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SUMMARY

Most modern software systems can be adjusted to satisfy sets of conflicting requirements
issued by different groups of users, based on their intended usage or execution context.
For systems where configurations are a core concern, specific implementation mecha-
nisms are put in place to allow the instantiation of sets of tailored components. Among
those, we find selection processes for code artefacts, variability-related annotation in the
code, variability models representing the available features and their allowed combina-
tions.

In such systems, features, or units of variability, are scattered across the aforemen-
tioned types of artefacts. Maintenance and enhancement of existing systems remain a
challenge today, for all types of software systems. But in the case of variant-rich systems,
engineers face an additional challenge due to the complexity of the product instanti-
ation mechanisms: the maintenance of the variability model of the system, the com-
plex build mechanisms, and fine-grained variability in the source code. The evolution of
the system should be performed such that the information contained within the various
artefacts remains consistent. In practice, this means that as the implementation of the
system evolves, so should the mechanisms put in place to generate tailored products.

Little information is available regarding changes occurring in such systems. To effi-
ciently support such developers tasks and ease maintenance and enhancements activi-
ties, we need a deep understanding of the changes that take place in such systems. The
state of the art provides trends over long period of times, highlighting systems growth -
such as number of added or removed features in each release, or the evolution of cross-
tree constraints in a variability model. While important to describe the core dynamics
behind the evolution of a system, this does not provide information on the changes per-
formed by developers leading to such trends. Similarly, this global information cannot
be leveraged to facilitate developers’ activities.

The focus of this thesis is the acquisition and usage of change information regard-
ing variant-rich system evolution. We show how the information lacking from today’s
state-of-the-art can be obtained from variant-rich system change history. We propose
a set of tool-supported approaches designed to gather such information and show how
we leverage change information for change impact analysis, or to derive knowledge on
developer practices and the challenges they face during such operations. With this work,
we shed new light on change scenarios involving heterogeneous artefacts regarding their
nature as well as their prevalence in the evolution of such complex systems, and change
impact analysis in variant-rich systems.

We designed a model-based approach to extract feature related changes in hetero-
geneous artefacts. With such an approach, we can gather detailed information of fea-
ture evolution in all relevant artefacts. We created an approach for multi-product line
modeling for impact computation. We leverage variability information to produce a col-
lection of inter-related variability models, and show how to use it for targeted feature-

xiii



xiv SUMMARY

change impact analysis on available capabilities of the product family. By applying our
change extraction approaches on the Linux kernel, we were able to empirically charac-
terize the evolution of the variability model of this system. We showed that the variabil-
ity model of that system evolves mostly through modification of existing features, rather
than through additions and removals. Similarly, we studied co-evolution of artefacts dur-
ing feature evolution in the Linux kernel. Our study revealed that, in this system, most
features evolve mostly through their implementation, and complex changes, involving
heterogeneous artefacts are not the most frequent.

Through this work, we provide detailed information on the evolution of a system,
namely the Linux kernel, and the means used to obtain this information. We show that
the gathered data allow us to reflect on the evolution of such a system, and we argue that
gathering such information on any system is a source of valuable information regarding
a system architecture. To this end, all tools developed in the context of this study were
made available to the public.

In this work, we provide key information on the evolution of the Linux kernel, as
well as the means to obtain the same information from other variant-rich systems. The
knowledge gained on common evolution scenarios is critical for tool developers focus-
ing on the support of development of variant-rich systems. A better understanding of
common evolution scenario also allows engineers to design systems that will be better
equipped to elegantly evolve through such scenarios. While a number of challenges will
still have to be addressed in this domain, this work constitutes a step toward a better
understanding of variant-rich system evolution and therefore toward better variant-rich
system designs.



1
INTRODUCTION

Everything starts somewhere, though many physicists disagree. But people have always
been dimly aware of the problem with the start of things. They wonder how the

snowplough driver gets to work, or how the makers of dictionaries look up the spelling of
words.

Terry Pratchett, The Hogfather

1
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2 1. INTRODUCTION

Figure 1.1: Variants of the Ford T model

1. VARIANT-RICH SYSTEMS

Software systems designed for a large group of users are often configurable. This need for
configurable systems comes from the variations between user requirements within the
targeted user groups. Such systems can be adjusted, or tuned, to match as closely as pos-
sible user requirements. Differences between variants of the system may stem from their
supported execution environments, for systems running on various platforms, their dif-
ferent functional requirements, or may be the result of market segmentation, regulatory
constraints, and so on.

1.1. VARIANT-RICH SYSTEMS IN THE WILD

Providing tailored products for specific usages is a common practice and has been used
in various industrial domains for a very long time. For instance, the automotive indus-
tries started to offer a wide range of very similar cars quite early on in its history. As an
example from this domain, the different versions of the early Ford T models are depicted
in Figure 1.1. In this picture, we can see the same model (“T”) and its variants, each de-
signed for a specific context.

Nowadays, the video game industry produces the same game on multiple platforms.
In Figure 1.2, we see three variants of the video game “Battlefield 1”. While offering very
similar gaming experience, each variant is designed to run on specific hardware, and be
used with specific gaming interfaces (keyboard and mouse, or gamepad).

Differences between variants may be more significant than simply runtime environ-
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Figure 1.2: Variants of the “Battlefield 1” video game (Courtesy of EA Games)

ments. For instance, Oracle offers several variants of the MySQL database system1. Each
variant comes with a different set of capabilities. The more capabilities contained within
the variant the more expensive it is to acquire it.

Finally, in the domain of healthcare equipment, Philips Healthcare develops highly
configurable medical equipment such as the Allura X-ray system. The system itself, de-
signed for interventional x-ray imaging, comes with a number of configuration options,
and should interface with existing systems within the host hospital. Each variant may
differ by its hardware (table, mechanical arms...), its software (imaging capabilities), its
interfaces with external equipment, and its interfaces with the host hospital information
system (to retrieve patient data for instance). Once the system is fully configured, and
installed, the system is virtually unique.

More generally, we can observe such configurability of systems in a large range of
domains: distributed systems (servers, SaaS, SoA) (Juanjuan Jiang et al., 2005; Kumara
et al., 2013; Mietzner et al., 2009; Queiroz et al., 2014), database management systems
(Queiroz et al., 2014; Siegmund et al., 2013), operating systems (Dintzner et al., 2015a;
Hubaux et al., 2012; Sincero et al., 2010a), health care systems (Dintzner et al., 2015b;
Holl et al., 2012), high performance computing (Lengauer et al., 2014), and a number of
industrial domains.2

While closely related, each variant of the system is different from others. Strictly
speaking, each variant is a different system. Software engineering practices provide ap-
proaches and techniques to design and implement single systems. From the require-
ment gathering phases to validation tests, we have today very clear methods to develop
high-quality products. However, when the number of variants is high, standard devel-
opment practices cannot be applied. Applying single product approaches to each vari-
ant, to ensure the highest possible quality of each of them, would be too time and re-
source consuming. Moreover, because of the overlap between variants, most of the effort
would be wasted by repeating the same design and implementation steps for each vari-
ant. Therefore, applying “single-product” approaches for each variant is not a practical
way to build variant-rich systems.

Efficient re-use of development artefacts between variants is considered as a key fac-
tor to the successful and efficient development of groups of related software systems. In

1https://www.mysql.com/products/
2http://splc.net/fame.html
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1976, David Parnas suggested that, when developing program families - or groups of pro-
grams sharing a number of common characteristics, re-use would be better achieved if
common characteristics of the members were considered together at first as a whole, be-
fore focusing on their differences (Parnas, 1976). By doing so, Parnas suggests that re-use
of the artefacts built to support the common characteristics would be easier to re-use in
all members of the program family. Re-use can of course be achieved at an implemen-
tation level, i.e., re-use of routine and methods through the re-use of code libraries, but
also at a design level i.e., re-use of components and design elements. While opportunis-
tic re-use can hasten the development process, systematic and organized re-use seemed
to be a better approach to develop groups of similar systems.

Development approaches considering the family “first”, rather than individual mem-
bers are expected to yield a number of benefits (Clements and Northorp, 2002; Lemley
and O’Brien, 1997; Lim, 1994). First, since the different products are created from a pre-
existing set of software components, the development of new family members should be
cheaper. A number of components do not need to be redesigned and re-implemented,
therefore one saves effort and time. Secondly, re-use should help in increasing product
quality since each component has been used and tested over a longer period of time.

However, efficient re-use of all development artefacts, namely requirements, speci-
fication, software components, or functions is no trivial feat. Parnas (Parnas, 1976) sug-
gests a generic re-use approach at a very abstract level. Once we put such an approach in
practice, we see that the sheer number of artefacts and artefact relationships to be taken
into account grows fast as the system under design grows more complex. More advanced
methodologies such as product line engineering propose a more concrete framework to
organize the development process and the resulting artefacts. Product line engineering
approaches have been successful in a number of domains but are known to be hard to
put in place, and they imply a very specific work organization such as the separation of
the development of re-usable components and the development of specific variants.

This being said, most modern systems come with a number of variants, that need
to be managed by development teams, and are not developed using strict product line
engineering principles. For instance, research on product line practices adoption shows
that companies and development teams developed variant-rich systems without apply-
ing the product line engineering practices (Clements et al., 2006; Koziolek et al., 2016; Li
et al., 2016). Similar observations can be made regarding research on “clone and own”
approaches (Fogdal et al., 2016; Rabiser et al., 2016).

1.2. SCOPE OF THIS THESIS

In the context of this thesis, we focus on systems from which variants are derived from
a single set of artefacts: developers work on a set of files, and from this unique set, a
number of variants can be produced. Regardless of the development practices used for
the realization of such systems, they all are considered “variant-rich”, i.e., from one de-
sign, one group of assets, we can derive a number of different products. The variants are
created by composing elements contained within a given repository. In such contexts,
the repository contains information on all variants, their allowed configurations and the
mechanisms to be used to derive a concrete and valid variant from the available arte-
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facts.
The main challenge that arises from such very common situations is that when a

developer changes a single artefact, regardless of the type of that artefact, (s)he has to
take into account all the variants of the system that the change might affect. Moreover, if
the change is significant, (s)he might have to consider how to modify related artefacts to
guarantee the consistency of the modification in the behaviour of the system, its possible
configurations, and its impact on the product derivation mechanisms in place.

This makes the development, maintenance, and evolution more complex than for
single variant systems. All development challenges regarding architecture, component
coupling, and code complexity still need to be addressed as those systems are complex
software systems. However, instead of considering changes within a single system, de-
velopers need to constantly think of any modification they perform as modifications of
many different systems.

2. ANATOMY OF VARIANT-RICH SYSTEMS
In this section, we present the key artefacts that developers work with in the context of
variant-rich system development. For each artefact, we present its role and its possible
format, as well as its relationships with other artefacts. An understanding of those types
of artefacts and their relationships is necessary to understand the complexity of the evo-
lution process. While we expand on this idea throughout this thesis, we can already point
out the following: a change performed by a developer on one of the artefacts presented
below should be consistent with all other artefacts, or should impact all other artefacts
consistently. This is the constraint imposed by the development of variant-rich systems
using a single repository.

VARIABILITY SPECIFICATION

The members of a program family differ from each other in terms of features. In this the-
sis, we use the definition of feature suggested by Czarnecki et al. (2002): a feature is a
system property that is relevant to some stakeholder and is used to capture commonali-
ties or discriminate among systems in a family.

When working on a highly configurable system, the features of interest are the ones
describing commonalities and variabilities of the different variants. Since those features
are identified by actors of the software development process with very different roles and
perspectives, we can expect features to be of various granularity and nature. The differ-
ent examples provided by Kang et al. 1990 show that features can represent something
as precise as a “move icon” capability for a software application, or something as encom-
passing as “horsepower” in the context of car design. Nonetheless, in both cases, those
features are well-identified concepts that stakeholders can refer to when communicating
about the system under study (Berger et al., 2015).

For projects with a relatively small number of features, we can find descriptions of
features in configuration files. Such files describe the features and their values in a spe-
cific format which can be used as an input for the compilation of the system, or used as a
reference while the system is running (runtime variability support). Figure 1.3 shows two
examples of configuration files used in Torque3D,3 a video game engine platform, and

3http://torque3d.org/
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[main]
certname = puppetmaster01.example.com
server = puppet
environment = production
runinterval = 1h
strict_variables = true

System: Puppet -  Language: Puppet configuration

// Set this to true to enable the ExtendedMove class.  This
// allows the passing of absolute position and rotation input
// device information from the client to the server.
$TORQUE_EXTENDED_MOVE = false;

System: Torque3D -  Language: Torque configuration

Figure 1.3: Formalized configuration options - example from Torque3D and Puppet

Puppet,4 a platform for build automation. We can see that, in both systems, options are
identified by their name, and are associated with a value. That value may be a string, a
numerical value, or a Boolean flag (such as“true” or “false”). In such a simple formalism,
one cannot express the constraints between those features or their values.

Using a simple formalism is usually enough for projects with little variability. As a
system grows, its features might start to depend on one another under certain circum-
stances and their allowed combinations (configuration) become harder to describe. Kang
et al. proposed a formalism to describe features and their constraints (Kang et al., 1990).
An example of this notation is depicted in Figure 1.4. It represents the variability of the
BerkleyDB database system. The FODA notation allows the formalization of optional or
mandatory features, selection of a single feature among a set, selection of at least one
feature among a set, and finally, any Boolean expression of features as additional con-
straints (not represented in the graph). In this representation, features are identified by
their names, and do not bear any attribute.

Many formalisms have been proposed to describe the variability of systems (Berger
et al., 2013b; Kang et al., 1990; Schobbens et al., 2006). They differ by the details that
can be added to a feature’s description, and how to express composition rules. Figure 1.5
presents two configuration options, one described in the CDL language used in the con-
text of the eCos operating system, and a second one described in the Kconfig language,
used in the context of the Linux kernel. In Figure 1.5, we can see that the definitions of
features are associated with more complex relationships, describing composition rules.

For such systems, the list of features and their composition rules constitute the vari-
ability model of the system: it is a formal description of the variability of the system un-
der study. For instance, in the simple feature model proposed by Kang et al. in (Kang
et al., 1990), composition rules, named “cross tree constraints”, are Boolean expressions
composed of feature terms. They are not part of the definitions of any specific features,
but are part of the diagram. A different approach is taken for the Kconfig language, or
the eCos CDL language, where the composition rules are expressed as part of the defi-
nition of the feature, as shown in Figure 1.5, where feature GENERIC_IOMAP “depends”
on the satisfaction of the expression “HAVE_GENERIC_IOMAP && FOO” (where both

4https://puppet.com/



2. ANATOMY OF VARIANT-RICH SYSTEMS

1

7

Optional 
feature

Mandatory 
feature

A B

Alternative 
(1 of ) 

A B

Alternative 
(1 or more of ) 

Legend

Berkley DB

Development

Win32 Linux

Operating 
System

DiagnosticDebug

Error Log

Storage

Crypto

B-tree Hash

Access 

Queue

Figure 1.4: Partial feature model of the BerkleyDB database system, represented using the FODA notation.
Adapted from (Rosenmüller et al., 2008)

cdl_package CYGPKG_INFRA {
    display       "Infrastructure"
    default_value 1
    include_dir   cyg/infra
    requires 1 == CYGINT_KERNEL_SCHEDULER
    description   "
        Common types and useful macros.
        Tracing and assertion facilities.
        Package startup options." 

    compile startup.cxx prestart.cxx pkgstart.cxx userstart.cxx \
            dummyxxmain.cxx memcpy.c memset.c delete.cxx \
            diag.cxx tcdiag.cxx
}

System: eCos -  Language: CDL

config GENERIC_IOMAP
depends on HAVE_GENERIC_IOMAP && FOO

System: Linux Kernel -  Language: Kconfig

Figure 1.5: Formalized configuration options - examples from eCos and the Linux kernel
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HAVE_GENERIC_IOMAP and FOO refer to feature names). A valid configuration of the
system is one in which if the feature “GENERIC_IOMAP” is present, then both features
“‘HAVE_GENERIC_IOMAP” and “FOO” are also present.

Such models serve two main purposes. First, they act as a specification of the sys-
tem. If the variability model specifies that two features may be present together in vari-
ants, then their associated behaviour should be consistent with the system’s specifica-
tion. Secondly, variability models are used as a source of information for tools facilitat-
ing the creation of valid configurations - i.e., configurators (Krueger, 2006; Sincero and
Schröder-Preikschat, 2008). Those purposes should be fulfilled by any variability models,
regardless of the notation used.

If the number of features and constraints is large, users will have difficulties to create
a selection of features that will satisfy all the composition rules (the Linux kernel has
more than 13,000 features, and on average 2.5 constrains per feature (Lotufo et al., 2010)).
In this context, a configurator is a tool helping users to create a valid configuration based
on feature definitions contained in the variability model of the system. It usually presents
the list of available features in a hierarchical form. As the user selects features to include
in the configuration, the configurator may check whether the current selection is valid
or not, and update the visible features that can be selected and added to the current
configuration. For such tools, a feature is “selectable” if, given the set of already selected
features, the feature can be included in the current configuration without violating any
constraints.

From such a representation, we can determine the “presence condition” of a feature
in a variability model. The “presence condition” of a given feature is a Boolean expression
of features which, if satisfied, allows the selection of that feature.

ASSOCIATING BEHAVIOUR TO FEATURES

Given a valid configuration of the system, a user can expect the system to display all the
characteristics, both functional and non-functional, specified by the selected features.
As mentioned in the previous section, the selected features can have very different gran-
ularity, and their associated behaviour can therefore be supported in a very small code
fragment, or in complete sets of components. In any case, features are associated with
concrete artefacts that should be combined to create the requested variants.

The artefacts or concepts associated with a feature may vary. For instance, one may
describe the requirements of the systems in terms of features, and start specifying the
behaviour on a feature basis as well (feature-oriented design). In such a situation, a fea-
ture may be associated with formal models, or model fragments, describing the expected
behaviour or properties of the system if those features are selected. Examples of models
or fragments of models associated with features could be classes in a class diagram (Seidl
et al., 2012), elements in a UML model (Czarnecki and Antkiewicz, 2005), or transitions
and states (Classen et al., 2013). We note that in such examples, previously existing mod-
els are enhanced with additional feature-related information. Such approaches may be
used to specify the behaviour of the system, depending on the included features, as well
as perform formal verification on the systems and its variants as suggested by Classen et
al. (Classen et al., 2013).

Features may also be associated with behaviour described in source code, i.e., con-
crete implementation artefacts. This association may be done in number of ways. It will
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depend on the binding time of the feature, and the implementation strategy used may
vary. For variation resolved at build time, the association may be performed in the build
script (such as Makefile, in the context of the Linux kernel). For variation points resolved
at runtime, the value of a feature may be checked in a simple “if” statement. In such
cases, the code fragment associated with the feature is the code contained within the
“if” statement.

For variation points resolved at build time, Figure 1.5 shows how, in the CDL lan-
guage, a feature can be associated with a number of implementation files (with exten-
sion “.cxx”). In the context of the Linux kernel, the association - or mapping, between a
feature and its concrete implementation is performed in the build system (comprised of
Makefiles) and is expressed as follows:

obj-$(CONFIG_GENERIC_IOMAP) += iomap.o

In other systems, the association between a feature and its source may be implicit. In
QT, a popular GUI framework, each feature is declared as a “package”. While the termi-
nology is different, the “packages” are identified during the installation process and the
implementation located in the same directory as the package descriptor (package.xml
file) is associated with the features. Additionally, QT offers the possibility to declare de-
pendencies or additional resources inside the package.xml file. 5 In that sense, the QT
model, quite like in the eCOS CDL language, puts in a single format both the features
and the pointers to their implementation artefacts.

The association between features and implementation artefact may be complex, but
plays an important role in the design and maintenance of variant-rich systems (Neves
et al., 2015; Passos et al., 2015). It remains a key technique to support build-time vari-
ability resolution for coarse-grained variability.

During maintenance, the association of features and assets should be updated when
necessary. This operation is not in itself very different in single variant systems than in
many-variant systems. When a developer adds an implementation artefact, he should
update the Makefile - very much like in any other system. Failure to do so guarantees that
the artefact will not be taken into account during the compilation process. However, in
the case of a single variant system, the Makefile content will be “simpler” - in the sense
that it will refer to fewer external variables, and the presence conditions associated of
a file in the list of artefacts to compile will be simpler. Variability does not change the
nature of development activities related to the build system but increases the complexity
of such artefacts.

FEATURE BEHAVIOUR IMPLEMENTATION

To support variability implementation at a more fine-grained level, implementation frag-
ments may also be associated with specific sets of features. Regardless of the approach
taken to associate code elements to features, the objective remains the same: given a
valid configuration, one should be able to identify implementation artefacts, and imple-
mentation artefact fragments necessary to support the behaviour of the features of the
selected configuration.

5http://doc.qt.io/qtinstallerframework/ifw-component-description.html
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Compositional approaches advocate feature-based, or aspect-based decomposition
of implementation artefacts. Given a valid configuration, those artefacts are composed,
i.e., assembled in a prescribed way, to produce the final artefacts. Feature-oriented (Ba-
tory, 2004; Prehofer, 1997) and aspect-oriented programming (Kiczales et al., 1997) are
examples of such implementation techniques. The composition mechanism may be as
simple as selecting a file, or may involve more complex code generation tasks.

Annotative approaches take a different angle on the problem. The implementation
fragments are annotated using feature names, or Boolean expressions of features. Upon
product instantiation, the list of selected features is used to identify both the relevant
artefacts and artefact fragments. The repository containing the implementation of the
system contains all of the source code, all artefacts, but only a subset is used based on
the set of selected features.

We illustrate annotative approaches with the code fragment below.

static inline int pfn_to_nid(unsigned long pfn){
#ifdef CONFIG_NUMA

return((int) physnode_map[(pfn) / PAGES_PER_ELEMENT]);
#else

return 0;
#endif
}

In this example, the method “pfn_to_nid” has two variants. If the feature NUMA is
selected, the resulting pre-processed code will contain a variant of the method returning
an element of the physnode_map array. If the feature is not selected, the pre-processed
code of method pfn_to_nid will return 0, regardless of the input. This shows how, us-
ing annotations (#ifdef in this case), one can create a method with different compiled
behaviour depending on the selected features. In large projects relying on annotative
approaches, the implementation of a single feature is unlikely to be contained within
a single artefact. Such features represent cross-cutting concerns (Bruntink et al., 2007).
This leads to difficulties during maintenance operations as a developer needs to identify
which artefacts are implementing a feature to fix or adjust its behaviour (Dit et al., 2013;
Eisenbarth et al., 2003).

MAINTENANCE AND EVOLUTION

Maintenance and evolution of large-scale and complex systems are challenging (Godfrey
and German, 2008; Lehman, 1996; Mens et al., 2005; Siy and Perry, 1998). In the context
of highly variable systems, engineers face all the challenges that one might face when
evolving a large scale system, and in addition, the variability and its implementation
creates an additional degree of complexity. As the capabilities of the system evolve, the
various artefacts participating in its implementation should evolve as well.

First, the variability model itself may evolve. Features may be added, removed, or
modified as the capabilities of the system evolve. This in itself may not be a trivial task
as the model must remain correct after modification. Potential errors have been identi-
fied in the past: false optional, redundant constraints, void model, etc. (Benavides et al.,
2010). Specific tools and methods have been designed to identify such issues. Nonethe-
less, this highlights that making changes to large-scale variability models is not an easy
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task. Previous work on the Linux kernel showed that addition and removal of features in
its variability model is frequent (Lotufo et al., 2010).

Secondly, if features evolve, the mapping to their associated implementation arte-
fact should evolve as well. This is less documented in the current state of the art. The
work of Adams et al. showed how the build system of the Linux kernel, formalizing this
association of features and files, evolves over time (Adams et al., 2008).

Finally, performing changes to the implementation of a variant-rich system is as
challenging as performing changes to the implementation of any complex system. How-
ever, because of the fragmentation of concepts in various artefacts, and the fragmen-
tation of artefacts by features, making changes to such artefacts can be difficult. As a
result, artefacts of such systems must co-evolve. For instance, modifications to the pres-
ence conditions of code blocks expressed in macros should be done in accordance to the
state of feature dependencies as expressed in the variability model of the system. As a re-
sult, engineers must manage changes affecting artefacts of different nature (variability
model, implementation, build scripts), and guarantee that all those changes are consis-
tent with one another. Inconsistencies between the variability in the variability model
and its implementation will lead to a number of errors such as dead code blocks (Tartler
et al., 2009), or variability specific bugs (Abal et al., 2014; Kenner et al., 2010; Medeiros
et al., 2016).

3. CHALLENGES AND RESEARCH QUESTIONS
System maintenance and evolution is a key concern for complex and long-lived systems
(Abran et al., 2014; Lehman, 1996). It is considered good practice to design a software
system in such a way that future maintenance and evolution operations are as simple
as they can be envisioned. A range of likely changes can be taken into account during
the design phase such that the resulting design can accommodate them without re-
quiring a complete redesign of the system. This ability of a system to accommodate for
changes with a “reasonable” amount of transformation is known as the system evolvabil-
ity (Breivold et al., 2008; Rowe and Leaney, 1997). In the past, actual software evolution
scenarios, as performed by developers on complex systems in use, proved to be key el-
ements. The seminal collection of “design patterns” proposed by the “Gang of Four” are
the result of long working experience on complex long-lived systems. From their under-
standing of what happens in such systems, they were able to suggest design solutions
that would be suitable for long term use. Unfortunately, in the context of highly variable
systems, little information is known on how such systems evolve in practice.

As explained in Section 2, variant-rich systems are implemented using a set of het-
erogenous yet related artefacts. The evolution of such systems is then composed of chan-
ges to all those artefacts. From the work of Kenner et al. 2010 on code correctness, we
know that a number of change scenarios are “safe” when affecting all those artefacts con-
sistently. Considering single artefact changes as evolution scenarios for variant-rich sys-
tems is, therefore, insufficient. Gathering information on the evolution of such systems
involves observing changes in a number of artefact, and regroup them comprehensively.

Since features are key design elements for variant-rich systems, we study the evolu-
tion of variant-rich systems through the evolution of their individual features. However,
as mentioned earlier, in variant-rich systems, features are spread in a number of im-
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plementation artefacts: the variability model, the mapping between features and assets,
and finally the actual artefacts themselves characterizing the behaviour of the feature in
question. This leads to the following overall research question:

Research question:
In the context of a variant-rich system, how do features evolve and how is that evolu-
tion reflected in the co-evolution of its concrete artefacts?

If we know the types of changes we are very likely to encounter in the future, then
we are in a better position to evaluate design alternatives for the implementation of the
concrete artefacts we need. If we know how a change is likely to cause changes across
various artefacts of different nature, then we are in a better position to decide how to
create and maintain the relationships between those artefacts. But the information cur-
rently available is not sufficient at this time.

Researchers already provide some information on those questions, such as broad
statistics of variability model evolution, or through the analysis of code changes. How-
ever, to obtain clear information, we need to have information regarding the evolution
of features over long periods of time, covering all types of development artefacts, with
more details than currently available. Moreover, since we know that features are scat-
tered among a number of different artefacts and we know that all those artefacts must
be consistent with each other, we cannot restrict our understanding of feature evolution
in variant-rich systems to their evolution in a single type of artefact. We need to consider
how those artefacts change as a whole.

Performing such work will require a lot of information on how a variant-rich sys-
tem evolves through the evolution of its features. Up until now, there are no automated
means to aggregate changes pertaining to one feature in all of the artefacts over time.
We need to find the means to obtain the necessary information with the higher level of
details of changes in all relevant artefacts over a sufficient period of time to draw any
conclusions. This motivated the core of the work presented in this thesis, and leads us to
the following research goal:

Research goal:
To obtain a comprehensive view of feature evolution of variant-rich systems across
heterogeneous artefacts and over a long period of time.

Through this work, we aim at making a significant step forward in the state of the art
regarding the evolution and maintenance of variant-rich systems. More specifically, we
aim at increasing:

• our ability to describe changes within each type of artefact

• our ability to describe complex scenarios affecting more than one type of artefact

• our knowledge on the methodologies and approaches that can be used to obtain
this information
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• the quantitative information available on occurrences of scenarios affecting more
than one type of artefact

In order to reach this goal, we break down our work in several steps, based on the
current state of the art on feature evolution in variant-rich systems.

VARIABILITY MODEL EVOLUTION

As shown by Lotufo et al. 2010 in the context of the Linux kernel, the number of fea-
tures in the kernel is growing over time, and so does the number of feature-related con-
straints. This in turn makes the maintenance of such models difficult. Several method-
ologies were designed to assist engineers in such endeavours (Botterweck et al., 2010;
Heider et al., 2012a). Similarly, several descriptions of changes occurring in variability
models are available, although we note that, in most cases, the scenarios are the results
of an analysis of possible changes, based on the observed models (Guo and Wang, 2010;
Svahnberg, 2000). On the other hand, studies focusing on detailed changes observed in
evolving product lines or other highly variable systems tend to focus on addition and re-
moval of features (Neves et al., 2011; Passos et al., 2015), mostly based on observations
of a small number of changes.

Our hypothesis is that existing studies, focusing only on addition and removal of fea-
tures, miss relevant types of changes, namely modifications. By understanding how large
variability models evolve, we obtain a better understanding of what operations are per-
formed by developers on variability models and how those should be supported. This
leads us to our first research question:

Research Question 1: What are the operations commonly performed on features in a
large-scale variability model?

VARIABILITY MODEL CHANGES AND IMPACT

In practice, variability models serve multiple purposes, but two of those are more rel-
evant for the problem at hand. First, they are a formalization of each available feature
and their presence condition. Secondly, they provide a compact representation of al-
lowed configurations. This was highlighted in a number of studies (Benavides et al., 2005;
Thum et al., 2011). When developers perform changes to the variability model, they may
perform any number of changes to features or constraints, affecting both individual fea-
tures and their respective execution context, as well as the set of available configurations
(Thuem et al., 2009). Determining which capabilities are affected, and which product
might see its behaviour affected by a change in a single feature can be hard to determine
(Siy and Perry, 1998). Heider et al. 2012a propose to rebuild every configuration to iden-
tify the ones that may have been negatively affected. White et al. 2010 showed that, given
a faulty feature model, one can identify the steps necessary to fix broken configurations.

However, checking changes to all possible configurations of a system, when the sys-
tem contains a large number of features, can become intractable: in the general case, the
number of possible configurations increases exponentially with respect to the number of
available features. Moreover, if the system contains a large number of features, informa-
tion regarding configurations may be difficult to interpret since each configuration may
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contain many features (too many for humans to understand). Through ripple effects,
changes to features may affect the capabilities of many sub-systems - or components of
the system, and not all of them might be relevant for engineers.

We make the following assumptions. Changes to some parts of the system may re-
quire more care than others, for instance external interfaces of a system may be con-
sidered as more critical than internal components. Given a change to a feature, can we
determine if “critical” elements of the systems are affected? Is a component, or subsys-
tem be affected and if it is, what capabilities are changed?

We make the hypothesis that the variability model of a system is the right type of
artefact to use to answer such questions. However, variability models can be very large
which makes the understanding of changes at a configuration level hard to understand
for humans. Moreover, the computation of all possible configurations to evaluate change
impact is not feasible for large models. This raises the question of how to represent the
variability of a large-scale variant-rich system in such a way that impact computation is
possible, and thereby yielding change impact information on specific parts of the sys-
tem. This leads to our second research question:

Research Question 2: How can feature-level information be leveraged to assist engi-
neers during change impact analysis in variant-rich systems?

FEATURE-ORIENTED ARTEFACT CO-EVOLUTION IN PRACTICE

As mentioned in the previous section, variability implementation goes beyond features
and their relationships. The scattering of features in the implementation, the variability
model and the build mechanism is a necessity to support fine-tuned product deriva-
tion. As features evolve through changes in the variability model, other artefacts may be
impacted as well.

The co-evolution of features and class diagrams was highlighted by Seild et al. 2012
during their study on software product line evolution. Hellebrand et al. (Hellebrand et al.,
2014) studied the co-evolution of features in the variability model and feature-related
code metrics (feature scattering and usage in pre-processor statements). Similarly, we
can find a number of works on feature influence on build systems (Dietrich et al., 2012a;
Nadi and Holt, 2012; Zhou et al., 2015). More recently, Passos et al. started an effort to
describe complex feature-related co-evolution scenarios occurring on the Linux kernel
(Passos et al., 2015). Through intesive manual analysis of a large corpus of commits (365),
they isolated 23 scenarios. Those scenarios contain descriptions of changes occurring in
the different artefacts: the variability model, the mapping between features and assets,
and changes inside conditionally compiled code blocks. With this study, Passos et al.
showed that some characteristics of feature implementation, such as the type of artefacts
mapped to the feature, or the presence of conditionally compiled code blocks associated
with a feature, were key elements to describe and therefore understand the scope of such
change operations.

This last study consistitutes the state-of-the-art regarding feature oriented co-evolution
of artefacts in variant-rich systems. However, being a manual study based on a relatively
small number of commits, the results of this study cannot be generalized. Moreover,
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while this study shows how co-evolution occurs in some cases, the manual nature of
the analysis makes it difficult to replicate and further deepen our understanding of such
changes. For instance, we lack information regarding the frequency of such changes and
their prevalence in the evolution of systems over long periods of time. This leads us to
our third research question:

Research Question 3: What role does co-evolution play in the evolution of features of
variant-rich systems?

From a technical perspective, complex co-evolution scenarios are challenging. Mod-
ifying each type of artefact requires a different expertise - if only to master the syntax and
semantics used in that artefact, as well as their internal relationships. When hundreds of
developers are involved in the development of a complex system, the question as to who
performs complex evolution scenario arises.

If feature evolution may be performed by inter-related changes, it may be that the
operations leading to a new version of a feature might be performed by more than one
developer. Among all the developers working on such systems, we suggest that some
may not have the expertise to perform such changes, and this should be reflected in the
observed development practices. This leads us to our final research question:

Research Question 4: To what extent are developers facing co-evolution over the
course of a release?

4. RESEARCH METHOD AND EVALUATION
To answer our research questions, we studied the evolution of features in open source
systems and in industrial context through case studies. Our first case study is the Linux
kernel, a large-scale open source operating system, and the second is the Allura system,
an x-ray machine developed by Philips Healthcare.

With more than 20 years of development, the Linux kernel contains today more than
13,000 features and is still actively developed. The kernel is present in one form or an-
other in many types of systems: from watches to high-end computational clusters of
servers. This makes the kernel a great example of a variant-rich system, with a long his-
tory of changes that we can learn from. In this period of time, we can observe complete
life cycles of features, from their introduction until their retirement. Because of the pop-
ularity of the kernel, we can assume that the implementation techniques and mainte-
nance practices, while not being perfect, are surely sufficient. We can consider this sys-
tem as representative of a variant-rich, long lived and mature system, in which feature
evolution is performed in a reasonable manner.

The second system on which we focus is the Allura system. It is an x-ray machine,
with a large number of configuration options as well, although fewer than the Linux ker-
nel. Developed by Philips Healthcare, the customization of the system is driven by cus-
tomer needs, and in practice, each installed system is virtually unique. Because of the na-
ture of the system (an x-ray machine), most elements are considered safety critical and
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R.Q. 1 R.Q. 2 R.Q. 3 R.Q. 4
Chapter 2 X X
Chapter 3 X
Chapter 4 X X X

Table 1.1: Mapping between chapters and the research questions they address

must comply with strict regulations. Evolution of the system is closely monitored, both
for internal impact as well as impact on the third party equipment that can be integrated
with the Allura system. The Allura system is a good example of an industrial variant-rich
system, where an understanding of feature changes and their impact is paramount for
the evolution of the system.

The research presented in this work was conducted by applying elements of the de-
sign science research methodology (Hevner et al., 2004; Peffers et al., 2007). For each
problem we tackle, for the purpose of either change extraction or impact computation,
we built a prototype able to perform the main task at hand providing a concrete out-
put with respect to the problem, either description of changes or description on their
impact.

The prototypes themselves are quantitatively evaluated in terms of precision and re-
call when relevant. We present the methodology used to build the tools, in such a way
that both the tools may be re-implemented and the overall experiment can be replicated.
All prototypes developed during the course of this work are released as open source
projects, for further use and repeatability purposes. For studies in which the tool gener-
ates data, the resulting datasets were also made available publicly. The nature of the data
contained within the dataset is also described, along with the justification of its repre-
sentation. The data collected with those prototypes are then used to derive information
regarding feature evolution and feature changes in development artefacts.

The work on change impact performed in cooperation with Philips Healthcare was
performed following the guidelines of an “industry-as-lab” experiment (Potts, 1993). The
motivation behind the work was an actual industrial challenge that Philips engineers
were facing. The execution of the research led to the development of a new design. In
this case, we evaluated the suitability of the approach and its output by applying the
approach to a number of industrial scenarios, and reviewed the results with domain ex-
perts.

In each chapter, we describe the scope and limitations of our approaches with re-
spect to their generalization beyond the Linux kernel and the systems studied in the
Philips case-study.

5. THESIS OUTLINE
This thesis is organized into chapters, each addressing at least one of the research ques-
tions presented in the previous section. An overview of the chapters and the questions
they address is presented in Table 1.1.
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In Chapter 2, we tackle the evolution of features at a variability model level. We present
FMDiff, a model-based change extraction approach, with its associated implementa-
tion allowing us to identify between two tags in a version control system to extract fine-
grained changes operated by developers on features within the variability model. We
apply this approach to the Linux kernel and show how we managed to build a dataset
comprised of feature changes occurring between the first and last commits of a release.
Our evaluation shows that features in the Linux kernel evolved more through modifica-
tion of existing features and their constraints than through addition and modification,
shedding new light on evolution scenarios previously less explored. It also allowed us to
show the suitability of model-based differencing for variability model change extraction.

In Chapter 3, we continue to work on variability model changes, focusing this time on
change impact on valid configurations. We build a “multi-product line” representation of
the variability model (a set of related variability models) of a complex hardware-software
system, namely the Philips Allura X-ray system, and show how this representation can be
used to assess change impact not on configurations of the system (of which there might
be many, with many features), but on configurations of sub-systems - smaller, easier to
understand. We also show how using such models we can observe the propagation of the
change impact on the different configurations of each subsystem within the represented
scope. In this case study, we modelled the variability of the system in terms of internal
hardware, software elements, and external and publicly visible interfaces. Our evaluation
shows how “multi-product line” representation of the variability of a complex system
can be built in such a way that impact computation is feasible. We also show how this
representation can be suitable for practical applications.

Chapter 4 is a presentation of the FEVER approach. This model-based change extrac-
tion approach is an extension of what was made possible by FMDiff but now includes
model-based change extraction from build system and source code. This approach al-
lowed us to build a large dataset of feature change information and enabled us to pro-
vide the first set of quantitative information regarding co-evolution of artefacts in the
context of feature evolution. The evaluation shows that a model-based approach can be
used to extract feature-related information from different types of artefacts. The evalua-
tion of the collected data shows that while co-evolution occurs systematically over time,
complex change scenarios are not the most frequent. We also show that a minority of
developers face complex co-evolution scenarios during development activities.

Finally, in Chapter 5, we reflect on the collected results and our research questions.
We then discuss their potential implication on software engineering practices and re-
search.

6. ORIGIN OF CHAPTERS
The chapters of this thesis are all based on peer-reviewed publications, accepted in soft-
ware engineering conferences and journals. Each chapter is self contained, comes with
its own set of contributions. While this helps to read chapters independently for each
other, this implies some overlap between the different chapters, especially in their intro-
duction and motivations.

The author of this thesis is the main contributor of the work presented in each chap-
ter. In addition, Chapter 2 includes a postscript section detailing the author’s current
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perspective on the work presented therein.

• Chapter 2 is mostly based on work published in the Springer journal “Software and
Systems modelling” (SoSyM) in May 2015 authored by Dintzner, Van Deursen and
Pinzger. An earlier version of this work was published as part of the Proceedings of
the Eighth International Workshop on Variability Modelling of Software-Intensive
Systems (VaMoS workshop) in 2013. The postscript of this chapter is based on the
work of Rothberg et al. published as part of the Proceedings of the Eighth Interna-
tional Workshop on Variability Modelling of Software-Intensive Systems (VaMoS
workshop) in 2016.

• Chapter 3 This chapter first appeared in Proceedings of the 14th Conference on
Software Reuse (ICSR’15) authored by Dintzner, Kulesza, Van Deursen and Pinzger.

• Chapter 4 is based on work submitted to the journal of “Empirical Software Engi-
neering” (submitted in October 2016, currently under review) authored by Dintzner,
Van Deursen and Pinzger. An earlier version of this work appeared in the pro-
ceedings of the 13th International Conference on Mining Software Repositories
(MSR’16), authored by Dintzner, Van Deursen and Pinzger.
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ANALYZING THE LINUX KERNEL

FEATURE MODEL CHANGES USING

FMDIFF

To improve is to change; to be perfect is to change often.

Winston Churchill

The Linux kernel feature model has been studied as an example of large scale evolving fea-
ture models and yet details of its evolution are not known. We present here a classification
of feature changes occurring on the Linux kernel feature model, as well as a tool, FMDiff,
designed to automatically extract those changes. With FMDiff, we obtained the history of
more than twenty architecture-specific feature models, over sixteen releases, and we com-
pared the recovered information with Kconfig file changes. We establish that FMDiff pro-
vides a comprehensive view of feature changes and show that the collected data contains
valuable information regarding the Linux feature model evolution.

Using this information, we performed an exploratory study of changes occurring in the
Linux kernel feature model. We show that modifications of existing attributes and con-
straints of features play a major role in the evolution of the Linux kernel feature model,
and yet such changes are often overlooked by current research. Finally, by comparing the
evolution of the different architecture specific feature models, we show that 10 to 50 % of
feature changes performed in a given release affect the capabilities of all of them, thus
making generalization of observations on feature evolution from one architecture specific
feature model to others difficult.

This chapter was originally published as “Analyzing the Linux Kernel Feature Model Changes Using FMDiff”,
in the Springer journal "Software and Systems modelling" (SoSyM) in May 2015 authored by Dintzner,Van
Deursen and Pinzger.
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1. INTRODUCTION
Software product lines are designed to maximize re-use of development artefacts while
diminishing development costs, through the identification and formalization of what is
common and variable between different members of a product family (Clements and
Northorp, 2002). Features, as configuration units, represent functionalities or character-
istics that may be included in products of a product line. Available features are often
formalized in a feature model, describing both the options themselves and their allowed
combinations. The choice of features to offer in a software product line influences its ar-
chitecture, implementation techniques, and applicable methods to instantiate products
from a set of assets (source code, scripts, resources).

Over time, as a software product line evolves, features are added, removed, or modi-
fied and the associated assets are updated accordingly. However, software product lines
are often large-scale, long lived systems and the number of features in a product line
increases over time. The sheer size and the number of variable components in such sys-
tems make evolution operations difficult and error-prone.

Because of the pervasive effect of features on the design and architecture of prod-
uct lines, the evolution of a software product line is linked to the evolution of its feature
model. Recent research on co-evolution of feature models and other software assets in
product lines suggests that maintenance operations can be facilitated by using feature
changes as a starting point (Neves et al., 2011; Passos et al., 2013). Feature model evo-
lution and feature transformations have been extensively studied in the past (Guo et al.,
2012; Paskevicius et al., 2012; Svahnberg, 2000; Thuem et al., 2009). These studies provide
insight on which operations may occur on features, detailed examples of specific trans-
formations occurring on large scale product lines, and the evolution of feature model
structural metrics (number of leaves, nodes, constraints).

Unfortunately, from this body of knowledge, gathering a detailed view of all changes
occurring in practice on a large scale feature model is difficult. Previous work showed
that knowledge about fine-grained changes of software artefacts could facilitate software
maintenance. Using fine-grained changes of source code, good results were obtained in
the area of bug prediction (Giger et al., 2012). In the context of software product lines,
fine-grained information about feature changes, down to feature attribute values, could
be a major asset to enable safe evolution of such systems.

With more than 10,000 features and over two decades of development history, the
Linux kernel is a popular choice of system for the study of the evolution of large scale,
industrial-grade product lines. Several studies (e.g., (Israeli and Feitelson, 2010; Lotufo
et al., 2010)) quantified the addition and removal of features in the Linux kernel over time
or present structural metrics of the kernel’s feature model, such as the depth of feature
structure or number of leaf features in each release, as means to illustrate the evolution
of both the kernel and its feature model.

Yet, the details of changes occurring on the Linux kernel features are not known. Ex-
isting feature model evolution studies focus essentially on the addition and removal of
features (Lotufo et al., 2010; Neves et al., 2011; Passos et al., 2013), but there is no evi-
dence that such changes are the most frequent on industrial feature models. By gather-
ing fine-grained information about Linux feature changes, we can verify whether addi-
tion and removal of features are the change operation that weighs the most in the evolu-
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tion of the Linux kernel feature model and answer the following research question:
RQ1: What are the most common high-level operations performed on features in the

Linux kernel feature model?
Moreover, studies of the Linux kernel mostly focus on a single hardware architecture

(often X86) and, on occasion, extrapolate their findings to other architectures (Lotufo
et al., 2010). By obtaining details of feature changes, we will be in a position to assess
whether such extrapolation holds when studying the evolution of the Linux feature model,
and answer this second research question:

RQ2: To what extent does a feature change affect all architecture-specific feature mod-
els of the Linux kernel?

This paper is a revised and extended version of our work on the extraction and classi-
fication of feature model changes in the Linux kernel (Dintzner et al., 2013). We present
first our classification of feature changes occurring in the Linux kernel feature model
based on the Kconfig language1 and an improved version of the corresponding tool,
FMDiff, to extract them. Our classification describes feature changes on three different
levels of granularity, feature model level operation (adding, removing, and modifying
features), feature statement changes, down to feature attribute value changes. FMDiff
uses Undertaker (Tartler et al., 2011, 2009) to extract the Linux feature model and the
EMF Compare2 diff algorithm to compare two subsequent versions. We evaluate our ap-
proach by comparing changes captured by our tool and changes applied to Kconfig files
and vice versa. The results show that FMDiff captures a large majority of changes ap-
plied to Kconfig files and provides a more comprehensive view of feature changes than
what could be obtained by looking at Kconfig file textual differences.

We further extend our work by using the classification and FMDiff to build a larger
dataset of feature changes occurring on the Linux kernel feature model and use it to
answer our two research questions. We build a dataset comprised of feature changes
obtained by extracting the change history of more than twenty architecture-specific fea-
ture models over fourteen releases of the Linux kernel, from release v2.6.39 until release
v3.14. Using the collected data, we show that modifications of existing features is a pre-
dominant operation on the kernel feature model. Finally, we show that, despite a large
proportion of common features between all architecture-specific feature models, a large
majority of feature changes only affect a subset of them.

The main contributions of this paper are: 1) a feature model change classification
scheme, focused on the Linux kernel Kconfig language; 2) a tool-supported approach to
extract and classify automatically feature model changes from a versioning system, eval-
uated using ten releases of the Linux kernel; 3) evidence that changes to existing features
constitute a large proportion of transformations of the Linux feature model; 4) evidence
that significant differences between the evolution of the different architecture-specific
feature models of the Linux kernel exist. Both our tool and our dataset are available for
download.3

The remainder of this paper is organized as follows. Section 2 provides some back-
ground information on the Linux kernel feature model and its reconstruction. We present

1https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
2http://www.eclipse.org/emf/compare/
3https://github.com/NZR/Software-Product-Line-Research

https://www.kernel.org/doc/Documentation/kbuild\discretionary {-}{}{}/kconfig-language.txt
http://www.eclipse.org/emf/compare/
https://github.com/NZR/Software-Product-Line-Research
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our feature change classification and its rationale in Section 3. FMDiff is introduced and
evaluated in Section 4. We illustrate the capability of our tool in Section 5 by answer-
ing our two research questions. We reflect on FMDiff and the use of fine-grained feature
changes to analyze the evolution of software product lines in Section 8 Section 9 presents
related work. Finally, we conclude this paper and elaborate on potential future applica-
tions of FMDiff in Section 10.

2. BACKGROUND: THE LINUX KERNEL VARIABILITY MODEL
The approach described in this paper is based on the extraction of feature models (FMs)
declared with the Kconfig language using the kdump tool. In this section, we present
general information regarding the Linux kernel FM, the basic Kconfig concepts and the
output format generated by kdump.

2.1. THE LINUX KERNEL FEATURE MODEL

Linux users can tailor their own kernel with Xconfig (among other tools), the kernel
configurator. This tool displays available configuration options in the form of a tree, and
as the user selects or unselects options, the tree is updated to show only options that
are compatible with the current selection. In this context, configuration options can be
assimilated to features and the set of options with their constraints to a feature model
(Sincero et al., 2007; Sincero and Schröder-Preikschat, 2008).

Such tools use the textual descriptions of the Linux features contained with Kconfig
files as an input (detailed in Section 2.2), and provide a collection of selected features as
an output, in the form of a list of feature names. During the configuration process, the
configurator identifies the files to include and the features to display, depending on con-
straints expressed in those files. Constraints on file selection, or selectability of features,
are resolved using naming convention based on feature names.

The choice of the target hardware architecture (e.g.,, X86, ARM, SPARC) does not fol-
low this rule. Because the choice of target architecture defines which file should be read
first, it uses another mechanism. The name of the chosen architecture is defined during
start-up (and can be modified later on) and stored in a variable used to build the first
visualization of the FM ($SRCARCH, visible in “./Kconfig”). If no target architecture is
given when starting the tool, it uses the architecture of the machine on which it is run
by default. As a result, no parts of the Linux kernel FM represent the choice between
architectures - while the architectures themselves are present as features.

This becomes important when rebuilding the Linux FM: without knowing which hard-
ware architecture is being considered, we do not know which files to consider when re-
building the FM. To avoid this problem, the methodology commonly applied is to re-
build a partial Linux FM per supported hardware architecture (Lotufo et al., 2010; Nadi
and Holt, 2012). In this study, we use this specific approach when rebuilding the Linux
FMs and analyzing FM changes.

2.2. KCONFIG

Features and their composition rules, which denote cross-tree constraints in FMs, are
specified using the Kconfig language (see also (Sincero et al., 2007) and (Sincero and
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1 if ACPI

3 config ACPI_AC
tristate "AC Adapter "

5 default y if ACPI
depends X86

7 select POWER_SUPPLY
help

9 This driver supports the AC Adapter
object ,(...) .

11

endif

Listing 2.1: Example of a feature declaration in Kconfig

Schröder-Preikschat, 2008)). Listing 2.1 exemplifies a feature declaration in the Kconfig
language.

In the Kconfig language, features have at least a name (following the config key-
word on line 3) and a type. The type attribute specifies what kind of values can be asso-
ciated with a feature. A feature of type boolean can either be selected (with value y for
’yes’) or not selected (with value n for ’no’). Tristate features have a second selected state
(m for ’module’), implying that the features are selected and are meant to be added to the
kernel in the form of a module. Finally, features can be of type integer (int or hex) or
type string. In our example, the ACPI_AC feature is of type tristate (line 4). Features
can also have default values, in our example the feature is selected by default (y on line
5), provided that the condition following the condition following the if keyword is satis-
fied. The text following the type on line 4 is the prompt attribute. It defines whether the
feature is visible to the end user during the configuration process. The absence of such
text means the feature is not visible.

Kconfig supports two types of dependencies. The first one represents pre-requisites,
using the depends (or depends on) statement followed by an expression of features (see
line 6). If the expression is satisfied, the feature becomes selectable. The second one, ex-
pressing reverse-dependencies, are declared by the select statement. If the feature is
selected then the target of the select will be selected automatically as well (POWER_SUPPLY
is the target of the select statement on line 7). The select statement may be condi-
tional. In such cases, an if statement is appended to the select statement. depends,
select and constrained default statements are used to specify the cross-tree con-
straints of the Linux kernel FM (She et al., 2010). A feature can have any number of such
statements.

Furthermore, Kconfig provides statements to express constraints on sets of features,
such as the if statement shown on line 1. This statement implies that all features de-
clared inside the if block depend on the ACPI feature. This is equivalent to adding a
depends ACPI statement to every feature declared within the if block.

Finally, Kconfig offers the possibility to define a feature hierarchy using menus and
menuconfigs. Those objects are used to express logical grouping of features and organize
the presentation of features in the kernel configurator. Like “if” statements, constrains
defined on menus and menuconfigs are applicable to all elements within.
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Item ACPI_AC tristate
2 Prompt ACPI_AC 1

Default ACPI_AC "y" "X86 && ACPI"
4 ItemSelects ACPI_AC POWER_SUPPLY "X86 && ACPI"

Depends ACPI_AC "X86 && ACPI"

Listing 2.2: Representation of the feature declaration of Listing 2.1 in .rsf format

2.3. FEATURE MODEL REPRESENTATION
A prerequisite to our approach is being able to extract feature definitions from Kconfig
files. For this, we use an existing Linux tool, kdump, to translate Kconfig features into an
easier to process format. This tool has been used in other studies of the Linux variability
model, where kdump output is used by Undertaker(Tartler et al., 2009) to determine fea-
ture presence conditions. kdump produces a set of “.rsf” files4, each one containing an
architecture-specific FM, i.e., an instance of the Linux FM where the choice of hardware
architecture is predetermined. Listing 2.2 shows the example of the feature declared in
Listing 2.1 in rsf triplets as output by kdump.

The first line shows the declaration of a feature (Item) with name ACPI_AC and type
tristate. The second line declares a prompt attribute for feature ACPI_AC and its value
is set to true (1). The third line declares the default value of the ACPI_AC feature, which is
set to y if the expression X86 && ACPI evaluates to true. Line 4 adds a select statement
reading when ACPI_AC is selected the feature POWER_SUPPLY is selected as well, if the ex-
pression X86 && ACPI evaluates to true. Finally, the last line adds a cross-tree constraint
reading feature ACPI_AC is selectable (depends) only if X86 && ACPI evaluates to true.

kdump eases feature extraction but modifies their declaration. Among the applied
modifications, two are most important for our approach: first, kdump flattens the feature
hierarchy and then, it resolves features depends statements. Concerning the flattening
of the hierarchy, kdump modifies the depends statement of each feature to mirror the
effects of its hierarchy. For instance, kdump propagates surrounding if conditions to the
depends statements of all features contained in the if-block. This explains the addition
of ACPI to the condition of the depends statement on line 5 of Listing 2.2. Concern-
ing the resolution of depends statements, kdump propagates conditions expressed in the
depends statement of a feature to its default and select conditions. This explains the
condition X86 && ACPI that has been added to the select (ItemSelects) and default
value (Default) statements.

3. CHANGE CLASSIFICATION
We aim at classifying feature changes occurring in the Linux kernel feature model (FM).
Existing feature change classifications do not consider some specificities of the Kconfig
grammar (e.g., select relationships with conditions, default value, or visibility). To cap-
ture as accurately as possible changes in such statements, we introduce a new classifica-
tion.

4Rigi Standard Format is a simple notation for annotated triplets originating from the Rigi reverse engineering
tool. http://www.rigi.cs.uvic.ca/downloads/rigi/doc/node52.html

http://www.rigi.cs.uvic.ca/downloads/rigi/doc/node52.html
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Figure 2.1: FMDiff scheme to classify changes in feature models on different levels.

We present a three level classification scheme of feature changes, namely change cat-
egory, change sub-category, and change type. Each category describes a feature change
on a different level of granularity. Items on each level are named based on the modified
Kconfig statement, such as a default statement, and the change operation applied i.e.,
addition (ADD), removal (REM), or modification (MOD). This classification is based on the
Kconfig grammar5, to identify which feature attribute may change and the relationship
between them. We then consider that each attribute and feature may be added, removed
or modified. Figure 2.1 depicts our change classification scheme.

The first level, change category, describes changes at a FM level. Here, features can
be either added, removed, or modified. The corresponding change categories are ADD-
_FEATURE, REM_FEATURE, and MOD_FEATURE. In the following, we abbreviate lower-level
change types by prefixing the feature property that can change with the three change
operations ADD, REM, and MOD.

The next level, change sub-category, describes which property of the feature changed.
We differentiate between attribute changes (i.e., type or prompt properties), and changes
in the dependencies, default value, and select statements. The corresponding twelve
change sub-categories are {ADD, REM, MOD}_ATTR, {ADD, REM, MOD}_DEPENDS, {ADD,
REM, MOD}_DEF_VAL, and {ADD,REM,MOD}_SELECT.

Finally, change types detail which attribute, or part of a statement, is modified. The
change types are:

• Attribute change types: we track changes occurring on the type and prompt at-
tributes. Combined with the three possible operations, we have {ADD, REM, MOD}-
_TYPE and {ADD, REM, MOD}_PROMPT.

• Depends statement change types: depends statements contain a Boolean expres-
sion of features. We use a set of change types describing changes occurring in that

5https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
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expression, namely {ADD, REM, MOD}_DEPENDS_EXP. In addition, we further de-
tail these changes by recording the addition and removal of feature references
(mentions of feature names) in the Boolean expression with the two change types
{ADD,REM}_DEPENDS_REF.

• Default statement change types: default statements are composed of a default value
and a condition. Both, the condition and the value can be Boolean expressions of
features. Default values can be either added or removed recorded as {ADD, REM}-
_DEF_VAL change types. Changes in the default statement condition are stored as
{ADD, REM, MOD}_DEF_VAL_COND. Finally, we track feature references changes in
the default value using {ADD, REM}_DEF_VAL_REF and in the default value con-
dition using change types {ADD, REM}_DEF_VAL_COND_REF.

• Select statement change types: select statements are composed of a target and a
condition which, if satisfied, will trigger the selection of the target feature. Simi-
lar to the default statement change types, we record {ADD, REM, MOD}_SELECT-
_TARGET changes. Changes to the select condition are recorded as {ADD, REM,
MOD}_SELECT_COND. Finally, to track changes in feature references inside a select
condition, we use the {ADD, REM}_SELECT_REF change types.

The three change categories, twelve change sub-categories and twenty seven change
types form a hierarchy allowing us to classify changes occurring in FMs expressed in the
Kconfig language.

As an example consider an existing feature with a default value definition to which a
developer adds a condition. The change will be fully characterized by the change category
MOD_FEATURE and the sub-category MOD_DEF_VAL, since the feature and default value
declaration already existed, and finally the ADD_DEF_VAL_COND change type denoting the
addition of a condition to the default value statement, and a ADD_DEF_VAL_REF change
type for each of the features referenced in the added default value condition.

Kconfig provides several additional capabilities, namely menus to organize the pre-
sentation of features in the Linux kernel configurator tool, range attribute on features
and options such as env, defconfig_list or modules. We do not keep track of menu
changes, but we do capture the dependencies induced by menus. kdump propagates fea-
ture dependencies of menus to the features a menu contains in the same way it propa-
gates if block constraints. kdump does not export the range attribute of features, there-
fore we cannot keep track of changes on this attribute and do not include them in our
feature change classification scheme. We plan to address this issue in our future work.
Furthermore, kdump does not export options such as env, defconfig_list or modules
and we cannot track changes in such statements. But, because those options are not
properties of features and do not change their characteristics, we consider the loss of
this information as negligible when studying FM evolution.

Regarding our classification scheme, note that some combinations of change cate-
gory, sub-category, and change types are not possible or do not occur in practice. For in-
stance, the change types denoting that a depends or a select statement was added cannot
occur together with the change category REM_FEATURE denoting that the feature decla-
ration was removed. Some combinations are also constrained by Kconfig, such as the
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Figure 2.2: Change extraction process overview

change type ADD_TYPE can only occur in the context of a feature creation, i.e., with the
change category ADD_FEATURE.

Finally, our change classification currently does not include high-level FM transfor-
mations, such as merge feature or move feature. However, the effect of such trans-
formations on features can be represented by modifications of feature dependencies
which are covered by our classification.

4. FMDIFF
In this section, we present our approach to automate feature change extraction and the
tool that supports it: FMDiff. We then evaluate our approach by comparing changes cap-
tured using FMDiff with changes performed on Linux Kconfig files.

4.1. FMDIFF OVERVIEW

The main objective of FMDiff is to automate the extraction of changes occurring on the
Linux FM and classify those changes according to the scheme presented in the previous
section. The extraction of feature changes is performed in several steps as depicted in
Figure 2.2.
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Figure 2.3: FMDiff feature metamodel

FEATURE MODEL EXTRACTION

The first step of our approach consists in extracting the Linux FM from Kconfig files.
We first obtain the Kconfig files of selected Linux kernel versions from its source code
repository.6 Next, we use the Undertaker tool, that provides a wrapping of kdump, to
extract architecture-specific FMs for each version. Undertaker outputs one “.rsf” file per
architecture per version, in the format described in Section 2.

We perform a few noteworthy transformations when loading rsf-triplets into FMDiff.
The rsf-triplets describe Kconfig choice structures. Those entities are not named in the
Kconfig files and are automatically named by kdump (e.g., CHOICE_32). This means that
the same choice structure can have different names in different versions and cannot be
accurately tracked over time. For this study we ignore choices when instantiating an FM.

Features can declare dependencies on those choice, referring to them by their gen-
erated name. We replace all choice identifiers in feature statements by CHOICE. Doing
this, we cannot trace the evolution of choice structures but prevent polluting the results
with changes in the choice name generation order while we still are able to track changes
in feature dependencies on choices.

FMDIFF FEATURE MODEL CONSTRUCTION

As a second step, we reconstruct FMs from two subsequent versions of a “.rsf” file. FMDiff
compares FMs that are instances of the meta-model presented in Figure 2.3.

FeatureModel represents the root element having two attributes denoting the ar-
chitecture and the version of the FM. A FeatureModel contains any number of fea-
tures represented as Feature. Each feature has a name, type (Boolean, tri-state, integer,
etc.), and prompt attribute. In addition, each feature contains a Depends attribute repre-
senting the depends statements of a Kconfig feature declaration. All features referenced
by the depends statement are stored in a collection of feature names, called Depends-
References.

Each feature can have any number of Default Statements, containing a default
value and its associated condition. Furthermore, a feature can have any number of Select

6Official Linux kernel Git repository:
https://github.com/torvalds/linux

https://github.com/torvalds/linux
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Statements containing a select target and a condition. The condition of both state-
ments is recorded as string by the attribute Condition. The features referenced by the
condition of each statement are stored in the collection DefaultValueReferences or
SelectReferences respectively.

The .rsf output also allows a feature to have multiple depends statements but, in
our meta-model, we allow features to have only one. In the case where FMDiff finds
more than one for a single feature, it concatenates those statements using a logical AND
operator. This preserves the Kconfig meaning of multiple depends statements.

It is possible for a feature to have two default value statements, with the same de-
fault value (“y” for instance) but with different conditions. In such cases, our matching
heuristic would be unable to distinguish between the two. The same is true for features
that have two select statements with the same target. To circumvent this problem, we
concatenate conditions of default statements with a logical OR operator if their respec-
tive default values are the same. We do the same transformation for select statement
conditions, for the same reasons.

We store the reconstructed FMs and features in our database for later use. This same
representation is also used in the next step: the comparison of FMs.

COMPARING MODELS

For the comparison of two FMs, FMDiff builds upon the the EMF Compare7 framework.
EMF Compare is part of the Eclipse Modeling Framework (EMF) and provides a cus-
tomizable “diff” engine to compare models. It is used to compare models in various do-
mains, like interface history extraction (Romano and Pinzger, 2012), or IT services mod-
elling (Hölzl and Feilkas, 2010), and is flexible and efficient. EMF Compare takes as input
a meta-model, in our case the meta model presented in Figure 2.3, and two instances of
that meta-model each representing one version of an architecture-specific Linux FM.
EMF Compare outputs the list of differences between them.

The diff algorithm provided by EMF Compare is a two step process. The first step,
the “matching” phase, identifies which objects are conceptually the same in the two in-
stances. In our case study, this means matching a feature from one FM to the other. Here,
we consider two features to be the same if they have the same name in the two models.
Similarly, we need to provide rules to identify whether two default or select statements
are the same. For default value statements, we use a combination of the feature name
and the default value. For select statements, we use the targeted feature name and the
feature name.

Our choices of matching rules have consequences on how differences are computed.
A renamed feature cannot be matched in two models using our rules. Its old version will
be seen as removed, and the new one as added. Default or select statements can only be
matched if their associated feature and its default value (or select target respectively) are
the same in both models. Changes in default values (select target) are captured as the
removal of a default value (select) statement and the addition of a new one.

EMF Compare generates a list of the differences between the two models, expressed
using concepts from the FMDiff feature meta-model. For instance, a difference can be

7http://www.eclipse.org/emf/compare/

http://www.eclipse.org/emf/compare/


2

30 2. ANALYZING THE LINUX KERNEL FEATURE MODEL CHANGES USING FMDIFF

an “addition” of a string in the DependsReferences attribute of a feature. Another ex-
ample is the “change” of the Condition attribute of a Select Statement element, in
which case EMF Compare gives us the old and new attribute value.

CLASSIFYING CHANGES

The last step of our process consists in translating the differences obtained by EMF Com-
pare into feature changes as defined by our classification scheme.

The translation process comprises four steps. First, we run through differences per-
taining to the “contains” relationship of the FeatureModel object to identify which fea-
tures have been added and removed, giving us the feature change category. Then, we
focus on differences in “contains” relationships on each Feature to extract changes oc-
curring at a statement level, providing us with the change sub-category. The differences
in attribute values of the various properties are then analyzed to determine the change
type. Finally, changes are regrouped by feature name, creating for each feature change
the 3-level classification.

The results are stored in a relational database. We record for each feature change: the
architecture and version of the FM in which the change occurred, the name of the feature
affected, the change classification, and the old and new values of the attribute. We extract
the information per architecture-specific FM. We build one database per architecture in
which we store both the changes and the FMs.

4.2. EVALUATING FMDIFF
FMDiff’s value lies in its ability to accurately capture changes occurring on the Linux
feature model (completeness) and its ability to provide information that would be oth-
erwise difficult to obtain (interestingness). To evaluate FMDiff with respect to those two
aspects, we compare it with the information on changes that we obtained by manu-
ally analyzing the textual differences between two versions of Kconfig files. We consider
FMDiff data to be complete if it contains all changes seen in Kconfig files, and its data
interesting if it provides the information needed to understand the changes in the Linux
feature model (FM). We start by describing the dataset used for the evaluation, and then
assess them separately before discussing the obtained results.

DATA SET

Using Git, we retrieve the history of the Linux FM. Lotufo et al. highlight that at ran-
dom points in time, the Linux FM is not necessarily consistent(Lotufo et al., 2010). To
minimize such issues, we extract feature changes between official Linux releases. For all
releases of the Linux Kernel from 2.6.28 to 3.14, we rebuild 26 architecture-specific FMs.
We extract the changes occurring in 16 releases, over a time period of 3 years (from March
2011 for 2.6.38 to April 2014 for 3.14).

Between release 2.6.38 and 3.14, five new architectures were introduced (Unicore32
in 2.6.39, Openrisc in 3.1, Hexagon in 3.2, C6X in 3.3, and arm64 in 3.7). We include those
architectures in our study to capture the effects of the introduction of new architectures
on the Linux FM. We extract the feature history of 21 architectures present in version
2.6.38 and follow the addition of new architectures, for a total of 26 in 3.14. Our dataset
contains 2,734,353 records describing the history of the Linux kernel FM.
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COMPLETENESS

To evaluate the completeness of the captured changes, we verify that a set of feature
changes observed in Kconfig files are also recorded by FMDiff.

Method: we randomly pick twenty five Kconfig files from different sub-systems (mem-
ory management, drivers, and so on) modified over five releases. We then use the Unix
“diff” tool to manually identify the changed features.

Because FMDiff captures feature changes per architecture, we first determine in
which architecture(s) those feature changes are visible. Then, we compare Kconfig files
diff’ with the feature changes captured by FMDiff for one of those architectures. We pick
architectures in such a way that all architectures are used during the experiment.

For each feature change, FMDiff data 1) matches the Kconfig modification if it con-
tains the description of all feature changes - including attribute and value changes; 2)
partially matches if FMDiff records a chage of a feature but that change differs from
what we found out by manually analyzing the Kconfig files; 3) mismatches if the change
is not captured by FMDiff.

A partial or mismatch would indicate that FMDiff misses changes, hence the more
full matches the more complete FMDiff data is. We also take into account that renamed
features will be seen in FMDiff as “added” and “removed”.

Results: In the selected twenty five modified Kconfig files, 51 features were touched.
48 of those feature changes could be matched to FMDiff data, described by 121 records
of our database. A single partial match was recorded, caused by an incomplete “.rsf”
file. A default value statement (def_bool_y) was not translated by kdump in any of the
architecture-specific “.rsf” files. In two cases, the FMDiff changes did not match the
Kconfig feature changes. In both cases, developers removed one declaration of a feature
that was declared multiple (2) times, with different default values, in different Kconfig
files. In FMDiff, a change in the feature default value was recorded, which is consistent
with the effect of the deletion on the architecture-specific FM. Based on this, we argue
that FMDiff accurately captures the change.

Over our sample of feature changes, FMDiff did capture all the changes occurring
in “.rsf” files. Moreover, a large majority (94%) of Kconfig file changes were reflected
in FMDiff’s data. In the remaining cases, FMDiff still captures accurately the effects of
Kconfig file changes on Linux FM. We conclude, based on our sample, that the dataset
obtained with FMDiff is complete with respect to the changes occurring on the Linux
FM.

INTERESTINGNESS

By comparing FMDiff data with Kconfig file differences, we identify what information
made available by FMDiff would be difficult to obtain using textual differencing ap-
proaches.

Method: We trace 100 feature changes randomly selected from the FMDiff dataset
to the Kconfig file modifications that caused them. For each change, we determine the
set of Kconfig files of both versions of the Linux FM that contain the modified feature.
We then perform the textual diff on these files and manually analyze the changes. If the
diff cannot explain the feature change recorded by FMDiff, we move up the Kconfig file
hierarchy and analyze the textual differences of files that include this file via the source
statement.
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The comparison between FMDiff changes and Kconfig file changes can either 1)
match if the change can be traced to a modification of a feature in a Kconfig file; 2) in-
directly match if the change can be explained by a Kconfig file change but the feature
or attribute seen as modified in the Kconfig file is not the same as the one observed in
FMDiff data; or finally 3) mismatch if it cannot be traced to a Kconfig file change.

We observe an indirect match when a FMDiff change is the result of kdump propagat-
ing dependency changes onto other feature attributes or onto its subfeatures (e.g., when
a depends statement is modified on a parent feature). Here, indirect matches indicate
that FMDiff captures side-effects of changes made on Kconfig files.

Results: Among the hundred randomly extracted changes, four were modifications of
feature Boolean expressions, adding or removing multiple feature references. We traced
each reference addition/removal separately, resulting in 108 tracked feature changes.

We successfully traced 107 changes out of 108 back to Kconfig files changes. A single
mismatch was found, involving a choice statement that could not be explained; but the
change was consistent with the content of kdump’s output. We obtained 26 matches, 79
indirect matches and finally 2 features were renamed and those changes were success-
fully captured as deletion and creation of a new feature. Among the indirect matches, 61
are due to hierarchy expansion and 18 due to depends statement expansion on other
attributes.

The large number of indirect matches is explained by an over-representation in our
sample of changes induced by the addition of new architectures. Architectures are added
by creating, in an architecture-specific folder (e.g., /arch), a Kconfig file referring existing
generic Kconfig files in other folders (e.g., /drivers). Hence, we observe feature additions
in an architecture-specific FM without modifications to feature declarations.

79 feature changes captured by FMDiff could not be directly linked to feature changes
in Kconfig files but to changes in the feature hierarchy or other feature attributes. We ar-
gue that even if FMDiff data does not always reflect the actual modifications performed
by developers in Kconfig files, it captures the effect of the changes on the Linux FM. In
fact, FMDiff data provides better information than what can be obtained from the tex-
tual differences between two versions of the same Kconfig file, where such effects need
to be reconstructed manually.

4.3. DISCUSSION: FMDIFF
During our evaluation, we showed that FMDiff captures accurately a large majority of
feature changes in the Linux FM. Based on this, we elaborate here on limits and potential
usages of the tool and the gathered data.

CAPTURING CHANGES

Thanks to kdump hierarchy and attribute expansion, FMDiff not only captures changes
visible in Kconfig files, but also the side effects of those changes (indirect matches). It
makes explicit FM changes that would otherwise only be visible by manually expand-
ing dependencies and conditions of features and feature attributes. Such an analysis re-
quires expertise in the Kconfig language as well as in-depth knowledge of Linux feature
structures.

Developers and maintainers modifying Kconfig files can use our tool to assess the
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effect of the changes they perform on the feature hierarchy. By querying FMDiff data,
they can obtain the list of feature changes between their local version and the latest re-
lease. This will give them insight on the spread of a change by answering questions such
as “which features are impacted?” and “should this feature be impacted?”. Moreover, de-
velopers can follow the impact of changes performed by others on their subsystem, by
looking at changes occurring on features of their sub-system.

As mentioned in Section 3, we do not track all possible changes occurring in Kconfig
files. We ignored the range attribute, and only partially capture changes of choice struc-
tures. Those limitations were not problematic during the evaluation of FMDiff because
the range attribute is not used widely (less than 170 occurrences in v3.10 kernel, for over
12,000 features) and in our small sample, choice modifications do not occur often.

THREATS TO VALIDITY

Internal validity The evaluation of the tool was done by manually inspecting changes in
Kconfig files and recorded changes in FMDiff. Like most manual processes, it is error
prone. We recorded comparison and matches and we share the sample and results on
our website for further validation.8

The sampling of FMDiff changes for the validation is done randomly, so the differ-
ent releases, architectures or change types are not equally represented in our sample. We
consider that this sample contained enough different types of changes and feature oper-
ations to be representative of common feature transformations performed on the Linux
FM.

For our evaluation, we compared the changes in Kconfig files with their respective
records in FMDiff database. In total, for this experiment, we checked 229 database en-
tries (121 during the first step and 108 during the second). The complete database used
for this experiement contains 2,734,353 records. For a confidence level of 95%, we can
consider our results with a confidence interval of 6.48. Out of the 229 checked entries,
223 were valid. We argue that, while our sample is relatively small, and the confidence
interval quite large, our conclusions regarding change types and architecture-specific
feature evolution can reasonably be relied upon.

External validity Our change classification and tool are tightly linked to the Kconfig
language. While a mapping between Kconfig and more generic FMs (such as FODA) ex-
ists (She et al., 2010), we did not investigate its usage to generalize our approach. This
work is currently limited to product lines using the Kconfig language as a means to de-
scribe their features.

5. USING FMDIFF TO UNDERSTAND FEATURE CHANGES IN THE

LINUX KERNEL FEATURE MODEL
FMDiff captures changes occuring on features of the Linux kernel and stores each in-
dividual change in a database. Thanks to this format, we can easily query the gathered
information to study the evolution of the kernel feature model (FM) over time. We use
this information to identify the most common change operations performed on features

8https://github.com/NZR/Software-Product-Line-Research
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Total number of feature change operations averaged over architectures

(number of architectures)

481 760 384 1729 599 482 738 596 1055 531 1403 717 681 713 361 395

(21) (22) (23) (24) (25) (26)

Figure 2.4: Evolution of the feature change category distribution (averaged over architectures)

and study the pervasiness of feature changes across the multiple architecture-specific
FMs of the kernel, and to answer the research questions as raised in the introduction.

5.1. HIGH-LEVEL VIEW OF THE LINUX FM EVOLUTION

FMs, as central elements of the design and maintenance of SPLs, have attracted substan-
tial attention over the past few years in the research community. For example, several
studies describe practical SPL evolution scenarios related to FM changes (Neves et al.,
2011; Passos et al., 2013; Seidl et al., 2012), focusing mostly on addition and removal of
features. An open question, however, is whether the changes commonly studied are also
the most frequent ones on large scale systems. This leads us to our first research ques-
tion, which we answer using FMDiff data. RQ1: What are the most common high-level
operations performed on features in the Linux kernel feature model?

Let us consider the highest level of changes that FMDiff captures: addition, removal
and modification of features. We use our database to query, for a given architecture, fea-
tures that were changed during a specific release. Listing 2.3 shows an example of such
query, giving us the number of features modified during release v3.0 for a single archi-
tecture. We compute, for sixteen releases, the total number of changed features and the
number of modified, added and removed features in each architecture-specific FM; us-
ing only the first level of our change classification. To obtain an overview of the changes
occurring in each release, we average number of modified, added, and removed features
per architecture.

As shown in Figure 2.4, during release 3.0, the average number of feature changes in
architecture-specific FMs were 760. About 70% of those changes are modifications of ex-
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1 select count ( distinct feature_name )
from fine_grain_changes

3 where revision ='v3.0'
and change_category =' MOD_FEATURE '

Listing 2.3: Example of query on FMDiff data: modified features in release 3.0

isting features, 22% are additions of new features, and only about 8% of those changes are
feature removals. Note that the total number of architectures taken into account varies
over time. In Figure 2.4, the number of architectures used for the computation of the
graph is noted in parenthesis above each column.

Over the 14 studied releases, on average per architecture, creation of new features
accounts for 10 to 50% of feature changes. Deletion of features accounts for 5 to 20% of
all feature changes and modification of existing features accounts for 30 to 80% of all
feature changes.

In this case, modifications of existing features include modification of their “depend
statement”. Such statements are affected by direct developer action (edition of the fea-
ture attribute in a Kconfig file), or by changes in the feature hierarchy, as the hierarchy is
used during FM extraction (see Section 2).

With this information, we can answer our first research question. Modifications of
existing features account, on average, for more than 50% of the feature changes in most
releases (13 out of 16), making them the most frequent high-level feature change occur-
ing on the Linux kernel FM. This clearly shows that modifications of existing features is a
common operation during the evolution of the Linux FM compared to the other changes
(adding and removing features). To obtain a better understanding of the evolution of a
SPL with respect to its FM, it is necessary to understand how simple feature transforma-
tions, such as attribute or constraints changes are implemented. In summary, to answer
RQ1, the most frequent high-level change operations performed on the Linux feature
model are modifications to existing features.

This conclusion above is specific to certain types of representations of FMs. In the
most common FODA notation, cross-tree constraints refer to features, but are attached
to a FM rather than to the features themselves. A modification to a cross-tree constraint
is arguably different than a feature modification. In this specific case, because cross-tree
constraints are part of the definition of a given, well-specified feature, we can make such
claim. Further studies on different systems are necessary to generalize this finding to
other SPLs, in other domains.

5.2. EVOLUTION OF ARCHITECTURE-SPECIFIC FMS

The Linux kernel feature model (FM) has been extensively studied as an example of large
scale software product line. In order to analyse the evolution of its FM, a common as-
sumption is that all hardware architecture-specific FMs supported by the kernel evolve
in a similar fashion (Lotufo et al., 2010). This implies that observations made on a sin-
gle architecture can be, and are, extrapolated to the entire kernel. Such approaches are
justified by the fact that the different architectures share a up to 60% of their features
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(Dietrich et al., 2012b), and that the growth rate of architecture-specific FMs are similar
(Lotufo et al., 2010).

In this section, we compare the evolution of the different architecture-specific FMs.
Our aim is to assess how similar their evolution is and if, at a fine-grained level, the as-
sumption presented above still holds; and answer our second research question: RQ2: To
what extent does a feature change affect all architecture-specific FMs of the kernel?

MOTIVATION

In practice, when a change is applied to a configuration option in a Kconfig file, there is
no guarantee that this change is affecting all architecture-specific FMs in a similar way.
Concrete examples of such changes can be found by browsing through the Linux ker-
nel source code repository history. During release v3.0, feature ACPI_POWER_METER
was removed and replaced by SENSORS_ACPI_POWER contained in another code mod-
ule.9 We can observe that the ACPI_POWER_METER feature is removed from the file
“/drivers/acpi/Kconfig” file, and that SENSORS_ACPI_POWER is added to “/drivers/hwmon-
/Kconfig”. The same change is captured by FMDiff in the form of the removal of ACPI_-
POWER_METER and the addition of SENSORS_ACPI_POWER. Using our database, we
can observe that the removal of the ACPI_POWER_METER only affected two architec-
tures: x86 and IA64. However, the addition of SENSORS_ACPI_POWER can be seen in
x86, IA64, and ARM - and perhaps others. Given the commit message, it is unclear whe-
hter this was the expected outcome or not. The change does not seem to have been re-
verted since then.

Another example is the addition of an existing feature to an existing architecture-
specific FM. Also in release v3.0, feature X86_E_POWERSAVER pre-existing in the X86
architecture was added to other architectures and its attribute modified. By searching in
Git history, we identified the commit10 removing this feature from ‘arch/x86/kernel/cpu-
/cpufreq/Kconfig’ and moving it to “drivers/cpufreq/Kconfig.x86” with a modification to
“drivers/cpufreq/Kconfig” to include the new file, with a guard statement checking the
selection of the X86 feature. Using FMDiff data, we can observe that in release v3.0, the
depend statement and select condition attributes of this features were modified in X86
(adding references to the X86 feature) in the X86 FM as a result of a change in the feature’s
hierarchy. However, it is, for instance, also seen as added in ARM and other architecture-
specific FMs.

Such changes can be problematic as a thourough testing practice would require val-
idating a change for all architectures. When a developer modifies the behavior or capa-
bilities of the kernel for multiple architectures, he needs to “cross-compile” their modi-
fications and ensure that the modifications behave appropriately on all of them. This is
also true when a modification to the FM affect an architecture-specific feature, or if an
architecture-specific change is applied to a feature. However, the cross-compilation pro-
cess is non-trivial.11 Even with a specific tool chain, it appears that cross-compilation is
inconsistently done during the development process as reported by the Linux develop-
ment team in commit messages,

9commit: 7d0333653840b0c692f55f1aaaa71d626fb00870
10commit: bb0a56ecc4ba2a3db1b6ea6949c309886e3447d3
11Linux cross-compilation manual:

http://landley.net/writing/docs/cross-compiling.html

https://github.com/torvalds/linux/commit/7d0333653840b0c692f55f1aaaa71d626fb00870
https://github.com/torvalds/linux/commit/bb0a56ecc4ba2a3db1b6ea6949c309886e3447d3
http://landley.net/writing/docs/cross-compiling.html
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Figure 2.5: Extracting feature changes affecting all architectures

“Untested as I don’t have a cross-compiler.” 12

“We have only tested these patchset on x86 platforms, and have done ba-
sic compliation tests using cross-compilers from ftp.kernel.org. That means
some code may not pass compilation on some architectures.” 13

or this message posted by Linus Torvalds in the Linux kernel mailing list

“I didn’t compile-test any of it, I don’t do the cross-compile thing, and maybe
I missed something.” 14

METHODOLOGY

To analyse the discrepancy between the evolution of the different architecture-specific
FMs, we compare the changes occuring on the features of the different FMs during the
same release. We proceed as shown in Figure 2.5.

We first identify which features were changed in all architectures for a given release.
This is achieved by querying all changes of all architecture-specific FMs for a given re-
lease from the FMDiff database. Then, we isolate unique feature names from that set.
We obtain a first list of feature names (marked as “1” in Figure 2.5). We split that set into
two: features that are seen as changed in FMDiff data in all architecture-specific FMs,
and those that are seen changed in only some architectures. This gives us the feature
sets marked as “2.1” and “2.2” in Figure 2.5.

12commit: 2ee91e54bd5367bf4123719a4f7203857b28e046
13commit: cfa11e08ed39eb28a9eff9a907b20913020c69b5
14https://lkml.org/lkml/2011/7/26/490

https://github.com/torvalds/linux/commit/2ee91e54bd5367bf4123719a4f7203857b28e046
https://github.com/torvalds/linux/commit/cfa11e08ed39eb28a9eff9a907b20913020c69b5
https://lkml.org/lkml/2011/7/26/490
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Using the set of features that appear in all architecture-specific FM changes, we com-
pare the change categories associated with those features. This way, we check whether
the main change operation (add/remove/modify) is the same on that feature in all archi-
tecture-specific FMs. Once again, we split the initial set of features in two: those that
have the same change category in all architectures (set “3.1”) and those that have differ-
ent change categories (set “3.2”).

We continue in a similar fashion by comparing the change category, sub category,
change type and attribute change, always starting with the set of feature changes com-
mon to all architectures. Ultimately, we obtain the number features that are seen as
changed exactly in the same way in all archictures (set “6.1” in Figure 2.5). We repeat
those steps for all available releases in the FMDiff dataset.

The comparison process is different when comparing feature changes based on at-
tribute value changes, as this comparison is not sensible for all attributes. Because of
the flattening of the Linux feature hierarchy, the same feature can have different at-
tribute values (depend statements for instance) in different architecture-specific FMs.
If a change is performed on such a statement, checking if the old and new values of a
feature attribute are the same in different architectures will yield negative results: the
value is different to start with, so even if the same change is applied, attribute values
remain different.

This applies to all attributes consisting of Boolean expression of features: depend
statements, select and default value conditions: 9 out of the 27 change types we identified
in Section 3. Those attributes are ignored during the construction of the last sets (“6.1”
and “6.2”). Because we capture changes in feature references on those attributes, we can
still identify if a change affected such attributes in a similar fashion in all architectures.
In fact, comparing these attribute changes would require to perform a semantic differ-
encing on those attributes, rather than the textual comparison we do at the moment. We
defer this to future work.

EXPERIMENTAL SETUP

To answer our second research question using the methodology just described, we con-
sider the following architecture-specific FMs: alpha, arm, arm64, avr32, blackfin, c6x,
cris, frv, hexagon, ia64, m32r, m68k, microblaze, mips, mn10300, openrisc, parisc, pow-
erpc, s390, score, sh, sparc, tile, unicore32, xtensa, and finally, x86. We remove from the
set of considered changes, all changes caused by the introduction of a new architec-
ture. For instance, when the architecture C6X is introduced in v3.3, we observe in our
dataset the creation of this FM and the creation of all of its features. During our compar-
ison, all features will be seen as added in the C6X architecture-specific FM, introducing a
large number of architecture-specific changes while in reality, the features have not been
touched. To avoid this, we only include an architecture-specific FM one release after its
initial introduction.

For analysis purposes, we isolate the intermediate results so that features that evolved
differently in different architectures can be isolated and the differences later manually
reviewed. The analysis is performed using R scripts, directly querying the FMDiff database.
The scripts are available in our code repository.15

15https://github.com/NZR/Software-Product-Line-Research

https://github.com/NZR/Software-Product-Line-Research


5. USING FMDIFF TO UNDERSTAND FEATURE CHANGES IN THE LINUX KERNEL FEATURE

MODEL

2

39

All changed features (v2.6.39) 
1016

Present in some arch.: 
732

Present in all arch.: 
284

Present in all arch, but with different 
change categories :  3

Same change category  in all arch.: 
281

Same change subcategory  in all arch.
269

Same change category in all archs., but 
different change subcategory: 12

Same change subcategory in all archs., 
but different change type: 0

Same change type in all archs., but 
different attribute value change: 0

Same change type in all arch.: 269

Same attribute value change in all arch.: 
269

Figure 2.6: Example of architecture evolution comparison for release v2.6.39

RESULTS

By applying the methodology described in this section for a single release, we obtain the
information depicted in Figure 2.6. We can read this figure as follows: in release v2.6.39,
1016 features were changed. Out of those, 284 are seen as changed in all architectures
(generic), while 732 are seen as changed in only some of them (architecture-specific).
281 of the features changed in all architectures have the same change category. 3 of them
have different change categories in different architectures. This occurs when a feature
is seen as added in an architecture-specific FM and modified in others for instance.
269 features have the same change category and change subcategory in all architecture-
specific FMs, 12 do not. This occurs when features with different attributes in different
FM are deleted for instance. All those 269 changed features have the same change type
and their attributes are changed in the same way in all architectures. Finally, we can
see that out of 1016 changed features, only 269 changed in the exact same way in all
architecture-specific FMs.

We apply the same methodology for all 16 official releases of the Linux kernel, and
compile the results in Table 2.1. In this table, each release column is read like diagram
Figure 2.6, presenting the number of changed features affecting all (generic) or some
(arch-specific) architecture-specific FMs, decomposed by change operation granularity
- from touched to attribute value changes. From this table, we learn the following.

First, the total number of changed features in each release, shown in the second row
of Table 2.1, is very variable. Over the studied period of time, the release with the smallest
amount of changed features is v3.1, with only 567 changed features, and the release with
the largest number of changed feature is release v3.11, with 4556. If we consider that
the Linux kernel feature model contains approximately 12,000 features; in each release
between 4 and 38% of the total number of features is touched.

Secondly, the difference between the evolution of architecture-specific FMs lies in
the features being changed, not in the nature of the change applied. We can see in Ta-
ble 2.1 that for each release, the largest difference between the number of generic and
architecture-specific feature changes is found at the highest comparison level: a feature
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Release v2.6.39 v3.0 v3.1 v3.2
Number of changed features 1016 1020 567 2361

generic arch-specific generic arch-specific generic arch-specific generic arch-specific
Touched 284 732 600 420 213 354 931 1430

Change category 281 3 600 0 212 1 922 9
Sub category 269 12 596 4 202 10 921 1
Change type 269 0 596 0 202 0 921 0

Attr. value 269 0 596 0 202 0 921 0

Release v3.3 v3.4 v3.5 v3.6
Number of changed features 946 778 1103 823

generic arch-specific generic arch-specific generic arch-specific generic arch-specific
Touched 232 714 274 504 455 648 298 525

Change category 231 1 265 9 435 20 287 11
Sub category 228 3 257 8 434 1 285 2
Change type 228 0 257 0 434 0 285 0

Attr. value 228 0 252 0 432 0 281 0

Release v3.7 v3.8 v3.9 v3.10
Number of changed features 1385 963 1773 1299

generic arch-specific generic arch-specific generic arch-specific generic arch-specific
Touched 415 970 299 664 1042 731 430 869

Change category 412 3 292 7 1034 8 428 2
Sub category 406 6 284 8 1029 5 420 8
Change type 406 0 284 0 1029 0 420 0

Attr. value 403 0 283 0 1024 0 417 0

Release v3.11 v3.12 v3.13 v3.14
Number of changed features 4556 1406 620 704

generic arch-specific generic arch-specific generic arch-specific generic arch-specific
Touched 615 3941 678 728 329 291 379 325

Change category 380 235 678 0 329 0 378 1
Sub category 375 5 678 0 328 1 378 0
Change type 375 0 678 0 328 0 378 0

Attr. value 370 0 674 0 326 0 374 0

Table 2.1: Quantitative comparison of generic and “architecture-specific” feature changes



5. USING FMDIFF TO UNDERSTAND FEATURE CHANGES IN THE LINUX KERNEL FEATURE

MODEL

2

41

is touched in all architectures if it is seen as added,removed or modified in all architec-
tures - regardless of the extact change type (as shown in the third row of Table 2.1.

Finally, no features have architecture specific change type and attribute value changes.
In all release, the number of architecture-specific change types and attribute value chan-
ges is zero. If a feature saw its statements changed in the exact same way in all architec-
tures, then, according to our dataset, the details of those changes will be the same in all
architectures as well (change type and attribute value).

As mentioned in Section 5.2, we do not isolate changes made to all attributes. This
causes small discrepancies in the values shown in Table 2.1. For instance in release v3.4,
we can see 257 features that have the same change type in all architectures but 252 with
the same attribute changes in all architectures and 0 with different attribute changes. In
this release, five features saw their attributes modified in slightly different ways in differ-
ent architectures, however none of those attributes are tracked - relating only to Boolean
expression of features. Such features are removed from the dataset before the compar-
ison of attribute values, hence the potential drop in the number of features during this
step.

The number of observed changed features in release v3.11 is surprisingly high com-
pared to other releases. The architecture that changed the most during this release is the
CRIS (Code Reduced Instruction Set) architecture. By manually inspecting the changes
using Git and our dataset, we found a commit16 modifying the CRIS architecture config-
uration file (/arch/cris/Kconfig). The modification, shown in Listing 2.4, removed the in-
clusion of a specific set of drivers and replaced it by the inclusion of all standard drivers.
Such refactoring can be observed in release v3.11 for the CRIS, ARM and H8300 architec-
tures.

In each cases, relying on the common drivers, without cherry picking, involves re-
lying on the structure of that Kconfig file including its menu structures. As a result the
exact presence condition of included features are changes to reflect this: you now need
to select the over-arching "Device Drivers"" feature before selecting any of the subfea-
tures. So, while the intent to make more drivers available for a given architecture and
simplify the Kconfig file hierarchy, the result is an actual refactoring of the variability
model involve large scale modification of features presence condition.

From a architecture-specific perspective, such refactoring lead to a large number of
modified features (for the drivers that were already included, but with a different hi-
erarchy), as well as a large number of added features (for all the drivers that were not
previously cherry picked for that architecture).

Finally, we consolidate our results in Table 2.2. For each release, we present the to-
tal number of changed features and the percentage of those features that are seen as
changed exactly in the same way in all architecture-specific FMs. We can read Table 2.2
as follows: in release v3.12, 47.93% of the 1406 changed features were seen as changed
consistently in all architecture-specific FMs of the Linux kernel.

ARCHITECTURE-SPECIFIC EVOLUTION

With the gathered data, we can answer our second research question. RQ2: To what ex-
tent does a feature change affect all architecture-specific FMs of the kernel?

16commit: acf836301e4b8f3101c5f83e4a52dbb6c3899314

https://github.com/torvalds/linux/commit/acf836301e4b8f3101c5f83e4a52dbb6c3899314
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(...)
2 -source " drivers /char/ Kconfig "

+ source " drivers / Kconfig "
4

source "fs/ Kconfig "
6

-source " drivers /usb/ Kconfig "
8 (...)

Listing 2.4: Extract of the diff of file “/arch/cris/Kconfig” in release v3.11

Linux Kernel
release

Total number
of changed
features

% of changed features
affecting all architec-
tures

v2.6.39 1016 26.47
v3.0 1020 58.43
v3.1 567 35.62
v3.2 2361 39.00
v3.3 946 24.10
v3.4 778 32.39
v3.5 1103 39.16
v3.6 823 34.14
v3.7 1285 29.09
v3.8 963 29.38
v3.9 1773 57.75

v3.10 1299 32.10
v3.11 4556 8.12
v3.12 1406 47.93
v3.13 620 52.58
v3.14 704 53.12

Table 2.2: Evolution of the ratio of feature changes impacting consistently all architecture supported by the
Linux kernel.

The data shown in Table 2.2 highlight that for a specific feature change in a release,
it is very likely that this feature change affects only certain architecture-specific FMs.
In that sense, observations related to FM evolution obtained by the study of a single
architecture-specific FM cannot be generalized to all architectures, or help draw conclu-
sion on the evolution of the overall Linux FM. Table 2.1 emphasizes that most feature
changes might not even be seen in other architectures. It is interesting to note that, dur-
ing release v3.11, while 4556 features were changed during the release but the average
number of changed features per architecture is 681 (see Figure 2.4). This further sup-
ports our assumption that architecture-specific FMs evolve differently.

However, Table 2.1 also shows that if a feature is seen as changed in all architectures,
in a large majority of cases, the change applied to the feature is the same. A good ex-
ample of this is release v3.12, where among the 678 changed features that affected all
architectures, all had the same change category, change subcategory, change type and at-
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tribute changes. In other cases, when there are discrepancies between how a changed
feature affects different architectures, the discrepancy is in the change category: a fea-
ture is seen as modified in one architecture and added to another. In release v3.11 where
615 changed features affected all architectures, 235 had inconsistent change categories
across architecture-specific FMs. This matches our observation regarding the addition
of many drivers to the CRIS architecture FM in Section 5.2.

To conclude and answer RQ2, we can say that relatively few feature changes affect
all architecture-specific FMs of the Linux kernel. We also note that a large majority of
changes affecting all architecture-specific FMs affect them in the exact same way.

6. DISCUSSION: ON THE USE OF FINE-GRAINED

FEATURE CHANGES
The main objective of this paper is facilitating the maintenance and evolution of large
scale software product lines (SPLs). As shown in previous studies, changes to feature
models (FMs) are coupled with changes in their implementation. To some extent, given
a change to a FM, one could determine in a systematic way how to update the associated
implementation (Alves et al., 2006; Passos et al., 2013). In this section, we reflect on the
usage of fine-grained feature changes and our tool in the context of SPL maintenance.

6.1. USING FMDIFF TO STUDY FM EVOLUTION
As mentioned in Section 4.3, FMDiff captures accurately a large majority of feature changes
applied on the Linux kernel FM. Using FMDiff, feature changes are stored as lists of state-
ment changes with the attribute values before and after the change (following our classi-
fication). This provides insight in the transformations applied to each individual feature.

Changes made to FMs affect the set of allowed configurations (Thuem et al., 2009),
e.g.,, allowing the choice of a driver for a given architecture. While we capture the change
performed on each individual feature, identifying the impact of a feature change on
possible configurations of a SPL is outside the scope of this study. However, such infor-
mation could be important when relating feature changes to implementation changes,
because the implementation of all features involved in new configurations might have
to be adapted to accommodate new runtime or buildtime constraints and their defini-
tion might remain the same. Given the size of the Linux kernel FM (more than 12,000
features), computing all possible configurations before and after a change to identify
changes in allowed configurations is not practical. A potential solution would be to ap-
ply model checking approaches to perform semantic differencing between two versions
of a FM (Gheyi et al., 2006), in order to identify samples of configurations allowed in one
version but not in the other. Furthermore, fine-grained feature changes and configura-
tions changes could be considered as complementary descriptions of the same change
operations. We will explore the possibilities offered by such approaches in future work.

The dataset we built for this study contains changes occurring between official re-
leases of the Linux kernel. Currently, FMDiff uses a list of Git tags to identify which ver-
sion of the Linux FM should be extracted for comparison. This dataset gives us a compre-
hensive view of changes in each release, but in other contexts it might be interesting to
extract changes occurring over shorter periods of time. The implementation of FMDiff
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is flexible enough to allow this. By simply replacing the Git tags by Git commit identifiers,
we can extract feature changes occurring over a shorter time period (down to 1 commit)
with no modification to the differencing heuristics.

6.2. TOWARDS IMPLEMENTATION CHANGES
In the Linux kernel, changes to feature attributes and cross-tree constraints are the most
frequent. To extend existing work on co-evolution of FM and implementation, we need
to relate such common changes with implementation changes. While it might be possi-
ble to determine where the attribute value of a feature is used in the implementation of a
SPL and assess the effect of a value change, inferring the impact on the implementation
of changes in cross-tree constraints might be more difficult.

In Linux, constraints are expressed using two different statements ’depends’ and ’se-
lect’ and should represent two different types of dependencies. But in practice, there is
little difference between the usage of those statements.

“We _are_ sprinkling tons of selects all around the Kconfigs. And we’re doing
it inconsistently - nobody seems to agree on when to use ‘select’ and when
to use proper dependencies.”17

This means that we cannot rely on the difference between ’depends’ and ’select’ to relate
a feature change to potential implementation changes. Moreover, features in Linux rep-
resent a wide range of concepts: from code maturity information (the EXPERIMENTAL
feature for instance), to code library (e.g.,, GPIO). As a consequence, a new cross-tree
constraint between two features might be implemented differently depending on which
features are involved in the constraint.

To relate code and feature changes and use that information to facilitate mainte-
nance, we might need to define more precisely the nature of the relationships between
features, or the nature of the features themselves. While we do not provide answers to
this problem, we believe that, in the context of the Linux kernel, additional information
can be mined from the implementation itself prior to change extraction. For instance,
the folder structure of the Linux kernel allows us to identify which features represent
device drivers. We will explore such possibilities as part of our future work.

6.3. ARCHITECTURE-SPECIFIC EVOLUTION
The comparison of architecture-specific FMs evolution showed us that there are feature
changes that affect the various architecture-specific FMs in different ways. In the case
of the Linux kernel, rebuilding a single architecture-agnostic FM is difficult. This implies
that future work on the evolution of the Linux kernel FM should mention which archi-
tectures have been studied - as the same observation might not be true in all of them.

Knowing that a feature change affected only certain architecture-specific FMs might
provide information about the potential changes in the SPL implementation. Intuitively,
the implementation of a feature change affecting only certain architectures should only
affect the implementations of those architectures. To the best of our knowledge, this has

17http://www.gossamer-threads.com/lists/linux/kernel/
729689#729627

http://www.gossamer-threads.com/lists/linux/kernel/729689#729627
http://www.gossamer-threads.com/lists/linux/kernel/729689#729627
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not been demonstrated yet, but if so then fine-grained feature changes in architecture-
specific FMs could be useful to verify the consistency between implementation and vari-
ability model changes in SPLs.

While not all SPLs are affected by the hardware architecture they run on, we can of-
ten find a set of high-level features that can be used to define “sub-product lines” as
we did using the architectures with the Linux kernel FM. In such cases, one can apply
the methodology presented in this work to analyze the co-evolution of those different
subproduct-lines. For instance, in the automotive domain, one can use this approach to
identify which feature changes affected the variability model of the “sport” and “family”
variants of a car, where each variant is a product line on its own. However, the results
found during this study are only applicable to the Linux kernel FM and should not be
generalized without further investigations.

7. RELATED WORK
The Linux kernel has been used as an example of an evolving software product line many
times in the past. Israeli et al. 2010 show that the Linux kernel evolution follows some of
Lehman’s Law of software evolution (Lehman, 1996), namely the continuing growth by
measuring the number of lines of code over time. Lotufo et al. 2010 study the evolution
of the Linux kernel variability model over time through FM structural metric evolution
(model size, number of leaves, etc.). They show in their study that the number of features
and constraints increases over time, but also that maintenance operations are performed
to keep the complexity of the variability model in check. However, they do not provide
details on change operations, nor ways to capture them in an automated way.

In order to study the Linux Kernel feature model (FM) structure, properties, and evo-
lution, several research teams have developed tools to reconstruct a FM from Kconfig
files. LVAT (She et al., 2011) and Undertaker (Dietrich et al., 2012a; Sincero et al., 2010b;
Tartler et al., 2011) are the main examples of such tools. We chose to rely on Undertaker
for its convenient wrapping of kdump, allowing us to use the same tools that are also
used by the Linux kernel development team. LVAT could have allowed us to capture the
feature hierarchy. However, kdump flattening of the hierarchy facilitated the capture of
feature hierarchy changes through changes of depends statements.

Several FM change classifications have been proposed in the past. In his thesis, Paske-
vicius describes (Paskevicius et al., 2012) several transformations that can be applied on
a FM. Similarly, FM change patterns have been identified by Alves et al. in 2006 and Neves
et al. in 2011. In their study of the co-evolution of models and feature mapping, Seidl et
al. in 2012 also describes a set of operations applied to FMs. Thüm et al., in 2009, classify
feature changes based on their impact on the possible products that can be generated
from the FM - a change can increase or decrease the number of products that can be
obtained from a product line. More recently, Passos et al. in 2013; 2012 compiled a cata-
logue of the evolution patterns occurring specifically on the Linux kernel.

We did not use those classifications in our study for two main reasons. First, ac-
cording to She et al. in 2011 a depends statement can either be interpreted as a cross-
tree constraint or a hierarchy relationship, so we cannot automatically map changes of
depends statements in other change classifications. Second, FMDiff is able to capture
changes in feature attributes which are not considered by these classifications.
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In recent work, Passos et al. built a dataset of feature changes of Linux (Passos and
Czarnecki, 2014). Focusing only on addition and removal of features, this dataset relates
feature changes, commit information and file changes. In comparison, FMDiff captures
feature changes but does not use nor rely on commit information and file change details.
We have shown that modifications played a major role in the evolution of the Linux FM,
and for this reason the dataset built using FMDiff appears to be more suited to describe
in details the evolution of the Linux FM.

8. CONCLUSION
In this paper, we presented a classification scheme to categorize changes in the Linux
feature model and the FMDiff tool to automatically extract these changes from two ver-
sions of Kconfig files declaring the Linux feature model. We evaluated our approach by
manually validating the changes extracted by FMDiff from ten releases of the Linux ker-
nel. The results show that our approach can capture feature changes accurately. A com-
parison between the information on changes obtained with FMDiff and the informa-
tion obtained through manual analysis of the textual differences between Kconfig files
highlighted that our approach provides a more comprehensive view on feature changes.
Using the data captured by FMDiff, we observed that modifications to existing features
(attributes and constraints) account for a large proportion of operations performed on
the Linux features. Finally, we studied how feature changes affected architecture-specific
feature models of the kernel and showed that, despite the large number of features shared
between them, few feature changes affect all of them.

As a next step, we plan to detail our studies on the evolution of the Linux feature
model by analyzing the fine-grained change types. Using the data acquired by FMDiff,
we will answer questions such as what are the most frequent types of changes performed
in the Linux feature model and which features and parts of the feature model are chang-
ing frequently. While we have shown here that feature changes do not affect equally
all architecture-specific feature models of the Linux kernel, they might affect equally
some of them. We believe that our dataset contains the necessary information to identify
groups of architecture-specific feature models that evolve more consistently than others.
Another direction of our future research is to investigate the impact of feature changes
on other variability spaces, such as build and source code variability. For instance, we
plan to explore how feature changes ripple through the Linux kernel implementation.
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9. POST-SCRIPT: ON FEATURE MODEL CHANGE EXTRACTION
This work on variability model change extraction presented in this chapter motivated
further research on the evolution of the Linux kernel features. Rothberg et al. continued
the exploration of methodologies and approaches to understand how features evolve in
such large scale systems (Rothberg et al., 2016). Our approach uses a semi-structured
syntactic approach to finding differences, whereas Rothberg et al. use a semantic ap-
proach. In this section, we reflect on the work of Rothberg et al. and its implication on
approach and findings.

9.1. SYNTACTIC AND SEMANTIC CHANGES OF VARIABILITY MODELS
We provide first a short introduction to the concepts of syntactic differencing described
in this chapter and semantic differencing approaches. A variability model represents a
compact representation of a set of configurations. It is, however, formalized as a set of
formatted string within a file. When a change occurs, a developer modifies features in
that model, and the change is performed by modifying character strings within that file.
If we want to provide a description of the change, we can do that by describing either the
characters that were modified (syntactic approach), or by describing the changes to the
models in terms of the meaning of the model; in our case, in terms of configurations.

Let us consider the small variability model below, described in the Kconfig model.
It contains 3 features, A, B, and C. The possible configurations are obviously: {A}, {A,B},
{A,C}, and {A,B,C}.

config A "my root feature"
default 1

config B "sub feature 1"
depends on A

config C "sub feature 2"
depends on A

If a developer adds a new feature D relying on A to that model, under the root, we
obtain the following variability model:

config A "my root feature"
default 1

config B "sub feature 1"
depends on A

config C "sub feature 2"
depends on A
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config D "new feature"
depends on A

The possible configurations described by this model are : {A,B}, {A,D}, {A,C}, {A,B,C},
{A,B,D}, {A,C,D}, and {A,B,C,D}.

We can describe this change syntactically by providing the following information:

the change added the following string:
---
config D "new feature, just added by a dev."
depends on A
---
to the file describing the variability model

This allows us to describe what transformation took place with respect to the textual
representation of our variability model.

Alternatively, we can consider that the variability model is a representation, and the
change is, in fact, a change to the valid set of configuration of our system. In that sense,
we could describe the change in a “semantic” manner, based on the meaning of model,
as follows:

the change added the following set of valid configurations
---
{A,D},{A,B,D}, {A,C,D}, and {A,B,C,D}
---
to the file describing the variability model

This gives immediate information regarding the context in which the new feature D
may be used. It indicates that it can rely on “A” (which was known already thanks to the
textual differencing approach). It also tells us that it should be able to run along side of
feature B and (or) C.

Syntactic and semantic differencing provide different information. Syntactic differ-
encing is useful to know what changes are performed by developers on the different
artefacts. Semantic differencing, on the other hand, gives us better information on the
consequences of that change on the system, but hides the details of why such changes
occurred.

The most notable difference between syntactic and semantic differencing approaches
is the output. Syntactic differencing approaches provide the description of a change ex-
pressed using new concepts. In our example, the output of a syntactic differencing is the
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textual change that occurred. That change is not in itself a feature, nor a configuration -
it is the description of a textual change within a file. On the contrary, semantic differenc-
ing provides an output which is of the same nature of its inputs(Binkley et al., 2001; Maoz
et al., 2011a). In our example, semantic differencing provides a set of configurations as
an output. This set can also be represented as a variability model. This makes syntactic
changes harder to integrate back into the model, or apply the change provided by the dif-
ferencing process to another model. In a more general context, semantic differencing is
not limited to variability models. Similar approaches were used on other types of models
such as UML class diagrams (Maoz et al., 2011b) or UML activity diagrams (Maoz et al.,
2011a).

9.2. SYNTACTIC AND SEMANTIC VARIABILITY MODEL CHANGES IN LINUX
The FMDiff approach is fundamentally a syntactic approach. We rely on a semi-structured
diff’ methodology to identify which attributes of features are affected by a change. As a
result, a change to a single feature within a Kconfig file will result in the creation of a
FMDiff “change”. The information we capture is extracted from the changes performed
by developers of that feature. Therefore, FMDiff reports textual changes, as performed by
developers, on the features of the system within Kconfig files: changes to the syntax con-
tained within the file. This gives us insights on which entity was targeted by the change
and how the feature attributes and its relationships evolved.

There is a different way of describing changes to a variability model (VM). Because
VMs are compact representations of the valid configurations of a system, a change to
a feature yields changes to the set of valid configurations. A semantic differencing ap-
proach would provide change information in terms of modified configurations: changes
to the meaning of the feature and their constraints. The set of added and removed con-
figurations following a change can itself be represented using feature models, since they
are sets of configurations. The semantic description of a change in a VM should be rep-
resentable as a VM itself.

9.3. LIMITATIONS OF SYNTACTIC DIFFING ON THE LINUX KERNEL
As mentioned earlier in this chapter, in order to extract changes occurring on the Linux
VM, we use a methodology which requires the selection of an architecture. Once the
architecture is selected, the process rebuilds a VM corresponding to the features “in-
cluded” in that architecture.

In their work on the Linux kernel, Rothberg et al. showed how this inclusion of certain
features in an architecture-specific VM was a purely syntactical inclusion. This appeared
to be true for a number of features, but more specifically relevant for features represent-
ing drivers. They did so by showing that such features that “included” in a architecture-
specific VM are actually not “selectable”. In that sense, the feature is included in the
model, but existing constraints prevent it from being included in a valid configuration.
Therefore, the feature is present in the architecture-specific VM on a syntactic level, but
since it cannot be included in a configuration it has no consequence on the “semantics”
of the model.

In our study, we compared the evolution of the different architecture-specific VM
that we could obtain from the kernel. This allowed us to show that changes mostly oc-
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curred in either one architecture-specific VM, or all architecture-specific VMs. Our work
allowed us to establish that the specific architecture-specific VMs actually evolved dif-
ferently.

In light of the work of Rothberg et al., it is clear that some changes that we observed
as being shared by all architecture-specific VMs were in fact performed on features that
were not necessarily selected within that architecture. Therefore, drawing the conclusion
that changes of such features participate in the evolution of the architecture-specific VM
would be fallacious. Rothberg et al. showed that the different architecture-specific VM
had evolutions that were much more dissimilar than what we established with our work
on FMDiff.

Rothberg’s approach differs from ours in that it filters the features contained in each
architecture-specific VM before considering changes. Beyond that point, the identifica-
tion of feature changes remains quite comparable, both being based on textual identifi-
cation of changed features. In that sense, Rothberg approach’s is not applying semantic
differencing per se, but improving on our syntactic approach by adding selectability in-
formation.

9.4. CHALLENGES
Semantic differencing, especially in the context of variability modelling, seems to be a
promising direction (Fahrenberg et al., 2011) but comes with a number of challenges.
Performing “semantic differencing” on a feature model should result in lists of config-
urations - since a feature model is a compact representation of allowed configurations,
semantic changes should be described in terms of configurations as well. Following a
feature change, one should produce a representation of configurations that were not
available before and now are, and vice-versa. However, obtaining the semantic difference
between two variability models and then exploiting this information can be difficult.

In the Linux kernel, the variability model contains more than 13,000 features. The
number of configurations impacted by a change might be very large. Recomputing the
whole set of possible configurations, before and after the change, to identify changes,
will be computationally very intensive. Note that computing all possible configurations
of a simple feature model requires an exponential computation time, based on the num-
ber of features. Therefore, with 13,000 features or more, the computation will take a lot
of time. If we consider that the Linux tree includes roughly 10,000 patches per release
and a release lasts for 6 weeks 18, then the kernel receives approximately 238 patches per
day (approximately one patch every 6 minutes). There is little chance of being able to
compute, the results of semantic differencing on every patch, let alone make use of it.

Then, once the changes configurations have been identified, each of them may con-
tain any number of features which depends on the number of features available in the
system. This yields another issue: how to display changes of configurations in such a way
that developers are not flooded by the information? A list of tens, or hundreds of added
or removed configurations, each containing hundreds of features will be difficult to un-
derstand by maintainers. Therefore, in order to be useful for change comprehension, we
need to find insightful means to present such data. While the idea to build a variabil-

18http://arstechnica.com/information-technology/2015/02/linux-has-2000-new-developers-and-gets-
10000-patches-for-each-version/
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ity model representation for such changes is enticing, we should point out that reverse
engineering of variability models from configurations does not necessarily provide the
most human-readable models (Becan, 2013; She et al., 2011).

If we can produce such change descriptions, we have to determine how they can be
of use for engineering tasks beyond change comprehension. This could be done if we
consider that integrating a change described as a VM to another VM is a composition
operation. Composing models, and feature models in particular, can be challenging in
itself (Acher et al., 2010a,b).

Each of those challenges constitutes, in our opinion, a research topic on its own.
We did not attempt to tackle them. While less precise than semantic differencing, the
FMDiff approach was able to shed new light on the evolution of the kernel VM. It al-
lowed us to identify changed features, and draw conclusions on the types of changes that
are prevalent in such context. And while we underestimated this effect, we showed that
architecture-specific VMs have different evolution paths, and one cannot take a single
one and extrapolate observations on the entire kernel.
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EVALUATING FEATURE CHANGE

IMPACT ON MULTI-PRODUCT LINE

CONFIGURATIONS USING PARTIAL

INFORMATION

The beauty of the universe consists not only of unity in variety, but also of variety in unity.

Umberto Eco - The Name of the Rose

Evolving large-scale, complex and highly variable systems is known to be a difficult task,
where a single change can ripple through various parts of the system with potentially un-
desirable effects. In the case of product lines, and moreover multi-product lines, a change
may affect only certain variants or certain combinations of features, making the evalua-
tion of change effects more difficult.

In this paper, we present an approach for computing the impact of a feature change on
the existing configurations of a multi-product line, using partial information regarding
constraints between feature models. Our approach identifies the configurations that can
no longer be derived in each individual feature model taking into account feature change
impact propagation across feature models. We demonstrate our approach using an indus-
trial problem and show that correct results can be obtained even with partial information.
We also provide the tool we built for this purpose.

This chapter was originally published as “Evaluating Feature Change Impact on Multi-Product Line Configura-
tions Using Partial Information” in Proceedings of the 14th Conference on Software Reuse (ICSR’15) authored
by Dintzner, Kulesza, Van Deursen and Pinzger.
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1. INTRODUCTION

Evolving large-scale, complex and variable systems is known to be a difficult task, where
a single change can ripple through various parts of the system with potentially undesir-
able effects. If the components of this system are themselves variable, or if the capabili-
ties exposed by an interface depend on some external constraint (i.e., configuration op-
tion), then engineers need extensive domain knowledge on configuration options and
component implementations to safely improve their system (Heider et al., 2012b). In
the domain of product line engineering (PLE), an approach aiming at maximising as-
set reuse in different products (Pohl et al., 2005), this type of evolutionary challenge is
the norm. Researchers and practitioners have looked into what variability modeling -
and feature modeling specifically - can bring to change impact analysis on product lines
(PLs). Existing methods can evaluate, given a change expressed in features, how a fea-
ture model (FM) and the composition of features it allows (configurations) are impacted
(Heider et al., 2012a; Paskevicius et al., 2012; Thuem et al., 2009). However, FMs grow over
time in terms of number of features and constraints and safe manual updates become
unmanageable by humans (Bagheri and Gasevic, 2011). Moreover, automated analysis
methods do not scale well when the number of configurations or feature increases (Hei-
der et al., 2012a).

To mitigate this, nested product lines, product populations, or multi-product lines
(MPL - a set of interdependent PLs) approaches recommend modularizing FMs into
smaller and more manageable pieces (Krueger, 2006; Ommering and Bosch, 2002; Schröter
et al., 2013). While this solves part of the problem, known FM analysis methods are de-
signed for single FMs. A common approach is to recompose the FMs into a single one.
To achieve this, existing approaches suggest describing explicitly dependencies between
FMs using cross-FM constraints, or hierarchies (Acher et al., 2010a) to facilitate model
composition and analysis. Such relationships act as vectors of potential change impact
propagation between FMs. However, Holl et al. noted that the knowledge of domain ex-
perts about model constraints is likely to be only partial (both intra-FMs or extra-FMs
(Holl et al., 2012)). For this reason, we cannot assume that such relationships will be
available as inputs to a change impact analysis.

In this context, we present and evaluate an approach to facilitate the assessment of
the impact of a feature change on existing configurations of the different PLs of an MPL
using partial information about inter-FMs relationships. After giving background infor-
mation regarding feature modelling and product lines (Section 2), we present the indus-
trial problem that motivated this work and detail the goals and constraints of this study
(Section 3). We then present our approach to enrich the variability model of an MPL
using existing configurations of individual FMs, and the heuristic we apply when ana-
lyzing the effect of a feature change on existing configurations of an MPL (Section 3).
In Section 5, we assess our approach in an industrial context. We present and discuss
how we built the appropriate models, the output of our prototype implementation and
the performance of the approach with its limitations. Finally, Section 9 presents related
work and we elaborate on possible future work in Section 10.
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Valid configurations:
"Root", "A", "B", "D"
"Root", "B","C" 

Cross-tree constraint(s): 
"A" implies "D"

Cross-tree constraint(s): 
"1" excludes ("3" or "4")

Valid configurations:
"Root_2", "1"
"Root_2", "1","2","5"
"Root_2","2","3"
"Root_2","2","4" 

Feature Model 2Feature Model 1

Valid configurations:
"Root_2", "1", "Root","A","B","D"
"Root_2", "1","2","5","Root","A","B","D"
"Root_2","2","3","Root",B,C
"Root_2","2","4","Root",B,C

inter-FM  constraint(s): 
"1" implies "A"

Cross-tree constraint(s): 
"A" implies "D"

Cross-tree constraint(s): 
"1" excludes ("3" or "4")

Multi-product line view 

Figure 3.1: Example of FMs in a SPL and MPL context

2. BACKGROUND
In this paper, the definition of feature given by Czarnecki et al. in (Czarnecki et al., 2005)
is used: “a feature may denote any functional or nonfunctional characteristic at the re-
quirement, architectural, component, platform or any other level”. A feature model (FM)
is a structured set of features with selection rules specifying the allowed combinations
of features. This is achieved through relationships (optional, mandatory, part of an alter-
native or OR-type structures) and cross-tree constraints - arbitrary conditions on feature
selection. The most common types of cross-tree constraints are “excludes” (e.g., “feature
A excludes feature B”) and “implies” (Kang et al., 1990). With a FM, one can derive con-
figurations: a set of features which does not violate constraints established by the FM.
An example of simple FMs with their valid configurations are depicted on the left hand
side of Figure 3.1.

In the context of a multi-product line, several inter-related FMs are used to describe
the variability of a single large system. This can be achieved by creating “cross-feature
model” constraints or through feature references (Acher et al., 2010c) - where a given
feature appears in multiple FMs. The constraints between FMs can be combination rules
referring to features contained within different models. Those constraints can also be
derived from the hierarchy (or any imposed structure (Reiser and Weber, 2007), (Acher
et al., 2010c)) of the FMs involved in an MPL. In those cases, the combination rules can
refer to both features and FMs. A product configuration derived from an MPL is a set
of features which does not violate any constraints of individual FMs nor the cross-FM
constraints that have been put in place. An example of combined FMs with a constraint
between two FMs can be seen on the right hand side of Figure 3.1.

3. MOTIVATION: CHANGE IMPACT IN AN INDUSTRIAL CONTEXT
Our industrial partner builds and maintains high-end medical devices, among which an
x-ray machine. This x-ray machine comes in many variants, each differing in terms of
hardware (e.g., tables, mechanical arms) and software (e.g., firmware version, imaging
system). Certified third party products can be integrated through different types of ex-
ternal interfaces: mechanical (e.g., a module placed on the operating table), electrical



3

56 3. EVALUATING FEATURE CHANGE IMPACT ON M.P.L. CONFIGURATIONS

Ultra-sound

(mode 2)

X-ray system

Data/Video 

exchange 

interface

Video signal 

transfer interface

Display interface

Data/Video exchange

Video chain

   Displays

Ultra-sound

(mode 1)

Receives data &

Sends video

High resolution

Medium resolution

Shared display

Dedicated display

<implements>

<implements>

<implements>

Interface

Legend:

3rd party 

product
Requirement

Interface usage
subsystem

signal 

splitter

signal 

splitter

DVI input

DVI input

signal 

splitter

Example of shared components

DVI input

Figure 3.2: X-ray machine system overview

(inbuilt power supply), data related (image transfer). As an example, three main subsys-
tems of the x-ray machine (data/video exchange, video chain, and display) and three
main interfaces (display interface, video signal, and data/video exchange) are shown in
Figure 3.2. The two working modes of a given 3rd party product (“mode 1” and “mode
2”) use the same interfaces in slightly different ways. In “mode 1”, the 3rd party prod-
uct reuses the x-ray machine display to show images (“shared display”) while in “mode
2” a dedicated display is used. Sharing an existing display implies using a signal split-
ter/merger in the display subsystem. But the splitter/merger also plays a role in the video
processing chain and is only available in certain of its variants.

Following any update, engineers must validate if the new version of the system can
still provide what is necessary for 3rd party product integration. This leads to the follow-
ing type of questions: “Knowing that 3rd party product X uses the video interface to export
high resolution pictures and import patient data, is X supported by the new version of the
x-ray machine?”. Let us consider the following scenario: a connection box, present in
the video chain and data/video exchange subsystems, is removed from the list of avail-
able hardware. Some specific configurations of the video chain and of the data/video
exchange subsystems can no longer be produced. The data/video exchange interface re-
quired the removed configurations to provide specific capabilities. Following this, it is no
longer possible to export video and import data and the integration with the 3rd party
product is compromised.

Currently, engineers validate changes manually by checking specification documents
(either 3rd party products requirements or subsystem technical specifications) and rig-
orous testing practices. Despite this, it remains difficult to assess which subsystem(s)
and which of their variant(s) or composition of variants will be influenced by a given
change. Given the rapid evolution of their products, this error-prone validation is in-
creasingly time consuming. Our partner is exploring model-driven approaches enabling
early detection of such errors.

While this example is focused on the problems that our industrial partner is fac-
ing, enabling analysis for very large PLs and MPLs is a key issue for many companies.
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Recently, Schmid introduced the notion of variability-rich eco systems (Schmid, 2013),
highlighting the many sources of variability that may influence a software product. This
further emphasizes the need for change impact analysis approaches on highly variable
systems.

4. FEATURE-CHANGE IMPACT COMPUTATION
Given the problem described in the previous section, we present here the approach we
designed to assist domain engineers in evaluating the impact of a change on their prod-
ucts. We first describe the main goal of our approach and our contributions. Then, we
detail the approach and illustrate it with a simple example. Finally, we consider the scal-
ability aspects of the approach and present our prototype implementation.

4.1. GOALS AND CONSTRAINTS
For our industrial partner, the main aim is to obtain insights on the potential impacts of
an update on external interfaces used by 3rd party products. However, we have to take
into account that domain engineers do not know the details of the interactions of the
major subsystems (Holl et al., 2012) nor all components included in each one - only the
ones relevant to support external interfaces. As an input, we rely on the specifications of
each major subsystem and their main components in isolation as well as their existing
configurations. Because of the large number of subsystem variants and interface usages
(choices of capabilities or options), we consider each of them as a product line (PL) in its
own right. Features then represent hardware components, (non-)functional properties,
software elements, or any other relevant characteristic of a subsystem or interface. Us-
ing a simple feature notation and cross-tree constraints (Kang et al., 1990), we formalize
within each subsystem the known features and constraints between them. By combining
those PLs, we obtain a multi-product line (MPL) representation of the variability of the
system.

With such representation, a change to a subsystem or interface can be expressed in
terms of features: adding or removing features, adding, removing or modifying intra-FM
constraints. Once the change is known, we can apply it to the relevant FM and evaluate
if existing configurations are affected (no longer valid with respect to the FM). Then,
we determine how the change propagates across the FMs of the MPL using a simple
heuristic on configuration composition. As an ouput, we provide a tree of configuration
changes, where nodes are impacted FMs with their invalid configurations.

Our work brings the following main contributions. We present a novel approach to
compute feature change impact on existing configurations of an MPL. We provide a pro-
totype tool supporting our approach, available for download.1 We demonstrate the ap-
plicability of the approach by applying it to a concrete case-study executed in coopera-
tion with our industrial partner.

4.2. APPROACH
We describe here first how the model is built. Then, we show how we enrich the model
with inferred information and finally the steps taken for simulating the effects of a fea-

1The tool is available at https://bitbucket.org/NJRD/mpl-change-impact

https://bitbucket.org/NJRD/mpl-change-impact
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Figure 3.3: Approach overview

ture change on existing configurations. An overview of the different steps are shown in
Figure 3.3.

Step 1: Describe subsystem variability. The first step of our approach consists in mod-
elling the various subsystems using FM notation. This operation is done by domain ex-
perts, using existing documentation. When a subsystem uses a feature that has already
been described in another subsystem, we reference it instead of creating a new one
(Acher et al., 2010a). Such features are considered as “shared” between the different FMs.
We associate with each FM its known configurations.

Step 2: Enrich the model with inferred composition rules. Once all FMs and configu-
rations have been described, we use the configurations to infer how pairs of subsystems
can be combined. We identify, in FMs sharing features, which features are shared and
then create a list of existing partial configurations containing only them. To do so, we
rely on feature names to identify which features appear in more than one FM. Partial
configurations appearing in existing configurations of both FMs constitute the whitelist
of partial configurations enabling composition of configurations between the involved
FMs. For two given FMs, the number of feature involved in shared feature constraints
is equal to the number of features shared between them. Those partial configurations
are the shared feature constraints relating pairs of FMs: two configurations, from two dif-
ferent FMs sharing features, are “compatible” if they contain exactly the same shared
features. In order to apply such heuristic, shared feature constraints must be generated
between every pairs of FMs sharing features. An example of such constraints is shown in
Figure 3.4, where FMs 1 and 2 share features E and D.

Step 3: Compute the impact of a feature change. We use the enriched model to per-
form feature change impact computation at the request of domain experts. A feature
change can be any modification of a FM (add/remove/move/modify features and con-
straints) or a change in available configurations (add/remove). We assess the impact of
the change of the configurations of a modified FM by re-validating them with respect to
the updated FM, as suggested in (Heider et al., 2012a). This gives us a first set of invalid
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configurations that we use as a starting point for the propagation heuristic.
Step 3.1: Compute impact of configuration changes on shared feature constraints. We

evaluate how a change of configuration of a FM affects the shared feature constraints
attached to it. If a given shared feature constraint is not satisfied by at least one configu-
ration of the FM then it is invalidated by the change. For each FM affected by a configura-
tion change, we apply the reasoning presented in Algorithm 1. In the case a change does
not modify existing configurations, this step will tell us that all existing constraints are
still valid, but some can be added. Otherwise, if all configurations matching a constraint
have been removed then that constraint is considered invalid (i.e., does not match a pos-
sible combination of configurations). Given a list of invalid shared feature constraints
and the FMs to which it refers to, we can execute Step 3.2. If no shared feature constraints
are modified, the computation stops here.

Data: a FM f m with an updated set of configurations
Result: a list of invalidated shared feature constraints l Inval i dConstr ai nt s

foreach shared feature constraint s f c in f m do
al lowedFeatur es ← selected features of s f c ;
f or bi ddenFeatur es ← negated features of s f c;
foreach configuration c in f m do

if al lowedFeatur es ⊂ c then
if c ∩ f or bi ddenFeatur es == ; then

c is compliant;
end

end
end
if no compliant configuration found then

add s f c to l Inval i dConstr ai nt s;
end

end

Algorithm 1: Configuration change propagation

Step 3.2: Compute impact of shared feature constraint changes on configurations. Given
a set of invalid shared feature constraints obtained in the previous step, we evaluate how
this invalidates other FMs configurations. If a configuration of an FM does not match
any of the remaining shared feature constraints, it can no longer be combined with con-
figurations of other FMs and is considered invalid. We apply the operations described in
Algorithm 2. If any configuration is invalidated, we use the output of this step to re-apply
Step 3.1.

Step 4: Consolidate results. We capture the result of the computation as a tree of
changes. The first level of the tree is always a set of configuration changes. If more than
one FM is touched by the initial change (e.g., removal of a shared feature) then we have
a multi-root tree. Each configuration change object describes the addition or removal
of any number of configurations. If a configuration change triggered a change in shared
feature constraints, a shared feature constraint change is added as its child. A shared fea-
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Data: f m: a FM with updated shared feature constraints
Result: l Inval i dCon f s: a list of invalidated configurations of f m

foreach configuration c in f m do
foreach shared feature constraint s f c in f m do

al lowedFeatur es ← selected features of s f c ;
f or bi ddenFeatur es ← negated features of s f c;
if al lowedFeatur es ⊂ c then

if c ∩ f or bi ddenFeatur es == ; then
c is compliant;

end
end

end
if no compliant constraint found then

add c to l Inval i dCon f s;
end

end

Algorithm 2: Shared feature constraint change propagation

ture constraint change references the two FMs involved and any number of constraints
that were added or removed. The configuration changes following this shared feature
constraint modification are then added as a child “configuration change object”. This
structure allows us to describe the path taken by the impact propagation through the
different FMs.

4.3. EXAMPLE

Let us consider the example shown in Figure 3.4, where two FMs share two features: D
and E. The model is enriched with the “shared feature constraints” deduced from exist-
ing configurations. Those constraints state that, for a configuration of FM1 and FM2 to
be combined, both of them need to have shared features that are either (E,D), (D, not
E) and (not E, not D). The resulting data structure is shown on the left hand side of Fig-
ure 3.4.

We consider the following change: Configuration 1.2 is removed, operation marked
as 1 in Figure 3.4. We apply the algorithm described in Step 3.1, using FM1 as a input, and
with Configurations 1.1 and 1.3 (all of them except the removed one) and the associated
3 shared feature constraints. For Constraint 1, the allowed features are “E” and “D”, and
there are no forbidden features. We search for existing configurations of FM1 containing
both “E” and “D” among Configurations 1.1 and 1.3. We find that Configuration 1.3 sat-
isfies this constraint. The Constraint 2 (allowing “D” and forbidding “E”) is not matched
by any configurations, since the only configuration containing “D” and not “E” is Con-
figuration 1.2 has been removed. Constraint 3 forbidding features “D” and “E” is satisfied
by Configuration 1.1. The resulting list of invalid constraints contains only one element:
Constraint 2 (marked as operation 2 in the diagram).

We then apply 2 presented in Step 3.2 to assess the effect of that change on the con-
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Figure 3.4: Change impact propagation example

figurations of other FMs (FM2 only in this case). With the remaining Constraints 1 and
3, we run through the configurations of FM2 to identify which configurations no longer
satisfy any constraints. We find that Configuration 2.1 satisfies Constraint 3 (does not
contain “D” nor “E”), and Configuration 2.2 satisfies Constraint 1 (contains both “E” and
“D”). However, configuration 2.3 does not satisfy any of the remaining constraints and
for this reason, is marked as invalid (shown as operation 3 on the diagram).

On the right hand side of Figure 3.4, we present the resulting tree (a branch in this
case). The intial change (removal of configuration 1.2 of FM1) is captured by the first
“configuration change” object. Changes to shared features constraints are directly at-
tached to this configuration change: the “shared feature configuration change” object.
Finally, the last node of the tree is the invalidation of Configuration 2.3 of FM2.

4.4. SCALABILITY ASPECTS
The initial step of our approach replicates what Heider suggests in (Heider et al., 2012a):
reinstantiating existing configurations. Such approaches are known as product-based
approaches (Thüm et al., 2014a). They have known drawbacks: as the number of con-
figurations and features increases, the solution does not scale. By placing ourselves in an
MPL environment, we have small to medium size FMs to analyze and perform this type
of operation only on individual FMs.

Our composition heuristic focuses on composition of configurations (as opposed to
composition of FMs). Once the local product-based approach is used, we rely on it to
identify broken compositions of configurations across the FMs without having to reval-
idate any configurations against the FMs. This last step can be viewed as a family-based
analysis of our product line (Thüm et al., 2014a), where we validate a property over all
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members of a PL. We store information relative to shared feature constraints on the
model itself. With this information, applying the heuristic to an MPL amounts to search-
ing specific character strings in an array, which is much faster than merging models or
validating complete configurations.

4.5. PROTOTYPE IMPLEMENTATION
We implemented a prototype allowing us to import FMs into a database, enrich the
model and run feature change impact computations. The choice of using a database was
motivated by potential integration with other datasources. Since FMs are mostly hierar-
chical structures, we use Neo4j.2 Our Neo4j schema describes the concepts of feature
model, feature, configuration and shared feature constraint with their relationships as
described in the previous section. This representation is very similar to other FM rep-
resentations such as (Thüm et al., 2014b) with one exception. The mandatory, optional
or alternative nature of a feature is determined by its relationship with its parent; as op-
posed to be a characteristic of the feature itself. This allows to have an optional feature
in a FM, referenced by another FM as part of an alternative.

We leverage the Neo4j Cypher query language to retrieve relevant data: shared fea-
tures, configurations containing certain features as well as interconnected feature mod-
els and the features which links them. We use FeatureIDE (Thüm et al., 2014b) as a fea-
ture model editor tool. We import models in their xml format into our database using a
custom java application. A basic user interface allows us to give the name of a feature to
remove, run the simulation, and view the result.

5. INDUSTRIAL CASE STUDY
As mentioned in Section 3, this paper is motivated by an industrial case study proposed
by our partner. The end-goal of this case study is to assess the applicability of our ap-
proach in an industrial context. To do so, we reproduce a past situation where a change
modified the behaviour of some products of their product line on which a 3rd party prod-
uct was relying, and where the impact was detected late in the development process. We
present and discuss the main steps of our approach and their limitations when applied
in an industrial context: the construction of the model, the feature change impact com-
putation with its result, and the performance of our prototype implementation.

5.1. MODELLING A X-RAY MPL
We start by gathering specification documents of the main subsystems identified in Sec-
tion 3, as well as 3rd party product compatibility specifications. With the domain experts,
we identify relevant components and existing configurations of each subsystem. Using
this information, we model the three interfaces and three subsystems presented in Fig-
ure 3.2 as six distinct feature models (FMs). The three interfaces are (i) the video/data
transfer interface (data and video transfer capabilities), (ii) the video export interface
specifying possible resolutions and refresh rates, and finally (iii) the display interface
representing a choice in monitor and display modes. 3rd party product interface us-
ages are modeled as the configurations associated to those FMs. The three subsystems

2http://www.neo4j.org
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Figure 3.5: Output of the feature removal simulation

of the x-ray machine are (i) the data/video transfer subsystem, (ii) the video chain used
to transport images from a source to a display, and finally (iii) display subsystem. Config-
urations of those subsystems are the concrete products available to customers (between
4 and 11 configurations per FM). Each FM contains between 10 and 25 features, with at
most 5 cross-tree constraints. The “data transfer”, “video chain”, and “screen” FMs share
features relating to hardware components, and reuse features from interface FMs. We
use FeatureIDE to create FMs and configurations. We then import them into a Neo4J
database and use our prototype implementation to generate the necessary shared fea-
ture constraints as described in Section 3.

The main challenge of this phase is to ensure that shared features represent the same
concept in all FMs. For instance, a feature “cable” refers to one specific cable, in a spe-
cific context, and must be understood as such in all FMs including it. Misreferencing
features will lead to incorrect shared feature constraints and incorrect change impact
analysis results. We mitigated this effect by carefully reviewing FMs and shared features
with domain expert.

5.2. SIMULATING THE CHANGE

We studied the effect of the removal of a hardware component used to import video into
the system. To simulate this with our prototype, we provide our tool with the name of
the feature to remove (“Connection box 1”). “Connection box 1” is included in both the
“data/video transfer” and “video chain” FMs, so its removal directly impacts those two
FMs. The tool re-instantiates all configurations of those two FMs and find that 6 configu-
rations of the “video chain” FM, and 1 from the “data transfer” FM are invalid. Then, the
prototype executes the propagation heuristic. A shared feature constraint between the
“data transfer” and “data transfer interface” FMs is no longer satisfied by any configura-
tion of the “data transfer” FM, and is now invalid. Without this shared feature constraint,
one configuration of the “data transfer interface” FM can no longer be combined with
the “data transfer” FM and is considered as invalid. The removal of a configuration in an
interface FM tells us that the compatibility with one 3rd party product is no longer pos-
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sible. The modifications of the “data transfer” FM also invalidated a shared feature con-
straint existing between the “data transfer” and “video chain” FMs. However, the change
of “shared feature constraint” did not propagate further; the configurations that it should
have impacted had already been invalidated by a previous change.

The result of this impact analysis, reviewed with 3 domain experts, showed the im-
pact of interfaces that had been problematic in the past. We ran several other simulations
on this model (removal of features, removal of configurations). On each occasion, the re-
sult matched the expectations of domain experts - given the data included in the model.
In this context, the approach proved to be both simple and successful. This being said,
by using information from existing configurations, we over-constrain inter-FMs relation-
ships. If a shared optional feature is present in all configurations of a given FM, it will be
seen as mandatory during impact computation. However, if a feature is present in all of
existing configurations, it is mandatory with respect to what is available - as opposed to
mandatory in the variability model. As long as we reason about existing configurations
only, using inferred shared feature constraints should not influence negatively the result
of the simulation.

5.3. PERFORMANCE ANALYSIS

We provide here a qualitative overview of performance measurements that were per-
formed during this case study. For our main scenario, our approach checked all con-
figurations of 2 of the FMs, and the change propagated to 2 others. 2 of the 6 FMs did
not have to be analyzed. In this specific context, our implementation provided results
in less than a few seconds, regardless of the scenario that was ran. We then artificially
increased the size of the models (number of features and number of configurations) to
evaluate how it influences the computation time of the propagation algorithm. Given a
set of invalid configurations, we measure how long it takes to assess the impact on one
connected FM. For 2 FMs with 20 features each and 20 configurations each, sharing 2
features, the propagation from 1 FM to the other and impact its configurations takes ap-
proximately 450ms. With 200 configurations in each FMs, the same operation takes 1.5s;
and up to 2.5s for 300 configurations.

During the industrial case study, the performance of the prototype tool was sufficient
to provide almost real-time feedback to domain engineers. The size of the models and
the number of configurations affect negatively the computation time of the change im-
pact analysis, because the first step of our approach is product-based: we do check all
configurations of the initially impacted FMs. However, using an MPL approach, individ-
ual FMs are meant, by design, to be relatively small. Then, computing the propagation
of those changes, if any, depends on the number of affected FMs as defined by our prop-
agation heuristic. The heuristic itself is the validation of a property over all members of
the product family (“family-based” approach), so its performance is less influenced by
model size (Thüm et al., 2014a). This operation consists in searching for strings in an ar-
ray, which should remain manageable even for large models. Our naive implementation,
using Neo4j, already provided satisfactory performance.
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5.4. THREATS TO VALIDITY
With respect to internal validity, the main threat relates to the construction of the models
used for the industrial case study. We built the different FMs and configurations of the
case study using existing documentation while devising the approach. To avoid any bias
in the model construction, we reviewed the models several times with domain experts,
ensuring their representativeness.

Threats to external validity concern the generalisation of our findings. For this study,
we used only the most basic FM notation (Kang et al., 1990). Our approach should be ap-
plicable using more complex notations as long as those notation do not change the rep-
resentation of the configurations (list of feature names, where each name appear once).
If, for instance, we use a cardinality-based notation, the heuristic will have to be adapted
to take this cardinality into account. The extracted information from existing configu-
rations was sufficient for this case study, but more complex relationships between FMs
might not have been encountered. Applying our approach on a different PL would con-
firm or infirm this.

6. RELATED WORK
The representation of variability in very large systems, using multiple FMs, has been
studied extensively during the past few years. Several composition techniques have been
devised. Composition rules can be defined at an FM level, specifying how the models
should be recombined for analysis. Otherwise, cross-FM constraints can be defined. Ex-
amples can be found in the work of Schirmeier (Schirmeier and Spinczyk, 2009) and
Acher (Acher et al., 2010a,b). In our context, we chose not to follow those approaches
as we do not know a priori the over-arching relationships between FMs, nor can we
define cross-FM constraints since we work with partial information. Moreover, those
techniques would then require us to re-compose models before validating the various
configurations which, as noted in (Hartmann and Trew, 2008), is complex to automate.
Recent work on MPLs showed that there is a need to specialise feature models to segre-
gate concerns in MPL variability models. Reiser et al. (Reiser and Weber, 2007) propose
the concept of “context variability model” for multi-product lines, which describes the
variability of the environment in which the end product resides. In our study, we classi-
fied our FMs as either interface or subsystem. This classification also allows us to qualify
the configurations (as interface usage or product implementation), which proved to be
sufficient for our application. Schröter et al. present the idea of interface FMs where spe-
cific FMs involved in an MPL act as interfaces between other FMs (Schröter et al., 2013).
They propose a classification of the characteristics that can be captured by such models
(syntactic, behavioral, and non-functional). While we did not use this approach directly,
we noted that for non-interface FMs, we used specific branches of the model to organize
reused shared features. It is interesting to note that the designs of (non-interface) FMs
share a common structure. We used specific branches of their respective FM to organise
features shared with interface FMs. Doing so, we specialized a branch of a FM instead of
creating dedicated FMs and we do not restrict the type of features it contains (functional
and non-functional alike).

Heider et al. proposed to assess the effect of a change on a variability model by re-
instantiating previously configured products (Heider et al., 2012a), and thus validating
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non-regression. Our approach applies similar principles, as we will consider a change
safe as long as the existing products can be re-derived. We apply those concepts in a
multi-product line environment, where change propagation is paramount. Thüm et al.
(Thuem et al., 2009) proposed to classify changes occurring on feature models based on
their effect on existing product configurations. The change is considered as a “gener-
alisation” if the set of valid products has been extended, “specialisation” if it has been
reduced, “refactoring” if it has not changed, and “arbitrary edit” in all other cases (when
some configurations were removed and others added). This initial classification gave
us some insight into the potential impact of a change, but only for a single FM. Their
methodology could be applied during the initial step of our approach to identify changes
that do not affect existing configurations, avoiding extra computation later on.

7. CONCLUSION
Understanding the full extent of the impact of a change on a complex and highly variable
product is a difficult task. The main goal of this research is to facilitate the evolution of
such systems by assisting domain experts in assessing the effects of changes on multi-
product line variability models. In this paper, we presented an approach to compute the
impact of a feature change on a multi-product line for non-regression purposes, lever-
aging information contained in existing product configurations to infer feature model
composition constraints. We described how our modelling approach can be used in a
practical context, using an industrial case and provide a qualitative review of the per-
formance of our prototype tool. With partial information, we were able to accurately
identify which configurations of an MPL were rendered invalid by a feature change.

As industrial products grow more complex and become more variable, managing
their evolution becomes increasingly difficult. Approaches supporting domain experts’
activities will have to be adapted to meet new challenges. As a step in that direction, we
released our implementation as an open source project 3 as well as the dataset we used
for the performance evaluation. We then plan to integrate it into existing feature mod-
elling tools. We intend to explore how we can make the best use of the promising graph
database technologies such as Neo4J for feature model checking. With such technology,
we will be in a position to consider more complex models, with potentially more complex
FM composition constraints, further facilitating the design, analysis and maintenance of
highly variable systems.

3The tool is available at http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome

http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome
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CO-EVOLUTION IN HIGHLY

CONFIGURABLE SYSTEMS

The only way to make sense out of change is to plunge into it, move with it, and join the
dance.

Alan W. Watts

The evolution of highly configurable systems is known to be a challenging task. Thorough
understanding of configuration options their relationships, and their implementation in
various types of artefacts (variability model, mapping, and implementation) is required
to avoid compilation errors, invalid products, or dead code.

Recent studies focusing on co-evolution of artefacts detailed feature-oriented change sce-
narios, describing how related artefacts might change over time. However, relying on man-
ual analysis of commits, such work do not provide the means to obtain quantitative infor-
mation on the frequency of described scenarios nor information on the exhaustiveness of
the presented scenarios for the evolution of a large scale system.

In this work, we propose FEVER and its instantiation for the Linux kernel. FEVER extracts
detailed information on changes in variability models (KConfig files), assets (preprocessor
based C code), and mappings (Makefiles). We apply this methodology to the Linux kernel
and build a dataset comprised of 15 releases of the kernel history.

We performed an evaluation of the FEVER approach by manually inspecting the data and
compared it with commits in the system’s history. The evaluation shows that FEVER accu-
rately captures feature related changes for more than 85% of the 810 manually inspected
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commits. We use the collected data to reflect on occurrences of co-evolution in practice.
Our analysis shows that complex co-evolution scenarios occur in every studied release but
are not among the most frequent change scenarios, as they only occur for 8 to 13% of the
evolving features. Moreover, only a minority of developers working on a given release will
make changes to all artefacts related to a feature (between 10% and 13% of authors).

While our conclusions are derived from observations on the evolution of the Linux kernel,
we believe that they may have implications for tool developers as well as guide further
research in the field of co-evolution of artefacts.

This chapter was originally submitted as “FEVER: Feature-oriented Changes and Artefact Co-evolution in
Highly Configurable Systems” to the journal of "Empirical Software Engineering" (submitted in October 2016,
currently under review) authored by Dintzner, Van Deursen and Pinzger. An earlier version of this work ap-
peared in the proceedings of the 13th International Conference on Mining Software Repositories (MSR’16),
authored by Dintzner, Van Deursen and Pinzger
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1. INTRODUCTION
Highly configurable software systems allow end-users to tailor a system to suit their needs
and expected operational context. This is achieved through the development of config-
urable components, allowing systematic reuse and mass-customization(van Gurp et al.,
2001). The benefits of such development strategies are to reduce the time to market, as
mass-customization facilitates the creation of tailored solutions, and improved software
quality, as re-used components are tested in various contexts (Clements and Northorp,
2002). Examples of such systems can be found in various domains, such as database
management (Batory et al., 1988; Rosenmüller et al., 2008), SOA based systems (Kumara
et al., 2013), operating systems (Berger et al., 2010), and a number1 of industrial and
open source software projects (Liebig et al., 2010) among which the Linux kernel may be
the best known.

A constraint of such a development strategy is the fragmentation of concerns among
development artefacts in such a way that re-use and customization can be achieved.
Configuration options, or features, play a significant role in a number of inter-related
artefacts of different nature. For systems where variability is mostly resolved at build-
time, features will play a role in, at least, the following three spaces (Dietrich et al., 2012b;
Neves et al., 2015):

1. the variability space - describing available features and their allowed combina-
tions;

2. the implementation space, comprised of re-usable assets, among which config-
urable implementation artefacts; and finally

3. the mapping space - relating features to assets and often supported by a build sys-
tem like Makefiles;

When such systems evolve, information about feature implementation across those three
spaces is actively sought by engineers (Heider et al., 2012b). Consistent co-evolution of
artefacts is a necessity adding complexity to an already non-trivial evolutionary process
(Mens et al., 2005), occurring in both industrial (Hellebrand et al., 2014) and open-source
contexts (Hunsen et al., 2015; Passos et al., 2015). Inconsistent modifications across the
three spaces (variability, mapping, and implementation) may lead to the incapacity to
derive products, code compilation errors, or dead code (Abal et al., 2014; Nadi and Holt,
2012; Tartler et al., 2011).

Recent studies (Neves et al., 2015; Passos et al., 2015) described typical changes oc-
curring in such systems, giving insight on how each space could evolve, and revealing
the relationship between the various artefacts. In (Passos and Czarnecki, 2014), Passos
et al. proposed a dataset capturing the addition and removal of features.

Unfortunately, the most detailed change descriptions currently available (Neves et al.,
2015; Passos et al., 2015) were obtained using extensive manual analysis of commits.
Moreover, those studies focused on specific types of changes, such as addition and re-
moval of features (Passos et al., 2015), or product line refinement scenarios (Neves et al.,
2015). Consequently, the set of co-evolution scenarios documented is limited, and, saved

1http://splc.net/fame.html
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by performing a similar extensive manual analysis of a large number of commits, the
identification of new scenarios remains difficult. Finally, the current state of the art of-
fers neither data nor methods to obtain information on the prevalence of co-evolution
in practice nor the frequency of those specific scenarios over a long period of time.

Such feature-related change information is important in various practical scenarios.

• (S1) A release manager is interested in finding out which commits participated in
the creation of a feature, to build the release notes for instance. In such cases, he
would be interested in commits introducing the feature, and the following ones,
adjusting the behaviour of the feature.

• (S2) A developer introducing a new feature to a subsystem is interested in finding
how similar features were supported by similar subsystems in the past. Then, (s)he
needs to look for changes in those subsystems, involving that such features.

• (S3) During bug triage, a maintainer is searching for a developer who might be able
to resolve a specific issue. The maintainer would then be looking for developers
with knowledge in the implementation on the possibly faulty features.

• (S4) Researchers focusing on feature-oriented evolution of systems are interested
in automatically identifying instances of co-evolution patterns or templates, or ex-
tending the existing pattern catalog presented by Passos et al. (Passos et al., 2015)
and Neves et al. (Neves et al., 2015)

• (S5) Researchers working in the field bug prediction for highly configurable sys-
tems are interested in the relationship between variability changes and error-proneness.
A database of detailed feature-related change information could facilitate their
work.

Unfortunately, given the current state of the art, obtaining the necessary information re-
quire extensive manual analysis of changes and in-depth knowledge of the system under
study.

We present in this paper the extension of FEVER (Feature EVolution ExtractoR) (Dintzner
et al., 2016), a tool-supported approach designed to automatically extract changes in
commits affecting artefacts in all three spaces. FEVER retrieves the commits from a ver-
sioning system and rebuilds a model of each artefact before and after their modifica-
tion. Then it extracts detailed information on the changes using graph differencing tech-
niques. Finally, relying on naming conventions and heuristics the changes are aggre-
gated based on the affected feature(s) across all commits in a release. The resulting data
is then stored in a database relating the features and their evolution in each commit.

We then manually compare the data obtained by FEVER and the commits as pre-
sented in the source control system to first evaluate the improvement in terms of change
extraction accuracy obtained by the FEVER approach over its previous installment, and
perform a second complete evaluation on a larger set of commits. We use this evaluation
to answer the following research questions:

• RQ1: To what extent is the new version of FEVER more accurate in capturing feature-
related changes?
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• RQ2: To what extent does the new version FEVER data match changes performed
by developers?

We use the resulting dataset to perform an exploratory study of feature evolution
over 15 releases of the Linux kernel. We focus on the co-evolution of artefacts during fea-
ture evolution, in terms of affected spaces, under two different points of view: a feature
perspective, focused on feature and the artefacts touched during their evolution, and an
author-centric view, focused on commit authors and the spaces affected during main-
tenance operations. Using FEVER data, we aim at answering the following two research
questions:

• RQ3: To what extent do artefact in different variability spaces co-evolve during the
evolution of features?

• RQ4: To what extent are developers facing co-evolution over the course of a re-
lease?

While the tool we built to extract changes is centered on the Linux kernel, the ap-
proach itself is applicable to a larger set of systems (Berger et al., 2013a; Hunsen et al.,
2015) with an explicit variability model, where the implementation of variability is per-
formed using annotative methods (pre-processor statements in our case), and where the
mapping between features and implementation assets can be recovered from the build
system.

Through this paper, we make the following key contributions: (1) a model of feature-
oriented co-evolving artefacts, (2) an approach to automatically extract instances of the
model from commits, (3) a dataset of such change descriptions covering 15 recent re-
leases of the Linux kernel history (3.10 to 4.4 in separate databases), (4) an evaluation of
the accuracy of our heuristics showing that we can extract accurately the information out
of 87% of the commits, (5) we show that most (69.27%) of features evolve solely through
their implementation, and that a majority of authors do not touch other spaces than the
implementation space. Finally, the tool and datasets used for this study are available on
our website.2

This study is an extension of our previous work on co-evolution of artefacts in highly
variable systems (Dintzner et al., 2016). In this paper, compared to (Dintzner et al., 2016),
we improved the model to better describe complex changes, with additional relation-
ships between artefacts and information on artefact changes. We also improved the heuris-
tics use to capture changes, leading to a higher change extraction accuracy. We also
extracted a larger dataset, comprised of more detailed changes and over a longer pe-
riod of time. Finally, research questions RQ3 and RQ4, on the quantitative aspect of co-
evolution, are entirely new to this work.

We first provide background information on highly variable systems and the imple-
mentation of features in the Linux kernel in Section 2. Then, we present the FEVER ap-
proach, its change meta-model and the change extraction process in Section 3. We evalu-
ate our approach by first comparing the performance of FEVER with its previous version
presented in (Dintzner et al., 2016), and then provide a complete evaluation, including

2http://swerl.tudelft.nl/bin/view/NicolasDintzner/

http://swerl.tudelft.nl/bin/view/NicolasDintzner/
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new change attributes in Section 5. We show the usefulness of FEVER and the collected
data in the aforementioned scenarios in Section 6. With the collected data, we perform
an exploratory study of co-evolution occurrence in Section 7. We discuss our results and
present the threats to the validity of our approach and complete study in Section 8. Fi-
nally, we present related work in Section 9 and conclude our work in Section 10.

2. BACKGROUND
In this section, we present how variability is supported in the Linux kernel, the different
artefacts involved in its realization and their relationships.

2.1. VARIABILITY MODEL
A variability model (VM) formalizes the available configuration options (which we as-
similate to “features” in this work) of a system as well as their allowed configurations
(Kang et al., 1990). In the context of the Linux kernel, the VM is expressed in the Kcon-
fig language. An example of a feature in the Kconfig language is shown in Listing 4.1.
Features have at least a name (following the “config” keyword on line 3) and a type. The
“type” attribute specifies what kind of values can be associated with a feature, which
may be “boolean” (selected or not), “tristate” (selected, selected but compiled as a mod-
ule, or not selected), or a value (when the type is “int”, “hex”, or “string”). In our example,
the SQUASHFS_FILE_DIRECT feature is of type boolean (line 2). In the remainder of this
work, we will refer to Boolean and tristate features simply as “Boolean features”, while
features with type “int”, “hex”, or “string”, will be referred to as “value-based features”.
The text following the type on line 3 is the “prompt” attribute. Its presence indicates that
the feature is visible to the end user during the configuration process. Features can also
have default values. In our example the feature is selected by default (y on line 4). The
default value might be conditioned by an “if” statement.

Kconfig expresses feature dependencies using the “depends on” statements (see line
5). If the expression is satisfied, the feature becomes selectable during the configuration
process. In this example, the feature SQUASHFS must be selected. Reverse dependen-
cies are declared using the “select” statement. If the feature is selected then the target
of the “select” will be selected automatically as well (ZLIB_INFLATE is the target of the
“select” statement on line 6). The selection occurs if the expression in the following “if”
statement is satisfied by the current feature selection (e.g., if SQUASHFS_ZLIB is already
selected).

In the context of this study, we consider additions and removals of features as well as
modifications of existing ones i.e., modifications of any attributes of a feature.

config SQUASHFS_FILE_DIRECT
2 bool

prompt " Decompress files in page cache "
4 default y

depends on SQUASHFS
6 selects ZLIB_INFLATE if SQUASHFS_ZLIB

help
8 Decompress file data in page cache .

Listing 4.1: A feature declaration in Kconfig
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To create a new kernel image, an end-user uses a configurator tool (“menuconfig” for
instance) which reads the variability model, and presents the features to the user in a
tree like structure. At the end of the configuration process, a list of selected features is
passed on to the build system which uses it to select artefacts and artefact fragments to
include in the image before compiling them.

2.2. FEATURE-ASSET MAPPING
The mapping between features and assets determines which assets should be included
in a product upon the selection of specific features. In highly-configurable systems, the
assets could be source code, documentation, or any other type of resources (e.g., im-
ages). In the context of this study, we consider the following types of assets : implemen-
tation artefacts (i.e., source files), data artefacts (i.e., hardware description files), folders,
and compilation flags. The addition of the mapping between a feature and code in a
Makefile, as performed in the Linux kernel, is presented in Listing 4.2. In this example,
the mapping is done between features and object files (but may link source code directly
on occasion). We use the relationship between object files and source files to identify the
mapped source file.

Upon feature selection, the name of the feature used in the Makefile (symbol prefixed
with CONFIG_) will be replaced by its value. As a result, the compilation units (“.o” files)
will be added to different lists “obj-y”, “obj-n”, and “obj-m” (for modules), based on the
value of the macros CONFIG_SQUASHFS_FILE_DIRECT. Compilation units added to the
list “obj-y” are compiled into the kernel image while those in “obj-m” are compiled as
external modules, and objects in “obj-n” are not compiled.

Alternatively, a developer may chose to directly include “obj-y” list in his Makefile, in
which case, the content of the list will be included in the compilation process as soon
as the Makefile is included in the build process. The inclusion of a Makefile in the build
process may be subject to feature selection, via conditional inclusion, or more complex
mechanism relying on variables and file path reconstruction.

+ obj -$( CONFIG_SQUASHFS_FILE_DIRECT ) +=
2 + file_direct .o page_actor .o

Listing 4.2: Mapping between features and assets as performed in the Linux kernel

The language used to describe the mapping and implement the compilation process is
a complete programming language, and the exact mapping between feature and assets
can be very complex. Makefiles are organized in a hierarchy, and constraints from one
may affect others, leading to complex presence conditions for artefacts.

2.3. ASSETS
Many types of assets exists, such as images, code, or documentation. We consider
only configurable implementation assets (source files). We focus specifically on pre-
processor based variability implementation (using #ifdef statements), which, despite
known limitations(Spencer and Collyer, 1992), is still widely used today (Liebig et al.,
2010). An example of an addition of a pre-processor statement is presented in Listing
4.3 where feature SQUASHFS_FILE_DIRECT is used to condition the compilation of two
code blocks, one pre-existing (line 2 to 7) and a new one (lines 9 to 13). As a result,
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based on the selection of the feature SQUASHFS_FILE_DIRECT during the configuration
phase, only one of the two code blocks will be included in the final product.

+ # ifndef CONFIG_SQUASHFS_FILE_DIRECT
2 static inline void * squashfs_first_page

( struct squashfs_page_actor * actor )
4 {

return actor ->page [0];
6 }

+ #else
8 + static inline void * squashfs_next_page

+ ( struct squashfs_page_actor * actor )
10 + {

+ return actor -> squashfs_next_page ( actor );
12 + }

+ # endif

Listing 4.3: Creating an #ifdef block in Linux

Value-based features will be referenced in the implementation, acting as a place-holder
for a value defined during the configuration process, as shown in Listing 4.4.

1 # define DSL CONFIG_DE2104X_DSL

Listing 4.4: Referencing to a value feature where the variable DSL will take the value associated with feature
DE2104X_DSL

3. DESCRIBING CO-EVOLUTION
The objective of this work is to obtain a consolidated view of changes occurring to fea-
tures and their implementation. This information is meant to be used for further analy-
sis, and should capture the most relevant aspects of the changes regarding features and
their evolution in the different spaces. In this section, we present the meta-model we use
to describe feature-related changes in the different artefacts, and how we relate those
changes to one-another. We illustrate the usage of the model with an example of actual
feature changes, affecting all spaces, extracted from release v3.11. In this scenario, a de-
veloper commits a new driver for an ambient light sensor, “APDS9300”. The commit3

message for that change reads as follows:

iio: add APDS9300 ambilent light sensor driver

This patch adds IIO driver for APDS9300 ambient light sensor (ALS).
http://www.avagotech.com/docs/AV02-1077EN

The driver allows to read raw data from ADC registers or calculate
lux value. It also can handle threshold interrupt.

3.1. FEVER CHANGE META-MODEL
An overview of the FEVER change meta-model is shown in Figure 4.1. This overview
highlights the different entities we use to describe what occurs in a commit, from a fea-
ture perspective.

3commit id: 03eff7b60d
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The commit represents a commit in a version control system. Commit entities are re-
lated to one another through the “next” relationship, capturing the sequence of changes
over time. Each commit “touches” a number of artefacts, and those changes are cap-
tured in ArtefactEdit entities. The commit may affect any of the three spaces, leading
to SourceEdit entities when code blocks related to features are modified, MappingEdit
entities when the mapping between feature and assets is affected, or finally FeatureEdit
entities when the variability model changes.

While the ArtefactEdit indicates a change to a file, Source-, Mapping- and Feature-
Edit entities are all representing the change related to individual features within those
files. We omitted the following relationship in the model for readability purposes: Fea-
tureEdit, MappingEdit, and SourceEdit entities are linked to ArtefactEdit with a “in”
relationship, pointing to the artefact in which the change took place. This relationship is
established at a file level. The details of the changes within that artefacts are contained
in the associated Edit entity.

commit

next
0..*

ArtefactEdit
touches

0..*

FeatureEdit
changes_vm

0..*

FeatureDesc

MappingEditchanges_build

0..*

SourceEdit

TimeLine

is

0..1

was

0..1

changes_implementation

0..*

feature_core_update

0..*

feature_core_update

0..*

feature_core_update

0..*

feature_influence_update

0..*

feature_influence_update

0..*

Figure 4.1: The FEVER change meta-model for feature-oriented change description

For a commit in the repository we record the commit id (sha1) to link our data with
the original repository. We save the commit message which may contain information
about the rationale of a change. Finally, to keep track of who touches which feature, we
record users-related information such as commiter and author of each commit. Table 4.1
summarizes the commit-related information stored in the FEVER database, examplified
with the commit adding the “APDS9300” feature.

Attribute Details Example
hash 10 first digits of the commit unique ID 03eff7b60d
author author’s name Oleksandr Kravchenko
commiter commiter’s name Jonathan Cameron
message complete commit message, including sign-offs iio: add APDS9300 ambilent light sensor driver (...)
time commit time Sat Aug 03 19:40:37 CEST 2013

Table 4.1: FEVER Commit entity attributes
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3.2. VARIABILITY MODEL CHANGES
A FeatureEdit entity represents the change of one feature within the variability model
performed in the context of a commit. We are interested in the affected feature, as well
as the change operation that took place (addition, removal, or modification of an exist-
ing feature). The FeatureEdit entity also points to a more complete description of the
feature, FeatureDesc entities. FeatureDesc presents the feature as it “was” before the
change (if existing) and how it “is” after the edit operation (if existing).

In our example, the developer added a new feature, APDS9300, to the variability
model. The change that can be observed in the source control system is shown in Fig-
ure 4.2.

config ADJD_S311
 tristate "ADJD-S311-CR999 digital color sensor"
 select IIO_BUFFER
 select IIO_TRIGGERED_BUFFER
 depends on I2C
 help
  If you say yes here you get support for the Avago ADJD-S311-CR999
  digital color light sensor.
 
  This driver can also be built as a module.  If so, the module
  will be called adjd_s311.
 
+config APDS9300
+ tristate "APDS9300 ambient light sensor"
+ depends on I2C
+ help
+  Say Y here if you want to build a driver for the Avago APDS9300
+  ambient light sensor.
+
+  To compile this driver as a module, choose M here: the
+  module will be called apds9300.
+
 config HID_SENSOR_ALS
 depends on HID_SENSOR_HUB
 select IIO_BUFFER

Figure 4.2: Variability model change: addition of the feature APDS9300

The information recorded by FEVER on FeatureEdit entities are summarized in Ta-
ble 4.2.

Attribute Details Example
name name of the touched feature APDS9300
change change operation affecting the feature ADDED
visibility feature visibility to user during configuration visible
type type of the feature, defines its possible values TRISTATE

Table 4.2: FEVER FeatureEdit entity attributes

The possible values for the “change” attribute are: “ADDED”, “REMOVED”, or “MODI-
FIED”. The type attribute matches the configuration option type in the Kconfig language
(“BOOLEAN”,“TRISTATE”, “INT”, “HEX”, or “STRING”). The feature is either “visible” or
“internal”. Note that the type, and visibility information stored on the FeatureEdit en-
tity correspond to the state of the feature after the edition takes place. For additional
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information on the state of the feature before and after the change, one can refer to the
FeatureDesc entities connected to the FeatureEdit entity.

The FeatureDesc entity captures the information presented in Table 4.3.

Attribute Details Example
name name of the touched feature APDS9300
type feature type TRISTATE
visibility feature visibilty to the user during configuration visible
depends on dependencies of the feature I2C
selects the selected features (none)
default values default values, with conditions if any (none)

Table 4.3: FEVER FeatureDesc entity attributes

For any feature change occurring at a variability model level, the change will be rep-
resented by a “FeatureEdit” entity, and at least one “FeatureDesc” entity in case of addi-
tion or removal, and at most two in the case of the modification of an existing feature.

3.3. MAPPING CHANGES
Regarding the evolution of the mapping, we are mainly interested in the evolution of the
mapping between feature and asset. For this study, we consider the following types of
assets: implementation artefacts, data artefacts, folders, and compilation flags. The evo-
lution of the mapping space is represented by MappingEdit entities characterized by:
the feature involved and the type of artefacts it is mapped to. We describe the feature-
mapping change operation (added, removed, or modified), referring to the association of
a feature to any type of assets, and the change affecting the target within that mapping
(added or removed). Finally, if the asset is an artefact (file), then the change meta-model
also includes the change to the artefact itself. We can thus make the difference between a
situation where a new mapping is introduced (addition of a mapping with an added tar-
get) and an existing mapping being extended (modification of a mapping with an added
target). If the asset is not an artefact (such as a folder or a compilation flag) the value of
the “artefact change” attribute is set to “NA”.

In our example, the developer adds a mapping between the newly created feature
and a newly added file by modifying an existing Makefile as shown in Figure 4.3. The
information contained within the MappingEdit entity to represent this change are pre-
sented in Table 4.4.

 #
 # Makefile for IIO Light sensors
 #
 
 # When adding new entries keep the list in alphabetical order
 obj-$(CONFIG_ADJD_S311) += adjd_s311.o
+obj-$(CONFIG_APDS9300) += apds9300.o
 obj-$(CONFIG_HID_SENSOR_ALS) += hid-sensor-als.o
 obj-$(CONFIG_SENSORS_LM3533) += lm3533-als.o

Figure 4.3: Mapping change: introduction of a new association between feature and asset
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Attribute Details Example
type element mapped to the asset (variable or feature) FEATURE
feature name of the feature involved APDS9300
target target of the mapping apds9300.o
target type type of the target (folder, flag, data, compilation unit) COMPILATION_UNIT
mapping change change to the mapping of the feature ADDED
target change change to the target entity within the feature’s mapping ADDED
artefact change change to the artefact pointed to by the target ADDED

Table 4.4: FEVER MappingEdit entity attributes

3.4. SOURCE CODE CHANGES
Feature related changes within source code, such as modifications to conditionally com-
piled blocks and feature references, are captured as SourceEdit entities. Features in #ifdef
code block conditions and feature references within a given file are an indication that the
behaviour of the feature mapped is configurable, and its exact behaviour is determined
by other features.

Feature references are references to feature names within the code, meant to be re-
placed by the feature’s value at compile-time. Such references may only be added or re-
moved. In such cases, the SourceEdits entity contains the name of the affected feature
and the change in question.

Conditionally compiled code blocks are identified by the conditions under which
they will be included in the final product. A change to such a block is represented by a
SourceEdit containing the condition of the block, the change to the block itself (added,
removed, modified), and the change of the implementation within that block: added if
the code is entirely new, removed if the whole block was removed, modified when the
changed block contains arbitrary edits, or finally preserved if the code itself has not been
touched. An example of the code change is depicted in Figure 4.4.

+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int apds9300_suspend(struct device *dev)
+{
...
+
+ return ret;
+}
+
+#define APDS9300_PM_OPS (&apds9300_pm_ops)
+#else
+#define APDS9300_PM_OPS NULL
+#endif
+

Figure 4.4: Source change: addition of conditionally compiled code blocks

In our example, two code blocks are added. Table 4.5 presents the information we
obtain for the creation of the else fragment of this change. A similar entity is created for
the first part of that new code block, the only different being the value of “interaction” at-
tribute which would reflect the condition of the first block, namely “defined(CONFIG_PM)”
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Attribute Details Example
Change change to the code block itself, or the feature reference ADDED
Interaction presence condition of the block, or feature name for feature reference !(defined(CONFIG_PM_SLEEP))
Code Edit transformation of the code inside the changed block, “null” for references ADDED

Table 4.5: FEVER SourceEdit entity attributes

3.5. TIMELINES: AGGREGATING FEATURE CHANGES
Changes pertaining to the same features are then aggregated into TimeLine entities. A
TimeLine entity aggregates all changes pertaining to a single feature is a number of com-
mits - this includes modification of artefacts mapped to the feature in question, Fea-
tureEdit, MappingEdit or changes to conditionally compiled code blocks whose condi-
tions refer to that feature. For this study, we created TimeLine entities for entire releases.

We divide the types of changes that may affect a feature into two broad categories:
core changes and influence changes.

A feature core update indicates that the behaviour of the feature itself or its definition
is being adjusted. This comprises changes to the feature definition in the VM, changes
to the mapping between the feature and assets, and changes affecting assets mapped to
that feature.

A feature influence update indicates that the feature is playing a role in the behaviour
of another feature. This occurs in two contexts: in the source code, as part of a SourceEdit,
or in the variability model as part of a FeatureEdit.

Figure 4.5 depicts all entities and relationships used to describe the changes oc-
curring in single commit 03eff7b60d. This is a partial view of the complete database.
When fully expanded, the “PM_SLEEP” TimeLine points to any Edit entity which de-
scribe changes to the “PM_SLEEP” feature across an entire release. By navigating through
those relationships, one can easily find what transformation occured on each feature and
retrieve contextual information regarding this change.

In Figure 4.5, three TimeLine entities are depicted in pink, on the right hand side of
the diagram, annotated with the feature name. The first one relates to the feature that
was introduced. We can see that the “APDS9300” node is connected to the FeatureEdit,
in red in the diagram marked with the feature name “APDS9300”, the MappingEdit in
gray annotated with the name of the changed target (apds9300.o), and an ArtefactEdit
(represented by a small gray dot for visibility purpose) with a “feature_core_update” re-
lationship. The connection between the TimeLine for this feature and the ArtefactEdit
is deduced from the MappingEdit: because the new mapping assigns this artefact to fea-
ture APDS9300, then the introduction of this artefact is a “core” update of this feature.
The APDS9300 TimeLine connects the different changes occurring in 3 different types of
artefacts, all related to the same operation: the addition of a feature.

We can also see that a TimeLine for feature PM_SLEEP is present and connected to
two SourceEdit entities. This indicates that, at the creation time, the driver APDS9300
interacts with the power management “sleep” feature, and this interaction occurs in two
different code blocks. Finally, a TimeLine for feature I2C point to the FeatureEdit intro-
ducing feature APDS9300. Note that, APDS9300 depends on I2C, and that relationship is
new. For that reason, in this commit the influence of feature I2C was changed, and does
not affect APDS9300.
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Figure 4.5: FEVER representation of commit 03eff7b60d - all entities and relationships. For readability pur-
poses, ArtefactEdits are represented by small unlabelled gray dots. From top to bottom, they represent edits
to the following files: a documentation file, the source file containing the behavior of feature APDS9300, the
Makefile containing the new mapping, and the Kconfig file containing the new feature declaration.

It is important to note that changes are extracted on an “per artefact basis”. This
means that entities being moved within the same artefacts (a feature in a Kconfig file,
or a mapping in Makefile) will be seen as modified. However, if an entity is moved from
one artefact to another, this is captured as two separate operations: a removal and an
addition, and as such, two Edits entities. Those two Edit entities are linked together by a
TimeLine entity, referring to the modified feature.

4. POPULATING FEVER
4.1. OVERVIEW
The FEVER approach starts from a set of commits and outputs an instance of the FEVER
change model covering the given commit range. Figure 4.6 presents an overview of the
change extraction process. From the initial set of commits, FEVER first analyses each
commit separately, and then consolidates the extracted change information. For each
commit, Steps 1 to 4 are executed as follows:

Step 1 is the identification of the touched artefacts and the dispatch to the appropri-
ate change parser. In the Linux kernel, artefact types are characterized by naming con-
ventions and file extensions using the mapping presented in Table 4.6. Compared to our
previous work (Dintzner et al., 2016), we adjusted our artefact identification heuristics
regarding source files, with a more restrictive expression on “.S” files (rather than “.S*”).
We also include binary files (libraries), which were previously not taken into account.
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Figure 4.6: Overview of the FEVER change extraction and consolidation process

Step 2 performs the artefact-specific data extraction processes. The next subsections
(Section 4.2,Section 4.3, and Section 4.4) detail the process for each type of artefact, but
all of them follow the same general steps. First FEVER rebuilds a model of the artefact
as it was before the change, and a second one representing the same artefact after the
change. Then, FEVER uses the EMF Compare4 infrastructure to identify the differences
between the two versions of the model. EMF Compare identifies the differences between
the two models, and extracts them in terms of the EMF meta-model. FEVER then trans-
lates those changes into the different Edit entities depending on the artefact type. The
reconstruction of the models, and the identification of changes (based on EMF Com-
pare results) are based on heuristics and assumptions on the structure of the artefacts.
We provide an evaluation of the accuracy of those heuristics in Section 5.

Step 3 is the extraction of changes in artefacts for which we do not extract detailed
changes. This includes only commit-related information from which we create a com-
mit entity, and “untyped” artefacts (i.e., documentation, or scripts), represented by Arte-
factEdit entities.

4http://wiki.eclipse.org/EMF_Compare

http://wiki.eclipse.org/EMF_Compare
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Artefact type Expression used for identification
V.M. file “Kconfig.*”
Build file “Makefile.*”,“Kbuild.*”,“Platform.*”
Source file “*.c”, “*.h”, “*.s”, “*.S”
Binary file “*.dll”,“*.so”,“*.a”,“*.lib”
Data file “*.dts”,“*.dtb”

Table 4.6: Artefact types: regular expression used to identify the different types of artefacts

In Step 4, FEVER creates the relationships between Edit entities, the Commit, and
ArtefactEdit.

Step 5 of our approach consists in creating entities and relationships spreading be-
yond single commits: “next” relationships among commits to keep track of the sequence
of changes, and feature TimeLine entities with their respective relationships to edit en-
tities. This is done by navigating through every commit, and identifying touched fea-
ture(s), creating if necessary a new TimeLine entity and the appropriate relationships
between the TimeLine and relevant edits.

We continue this section by describing the heuristics we used to extract feature re-
lated changes. Those heuristics are based on multiple sources of information, namely
the work of Neves et al. (Neves et al., 2015), the work of Passos et al. (Passos et al., 2015),
the Linux official documentation, and finally the authors’ expertise (Dintzner et al., 2015a;
Passos et al., 2015).

4.2. EXTRACTING VARIABILITY MODEL CHANGES
We describe in this section the artefact-specific change extraction process (Step 2 in Fig-
ure 4.6) that takes place when a commit contains changes to the variability model of the
system.

Variability
 Model

Feature
name: string
type: {boolean | tristate | int | string | hex}
prompt : string
depends: string

[0...*] contains

Select
target: string
condition: string

Default Value
value: string
condition: string

[0...*] contains

[0...*]
contains

Figure 4.7: Representation of the variability model used for change extraction

The characteristics of the changed features that we focus on are their type (Boolean
or value-based) and the change affecting the feature. We first reconstruct two instances
of the VM depicted in Figure 4.7 per VM file touched, one representing the VM before
the change, the other after the change. If, like in the case of the Linux kernel, the VM
is described in multiple files, we reconstruct the parts of the model described in the
touched files, i.e., the model we rebuild is always partial with respect to the complete
Linux variability model. The extraction process follows the FMDiff approach (Dintzner
et al., 2015a), including the usage of “dumpconf”. This tool takes as an input a Kconfig
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file and translates it into XML. “dumpconf” is designed to work on the complete Kcon-
fig model, where the different files are linked together with a “source” statement, similar
to #include in C. To invoke “dumpconf” successfully on isolated files, we remove the
“source” statements as a pre-processing steps. “dumpconf” also affects the attributes of
features, and the details of the change operation are described in (Dintzner et al., 2013).
We use this XML representation of the Linux VM to build the model shown in Figure 4.7.

We then use EMF Compare to extract the differences and compile the information in
a FeatureEdit entity. To successfully compare two model instances, FEVER needs to pro-
vide EMF with the capability to determine that two features in the two model instances
are the same entity. For this, we rely on the feature name as a unique identifier during
the model comparison phase.

We attach to this entity the snapshot of the feature as it was before and after the
change in FeatureDesc entities. If the feature is new, respectively deleted, we do not cre-
ate a “before”, respectively “after”, FeatureDesc entity. As mentioned, the “source” state-
ment in the Kconfig language is used to link Kconfig files together. Such statements can
be used in combination with other constructs, such as menus, or “if” blocks. In this situ-
ation, the presence condition of the menu, or the condition of the “if” blocks, in practice
applies to all features within “sourced” file, and any of the files it might “source” itself.
By working on a file level (touched Kconfig file), FEVER will not capture such complex
changes.

With respect to our previous work, we now handle cases where two features within
the same file have the same name. Whereas the previous heuristic yielded a number of
false positive, such cases are now handled by suffixing feature names by an index if a
feature name is encountered twice (or more) when rebuilding the EMF model we use for
change extraction.

4.3. EXTRACTING MAPPING CHANGES
We describe in this section the artefact-specific change extraction process (Step 2 in Fig-
ure 4.6) that takes place when a commit contains changes to the mapping between fea-
tures and assets.

Build Model

Mapped Feature
name: string

Mapped Symbol
name: string

Target
type : {compilation unit | folder | comp. flag | data}
name: string

[0...*] 
contains

[0...*] 
contains

[1...*] 
mapped to

[1...*] 
mapped to

Figure 4.8: Representation of the feature-asset mapping used for change extraction

Similar to the extraction of VM changes, MappingEdit entities are created based on
the differences of reverse engineered models of a Makefile, before and after the change.
We use the model shown in Figure 4.8.

The model contains a set of features and symbols mapped to targets. “Symbol” refers
to any variable mapped to any assets which is not a feature. We identify feature names in
Makefiles by their prefix “CONFIG_”. We scan the Makefiles and extract pairs of symbols
by searching for assignment operators (“+=” and “:=”). We consider that the symbol on
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the left hand side is mapped to the symbol on the right hand side (target).
To determine the type of a targeted asset, we use the following rules: Compilation

unit names finish with either “.o”,“.c” or “.h”; mapped data artefacts in the Linux kernel
are identified by the extensions “.dts”, “.dtb”; compilation flags either start by the foll-
wing strings “-D”, “-L”, “-m”, or “-W”, “-I”, “-f”. We identify folder names by “/”, or single
words, not containing any special characters nor spaces.

Makefiles may contain lists of assets that will be included in the compilation as soon
as the Makefile itself is included. Those assets are assigned to Makefile variables whose
names depend on the implementation of the build process. In the Linux kernel, those
are identified by 5: “obj-y”,“lib-y”,“ccflags-y”,“asflags-y”, and “ldflags-y”. When we find
assets associated with such variables, we map them to a temporary variable, using the
following convention: we use the key word “guarded_” and append the name of folder
containing the Makefile. We later use this naming convention with the extracted infor-
mation on features mapped to folders to assign the changes of such Makefile variables
to the appropriate feature(s).

When features are found as part of “ifeq” or “ifneq” statements, we consider that they
are mapped to any targets contained within their scope. In Listing 4.5, both CONFIG_OF
and CONFIG_SHDMA will be mapped to the compilation unit “shdma.o”.

We also resolve aliases within Makefiles. An example of an alias is presented in List-
ing 4.5, where feature TREE_TEST is mapped to the alias “tree_test.o” referring to two
compilation units “tree_main.o” and “tree.o”. This step is performed as a post-processing
step for each build model instance, and is based on heuristics, also evaluated in Sec-
tion 5.

1 ifeq ($( CONFIG_OF ),y)
shdma -$( CONFIG_SHDMA ) += shdma .o

3 endif
obj -$( CONFIG_TREE_TEST ) += tree_test .o

5 tree_test -objs := tree_main .o tree.o

Listing 4.5: Example of an “ifeq” statement and aliases used in Makefiles

Finally, FEVER uses a Linux specific heuristic for mapping files contained within
specific folders. Part of the mapping between feature and folder is done using variable
names, and dynamic path reconstruction. In general, FEVER does not attempt to recover
this mapping, but for a specific set of folder in the Linux kernel, namely the architecture
folders, this mapping is important. Upon compilation, the chosen hardware architec-
ture of the kernel forces the selection of a given subfolder of the “./arch” folder. There is
no explicit declarations of that mapping in any Makefile (it uses variables and name re-
construction). For this reason, FEVER assumes that any file within the “arch/x86” folder
maps to feature “X86” if no other mapping is found. The accuracy of this heuristic to
recover the link between features and artefacts is evaluated in the next section as the
feature-file mapping change attribute.

Our model reconstruction is based on heuristics and therefor do not take into ac-
count all the possible constructs used in the Linux kernel to link artefacts to features,
however, FEVER focuses on those mentioned above. The constructs that FEVER does not

5https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
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capture are based on variable name manipulation, to build artefacts names (e.g. folder
names, or file names), or combining lists of artefacts together. Then, as mentioned in
Section 2, the exact mapping between features and files is the result of a complex Make-
file hierarchy. By focusing on the mapping as described in a single Makefile, FEVER only
captures a part of the presence condition of each file.

Once the two instances of the model are reconstructed, we use EMF Compare to
extract the differences between them, giving us the list of feature mappings that were
added or removed in that commit. For the comparison of two instances of our mapping
model, we use the name of features as unique identifiers.

From the earlier version of this work, we now capture mapping between features and
more artefacts, and our coverage of compilation flags is more comprehensive.

4.4. EXTRACTING IMPLEMENTATION CHANGES
We describe in this section the artefact-specific change extraction process (Step 2 in Fig-
ure 4.6) that takes place when a commit contains changes to the implementation (source
code).

Implementation 
Model

Referenced Value Feature
name: string

Conditional block
start line: int
end line: int
condition: string

[0...*] 
contains

[0...*] 
contains

[0...*] contains

Figure 4.9: Representation of the feature-asset mapping used for change extraction

At the implementation level, we consider changes to #ifdef blocks and changes to
feature references in the code, as presented in Section 2. To extract those changes, we
rebuild a model of each implementation file in its before and after state following the
model presented in Figure 4.9.

To rebuild the models, we rely on CPPSTATS (Liebig et al., 2010) to obtain starting and
ending lines of each #ifdef block as well as their guarding condition. It should be noted
that CPPSTATS expends conditions of nested blocks within a file, facilitating the identi-
fication of block conditions. In the model, code blocks and their #else counter-parts are
captured as two distinct entities. “Referenced value features” are obtained by scanning
each modified source file looking for the usage of the “CONFIG_” string outside of com-
ments and #ifdef statements. Note that we report reference changes once per feature and
per file.

We then use EMF Compare to compare the two models and build the SourceEdit
entities. For this comparison, FEVER needs to use a unique identifier for each code block
contained within a source file. The condition on a block may not be unique, and hence
cannot be used to uniquely identify a block in two versions of the source model. The
location of the block within the file may change during a commit without the block being
changed itself (i.e., if code is added or removed above it). FEVER uses a combination
of the condition of the block combined with its content (the actual code) as a unique
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identifier. This proved to be an efficient technique, but in the context of the Linux kernel
a number of files contain identical code blocks, with the same block condition. While
this may seem surprising, one may consider a logging mechanism: if the logger feature
is selected, write an entry in the log file. This might be repeated in multiple functions in
a file. As a result, the EMF comparison process cannot correctly identify changed blocks
and returns a number of false positive changes. To compensate for this, we add indices
to the identifier of code blocks when we find such duplication.

We determine the code changes occurring inside #ifdef blocks to compute the value
of the “code edit” attribute of SourceEdit entities. This is performed as a separate step,
once we found the changed code blocks. We extract from the commit the diff of the file in
the “unified diff” format, and identify which lines of code where modified. We compare
this information with the first and last lines of each modified code block to determine
which code block is affected by the code changes.

FEVER extracts and records changes to all conditionally compiled code blocks - whether
features play a role in their presence condition or not. Changes to code blocks that are
not tied to any feature will be captured as SourceEdit, but such entities will not be linked
to any TimeLine in the next step of our process.

By comparison with our previous work, we enhance the source change extraction
process by taking into account cases where code artefacts contain identical code blocks,
containing identical code. Such situations caused errors during the EMF comparison
process and are dealt with as explained in this section.

4.5. CHANGE CONSOLIDATION AND TIMELINES
The final step consists in the creation of feature TimeLine entities and relate them to the
appropriate entities. We create such entities for every feature touched affected by any
change in any Edit entity. We apply the following strategy:

• if a feature is touched in the VM, mapping or source file, the corresponding Edit
entity is associated with a TimeLine with a “core update” relationship.

• if a feature A is added from another feature B’s attribute (as part of a constraint),
then the FeatureEdit entity representing this change is connected to the feature
TimeLine with an “influence update” relationship if feature A did not participate
at all in the definition of B before the change.

• if a feature A is removed from another feature B’s attribute (as part of a constraint),
then the FeatureEdit entity representing this change is connected to the feature
TimeLine with an “influence update” relationship if feature A no longer participate
at all in the definition of B after the change.

• if a feature is part of the condition in a SourceEdit entity, the SourceEdit is con-
nected to one TimeLine entity per feature present in the condition with an “influ-
ence update” relationship;

• if an artefact is touched, it is linked to the TimeLine entity of the feature to which it
is mapped with a “core update” relationship. This is done for each feature mapped
to the file.
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In order to map file changes to features, we need to know the mapping between fea-
tures and files. Note that FEVER only focuses on mapping changes, leaving us with a gap
with respect to mappings that are not touched. As a result, many files, whose mapping
has not evolved would not be mapped - wrongly - to any features. To compensate for this,
we create a snapshot of the complete mapping based on the state of the artefacts on the
first commit of the commit set. To support systems which do not follow Linux naming
convention (the CONFIG_ prefix used in Makefile and the source code), we also extract
the list of features present at the beginning of the studied time-frame. For both the initial
feature list and initial mapping, we rely on the FEVER parser to obtain the information
by invoking it for every Kconfig file and Makefile present in the system.

We then run through all commits, starting from the leaves in a breadth-first manner,
creating or updating TimeLine as necessary, and updating the known mapping between
files and features as we encounters MappingEdits. Some files in the Linux kernel cannot
be mapped directly to features. This concerns mostly header files, contained in “include”
folders. “Include” folders do not contain Makefiles, which prevents direct mapping be-
tween features and such artefacts. Moreover, such files are included in the compilation
process on the basis that they are referenced by implementation files (#include state-
ment), which by definition bypasses any possible feature-related condition. For those
reasons, we do not attempt to map such files to features. They are, however, highly con-
ditional, and often contain many #ifdef statements, which we track.

5. EVALUATING FEVER WITH LINUX
The FEVER change extraction process is based on heuristics and assumptions about the
structure of the artefacts. Those heuristics affect the model build phase and the com-
parison process - the mapping between EMF model changes and higher-level feature
oriented changes. It is then important to evaluate whether the data captured by FEVER
reflects the changes that are performed by developers in the source control system.

The objective is two-fold. First, we aim at evaluating how the changes to the heuris-
tics impacted the accuracy of the FEVER approach. Secondly, we aim at providing a com-
plete evaluation of the FEVER approach and its accuracy, including all new change at-
tributes, against a larger and more representative set of commits as before.

Throughout this section, we consider that a FEVER change description is “accurate”
if the changes performed by developers are captured correctly by FEVER as described in
the previous section. We evaluate the accuracy of the approach in terms of precision and
recall with respect to changes performed by developers on the observed artefacts.

With this work, we improved on the existing FEVER prototype (Dintzner et al., 2016)
in several ways. Section 3 described the FEVER approach with its improvements. From
the initial version of this work, we improved the following aspects of the approach:

• heuristics for code reference identification

• heuristics for code changes within modified code blocks

• heuristics for asset-feature mapping identification (compilation flag, default list,
and artefact extensions management)

• the build change model to support more types of artefacts (namely data artefacts)
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• the build change extraction to include artefact changes when describing mapping
changes

• the timeline model to include “influence updates” on feature changes

With those changes, FEVER captures more information than before, and should be
able to capture previous information more accurately. This leads us to formulate the first
research question driving this evaluation:

RQ1: To what extent is the new version of FEVER more accurate in capturing
feature-related changes?

However, the enhancements of FEVER also include the addition of new information
regarding feature-related changes. The overall accuracy of the tool, should also be eval-
uated. We propose to answer the following research question:

RQ2: To what extent does the improved FEVER data match changes performed
by developers?

To assess whether the FEVER data matches the content of commits, we perform here
a two-steps evaluation. First, we apply FEVER on the commits used in (Dintzner et al.,
2016) and compare the results obtained during the first evaluation of FEVER and the im-
proved algorithm. Then, we perform a second, entirely new evaluation on two different
releases using a different heuristic to select commits.

For both steps, the evaluation is performed manually and consists in comparing the
content of the FEVER database with changes performed by developers. We first present
how this comparison is performed. Then, we present the results of the replication of the
evaluation and finally present the results of the evaluation on the new set of commits.

5.1. EVALUATION METHOD
The objective is to evaluate the accuracy of the heuristics and the model comparison
process used for artefact change extraction and the change consolidation process. To do
so, we manually compared the content of the FEVER dataset with the information that
can be obtained from Git, using the GitK user interface. The evaluation was performed
by the main author of this paper.

For a set of commits, we checked that the different Edit entities and their attributes
can be explained by the changes observed in Git. Conversely, we ensured that feature-
related changes seen in Git have a FEVER representation. At variability model level, we
checked whether the features captured by FEVER as added, removed, or modified are
indeed changed in a similar fashion in the Linux Kconfig files.

Regarding mapping changes, we checked that the pairing of features and files is accu-
rate and that the type of targeted artefact is also correct. Special consideration was given
to the validation of the mapping between features and assets. The mapping between
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features and files may be the results of complex Makefile constructs and may be dis-
tributed over several files through inclusion mechanism. FEVER only takes into account
a number of such constructs as mentioned in Section 3, but not all possible ones. In
cases where a mapping change can be observed in a Makefile, but FEVER does not report
any change, we checked in the Makefile hierarchy if a feature should have been mapped
to that change. If, during the manual inspection, we reached the root folder of the Linux
file hierarchy and we have not encountered any explicit declaration of a link between the
changed mapping and any feature, we considered that this change could not have been
mapped by FEVER, and FEVER should not report any feature-related mapping change.
For instance, a developer modifies “./mm/Makefile” (memory management), and adds
a compilation unit to the “obj-y” variable. We see that the file “./mm/Makefile” is not
constrained by any feature in the root “./Makefile” of the kernel source tree. Hence, we
consider that FEVER cannot map this mapping change to any feature, and should not
report it. We emphasize that FEVER will still report that the Makefile has been touched
in the form of a ArtefactEdit, but no MappingEdit entity should be present.

At the code level, we checked that the blocks seen as touched are indeed touched,
and we compared the condition of each block. Then, by inspecting the patch, we vali-
dated that the code changes within the blocks were correct.

Regarding TimeLine entities, we did not check whether all relevant changes in all
commits were indeed gathered into TimeLine entities. We made the assumption that if
TimeLine entities were properly linked in the commits we checked, then the algorithm is
correct, and the check on the complete release is therefor unnecessary. We also kept track
of the commits for which all extracted information is accurate, giving us an overview of
the accuracy on a commit basis.

5.2. REPLICATION

In our previous work (Dintzner et al., 2016), we evaluated our tool as follows. Using
FEVER, we extracted feature changes from release 3.12 and 3.13 of the Linux kernel,
and randomly extracted 150 commits from each release (out of 11,907 and 13,288 re-
spectively). The selection of commits in those two releases was performed as follows:
we randomly selected 50 commits touching at least the variability model, 50 among the
commits touching at least the mapping, and 50 touching at least source files. Those three
sets are non-overlapping. So the creation of three different sets ensures that our random
sample covers all three spaces. During the evaluation, we ignored merge and release tag
commits.

To evaluate our improved algorithm, we performed the same analysis over the same
set of commits using the enhanced FEVER prototype and compared the results obtained
with what was previously established. Table 4.7 presents a comparison between the pre-
vious precision and recall obtained on change attributes as well as the precision and
recall for the new algorithm.

In addition to the information presented in the table, our evaluation showed that
the percentage of commits for which FEVER correctly extracted all change attributes in-
creased from 82,7% to 85,3%.

Let us first discuss the differences in terms of sample change between the two evalu-
ations. We note that between the two evaluations, few sample size are exactly the same.
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Reference algorithm (Dintzner et al., 2016) Current algorithm
Attribute Sample Precision (%) Recall (%) Sample Precision (%) Recall (%)
VM operations
change: added 208 100 100 206 100 99
change: removed 73 100 100 74 100 100
change: modified 140 80 100 138 81.4 98.6
Mapping operations
target: folder 17 100 94 17 100 100
target: compilation unit 437 100 98 430 100 99.8
target: compilation flag 10 67 60 14 100 100
mapping change: added 278 99 97 271 98,9 98.9
mapping change: removed 84 100 95 133 100 100
mapping change: modified 98 100 98 68 98.6 100
target change: added 326 99 97 328 98.2 97.9
target change: removed 133 100 97 139 100 100
file-feature mapping 622 81 97 728 93.4 92.6
Source operations
block change: added 381 81 97 321 98.7 92.6
block change: removed 229 100 99 230 100 97.8
block change: modified 237 97 99 233 96.3 100
code change: added 365 99 97 307 99,0 98.4
code change: removed 195 99 99 190 96.4 98.4
code change: edited 237 96 99 236 95.9 100
code change: preserved 46 32 83 45 93.2 91.1
reference change: added 6 100 83 106 100 100
reference change: removed 7 88 100 5 83.0 100
TimeLine 743 93 98 11225 95.5 97.5

Table 4.7: Comparison of accuracy of the initial FEVER heuristics (Dintzner et al., 2016) with its new version.

For instance, the first evaluation recorded 208 added features, but the second one found
a total of 206. The evaluation process being inherently manual, it is reasonable to observe
slight differences (as in the variability model changes for instances). However, variation
of sample size is more significant for the following attributes: feature-file mapping, block
changes added, added code, added references, and timelines. Regarding the feature-file
mapping, the new version of FEVER attempts to resolve the mapping of more files -
rather than focusing only on source code. Previously, FEVER did not do so for files lo-
cated within an “include” folder (at any level of its path). Changes to files in folder such
as “arch/.../include” are now mapped.

The variation in terms of “block changes: added blocks” and “code change:added
code” are related. During the first evaluation, we found 381 added code blocks (block
changes: added blocks) with 365 occurrences of new code blocks containing only new
code (code change:added code), while during the second evaluation the number of added
code blocks dropped to 321, and the number of code blocks with added code dropped
to 307. The difference between the two values stems from changes obtained from a sin-
gle commit. A file with the extension “.S_shipped” containing a large number (60+) of
added interactions was included in the initial evaluation. We adjusted the algorithm to
identify files, enforcing strict file extension (.S), hence the file was ignored during the
second evaluation. This results in less added code blocks, and the less added code blocks
containing only new code. While this raises the question of which artefacts one should
consider during the experiment, it does not undermine the ability of FEVER to capture
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accurately code changes from within a well defined set of artefacts.
The number of added references increased significantly between the two evalua-

tions. Once again, explanation for this difference is contained within a single commit6

where a hundred features are added, and then referenced in the code. During the first
evaluation, those references where incorrectly identified as local macros by the tool and
the reviewer, and not noted as added references. During the second review, with the up-
dated algorithm, the references were correctly identified by FEVER as feature references.
A deeper analysis of the code and the related artefacts showed that those were indeed
feature references and should be recorded as such.

Finally, with the improved approach,TimeLines now may be created as the result
of a feature relationship change. Since this was not taken into account during the first
evaluation, the number of TimeLines obtained with the improved algorithm (11,225) is
de facto larger than during the first evaluation (743).

Despite those differences, the results in Table 4.7 indicate improvement of the accu-
racy of most change attributes related to mapping and code changes. The most signifi-
cant being the detection of preserved code inside changed code blocks (from a precision
of 32% to 93,2%) and the detection of changes to compilation flags during mapping evo-
lution (from a precision and recall of 67% and 60% to 100%). Code change capture was
improved by avoiding false positives when multiple code blocks were identical. The de-
tection of compilation flag changes was improved by capturing changes to compilation
flags not mapped “directly” to a feature, but indirectly (the flag is mapped to an internal
variable and will be activated when a guard feature is selected).

With this information we can answer our first research question, RQ1: To what extent
is the new version of FEVER better at capturing feature-related changes?

The overall accuracy of FEVER slightly improved (by 2,6%), while the ability to
capture certain change attributes increased significantly (by more than 30%).

The changes to the heuristics used by FEVER lead to an improvement over its
previous version.

While this increases our confidence in FEVER’s ability to capture changes, the im-
proved algorithm allowed us to capture change in artefacts and feature relationships that
were not taken into account before - hence, not covered in this comparison. Moreover,
we used for this comparison the same set of randomly selected commits as in our pre-
vious work (Dintzner et al., 2016). However, the methodology used to build this set did
not allow for commits not affecting any feature to be included in the evaluation, which,
in our opinion creates a bias in the evaluation. We continue the evaluation of FEVER
by performing a complete evaluation, including new attributes on a more complete and
different set of randomly selected commits.

5.3. EVALUATION ON A NEW SET OF COMMITS
The results of the previous sub-section highlight improvements on the ability of FEVER
to capture certain types of changes. However, we extended the change model to capture

6206f060c21
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additional change information, as presented in the beginning of this section.
To evaluate the improved FEVER algorithm, we extended the evaluation of the data

used in the replication presented above (300 commits) to cover the additional changes
and created a new dataset from two releases using a different random selection approach
(510 additional commits). For the additional dataset, instead of three groups of commits
affecting different spaces, we randomly selected commits from five different groups: 51
commits not affecting any artefact, 51 commits affecting arbitrary artefacts, 51 commits
affecting at least the variability model, 51 commits affecting at least the mapping, and
finally 51 commits affecting at least code blocks, for a total of 255 commits per release.
With this approach, we ensure that every commit within the FEVER database may be
selected. Consequently, the complete dataset used for this evaluation is comprised of 810
commits, from 4 different releases (150 commits from release 3.12, 150 commits from
release 3.13, 255 commits from release 3.14, and finally 255 commits from release 4.2).

FEVER does not capture changes inside merges. The rationale behind this decision
is to avoid capturing changes multiple times: once when they are implemented by their
original authors, and possibly a second time if the merge operation results in a conflict
(same file modified twice). During our evaluation, we checked whether some informa-
tion was missed by skipping merge commits altogether. We used the following method-
ology: we inspected a subset of the merge commits and checked that all changes that oc-
curred can be found within the parent commits - i.e. all modifications pre-existed, they
are simply integrated together. We identify “new content” in merge commits by using the
following “git log” command to visualize the changes:

git log <commit_hash> -p –cc

The “-p” option displays the patch, and "-cc" displays the patch “diff” from all par-
ents simultaneously. Using this view of the patch, we searched for content added or re-
moved from all parents. Practically, this amounts of searching for lines in the “diff” where
the number of “+” or “-” symbols at the beginning of modified lines of text equals the
number of parents.7 Given that FEVER omits merge commits, any of such change is ac-
counted for as a false negative for the relevant change attribute during the evaluation.
Table 4.8 summarizes the results for the 4 datasets, comprised of a total of 810 commits.

The results show that, for a majority of attributes (26 out of 27), FEVER precision and
recall is at least of 88%. On the other hand, we note that detection of reference changes
can be problematic. During this evaluation, we found two cases where developers cre-
ated local variables (using the #define C directive) whose name matched feature naming
convention (CONFIG_ prefix). This explains the lower precision, but FEVER still exhibit
for this change a high recall of a 100% when capturing removals of feature references.

With this information we can now answer our second research question, RQ2: To
what extent does the new version FEVER data match changes performed by developers?

The results showed that the data collected by the new version of FEVER matches
the changes performed by developers in 87% or more of the commits. The newly in-

7https://git-scm.com/docs/git-log
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cluded change attributes (artefact changes, “data” artefact types) are captured with
a high accuracy (of at least 80%).

Those results give us confidence on the viability of the FEVER approach, and in the
quality of the extracted data. We proceed to explore usages of the dataset, before con-
tinuing with an exploratory study of co-evolution of artefacts in the context of feature
evolution in Section 7.
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Attribute Population Precision (%) Recall (%)
VM operations
change: added 309 100 98.7
change: removed 88 100 98.9
change: modified 293 89.8 98.6
Mapping operations
target: folder 52 100 98.1
target: compilation unit 735 99.3 95.6
target: compilation flag 32 100 100
target: data 61 100 100
mapping change: added 506 98.4 95.1
mapping change: removed 201 100 90.0
mapping change: modified 180 97.7 92.8
target change: added 644 98.7 94.6
target change: removed 224 99,1 100
artefact change: added 366 98.2 91.5
artefact change: removed 113 99.0 89.4
artefact change: modified 31 100 80.6
artefact change: untouched 290 88.7 92.4
artefact change: NA 82 100 98.8
file-feature mapping 1650 95.1 93.5
Source operations
block change: added 656 99.4 93.5
block change: removed 355 100 97.2
block change: modified 529 95.6 99.6
code change: added 583 99.1 97.9
code change: removed 271 97.0 96.7
code change: edited 556 95.3 99.3
code change: preserved 124 95.7 88.7
reference change: added 117 99.2 100
reference change: removed 9 69.7 100
TimeLine 2367 97.1 97.5

Correct commits 810 87.2%

Table 4.8: FEVER change extraction accuracy evaluated on 810 commits
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6. FEVER USAGE SCENARIOS
In this section, we illustrate how using FEVER or the data collected using the approach
can be of use to developers, maintainers and researchers in the scenarios S1 to S4 men-
tioned in the Section 1.

The FEVER data is stored in a Neo4j graph database.8 Every entity of the FEVER
change meta-model is a node of the graph, and the relationships are edges. Data types
are represented using node labels, and attributes are stored as node properties. The
queries presented in this section are written in the Cypher query language.9 It is un-
derstood that, in a practical situation, an integration with development tools would be
more suitable than relying on direct Cypher queries.

6.1. FEVER FOR SOFTWARE DEVELOPMENT ACTIVITIES
In scenario S1, we consider the work of a release manager building the release notes. He
is interested in highlighting important features, and matching those to the commits that
participated in their implementation. The release notes of Linux v3.13 10 mention the
following change “add[s] option to disable kernel compression” with a single commit.
Looking at the commit, we know that a new configuration option named “KERNEL_-
UNCOMPRESSED” is introduced. We can check this with FEVER by querying the com-
mits associated with the TimeLine of “KERNEL_UNCOMPRESSED” as follows:

[fontsize=\small]
match
(t:TimeLine)-[]->()<-[]-(c:commit)
where t.name = "KERNEL_UNCOMPRESSED"
return distinct c;

This query returns two commits. The first commit (id:69f055) mentioned in the release
note is associated with a FeatureEdit entity denoting the addition of a feature. The sec-
ond commit (id:2d3c62), occurring a few days later, is also associated with a FeatureEdit
entity, but, surprisingly, removes the feature. A check in release v3.14 showed that the fea-
ture was never re-introduced. This means that the release notes written by the 3.14 re-
lease managers were, in fact, incorrect. We argue that a dataset such as FEVER would pro-
vide release manager with more accurate information on changes that were performed
by developers and may have prevented this erroneous entry in the release notes.

In scenario S2, a developer is about to introduce a new driver for a touch-screen
supporting the power management “SLEEP” feature. The developer might want to know
how such support was implemented in other drivers and compare it with its own imple-
mentation. Using FEVER, he queries the database for commits where a new feature (f1)
is added (fe.change =“ADDED”), and interacts with a second feature (f2) whose name is
“PM_SLEEP” as follows:

match (f1:TimeLine)-[:FEATURE_CORE_UPDATE]->
(fe:FeatureEdit)<-[]-(c:commit),

(c)-[]->()<-[:FEATURE_INFLUENCE_UPDATE]-(f2:TimeLine)

8http://neo4j.com/
9http://neo4j.com/docs/stable/cypher-query-lang.html
10http://kernelnewbies.org/Linux_3.13
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where f2.name = ‘‘PM_SLEEP’’ and fe.change = ‘‘ADDED’’
return f1,f2, distinct c;

When ran against database containing commits of release 3.14 of the Linux kernel,
this query returns ten results, giving the name of the newly introduced features, and
the commits in which those changes occurred. Among the results, the developer might
notice that feature “TOUCHSCREEN_ZFORCE” and might consider using this as an ex-
ample to drive his own development.

FEVER can also be of use in our third scenario S3 in the context of bug triaging. Let
us consider the bug #928561 reporting issues with keyboards mentioning that “multi-
media and macro keys are not working”.11 The bug report author provide traces and logs
pointing to issues with the Linux Human Interface Devices (HID) subsystem. This issue
was fixed by and the patch was introduced in the kernel in release 3.12. In the FEVER
database for release 3.12, we run the following query to see who among the commit au-
thors committed the most changes affecting HID related features.

match (c:Commit)-->()<--(t:TimeLine)
where t.name=~"(?ism).*HID.*"
return distinct (c.author), count(c)
order by count(c) desc;

The name of the developer who analyzed and fixed the issue comes first in the results,
with 22 commits affecting “*HID*” features - among which one corresponds to the patch
fixing the keyboard issue. In second place, we find an official maintainer for three of ker-
nel subsystems with 17 commits, followed by another official maintainer for two HID
related subsystems and the name of a Linux branch manager with 16 commits each af-
fecting such features. It is interesting to note that the names of the developers who fixed
the issue in question are not present in the official maintainers list of the kernel for re-
leases 3.11 nor 3.12. Through this scenario, we suggest that the FEVER database can be of
use to identify feature expertise, and possibly facilitate bug triaging (Matter et al., 2009).
A maintainer in charge of bug triage may use a simple query with information on poten-
tially faulty features to find which developers can provide insight on an issue or even fix
it.

6.2. FEVER FOR SOFTWARE ENGINEERING RESEARCH
In scenario S4, a researcher in the domain of evolution of highly variable software sys-
tems is interested in the typical structure of feature related changes. For instance, he
would like to observe the occurrences of the introduction of abstract features, in the
sense of Thuem et al. (Thuem et al., 2009): a feature only exists in the VM. Using FEVER,
we can identify the introduction of such features with this query:

match
(t:TimeLine)-[:FEATURE_CORE_UPDATE]->(f:FeatureEdit)

where
not (t)-[:FEATURE_CORE_UPDATE]->(:MappingEdit)
and not (t)-[:FEATURE_CORE_UPDATE]->(:ArtefactEdit)
and not (t)-[:FEATURE_INFLUENCE_UPDATE]->(:SourceEdit)

11https://bugzilla.redhat.com/show_bug.cgi?id=928561
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and f.change="Add"
return t

In release v3.13, this query returns 42 features. Because TimeLine entities are regrouping
changes across spaces and commits, we know that those 42 features are indeed abstract,
and this is not the result of a developer who first modified the variability model and in a
later commit adjusted the implementation. The addition of an abstract feature has not
yet been described as a co-evolution pattern, and further analysis is necessary to fully
describe such changes. Nonetheless, this illustrates how FEVER can be of use to discover
patterns or identify instances of known patterns. An earlier version of FEVER was used
by Sampaio et al. to facilitate the identification of instance of changes affecting certain
spaces in the context of their work on safe evolution templates (Sampaio et al., 2016).

In scenario S5, we consider the work of a researcher focusing on variability related
bugs (Abal et al., 2014) and bug prediction (Giger et al., 2011). The data captured by
FEVER may reveal information on features involved in bug-fixing commits. A basic ap-
proach would consist in using regular expression on commit messages to identify bug-
fixing commits. Using this, one can identify features involved in bug-fixing commits us-
ing the following query:

match (c:commit)-->()<--(t:TimeLine)
where not c.message =~ "(?ism).*copyright notices.*"
and c.message =~ "(?ism).* bug.*"
or c.message =~ "(?ism).* error.*"
or c.message =~ "(?ism).* fix.*"
or c.message =~"(?ism).* revert.*"
return t.name, count(distinct c);

We note that Tian et al. devised a methodology to identify bug-fixing commits in the
Linux kernel (Tian et al., 2012). Combining such an approach with FEVER should yield
more accurate results than the query presented here. However, with such a simple query,
one can identify which features are more error-prone than others. It would be interesting
to see if the number of features involved in a commit influences the bug-proneness of
commits.

Finally, the data provided by German et al. (German et al., 2015) can be used to
track commits over time and across repositories. Combining this information with the
FEVER database would allow us to track feature development across Git repositories, and
observe how the Linux community collaboratively handles the development of inter-
related features.

7. CO-EVOLUTION IN LINUX
In this section we explore the data collected by FEVER over 15 releases of the Linux ker-
nel. Given the relatively high accuracy of the approach established in Section 5, we can
rely on FEVER data to explore co-evolution of artefacts in the context of feature evolution
in the Linux kernel.

The state of the art on feature-oriented co-evolution of artefacts in highly config-
urable software systems focused on specific changes (Neves et al., 2015, 2011; Passos
et al., 2015). Those studies were performed using manual analysis. While those provide
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relevant and important knowledge on change scenarios, little information can be found
on their occurrence in large systems. In this section, we report on an exploratory study
of the feature-oriented co-evolution of artefacts in the Linux kernel.

We argue that quantitative information on the frequency of co-evolution over the
evolution of a complex system would allow tool developers and researchers to deter-
mine how relevant the support of co-evolution for the evolution of such systems is. How
often is co-evolution occurring, and how many authors actually face co-evolution dur-
ing their development tasks? What percentage of the touched features actually evolve
in multiple variability spaces? And when they do, which spaces are more frequently in-
volved? Should a developer provide tool support for co-evolution, and what should be
its main focus to help in a majority of cases? This leads us to formulate the following two
research questions:

• RQ3: To what extent do artefact in different variability spaces co-evolve during the
evolution of features?

• RQ4: To what extent are developers facing co-evolution over the course of a re-
lease?

With the first question, we can obtain an estimate of how likely co-evolution is from
a technical perspective. If a feature evolves during a release, how likely is it that this evo-
lution will imply the modification of multiple types of artefacts? With the second ques-
tion, we aim at estimating the potential audience for tools and techniques targeting co-
evolution issues. Provided a simple and efficient method can be devised to guarantee
correct feature-oriented co-evolution of artefacts, what percentage of the development
team would actually benefit from it?

To put our results into perspective, we first provide our readers with general informa-
tion on the evolution of the Linux kernel as captured by FEVER over the studied period
of time. The dataset collected with FEVER covers 15 releases of the Linux kernel, start-
ing at v3.9 (April 2013 - first extracted commit) until v4.4.(January 2016 - last extracted
commit). A release of the Linux kernel lasts for approximately six weeks.

Release 3.10 3.11 3.12 3.13 3.14 3.15 3.16
Number of commits 14737 11851 11906 13288 13415 14871 13830
Number of authors 1433 1304 1362 1400 1481 1535 1513
Number of features 12511 12603 12780 13022 13134 13297 13453
Number of timelines 5208 4397 4424 4581 4503 4960 4099

Release 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4
Number of commits 13331 12361 13652 11306 12965 14750 13282 14082
Number of authors 1461 1507 1495 1495 1576 1630 1607 1636
Number of features 13602 13631 13802 13932 14427 14217 14458 14607
Number of timelines 4322 3797 5131 3432 4082 4316 4159 3967

Table 4.9: General information on the Linux kernel development: number of commits, authors, features, and
FEVER Timelines over the studied period of time.
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7.1. METHODOLOGY
Before proceeding, we first provide general information on the studied releases. Table 4.9
presents the number of features at the beginning of each release, the number of authors,
the number of commits, and the number of TimeLine entities. The number of features
at the beginning of the release is obtained by using the initial feature list produced for
the extraction process. The number of TimeLine was obtained by querying the FEVER
databases, representing the number of features that evolved during that release. The
number of commits and authors were obtained by querying the FEVER database and
cross-checked using “Git”.

We then proceeded as follows. We built a number of queries to identify features, the
spaces in which they evolve and the involved authors. We ran the queries on each ex-
tracted release of the Linux kernel and dumped the results in a series of .csv files. For
each commit we extracted the type of artefacts affected by the commits as well as the
authors. To identify authors, we used the author name, as reported in the Git repository
- this information is stored as part of the commit entity in FEVER. We also consolidate
the collected information over time. This allows us to contrast the evolution of feature
and variability authorship in each release with the evolution of feature and variability
space authorship over multiple releases (15 in this case). To do so we aggregate the col-
lected information by feature (identified by their name), and authors (identified by their
name as well). By doing so, we avoid biases caused by complex co-evolution over time.
For instance, a feature is touched in the code in six releases, but its mapping or variabil-
ity model representation change in seventh. Over time, this should be considered as a
change to all spaces, where on a release level, we would record a changes in the source
code only, or V.M. and build only - which would be correct but partial. We then imported
this information into a spreadsheet editor to compile the results.12

As noted in previous work on mining social information from software repositories
(Bird et al., 2008; Kouters et al., 2012), authors are likely to use aliases and submit com-
mits using different email addresses. In this work, we relied on the author’s name, as
stored in the Git repository and did not take aliases into account. We evaluated the pos-
sible bias caused by aliases on our study by performing a manual analysis of author’s
name in release 4.4. To identify aliases, we searched among the list of author names du-
plicated names and first name. We then decided whether two names are likely to point
to the same person using the following strategy: for each name we took into account
the following variations mentioned by Kouters et al. (Kouters et al., 2012): odering, dia-
critics, nicknames, middle initials and middle name, and finally irrelevant incorporation,
emails instead of name. This analysis of author’s name in release 4.4 revealed that, out of
the 1636 authors, 53 recorded author names are aliases, accounting for 3.23% of author
names.

7.2. RESULTS: FEATURE CO-EVOLUTION OVER TIME
The results of our quantitative analysis of co-evolution of features in the Linux kernel are
presented in Table 4.10. This table summarizes, for each release, the space(s) in which
features of the kernel evolve. In addition, we aggregated the results for feature evolving

12The spreadsheets used during this experiment are available on our website:
http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome
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in a single space, two spaces, and three variability spaces, with raw quantitative informa-
tion and the percentage of those features (in italic in the table). For instance, in release
3.10, FEVER captured 5208 feature TimeLines. Among those, 654 evolved solely in the
variability model (V.M.), and the total number of features that evolved through changes
in a single space is 3407, or 78.19% of the evolving features in that release.

The table also presents the average and median number of features evolving in each
combination of spaces over the studied period of time. We can see in the penultimate
column of Table 4.10 that, on average over 15 releases, 4538 feature evolved and that, on
average, only 7.43% of them evolved in all three spaces.

Release 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18
Number of timelines 5208 4397 4424 4581 4503 4960 4099 4322 3797
V.M. only 654 508 909 357 390 608 462 487 337
Mapping only 11 9 3 15 11 7 8 3 15
Source only 3407 2859 2586 3387 3325 3292 2799 2862 2695
Single space 4072 3376 3498 3759 3726 3907 3269 3352 3047
Single space (%) 78.19 76.78 79.07 82.06 82.74 78.77 79.75 77.56 80,25
V.M. & mapping 39 22 14 20 19 15 21 33 14
V.M & source 632 549 588 453 442 522 451 450 366
source & mapping 54 67 56 68 65 59 76 71 50
Two spaces 725 638 658 541 526 596 548 554 430
Two spaces (%) 13.92 14.51 14.87 11.81 11.68 12.02 13.37 12.82 11.32
All spaces 411 383 268 281 251 457 282 416 320
All spaces (%) 7.89 8.71 6.06 6.13 5.57 9.21 6.88 9.63 8.43

Release 3.19 4.0 4.1 4.2 4.3 4.4 Average Median
Number of timelines 5131 3432 4082 4316 4159 3967 4358 4322
V.M. only 355 330 337 406 387 330 547,1 (10.44%) 390 (9.40%)
Mapping only 3 23 11 29 1 5 10,27 (0.2%) 9 (0.20%)
Source only 3962 2369 2932 2954 2967 2884 3019 (69.27%) 2932 (69.03%)
Single space 4320 2722 3280 3389 3355 3219 3486 3376
Single space (%) 84.19 79.31 80.35 78.52 80.69 81.14 79.96 79.75
V.M. & mapping 9 8 17 21 14 14 18,67 (0.45%) 17 (0.41%)
V.M & source 428 349 415 462 449 410 467 (10.65%) 450 (79.75%)
source & mapping 60 63 86 91 56 71 66,2(1.51%) 65 (1.48%)
Two spaces 497 420 518 574 519 495 549,3 541
Two spaces (%) 9.69 12.24 12.69 13.30 12.48 12.48 12.61 12.48
All spaces 314 290 284 353 284 253 323,1 290
All spaces (%) 6.12 8.45 6.96 8.18 6.83 6.38 7.43 6.95

Table 4.10: Co-evolution of edited features over time. Values in italics are computed, while values in regular
fonts are obtained using Neo4j queries.

Regarding the co-evolution of artefacts with respect to feature evolution, we can see
that most features evolve only through their implementation.

On average and over the studied period of time, 69.27% of evolving features only
changed in their implementation, either modification of the mapped artefact or mod-
ification of code blocks - #ifdef block. We can order the combination of spaces in which
features are most likely to evolve as follows:

1. Source only (69.27%);



7. CO-EVOLUTION IN LINUX

4

101

2. V.M. only (10.44%), and V.M. with Source (10.65%);

3. All three spaces (7.43%);

4. Any other combination of spaces occurs, on average over the studied period of
time less than 2% of the time.

Table 4.11 show the evolution of all changed features, by spaces, over the entire stud-
ied period of time, i.e., 15 releases, approximately two years. The results show that, over
the 15 releases, 4111 changed features among the 17448 features that were changed
evolved in all three spaces. We can see that half of features (49.94%) evolved in a single
space during that time.

Spaces Count Ratio (%)
Number of timelines 17448 100.00
V.M. only 1856 10.64
Mapping only 23 0.13
Source only 6835 39.17
Single space 8714 49.94
V.M. & mapping 214 1.23
V.M & source 4185 23.99
source & mapping 224 1.28
Two spaces 4623 26.49
All spaces 4111 23.56

Table 4.11: Co-evolution of edited features aggregated by feature, over the entire studied period of time. Values
in italics are computed, while values in regular fonts are obtained using Neo4j queries.

Given our results, we can answer our third research question, RQ3: To what extent do
artefacts in the different variability spaces co-evolve during the evolution of features?

In a given release, a majority of features (79.96%) evolve without any co-
evolution in the different variability spaces, their evolution occurs within a single
space. The percentage of feature evolution performed by modification of multiple
spaces is low (less than 25%) but remains relatively constant over the studied period
of time.

Over a longer period of time, more features will evolve in multiple spaces (50%
after 15 releases).

7.3. RESULTS: CO-EVOLUTION AUTHORSHIP
Table 4.12 shows the spaces affected by authors commits in the Linux kernel. For each
release, it presents the number of authors and the number of authors whose commits af-
fected the different combinations of spaces. In release 3.18, among the 1507 authors, 12
committed changes modifying only the mapping space. In that same release, the num-
ber of authors whose changes modified only a single space is 1134, representing 78.9%
of all authors.
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The last two columns of the table show the average and median number of authors
and the spaces they affected, with the aggregated values per spaces, over the studied
period of time. We can see in the last column that the median number of authors in the
studied releases is 1495, and the median number of authors who modified all spaces is
161, representing 10.98% of the authors.

Release 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18
Number of authors 1433 1304 1362 1400 1481 1535 1513 1461 1507
V.M. only 8 6 7 10 12 11 7 5 6
Mapping only 9 7 8 5 7 18 8 21 12
Source only 1064 960 1071 1043 1101 1152 1163 1069 1116
Single space 1081 973 1086 1058 1120 1181 1178 1095 1134
Single space (%) 77.55 77.04 80.03 78.60 77.99 79.58 80.03 77.66 78.59
V.M. & mapping 2 0 2 1 0 0 0 1 4
V.M & source 77 63 78 83 81 63 70 84 75
source & mapping 64 62 52 61 74 77 73 63 70
Two spaces 143 125 132 145 155 140 143 148 149
Two spaces (%) 10.26 9.90 9.73 10.77 10.79 9.43 9.71 10.50 10.33
All spaces 170 165 139 143 161 163 151 167 160
All spaces (%) 12.20 13.06 10.24 10.62 11.21 10.98 10.26 11.84 11.09

Release 3.19 4.0 4.1 4.2 4.3 4.4 Average Median
Number of authors 1495 1495 1576 1630 1607 1636 1495,67 1495,00
V.M. only 20 6 12 6 7 11 8,93 (0.62%) 7,00 (0.52%)
Mapping only 15 15 14 21 16 17 12,87 (0.88%) 14,00 (0.92%)
Source only 1085 1121 1181 1195 1251 1210 1118,6 (77.24%) 1116,00 (77.49%)
Single space 1120 1142 1207 1222 1274 1238 1140.60 1134.00
Single space (%) 77.78 79.75 79.56 77.44 80.08 79.31 78.73 78.6
V.M. & mapping 1 2 3 1 1 2 1,33 (0.09%) 1,00 (0.07%)
V.M & source 82 73 74 78 75 86 76,13 (5.27%) 77,00 (4.85%)
source & mapping 80 56 79 85 71 66 68,87 (4.75%) 70,00 (4.85%)
Two spaces 163 131 156 164 147 154 146.33 147
Two spaces (%) 11.32 9.15 10.28 10.39 9.24 9.87 10.11 10.26
All spaces 157 159 154 192 170 169 161.33 161.00
All spaces (%) 10.90 11.10 10.15 12.17 10.69 10.83 11.16 10.98

Table 4.12: Authorship of variability spaces over time. Values in italics are computed, while values in regular
fonts are obtained using Neo4j queries

Regarding authorship of the different spaces, we can see that a majority of develop-
ers, over the course of a release, modified only the implementation space. In this con-
text, this means that they touched the implementation of a feature (mapped artefact) or
a code block (#ifdef block). Our results show that on average, over the studied period of
time, this is true for 77.24% of authors. When authors touch multiple spaces, they are
less likely to modify only the variability model and the mapping (0.09% of authors on av-
erage) than other combinations of spaces. Finally, between 10.2% and 13.06% of authors
perform modifications spreading across all three spaces. We can see from Table 4.12 that
this percentage varies very little over the studied period of time.

Table 4.13 present the authorship of variability spaces aggregated over the 15 releases
we studied. The table shows that 17.47% of the 6645 authors we identified changed fea-
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tures by editing all three variability spaces. Over the studied period of time, 72.47% of
authors touched only a space, and a majority (71.33%) of authors focused solely on the
source code.

Spaces Count Ratio (%)
Authors 6645 100.00
V.M. only 28 0.42
Mapping only 48 0.72
Source only 4740 71.33
Single space 4816 72.47
V.M. & mapping 4 0,06
V.M & source 316 4.76
source & mapping 318 4.79
Two spaces 638 9.60
All spaces 1191 17.92

Table 4.13: Authorship of variability spaces, aggregated by author over the entire studied period of time. Values
in italics are computed, while values in regular fonts are obtained using Neo4j queries.

With those results, RQ4: To what extent are developers facing co-evolution over the
course of a release?

On a given release, only a minority (less than 25%) of developers will make
changes to multiple spaces. The percentage of commit authors dealing with co-
evolution is thus low, but stable over time. A majority of authors (approximately 75%
in each release, and approximately 71% over time) will focus only on source code.

7.4. ON CO-EVOLUTION IN LINUX
In our experiments, we extracted feature-related changes from release v3.10 (June 2013)
until release v4.4.(January 2016). The development of the kernel started much earlier
than the first release studied in this work. Development practices in the Linux kernel
are well documented and the development process can be considered as very mature.
What we observe are changes occurring in a stream-lined development process. This in
itself might explain the regularity in the data we gathered in terms of co-evolution and
authors edits in various spaces. This regularity suggests that occurrences of co-evolution
in feature evolution, or author experience of co-evolution will remain the same until the
next upheaval of the development process or of the system’s architecture.

With this in mind, we note that most developers did not perform changes in multi-
ple spaces. Over time, a majority (71.33%) of developers only modified the implemen-
tation space. This is visible in our results, both when describing author’s contributions
to individual releases, and their contribution over the studied period of time. However,
this does not mean that developers cannot introduce dead code blocks or false optional
blocks in the implementation. Valid changes to the implementation do require some
knowledge on feature support in all spaces. Developers still benefit from tools focusing
on validation of the consistency of features across spaces. Such tools, such as Kbuild-
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Miner (Nadi and Holt, 2012), TypeChef (Kenner et al., 2010), or Undertaker (Tartler et al.,
2009), usually require the extraction of variability information from all variability spaces.
Then they aggregate the information validate their consistency. If, as shown by our re-
sults, in most cases the VM and the mapping remain untouched, the information re-
quired from those artefacts to run consistency checks can be cached. According to our
results, on a given release, more than 75% of authors could use this cached information
- making cross-space variability more efficient. This would reduce the cost of variability
consistency checks across spaces. Yet, for more complex change scenarios, a thorough
and complete analysis is still required.

8. THREATS TO VALIDITY
We present in this section the threats to validity of the two parts of our study: the change
extraction process from developers’ commits, and our exploratory study of co-evolution
in the Linux kernel.

8.1. THREATS TO VALIDITY: FEATURE-ORIENTED CHANGE EXTRACTION

Let us first discuss the limitations and threats to the validity of the FEVER change extrac-
tion process.

Limitations. Our evaluation shows that FEVER captures feature-related changes with
a relatively high accuracy (87,2% of commits extracted completely correctly). However,
FEVER does not capture all feature related information in all artefacts. Because FEVER
operates on a file-basis, with a text-based parser, certain constructs in the variability
model or the mapping are not captured. The limitations of FEVER for each space are
mentioned in the relevant sub-sections of Section 3.

Internal validity. To extract and analyze feature-related changes, FEVER uses model-
based differencing techniques. We first rebuild a model of each artefact, and then per-
form a comparison. The construction of the model relies on heuristics, which themselves
work based on assumptions on the structure of the touched artefacts - whether they be
code, models, or mappings. For this reason, information might be lost in the process. To
guarantee that the data extracted by FEVER do match what can be observed in commits,
we performed a manual evaluation, covering change attributes our approach currently
consider. The evaluation showed that a large majority of the changes are captured accu-
rately, with a precision and recall of at least 80%. This gives us confidence in the reliability
of the data.

Using manual analysis for validation purposes is inherently fault prone. The differ-
ence in populations of changes observed between the initial and enhanced versions of
the tool does highlight this. For this evaluation, the manual review of commits was per-
formed twice - for the entire dataset, leaving a small time gap (between 2 days and a
week) between the two evaluation rounds. While the errors identified in the initial eval-
uation lead to a significant update for some change attributes (namely “added feature
references” in the code), evaluation errors occurred in less than 5% of the commits.

The evaluation of the new FEVER heuristics, compared to its previous version, high-
lights significant improvement of accuracy on specific change attributes. In particular
the capture of code block changes with preserved code block improved from a precision
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of 32% to 93.3%. Moreover, the added change attributes (namely artefact changes, ad-
ditional artefact type, and TimeLine relationships to FeatureEdit) were captured with a
good precision and recall (at least 80%).

Because the FEVER approach is based on heuristics, it is neither sound nor complete.
But for more than 80% of the extracted commits, the data does reflect changes performed
by developers. While this may be a limitation when searching for very specific changes,
with specific change attributes, overall trends and statistics done over the course of a re-
lease reflect developer’s activities on features in the Linux kernel with sufficient accuracy
to draw conclusions from it.

External validity. We devised our prototype to extract changes from a single large
scale highly variable system, namely the Linux kernel. In that sense, our study is tied
to the technologies that are used to implement this system: the Kconfig language, the
Makefile system and the usage of code macros to support fine-grained variability. The
models used for comparison do contain attributes that are very tightly related to the
technology used in the Linux kernel. However, there are several other systems using
those very same technologies, such as aXTLs13 and uClibc14, on which our prototype
- and thus our approach - would be directly applicable.

For other types of systems, one would need to adapt the model reconstruction phases
depending on the system under study. If we consider another operating system such
as eCos15, one would need to rebuild the same change model from features described
in the CDL language16 instead of Kconfig. Concretely, this amounts to creating a CDL
parser capable to build the same EMF variability model representation used in this work
to initiate the comparison process. Attributes such as default value, select, or visibility
would be relevant, and the “select” attribute can simply be left empty. A similar effort
would be necessary to consider systems using the Gradle build system17, rather than the
Make system. However, the change model, based on an abstract representation of fea-
ture changes, should be sufficient to describe the evolution of highly variable systems,
regardless of the implementation technology. Moreover, our work shows that model-
based differencing is a suitable approach to extract feature related changes from het-
erogeneous artefacts in large scale systems.

Our work focuses on build-time variability, constructed around the build system and
an annotative approach to fine-grained variability implementation (#ifdef statements).
While we believe that the change model may be useful to describe runtime variability, the
extraction process is not suitable to extract feature mappings from the implementation
itself at this time. We cannot extend this work to runtime variability analysis without
further study.

13aXTLS: http://axtls.sourceforge.net/index.htm
14uClibc: https://uclibc.org/
15eCos: http://ecos.sourceware.org/
16CDL : http://ecos.sourceware.org/ecos/docs-3.0/cdl-guide/reference.html
17Gradle: https://gradle.org/
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8.2. THREATS TO VALIDITY: CO-EVOLUTION OF ARTEFACTS IN THE LINUX

KERNEL

We now consider the threats to the validity of our study of co-evolution of artefacts in
feature evolution and authorship.

Internal validity. As mentioned in the previous section, the author names used in
this experiment do contain aliases. A potential side effect is that more developers many
in practice perform changes to multiple spaces and this might not be reported in our
results. However, our manual analysis on a single release revealed that few names (less
than 5%) could be identified as aliases. A more in-depth study might identify more aliases,
but the manual analysis we did covered most name variations taken into account in
studies focusing on such problems (Kouters et al., 2012). The remaining variations were
not considered as they did not occur in our sample. Because the number of aliases we
found was small, and the percentage of developers not experiencing co-evolution is very
high, we do not think that the presence of aliases would lead to a very different conclu-
sion.

As mentioned in the previous sections, the FEVER approach is not exact. As a result,
we can expect the actual co-evolution of artefacts and the ratio of developers dealing
with co-evolution challenges to be slightly different from what is reported in this paper.
However, our conclusions rely on significant trends observed over time (70% of features
evolved only through their implementation) and over a long period of time (15 releases).
Therefor, we argue that our conclusions hold despite the lack of exactness of the FEVER
prototype.

External validity. The Linux kernel has been under development for more than two
decades. This system is mature and has a well defined development process. This is ob-
servable in the regularity of our results over the studied time period. For less mature
systems, one could expect feature-oriented co-evolution of artefacts to be more promi-
nent. This could be confirmed by applying the FEVER approach to the first releases of
the Linux development or running a case-study on a newer system. Moreover, the ratio
of co-evolution of artefacts for evolving features or the ratio of developers dealing with
co-evolution in other systems may differ from what we observed in the Linux kernel.
Nonetheless, we argue that our results are representative of co-evolution for a long-lived
highly variable system developed by a large team (more than a thousand developers).

9. RELATED WORK
Variability implementation in highly-configurable systems has been extensively studied
in the past (Thüm et al., 2014a). Our approach relies on extraction and consolidation
of variability evolution across the different variability spaces. While many approaches
can be found to analyze features in each individual space, few focus on their detailed
evolution or the consolidation of such changes.

The evolution of variability models was studied in the past as a mean to obtain in-
sights on the evolution of the system as a whole (Lotufo et al., 2010), or manage the im-
pact of changes to the system’s capabilities (Dintzner et al., 2015b; Heider et al., 2012b).
In our previous work (Dintzner et al., 2015a), we introduced FMDiff, an approach to
extract feature model changes, that inpsired us for the extraction of variability model
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changes.
To capture the evolution of features, we need to track the evolution of their mapping.

Studies focusing on co-evolution of artefacts (Neves et al., 2015; Passos et al., 2015) also
place the mapping as a central element in the description of feature evolution. As shown
by Adams et al. (Adams et al., 2008) in the Linux kernel, the build system evolves: the size
and complexity of the build scripts increase over time, thus highlighting the relevance of
build system evolution in the overall evolution of such highly configurable system.

Several studies present methods to extract variability information from build systems
(Makefiles) (Dietrich et al., 2012a; Nadi et al., 2014; Zhou et al., 2015). Such approaches
are designed to study the current state of the system, and rely on a complete description
of the system. In this study, we took a different approach: FEVER focuses on changes
performed on individual changed files. We developed a custom Makefile parser allow-
ing us to extract information relying on modified artefacts only. Similarly to Nadi et al.
(Nadi et al., 2014) and Dietrich et al. (Dietrich et al., 2012a) we rely on parsing rather than
symbolic execution as was done by Zhou et al. (Zhou et al., 2015).

Variability implementations using annotative methods in source files were also stud-
ied in the past (Liebig et al., 2013), often for error detection (Kenner et al., 2010; Tartler
et al., 2011, 2009). In this study, we used the approach presented in (Liebig et al., 2010)
to identify code blocks and their conditions, and we then relied on this representation to
build a model of implementation assets.

The variability model of a system, the mapping between features and assets, and vari-
ability support inside the implementation can all be supported by different technolo-
gies. In the eCos environment,18 assets associated with features are directly included in
the variability modeling language (CDL) specification. The Puppet19 infrastructure offers
a practical way of decoupling configuration and implementation (Sharma et al., 2016).
Variability support at an implementation level can also be performed in a number of
ways (Kästner and Apel, 2008). The FEVER approach does not encompass of possible
ways of supporting variability in software system. However, this indicates that FEVER
could be extended to be applied to a wide range of systems.

Only few studies focused on the co-evolution of artefacts in all three variability spaces:
variability model (VM), mapping, and implementation. Neves et al. (Neves et al., 2015)
describe the core elements involved in feature changes (VM, mapping, and assets). A col-
lection of 23 co-evolution patterns is presented by Passos et al. (Passos et al., 2015). Each
pattern describes a combination of changes that occur in the three variability spaces.
These papers aimed at identifying common change operations and relied on manual
analysis of commits. The approach proposed by Passos et al. relies on scripts to iden-
tify commits in which features in the Linux kernel are added and removed, and retrieve
related information such as information regarding commits, name of the changed fea-
tures, feature hierarchy, and the associated Linux release. From this initial information,
extensive manual work is necessary to analyze changes of each type of artefacts, and
their relationships. In comparison, the FEVER approach automatically extracts feature-
related information from Kconfig file changes but also performed feature-related infor-
mation extraction from other artefacts, such as Makefile and source files. While such in-

18CDL Language: http://ecos.sourceware.org/docs-1.3.1/cdl/language.properties.html
19Puppet : https://puppet.com/
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formation was taken into account during the manual analysis performed in the context
of (Passos et al., 2015), FEVER makes such information readily available. For instance, us-
ing FEVER, one can know using the extracted if a feature-change in a Makefile is related
to a feature change in the Kconfig file.

Change consolidation across heterogeneous artefacts has been a long standing chal-
lenge. For instance, Begel et al. proposed a large database aggregating code level in-
formation, people, and work items (Begel et al., 2010). We take a different approach,
and propose to extract more detailed information focusing on implementation artefacts
only. Recently, Passos et al. created a database of feature addition and removal (Passos
and Czarnecki, 2014) in the Linux kernel. We extend this work by extracting detailed
changes on all commits and provide such descriptions on all types of artefacts. The
FEVER dataset is, to the best of our knowledge, the first dataset providing a consolidated
view of complex feature changes across the variability, mapping, and implementation
space.

10. CONCLUSION AND RESEARCH DIRECTIONS
In this paper, we presented FEVER, an approach to automatically extract and build a
feature-centered representation of changes in commits affecting the implementation
of features in highly variable software systems. FEVER retrieves commits from version-
ing systems and, using model-based differencing, extracts detailed information on the
changes, to finally combine them into feature-oriented changes. We applied this ap-
proach to the Linux kernel and used the constructed dataset to evaluate its accuracy
in terms of complex change representation. We showed that we were able to accurately
extract and integrate changes from various artefacts in 87.2% of the studied commits.

Our exploratory study of co-evolution in the Linux kernel showed that co-evolution
of artefacts during feature evolution does occur, but, over a single release, most features
only evolve through their implementation. A majority of developers focus only on the
feature implementation and, over the course of a release, only few modify variability
spaces beyond the implementation. We also found that, while co-evolution of artefacts
occurs in every release, they account for less than 22% of feature evolution scenarios,
and only 11% of authors will modify all variability spaces over the course of a release, but
over time, 69,51% of authors will only modify the implementation of features without
affecting the variability model or feature-asset mapping.

Through this work we make the following key contributions:

• a model-based approach to extract and consolidate feature changes across vari-
ability spaces

• an model of feature-oriented changes, focusing on the co-evolution of artefacts in
different variability spaces during feature evolution

• an evaluation of the FEVER prototype implementation, as well as a evaluation of
the improvement with respect to its previous installment

• a quantitative study describing the frequency of artefact co-evolution in the con-
text of feature changes from a feature perspective, and authorship perspective
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• several examples demonstrating the potential usage and value of the data gath-
ered by such an approach for developers and researchers working on configurable
software systems

• an implementation of FEVER as well as the full dataset, available for download20

There several ways in which the FEVER approach and its evaluation can be further
enhanced in the future. First, let us consider potential improvement regarding the ap-
proach itself. At a variability model level, one could consider extracting semantic changes
rather than syntactic changes as suggested by the work of Rothberg et al. (Rothberg et al.,
2016). Efficient semantic differencing on a variability model as large as the Linux kernel
V.M. is a challenging task. Moreover, given the potential size of a configuration of the
Linux kernel, i.e., thousands of features, one would have to consider how to present this
information in a way that can be useful to a human developer, making this an interesting
research challenge. Regarding mapping changes, the current FEVER approach captures
only change information contained within changed Makefiles. A more precise approach
would be to capture the exact presence condition of assets, rather than the main fea-
tures participating in that condition. Changes in the presence conditions will require a
computationally intensive process, and the output might be difficult to interpret by a
human. This is a direction we did not explore so far, but would be valuable to obtain a
more sound and complete view on co-evolution changes in highly variable systems. On
a source code level, FEVER does not consider file dependencies. A change to an #include
statement could be a sign of changes in the relationships between features implemented
within those files. Such changes are not necessarily represented in the mapping nor the
variability model. A potential improvement of the FEVER approach would consist in tak-
ing into account file dependencies, and identify the nature of the symbols tying those
files (functions, variable, type definitions, and so on).

To further evaluate the capabilities of the FEVER approach, we intend to apply FEVER
to other systems. Candidates for such work would be systems relying on different tech-
nologies for variability model description and feature-asset mappings. The improved
FEVER change meta-model and algorithm, as well as our observation on co-evolution
open new exciting research directions. The information captured by FEVER on changed
features could prove to be useful in the domain of test case selection for highly config-
urable systems. Combining the work of Vidacs et al. (Vidacs et al., 2015) on test selection
in highly configurable software based on configuration and code coverage, and the work
on of Soetens et al. (Soetens et al., 2016) on change-based test selection supported by
FEVER data could lead to the discovery of efficient new techniques to support testing in
the context of highly variable software.

20http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome
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And that is the way to get the greatest possible variety, but with all the order there could
be; i.e. it is the way to get as much perfection as there could be.

G.W. Leibniz
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Variant-rich software systems are characterized by a high complexity. Variation points
in the implementation and build system, to derive many variants from a single code
base, are an additional complexity compared to single variant systems. Such systems are
usually accompanied by a formalized variability model. This additional information, re-
quired to derive valid configurations, must be maintained over time along side of other
development artefacts. Throughout the evolution of the system, engineers must guaran-
tee that the variability described by the variability model and the variation points within
the implementation remain consistent. For those reasons, the evolution of variant-rich
systems is more challenging than the evolution of single-variant systems.

In order to facilitate the development of such systems, through development tools
or design approaches and techniques, we need an understanding of the evolution of
such in real-life scenarios. Such information is paramount to determine which scenarios
should be supported, and how this support may be achieved. In this thesis, our goal is to
identify such scenarios in a real-world large-scale system, namely the Linux kernel, and
to provide the means to gather such information.

1. SUMMARY OF THE CONTRIBUTIONS
The main contributions of this thesis can be summarized as follows:

• A model-based approach to extract feature-related changes in heterogenous arte-
facts. First designed to extract changes in a variability model between two releases,
our approach evolved, based on recent work on complex evolution scenarios in
variant-rich systems, to encompass feature changes in a number of related yet dif-
ferent artefacts. The approach allowed us to obtain and share a comprehensive
view of feature-related changes in large-scale variant-rich software systems. This
work started with the design of FMDiff, presented in Chapter 2, and is completed
with FEVER, presented in Chapter 4.

• An approach for multi-product line modelling for impact computation. Motivated
by an industrial problem, we devised a modelling approach allowing for simple
impact computation during variability evolution. We showed that we were able
to model a complex system from a set of different yet related specification docu-
ments, and assess the impact of feature changes on configurations of a system. We
showed how, using such an approach we could detect impacts affecting the inter-
faces of the system. The approach and supporting tooling is presented in Chapter
3.

• Empirical characterization of variability model evolution. Through the approaches
developed in our thesis, we provide empirical evidence that variability models
evolve more from modifications of existing features than through feature addi-
tions or feature removals. We also showed that the sub-parts of a variability model
tended to have different evolution scenarios, and therefore one should be careful
when studying the evolution of a subset of features when attempting to describe
the evolution of the complete system. The data supporting this contribution was
gathered using FMDiff and FEVER, and is presented in Chapter 2 and Chapter 4.
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• A quantitative characterization of artefact co-evolution. While we established that
complex co-evolution scenarios do occur, through this work we showed that most
features evolve solely through their implementation during maintenance opera-
tions. Similarly, we showed that a majority of developers do not face such com-
plex scenarios during maintenance. While complex co-evolution scenarios should
be supported, such scenarios, for features and authors alike, account for (approxi-
mately) 30% of changes. The data supporting this contribution was gathered using
FEVER, and is presented in Chapter 4.

• Tools and dataset. Throughout this work, we produced a number of tools designed
to extract changes from version control systems of variant-rich software systems.
We gathered datasets that we used to describe and analyze variant-rich system
evolution. All the tools we built, as well as the collected datasets, were made avail-
able. 1

2. RESEARCH QUESTIONS REVISITED
The work presented in this thesis is aimed at answering the following research question.

Research question: In the context of a variant-rich system, how do features evolve
and how is that evolution reflected in the co-evolution of its concrete artefacts?

To answer this broad question, we broke it down into smaller questions. Let us see
how the contributions of this work allowed us to answer those questions. Then, we re-
flect on the overall answer that we can provide to our main research question.

Research Question 1: What are the operations commonly performed on features in a
large-scale variability model?

We answered this question in Chapters 2 and 4. The evolution operation that is the
most frequent in the studied system (the Linux kernel) is the modification of existing fea-
tures. We reached this conclusion through the observation of changes in the variability
model of the system between two releases. Similarly, in Chapter 4, we found that most
evolution scenarios (more than 60%) occur in a single space, and most likely the source
code. Such changes are modifications to existing features and existing feature imple-
mentations.

Research Question 2: How can feature-level information be leveraged to assist engi-
neers during change impact analysis in variant-rich systems?

In Chapter 3, we presented a feature-oriented impact analysis approach based on
the multi-product line representation for a variant-rich system. With such a represen-
tation of the variability of the system, engineers are able to “simulate” a feature change,

1https://github.com/NZR/FEVER—Linux-tool
https://github.com/NZR/Software-Product-Line-Research
http://data.4tu.nl/repository/uuid:181933e0-a380-4411-84ea-74aec5724810
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and observe the impact, in terms of available sub-system configurations, throughout the
system. From a simple feature change, one can observe the potential impact on the ex-
ternal interfaces of the system for instance. Such feature-change information can assist
engineers in identifying the potential impact of the change, as well as traceability in the
ripple of the impact. With this information, engineers are in a better position to estimate
impact before the change is implemented, and identify which subsystem is at fault when
the change propagates in unwanted areas of the systems (such as stable external inter-
faces).

In Chapter 4, we extracted a large dataset pertaining to feature evolution in the Linux
kernel. With that information, we were able to answer the following research questions.

Research Question 3: What role does co-evolution play in the evolution of features of
variant-rich systems?

The collected data allowed us to observe that a majority of feature evolution scenar-
ios - over the course of a release, were focused on a single variability space, i.e., features
evolve solely through their representations in a single type of artefacts. Moreover, in the
majority of the cases, this artefact is the implementation of the feature. While complex
co-evolution scenarios do occur in practice, such scenarios are not the most common
way in which features evolve in variant-rich systems.

Research Question 4: To what extent are developers facing co-evolution over the course
of a release?

Similarly to our results on feature evolution scenarios, the study performed in Chap-
ter 4 shows that, over the course of a release, a minority of developers modifies features
in more than a single space. The majority of developers focuses on the implementation
of the features and modifies only the source code. While developers may still face com-
plex evolution tasks within the source code, due to variability annotations in such arte-
facts, the modification of feature mappings and feature declarations within the variabil-
ity model are not part of their daily routine. Again, a number of developers does modify
all variability spaces, however, those are not tasks performed by the average developer
working on a variant-rich system.

Those answers allow us to reflect on our original research question:
In the context of a variant-rich system, how do features evolve and how is that evolution
reflected in the co-evolution of its concrete artefacts?

In order to fully understand any evolution scenario involving features, knowledge of
their complete implementation, across all relevant artefacts, is a necessity for develop-
ers. However, studies of co-evolution of artefacts, focusing on addition and removal of
features hide the fact that most common changes are neither additions nor removals
but modifications and the most frequent changes do not involve complex modifications
to heterogeneous artefacts.
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In addition and removal scenarios, the affected features should change in all relevant
artefacts. This includes at least the variability model, for the declaration of the feature.
The other spaces are impacted based on the desired behavior of the feature on the vari-
ants in which the feature may be included. Technically, the only addition and removal
operations that would not be accompanied by co-evolution of artefacts are operations
on abstract features (in the sense of (Thum et al., 2011)), and those are not frequent.

If we explore our results from a system-wide perspective, then co-evolution is para-
mount. Over each release of the Linux kernel, several hundreds of features are added and
removed. Therefore, co-evolution scenarios are relevant when maintaining a variant-
rich system as a whole. The evolution of the system is characterized by co-evolution of
artefacts, on a feature basis.

However, if we consider the evolution of such systems from a feature-oriented per-
spective, co-evolution scenarios are occurring at least twice: at creation and deletion
time. For the remainder of the feature’s lifecycle, changes are performed mostly on a
single artefact at a time. In such cases, we could consider that the spaces that are not
modified constitute a framework restricting what changes will be considered valid for the
modified space. Individual features share the following characteristic with single-variant
system: most of their lifecycle is spent doing maintenance, with small well-targeted changes.

3. EVALUATION
In this section, we reflect on the evaluation of our work. We divide this section in two
parts. First we focus on the methodology used for the evaluation of each individual ex-
periement, then we reflect on the usage of the Linux kernel as main case study for our
work.

3.1. EXPERIMENTAL RESULTS

The core of our work was conducted following the design science methodology. We built
tools and prototypes allowing us to extract information to reflect on the studied systems.
The methodology we used to extract changes from heterogeneous artefacts is based on
artefact transformation and heuristics. Using such an approach, we know that the gath-
ered data is neither sound nor complete. The use of heuristics, artefact transformations,
and the intrinsic variability (in terms of structure) of the studied artefacts guarantees
that there will be corner cases where our design will misinterpret the observed changes.
To mitigate such effect, we conducted extensive manual reviews of the dataset collected
during our experiments.

To implement our prototype, we worked in an iterative manner, using a small subset
of changes as references. Once we reached a satisfying accuracy of this training set, we
froze the design and performed an evaluation on a larger set of commits. For this evalua-
tion, we randomly selected a subset of the collected data and compared the output of our
prototype against what could be observed in commits performed by developers (ground
truth). We expressed the accuracy of the approach in terms of the resulting precision and
recall, above 85% for a large majority of tracked change attributes. Similarly, our evalua-
tion showed that 87,2% of commits from our sample are extracted correctly. All manual
analyses were performed in two independent steps to minimize human errors.
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Regarding the work on change impact on variability models, the experiment was per-
formed in an industrial context and the approach itself was evaluated in cooperation
with the domain experts of our partner institution. We used a set of simple scenarios for
the design of the prototype. However, the final evaluation was performed in presence of
domain experts, where the output of the tool was compared to their knowledge of the
system under study. On each occasion, the output of the tool matched the expectation
of the experts with respect to the avalaible information.

3.2. LINUX AS A CASE STUDY

Most of our results and conclusions are based on observations made on the evolution
of the Linux kernel. This raises the question of the generalizability of the work to other
systems. We partially address this point in Chapters 2 and 4, but we reflect here on this
question in the perspective of the entire body of work presented in this thesis.

Regarding the statistical information on the co-evolution of artefacts in variant-rich
systems. Because our results were obtained by observing a single system (the Linux ker-
nel), it would be unwise to generalize them without further study. There are no specific
reasons why the percentage of developers facing complex change scenarios would be the
same on any variant-rich system as it is in the context of the Linux kernel. As a matter of
fact, we pointed out in Chapter 4 that, if we had considered a different time frame for our
study, the results would have greatly varied (by including the first commit of the kernel,
yielding a large number of variability model changes).

Regarding the change extraction approach. The FEVER approach we present in Chap-
ter 4 is not applicable directly to all variant-rich systems. The prototype is designed to
analyze changes in Kconfig files, Makefiles, and annotated C code using pre-processor
annotations (#ifdefs). While this may be a strong limitation to the applicability of the ap-
proach, we would like to point out that several other systems use this set of technologies
(such as aXTLS2 or uClibc3). In this case, the existing implementation of the approach
should be usable with minor modifications.

Regarding systems relying on other technologies, the existing prototype implemen-
tation should be adapted. However, the system should have certain characteristics. First,
the variability model must be explicit. Then, the mapping between features and assets
should be retrievable, and the fine-grained variability support should be performed in
an annotative manner. As mentioned earlier, we rely on heuristics to relate changes from
various artefacts together. In the context of the Linux kernel, a strict naming convention
is in place. Therefore, that task could be accomplished with a high degree of accuracy
using simple heuristics. If this information is not available, then existing approaches can
be used to identify assets related to features, but such approaches are usually computa-
tionally intensive, and may not be compatible with large-scale analysis of changes.

In a general case, the complete variability model of the system may not be available.
In the context of our work with Philips Healthcare, variability information was scattered
in specification documents (i.e., variability was not the dominant decomposition dimen-
sion of the system). There was no explicit variability model, such as can be found in

2http://axtls.sourceforge.net
3https://uclibc.org/
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Linux. Therefore, we know that our approaches are not necessarily applicable to arbi-
trary industrial systems.

4. FUTURE WORK
This work constitutes a step toward a better understanding and support of development
activities in the context of variant-rich software systems. In order to facilitate such de-
velopment activities, several additional research paths could be followed.

Beyond Linux. Our work on co-evolution of artefacts in variant-rich software systems
is currently limited to the Linux kernel. It would be interesting to see if our observa-
tions hold for other systems, in other domains than operating systems. We believe that
we would witness similar trends regarding pervalence of artefact co-evolution scenarios
for features and authors in other large-scale mature variant-rich systems - i.e., systems
for which variation point implementation techniques are well-defined, and that follows
well-defined development practices. More experimentation may confirm this.

The Nature of Features. During this work, we were unable to use changes operated
at a variability model level to predict changes at the implementation level. For instance,
a new relationship between two features does not imply the creation of a dependency
at a code level between the implementation of those two features. While this may be an
intrinsic limitation, we believe that this could be a side-effect of the loose semantic of
feature relationship and feature types. However, we noted that, in the Linux kernel, ad-
ditional semantics were included as naming conventions of features. For instance, cer-
tain features are present in the model to describe exposed capabilities, e.g., features with
the “HAVE_” prefix. Similarly, certain dependencies are used to represent operational
constraints (“depends on EXPERIMENTAL”), while others represent code dependency
(“depends on I2C”). We suggest here that making explicit the “implicit” semantics of the
variability model, by refining feature relationships and feature types, might allow easier
change impact analysis, and facilitate change comprehension. Further work would be
necessary to classify feature “usages” and “nature” to determine whether those can be
described, and possibly provide design and implementation methods adapted to such
features.

Feature Design Approach. We argue that part of what makes the development of the
Linux kernel successful, especially for managing variability, is the fact that feature dec-
laration, mapping, and implementation are - in a large number of cases, all contained
within the same folder. So, while a feature’s full implementation is scattered among a
number of artefacts, it remains relatively “local” when we consider the relative location
of those artefacts in the Linux file tree. With such an organization of artefacts, developers
can easily find artefacts related to a feature. To prove that this locality is easing develop-
ment practices, we could observe changes occurring in features described fully locally,
and those that are not. We can then compare this to error-inducing commits, and search
for possible correlations between those two factors.

Testing and change validation. Fine-grained variability-related change information
can be of use to target tests of variant-rich systems. The change information on all arte-
facts should facilitate the identification of change configurations, allowing targeted test-
ing on changed components. Such approaches would be very valuable when the number
of possible configurations is so large that they cannot be all validated - such as it is in the
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Linux kernel.

5. FINAL WORDS
Seven years ago, the support of complex co-evolution scenarios in variant-rich systems
was deemed lacking (Babar et al., 2010). In this thesis, we make a step forward toward a
better support of evolution operation performed by developers on variant-rich systems.
While we do not provide the ultimate solution to variant-rich system development, it is
our hope that, based on the contributions of this work, better evolution support tools
may be developed, allowing developers to build more flexible designs with retaining the
highest possible quality. The road ahead is still long, and the design and implementation
of variant-rich systems and composable software components will remain a challenge
for the next few years, but hopefully, this thesis constitutes a significant step in the right
direction.
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