perspective in turn, and concludes with a discussion on the research gap that
this work aims to fill.

The mechanism side of the literature — or the protocols — starts with the Bidding-Based
Protocol proposed by Ito, Hattori, and Klein [37], and expands from there into protocols built
upon that one. Finally, the section concludes by touching on protocols based on decomposing the
utility function. The agent side of the literature — or the negotiation strategies — introduces
the WAID method [35], a method based on the Generalized Gaussian Distribution 28], and
then covers some of the agents from the 2014 Automated Negotiating Agent Competition.

2.1. Mechanism design for nonlinear utility functions

Protocols are problem-solving tools, with each one serving its own purpose. A widely adopted way
of handling complexities associated with nonlinear utility functions in autonomous negotiations
is to design protocols that facilitate them. While the aim of the Stacked Alternating Offers
Protocol (SAOP) might be to replicate the standard way of negotiating, the Hybrid Secure
Protocol |24] aims to ensure privacy. The mediator based protocols |37, 31, 24, 23, 44| aim to
facilitate nonlinear utility functions, while the Vickrey—Clarke-Groves mechanism [66] aims
for socially optimal solutions by enforcing honesty. In their work Marsa-Maestre et al. [55],
compiled a handbook with guidelines on how to select the most appropriate protocol for a given
negotiation problem, and more recently, the same authors proposed a machine learning-based
method for choosing the most effective protocol for a given problem [5]. In this section, various
protocols that are designed to facilitate nonlinear utility functions are covered.

Many of the protocols covered in this section are structured around the constraint-based utility
functions mentioned in Section 1.2.1, and two central ideas to facilitate them: directing the
search for bids to regions where a deal is likely to be struck, and the decomposition of the
negotiation domain or the utility functions themselves.

In their paper Negotiating Complex Contracts, Klein et al. [44] present what is most likely the
first negotiation protocols that are specific to nonlinear utility functions. The preferences of the
negotiating agents are described using an influence matrix H, where each cell quantifies the
impact by the presence of a given pair of issues ¢ and 7, on the total utility. The total utility of

10
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a contract is then the sum of the cell values for every issue pair present in the contract, or
PR WRE
(]

where S; takes values 0 or 1, denoting the presence or absence of issue i, respectively. In their
protocol, a mediator guides the negotiation by proposing a random contract to the negotiating
agents which the agents then votes to either accept or reject. Contracts accepted by both agents
are then mutated by flipping one issue bit, and contracts rejected by either or both agents are
replaced with a mutation of the last accepted one. This process iterates until the utility values
stabilize.

2.1.1. The Bidding-Based Protocol

In [37], Ito, Hattori, and Klein proposed a Bidding-Based Protocol (BBP) with a mediator. In
their work, they consider the hypercubic function described in Section 1.2.1 as a utility function.
The protocol proceeds in four stages:

e Sampling: Each agent draws a fixed number of uniformly random samples from their
utility space.

e Adjusting: Each agent searches for a local optimum in the neighborhood of each sample
using simulated annealing.

e Bidding: Each agent evaluates the utility of the contract identified during the adjusting
step. For contracts that yield a utility exceeding the reservation value, the agent constructs
a bid consisting of all contracts within the corresponding region that achieve the same
utility level.

e Deal Identification: The mediator determines the final bid by identifying all combinations
of contracts — one from each agent — that are mutually consistent, meaning their
corresponding contract regions overlap. To find the overlap that maximizes social welfare,
the mediator employs a breadth-first search with branch cutting.

Theoretically, this approach is guaranteed to find the socially optimal contract under certain
conditions. If each agent exhaustively samples its entire utility space and has a reservation value
of zero, the resulting bids will fully represent their utility functions. With complete information,
the mediator can then perform an exhaustive search over all bid combinations to identify the
outcome that maximizes social welfare. However, assuming that & bids are submitted by each
of N agents, the number of bid combinations that the mediator has to consider is N*. The
authors mention that the maximum number of bids that their system could handle was around
6.4 x 10%. This scalability bottleneck affects the optimality of the contracts identified, and the
failure rate — or the proportion of experiments that did not result in a deal — was high. This
insight led them to extend their protocol with the lterative Narrowing Protocol, discussed in the
upcoming section.

2.1.2. Extensions of the Bidding-Based Protocol
The Iterative Narrowing Protocol

The Iterative Narrowing Protocol [33] extends the BBP by having agents iteratively refine
their bids to narrow down the negotiation space. Instead of submitting all bids at once, agents
generate structured bids in three successive rounds, each round designed to focus more precisely
on promising subregions of the utility space. The bid generation process proceeds in the following
way:
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o Cluster Bidding: Each agent groups the constraints of their utility function into clusters.
A single bid is then created per cluster, covering the region defined by the intersection of
constraints within that cluster.

o Widest-Constraint Bidding: The mediator identifies all overlaps (intersections) between
the cluster bids submitted in the first round using exhaustive search.

e Peak Bidding: The third round is the same in spirit to the bidding step of the BBP, but
now it is applied to the refined overlaps of round two.

While still constrained by the total combination limit of 6.4 x 10°, the three-phase structure
allows agents to explore the space more efficiently by focusing computational effort where it is
most likely to yield a successful deal.

With a similar experimental setup as that of [37], they showed that the effectiveness of the
protocol is particularly pronounced in scenarios where the agents’ utility functions exhibit
clustered structures. For such cases, the failure rate is significantly improved compared to the
BBP while achieving similar optimality rates.

This demonstrates the importance of focused search. Although the space for the mediator to
search is now considerably smaller, the exhaustive search still puts a strong limitation on the
computational cost for finding an optimal deal. To combat this, Fujita and Ito proposed the
Threshold Adjusting Protocol (TAP).

Threshold Adjusting Protocol

The TAP [22] extends the BBP by making the deal identification step incremental, where the
agents incrementally reveal more and more of their utility spaces to the mediator. Fujita and
Ito define a threshold as a certain utility value and the revealed area for agent ¢ corresponding
to that threshold, simply as

Revealed area; = {all x such that u;(x) > Threshold}.

The authors do not explain how they identify the revealed area. This threshold is lowered
in each round, revealing more of the agent’s utility space, like land slowly surfacing as a tide
recedes. Each round is then the same as in the BBP with the exception of the mediator having
to search the space revealed in that round as opposed to the entire space. As a consequence,
the agreements found by this protocol tend to have a higher utility.

Under similar conditions, their results were comparable to those of [37] and [33] in terms of
maximizing social welfare. A key distinction, however, was that the TAP imposed no limit on
the number of bids an agent could submit. The authors, however, do not report failure rates in
their evaluation. Furthermore, as the authors do not explain how they identify the revealed area,
this approach seems to be limited to cases where identifying the revealed area is straightforward,
which is not the case with most nonlinear functions.

Representative protocols

In [24], Fujita, Ito, and Klein note that the TAP and the BBP scale poorly with the number of
agents, and the computational complexity for finding the solution was too large. Furthermore,
they note, the agents’ preferences are not completely concealed. Therefore, they proposed the
Representative Protocol (RP) |24], an extension of the TAP.

The RP nominates some number of agents to essentially do the mediator’s job. The protocol
proceeds in three steps. First, all agents share with the mediator the amount of their utility space
they are willing to reveal. Those who are most keen on sharing get nominated as representatives.
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Next, the elected representatives employ breadth-first search with branch cutting on the revealed
space and propose potential agreements to the remaining agents. Finally, the non-representative
agents respond to the proposed agreements from the representative agents. If any agent rejects
the proposed agreement, step two is repeated.

In their experiments, they compared the representative protocol with the BBP. They found that
their setup significantly reduces computational complexity by limiting exhaustive negotiation to
a smaller group, making it scalable with respect to the number of agents, and far outperformed
the BBP in terms of social optimality and failure rates.

They later proposed the distributed RP [25], noting that there were two main issues with their
original RP. Firstly, agents have to reveal some private information. Secondly, scalability for
the complexity of the agent’s utility function isn’t very good. They note that, if the utility
function has narrower constraints, the utility space becomes extremely nonlinear, making it
very difficult for the representative protocol to reach an optimal agreement point. A narrow
constraint is a constraint defined by a hypercube with short side lengths. This is covered in
detail in Section 3.1.

In the distributed RP, the mediator divides the utility space between some prespecified number
of representative agents, each responsible for searching their allocated portion of the space using
local search algorithms, allowing parallel computation. They do, however, not report on how
the utility space is divided among the mediators. To evaluate the total utility of a given state
securely, agents share encrypted pieces of their utility values with a subset of mediators. These
mediators then use Shamir’s secret sharing scheme [68] to collaboratively reconstruct the total
utility without revealing individual values.

They experimented with constraint-based utility functions with narrow and cone-shaped con-
straints, and four mediators. Although they did not compare their method to their previous one,
and did not report failure rates, they did claim their approach drastically reduced computational
complexity while reaching socially optimal outcomes and completely concealing the agent’s
preferences.

Heuristically guided search

In [54], Marsa-Maestre et al. also note that as the number of issues under consideration increases,
the difference between having wide or narrow constraints becomes more relevant. Though the
BBP may work in scenarios defined using wide constraints, Marsa-Maestre et al. show that their
performance decreases drastically in highly nonlinear scenarios defined using narrow constraints.

They proposed three alternative search methods to simulated annealing for each agent in
the adjusting step of the BBP: a probabilistic greedy search, an approach based on integer
programming, and a search based on finding maximum weight independent sets within the
constraint space of the agents. In addition, they propose a probabilistic search in the mediator
instead of an exhaustive search. To achieve this, they define a bid quality factor, a measure that
combines a bid’s utility and its viability, or the likelihood of resulting in a deal. They define the

measure as

1

QC = u? : Ucia

where u. is the utility of a bid, v, is the cardinality of the set of contracts which match the
bid, and « € [0, 1] is a tunable parameter which models the risk attitude of the agent. The
mediator’s bid combination selection is then biased so that bids with a higher quality factor
have a higher probability of being selected for bid combinations.
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However, they note, since high-utility regions are narrower, it is more likely that a single shot of
the algorithm yields no solution. In these cases, it would be desirable that the agents would be
able to learn from previous interactions to find bids that are more likely to reach an agreement.
For this to be possible, they propose two processes: one through which the mediator gives
feedback to the negotiating agents, and another through which the agents use this feedback in
generating bids. They therefore propose two additional steps for the BBP: a feedback step and
an adjusted sampling step. In the feedback step, the mediator requests that the agents relax
some of their bids to lead the negotiations to zones in the contract space where higher joint
gains can be achieved. In the adjusted sampling step, the agents compute a new set of bids,
taking into account the feedback provided by the mediator.

In their experiments, they compared their proposed approaches to the BBP but with narrower
constraints. Their results showed their approaches lowered the scalability problem of [37] by
achieving both significantly better optimality and failure rates. These results emphasize how a
simple heuristic can greatly improve the search by narrowing it down to important regions of
the space.

In [52], Lopez-Carmona et al.proposed the NegoEzplorer, a non-mediated bilateral protocol
based on offers in the form of regions of the negotiation space. The mechanism is recursive
in the sense that when agents agree on a region proposed by an agent, a new negotiation on
regions of a lower size is performed within the previously agreed region.

They define the Overall Satisfaction Degree (OSD) of a region R for an agent a, as an estimate
of the overall utility of the region for that agent. Let S = {x; € R|k = 1,...,n} be the set
of n contracts in R, & the agent’s reservation value, and Sf‘ the subset of R containing the ¢
contracts that satisfy u,(x) > . An agent a computes the OSD of a region R by means of the
following formula:

5 esi(ta(x) — 0)
i-(1—0)

OSD(a. R) =7+~ +(1=7)-

The parameter v weights the ratio of the number of contracts above the reservation value, and
the normalized overall utility surplus for contracts above the reservation value. That is, when
~v =1, the OSD depends only on the number of contracts with a utility value above the utility
threshold, and when ~ = 0, the OSD depends only on the utility values of those contracts. The
idea behind this definition of OSD is that an agent can consider separately both the probability
that a random contract in R falls above §, and the utility of the acceptable contracts. The OSD
is then used by the negotiating agents to both assess their opponent’s bids and to formulate
their own.

In addition, the protocol allows for a suggestion action where the agents suggest a move of a
region in the direction of its center of mass. The center of mass is found by assigning more
mass to those samples from within the region that are above the reservation value d. Notably,
NegoExplorer had an almost 0% failure rate over all experiments.

2.1.3. Decomposing the utility function

As opposed to working directly with the utility function, as has been the focus of this chapter
so far, some effort has been put into working with a simplified version of it. This section covers
the literature concerning the mechanism side of that approach.
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The Decomposable Alternative Offers Protocol

In [50], Li, Hadfi, and Ito propose the Decomposable Alternative Offers Protocol (DAOP),
an adaptation of the SAOP incorporating the Divide-and-Conquer (DaC) paradigm. DAOP
allows the division of the complete negotiation domain into several sub-domains that the agents
negotiate over.

DAOP begins by asking the agents to group the issues into k clusters, where k is pre-specified,
based on the interdependency relationships between the issues. The agents then negotiate over
each cluster separately. Once agreements are reached over all clusters, the DAOP combines
these sub-agreements into complete agreements.

To determine the clustering of the issues, the interdependency among them is measured in terms
of Marginal Utility Loss (MUL). Formally, define the set of d issues D = {1,...,d}. For any
subset S C D, define the sub-domains g = Il ;c5I; where I; is the jth issue domain. Finally,
the MUL, % for any given subset of issues S is defined as

A

A—Z = rélft;([r?gx u(S, —S) — rg{gn u(S, —9)]
where w is the utility function of the agent and —S = D/S . A lower MUL indicates that the
corresponding cluster retains more of the global utility information, making it a more effective

grouping.

The functions used for evaluating the complete bids differ from the ones used for sub-bids.
To infer the utility functions for evaluating sub-bids, the original utility function must be
decomposed. The authors demonstrate this decomposition for linear additive functions and
for an exponential function of a sum. However, they do not address how to decompose utility
functions that include interaction terms between issues.

In their experiments, they endowed two agents with quasi-similar exponential utility functions,
which lead the agents to arrive at the same clusters as those that minimized their individual
MUL. The paper does not explore how clustering should be handled when agents’ individual
MUL lead to conflicting groupings.

The authors conduct experiments with six issues and two agents, comparing the DAOP with
the SAOP. The results did show that incorporating the DaC algorithm significantly improves
both social welfare and time efficiency.

Hierarchical model

In 78], Zhang and Klein propose a hierarchical negotiation model where a constraint-based
utility function is assumed to have a natural hierarchy based on abstraction with domain
knowledge. Within each level, issues are clustered together where the issues that belong to the
same cluster are highly interdependent, while the level of dependency across different clusters is
much lower. The more of such constraints and the more important they are, the stronger the
interdependencies among these issues are.

They propose a protocol that adopts this hierarchical representation, where agents iteratively
submit meta-level information about issue dependencies. The mediator clusters interdependent
issues into decision groups and constructs a negotiation agenda, represented as a directed acyclic
graph, to guide the negotiation order. At each level, agents submit preferred bids, and the
mediator selects common choices by identifying intersections. The process repeats across levels,
with earlier decisions constraining later ones, and includes backtracking if negotiations stall or
fail to meet utility thresholds.
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Their results showed that this structure effectively reduces the negotiation space and accounts for
interdependencies among issues. It is, however, restricted to negotiations using constraint-based
utilities that are assumed to have a natural hierarchy. These hierarchical structures might,
however, be viewed as latent variables, giving rise to dimension reduction techniques.

Hypergraphs

Noting that the constraint-based utility functions can be viewed as linear in terms of the
constraints, as they are essentially a sum of constraints (recall Expression (1.3)), Robu, Somefun,
and Poutré adopt a hypergraph representation of these functions in [65]. This has since become
a popular way of formulating preferences or decomposing constraint-based utility functions. For
more information on hypergraphs in autonomous negotiations, see e.g. [15, 72, 30, 73].

In [23], Fujita, Ito, and Klein apply the concept of issue grouping to the BBP by adopting a graph-
based representation of the utility functions. They define a measure for the interdependency
rate between any two issues in a constraint-based utility function by either the number of
constraints inter-relating them, the number of terms in these constraints, the utility values of
these constraints, or the product of the number of terms of these constraints and their utility
values. Their protocol extends the BBP by first having each agent construct an interdependency
graph based on its utility function, which it then submits to the mediator. The interdependency
graph has nodes representing issues and edges representing interdependency between them, with
the weight of an edge representing the interdependency rate between the issues. This is depicted
in Figure 2.1.

Figure 2.1: An example of an interdependency graph where two constraints inter-relate issues 1 and 2, two
constraints inter-relate issues 2 and 3, and one constraint inter-relates issues 1 and 3.

The mediator then constructs a social interdependency graph by summing the weights of each
issue across all agents’ graphs and attempts to find an optimal issue-grouping using simulated
annealing. Next, the mediator submits these issue groupings to the agents, who then go through
the sampling, adjusting, and bidding steps of the BBP. However, in the bidding step, before
submitting their bid, the agents divide them into sub-bids for each issue-group and determine
their valuations for each sub-bid. Finally, the mediator identifies the final contract by finding
all the combinations of bids, one from each agent, that specify overlapping contract regions.

In their experiments, they compared their method, using all measures of interdependency, with
the BBP, as well as the approach of [54| using Maximum Weight Independent Set. They found
similar results in terms of optimality for all methods. The main differences in their results were
in the failure rate with their method and that of [54| having nearly a 0% failure rate in all
experiments, while it quickly reached 100% in the BBP. They do, however, show that their
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method is highly sensitive to the number of issue groups, imposing a trade-off between failure
rates and optimality rates. While failure rates decrease as the number of issue groups increases,
so does the optimality rate.

2.2. Agent design for nonlinear utility functions

The basis of a negotiation agent’s decision-making model is the strategies it employs during
the encounter, captured in the agent function [66]. A negotiation agent is typically equipped
with multiple strategies that collectively guide the agent through the negotiation. The agent
design can thus have multiple attributes where each one can be tailored to any specific scenario,
ranging anywhere from simple random bidders to reinforcement learning agents endowed with
advanced learning techniques.

In [7], Baarslag et al. propose a component-based architecture for a negotiation agent called
BOA. Their architecture summarizes all negotiation strategies into three distinct components:

e Bidding Strategy (B): Determines the appropriate bids to be made given the current state
of the negotiation.

e Opponent Model (O): A learning technique aimed at constructing a model of the opponent’s
preferences.

o Acceptance Strategy (A): Determines whether the bid that the opponent proposes is
acceptable or not.

These three components should not only function well individually but also in harmony. For
instance, the bidding strategy must balance exploration and exploitation, thereby enhancing
the opponent model, which in turn informs the acceptance strategy that a better bid than the
current one might be expected later on. Additionally, the bidding strategy could potentially
bias its exploration towards regions of the domain that the opponent model has deemed likely
to yield an agreement.

This thesis primarily focuses on the bidding strategy, or how well a quadratic polynomial serves
as a surrogate for the original utility function, with the sole purpose of finding high utility bids.
For this reason, the literature surrounding the other two components will not be covered. For
the interested reader, |7] and [8] are good starting points.

In this section, various ways that agents can be designed to work with nonlinear utility functions
with interdependencies are covered. This includes agents that simplify their utility function as
well as contestants from the 2014 Automated Negotiating Agent Competition (ANAC), which
all directly optimize their utility function.

2.2.1. Approximating the utility function
Generalized Gaussian Distribution as a basis function
In [28], Hadfi and Ito explore using the Generalized Gaussian Distribution (GGD)

9(z; p, 11, B) = 26;)(1)6_(|wﬂ“>p, (2.1)
P

for approximating constraint-based utility functions. The proposed approximation yields a
compact and concave form that unifies many forms of constraint-based utility functions (cubic,
bell, conic, etc.).
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The parameters of Expression (2.1), they note, can be tuned so that the resulting expression
represents a multitude of geometric shapes that could approximate these constraints. Indeed, for
the cubic, conic, and bell-shaped constraints, Figure 2.2 shows configurations of the parameters
p, B, and p in two dimensions that result in the GGD taking on similar shapes.

1.0
== Cone: p=1.1, B=1.2, u=-4.0
08 — Bell: p=2.0, B=0.2, y=1.0
' — Cube: p=1000.0, B=0.4, p=5.0
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0.2
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Figure 2.2: GGD with different values for p. Figure is adapted from [28]

For the general case of n-dimensions, the authors come up with the following parametrization
of Expression (2.1) to represent the constraints:

F(@3p, 8,70, 1,¢) =y + Bl ~Iewhl”, (2.2)

This particular parametrization allows for tuning of the parameters to not only approximate
the shapes of the constraints but also their size. Expression (2.2) can serve as a basis function
in a regression model for approximating a constraint-based utility function of the form (1.3).
The resulting approximation then takes the form

u(x) =Y wifj(x,-).
j=1

Although they do not experiment with this approach in a negotiation setting, they do evaluate
how good the approximation is with cubic and conic constraints. They do that by generating
random contract points within the constraint being approximated, and then check if the same
contracts fall within the concavity of f. Additionally, they compare the volume of the constraint
being approximated and that of f. Their results show that the approximation can be very
accurate for cubic constraints, while for conic constraints, the accuracy depends heavily on
parameter tuning. Their experiments are, however, limited to three-dimensional constraints.

Linearizing the utility function

Hindriks, Jonker, and Tykhonov proposed the WAID method [35], a weighted averaging method
for decomposing utility functions with interdependencies, transforming them to functions without
such dependencies. These functions will then meet the input requirements of efficient algorithms
designed for linear utility functions.

The WAID method, as the authors note, is inspired by the following observations: there are
some bids that are not acceptable to agents or are too optimistic to be an outcome of the
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negotiation. In effect, it is possible to indicate an expected region of utility of the outcome, and
in real-life cases, a fairly accurate approximation can be obtained for utility functions that are
"calm".

The central idea is to transform a nonlinear utility function u(x1, ..., x4) into a linear approxi-
mation u'(x1, ..., z4) of the form (1.2). This is done by approximating each of the evaluation
functions e;(z1, ..., x4) of u by functions €}(x;) where the influence of the values of other issues
xj,j # 1, on the associated value e;(z1, ..., z4) have been eliminated. To do this, they average
out the influence of other issues on a particular issue.

Their method proceeds in the following four steps:

1. Estimate the utility of an expected outcome. This estimate is referred to as the "m-point"
and is used to define a region of the utility space where the actual outcome is expected to
be. They used 0.75 as a reference point.

2. Select a type of weighting function, . This weighting function associates a weight with
each point in the utility space. The closer the utility of that point is to the m-point, the
higher the weight, making the approximation more accurate around the m-point.

3. Approzimate of the utility function. To approximate the utility function, they weigh each
evaluation function of the original utility function with the weighting function from step 2
and then integrate out all but one variable:

6;(.’171'):/‘/1/)1'(.’1717...,xd)ei(xl,...7$d)dv, (23)

where V is volume corresponding to some d — 1 of the d dimensions. The result of this
step is a linear additive function of the form (1.2).

4. Perform an analysis of the difference of the original and approzimated utility space. When
a new bid is sent to or received from the opponent, the agent must check the associated
utility in the original utility function to ensure that the bid is not worse than the current
utility acceptance level. To assess the range of the error for any given utility level, they
measure the difference |u(xy, ..., 24) — v/ (21, ..., 24)|.

The authors note that the technique is only applicable to utility functions that can be modeled
by polynomial functions of modest power.

The authors later collaborated in [34] where they implemented the WAID method in a negotiation
algorithm and analyzed the risk of a bad negotiation outcome when using an approximation
of the utility function. To do that, they presented a checking procedure to control the risk of
erroneous bids, which is implemented in step 4 above. That is, every time a bid (z1, ..., Ty is
to be proposed to an opponent, the algorithm first queries |u(z1, ..., z4) — u/(21, ..., 24)| > ¢ for
some pre-specified §. If this query is true, a new search for a bid is started. By implementing
this checking procedure, they show that a trade-off can be made between computational cost,
which increases for smaller §, and approximation accuracy, which also increases for smaller ¢.

2.2.2. The 2014 Automated Negotiating Agent Competition

The Automated Negotiating Agent Competition (ANAC) focuses specifically on the design of
practical negotiation strategies. In particular, the overall aim of the competition is to advance
the state-of-the-art in the area of autonomous negotiations, with an emphasis on the development
of successful automated negotiators in realistic environments with incomplete information [4].

In 2014, the competition was held where agents negotiated with constraint-based utility functions
of varying complexity, as well as dealing with large-scale outcome spaces. The complexity of
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the utility functions was defined in terms of their entropy, which has inspired the complexity
measure that will be used for this thesis. Furthermore, agents were not allowed to access the
analytical form of their utility functions directly; therefore, they needed to explore the outcome
space in a strategic manner to generate their bids as opposed to manipulating their analytical
structure. As these agents are designed for scenarios similar to those considered in this thesis,
this section provides an overview of some of the agents and their performance. In appendix C.2,
the final version of this thesis’s agent will compete against some of these agents using the same
scenarios as in the competition itself.

GANGSTER: Genetic algorithm

De Jonge and Sierra entered the competition with their agent GANGSTER [17], which stands
for Genetic Algorithm NeGotiator Subject To alternating off ERs. As the name suggests, their
agent searches the large-scale bid space using a genetic algorithm. This algorithm iteratively
combines randomly sampled contracts in such a way that the highest utility contracts "stay
alive".

Specifically, their agent samples 120 random contracts, selects the 10 best ones, and then
constructs 110 new contracts by pairing each of these 10 best ones using a specific cross-over
strategy. This strategy assigns a value to each issue that has an even probability of being from
either of the two contracts in the corresponding pair. Then, out of the new 120 contracts (which
contain the 10 best ones from before), they select the 10 best ones and repeat the process.

This process is carried out twice: once for contracts sampled randomly from the entire space
and again for contracts selected to be within a certain distance of the opponent’s previous bid,
measured by the Manhattan distance. This distance decreases as the deadline moves closer,
essentially acting as a concession strategy. Combining these two thereby balances exploration
and exploitation.

They define the aspiration level as the time-dependent function my(t) and the maximum distance
as the time-dependent function ma(¢). Then, for the set X of the 20 contracts found — the 10
from the global search and the 10 for the local search — the contract to be bid is chosen based
on these functions. In particular, they define the subset

Y = {x € X|u(x) > mi(t) Adists(x) < ma(t)}

where u is the utility function and dist;(z) is the lowest Manhattan distance between x and any
bid made by the opponent. The bid to be made is then defined as the contract x* € Y with the
highest Manhattan distance between itself and any bid made by the agent. This was believed
to increase the chance of the bid being accepted by the opponent while also ensuring a high
utility for the agent.

Out of the top five agents, GANGSTER performed best in terms of average individual utility
and shared the first prize with AgentM in terms of average utilitarian social welfare.

AgentM: Simulated Annealing algorithm

Niimi and Ito entered the competition with AgentM [61], a compromiser agent that performs
bidding with the goal of improving both its own utility and its opponent’s utility.

The agent constructs three bids: a bid found using Simulated Annealing, the highest utility bid
offered by the opposing agent, and a frequency bid. The frequency bid is obtained by keeping a
log of the frequency of the values proposed by the opponent for each issue, and then choosing
the most frequent issue values for each issue. This is depicted in Figure 2.3.
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Issue Values
E 0 3 0 1 0 0 2 0
E 0 0 0 5 0 0 1
S 0 o | o | o | o 1 0
LofofoJoJoJoJoJuliJolol]
Frequency bid:
1 3 8 4 4 7 2 0 1 6

Figure 2.3: The frequency bid is obtained by counting the occurrences of issue values the opponent has
proposed. Figure is adapted from [61]

After constructing these three bids, the agent tries out combinations of them using the bid
found using Simulated Annealing as a base bid, and proposes the best one. When presented
with an opponent’s bid, the agent then simply accepts if it is higher than the worst of its own
bids so far.

Out of the top five agents, AgentM placed second in terms of individual utility, and did best
in terms of the average distance from the Pareto frontier, the average Nash distance, and, as
mentioned before, shared the first prize with GANGSTER in terms of average utilitarian social
welfare.

G2A: Greedy Coordinate descent algorithm

Szollési-Nagy, Festen, and Skarzynska entered the competition with G2A [70], an agent that
uses a greedy variation on the Coordinate Descent (CD) method in order to find high Social
Welfare outcomes.

Their CD algorithm performs line search by maximizing the utility function over a single issue
at a time with the others held fixed, and then iterates until a stopping condition. They used a
greedy CD strategy in the sense that it optimizes over the issue that gives the best improvement
of utility first. The initial bids are chosen based on the negotiation phase. In the opening phase
of the negotiation, they are uniformly sampled from the entire domain. During the middle game
phase however, they are chosen from the opponent’s bid history. They do that as an attempt to
trace a path between the opponent’s bids and bids that are good for G2A.

To choose which issue to maximize over next, the issue selection strategy iteratively loops
through all d issues and evaluates for each one

r+1 r r r r
x; " € argmax u(xy, ..., Tj_q, Ti, Tj 1, ...y Ty)
2

x§+1 =, Vj #1i

and then chooses the issue giving the highest utility and makes the corresponding change before
repeating the loop. This process is then terminated when utility values stabilize or some number
of iterations has been reached.

They use a simple opponent model in order to prevent the agent from making bids that are
much better for the opponent than itself. Their opponent model is similar to the frequency
bid table used by AgentM. They keep a log of the frequency of issue values proposed by the
opponent and compare it to the expected frequency of issue values if each option were chosen
uniformly at random.
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G2A did not reach the overall top five but placed fifth in the final round in terms of individual
utility and sixth in terms of social welfare.

WhaleAgent: Simulated Annealing and Hill Climbing algorithm

Sato and Ito entered the competition with WhaleAgent [67], an agent that searches the bid
space using a combination of simulated annealing and hill climbing, and a combination of a
hardheaded strategy and a conceder strategy to set a utility threshold for deciding whether to
accept or propose a bid.

The agent begins by choosing the best bid out of the bids offered by the opponent and uses
that as a starting point for hill climbing. If the bid found using hill climbing has a higher
utility than the current threshold, the agent proposes that bid. If not, the agent initializes
simulated annealing from a random starting point and then compares the bid found with the
same threshold. This is repeated until a bid is found that has a higher utility than the threshold.

The agent initially sets the utility threshold using a hardheaded strategy, which dynamically
updates the threshold based on the best bid found using simulated annealing, as well as time,
and decreases it slightly as the deadline approaches. The agent then switches to a conceder
strategy if the opponent proposes the same bid twice. The conceder strategy lowers the threshold
at a faster pace than the hardheaded strategy.

Out of the top five, WhaleAgent placed third in terms of individual utility and second in terms
of all social welfare measures.

BraveCat: Iterative deepening algorithm

Zafari and Nassiri-Mofakham entered the competition with BraveCat |77], an agent that uses
iterative deepening search to find bids, which allows it to overcome the limitations imposed by
the amount of memory needed in large domains.

For its bidding strategy, BraveCat sets a utility threshold that is gradually lowered over time,
but shows a form of randomness and awards nice moves by the opponent. They define a nice
move by the opponent as one that is better than the previous best bid proposed by the opponent,
in terms of BraveCat’s utility function. If the opponent makes a nice move, the utility threshold
is lowered for the next bid search.

The authors note that when deciding on a bid to propose to the opponent, the bidding strategy
of the agent could easily find the bids with utility values equal to or greater than the target
utility value of the agent if storing all bids in memory was feasible. However, due to limitations
imposed by the huge amount of memory needed, doing so would not be possible. To overcome
the challenge of finding good bids, they adopt an iterative deepening search. Their search
algorithm iteratively samples randomly from the bid space and compares the utilities of the
bids found to a threshold, which decreases as the number of iterations increases. Then, among
all bids that have a higher utility than the threshold defined in the bidding strategy, the bid to
be offered is chosen based on Euclidean distance from previous opponent bids.

For a candidate bid x, they compute the Euclidean distance, N%, from x and the last i = 1, ..., 100
bids made by the opponent, and multiply that with the time, M, since the opponent offered
the corresponding bid:

Fi=N.x M i=1,..,100.

This measure is then normalized as P = %, and the candidate bid that gets offered is the one
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maximizing the estimated opponent utility:

100
uOP(x) =) (1-03t)PL, 0<t<1
=1

where t; is the time at which the last ith bid was received from the opponent, and (1 — 0.3t;)
represents the assumed concession rate of the opponent.

BraveCat did not reach the top five but placed ninth in terms of individual utility and seventh
in terms of social welfare.

2.3. Research Gap

This review has examined two complementary dimensions of the literature on automated
negotiation and the facilitation of nonlinear utility functions: the design of mechanisms and the
design of agents.

On the mechanism design side, the mediator-based approaches of Klein et al. [44] and the
bidding-based framework proposed by Ito, Hattori, and Klein [37] laid a foundation for future
work. While theoretically effective, these approaches encountered severe scalability challenges.
Successive extensions sought to reduce computational overhead and improve robustness. These
extensions showed that when exhaustive search becomes intractable, a focused search becomes
necessary.

Considerable effort has been invested in designing protocols where simplification of utility
functions is carried out before bid search. These have shown how structural simplification can
greatly improve efficiency. The common assumption here is, however, that agents have access
to the analytical form of their utility functions, that a mediator is present to guide the search,
and/or that the functions exhibit structures that can be manipulated by grouping constraints
together or decomposing them based on various heuristics.

On the agent design side, research has explored a variety of strategies. With a few exceptions,
existing approaches attempt to search directly in the original utility space. The WAID method
linearizes utility functions but is limited to relatively simple and continuous utility functions.
Hadfi and Ito [28] explored the use of generalized Gaussian distributions for approximating
constraint-based utility functions. Their method was, however, highly sensitive to parameter
tuning, and experiments were not conducted in a negotiation setting. Their results did, however,
show that using the generalized Gaussian distribution to approximate constraint-based utility
functions is a promising approach.

The 2014 ANAC further showcased practical approaches. However, all agents searched directly
in the utility function. Despite their diversity, most of the agents prioritized bid generation
and concession strategies over sophisticated opponent modeling. Erez and Zuckerman [19|
reported that intricate learning algorithms offered limited practical benefit in scenarios where a
negotiation is not repeated with data from previous rounds being available. Nonetheless, all
agents used some form of a heuristic in order to direct their bid search towards zones where a
deal was likely to be struck, and a high-utility bid might be found.

Although much of the reviewed literature focuses on finding socially optimal bids as opposed to
high-utility bids, as will be the goal in this thesis, and often involves searching directly within
the utility function, it still offers valuable insights. After all, both tasks involve searching for
a needle in a haystack. Techniques that prove effective in identifying socially optimal bids
can often be adapted, at least in part, to support the search for high-utility bids. Indeed,
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the considerations that shaped the methods discussed in this chapter are also relevant to the
problem addressed in this thesis. Chapter 4 presents the proposed method, which incorporates
many of these considerations, either directly or in adapted form.

The research objective of this thesis is to explore how well an autonomous negotiator performs
in finding high-utility bids in a surrogate model of its utility function, when it is modeled as a
quadratic polynomial. Despite the rich body of literature surrounding function approximations,
applying it in an agent’s bidding strategy remains limited. As noted earlier, the most common
approach in the literature reviewed for this thesis is to directly search the utility function, or
to manipulate structural properties it might have. The only answer to this thesis’s research
question found in the literature was that the generalized Gaussian distribution might work
quite well, and that a linearization might perhaps not. These two methods are similar to a
quadratic polynomial in their own way. A linearization represents a polynomial of a single
degree lower than the quadratic polynomial, and the generalized Gaussian distribution gives a
concave approximation. The quadratic polynomial is unimodal, meaning that although it is not
always concave, it does have at most a single optimum. What all these methods do have in
common though is that they can be implemented as basis functions in regression models.

Exploring the use of regression models as surrogates for constraint-based utility functions
remains to be done. This work furthermore opens space for future research as there are countless
other basis functions to explore, such as Fourier-based functions, higher-order polynomials, the
generalized Gaussian distribution, or even a combination of these functions.



Mathematical background

Before constructing the agent, several mathematical considerations need to be made. These are
the topics of this chapter.

First and foremost, in order to answer the Main Research Question, a way of quantifying the
complexity of a constraint-based utility function must be established. This is the topic of the
first section.

Second, the sampling step cannot be a simple uniform sample over the entire domain due to the
curse of dimensionality and the difference in how expressive a quadratic polynomial is and the
utility function. These considerations raise the question of how the sampling step can aid in the
function approximation, which is the topic of the second section. Sampling will be performed in
regions of the domain, and the shapes and placements of these regions will be discussed, as well
as the sample distribution.

Third, once the sampling step has been established, the modeling of the utility function with
quadratic polynomials is addressed. This is the topic of the third section. This will be done via
quadratic regression, where quadratic polynomials are used as basis functions in a regression
model that is linear in the parameters. An analytical formula for the parameters is derived
through maximum likelihood and least squares, and the regression model with both linear and
quadratic basis functions is described. The section then concludes with a discussion on the
bias-variance trade-off.

Fourth, searching the quadratic surrogate for a high utility bid is addressed. Even though
quadratic polynomials are trivial to optimize over a closed domain in low dimensions, doing so
in a high dimensional setting is a completely different story. However, as quadratic polynomials
possess various desirable trades for optimization, such as being smooth and unimodal, second-
order optimization methods that rely on the Hessian are ideal for the task. These are the topics
of the fourth section.

Finally, in the fifth section, the discussion of this chapter will come to a conclusion, which is
addressed in the method chapter following this one.

3.1. The complexities of hypercubic functions

In a hypercubic constraint-based utility function in d dimensions, each constraint c¢j is a
hypercube of dimensionality v, < d with widths vi, = (vk;)icr, where I'y, C [d] is the index set
representing the -y, issues that define ¢ (i.e., the 4% axes to which the sides of the constraint

25
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are parallel), and is thus denoted as ¢k (7, vi). The widths should not be confused with the side
length, as it refers to the number of contracts along the corresponding axis that the constraint
spans. In this way, a constraint is formally defined as

A hypercubic constraint in a negotiation domain 2 = ngl I; is defined as:

d

cr(vevi) = [0, 1) x T (=™ =3 + oke) = [ ] Lns (3.1)
igTy, i€Ty, i=1

where ¥ is some integer in [0,|[;| — vg; — 1] for all ¢ = 1,...,d. Each interval in (3.1)

specifies the valid values of the corresponding issue required to satisfy the constraint, and is

denoted by Lg;.

A contract x = (1, ..., ;) then satisfies constraint cg(vx, vg) if and only if ; € cx(yk, vi) for
all 7.

The former product over all i ¢ I'y in (3.1) contains the entire corresponding issue domains
as their value is irrelevant as to whether the contract satisfies it or not. The latter product,
therefore, represents the hypercube itself, while the whole expression represents the constraint.

When satisfied, each constraint has an associated utility value which is equal to some constant
ag, i.e., the height of the cube, which is zero if ¢ (v, vi) is not satisfied. Thus, the hypercubic
constraint-based utility function, which will from now on be referred to as simply a hypercubic
function, is formally defined as

A hypercubic function uc is a function of the form

u(x) = Z w(ek, x) (3.2)

cpeC
where
ag lf X € Ci
w(cy, x) = .
0 otherwise
and ¢, is a hypercubic constraint for all £k =1, ..., |C].

This definition results in a bumpy, nonlinear utility function with high points where many
constraints are satisfied. Figure 1.1 shows a top view of a hypercubic function along with an
example explaining it, and Figure 3.1 shows a hypercubic function over a domain of two issues
with multiple constraints and their heights representing their added utility values.
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Figure 3.1: A 3d view of a hypercubic function.

In [29], Hadfi and Ito define the parameters that could affect the complexity of a general
constraint-based utility function as the number of issues in the negotiation domain, the number
of constraints that define the function, the distribution of the number of issues involved in a
constraint, and the domain size and type of the issues themselves. However, another parameter
commonly used for the specific case of hypercubic constraints is the constraint width [25, 54|, or
the v parameter.

Although other parameters can be considered, such as the number of groups; that is, assuming
the constraints are grouped together in the domain, how many groups are there; or the proportion
of disjoint constraints, the parameters considered for this thesis are:

e m: The number of constraints that define the function
e ~v: The dimensionalities of the constraints

e v: The widths of the constraints

e d: The number of issues in the domain

where v := ()i, and v := (v)j~;. A hypercubic function can then be parametrized by
(m, 7, v,d)-tuples, which can be used to generate these functions. This will be done to generate
results later, but the following definition will come in handy in this section.

A uniformly generated hypercubic function in a d-dimensional negotiation domain 2 is a
hypercubic function parametrized by (m,~, v, d), where:
e Foreach k=1,....,mandeachi=1,...,d

.ﬁ;in = U(O, |Iz’ — Ukq — 1)

are independent uniform random variables.
e For each kK =1,...,m, ['y is is chosen uniformly at random among all ~;-sized subsets

of the index set [d].

In other words, the placements of the constraints and which issues define them are uniform
random.

As can be seen deduced from earlier discussion and Figures 3.1 and 1.1, two or more constraints
can intersect, which essentially creates a new one having their combined utility. Formally,
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Let ¢1(y1,v1) and ca2(72,va) be two constraints in a hypercubic function. Then they are
said to intersect if

[x’f}m, :L’?fzm + 111,') N [xg;m, .Tg;bm + 'UQZ‘) #* DVieTiNTy.

Their intersection constitutes an intersection constraint which contains them, and is referred
to as a
o Type 1 constraint if
I'iNTy=0

e Type 2 constraint if
I''nNIy 75 0

A constraint that is not an intersection constraint is referred to as a base constraint.

Definition 4 is illustrated in Figure 3.2.

Issue 2

X1

c3=0.2

1 2 3 4 5 6
Issue 1

Figure 3.2: A negotiation domain with four base constraints: ¢i1 and c2 (both with v = 2 and v = 3),
and cs and cs4 (both with v =1 and v = 2), and two intersection constraints: cs and cg, along with
their corresponding utilities. Constraints ¢; = [1,3] x [4, 6] and ¢z = [2,4] X [3, 5] intersect to create
constraint ¢ = [2, 3] X [4,5] which has their combined utility of 0.9. Constraint ¢s is an intersection
constraint of type 2 as the intervals defining constraints ¢; and ¢ intersect; i.e. I't = {1,2} = T's.
On the other hand, constraints c3 = [1,6] x [1,2] and ¢4 = [5,6] x [1, 6] intersect to create constraint
¢ = [5, 6] x [1,2] which has their combined utility of 0.9. Constraint ¢ is an intersection constraint
of type 1 as the intervals defining constraints cz and ¢4 do not intersect; i.e. I's = {2} while I'y = {1}
soI'sNT'y = 0.

An intersection constraint can be viewed as the intersection between two constraints, with
one of them being a base constraint. Indeed, all intersection constraints are intersections
between base constraints, but any subset of constraints that an intersection constraint
consists of is itself a constraint that intersects with base constraints.

For example, if c5 = ¢; NcoNeg where ¢, co and c3 are base constraints, then the intersection
of any pair, say c¢; and cg, constitutes an intersection constraint. That is, ¢4 = ¢; Negy # 0,
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so that c5 can equivalently be written as
cs =c3Mey.

Furthermore, for a utility function uc and a base constraint cg, it holds that ¢ € C.
However, if ¢ is an intersection constraint, then ¢ ¢ C' but

Cp = ﬂ ¢;, where ¢; € C for all ¢
1€SC[m]

and S is the index set of base constraints that make up cg.

Moving forward, the following assumption is made:

Assumption 7:

In this thesis, v and vy are assumed to be fixed across all m base constraints in a uniformly
generated hypercubic function. Specifically, for any pair of constraints cx (v, Vi), ¢j (75, v5) €
C,

Ye=7 =7 and v =vi=v foralli=1,...,7,

where v < d and v < |I|. Hence, v and v are treated as constants rather than tuples,
representing respectively the dimensionality and the width of each constraint in C.

Each of these four complexity parameters is dependent on the other, meaning that changing
one of them will create a change in the complexity produced by the others. This, and their
individual contributions to complexity, is the topic of this section.

3.1.1. The dimensionality of a constraint

The ~ parameter, or the number of issues involved in a constraint, dictates the level of
interdependency between issues. A higher v means a constraint is represented by a higher
dimensional hypercube. By assumption 7, all m base constraints in a utility function have the
same ~ and so a higher value of v means that the hypercubic function has a higher dimensional
structure.

Consider a constraint with v = 1. That is, there is only a single issue involved in this constraint,
and all but one interval in Expression (3.1) are the entire corresponding issue domain. Then, by
uniformly randomly picking any contract from the space, the probability of it satisfying this
constraint is simply the probability of the sample’s value for that issue being inside the single
interval defined by the constraint. Once « increases, this probability decreases exponentially as
each issue value is independent, as per Definition 3. This is summarized in Theorem 2 in the
upcoming subsection.

3.1.2. The width of a constraint

The width of a base constraint, v, indicates the lengths of the ~ intervals that define it. Thus, a
constraint ¢, with v = 7 < d and width v has an associated utility value which is obtained by
bids where x; € Ly, for all ¢ € I'y. The interplay between v and v is generalized in the following
theorem:
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Let ¢k (7, vg) be one of m base constraint from a uniformly generated hypercubic function.
Then, for a uniformly randomly sampled contract x € €2, the following holds:

P(x € cp) = (ﬁr—’)7

Proof: As per Assumption 2, each z; € [0, |I|). As Ly; is placed in [0, |I|) at uniform random,
the probability that z; € Ly; is clearly % As per Assumption 7, |Ly;| is constant for all i so
this becomes |UT| By Definition 3, each x; are independent so P(x; € Ly; A xj € Lj) = P(x; €

L1)P(x; € L;) where i # j. Finally as L, = [0, |I|) for all r ¢ T,

P(x € ¢) = (%)7
]

Corollary 1:

Let ¢k (v, vi) be any constraint from a uniformly generated hypercubic function. Then, for
a uniformly randomly sampled contract x € €2, the following holds:

P(Xeck) = H Vki

ser, 1
k

Consider again the three constraints in Figure 1.1. These constraints showcase both the difference
between a wide constraint and a narrow constraint, as well as the interplay between v and v.
Constraints ¢l and ¢y both have width v = 3 and an associated v = 2. This means that the two
pairs of intervals that define them capture three integer values each, and that both issues need
to be inside their corresponding interval for either constraint to be satisfied. On the other hand,
constraint ¢3 has width 2 and an associated v = 1. By Theorem 2, a random sample has a (%)2
probability of satisfying constraints ¢y or ce and a probability of % of satisfying cs.

3.1.3. The number of issues

It goes without saying that the more issues there are, the greater the search space becomes,
and hence its complexity. That is, when the search space grows, the difficulty of finding an
exact point grows exponentially. Exhaustively searching the integer domain of [0,9]? for the
point (1,1) is very easy, but finding (1,1, ...,1) in [0,9]%0 is far fetched. However, in terms of
constraint-based utility functions, the complexity stemming from the size of the space is not as
prominent in itself but rather the potential it creates for the other parameters.

As hypercubic constraints are defined as intervals, satisfying a constraint boils down to finding
the correct interval for the correct issue. Consider, for example, a utility function consisting of
a single constraint in the [0,9]°° domain, where the constraint is defined as the interval [0, 2] for
issue 2. Now the complexity associated with the high dimensionality is essentially a greater
memory requirement as the other 49 issues become irrelevant. Indeed, by Theorem 2, simply
picking a random point in the domain would yield a 0.3 probability of satisfying this constraint,
irrespective of the dimensionality of the space.

Now, circling back to the first paragraph: if the constraint in the example above was not simply
a 3-value interval for a single issue, but rather for all 50 issues, then the probability becomes
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0.3%0 ~ 1.4 x 10726, That is, as d grows, the potential for  to grow increases. As will be shown
in the upcoming section, the number of constraints m can also grow the potential complexity
for both v and v, hinting that the induced complexity of d is highly dependent upon m.

3.1.4. The number of constraints

At a first glance, more constraints might seem like something associated with less complexity:
the more constraints, the more likely that a random sample satisfies one of them. Although
that statement is true, the complexity arises with the additional structure created from more
constraints; specifically when two or more of them intersect, essentially creating a new — often
more complex — constraint with a combined utility of those intersecting.

Now, the more constraints there are, the more of them can intersect, and the higher the
probability of two or more of them intersecting. As an intersection constraints has a combined
utility of the constraints that it consists of, the global maximum of a hypercubic function is
generally at an intersection constraint. Furthermore, an intersection constraint is generally more
complex than the base constraints. To see this, consider the following lemma:

Let ¢3 = (73, v3) denote the intersection of any two constraints ¢ (1, v1) and ca(v2,ve) in a
hypercubic function. Then, for 3 and each v3;, where j € I's, the following conditions hold:
(1). max(vi; +vgj — |I],1) < vzj < min(vyg, vy;)

(2). max(y1,72) <73 < min(y1 + 2, d)

Proof:

1. Consider any interval [z7" 74" 4 vy;) N [2507, 25" + vg;) = [250", 27" 4 v3;) where
1 € I's. If this interval is empty then the two constraints did not intersect which is a
contradiction. As [z5"", 5" + v3;) is nonempty, vz; > min(vy;,v2;) cannot hold. Thus
v3; < min(vy;,ve;) must hold.

If v1; + vo; > |I|, then v3; must be at least vy; + vo; — |I|. If vy; + vo; < |I] then
v1; + v2; — |I| < 0. However, as the two intervals do intersect, max(1, vi; + v — |I|) < vs;
must hold.

2. Asy3 =1 + v — |[T's|, 73 = 71 + 72 is obvious when c3 is a type 1 constraint. As c3 is
made up of ¢; and ¢z, v3 > 71 + 72 can clearly not hold.

In case c3 is a type 2 constraint, v3 = 1 + 72 — |['3| takes it’s lowest value when |T's| is as
big as it can get. This is clearly when |TI's| = min(y1,72). Thus, 73 = 1 + v2 — min(y1, y2)
is the lowest attainable value for -3, or equivalently v > max(y1,7v2).

O

In other words, if a hypercube is thought to be more "complex" when it is of a higher
dimensionality and with smaller widths, an intersection constraint is never of less complexity
than the constraints that it consists of.

Even though the m base constraints are generated under Assumption 7, intersection con-
straints can be any shape and size dictated by Lemma 1. This can be seen in Figure 3.2.
Both intersection constraints cs and cg have smaller widths than the constraints that they
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contain, and cg has a v = 2 while the constraints that it contains both have v = 1.

Following Lemma 1, the following can easily be derived:

A type 1 constraint c3(ys,v3) that is made up of the constraints ¢;(v1,v1) and ca(7v2, va)
has v3 = 91 + 72 and v3 = (v, va).

By definition 3, intersection constraints occur randomly. Therefore, a hypercubic function with
m = 100 can have a vastly more constraints than the 100 base constraints. This number is
bounded by the size of the superset of the 100 base constraints, and the domain size. That is,
if a utility function is constructed to have m = 2, these constraints might intersect to create
a third one. When a m = 3, there can be at most 7 constraints. This was generalized in the
following theorem:

Let K be the total number of unique constraints in a hypercubic function v = (m, v, v,d) in
a negotiation domain of size |Q2] = d x |I|. Then the following holds:

K <min(2™, M)

where

M = i (‘Z) Pk (3.3)
=y

Proof: Clearly K cannot be greater than 2™ as it corresponds to the size of the superset
constructed from m sets. However, as the domain is bounded, there cannot be m unique
constraints in it if m is greater than M. Indeed, for each possible way of choosing a constraint

(Vk, Vi), there are
2l

[T = oni+ 1)
i=1
ways to place the lower bounds of each vi. That is, there are

d\ 1 a\
[0 = ok +1) < 7] (34)
M) Ve
1=

ways to place the lower bound of each v, where the upper bound in Expression (3.4) is derived
from Lemma 1. Now, For any set of base constraints, the attainable range for an intersection
constraint’s i is [, ..., d]. Therefore, for any attainable v, Expression (3.4) provides an upper
bound on the ways to place the lower bound of each v, resulting in a total of

Zd; ()

attainable unique constraints, which is exactly M in Expression (3.3). O

When m = 100,y = 10, v = 2 and d = 50, the actual number of constraints has an upper bound
of approximately 10 x 103, and each of these constraints will most likely have higher values of
~ and lower values of v than the base constraints, as per Lemma 1. Note that this is an upper
bound. This number occurs with an extremely low probability, as will be shown shortly.
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3.1.5. Quantifying the complexity of a constraint-based utility function

In [29], Hadfi and Ito defined the complexity of a constraint-based utility function using the
theoretical notion of entropy:

H(m)=— ZW]' log ;
j=1

where m = (71, ..., Ty, is the distribution of the number of issues per constraint. However, this
does not capture the complexities imposed by narrowing the constraints. Furthermore, simply
viewing the distribution 7 gives little insight into the scaling of complexity with increasing
dimension of constraints, or 7.

To quantify the complexity of a hypercubic constraint-based utility function, this thesis adopts
the approach of considering the difficulty of randomly sampling individual constraints. That is,
how expressive a model needs to be to accurately approximate the utility function, based on the
theoretical performance of the simplest possible model: a uniform random sample. To do this,
the uniformly generated hypercubic function will be viewed from a probabilistic perspective and
entropy will then be used to quantify complexity. The probability used for the entropy is based
on Theorem 2 for all constraints in the function. To do this, the probability of a particular
intersection occurring in a uniformly generated hypercubic function is needed. To derive this,
the following lemma is needed:

For any two constraints c¢; (1, v1) and ca(72, v2) in a uniformly generated hypercubic function,
the random variable

X = ‘Pl ﬂFQ’
is hypergeometrically distributed with parameters (d,y1,72). That is, for every integer n,
d—
() G2
(52)
V2

where max{0,v1 + 72 — d} <n < min{y, 72} and P(X = n) = 0 otherwise.

P(X =n) =

Proof: See Appendix B.1 O

From Lemma 2, the following can easily be derived:

Corollary 3:

The probability that any two constraints ¢1(v1, v1) and ca(72, ve) in a uniformly generated
hypercubic function intersect to form a type 1 constraint is

d—m
)
d
(52)
Now that the probability of a type 1 intersection has been derived, the probability of a type 2

intersection is needed to complete the picture. To derive the probability of a type 2 intersection,
the probabilities surrounding the intresection of two subintervals of the same interval is needed:

P(X =0) =
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Let vy, v, |I|,v3 € N with vs < min(vy,v3) and v1,ve < |I|. Furthermore, let L; =
Zn pmin o) and Ly = [P, 23 4+ 05) be two intervals placed independently and
1 1 2 2
uniformly at random in [0, |I|). Then,
(1)
|I| — U —’U2+1)(|I| — U1 —U2-|-2)
(= o1+ )] = v2+ 1)

P(LlﬂLQZQ):(

(2)

1
IP)(|I1 mI2| —’1)3) - (|I| — o + ].)(|I| —1)2+].) 56%: N((S)?
v3

where
e If v3 < min(vy,v2), then D,, = {6 = |v1 — v3|} and

N(9) =2 -max (0, min(|/| — vy, |I| —ve — ) +1).
o If v3 = vy < wy, then D,, ={0,1,...,v; —va} and

N(9) = max (0, min(|I| — vy, |I| —v2 —d) +1).

Proof: (proof of (2). is in Appendiz B.2). An interval of length vy in [0, |]|) can start at any
of |I| — v1 + 1 positions, and similarly an interval of length ve can start at any of |I| — vy + 1
positions. Thus there are (|I| —vq + 1)(]1] — v2 + 1) equally likely pairs of starting positions.

The intervals Ly and Ly are disjoint if and only if one ends before the other starts. There are
|I| — v1 — v2 + 1 possible gaps between them, and for each such gap there are two orderings
(either L is to the left of Ly or vice versa), plus the boundary case where they exactly touch.
Altogether this yields (|| — vy —ve + 1)(|I] — v1 — v2 + 2) disjoint placements. Dividing disjoint
cases by total cases gives the stated probability. O

The discussion of this section has lead to the following Theorem:

The probability that any two constraints ci(vy1,vy) and ca(72,ve) selected from a uni-
formly generated hypercubic function at uniform random intersect to create the intersection
constraint cz(7ys, vs)is

3
P(Fl NIy = Fg) H P([wﬁ’}in, :L‘If}-in + vlj] N [asg}m, xé’}in + vzj] = ’Ugj) (3.5)

je(T1Nr2)
where 0
- W6
P(Fl NIy = Fg) = I~ d
(55) (32)
and
min min min min 1
P(let <" +ou] o), 5" +oa] =) = g vy, 2 VO
d€Dy,,;

" (3.6)

where
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o If V35 < min(vlj,vgj), then D’Ugj = {5 = ’1)1]' = '03]"} and
N(6) =2 -max (0, min(|]| — vy}, |I| —ve; — &) +1).
o If ’U3j = Ugj S ’Ulj, then Dv3j = {0, 1, 50K ,’Ulj - Ugj} and

N(6) = max (0, min(|| — vy}, |[I| —ve; — ) +1).

Proof: See Appendix B.3. O

This can be generalized even further to capture the probability of an intersection between
any pair of constraints. This generalization is not needed for this thesis but is laid out in
Appendix B.5 along with a sketch of a proof.

Now that the probability of two constraints intersecting to create any specific one has been
derived, as well as all possible configurations of intersection constraints, the complexity of a
uniformly generated hypercubic function can be formally defined as:

A uniformly generated hypercubic function with parameters (m, d, v,v) has a complexity

defined as . T
v
e=-tos | (1) + &4

where the term A is defined recursively as

2
p3 + g Z P(cs, cq) <p4 s <2> Z P(C4,c5)<...

c €S csE€S

k
o <2> Z P(ckt2, Crts) 'pk+3>>

Ck+3ES

1
A:m'izp(b,c;z,)

c3€eS

Here:

e S is the set of all attainable intersection constraint configurations according to Lemma 1,

e P(cj,cy) is the probability that constraint ¢; intersects with a base constraint to form
constraint cj, as measured by Theorem 4. Here, b represents a base constraint, hence
the first P(b, c3).

e Each p; denotes the probability of satisfying constraint c¢; with a single uniform random
sample, measured by Corollary 1.

e And the recursion depth k is determined by the upper bound K as described by

Theorem 3:
> (3) n(252)
m - =K < k= —1
3
i=1 2 ln(ﬁ)

where k is derived from closed form solution to geometric series.

Intuition. This measure is designed to approximate the probability that a uniformly sampled
contract x satisfies at least one of the m base constraints or any of the feasible intersection
constraints, weighted by both their likelihood of occurrence and their contribution to complexity.
Any constraint ¢;’s contribution to complexity is then measured by the corresponding p; term.
Since each base constraint is guaranteed to be part of the function, the first term is derived
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directly from Theorem 2 and scaled by m, the total number of base constraints. The second
term is weighted by the total number of potential intersection constraints, where A acts as a
recursively defined weighted sum over them.

The intuition behind A is grounded in the side note following Definition 4 in Section 3.1, and is
motivated by the following ideas:

1. There are m base constraints, and each pair of them is equally likely to intersect. The
term m - %Z c3€S P(b, c3) captures the probability, aggregated over all base constraints,
that an intersection with another base constraint yields a valid constraint cs.

2. This probability is used to weigh the ps term, which measures the relative constraint c3’s
contribution to complexity.

3. Once a constraint like c3 has been formed by intersecting two base constraints, the
probability that it further intersects with another base constraint to form c4 is weighted
by a factor of %, reflecting the increasing number of constraints in the system and the

combinatorial growth of interaction terms at each recursive depth.

4. This recursive process continues, with each new intersection constraint being weighted
accordingly and multiplied by its corresponding p;, until the total number of constraints
reaches the predefined upper bound K.

Figures 3.3 illustrates the individual effects each parameter has on this measure. As will be
shown in Chapter 6, these figures are consistent with the agent’s performance.

o
o

=)
>

Average Complexity
Average Complexity

10 20 30 40 50 1 2 3 4 5 6 7 8 9 10
d Y

(a) Number of issues (b) Dimensionality of constraints

5

5

0

Average Complexity
Average Complexity

SR

10 25 50 75 100 2 4 6
m v

(¢) Number of constraints (d) Widths of consraints
Figure 3.3: Each complexity parameter fixed and average over the others with configurations d x v X m X v

where d = {10, 20, 30, 40,50}, ~ = [1,10], m = {10, 25,50, 75,100} and v = {2,4,6}, corresponding to the
configurations used in this thesis’ main experiments.
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3.2. Sampling

In one of his essays Glow, Big Glowworm |27|, Gould recounts a visit to the Waitomo Glowworm
Caves near Lake Rotorua in New Zealand. Thousands of glowworms lit up these dark caves, as
if the cave ceiling had transformed into a star-strewn night sky. However, due to the glowworms’
territorial behavior, they have evolved to leave an even spacing between each other, unlike the
stars in the sky, which display gaps and clusters relative to the observer’s position.

The stars can be thought of as points drawn from a uniform random distribution, whereas
the glowworms are not themselves sampled uniformly; instead, their pairwise distances are
approximately uniform. In many cases, a sampling method more resembling the glowworms of
the Waitomo caves is preferred over the randomness of the stars. For instance, quasi-Monte
Carlo integration relies on (t,m, s)-nets, which are point sets that are carefully constructed to
minimize discrepancy, a measure of deviation from a perfectly even coverage of the space [60].

In this thesis, there are two main motivations for a structured sampling procedure. The first
motivation is related to function approximation, specifically, how much of the domain it should
cover. The sampling procedure must neither under-represent nor overextend over the domain.
As the approximation will be unimodal, while the utility function may exhibit multiple local
optima, overextending the sample may result in a great loss of information. This motivates
partitioning the domain into subspaces to sample from within. The discussion of Section 3.2.1
concludes that these subspaces should be cube-shaped.

The second motivation is related to the curse of dimensionality. As the number of issues
increases, a combinatorial explosion occurs in the possible values that the issues can jointly
take. That is, any blind spot apparent in the data will exponentially increase in volume as the
dimension increases, making it unrealistic to sample the entire space in high dimensions. This
problem motivates the need for both sampling that evenly covers the space, resembling the
Waitomo caves, and the need for the search to be biased towards regions of the space where the
chances of finding a high-utility bid, or a socially optimal bid, are higher. Biasing the search is
a well-established approach in the literature, with numerous heuristics and related techniques
having been explored, as discussed in Chapter 2. Furthermore, an additional benefit of a sample
that evenly covers the space is that it promotes consistency across approximations, preventing
any single approximation from performing better or worse than the others by chance.

3.2.1. Geometrics of n-dimensional spaces

The importance of the geometry of sampling increases with the dimensionality of the domain [48].
As dimensionality increases, the behavior of most shapes changes in unintuitive but significant
ways. As integer negotiation domains are the focus of this thesis, this section examines the
geometry of three fundamental shapes in R™: the hypersimplex, the hypersphere, and the
hypercube. Although many geometric shapes exist in R", these three are the most commonly
used in practical sampling applications, each exhibiting distinct scaling properties that, in turn,
affect the sample sets. This will then be discussed in terms of an integer negotiation domain.

The hypersimplex

The n-dimensional hypersimplex consists of n + 1 points that are all equidistant. This is the
maximum number of such points that can exist in R™ (and in N™) with this property. An edge
connects every pair of vertices, every triple forms an equilateral triangle, every quadruple a
regular tetrahedron, and so on. More generally, the n-dimensional hypersimplex is bounded by
(”+1) hypersimplices of dimension k. A hypersimplex with sidelengths a = 2 is referred to as a

k+1
unit hypersimpex.
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A shown in [48], the volume of an n-dimensional hypersimplex in R™ with edge length a is given

by
I /n+1
Vn—g 2n a .

Clearly, the volume decreases rapidly toward zero as the dimension n increases due to the
factorial in the denominator, regardless of the edge length a. In other words, the geometry of
the hypersimplex effectively collapses inward.

The hypersphere

The n-dimensional hypersphere consists of all points that have a maximal distance of R from its
center. The 2-dimensional hypersphere is the common sphere; the 3-dimensional hypersphere is
the ball. A hypersphere with R =1 is referred to as a unit hypersphere.

As shown in [48], for even-numbered dimensions n = 2p, the volume of the hypersphere in R™ is
given by

and for odd-numbered dimensions n = 2p + 1, the volume is given by
R2p+12p+17p
1-3-...-(2p+1)

Vopt1 =

As n increases, the volume — as with the hypersimplex — decreases rapidly towards zero due
to the factorial in the denominator, regardless of the radius R.

The hypercube

The n-dimensional hypercube is a geometric shape with edge length ¢, where each vertex has
coordinates composed of either a or a + ¢, where a is some number, in every dimension. Thus,
the bordering faces of the hypercube are orthogonal to each other or parallel. When ¢ = 1, the
hypercube is referred to as a unit hypercube.

The volume of a n-dimensional hypercube in R™ with sidelength ¢ is simply given by V,, = ¢™.
As n increases, the volume decreases to zero when 0 < ¢ < 1, stays the same when £ = 1, and
blows up exponentially when ¢ > 1.

In terms of an integer negotiation domain [0, k]¢, these shapes occupy a proportion ( %)d of the
domain, where V,, is only growing with n in the hypercubic case. In that case, this becomes (%)d
when the cube has sidelengths ¢. This proportion shrinks with d, but as the numerator grows at
the same exponential rate as the denominator, this happens at a much slower pace than in the
case of the hypersphere and the hypersimplex. That is, when sampling from within a geometric
shape in increasing dimension, the proportion of the domain occupied by a hypersphere or a
hypersimplex allows the sample only a glimpse of the domain. At the same time, the hypercube

does a much better job at maintaining its proportional size.

To illustrate this phenomenon, consider a hypersphere of radius 1 and its enclosing hypercube
with side length 2. Although the hypersphere touches all faces of the hypercube, whose volume
rapidly grows with increasing dimension, the proportion of the hypercube’s volume occupied
by the hypersphere rapidly diminishes with increasing dimension. The same goes for the
hypersimplex. The case of the hypersphere is depicted in Figure 3.4 where, for dimensions
greater than 10, the volume of the hypersphere becomes negligible relative to that of the
hypercube.
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S,/ Cy

0.25

Figure 3.4: Ratio of the volumes of the unit hypersphere and the embedding hypercube of sidelength 2 up to
14 dimensions. Figure is adapted from [48§]

To avoid ambiguity, a cube will from here on out refer to a cube-shaped region of the domain,
while a hypercube will refer to a hypercubic constraint.

3.2.2. Manhattan distance between constraints

Consider sampling from a cube with sidelengths of 2 in the [1,10]®> domain. In order to cover
the entire domain, 125 mutually exclusive cubes will need to be placed in this domain to be
sampled from. However, if the domain is now increased to be of 10 dimensions, or [0, 10]'°, this
number becomes just under 10 million cubes. Thus, although the cube size grows at the same
exponential rate as the domain, the sizes of the issue domains being larger prevent the cube
size from keeping up in higher dimensions. Efficiently searching for bids, therefore, requires
narrowing down the search space to promising regions. Alternatively, the cube size can be
increased. This, however, is not a good strategy, as it will lead to greater information loss, as
previously discussed. Therefore, strategically placing the cubes must be done.

Previous approaches to narrowing down the search space have taken various forms, as has been
discussed in Section 1.6. As noted by Erez and Zuckerman [19], an intricate opponent learning
is only suitable for scenarios where data from previous negotiations is available, whereas a
heuristic is more suitable for standalone negotiations.

The heuristic that will be used in this thesis is based on the consideration that if a bid was
made, the particular contract is "important" in the sense that either agent would accept it. It is
fair to assume that a contract with close proximity to the proposed one might also be accepted.
The more complex the utility function is, the closer this proximity would need to be. Thus,
a distance-based heuristic will be implemented, where the distance from some previous bids
will be exploited. This can be done to find bids that are good in terms of individual utility
by considering the agent’s own bids, as well as bids that are more socially optimal by also
considering the opponent’s bids. However, the key challenge lies in choosing an appropriate
distance metric that best captures the similarity in utility.

De Jonge and Sierra [17]| suggest using the Manhattan distance for hypercubic constraints, due
to the nature of the two. Indeed, if a bid x satisfies a constraint ¢y, then for the ~ issues z; € x
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that the constraint is defined by, each one defines an interval [z7" 2%] of length v. Moving a

sample cube a Manhattan distance of k thereby means choosing some ¢ < k issues and adding
or subtracting to them a combined value of k. Furthermore:

Let v, v, |I|,v3 € N with v3 < min(vy,v2) and vy,ve < |I|. Furthermore, let L; =
[z 2™ + v1) and Lo = [25™™, 5" + v3) be two intervals such that Ly N Le # () and with

min

all valid placements (27", z5%") being equally likely. Then

Nen
P((Ll:l:l)ﬁLQ :@‘LlﬂLQ#Q) = N—d
int
where
vo—1
Ni = Y max{0, min(|I| — vy, |T| — v1 — 8) — max(0, —8) + 1},
o=—v1+1
and
vg—1
Nepd = Z lescape(6) max{0, min(|I| — v, |[I| — v1 — ) — max(0,—9) + 1},
5=—’L)1+1

with the indicator

1, if [P 41, 2 o +1) N [T 48, 27+ 5 4vg) = )
Lescape(6) = or [zf"" =1, 21" +v1 —1) N [2]"" +6, 21"+ +v) =0,

0, otherwise.

Proof: See Appendix B.4 O

Let C be a d dimensional cube in Q = ]_[?:1 and let ci(7yg,v) be a base constraint in .
Given that C' N ¢y # 0, the probability of C N ¢, = () after shifting & uniformly randomly
picked sides of C by a factor of &1, the probability that C' N ¢, = 0 is:

Yk N, end F
dN, int

where N,,q and N;,; are defined as in Lemma 4.

Proof: For each shift, the probability that the selected side is in I'y, is %. If the shifted side did
intersect with ¢; then the probability that the corresponding pair stops intersecting after the
shift is ]J\\Tl:f by Lemma 4. As I'j is picked at uniform random, and so are the k sides that are
shifted, these events are independent and the resulting probability becomes

[%N end:| ¥
dNint
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In Theorem 5, k is equivalent to the Manhattan distance that the cube is moved.

3.2.3. Sampling evenly

Perhaps the most straightforward approach to achieving an even coverage in a domain is to
construct a grid where some N equidistant points are placed on each dimension. While this
method is adequate in low dimensional domains, it becomes impractical as dimensions increase
due to the curse of dimensionality. Consider e.g., a 2-dimensional 3 by 3 grid consisting of 9
points. Extending this grid to 3 dimensions would require 33 = 27 points, and continuing this
way to, say, 25 dimensions, would require hundreds of billions of points. The uniform sample, as
mentioned at the beginning of this section, displays clumpiness which can result in unnecessary
computational efforts and large unsampled gaps in the domain. For these reason, as well as
those mentioned at the beginning of this section, there is a need for more efficient and intelligent
sampling strategies.

Discrepancy [60] is a measure that quantifies how evenly a sample covers a space, or the deviation
of a sample from being evenly distributed. Formally, let I, := [0, 1]® be the closed s dimensional
unit cube and P = 1, ...,xy € I be a sample of points from I5. Then, let B C Iy and A(B, P)
be a counting function that indicates the number n with 1 <n < N for which z,, € B. If B is
then a nonempty family of Lebesgue-measurable subsets of I, the general notion of discrepancy
of the sample P is given by

Dy (B; P) = sup 7A<B;P)

_V:SB 9
Bes| N (B)

where Vi (B) denotes the s-dimensional volume of B. Various variations of discrepancy exist,
each specified by the specific family B. Two of the most common ones are star discrepancy and
extreme discrepancy.

The star discrepancy Dy (P) of the sample P = x1,...,an € I, is defined by Dy (P) =
Dn(J*; P), where J* is the family of all subintervals of I of the form ~; [0, u;) where
0 <wu; <1 for all 3.

The extreme discrepancy Dy (P) of the sample P = x1,...,xn € I is defined by Dy (P) =
DN (J; P), where J is the family of all subintervals of I of the form ~7 ;[u;,v;) where
0<wu; <wv; <1 for all 7.

The desirable notion in this connection is that of a low-discrepancy sequence, which is informally
defined as a sequence S of elements of I, for which D} (S) or Dy(S) is of the order N~1log® N
for all N > 1 [3]. Low-discrepancy sampling schemes have been shown to yield faster convergence
than uniform random sampling in a variety of applications, including numerical integration [60],
physics-informed neural networks [76], deep learning [56], optimization [9, 46], and option pricing

[32]

Various schemes exist with the aim of achieving low discrepancy of the sample, e.g., Jitterred
sampling and Latin hypercube sampling [47], where the domain is subdivided into equally
sized subdomains which are then sampled from. A more general concept of stratification was
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developed by Sobol in [69], that resulted in the so-called (¢,m, s)-nets and (¢, s)-sequences.
To formally define (¢, m, s)-nets and (¢, s)-sequences, the notion of the elementary interval is
required. A subinterval E of the form

s |9 oai+1 s

where 0 < aj < b% and 0 < ¢; are integers, is called an elementary interval in base b.
Consequently the volume of E is

S
Vs(E):’YJ:lE:b 2i=1t,

Figure 3.5 shows the structure of all elementary intervals with volume V2(E) = 1—16 in base b = 2

for dimension s = 2.

Figure 3.5: All elementary intervals in base b = 2 and dimension s = 2 with volume V2(E) = %. Figure is
adapted from [47].

Now, formally,

Let b > 2 and 0 < t < m be integers. Then, a (t,m,s)-net P in base b is a point set
of b™ points in I such that A(E, P) = b' for every elementary interval E in base b with
Vo(E) = b=,

As a consequence, the star discrepancy Dj,.(E,P) = 0 where the supremum is over every
elementary interval E in base b with Vi(E) = b'=™. Finally,

Let b > 2 and t > 0 be integers. An infinite sequence x1, xs,... of points in I is called a
(t, s)-sequence in base b if for all integers k > 0 and m > ¢ the point set consisting of the z,
with k0™ < n < (k+ 1)b™ is a (¢, m, s)-net in base b.

Consequently, the first ™ points of a (¢, s)-sequence form a (¢, m, s)-net. In [60], it is shown that
for the star discrepancy of the first b™ points in a (¢, s)-sequence S in even base b with s > 2, is
of the order N~!log® N making it a low-discrepancy sequence. A deterministic constructions of
(t,m, s)-nets is can thus be done by selecting the first b™ points of (¢, s)-sequences in even base.
Furthermore, selecting the first k points, where k € (b™~1 ... b™), yields a (t,m—1, s)-net,
augmented by k — b~ ! additional points. These extra points are distributed in such a way
that the complete set of b™ points forms a (¢, m, s)-net. In other words, the sample continues
to evenly cover the space but is no longer guaranteed to be a low-discrepancy sample as the
added points may appear somewhat irregular. Figure 3.6 shows 300 points drawn from the
uniform random distribution and the first 300 points of a (t,2)-sequence in base b = 2, or a
Sobol sequence.
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300 Uniform Random Points

300 Sobol Sequence Points (t-net, base 2)
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Figure 3.6: Example of 300 points generated using Sobol sequence(Right) and Uniform random
distribution(Left). The first 2% = 256 points of the Sobol sequence form a (¢, 8,2)-net which evenly covers the
domain, while the remaining 44 points can be seen clustered at seemingly random (e.g. at (0.5,0.5)).

Constructing (¢, s)-sequences is beyond the scope of this thesis but a detailed discussion is given
in Sobol book [69] for the case of b = 2, which has lead to the case of b = 2 being called Sobol
points, and a generalization for b > 3 in [59].

This thesis adopts a sampling scheme based on Sobol points. This is because Sobol sequence
generation is computationally efficient, especially in high dimensions, as numbers are already
represented in base 2 on digital computers [63]. Although sampling schemes based on low-
discrepancy sequences have been shown to outperform those based on uniform random sampling,
comparative studies among different low-discrepancy sequences have demonstrated marginal
differences in their performance in low dimensions (e.g., |76, 9]), while Sobol sequences have
been shown to outperform in higher dimensions (e.g., [9]).

3.3. Regression

In this thesis, the agent’s utility function will be approximated using quadratic regression,
trained on samples from the original utility function. Regression models are a natural choice as
the sample data includes both features and labels; that is, the data is of the form

{Xi7 yi}?:b

where x; is the d-dimensional vector representing the bid corresponding to the ¢th sample, while
y; = u(x;) is the utility value of that bid.

Regression models that are linear in the parameters can be expressed in the form

m—1
w(x;) = wo + Z w; (X)),

j=1

(3.7)

where ¢; : R? — R are fixed or parameterized basis functions, and w; € R are coefficients, or
weights, and wy is the so called bias (not to be confused with the bias in a statistical sense) [12].
These parameters can be estimated from the data, which is usually done through maximum
likelihood and least squares [1]. There are alternative methods for obtaining a point estimate
of the parameters. The main appeal of this approach is that it can be shown to be the best
estimator asymptotically in terms of its rate of convergence as the sample size increases [26].
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These models can be either linear or nonlinear in x through the basis functions, but are linear
in the parameters w;. The number m — 1 of basis functions depends on the type of functions
used, the dimensionality of the input, and the complexity of the functions. For example, if ¢;
are polynomials up to degree k, the number m — 1 will represent all combinations of d variables
raised to powers that sum to at most k.

The key distinction between these models lies in the choice of basis functions {¢;}, which
ultimately determine the approximation accuracy. These basis functions must be carefully
selected for the approximation to align with the task at hand: to be a surrogate for the original
utility function.

This section begins with a derivation of the least squares solution for estimating the model
parameters. After that, a discussion on linear and quadratic basis functions is given, followed
by a discussion on the bias-variance trade-off: the trade-off between selecting models of varying
complexity.

3.3.1. Maximum likelihood and least squares

Deriving the parameters of model (3.7) will be done in this thesis via maximum likelihood and
least squares. To do that, the following assumption needs to be made:

Assumption 8:

The target variable y; is assumed to be given by the deterministic function @ in (3.7), with
additive Gaussian noise. That is,

m—1

Yi = '&(XZ) +€ =wy+ Z wjgzﬁj(xi) + €
j=1

where €; ~ N(0,02) are independent and identically distributed.

There are m+ 1 parameters that can be derived from model (3.7): the bias wg, the m —1 weights
wj, and the variance, o?. However, when the goal is to make predictions — as is the case in this
thesis — only the bias and the weights need to be learned. By letting w = [wo, w1, ..., Wy, _1]T
include the bias and then defining the design matriz as

1 ¢i(x1) -+ ém-1(x1)

o 1 ¢1(.X2) ¢mf%(X2)

: : . , (3.8)
1 ¢1(Xn) (bmfl(xn)

1 can be expressed in matrix form as

where ®; is the ith row of ®.

Now, due to the added Gaussian noise, the target vector y = ®w + €, where € is the additive
noise vector, is assumed to be distributed as

ylx, 0 ~ N(y|®w,0%)
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where 8 = (wg, w, 0?) are all model parameters. This results in the log-likelihood function

n
Inp(ylx, w,0%) => N (yi|®iw, o)
i=1 (3.9)

N N
= 51n02 - 51112% — 0*RSS(w)

where
_ IS _ PHow)?
RSS(w) = 5 ;1 (yi — Piw) (3.10)

is the least squares error function [12]. If ® is of full rank, the Hessian

0? T
is positive definite, since for any v > 0,
vi(@Te)v = (&v)T(®v) = |®v|®> > 0. (3.11)

Hence, when @ is full rank, the least squares error function has a unique global minimum [58].
It is noteworthy that the matrix can only be of full rank if it is overdetermined, i.e., when
n > m. A discussion on the matrix ® being singular, ill-conditioned, or not full rank is given in
Section 4.2.

Taking the partial derivative of Expression (3.9) with respect to w and equating to zero yields
the global minimum of RSS(w), or the so called normal equations for the least squares problem:

wrr = (87®) @7y = &'y, (3.12)

where ®1 is the (left) pseudo inverse of the matrix ® [1].

3.3.2. Linear basis functions

The simplest form the Equation (3.7) can take is when the basis functions ¢; are the identity
functions for their corresponding feature variable, i.e.

¢j(xi) = i
where z;; is the value of the jth issue in the 7th sample. In this case, the design matrix is simply
the data matrix, resulting in a total number of parameters equal to d + 1, which is the number

of issues plus the bias. This corresponds to linear regression, which is widely used due to its
simplicity and interpretability.

The key property of the model is that 4 is assumed to be an affine linear function of the input,
taking the form

d
fL(XZ) = wo + ij:nij (3.13)
=1

which can be written in matrix form simply as

U(x;) = wo + X;w.

This means that the model forms a hyperplane, giving 4 a constant slope along each dimension.
Therefore, this model cannot represent curvature or interaction effects between dimensions.
Furthermore, since the hyperplane is constructed within a bounded region of the domain, the
maximum is located at a vertex, meaning the model will never capture internal optima.
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3.3.3. Quadratic basis functions

To address the limited expressiveness of the linear basis functions, polynomials introduce higher
powers of the variables as well as interaction terms. In the quadratic case, the basis functions
can be any combination of one or two issues, or

2 2
¢ (xi) € {xi1, .., Tid, TF5 oo, Tigs Ti1 T2, -or Tid—1Tid }
d(d—1)

making the total number of parameters equal to 2d + ==~ + 2. This results in @ taking the
form

d d
u(x;) = Z Z AjkTij T | + Z bjzi; | +wo (3.14)
=1 j=1

J k=1
which can be written in matrix form as
u(x;) = Byw = xiAxiT + bx; + w,
where A is a d x d matrix with entries a;j; and b is a column vector with entries b;. This
corresponds to quadratic regression.

This means that the model forms a flexible hypersurface, capable of representing curvature and
interaction effects between any two dimensions. Furthermore, the model is not restricted to
exhibiting only optima on vertices as

o
6x2-

1
:2Axi+b:()$xf:§A_1b

can take values anywhere in the region. Whether x; is a maximum, minimum, or a saddle point
depends on the definiteness of A. This is discussed in Section 4.2.

3.3.4. Underfitting, Overfitting, and Regularization

When a high-utility bid is found in the quadratic surrogate, it is important that it is also
a high-utility bid in the actual utility function. That is, it is important that the regression
model generalizes well over the unsampled bids in the corresponding cube. In their book Deep
Learning 26|, Goodfellow et al. write that the factors determining how well a learning algorithm
performs are its ability to

1. make the training error small, and to

2. make the difference between the training and generalization error small.

Training error refers to the average error obtained over the sampled bids, while generalization
error refers to the error over the unsampled bids. They identify these two aspects as reflecting
the fundamental trade-off in machine learning. Regarding the former factor, if the model is too
simple, it cannot capture the structure of the training data, resulting in a high training error.
This problem is referred to as underfitting. Regarding the latter factor, if the model is overly
flexible, it may adapt too closely to the training examples, failing to generalize and resulting in
a large difference between training and generalization performance. This problem is referred
to as overfitting. The likelihood of either problem can be reduced primarily in two ways: by
increasing the amount of training data available and by adjusting the model’s capacity, i.e., the
model’s complexity.

The relationship between overfitting, underfitting, and capacity is closely tied to the relationship
between the bias and variance of the estimated model parameters. Indeed, it can be shown that
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for the estimated parameters 6 and the true parameters' @, it holds that

MSE(D) = Epl(6 0 = (Eplo] ~0) +Ep [(6 ~ En(9))?
= Bias(0)? + Var(9)

(3.15)

where MSE stands for mean squared error. Bias and variance measure two different sources
of error in an estimator [58]. Bias measures the expected deviation from the true value of
the parameter. Models with a low capacity relative to the sample size and complexity of the
underlying function will exhibit higher bias and are likely to struggle in fitting the training set,
resulting in an underfit. Variance, on the other hand, provides a measure of the deviation from
the expected estimator value that any particular sampling of the data is likely to cause. Models
with a high capacity relative to the sample size and complexity of the underlying function will
have higher variance and are likely to overfit the training set. Desirable estimators are those
that manage to keep both their bias and variance somewhat low. In general, models perform
best when their capacity and sample size are appropriate for the complexity of the underlying
function. This is depicted in Figure 3.7.

A

Low Variance High Variance

Low Bias

Total Error .
Variance

Optimal Model Capacity

Error

ﬁ\_—./

&
©

Model Capacity

Figure 3.7: The best performing models are those that have appropriate capacity with respect to the sample
size and the complexity of the underlying function. When this is the case, bias and variance are both low.
Figure is adapted from [58].

In the context of this thesis, the MSE is in terms of Wwj;r, which is determined by the
normal equations. Affecting those can be done by increasing the sample size and by adding a
regularization term.

When the sample size is increased, the model has access to a broader and more representative
view of the underlying data-generating distribution. This generally improves its ability to
approximate the true structure and reduces the variance of its predictions. In cases where
the entire domain and its labels are available for training, the model will achieve the best
performance permitted by its capacity, thereby reducing the variance to zero. In this case, the
MSE is solely the bias squared term of Equation (3.15).

Regularization is a technique often used to control for overfitting. This can be achieved by
adding a penalty to the error function, which discourages weights from becoming too large.
Adding a regularization term will essentially dampen the capacity of the model, thereby adding
to the bias, but with the goal of subtracting even more from the variance. In terms of the least

! Assuming an underlying data generating distribution D, 6 is the true parameter and the expectations in
Equation (3.15) are w.r.t. p(D|6) [58].
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squares error function (3.10), this takes the form

RS 2 AT
22(yi—<1>iw) +owiw (3.16)

where ) is the regularization parameter, which indicates the relative importance of the regular-
ization term when compared with the least squares error function. Regularizing with %WTW
is referred to as /5 regularization, as wlw = ||w||3, or otherwise weight decay, as it encour-
ages weight values to decay towards zero unless supported by the data. Other regularization
methods include ¢; and elastic net, which balances the effects of £; and ¢». However, adding a
quadratic regularizer, such as in (3.16), to the least squares error function has the advantage
that the resulting regularized least squares error function remains quadratic as a function of w.
Additionally, Wz, is guaranteed to have a unique closed-form solution, even if ® is not full
rank. To see this, recall from derivation (3.11) that if @ is full rank, then the Hessian ®7® is
positive definite and wj;y, is unique. However, taking the partial derivative of the regularized

least squares error function (3.16) with respect to w and equating to zero yields
wyr = (®T® + A 1@y (3.17)
which is unique. Indeed, ®7® + I is positive definite as for any matrix B, it holds that
vi(BTB)v = |Bv|3> 0= v (BTB+X)v = |Bv|3 + \|v[3 >0

when A > 0. As ®T® 4 \I is positive definite, it follows from derivation (3.11) that Wy, is
unique.

As the hypercubic functions can range from very simple to extremely complex, while a quadratic
polynomial is always relatively simple, the model will inevitably underfit as the complexity
increases. As a regression model with linear basis functions has a lower capacity than a model
with quadratic basis functions, the bias of this model will be higher when trained on the
hypercubic functions. Furthermore, as the quadratic regression model is essentially a linear
regression model with added capacity, the quadratic model should perform better than the linear
model. If this does not happen, the quadratic model has very likely been overfit. As discussed
in this section, this issue can be prevented by increasing the sample size and incorporating a
regularization term. This approach will be adopted in this thesis, with the specific values of the
sample size and regularization term being derived in Chapter 6.

3.4. Optimization

Once a surrogate has been constructed within a cube, the next step is to search for its global
maximum. These problems are often referred to as box constrained global optimization (BCGO)
problems [18].

When the function being optimized is linear, BCGO problems become trivial as the function
can be optimized over each axis, one at a time. Additionally, when the function is quadratic
and concave, the global maximum has the analytical formula

1
= —§A_1b. (3.18)

However, when the function is multivariate and quadratic, and is not concave, the problem does
not have a polynomial time (1 — €) approximation algorithm [18].

This section explores ways to tackle this problem, beginning with a discussion on solving linear
BCGO problems, and then quadratic BCGO problems.
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Optimization algorithms are typically discussed in terms of minimizing an objective function.
This tradition will be maintained in this chapter. However, a minimization problem can be
easily transformed into a maximization problem by simply negating the objective function.

3.4.1. First-order methods

First-order optimization methods solely rely on the gradient of the objective function [58].
They have the advantage that the gradient is cheap to compute and to store, but they do not
model the curvature of the space, and hence they can be slow to converge. However, when
optimizing a linear additive function of the form (1.2), they are ideal. Indeed, in the case of
linear regression, the basis functions are simply the identity function and the function takes the
form of (3.13). In this case, the entire function can be optimized by optimizing each element of
the sum individually.

Now, assuming that all 0 > x;;, as is the case for this thesis, this optimization problem simply
boils down to checking the sign of the weights w;. If w; is positive, w;z;; takes its maximum
value when x;; is as large as can be, and vice versa when wj; is negative. When wj is zero, any
value can be chosen. Thus, in a cube-shaped domain, the global maximum is obtained at one of
the domain’s corners or along one of its edges.

Geometrically, the surrogate utility function is a hyperplane with a constant gradient equal to
the weight vector. This means the direction of steepest ascent is fixed across the domain, and
the global optimum is found by moving along this direction until a boundary is reached.

3.4.2. Second-order methods

Second-order optimization methods incorporate the second-order derivatives, which will often
yield faster convergence [58]. This is because second-order derivatives encode the rate of change
of the gradient in each direction. Thus, when the surrogate is a quadratic function — a
smooth function involving interaction terms between any two variables — using second-order
optimization methods is ideal.

An alternative approach, applicable when the stationary point %A‘lb is not a global maximum,
is to linearize the surrogate by eliminating the interaction terms. This reduces the problem
to the trivial variable-wise optimization previously discussed. Although this strategy does not
guarantee convergence to the global maximum, it will converge to a point located at a corner
or vertex of the domain. Since the maximum of the original surrogate is also attained at a
corner or vertex, this approach is worth exploring. In Chapter 4, this idea is investigated with
linearization similar to that of the WAID method.

This section concludes on the L-BFGS-B method, which is a limited-memory version of the
most popular quasi-Newton method, which has been adapted for BCGO problems. Quasi-
Newton methods are much more computationally efficient than global optimization methods
and metaheuristics, such as simulated annealing, but at the cost of being local in the sense
that they do not guarantee a global optimum with a single initialization. Increasing the
chances of finding the global optimum can, however, be drastically improved by choosing various
initialization points for the method as opposed to a single shot. However, once the surrogate
has been constrained to its domain, i.e., a cube, some methods fall short as they are meant for
unconstrained convex minimization problems.
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Newton's method

The classic second-order method is Newton’s method [58]. Newton’s method is derived through
a second-order Taylor series approximation of the objective function (in this case, the quadratic
regression model). It uses a trade-off between the first- and second-order derivatives to descend
towards the minimum, with a balance between directions that are sufficiently steep but do not
have drastically changing gradients. A Newton update is of the form

Xiy =X — e (%) Va(x])

where H(x}) is the Hessian of the objective function evaluated at xj, €; is the learning rate at
iteration ¢, and Vu(xj) is the gradient of the objective function @ evaluated at xj.

If H were the identity function, Newton’s method would be the steepest descent method.

In terms of the quadratic model, the Hessian is simply the weight matrix A and the gradient is
2Ax + b. This results in the Newton update

x;q =X — € (ATH(2A4x] + bx]))
1
=——A%

2
when ¢ = %. Notice that this is Expression (3.18). That is, this update approximates the
objective function with a convex quadratic function (a bowl) and moves towards the bottom of
it at a rate of ¢ [1]. When the objective function is actually a bowl, the bottom can be found
in a single step.

In the special cases of a convex quadratic objective function, Newton’s method can find the
unique global minimum in a single step. The drawbacks of Newton’s method, however, are the
requirement that the Hessian be positive definite and the need to evaluate the inverse Hessian
at every iteration, which is computationally costly. Newton’s method is designed explicitly for
convex quadratic functions with positive-definite Hessian matrices. In the context of this thesis,
Newton’s method can be applied when the weight matrix A is negative (semi)definite, in which
case the regression model is concave. In this case, by setting the learning rate to % and negating
the objective function, Newton’s method gives the global optimum %A‘lb in a single iteration.
However, when A is not negative (semi)definite, the classical Newton’s method cannot be used.

This is where quasi-Newton methods come in.

Quasi-Newton methods

Quasi-Newton methods are among the most sophisticated analytically for solving unconstrained
optimization problems [53], with some of them also being applied to constrained optimization
problems, including BCGO problems. For general nonlinear, not just convex, objective functions,
quasi-Newton methods have been shown to locally converge superlinearly |53, 62].

Quasi-Newton methods are similar at their core to Newton’s method, with the exception that
they iteratively build up an approximation of the Hessian as opposed to using the true one. At
each step, they approximate the Hessian using information gleaned from the gradient vector,
which circumvents the cost associated with evaluating the inverse Hessian matrix at every
iteration. The difference between the methods in the quasi-Newton family is then in how this
approximation is performed.
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Denote by Gy the approximation of A~! in the tth step. This is typically initialized as the
identity matrix, which amounts to the steepest descent method (see side note on previous page).
Then, in each iteration, G is updated from G;_1 with low-rank updates derived from the Matrix
Inversion Lemma [1]. Thus, a quasi-Newton update is as follows:

Xp1 = X — Gi[Va(x)].

Discussing how Gy is constructed is outside the scope of this thesis, but a detailed discussion can
be found in [53|. Intuitively, multiplying the Hessian by the parameter change is an approximation
to the gradient change. Therefore, multiplication of the inverse Hessian approximation Gy
with the gradient change is an approximation to the parameter change. The goal is thus to find
a symmetric matrix Gy satisfying the quasi-Newton condition, or

X1 — X = G [Va(xg) — Va(xy)],

which represents an underdetermined system of equations with an infinite number of solutions.
Among these, the Broyden-Fletcher-Goldfard-Shanno method (BFGS) chooses the closest
symmetric Gy41 to the current Gy [62|. The BFGS method is the most popular quasi-Newton
method [58], and a limited-memory variation of it will be used in this thesis.

The L-BFGS method

The BFGS method chooses the closest symmetric Gy to the current Gy by posing a minimization
objective function ||Gy+1 — G¢||F, in the form of a weighted Frobenius norm — hence the F,,
subscript — subject to the quasi-Newton condition. In other words, the algorithm finds a Gy
satisfying

Minimizegtﬂ HGt+1 — Gt”Fw
subject to: Xp41 — Xt = Gep1 [Vi(xeq1) — Vii(xy)], (3.19)
G;_l = Gt+1-

Using different norms in Problem (3.19) leads to a different variation of the quasi-Newton
method [1].

Problem (3.19) is a quadratic optimization problem with linear constraints. Optimization
problems where there are linear equality constraints and a quadratic objective function sometimes
have a closed-form solution. This is because it is not uncommon that the equality constraints can
be discarded along with their corresponding variables, leading to an unconstrained, quadratic
optimization problem that can be defined in terms of the remaining variables [1]. One notable
closed-form solution to such a problem is the normal equations (3.12) as a closed-form solution
to the least squares error function.

The closed-form solution to Problem (3.19), or the BFGS update to G, exists, and is as follows:
(see [62] for a detailed derivation)

Grr1 = (I = gy )Ge(I — Apvegy ) + Degray - (3.20)
where A; = 1/(gf v¢) and

Q= X1 — X3 U = VU(X41) — VO(xy).
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Intuitively, the update in (3.20) can be seen as removing and then replacing curvature information
along ¢; and v;. The projection term

(I - AtQt'UtT)Gt(I - At”t‘]:)

annihilates the component of the old approximation G; in the direction of v, ensuring that
outdated curvature information in that direction is discarded. The corrective term

AtthtT

then enforces the secant condition Gi41v: = ¢4, thereby injecting the new curvature information
consistent with the observed change in gradient. In this way, (3.20) preserves symmetry and
positive definiteness when ¢, v; > 0.

The drawbacks of the BFGS method are its need to carry over Gy, a matrix of size O(d?), from
each iteration to the next. However, the limited-memory BFGS (L-BFGS) reduces this memory
requirement from O(d?) to O(d) by never explicitly building G;. L-BFGS only stores the m
most recent (g, v;)-pairs and reconstructs the effect of Gy on a vector by recursively applying
the BFGS update (3.20) to those stored pairs [1].

The L-BFGS-B method

The L-BFGS-B algorithm, originally proposed by Byrd et al. [14] as a limited-memory quasi-

Newton algorithm for solving large nonlinear optimization problems with simple bounds on the

variables, extends L-BFGS to handle box constraints. That is, for a function @ of d variables,
the algorithm seeks to solve

Minimize U

* , ( (3.21)

X)
<x<u

subject to:

where [ and u are vectors of length d, representing lower and upper bounds on the variables,
respectively. The original paper is a 22-page detailed description of the algorithm. The following
summarizes the algorithm at a level sufficient for understanding its main ideas, while avoiding
unnecessary technical details. The interested reader is referred to the original work (see [14]).

At each iteration t, an L-BFGS approximation G; to the Hessian is updated. Indeed, a novel
feature of the algorithm is that the update Equation (3.20) is represented in a compact form
that is efficient for BCGO problems [14], and is modified to approximate the Hessian and not
the inverse Hessian. Gy is then used to define a quadratic model m;(x) of the objective function
. This is done using a second-degree Taylor series approximation at the current iterate xy:

me(x) = a(x;) + Va(xy) ' (x —x;) + %(x —x)TGy(x — xp),

where the gradient Vu is provided by the user. Since the objective function used in this thesis
is itself quadratic, the quadratic model m; will coincide with the true function, especially as t
increases. In this sense, the algorithm leverages the problem’s structure to its fullest extent.

A gradient projection method is then performed to distinguish between active variables, i.e.,
variables that will be held at their bounds, and free variables. To do this, the generalized
Cauchy point x¢ is computed, which is defined as the first local minimizer of the univariate,
piecewise quadratic

qi(t) = my(x(t))

where z(t) is the piecewise linear path obtained by projecting the steepest descent direction
onto the [[,u]-bounds of (3.21). Then for each i = 1,...,d, the variables that satisfy either
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x; = l; or x; = u; at x° constitute the active set A(x¢) of variables to be held at their bounds.
From there, the minimization problem

Minimizex {m(x) : z; = xf, Vi € A(x)} (3.22)
subject to: I; < z; < wy, Vi ¢ A(X) (3.23)

is approximately solved using a direct dual method using Lagrange multipliers, treading the
active bounds (3.22) as equality constraints and ignoring the free bounds (3.23). The resulting
approximate minimizer is then truncated to satisfy the (3.23) bounds. The search direction
is then defined to be the vector connecting the current iterate to this approximate minimizer.
Finally, a line search is performed along the search direction, which leads to x4 1.

The storage requirements of L-BFGS-B can be adjusted by the user through the recursion
parameter m introduced earlier. In practice, the algorithm uses roughly (12 + 2m)d storage
locations. Since relatively small values of m are recommended (3 < m < 20) [79], the method
remains applicable for very large-scale problems. The computational cost per iteration is also
modest, ranging from approximately 4md + d multiplications when no bounds are active, up to
m2d multiplications in the case where all variables lie at their bounds.

3.5. Conclusion

This chapter answers Subquestion 1 by constructing a measure of complexity based on the
theoretical notion of entropy. Furthermore, this chapter lays the mathematical foundation for
answering Subquestion 2 by addressing the considerations needed to effectively use quadratic
polynomials as surrogates for uncertain hypercubic utility functions. To implement them in an
autonomous negotiation agent is the topic of the upcoming chapter. Once this agent has been
constructed, the Main Research Question can finally be answered.

To ensure that the answers to all research questions are presented in one place rather than
scattered throughout the thesis, the answer to Subquestion 1 is included together with the
answers to Subquestion 2 and the Main Research Question in Section 7.3.

This chapter looked at the difficulties of sampling in high-dimensional spaces. It started by
examining d-dimensional geometry to explain why hypercubic subspaces are useful for dividing up
the negotiation domain. As dimensionality grows, many geometric shapes lose their effectiveness
for sampling because their volume shrinks too quickly. Hypercubes, on the other hand, keep
a stable structure that scales more reliably, making them a better choice for defining local
sampling regions. The chapter then highlighted the role of strategic sampling, introducing a
bid-based heuristic designed to steer samples toward areas where high-utility offers have been
seen in the past. Finally, it discussed the need for even, consistent coverage within each sampling
region and presented Sobol sequences as a way to generate low-discrepancy samples. Compared
to uniform random sampling, Sobol sequences help maintain consistency and reduce variance.

The discussion then turned to regression models that are linear in the parameters as a way to
construct a quadratic surrogate model of the utility function. By sampling from the utility
function, these models can be constructed with quadratic or linear basis functions through the
normal equations. The normal equations are a closed form solution to the minimization of the
least squares objective function, resulting in the parameters needed to construct the model.

To search the surrogate, there can be a closed form solution to the stationary point. However,
sometimes this point is not a global maximum in which case an optimization is needed. As
there is no polynomial time (1 — €) approximation algorithm for quadratic polynomials with
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box constraints, this thesis adopts the L-BFGS-B algorithm. The L-BFGS-B algorithm is a
second-order algorithm and is specifically designed for box-constraints.

Together, the components discussed in this chapter form the mathematical backbone of the
agent that will be constructed in Chapter 4. The next chapter presents the method, where the
considerations addressed in this chapter are implemented step-by-step and integrated into a
negotiation strategy.



Method

This chapter introduces the proposed implementation of the discussion in Chapter 3 as a way to
enable negotiation agents to identify high-utility bids in negotiation scenarios with hypercubic
utility functions. A high-level version of this implementation is as follows:

1. Sample evenly from within some M cube-shaped regions of the domain, which are located
based on the Manhattan distance from some exploitation points.

2. Construct a piecewise surrogate model for the hypercubic utility function by performing
M quadratic regressions, each one fitted locally within a distinct cube.

3. Optimize the quadratic surrogate model to find its maximum value.

4. Compare the M maximum values found and choose the best.
The remainder of this chapter outlines each step in detail. To begin with, the notation used in
this chapter is laid out.
Notation

The algorithms presented in this section have the following conventions regarding indexing and
data structure access:

e Subscripts (e.g., z;) denote the ith element of a list or array.
e Square brackets (e.g., z[j]) are used to access the value at index j of an array or list.

e If an element z; is itself an array or a list, nested square brackets are used to access its
components; that is, z;[j] refers to the jth element of the ith entry.

e All indexing is 1-based, unless otherwise specified (i.e., the first element has index 1).
For example, given the list of pairs
cubeBounds = [[0,1], [3,4], [5,6], [3,4]],

then
cubeBoundsz = [5,6] and cubeBoundss[l] = 5.

That is, the subscript refers to the third element of cubeBounds, and the square brackets access
the first element of that sublist.

55
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All configurations of individual parameters are discussed in Chapter 5.

4.1. Sampling

During the agent’s initialization, the agent will construct a d-dimensional cube with side lengths
¢ and fill it with the first n Sobol points. The agent then stores these samples, along with their
utility values and the bounds of the cube. It does so by calling Function 1: createCube.

Function 1 createCube(d, ¢, n)

Require: Dimensions of domain d, cube side lengths ¢, sample size n.
Ensure: A sample with features in cubeBids and labels in cubeUtils.
1: Sobol < Sobol sequence of dimension d
2: for i < 1 to d do
3 cubeBounds; + [0,0 + /]
4 for j < 1 ton do
5: cubeBids;[j] < round (Sobol;[j] - ) to the nearest integer
6
7
8

end for
: end for
: cubeUtils < u(cubeBids)

As the Sobol points are defined in the unit cube, each point needs to be multiplied by ¢ to grow
the cube to the desired size. As will be discussed in the upcoming subsection, this cube is then
shifted around the domain, which requires its bounds to be known; hence, line 3. Thereafter,
each of the d entries of each of the n samples is rounded to the nearest integer.

Sobol sequences are included in many software packages; in this thesis, the Java package FinMath
was utilized. Regarding the parameters for generating the sequence, only the sample size n = b™
can be tuned. This is done in Chapter 5. In terms of a (¢, m, s)-net, the other parameters are
predetermined: s represents the number of issues under negotiation, and the smallest possible
t for given s and b is found by construction, not by evaluation, meaning that no analytical
formula for it exists. That is, ¢t depends on a nondeterministic algebraic structure based on
whether a certain set of matrices, which are constructed from direction numbers and primitive
polynomials, has full rank. So for any given m, b, and s; ¢t can take on multiple values. Further
information, as well as tables with some obtained values for ¢ for Sobol points, can be found
in [39].

4.1.1. Where to sample

Once the agent has explored the first cube it creates, it moves on to the next one, and from
there to the next one, and so on. This subsection explores how to construct these additional
cubes and where to place them.

Reducing time by using a single cube

Reusing the originally constructed cube from Function 1 throughout the entire negotiation can
save considerable time. To see this, consider two scenarios: calling Function 1 M times, once for
each cube to be sampled from, and calling Function 1 once and then shifting the same sample
M times around the domain. The latter approach is ideal when the structure of the sample
should not change, as is the case when using a Sobol sample.
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Generating a Sobol sample of size n for M randomly placed cubes means performing M Number
Generator (NG) calls (line 1 in Function 1 ) and M - d Random Number Generator (RNG) calls
(placement of cube’s side j,j = 1,...,d), and M - n - d additions and multiplications (scaling and
shifting each sample). However, this can also be done using a single NG call, M - d RNG calls,
M - n - d additions, and only n - d multiplications, by shifting the same cube around instead
of creating M new ones. Indeed, calling Function 1 once and then shifting that cube around
reduces the M NG calls to a single one and requires only a single call to line 5, thereby reducing
the M - n - d multiplications to n - d. Then each cube can be randomly shifted with M - d RNG
calls and M - n - d additions, or shifts. Now, when d,n and/or M are large, this can mean a
difference of getting a few extra rounds from the negotiation without affecting performance.

Figure 4.1 illustrates this. The yellow line corresponds to the shifting method, where one million
Sobol samples were drawn, scaled to fit the [0, 2]d cube, and then shifted sequentially through a
total of 10 cubes by adding a uniform random number to each of the d entries of each sample
with the range set to fit the [0, 9]d domain. This was done for d = 1, ..., 50, corresponding to the
dimensions considered for this thesis. For the resampling method — the blue line — 1 million
fresh samples were drawn from each cube. The claim is that any difference between the methods
should stem from the additional NG calls and multiplications, as well as the added numbers
generated in NG calls as the dimension increases.

—8— Separate Sampling
6 Shifted Sampling

Separate +1 SD
Shifted +1 SD

Time (seconds)

0 10 20 30 40 50
Dimension

Figure 4.1: The difference in time between sampling 10 cubes with sidelength 2 in increasing dimension vs
sampling once and shifting that sample. The figure was generated using Python.

Figure 4.1 shows a clear difference in the time requirement for the two methods. In this particular
example, this difference results in the shifting method being around three times faster in 50
dimensions. Reusing and shifting samples can also be employed as part of a parallelization
scheme, where each cube is assigned a copy of the base sample and shifted independently. Before
shifting the cube, however, the direction of the shift must be considered. That is, whether the
shift should exploit previous knowledge or not, and if so, how.

Balancing exploration and exploitation

Once the agent finds a high-utility bid, the region around that bid should be explored as it
might contain other good — or even better — bids. Perhaps the constraint satisfied by this bid
intersects with another constraint, which then leads to a higher utility.

As the agent knows that this constraint yields a good utility, it could simply stay within the
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region of this constraint throughout the entire negotiation. When an agent takes the action
that it currently believes to be optimal at each step, it is referred to as a greedy agent [66]. The
problem with a greedy agent is that it will focus all its efforts on the first high-utility bid it
finds, which may prevent it from finding other, better bids. To solve this problem, the agent
should only be greedy some of the time. That is, it must make a trade-off between exploiting
what it knows to be good and exploring unknown regions of the domain in hopes of finding
something better.

The exploration-exploitation trade-off arises in many Al tasks, most notably in reinforcement
learning [66]. One solid approach to this trade-off is the e-greedy strategy. This approach is
particularly convenient when exploring large spaces within a given time interval, as € can be
made a function of time. Taking this approach, the agent explores with probability 1 — e and
exploits with probability e.

This thesis adopts the e-greedy strategy to balance exploration and exploitation with a time-
dependent e. That is, before choosing where to sample, the agent calls Function 2: epsilon,
which indicates how many of the M cubes should be used for exploitation and how many for
exploration.

Function 2 epsilon(M, t, B)

Require: Number of cubes M, current time ¢, maximum exploitation ration B.
Ensure: The number of cubes to use for exploitation.

1 e < g(t)

2: return(Round (B - M - €) to the nearest integer)

The time variable ¢ in Function 2 is normalized so that t = 0 at the start of the negotiation
and ¢t =1 at its end. The exploitation parameter is then defined as € = g(t), where g — [0, 1]
is increasing with ¢, which encourages the agent to exploit more as the negotiation progresses.
Once ¢(t) takes its maximum value, or at the end of the negotiation, the B parameter caps
the exploitation ratio. That is, the agent never spends more than a proportion corresponding
to B of its effort on exploitation in a single round. In principle, the rate of increase can be
implemented as any monotonically increasing function of time, and B can be tuned to the utility
function complexity. If the utility function is very complex, then perhaps the agent should start
exploiting sooner. B can also be made a function, in which case it might make the exploitation
ratio higher if it happens to find a high-utility bid in scenarios where it doesn’t expect to find
one.

Exploiting

There are multiple scenarios that can be exploited. In a negotiation, an agent might exploit its
opponent, e.g., by sampling close to where the opponent frequently bids [61, 70], or it might
exploit itself by sampling close to where its own bids have been. In this thesis, four specific bids
will be exploited:

Exploitation bids

1. The best bid the agent has made
2. The last bid the agent made

3. The best bid the opponent has made




4.1, Sampling 59

4. The last bid the opponent made

where "best" is in terms of the agent’s own utility function.

When the agent places its cube to exploit exploitation bids 1 or 2, it can’t simply place it at
the same spot it was when these bids were obtained, as this would simply lead to the same bid.
This would have no added benefit as the goal is to find a new and better bid. This is where the
discussion of Section 3.2.2 comes in. The agent places a cube’s corners at the selected bid and
then randomly shifts a subset of the cube’s sides by one unit. According to Theorem 5, the
probability of falling outside a base constraint after k such independent shifts is given by

|:7Nend :| g
dNint

where N,y and Ngpq are described in Lemma, 4. Since all constraints are either base constraints or
intersections of base constraints, the number of shifts can be adjusted to control this probability.
If the agent desires a probability p of leaving any base constraint satisfied by the exploitation bid,
this shift behavior must be tuned accordingly. The agent may perform this tuning dynamically,
using its prediction accuracy as a guide. A drop in predictive accuracy may indicate a high
v, a low v, or both—since this probability clearly decreases with increasing d, increases with
v, and decreasing with v. In such cases, the agent may be motivated to exploit bids that are
closer to the current exploitation points. By Assumption 7, the agent can tune this distance
based on Theorem 5 to have some particular probability of falling of a base constraint. Still, it
is assumed not to know whether a prediction accuracy is good or bad as it has no access to
experiences outside the current encounter. For this reason, the agent will use a time-dependent
distance throughout a negotiation that is initialized based on Theorem 5. It does so by calling
Function 3: setDist.

Function 3 setDist(dist, t)

Require: Initialized Manhattan distance dist, current time t.
Ensure: The Manhattan distance to place its cube from the exploitation bid.
1: return (Round h(t)-dist to the nearest integer)

As in Function 2, the time variable ¢ is normalized to be between [0, 1]. The Manhattan distance
is then scaled by h(t) where h — [0, 1] which ensures that the probability of the cube dropping
of the constraint lowers with time. This scaling factor can be chosen to be any decreasing
function of time.

The shiftCube function

To summarize this section, Function 4: shiftCube describes how the agent goes about placing
the next cube to be sampled from.

When the agent explores, it places the cubeBounds list at a random location in the domain (line
4) and then moves the bids to fit this cube (line 6). When it exploits, it places each entry of the
corresponding exploitation bid at the upper or lower bounds of each cubeBounds array (line 15).
This must be done with caution, as the bounds must not go outside the domain. At this point,
the constraint that was satisfied by the bid is guaranteed to be inside the cube. Then, based
on the output of setDist(dist,t), which indicates the Manhattan distance to move the cube,
the agent chooses some random cubeBound arrays and shifts each one of them by 1 so that the
corresponding bid entry exits the cube (lines 16-18). The agent then shifts the corresponding
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Function 4 shiftCube(mode, cubeBounds, cubeBids, dist, t)

Require: Which exploitation bid number mode, current cube cubeBounds, features cubeBids,
Initialized Manhattan distance dist, current time ¢.
Ensure: Features in cubeBids and labels in cubeUtils for regression.

1: if mode== 0 then

2: for i <+~ 1 tod do

3: r < uniform random integer between —cubeBounds;[1] and |I|—cubeBounds;|2]
4: cubeBounds; <— cubeBounds; + 7

5: for j < 1 ton do

6: cubeBids;|j] < cubeBids;[j] + r
7: end for

8: end for

9: cubeUtils < u(cubeBids)

10: Break

11: end if

12: b < Exploitation bid mode

13: for ¢ <~ 1 to d do

14: Fit cubeBounds; around bl]

15: dims < uniform random subset of [1, ..., d] of size setDist(dist,t)
16: if ¢ € dims then

17: cubeBounds; £ 1

18: end if

19: Shift cubeBids; between cubeBounds;
20: end for
21: cubeUtils < u(cubeBids)

entries of the sample by adding the difference between cubeBounds before and after they were
fit around the bid (line 19). Then, by Theorem 5, the probability of the constraint having left

dist
3 Nen
the cube is [% (N—dﬂ )

int
In every round of a negotiation, this function is called M times. Each time, the agent performs

regression over the samples and then searches the regression model for high-utility bids. This is
the topic of the upcoming sections.

4.2. Regression

The utility function’s surrogate model is of the form (3.14), which will be restated here:

d
ixi) = [ D agpwigzi | + | Y bwij | +wo. (4.1)
j=1

j=1k=1

To derive the parameters of this expression, the design matrix (3.8) is constructed with each
row consisting of all possible unary and binary combinations of all variables. Before doing so,
however, A must be forced to be symmetric, as that reduces the number of parameters by half.

4.2.1. Making A symmetric

A should by default be symmetric, but due to round-off errors, this can sometimes not be the
case. To see this, consider Expression (4.1): the first sum involves two sets of all interaction



4.2. Regression 61

terms, one that goes on the lower triangle of A and the other that goes to the upper triangle.
By ensuring A is symmetric, only one of these triangles needs to be learned.

This is a simple procedure. By assuming A is symmetric, the first bracket in (4.1) can be
rewritten by noting that if A = AT,

d d d d d
2
Z Z QT Tik | = Z a5 T;; + Z Z QCija}ijxik.
j=1 k=1 j=1 J=lk=j+1
By doing this, the design matrix becomes
2 2
1 11 ... Tid Typ ... Thg 2:611.7312 c. 2x1d,1x1d
2 2
1 21 ... T2d Typ .- xQd 2$21l’22 e 2{[}2d_1{L‘Qd
P = ) ) .
2 2
1 T oo Tpa Tpq oo Thy 2T01%Tn2 ... 2Tpd—1Tnd

which has p = d(d+1)/2 columns, or weights that need to be learned, as opposed to the d(d+ 1)
weights that would have needed to be learned if each interaction term was double-counted.

4.2.2. Constructing the normal equations

After the design matrix has been constructed, A and b are extracted from the regularized normal
equations (3.17), which will be restated here:

Wiy = (®T® + A 1ely.

There are several additional benefits to incorporating a regularization term, as discussed in
Section 3.3.4. The regularization term decreases the likelihood of overfitting and ensures that
Wz is unique by forcing ®7® + AI to be positive definite. Furthermore, as ®7® + A\ is also
symmetric, (BT ® + AI)~! is guaranteed to exist, even if ® ® happens to be singular.

Both due to potential numerical issues and since (@T‘i’ + AMI)~! is symmetric and positive
definite, the inverse should be derived through Cholesky decomposition. This is done by first
factorizing

(@'®+\)=LL",

where L is a lower triangular matrix with positive diagonal entries. The inverse can then be
obtained by solving
(@T® +A\NX =1

in two steps: first solving LY = I via forward substitution, and then LT X = Y via back
substitution. The resulting matrix X is the desired inverse. Compared to a general-purpose LU
or QR decomposition, this procedure is both faster — requiring only %p3 operations — and
more numerically stable for symmetric positive definite systems.

4.2.3. Extracting the parameters

Once w has been derived, A, b and wp must be extracted so the surrogate model (4.1) can be
constructed, or they used to derive —%Ailb in case it is a global maximum. This is one of the
topics covered in the upcoming section.

Extracting the parameters from Wz, is easy, as the first term corresponds to wy, the following
d terms to the entries of b, and the last d + (g) terms to the entries of A. This should be obvious
by looking at the design matrix (?7?). This is done in Function 5: extractFeatures, which the
agent calls after calling Function 4.
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Function 5 extractFeatures(cubeBids, cubeUtils)

Require: Features cubeBids, labels cubeUtils.
Ensure: Weights matrices A and b and bias wqg for Quadratic surrogate.

1: Construct ® from cubeBids

2: Derive (®7® + A\I)~! using Cholesky
3: Wi = (®T® + A\I)7'®Ty where y =cubeUtils
4: wo < WML[l]

5 b« Wyr[2:d+ 1]

6: k=1+4+d+d

7. for i =1 to d do

8: A[i,i] <—WML[1+d+i]

9: for j =i+ 1toddo

10: A[Z,j] and A[], Z] — WML[k)]
11: k—k+1

12: end for

13: end for

4.3. Optimization

As mentioned in Section 3.4, the difficulty of optimizing the surrogate in search of a maximum
depends on its shape. As derived in Section 3.3.3, the stationary point of the surrogate is at

1
—— A",
2

Whether this stationary point is a maximum, minimum, or a saddle point depends on the
definiteness of A. Indeed, by the second derivative test of multivariate calculus, a function
@ : R" — R is concave if and only if V2f is negative definite for all 2. In the case of the
quadratic surrogate

a(x = x! Ax; + bx; + wo,

V24 = 2A which is negative definite when A is negative definite. Thus, when A is negative
definite, the surrogate model is concave and takes its maximum value at —%Ailb. When A is
negative semidefinite, a small (negative) regularization parameter can be added to its diagonal,
shifting its eigenvalues slightly down, making it negative definite.

Thus, there are two scenarios to consider:

e when A is negative (semi)definite, and

e when A is not negative (semi)definite.

4.3.1. When A is negative (semi)definite

If A is negative definite, all of its eigenvalues are less than zero, and A is invertible. Furthermore,
the global maximum of the surrogate model will be at —%Ailb. To check if A is negative definite,
the agent utilizes the spectral theorem [1|. By the spectral theorem, as A is symmetric with real
entries, there exists a diagonalization of the form A = A = QAQ" where Q is orthogonal and
A is a diagonal matrix containing the eigenvalues of A on its diagonal. This decomposition is
referred to as an eigendecomposition, and can be used to check if A is negative (semi)definite
or not by checking the values of A. Furthermore, if A is negative definite, then A~! exists
and can be derived by simply inverting the entries on the diagonal of A. This is because
A7l = (QAQT)™! = QAT'QT as Q is orthogonal. The agent checks whether A is negative
definite and derives its inverse by calling Function 6: isNegativeDefinite.
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Function 6 isNegativeDefinite(A)

Require: Weights matrix A.
Ensure: A~!if A is negative (semi)definite.

LA+ $(A+AT) =)

2: Derive QAQT through eigendecomposition of A
3: if diag(A) > 0 for all entries then

4: A7 — QA_IQT

5: else

6: A7l <NULL

7: end if

Function 6 returns A~! as well as the boolean is A negative definite?. If A is not negative
definite, then the inverse is useless and possibly ill-conditioned, and it is not returned. In
either case, whether A is negative semidefinite or negative definite, adding a small negative
regularization term QAQT — AI is, however, done (line 1). Not only does this ensure A is
negative definite (and thereby invertible) in case of semidefiniteness, but it also provides more
numerical stability. As the regularizer shifts the eigenvalues p; down to p; — A, a negative
semidefinite matrix becomes negative definite and those p; ~ 0 are shifted slightly further from
0 which makes the condition number

(A) = m:‘Jin(,ui + )

ming(p; + A)
slightly better. If Function 6 returns True, the agent simply derives —%Ailb, stores it, and
moves on to the next cube by calling Function 4 again. However, as —%A‘lb may be outside
the domain, the agent needs to project it back into the cube. This is handled in Function 7,
which is the topic of the upcoming section.

4.3.2. If Ais not Negative (semi)definite

In the case that isNSD returns False, the surrogate model’s global maximum point will not be
stationary, but will lie at one of the corners or along one of the axes of the cube. In this case,
an optimization algorithm is required. As discussed in Section 3.4, the algorithm that will be
used is the L-BFGS-B.

As the global maximum will be at a corner or along one of the axes — just as is the case with
a linear model — a linearization of the surrogate is worth exploring. To do this, interaction
terms must be eliminated, which can be done by dropping them altogether or by adjusting the
corresponding variable to the interaction effect, inspired by Hindriks, Jonker, and Tykhonov
WAID method [35]. The variable was adjusted using a weighted average. This was experimented
with and is reported on in Appendix C.1. The result of this experiment showed that a single
initialization of L-BFGS-B outperforms linearization. As discussed in Section 3.4, initializing
L-BFGS-B multiple times will increase its performance. Since a single initialization outperformed
linearization, L-BFGS-B will be used solely with multiple initializations. The particular number
of initializations is discussed in Chapter 5.

Once Function 5 has been called, the agent calls Function 7: £indBid, which either constructs
a quadratic surrogate and optimizes it or returns —%A‘lb in case it is a global maximum.

As the objective is to maximize the quadratic function while L-BFGS-B is a minimization
algorithm, the quadratic function is minimized (line 8). Lastly, line 4 ensures that * is within
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Function 7 findBid(A, b, wy, s)
Require: Weight matrices A, b, bias wg, number of L-BFGS-B initializations s.
Ensure: A bid z*.

1. if !is.NULL(isNegativeDefinite(A)) then

2: ¥ = —%A_lb

3: fori=1=1toddo

4: x} = min(max(z], cubeBounds;[1]), cubeBounds;[2])
5: end for

6: Break

7: else

8: objective+ — (zAzT + bx + wy)

9: x* <+NULL

10: inits< s random points in cubeBounds

11: for i =1to s do

12: candit= argmax (L-BFGS-B(init[i],objective))
13: if u(candit) > u(z*) then

14: 2" = candit

15: end if

16: end for

17: end if

the cube in case —%Ailb is outside it, by clamping each entry to the closest point on the cube’s
boundary in terms of Euclidean distance.

4.4. Conclusion

To conclude this chapter, QuadrApproz, short for Quadratic Approrimation, will be described in
terms of the BOA architecture. QuadrApprox is the name of the agent that utilizes the method
drawn out in this chapter as its bidding strategy, and when put up against other autonomous
negotiation agents, QuadrApprox employs an acceptance strategy and an opponent model, which
are described in this section. However, as the aim of this thesis is to analyze QuadrApprox’s
bidding strategy, the acceptance strategy and opponent model are simple and implemented
without any motivation. These are described here solely for the experiments in Appendix C.2.

4.4.1. Bidding strategy

For the bidding strategy, the agent follows the four steps outlined at the beginning of this
chapter: sample, approximate, optimize, and check. This was the topic of this chapter and is
summarized in Function 8.

The threshold in line 2 is a decreasing function of time, which indicates the utility threshold
that the agent will not go below at time ¢. Function 8 is an answer to Subquestion 2, which is
discussed in Chapter 7.3. To answer the Main Research Question, experiments will need to
be conducted with this bidding strategy. This is the topic of the upcoming chapter. First, the
agent’s opponent model and bidding strategy will be laid out.

4.4.2. Opponent model

The agent’s opponent model will be to include exploitation bids 3 and 4 in exploitBids in
Function 8. This ensures that the agent samples bids in close proximity to areas where the
opponent is likely to accept. Based on the logic from Section 3.2.2, if the opponent has previously
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Function 8 makeBid(B, M, exploitBids, cubeBids, cubeBounds, s, dist)

Require: Exploitation threshold B, number of cubes M, which exploitation bids to use
exploitBids, features cubeBids, current cube cubeBounds, number of L-BFGS-B initial-
izations s, initialized Manhattan distance dist.

Ensure: A bid z*.

1: ¥ +NULL
2: while u(z*) <threshold(t) do

3 exploitCubes <« uniform random subset of [1,..., M] of size epsilon(M, ¢, B)
4 for:=1to M do

5 if © € exploitCubes then

6: mode < uniform random number in exploitBids

7 else

8 mode < 0

9: end if

10: cubeBids, cubeUtils<—shiftCube(mode, cubeBounds, cubeBids, dist, t)
11: A, b, wy < extractFeatures(cubeBids,cubeUtils)

12: candidate «+ findBid(A, b, wy, $)

13: if u(candidate) > u(z*) then

14: z* < candidate

15: end if

16: end for

17: end while
18: Propose bid x* to opponent

proposed a bid, then proposing a bid at a small Manhattan distance from it increases the
likelihood of acceptance.

4.4.3. Acceptance strategy

When receiving bids, the agent should have a way to decide whether to accept the bid or make a
counteroffer. It does so using Function 9: acceptBid, which is an adaptation of the acceptance
strategy used by AgentM [61]. That is, the agent will only accept bids that are greater than or
equal in utility to the average utility of its own best and its own worst bids.

Function 9 acceptBid(x)

Require: A bid from opponent x, best bid Xpegt, worst bid Xyorst-
Ensure: Boolean accept.
if u(x) > average(u(Xpest), U(Xworst)) then
accept < True
else
accept < False
end if




Experiments

The research question will be addressed through experiments. To assess how the method
performs with increasing preference complexity, it is necessary to conduct numerous experiments
and then combine their results. In this chapter, the experimental setup for conducting this
assessment will be described.

5.1. Experiment overview

For the main experiments, the agent will take part in bilateral SAOP negotiations against
a clone of itself with the threshold in line 2 of Function 8 set to zero for all ¢. This will be
done using agents that model the utility function using linear and quadratic regression. The
two negotiating agents will have separate preferences but of the same complexity, and after
each negotiation, both agents log the bids they made and the corresponding utility. As each
negotiation will essentially have two versions of the agent, there will be twice as much data.
That is, the bidding strategy from Section 4.4 will be experimented with. This will provide
clear insight into how efficiently an agent finds high-utility bids when it searches the surrogates
instead of the utility function itself.

5.2. Experimental setup

Experiments will be carried out in Genius, an automated negotiation simulator that is discussed
in Appendix A.1, with the hypercubic utility functions described in Chapter 3. The agent’s
performance will be assessed for increasing complexity of these functions, measured as described
in Section 3.1. This will be done by randomly generating utility functions from (d,m,~y,v)
profiles with varying values of their elements. The particular values are discussed in the upcoming
subsection. The results will then be displayed and analyzed in terms of the agent’s ability to find
high-utility bids over the range of each parameter, as well as over the range of the complexity
measure described in Section 3.1, which will provide a definite answer to the Main Research
Question

5.2.1. Negotiation scenarios

To answer the research question, a sufficiently broad complexity range must be experimented
with to determine where the method performs optimally and where it does not perform at all.
To ensure this, the (d, m,~,v) tuples used to generate the utility functions need to be set to
reflect this range.

66
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Recall Assumption 7

The number of issues, or the d parameter, will be in {10, 20, 30,40,50}, and each issue can
take any of 10 values. This yields domains of sizes that range from 10'° to 10°°. At the
lower end of this spectrum, domains of size 10! are still, in principle, exhaustively enumerable.
As the domain size increases toward 10%°, exhaustive search is no longer an option, not even
theoretically. The number of possible bids corresponds to the number of atoms on Earth.

The dimensionality of the constraints, or the v parameter, will range from 1 to 10. This is
motivated similarly to the domain sizes. For all constraints, both original and intersection
constraints, the minimum v values are those of the base constraints, as per Lemma 1. As
quadratic functions capture pairwise interdependencies, constraints constructed from the lower
end of this spectrum should be feasible for a quadratic function to capture. As 7 increases
towards 10, the level of interdependencies in the function will be far beyond what a quadratic
model can be expected to capture.

The width of the constraints, or the v parameter, will be in {2,4,6}. As the effects of v and ~
on complexity are highly dependent on each other, a value of v = 6 for all base constraints and
a value of v = 1 should represent constraints that a quadratic function can capture. However,
when v is reduced to 2, a relatively high value of v is expected to make the function too complex
for a quadratic model to capture.

The number of constraints, or the m parameter, will be in {10, 25,50, 75,100}. This range
corresponds to a maximum of 1013 intersection constraints and a maximum of ~ 10%° intersection
constraints, as per Theorem 3. However, these are upper bounds, and the actual number will
most likely be considerably lower. When there are at most 1023 total constraints, corresponding
to m = 10, and if they are derived from low-complexity base constraints, it should be feasible for
the model to find high-utility bids. However, when the function consists of m = 100, potentially
high-complexity, base constraints, and the maximum number of intersection constraints is
~ 10%?, it should be extremely unlikely that the model performs well.

By focusing on these ranges, the experiments in this thesis stress-test the method under "highly
possible", "heavy but possible", and "completely intractable" conditions. This helps illustrate
where more capacity is needed in the model.

5.3. Agent configuration

Before conducting these experiments, the agent’s parameters must be specified. These are
the cube sizes, the number of cubes, the Manhattan distance, the functions g and h from
Functions 2 and 3, the sample sizes and regularization parameters, and the number of L-BFGS-B
initializations.

5.3.1. The Cubes

To ensure that there will also be samples inside the cube and its edges and not only at its
corners, £ must be at least equal to 2. If this is not done, the quadratic model cannot have
an internal optimum, resulting in the model essentially acting like a linear model, with its
maximum value occurring at a corner of the cube.

For this thesis, the cube’s side lengths £ were set to 2. The reason for this is twofold. First, the
number of bids contained in a cube with side lengths £ is (¢ 4 1)% or 3¢ when s = 2, of which
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3¢ — 24 will be internal points. This also means that increasing the side lengths by 1 when d is
already large will greatly increase this number. However, a cube that is too large will result
in too significant an information loss, as discussed in Section 3.2. Second, a side length of 2
ensures that 30% of each issue domain is occupied by each cube, which constitutes more than
the smallest constraint (having width v = 2) will do. This is not to say the cube occupies 30%
of the domain, though, as the curse of dimensionality makes that proportion shrink. However,
as per Theorem 2, the probability of a cube with side lengths £ = 2 capturing a constraint is
always relatively high.

The number of cubes M placed in each round of negotiation was set to 100. A natural question
might be whether this biases the results — after all, 100 cubes cover a much smaller proportion
of a domain of size 10°° than of one of size 10'%. The short answer is: not really. As shown in
Theorem 2, the probability of a randomly placed cube intersecting a constraint is independent
of the overall domain size. The results will confirm this. The choice of M = 100 was therefore
made for simplicity. It’s large enough that the agent has a good chance of finding a high-utility
bid, but still small enough to keep the runtime of Function 8 reasonable. Increasing M further
was not expected to significantly improve the results, since the agent is ultimately limited by its
own approximation capacity. That said, Function 4 is trivial to parallelize, so in a practical
implementation, M could be scaled up according to available computational resources and
negotiation time limits.

5.3.2. The manhattan distance

The Manhattan distance, or the dist variable in Function 8, was initialized to be equal to d,
corresponding to a single shift along each axis. The h function in Function 3 was set to (1 — ),
which ensures the agent’s risk aversion increases linearly as the negotiation progresses. That is,
dist decreases from d to 0 over the course of the negotiation.

5.3.3. Exploration and exploitation

To prevent the agent from abandoning exploration entirely, ¢ was capped at e = 0.8 by setting
B = 0.8 in Function 2. Thus, at all times, the agent spends at least 20% of its effort exploring.
The ¢ function in Function 2 was set to 2 so the agent only explores in the beginning of the
negotiation but quickly starts exploiting what it finds.

5.3.4. Sample sizes and regularization parameters

Even though there is a regularization term which ensures that W, is unique, it is still a good
measure to have the sample size large enough. As the design matrix contains quadratic terms, in
the absence of a regularization term, collinearities can occur even if the samples are not collinear
and n > p. For example, the design matrix might have the linear vectors vo = (1,0, 1,0),
vy = (1,1,0,0), and v3 = (1,0,0,0), where 0 indicates the rest of the vector is all zeros. These
vectors are not collinear; however, the interaction term vjvy is equal to (1,0,0,0) = vs. This
can especially arise in integer domains where each variable has a small number of values to
take. When the regularization term is very small, vectors can be approximately collinear. It is
therefore a good measure to have n > p.

As mentioned in Section 3.3, the main appeal of deriving the parameters of the regression model
via maximum likelihood and least squares is that it can be shown to be the best estimator
asymptotically in terms of its rate of convergence as the sample size increases. That is, the
model should perform better as the sample size increases. Although sampling is cheap, deriving
W, can become expensive when the sample size gets very large. In an autonomous negotiation
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with time constraints, a trade-off must therefore be made between the computational cost
and accuracy. On the other hand, the marginal benefit of increasing the sample size rapidly
decreases as the sample size grows. That is, the difference in performance when a sample size n
is increased to n + r is much greater when n is small than when n is large.

One rough heuristic that is sometimes advocated is that the number of data points should be no
less than some multiple of the number of adaptive parameters in the model [12|. This approach
will be adopted with the particular multiple derived through experiments. Using the complexity
measure from Section 3.1, a "good" sample size for each level of complexity was computed.

This was done using leave-one-out cross-validation with regularization parameters
A e {10%,10%,10,107%,1072,1074,1075}

and over sample sizes ranging from small up to the entire domain. To achieve this, smaller
domains were required than those used in the main experiments. Then, the training and
generalization errors were compared by measuring their gap, or the absolute difference between
them. The lowest sample size that resulted in a gap within a 5% range of the lowest gap
obtained for that complexity level was then stored, along with the regularization parameter
used to obtain it. Going by this gap is motivated by the discussion in Section 3.3.4.

Additionally, the regularization parameter drops sharply from a large value to nearly zero as the
complexity of the utility function increases. This behavior is expected: once the utility function
becomes more complex than what a simple quadratic model can effectively capture, there is less
need to penalize complexity, and the model no longer benefits from being regularized. In fact,
the optimal regularization parameter quickly settles at 1079, corresponding to a complexity
level of approximately 6. Therefore, a fixed regularization parameter of 1076 will be used for all
experiments with complexity > 6. This can be seen in Figure 5.1

The domain sizes used for these experiments were used to compute the parameter multiple to
be used in the main experiments. That is, a quadratic regression needs d(d + 1)/2 parameters
in a d-dimensional domain. If a sample size of 10,000 was found for a 10-dimensional domain,
then the desired parameter multiple is 105%00 ~ 182. However, using smaller domains leads
to the complexity that was experimented with only being in the range of [0,12] while the
main experiments will be conducted over the range of [2.5,20]. As they seemed to be linearly
increasing — and for simplicity — a linear regression was performed on the data and used to
extrapolate to the higher complexity levels. Figure 5.1 depicts the resulting sample sizes as

multiples of the parameters needed in the corresponding domain size.
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Figure 5.1: The sample sizes to be used as a multiple of model parameters along with the regularization terms.
For the linear model, the regularization parameters converged to 10~° by complexity level 5, but are omitted
from the plot to avoid visual clutter.

To motivate this approach as opposed to considering domain size — as would be more typical
when tuning a sample size — consider the meaning of the complexity measure. A hypercubic
function of a certain complexity should not require more samples even if the domain size increases.
Indeed, the complexity measure represents the probability that the sample satisfies a constraint,
and this probability already accounts for the domain size. Furthermore, by Theorem 2, the
probability of a random sample satisfying any given constraint does not depend on domain size.
Thus, the domain size should be considered only as a complexity parameter, rather than the
size of the search space.

As these experiments tested the generalization error of both methods, this experiment also
provided a glimpse of the results to come. Indeed, in most cases, the optimal sample size
corresponded to a lower error for the quadratic model than the linear model.

5.3.5. Number of initializations

The experiment mentioned in Section 4.3.2 (see Appendix C.1.1) shows that L-BFGS-B clearly
outperforms linearization when optimizing a quadratic function and will therefore be used
for that task. However, as L-BFGS-B is a local optimizer that is being used for maximizing
high-dimensional non-concave functions, multiple starts are necessary. However, increasing the
initializations comes with a computational cost that needs to be weighed against its benefit.

To gain a better insight into the benefit of adding more initializations, 1,000 random quadratic
functions were generated in 50 dimensions, and each one was optimized using 500 initializations
of L-BFGS-B. This dimensionality was chosen as it is the maximum considered in this thesis,
and because higher dimensions naturally require more initializations. For each initialization,
the best performance up until, and including, the current one was stored. Figure 5.2 shows the
average marginal difference between the performance of 500 initializations and n initializations
where n =1, ...,499, with a zoomed-in window on indices 10 to 50 and 150 to 200.
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Figure 5.2: The maximum value found with n initializations divided by that found after 500 initializations of
L-BFGS-B in the same function plotted as a percentage difference.

As expected, the marginal improvement decreases rapidly with each additional initialization.
The average difference in performance between using 1 and 500 initializations is just over 30%,
while the improvement from 35 to 500 initializations is under 1%, and from 200 to 500 is
under 0.1%. This demonstrates a classic “more is better” trade-off: more initializations yield
better results, but with diminishing returns and increased computational cost. To validate this
in practice, the agent was experimented with using 1, 10, 35, and 200 initializations. Results
(presented in Appendix C.1.2) confirm the trend shown in Figure 5.2. Specifically, the difference
in average utility between using 35 and 200 initializations was approximately 1%, favoring 200
initializations, but this came at more than double the runtime.

Given the low difference between the two, obtaining twice as many bids was deemed more
important for QuadrApprox than achieving a slightly better optimization performance. However,
to answer the Main Research Question, 200 initializations were used, as the marginal improvement
beyond this point of approximately 0.1% when compared to 500 initializations did not justify
the added computational complexity. Consequently, the final implementation of QuadrApprox
uses 35 initializations per optimization, while the experimental results in Chapter 6 are based
on 200. Lastly, the recursion parameter m was set to 10, which is the default value in most
libraries.

5.4. Summary

The following bullet points summarize the experimental setup:
e Each issue domain has size || = 10.
e The number of issues are d € {10, 20, 30, 40, 50}.
e The number of issues per base constraint is v € {1,2,3,4,5,6,7,8,9,10}.
e The number of base constraints is m € {10, 25,50, 75,100}.
e The width of an base constraint is v € {2,4,6}.
e Each cube will have side lengths £ = 2.
e The number of cubes is M = 100.
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e The Manhattan distance for exploiting is initialized at d and decreases at the rate of
(1 —1t).

e The number of cubes to use for exploitation is 0.8 - M - ¢2.

e The sample size and the regularization parameters can be seen in Figure 5.1

e 200 L-BFGS-B initializations will be used for each surrogate in the main experiments, but
35 initializations when QuadrApprox is deployed, to get more rounds in. This is done
with the recursion parameter m = 10.



Results

This chapter presents the results of the experiments conducted to derive an answer to the Main
Research Question.

This chapter is divided into two main sections. The first focuses on the individual effects of
the four complexity parameters on the performance of an agent using surrogate models, as
well as the cross-effects between them. Specifically, it examines the agent’s efficiency in finding
high-utility bids within the utility function with respect to each parameter and its cross-effects.

The second section evaluates model performance with respect to complexity as measured by
Definition 5. This is done considering both the agent’s ability to find high-utility bids and in
terms of mean squared error (MSE). MSE is introduced only in this final section because the
Main Research Question concerns the agent’s performance in negotiation contexts, where finding
high-utility bids is more relevant. Nonetheless, MSE is included to provide a more complete
picture.

6.1. How the method scales with the complexity parameters

In this section, the results from the experiments will be showcased in terms of the individual
effects of the four complexity parameters, d, m,v and «, and their cross-effects. This is done by
fixing one or two parameters and averaging the utility obtained over the entire range of the
parameters while holding one or two of them fixed. This averaging allows to isolate and observe
the impact of each parameter, as well as each parameter pair, on its own.

Since the ranges of each complexity parameter are structured to span from very simple to very
complex cases, this averaging will result in the individual utility values being rather low when
plotted against individual parameters. However, the focus here is not as much on the individual
utility values as it is on the shapes of the resulting curves. The utility values become more
meaningful when plotted against the overall complexity measure in the next section. In this
context, a flat curve indicates that a parameter has little individual influence on the agent’s
performance, while a steeper curve suggests a stronger individual effect. A cross-effect indicates
that increasing complexity through one parameter increases the induced complexity of the other.

6.1.1. The dimensionality of the constraints

The ~ parameter, or the dimensionality of the constraints, dictates the level of interdependency
between issues. As quadratic functions capture interdependencies between pairs of issues, a
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high ~ value was expected to substantially reduce the accuracy of the approximation, making it
difficult for the agent to find high-utility bids. Conversely, for low values of v (i.e., v =1 or 2),
the agent was expected to perform reasonably well. Figure 6.1 shows the agent’s performance in
finding high-utility bids using both linear and quadratic surrogate models of the utility function
across the entire range of ~.
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Figure 6.1: The individual effect of v on the performance of the agent while using linear and quadratic
approximations.

The steep decline showcased in Figure 6.1 suggests that increasing v produces a great negative
effect on the performance of both methods. This is consistent with Figure 3.3, which shows
that v has the greatest effect on the complexity measure of all parameters.

Not surprisingly, the quadratic model outperforms the linear model over the entire axis. Both
the linear and the quadratic models do, however, perform very well when v is low. When
~ = 1, both models are consistently finding bids with utility around 0.9. When v = 2, the
performance of both models reduces quite drastically, from 0.91 to 0.74 in the quadratic case,
and from 0.87 to 0.63 in the linear case. These numbers are not bad, but a reduction of this
significance is particularly surprising for the quadratic model, as quadratic functions capture
pairwise interdependencies while linear functions do not. However, the performance of the linear
model does reduce more than that of the quadratic one. As v increases beyond v = 2, both
models’ performance reduces in a seemingly exponential manner, with the difference between
the two stabilizing around v = 4.

Figures 6.2 presents a heatmap of average utilities obtained for all combinations of parameter
values between « and v. The marginal rate of change is then plotted above and to the right of
the heatmap, illustrating the cross-effects by showing how utility changes along one parameter
while the other is held constant. When the rate of change in utility of one parameter, say ~,
varies significantly across different fixed values of the other parameter, such as v, the complexity
induced by < is highly dependent on v. Conversely, if the rate of change remains relatively
constant across all fixed values of v, the complexity induced by + is independent of v. When the
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induced complexity from v depends on the value of v and vice versa, cross-effects are present.
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Figure 6.2: Average utilities obtained while fixing v and v and averaging over the other parameters. Rate of
change on right (top) side indicates the change in utility over the corresponding row (column)

In Figure 6.2, the cross-effects are particularly pronounced. Specifically, when v = 2 and v = 4,
the utility decreases by around 100% over the range of v, while decreasing by just over 50%
when v = 6. Furthermore, when fixing 7, the marginal rate of change in v varies between
20 — 100%, indicating that v might be more dependent on ~ than vice versa. Additionally, the
difference between the highest obtained utility, corresponding to v = 6 and v = 1, and the
lowest, corresponding to v = 2 and v = 10, is essentially the entire utility range [0,1]. This
clearly demonstrates how the agent’s performance is significantly impacted when a low value of
v is coupled with a high value of ~.

Similarly, Figure C.4 shows that when d is fixed, this range is 63 — 88% with a notably sharp
increase between d = 10 and d = 20, meaning that the induced complexity of ~ is somewhat
dependent on the value of d but not nearly as much as on v. However, when fixing -, the
marginal rate of change in d ranges from 4% to 68%, indicating a very strong dependence.

In Figure C.6, the complexity induced by 7 can be seen to be somewhat independent of the
value of m. In contrast, when fixing v, the marginal rate of change in m ranges from 11% to
44%. As a result, this represents an asymmetric dependency rather than a true cross-effect
between the two parameters.

6.1.2. The width of the constraints

Recall that the hypercubic constraints are defined as sets of intervals. The v parameter, or
the width of the constraints, indicates the lengths of these intervals. When these intervals
are shorter, meaning the constraints are narrower, the corresponding hypercubes are smaller,
and the function becomes "wilder". Due to the limited expressiveness of a quadratic function,
setting v = 2 was expected to decrease significantly the agent’s performance, as opposed to
v =4 or 6, especially when coupled with a high . Figure 6.3 shows the agent’s performance in
finding high-utility bids using both linear and quadratic surrogate models of the utility function
across the entire range of v.



6.1. How the method scales with the complexity parameters 76

-
o

=

= Model

2 ,
c Quadratic
@© .

@ Linear

=

e v i e S
O 4N w M o N ® ©

2 4 6
Width of constraints (v)

Figure 6.3: The individual effect of v, the width of the constraints, on the performance of the agent while
using linear and quadratic approximations.

The steep incline that can be seen in Figure 6.3 suggests that the individual effects of decreasing
v produce a great negative effect on the performance of both models. Furthermore, these effects
are very much in line with Figure 3.3.

When constraints are narrow, or have width v = 2, both models perform roughly the same,
reaching a very low average utility of around 0.2. This average then shows an apparent increase
with increasing v, reaching a high average of 0.77 for the quadratic model and 0.62 for the linear
model. The gap between the two methods is slightly increasing over the entire axis, indicating
that their performance scales similarly with respect to constraint width, with the quadratic
model perhaps scaling slightly better.

When coupled with v, the cross-effects in Figure 6.2 are very clear, as previously discussed.
When coupled with m, cross-effects are also quite pronounced, although not as much as with ~.
Figure 6.4 illustrates this.

Figure 6.4 shows that, when m is fixed, the rate of change for v ranges from 70 — 81%, which
indicates a rather small dependence compared to that of v. On the other hand, when fixing v,
the rate of change for m ranges from 20 — 50%, indicating that the induced complexity of m is
somewhat highly dependent on v.

In Figure C.5, the complexity induced by v can be seen somewhat independent of the value of
d, ranging between 73 — 78% when d is fixed. When v is fixed, d shows a range of 10 — 27%,
which indicates a slight but noticeable dependence. Thus, only an asymmetric dependency
exists between d and v, where v can be seen to be independent of d.

6.1.3. The number of constraints

The m parameter, or the number of constraints, is not quite true to its name. As per Theorem 3,
the potential number of interaction constraints when m = 100 can become =~ 103° in the scenarios
considered in this thesis, with all of these constraints having equal or greater complexity than the
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Figure 6.4: Average utilities obtained while fixing m and v and averaging over the other parameters. Rate of
change on right (top) side indicates the change in utility over the corresponding row (column)

original ones. Furthermore, as these intersections are the peaks of the function, more constraints
mean a wilder, more complex function. As m = 10 corresponds to at most 1023 constraints
while m = 100 corresponds to at most ~ 10%?, the agent’s performance was expected to decrease
over this range. Figure 6.5 shows the agent’s performance in finding high-utility bids using both
linear and quadratic surrogate models of the utility function across the entire range of m.
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Figure 6.5: The individual effect of m, the number of constraints, on the performance of the agent while using
linear and quadratic approximations.
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The effects of the number of constraints can be seen delivering a small but consistent decrease
in the average utility for both methods. Furthermore, as the utility obtained in the lower range
of m is not very high, similar to v and «, the m parameter is likely highly dependent on the
other parameters and does not significantly increase complexity on its own. This is in line with
Figure 3.3, which shows that m does have some individual effects but not quite of the same
caliber as v and v.

Due to the consistent utility value of around 0.4 over the x axis, this should be representative
of the average utility obtained across all experiments. Although this might seem rather low,
this, as previously mentioned, is obtained by averaging over the other parameters. As previous
results suggest, a high v and low v are moving this average down. If v were cut off at a lower
number than 10, these lines would shift upwards. This can be clearly seen in Figures 6.4 and 6.2,
where fixing v = 1 or v = 6 results in utilities in the ranges of 0.87 — 0.98 and 0.7 — 0.87 over
all values of m, respectively.

Indeed, it has been shown that the induced complexity of m is highly dependent on v and ~.
Furthermore, Figure 6.6 illustrates the relationship between m and d.
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Figure 6.6: Average utilities obtained while fixing d and m and averaging over the other parameters. Rate of
change on right (top) side indicates the change in utility over the corresponding row (column)

Figure 6.6 confirms that, although the effects on performance produced by m alone are quite
minimal, the induced complexity of m does highly depend on all other parameters. Additionally,
the induced complexity of d can also be seen to highly depend on m, indicating the presence of
cross-effects.

6.1.4. The number of issues

The d parameter, or the number of issues, indicates the domain size. As each issue domain has
size 10, the domain size is || = 10%. As mentioned in Section 3.1, the domain size was not
expected to affect the agent’s performance a lot on its own, but rather that it would produce
more strain on the hardware. Figure 6.7 shows the agent’s performance in finding high-utility
bids using both linear and quadratic surrogate models of the utility function across the entire
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range of d. When averaged over the other parameters, the effect of domain size itself is minimal.
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Figure 6.7: The individual effect of d, the number of issues on the performance of the agent while using linear
and quadratic approximations.

Although there is a fairly sharp decrease between d = 10 and d = 20, the curve is somewhat
stable thereafter. This is in line with Figure 3.3, which suggested that d would have practically
no individual effects on complexity. This does not come as a surprise, as the effects from the
domain size should mostly be visible when varying two or more variables. As discussed in
Section 3.1, the complexity produced by d is mostly through creating potential for the other
parameters.

As has previously been illustrated, the induced complexity of d highly depends on all the other
parameters. Although m and d showed rather minimal individual effects, Figure 6.6 shows that
there is a presence of cross-effects between them. Figure C.4 furthermore shows a presence of
cross—effects between d and . However, only an asymmetric dependency exists between d and
v, where v was shown to be independent of d.

6.2. How the method scales with complexity

Finally, the top part of Figure 6.8 shows the agent’s performance in finding high-utility bids
using both linear and quadratic surrogate models of the utility function across the entire range
of the complexity measure derived in Section 3.1. The bottom part depicts the MSE obtained
over the experiments. As can be seen in Figure 6.8, the agent performs very well with low
complexity functions, but this performance rapidly decays through the medium complexity
functions, and finally reaches an average utility of 0 for complexities above =~ 14. The agent
using the quadratic model can be seen outperforming the linear model over the entire axis
(excluding the part where both models average a utility of 0 or 1). Furthermore, the MSE
obtained is consistently higher for the linear model over the entire axis.

Comparing the top and bottom plots in Figure 6.8, the MSE obtained in the experiments follows
a similar pattern to the agent’s performance. For the quadratic model, an MSE between 0.015
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Figure 6.8: Final results showing the performance of the agent, both in terms of MSE and average utility,
while using linear and quadratic approximations plotted against the complexity measure.

and 0.060 corresponds to finding bids with utility in the range 0.0-1.0, whereas for the linear
model this relationship holds only for an MSE between 0.015 and 0.040. This is summarized in
Table 6.1.

Table 6.1: Performance categories of agent using quadratic and linear surrogate models.

Quadratic model

Linear model

Performance Utility MSE Complexity MSE Complexity
Good [0.7,1.0] | [0.015,0.018] [2.5,6.5] [0.015,0.020] [2.5,6.0]
Mediocre [0.5,0.7] | [0.018,0.022] [6.5,7.5] [0.020, 0.025] [6.0,7.0]
Bad [0.2,0.5] | [0.022,0.033] (8,9.5] [0.025,0.037] [7.0,8.5]
None ~ 0 > 0.060 > 14.0 > 0.040 > 12.0




6.3. Summary 81

6.3. Summary

The agent, which used quadratic regression to model its hypercubic utility function, performed
consistently better than when using linear regression, both when examining individual complexity
parameters and in terms of the complexity measure derived in Section 3.1. Furthermore, the
effects of the parameters on the agent’s performance are consistent with the discussion of
Section 3.1.

Overall, among the four parameters, v and v show the strongest individual effects on the agent’s
performance, as well as the strongest cross-effects. The other parameters, m and d, appear to
be more dependent on interactions with other parameters, showing minimal individual effects.
The presence of cross-effects was observed between all pairs of parameters except v and m, and
v and d. In these cases, asymmetric dependencies were observed with the induced complexity of
m depending on v but not vice versa, and the induced complexity of d depending on v but not
vice versa. This is summarized in Figure 6.9, where the effect of one parameter on another is
measured as the absolute increase in the marginal rate of change for the corresponding pair.

d m v A

RoC change
80

m 27 - 30 -
60

- :
v 17 11 -
20
v - : -
Figure 6.9: Summary of asymmetric dependencies between complexity parameters, expressed as the absolute
size of the rate-of-change ranges. Each entry indicates the change induced in the column parameter by fixing the

row parameter, quantifying how much the induced complexity of the column parameter depends on the value of
the row parameter.

To conclude this chapter, the model’s performance was plotted against the complexity measure
presented in Section 3.1. In terms of this measure, the short answer to the research question is
that the model does not scale very well with complexity. However, it does outperform the linear
model on all accounts, which strongly suggests that a higher-order polynomial would outperform
a quadratic one. For the quadratic model, an MSE between 0.015 and 0.060 corresponds to
finding bids with utility in the range 0.0 — 1.0, whereas for the linear model this relationship
holds only for an MSE between 0.015 and 0.040. This is summarized in Table 6.1. To give a
more intuitive idea of what the values of the complexity column of Table 6.1 actually represent,
Table 6.2 provides examples of parameter settings that result in both models performing good,
mediocre, bad, and not at all.

Table 6.2: Parameters set to the complexity ranges in Table 6.1

Performance v v m d
Good 2 6 25 20
Mediocre 3 4 50 30
Bad 4 4 75 40
None 6 2 100 50




Discussion and Conclusion

The results presented in Chapter 6 demonstrate that searching for high-utility bids in surrogate
models constructed from hypercubic utility functions offer a promising approach. When these
surrogate models are quadratic polynomials, the agent can efficiently find medium to high-utility
bids in functions of complexity C € [0, 7.5] where C is the complexity measure from Definition 5.

QuadrApproz, the agent developed in this thesis, outperforms the top-performing agents from
ANAC 2014 on the medium-complexity utility functions included in Genius — the automated
negotiation simulator used for the experiments in this work (see Appendix A.1 for further
details). Notably, QuadrApprox achieves this by a substantial margin, further highlighting the
potential and effectiveness of the proposed surrogate-based approach.

In this chapter, the results presented in Chapter 6 are discussed from the viewpoint of the
complexity parameters and how they affect the agent’s performance. Thereafter, direct answers
to the three research questions are provided along with a discussion on this work’s limitation
and potential avenues for future research.

7.1. On how the methods scale with complexity
7.1.1. The complexity of the agent

As utility functions become more complex, larger sample sizes are generally required to achieve
accurate approximations. While the contribution of the domain’s dimensionality — or the
number of issues — alone to utility function complexity is relatively small, the computational
complexity of quadratic regression models grows by a factor of O(d?). To assess the practical
applicability of linear and quadratic surrogate models, it is therefore important to analyze their
computational cost and memory requirements alongside the sample sizes needed for reliable
performance.

Despite the curse of dimensionality affecting the required sample size in high dimensions, linear
and quadratic regression remain practical approaches within moderate dimensions such as those
considered in this thesis. For example, the most complex utility function considered in this
thesis exists in d = 50 dimensions and is defined by m = 100 constraints, each with widths
v = 2 and containing v = 10 issues. Let p denote the number of features in the design matrix

® € RVXP. For linear regression, p = d, whereas for quadratic regression, p = @. According
to Figure 5.1, a sample size of around N = % = 63,750 is required for the quadratic

model to approximate this function. Performing linear or quadratic regression on up to tens of

82
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thousands of samples is well within the capabilities of modern hardware. This can, however, be
a limitation in an autonomous negotiation where there is a time limit.

Let N = 63,750 denote the number of sampled points and p = @ denote the number of

parameters in quadratic regression. Then, in d = 50 dimensions, the design matrix @ is of size
63,750 x 1,275, which is about 25 times larger than what is required for linear regression when
d = 50. Now, assuming 4-byte floats, storing ® requires N X p x 4 bytes, or approximately

e 13 MB for linear regression, and

e 325 MB for quadratic regression.

When d = 100, however, this goes to approximately 5 GB for quadratic regression, and to
approximately 50 TB when d = 1,000.

Once @ is constructed, the maximum likelihood estimator is computed as
Wy = (@' @+ 1) ey,

where forming ® ' ® requires O(Np?) operations, and inverting the resulting p x p matrix
requires O(p?). For quadratic regression in d = 50 and with N = 63,750, this totals around
O(10'') operations, which translates to O(4 x 10%) in the linear case. Both are certainly
feasible for modern machines, but, as previously noted, can pose a limitation in an autonomous
negotiation setting.

As mentioned in Section 3.4.2, the complexity and memory requirements from an L-BFGS-B
iteration are both of the order O(d). Furthermore, the method has been shown to converge
superlinearly, making one initialization relatively cheap. Lastly, L-BFGS-B has been shown to
be enjoy parallelism [64]. On a single machine, the speed benefits of L-BFGS come from using
the approximated second-order information (modeling the interactions between variables) [49].

7.1.2. The complexity of the functions

The experiments clearly show that the complexity of hypercubic utility functions has a decisive
impact on the performance of agents using quadratic surrogate models. Among the four
parameters studied, the dimensionality v emerged as the most dominant driver of complexity.

The experimental results indicate that the performance of an autonomous negotiation agent
using quadratic surrogate models decreases sharply as the dimensionality of the constraints,
v, increases. For low values of v, particularly v = 1 and v = 2, the quadratic model performs
relatively well. This is expected, as v = 2 corresponds directly to the maximum order of
interdependencies that a quadratic model can express. However, as v increases beyond 2,
performance decreases sharply. By v = 10, the quadratic approximation effectively collapses
many-way interdependencies into only pairwise ones, creating a severe mismatch between the
utility function’s structure and the model’s representational capacity. This finding is reflected
both in the agent’s ability to find high-utility bids and in the mean squared error (MSE) analysis.

In order to imitate this, Figure 7.1 gives the MSE of a quadratic regression over polynomials of
degrees ranging from 1 through 10 — corresponding to the configurations of « considered for
this thesis.
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Figure 7.1: How the performance of a quadratic regression over varying degrees of polynomial scales, as
measured by MSE.

As can be seen in the figure, the shape of the MSE is very similar to that of Figure 6.1.
This consistency suggests that model performance is tightly coupled with the representational
limitations imposed by dimensionality.

Constraint width v interacts strongly with «. Narrow constraints produce highly irregular,

"peaky" utility landscapes. By Theorem 2, the probability of a random sample satisfying a base
v

constraint is (ﬁ) which in turn requires the agent to perform use very large sample sizes

when v is high and/or v is low. Assuming the sample size is large enough, the quadratic model
still needs to capture this very wild, potentially high-dimensional, structure. The results mirror
this: with v = 2 and v = 10 and averaged over all other parameters, the agent finds bids of
average utility ~ 1, while this average is ~ 0 when v =6 and v = 1.

By framing the hypercubic constraints in a probabilistic context and defining the complexity of
a constraint as the probability that a uniform random sample satisfies it, Theorem 2 shows the
clear interplay between v and « and how they contribute to complexity both individually and
through cross-effects. Further cross-effects were detected through empirical results. These were
observed between d and m, between d and -y, and between m and v.

The effects from the number of issues d are minimal when viewing d in isolation but d contributes
significantly to complexity through ~. As Corollary 3 shows, higher d increases the probability
of type 1 intersections, where constraints combine to form a new one with their combined
dimensionality. In practice, this means that large d values magnify the impact of both + and
m: more issues create more opportunities for constraints to intersect, that in all cases, as per
Theorem 2, forms constraints that are more complex than those that make them. Figure 6.9
further emphasizes this interplay.

Notbly, the induced complexity of m depends relatively highly on the value of vy while 7 is
somewhat independent of m. The number of constraints m plays a subtler role. On its own,
m does not induce as much complexity as =y or v, but its effects compound when intersections
are considered. More constraints increase the likelihood of intersection constraints, many of
which inherit higher dimensionalities and narrower widths. These intersections often define the
global maximum of the utility function, making the function more rugged and challenging for
quadratic surrogates to capture.
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Taken together, these results highlight a layered structure of complexity. -y is the primary source,
with v acting as its closest partner through strong cross-effects. m and d exert their influence
by fueling intersections, which in turn amplify the effects of v and v. This hierarchy explains
why surrogate performance deteriorates most dramatically under combinations of high ~ and
low v, or when large m and d values provide fertile ground for intersection-driven complexity.

7.2. Why does Quadratic outperform Linear?

The agent consistently performs better in all experiments when using the quadratic model than
when using the linear one. As the quadratic model contains the linear model in the b and wy
terms, it should theoretically perform at least as good as the linear. If it does not, there is a
high likelihood that the quadratic model has been overfit, as its expressiveness, or capacity, is
higher than that of the linear one.

The main difference between the quadratic and the linear model is the quadratic’s ability to
capture optima that occur inside the cube. When it does so, the A matrix becomes negative
definite, indicating that the surrogate model is concave. When this happens, the agent can
find the surrogate model’s global maximum by its closed form solution —%Ailb. To verify this
claim, a second round of experiments was run where, whenever Function 6 returns True, the
cube is skipped. That is, when the quadratic model is concave, the agent simply discards the
current cube and moves on to the next one. This was done in smaller domains as domain size
should not affect this behavior. Figures in 7.2 depict the agent’s performance.
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Figure 7.2: Performance of the agent using linear and quadratic model without allowing the quadratic model
to be concave.
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As can be seen in these figures, the two models perform just about exactly the same. This
absolutely highlights the added value of going from the linear model to the quadratic model.
This also strongly suggests that a higher-order polynomial would outperform the quadratic one
in modeling the utility function. However, by Bezout’s theorem (Theorem 1), a higher-order
polynomial will have multiple local optima which could pose some limitations.

7.3. Conclusion

This research sought to answer the following research question:

Main Research Question:

How does the efficiency of an autonomous negotiation agent in finding high-utility bids
using quadratic surrogate models of uncertain hypercubic constraint-based utility functions
scale with increasing utility function complexity, and how does it compare to using linear
surrogate models?

To answer this question, the complexity of a hypercubic utility function was quantified and the
effects on the performance of both the quadratic and linear surrogates was experimented with
over several utility functions, each of a particular level of complexity. However, before that could
be done, several considerations needed to be made, and those were formed as sub-questions.
Those are the subjects of the upcoming subsections, and the main research question will then
be answered.

7.3.1. Research Subquestion 1

To answer the main Research Question, a way to measure the complexity of hypercubic constraint-
based utility functions needed to be established. This sparked the following Subquestion:

Research Subquestion 1:

How can the complexity of a hypercubic constraint-based utility functions be measured?

Previous efforts in quantifying the complexity of utility functions had been done by Hadfi and
Ito where they did so using entropy. Their approach, however, does not capture all relevant
parameters for hypercubic constraints.

This thesis defines four parameters for measuring complexity:
e m: The number of constraints that define the function
e 7: The dimensionalities of the constraints
e v: The widths of the constraints
e d: The number of issues in the domain

Extending Hadfi’s and Ito’s idea of using entropy, this thesis measures complexity as the model’s
need for expressiveness to accurately capture the utility function. To do that, the probability
of a uniform random sample satisfying a base constraint in a uniformly generated hypercubic
function is derived to be N
v
(II I)

Then, accounting for all possible intersection constraints and their probability of occurring,
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complexity of a uniformly generated hypercubic function is defined as

1 v \” 1
~log {m (m> *K“‘]

where A is described in Definition 5. The intuition behind this is provided as a paragraph in
Section 3.1.5.

7.3.2. Research Subquestion 2

After defining a measure to compare results, deciding how to construct and use a quadratic
polynomial as a surrogate needed to be established. That is, the first question that needed to
be answered was:

Research Subquestion 2:

How can quadratic polynomials be effectively constructed and used as surrogates for uncertain
hypercubic constraint-based utility functions in negotiations?

As the analytical form of the utility functions was considered unavailable — hence the "uncertain"
part of the research question — it was clear that this would be a sampling based approach.
Thus, this question can be broken down into three parts:

Research Subquestion 2:

1. How can the sampling procedure aid the function approximation and in finding high
utility bids?

2. How can a quadratic polynomial be constructed from samples of a hypercubic function

3. How can a global maximum of a quadratic polynomial in a closed high dimensional
hypercube searched for.

Sampling

The sampling procedure needed to address two main problems: the difference in expressiveness
of the quadratic polynomial to be constructed from the samples, and that of the utility function;
and the curse of dimensionality.

The hypercubic function can be extremely wild, while a quadratic polynomial is rather calm
in comparison. Indeed, the hypercubic function can exhibit multiple local optima and exist
over multiple (and various) dimensions, while the quadratic polynomial is unimodal. Thus, the
polynomial can not be defined over the entire domain. To address this issue, sampling should
to be performed over subregions of the domain, and those should be defined as cubes. A local
quadratic polynomial should then be constructed within each cube. Furthermore, by performing
multiple local approximations, parallelism is trivial.

To further aid in the function approximation, the sampling should be performed using low-
discrepancy sampling schemes. The particular one used in this thesis were Sobol samples. Sobol
samples have been shown to stabilize model performance at a lower sample size than uniform
samples, and they are deterministic which both ensures consistency in the approximation,
and can be exploited by shifting the cubes being sampled from. Shifting the cube can save
considerable time which can be valuable in autonomous negotiations.
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To derive the optimal sample size, the MSE can be measured for various sample sizes over
various complexity levels and for each one the sample size yielding the best results can be
compared to the dimension of the corresponding domain. The dimension determines the number
of parameters needed in the approximation method, and the optimal (or a good) sample size can
be chosen as a parameter multiple which can then be used for any domain size. In this thesis,
the best results were defined in terms of the sample size that were within a 5% range of the
sample size that minimized the absolute difference between generalization and training error.

Due to the curse of dimensionality, the entire domain cannot be split into cubes which can then
all be used for sampling. A [0,9]°® domain — a domain size considered for this thesis — can fit
approximately 1026 cubes with the side lengths used in this thesis, or £ = 2. For this reason,
these cubes needed to be strategically placed. The literature contains various ways of directing
a search for a "good bid" in autonomous negotiations. The method that was adopted in this
thesis was to place the cubes both at random and at a close distance to where previous high
utility contracts had been found, with distance defined in terms of the Manhattan distance. To
balance between exploration and exploitation, an e-greedy strategy was employed.

Regression

Quadratic polynomials can be constructed from samples of a hypercubic function using regression
models with quadratic basis functions. These models can be linear in the parameters, taking

the form
m—1

a(xi) = wo + > wid;(xi) (7.1)
j=1

where the ¢; are the basis functions, corresponding to all combinations of d variables raised to

powers that sum to at most 2, and each w; corresponds to a weight.

To derive the parameters of Expression (7.1), minimizing the least-squares error function yields
a closed form solution:

wrr = (87® 4+ M) 1Ty = oly.

where @ is the design matrix, constructed by setting ®;; = ¢;;(x;;), and X is a regularization
parameter. Then for any contract x, it’s value in the surrogate model is xWwp;;, where x is
considered a row vector and Wz, a column vector.

Optimization

Finally, a method for searching the quadratic surrogate model had to be established. Maximizing
a non-concave quadratic function inside a cube is referred to as a bound-constrained global
optimization (BCGO). Since no known polynomial-time (1 — €) approximation algorithm exists
for this class of non-convex optimization problems, second-order methods were explored.

Second-order methods incorporate second-order derivatives of the objective function. A particular
class of second-order methods represents algorithms that are among the most sophisticated
analytically for solving unconstrained optimization problems, with some of them also being
applied to constrained optimization problems, including BCGO problems. These are the quasi-
Newton methods. The most popular one, and the one used in this thesis, is the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm with Box constraints (L-BFGS-B). As detailed
in Section 3.4.2, L-BFGS-B is a scalable, memory-efficient variant of quasi-Newton methods
adapted to handle BCGO problems. It offers a complexity and memory footprint of O(d) where
d is the dimensionality of the domain, while also demonstrating superlinear convergence rates for
smooth functions. This makes each local initialization relatively inexpensive in high dimensions
while still highly effective.
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7.3.3. Main Research Question

Table 6.1 depicts values for the complexity measure C derived in this thesis, which correspond
to when the agent’s efficiency in finding high-utility bids is good, mediocre, bad, and none at
all. Furthermore, Figure 6.8 illustrates this visually by showing the average utility of the bids
that the agent could find.

An agent following the steps outlined in this thesis will perform very well with low complexity
functions, but this performance rapidly decays through the medium complexity functions, and
finally reaches an average utility of 0 for complexities above C = 14. The agent using the
quadratic model can be seen performing consistently better than when using the linear model
over the entire complexity axis (excluding the part where both models average a utility of 0 or

1).

The overall aim of the Automated Negotiating Agent Competition (ANAC) is to advance the
state-of-the-art in the area of autonomous negotiations, with an emphasis on the development
of successful automated negotiators in realistic environments with incomplete information.
In 2014, agents competed in similar scenarios as those considered in this thesis. When the
method developed in this thesis was implemented in an autonomous negotiation agent, named
QuadrApprox, the agent outperformed the top-performing ANAC 14 competitors in terms
of individual utility, and by "winning" in a vast majority of the times. This is illustrated in
Appendix C.2

7.4. Limitations and future work

7.4.1. Model expressiveness and tractability

This work focuses on modeling hypercubic functions with quadratic polynomials, using regression
models that are linear in the parameters but with quadratic basis functions. While quadratic
basis functions were the focus of this thesis, many alternatives could be explored.

Because the surrogate models are locally quadratic, they cannot capture highly disjoint, non-
smooth, or high-dimensional utility surfaces. Nevertheless, quadratic basis functions have
been shown here to outperform linear ones, suggesting that higher-order polynomials or other
nonlinear basis functions may yield further improvements.

Future work should therefore investigate alternative basis functions. The framework developed in
this thesis can readily accommodate such extensions, provided that the optimization procedure
is adapted to the particular basis function used. Furthermore, the tractability of the model
must be kept in mind. This depends highly on the size of the design matrix which has as many
columns as there are basis functions. Although the quadratic model is fairly tractable, it can be
slow when implemented on a run of the mill computer on cpu, which might be limiting in an
autonomous negotiation.

7.4.2. Negotiation scenarios

This thesis is limited to hypercubic constraint-based utility functions and integer domains
with equal-length issue domains, where each base constraint has the same structure. In these
functions, each constraint is defined as a Cartesian product of intervals over a subset of issues,
forming an axis-aligned hyperrectangle (or "hypercube") in the discrete space.

However, constraint-based utility functions can be constructed with constraints taking almost
any shape. Although the hypercubic ones are most prominent in the literature reviewed for this
thesis, other common ones are Bell constraints [52] and Cone-shaped constraints [25]. These
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are defined in a way that the proximity to the center of the constraint determines the utility,
which may provide a more natural representation in continuous domains. The hypercubic
representation therefore constitutes a simplification which falls short of representing the general
case of constraint-based utility modeling. Extending this work to broader classes of constraint
shapes and domains is an important avenue for future research, both to better reflect real-world
scenarios and to test the robustness of the surrogate-based appraoch.

The assumptions of equal-sized issue domains and structurally identical base constraints were
introduced to reduce variability in experiments. Relaxing these assumptions can be done while
the discussion of Section 3.1 remains relevant, but adapting the framework to non-hypercubic
shapes would require redefining the parameters and revisiting that discussion. For example,
extending the framework to domains with varying issue sizes or heterogeneous base constraints
can be done using Corollary 1 which in turn allows the complexity measure to be redefined.

7.4.3. Complexity measure

The complexity measure can be reconstructed where A is derived through the probability of
a particular constraint ¢, existing in the function, as opposed to the probability that two
constraints intersect to create ¢;. This would allow each attainable intersection constraint to
be weighted directly by its likelihood of being present in the function, rather than by tracing
its lineage through successive intersections. Although this might not make the measure more
accurate, it would certainly be a cleaner, more complete approach. This would require the
following theorem to be finished and proved:

A wutility function u = (7y,v,n,m) that is uniformly constructed contains an intersec-
tion constraint ¢ = (v, vg) with probability...

7.4.4. Sampling

The curse of dimensionality causes the negotiation domain to grow exponentially with the
number of issues, which makes strategic sampling essential. In local approximation methods
such as the one used in this thesis, the placement of these samples becomes crucial. Although
exploration is necessary, the exploitation strategy used here could be improved.

In this thesis, the agent used a Manhattan-distance heuristic to place its samples at regions it
deemed likely to contain high-utility bids. Although it has been noted in the literature that
this might be the more appropriate way to identify high utility regions as the negotiation is
not repeated, more advanced measures, or even learning-based sampling strategies, could yield
better performance.

The literature on pattern recognition and active learning offers many possible extensions.
Implementing to this thesis’s method an advanced learning technique would undoubtedly make
the agent’s performance a bit better. For example, a Bayesian approach could be adopted in
which the agent maintains a prior over the utility function and updates it with each new sample
or round of negotiation.

7.5. Contributions

7.5.1. Basis for future work

This thesis identifies a research gap; mainly, searching a surrogate of the utility function in
autonomous negotiations as opposed to the utility function itself being an uncommon approach
which, as shown in this thesis, has a great potential. This research contributes to the literature
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by laying the ground for filling this gap, providing a mathematical background and a method
that are suitable for linear-in-parameters regression models, and the considerations needed to
implement them. Thus, implementing this thesis’s method with any basis function can be done
by following the steps it lays out, with a careful consideration to the balance so often mentioned:
between approximation accuracy and search complexity. This thesis represents an example of
how this can be done.

7.5.2. Complexity measure

By following the steps of this thesis, various combinations of basis functions and optimization
algorithms can be experimented with. To compare the results between such experiments, this
thesis suggests the following measure to quantify a complexity of hypercubic constraint-based

utility functions.
1 /v\" 1
= _log|= (= ~A
e=-os | () + %4

where A is defined in Definition 5. Experiments can then be conducted over various configurations
of the following parameters

e m: The number of constraints that define the function
e ~v: The dimensionalities of the constraints
e v: The widths of the constraints

e d: The number of issues in the domain

When performance is then viewed against this measure, two approaches — such as was done
with the linear and quadratic basis functions in this thesis — can be compared.
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Additional information

A.l. Genius

To simulate and analyze negotiations for this thesis, Genius [51] was used. Genius stands for
General Environment for Negotiation with Intelligent multipurpose Usage Simulation, and is
the most commonly used automated negotiation simulator available today. The majority of the
literature referenced in this thesis regarding automated negotiation was developed and tested in
Genius.

Genius is a flexible and easy-to-use environment, built with the aim of facilitating the design
of negotiation strategies [51]. To achieve that, negotiations can be simulated using built-in
negotiating agents and scenarios, as well as offering an easy integration of new agents and
scenarios by means of a graphical user interface.

After a negotiation has been simulated, a variety of tools to analyze the dynamics and outcome
of the negotiation, as well as the performance of agents, can be accessed in Genius’s analytical
toolbox. These include optimal solutions such as the Pareto frontier and the Nash product.
Additionally, simulation control and logging components allow users to control and debug the
simulations, as well as to obtain the negotiation thread.

Researchers can use the built-in features of Genius to empirically and objectively compare their
agent with others in various negotiation scenarios, making Genius an important contribution
to the field. Furthermore, the Automated Negotiating Agent Competition (ANAC) has been
conducted in Genius since it was first held in 2010 [40]. ANAC is an annual event that brings
together researchers from the negotiation community and provides unique benchmarks for
evaluating their negotiation strategies, essentially defining the state-of-the-art. For instance,
ANAC 14 had nonlinear preferences and large domains [4], ANAC 15 had multi-party negotiations,
ANAC 16 had negotiation in smart energy grids, and ANAC 17 had repeated negotiations.
Several of the ANAC agents and scenarios are built into Genius, thereof all of the ANAC 14
agents and scenarios, which made it possible to compare the resulting agent from this thesis to
those. Results are presented in Appendix C.1.
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Proofs

B.1. proof of Lemma 2

Proof: Clearly P(X = n) = 0 when n < 0 or n > min{vy1,v2}. If 71 + 72 > d then the two
constraints must be defined by at least v1 4+ 72 — d common issues as 71 +v2 > dA |1 Ny =0
cannot hold. This establishes the bounds.

Now, fix I'; and view I's as a uniformly random ~ys-subset of [d], independent of I';. Interpreting
the d ground elements as a population with "success" elements precisely those in I'y, there
are -y successes and d — vy, failures in the population. Drawing ~» elements uniformly without
replacement (i.e., choosing I'y) yields a hypergeometric sampling model. Thus the number of
successes observed, which is exactly X = |['; N T'y|, has the hypergeometric probability mass

function: 0
G G0)
(52)

for all n in the feasible range max{0,v1 + v2 —d} < n < min{vy;, 72}, and zero otherwise.

1 ZP(’F1 ﬂrg‘ :n\l“l) =

As any realization of I'y is equally likely, this conditional probability depends only on the sizes
(d,v1,72), not on the particular realization of I';. Therefore, by the law of total probability, the
following holds:

P(CiNTyf=n) =Y pP(T1=5)=p Y P(T1=5)=p

By fixing I'y, the same steps yield the same results due to the symmetry of the hypergeometric
distribution. O

B.2. Proof of Lemma 3.(2)

Proof: As was established in the proof of (1), the total number of posible placements is
T=(I—vi+1)(|I| —ve+1).

Denote the offset between intervals by § = 2% — 20 If § > 0, then 23" = 2" + § and the
intersection length J is
J = max (0, min(vy — 6, v2)).

Thus J = vs if and only if one of the following holds:
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B.3. Proof of Theorem 4 99

1. v3 < vy and v; — & = w3, in which case § = v1 — vs3;
2. or v3 = v9 and d < v1 — vs.
Now, for a fixed offset §, the start point 1™ must satisfy both 21" < |I| — vy and 2" 4§ <

|I| — v, so the number of valid placements for that offset is

N(6) = max(0, min(|I| — vy, [I| — v — §) + 1).

For v3 < min(vy,v2), only 6 = v; — v3 yields overlap length vs. There is also a symmetric case
9 < 0 with § = — (v; — v3), doubling the count, hence the factor 2.

For v3 = vo < wy, all offsets 0 < d < v; — vy produce overlap length vs, counted by summing
N () without the factor 2.

Dividing by the total number of placements T gives (?7). ([

B.3. Proof of Theorem 4

Proof: Since each constraint is placed independently and uniformly at random, the size of their
intersection, |I'; NT'9|, is a hypergeometric random variable, as per Lemma 1. Now, for each
possible intersection size |I'y NI'2| € [0, min(~1,2)], there are (%) distinct subsets S C [d] of size
~3 which could represent the actual overlapping dimensions. Assuming uniform random selection
of I';, the joint probability of choosing a specific subset S as the intersection is uniformly

weighted against all such subsets, yielding
1) (d—n
1 . (73) ('ygf'yg)

() ()

Next, for each dimension j € 'y N I', the two constraint intervals in that dimension are placed
independently and uniformly. Let these intervals be

P(Fl NIy = S) =

min min

[21; ,xﬁin +v15) and  [zy; ,xg;-i“ + vg;).
By Lemma 2(2), the probability that two such intervals intersect to share vs; elements is exactly
Equation (3.6).

Since intersection across all shared dimensions is required for the constraints to intersect, and
by the independence between these dimensions,

min . min min _.min _ .
]P)< ﬂ ([ZL’lj ?xlj +U1])ﬂ [LUQJ ,ZEQJ' +U2j) _U3J>>
jellinl'y
_ min ,.min . min , min N\ .
= H P ([25", 215 + v15) 0 [a55 ™, 255" + va;) = v3;)
jel'inl'y

Finally, the probability of the two constraints intersecting is the probability that I'yNI"'y = I's mul-
tiplied by the probability that all intervals in I’y N T’y intersect, which is exactly Expression (3.5).
O

B.4. Proof of Lemma 4
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Proof: Write Ly = [x7"", mm—l—vl) and Lo = [25¥", 20" 4 19). Define the offset § = 2§*" — g,
Since 27" € [0, |I| — v1] and z5%" € [0, |I| — va], the two intervals intersect if and only if

:r’lmn "+ 5+ vy and a:mm +0 < xmm + vy,

which is equivalent to § € (—vy, v2).

For fixed ¢ in this range, the number of valid positions 7" such that both L; and Ly lie
entirely within [0, |1]) is

n(0) = max{0, min(|I| — vy, |I| — v1 — ) — max(0,—0) + 1}.

Summing over all admissible § gives the total number of intersecting configurations:

vo—1

Nie= Y n(d).

6=—U1+1

Now define an "escape" configuration as one where Li and Lo intersect, but shifting L by +1
or —1 results in no intersection. For fixed ¢, this happens precisely when

[T 4+ 1, 27 4 vy 4 1) N [ 4 6, 27 + 5 4 vg) = 0.

Now, encode this by the indicator lescape(d) defined in the lemma. The number of such escape

configurations is then
vo—1

Nend = Z ]-escape((s) ’I’L((S)

0=—v1+1

Since all valid placements (z]%", 25%") are equally likely, the desired conditional probability is

the ratio of the number of escape configurations to the number of intersecting configurations:

N, end

P((Llil)ﬂ[/Q:@‘LlﬂLQ#@)z N.t.

B.5. Generalization of Theorem 4

The probability that any two constraints ¢1(v1,vi) and ca(72, ve) selected from a uniformly
generated hypercubic function at uniform random intersect is

min(y1,72)

Z Z PITiNTy=5) H P(] xﬁm ac?;m + Ulj) N [x%m mg;m + Ugj) #* @) (B.1)
=0 SC[d JES:
|S]=i
where

(D (52)
(4 (1)

P(Fl NIy = Sz) = (B2)
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and

(|| = v1j — va; + 1)(|I]| — v1j — va; +2)
([ = v1; + )(|I] — voy + 1)

P([a7™, 27" +vi) N[ahy ™, o™ +ug;) #0) = 1—

B.3)

As this theorem is not used and as its proof is similar to that of Theorem 4, the following is a
sketch of the proof

Proof: Go through the steps of the proof of Theorem 4 with the only difference being the use of
Lemma 2(1). That is, the probability that the two intervals intersect is:

(|I| — V1j — V2; + 1)(‘]’ — V15 — Vgj + 2)

P([.ﬁ?}ln;w?}m + Ulj) N [xg}mvxg;m + UZJ) 7& @) =1- (’I’ — vy + 1)(‘]-’ — vy + 1)

Then summing over all subsets S C [d] of size i, and then over all possible intersection sizes
i € [0, min(7y1,72)] then yields the full expression. O



Additional results

C.1. Additional results
C.1.1. Linearization vs L-BFGS-B

In [35], the weight ¢ in (2.3) would increase when the function was close to an expected utility
of the encounter. This cannot be done for this thesis’s method as the optimization is over a
random subset of the entire domain, and so no claim can be made about an expected utility.
They do however not that in these cases, a uniform weight can be used. To illustrate, consider
the maximization of the quadratic function

—2? 4 2zy 4+ 6z —y (C.1)

over the [0,10] x [0, 10] domain. By simply dropping the interaction term e(z,y) = 2zy, the
optimization reduces to maximizing —2? + 6x with respect to x and —y with respect to y. This
yields a maximum at (0,0) which is in fact the global minimum. Alternatively, the interaction
term e(x,y) can be linearized to yield e, (z) and e,(y) by means of a uniformly weighted average,
giving

1 10

10 Jo

1 10

10 Jo

e(z,y)dz = 10y = ey(y)
e(z,y)dy = 10x = ez ().

This type of weighting effectively redistributes the contribution of the interaction term across
the variables that constitute it. Substituting e(x,y) for e, and e, in (C.1) results in

—z% + 262 + 19y.

Optimizing this yields the correct global maximum at (10, 10). This example is illustrated in
Figure C.1.
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® Maximum without interaction
® Maximum with interaction

) "' 1.0

- 0.8

- 0.6

10.4

0.2

Figure C.1: The function —z? + 22y + 6z — y optimized via linearization including and excluding interaction
effects

To test this out, random quadratic functions were generated where the weight matrix A was
constructed to not be negative definite. This ensures that the function takes its maximum value
at a corner or along an axis of the domain [0, Q]d, corresponding to the cubes that will be used
in this thesis. This was done 10 times for each dimension d where d € [1, ..., 50]. The maximum
of each function was then searched for via linearization and a single shot of the L-BFGS-B
method, and the higher value that was found was used to normalize. Figure C.2 shows the
result of this experiment.

Normalized Optimization Performance by Method and Dimension (Custom Colors)

T
S 1.0t B\ =ee—o—e<i
8 ‘Q &
£ o=,
3 N3
808} \
o —e
e ] ._o\.
%OG I .\:/.\.~. :§.
= ()
5 \,/ . O—q—o.
S 04r o—o\/ .\0/.§:\
2 NN
N —els o—o—9
E 02 \._,\;o_. \/.\.fn—.—o \
8" \/-\ / e V'\/ \ /'
E =4
= Method
E oor__ relaxed
S —— bfgs
= — waid
(I) lb 2‘0 3‘0 4‘0 5‘0

Dimension
Figure C.2: A single shot of L-BFGS-B versus linearization both by dropping interaction effects (relaxed) and

by averaging them out (waid) of quadratic functions in increasing dimension. The maximum of every experiment
is used to normalize.

L-BFGS-B is clearly considerably better at finding the maximum with only a single shot
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C.1.2. L-BFGS-B initializations

————
10 ———
———
———
20 ————
L-BFGS-B Initializations
c ——
‘© -
o == 35
(] ———
== 200
———
40 ———
———
———
50 ———
———

0.00 0.25 0.50 075 1.
Utility

]
o

Figure C.3: Utility (mean + sd) obtained by agent using varying number of L-BFGS-B initializations over
varying domain sizes

L-BFGS-B Inits Mean Utility Sd Utility Time(s)

1 0.805 0.127 0.02
35 0.905 0.098 0.04
200 0.915 0.093 0.1

Table C.1: Utility obtained by the agent while using a varying number of L-BFGS-B initializations. Numbers
are averaged over the experiments conducted to generate Figure C.3 Time is in terms of one call to Function 8.
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C.1.3. Cross effects

RATE
63% 83% 85% 86% 88% OF
CHANGE
10 0.3449 0.1562 0.1323 0.1214 0.1105 68%
9 0.3087 0.1813 0.1604 0.155 0.1496 52%
z .
Z 8 0.3412 0.2214 0.2052 0.19735 0.1895 44%  Mean Utility
c
£ 0.381 0.2723 0.2328 0.2269 0.221 42%
2 075
[}
« 6 0.4285 0.33 0.2998 0.2884 0.277 35%
2 0.50
2
55 04771 0.3921 0.3689 0.38335 0.3978 17%
S 0.25
g 4 0.4912 ‘ 0.4604 0.475 0.4896 13%
£
= 9%

4%

Domain size (d)

Figure C.4: Average utilities obtained while fixing d and v and averaging over the other parameters. Rate of
change on right (top) side indicates the change in utility over the corresponding row (column)

78% 77% 76% 75% 73%

6 27%
Mean Utility
ES 0.8
=
= 0.6
54 0.4371 0.3611 0.3399 0.3532 0.3665 16%
7 0.4
c
o]
O 0.2
2 0.1996 0.1737 0.1657 0.17285 0.18 10%

® P o ® S
Domain size

Figure C.5: Average utilities obtained while fixing d and v and averaging over the other parameters. Rate of
change on right (top) side indicates the change in utility over the corresponding row (column)
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RATE

75% 82% 82% 77% 84% OF
CHANGE

10 0.2446 0.1751 0.1598 0.2057 0.141 2%

9 0.2661 0.2211 0.1832 0.171 0.1621 39%
=s 0.3569 0.2534 0.2067 0.1919 0.1961 45% -
2 Mean Utility
<
27 0.391 0.3 0.2478 0.2411 0.2271 2%
w
S 0.75
g 6 0.4574 0.3662 0.3 0.285 0.2745 40%
> 0.50
Ts 0.5375 0.4537 0.3687 0.3636 0.3338 38%
S 0.25
2
g4 _ 0.5267 0.4669 0.4331 0.4258 35%
£

0.6342

- -
o ® B 0 &

Number of constraints (m)

0.5625 0.535 0.5154 34%

Figure C.6: Average utilities obtained while fixing m and ~ and averaging over the other parameters. Rate of
change on right (top) side indicates the change in utility over the corresponding row (column)

C.2. Deploying QuadrApprox against ANAC 14 agents

To evaluate the performance of the proposed method in a realistic autonomous negotiation setting,
QuadrApprox was tested in 100 bilateral negotiations over 3 domain sizes (1200 negotiations
in total) with medium complexity hypercubic utility functions against four prominent agents
from the 2014 Automated Negotiating Agent Competition (ANAC). Among these, AgentM and
GANGSTER were the official winners of the tournament. The objective of QuadrApprox, as
developed in this thesis, is to maximize its own utility. In line with this goal, QuadrApprox
consistently outperformed all opponents across this experiment. Notably, it achieved an average
win ratio exceeding 80%, demonstrating the effectiveness of searching for bids in surrogate
models. A summary of the experimental results is presented in the tables below.

Domain avg Utility avg Pareto avg Rounds avg Time(s) Win ratio(%)
10 Issue Domain 0.774 0.430 2077 30 85
30 Issue Domain 0.619 0.603 908 34 80
50 Issue Domain 0.560 0.512 648 32 80

Table C.2: Summary of the performance of QuadrApprox against selected ANAC 14 agents.

Opponent QA Utility Opponent Utility Pareto

AgentM 0.615 0.541 0.517
BraveCat 0.860 0.675 0.324
Gangster 0.412 0.411 0.612
WhaleAgent 0.924 0.704 0.409

Table C.3: The performance of QuadrApprox against selected ANAC 14 agents in a 10 issue Domain
(19| = 10'°) in terms of individual utility and distance from Pareto frontier.
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Opponent QA Utility Opponent Utility Pareto
AgentM 0.859 0.811 0.794
BraveCat 0.732 0.457 0.488
Gangster 0.246 0.240 0.525
WhaleAgent 0.742 0.642 0.616

Table C.4: The performance of QuadrApprox against selected ANAC 14 agents in a 30 issue Domain
(19| = 10*°) in terms of individual utility and distance from Pareto frontier.

Opponent QA Utility Opponent Utility Pareto
AgentM 0.809 0.803 0.683
BraveCat 0.721 0.446 0.416
Gangster 0.000 0.000 0.458
WhaleAgent 0.713 0.613 0.490

Table C.5: The performance of QuadrApprox against selected ANAC 14 agents in a 50 issue Domain
(1] = 10°°) in terms of individual utility and distance from Pareto frontier.
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