
Delft University of Technology
Master of Science Thesis in Embedded Systems

Real-time Ball-touch Classification on an
Insole Sensor using Neural Networks

Jacobus Habte

Embedded
Networked
Systems

Real-time Ball-touch Classification on an Insole

Sensor using Neural Networks

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands

Jacobus Habte
j.habte@student.tudelft.nl

kooshabte@live.nl

1 June 2022

mailto:j.habte@student.tudelft.nl
mailto:kooshabte@live.nl

Author
Jacobus Habte (j.habte@student.tudelft.nl)
(kooshabte@live.nl)

Title
Real-time Ball-touch Classification on an Insole Sensor using Neural Networks

MSc Presentation Date
14 June 2022

Graduation Committee
prof. dr. Koen Langendoen (chair) Delft University of Technology
dr. Jie Yang Delft University of Technology
Michaël Devid JOGO

mailto:j.habte@student.tudelft.nl
mailto:kooshabte@live.nl

Abstract

Monitoring and analyzing human movement is used in many fields, ranging
from healthcare and industrial applications to sports analytics. To provide
a football player or their coach with insight into their performance during a
game, or their technical development over time, many methods are available
such as camera setups and smart vests. However, to provide a more direct and
biomechanical approach, this thesis utilizes sensors placed in the insoles of a
player’s shoe. These sensors are equipped with an Inertial Measurement Unit
(IMU), providing very direct insight into the accelerations and rotations of the
player’s feet. Additionally, external impact on the feet can be detected, such as
after a jump, a tackle by an opponent or a ball touch. To provide the player with
information about covered distance, speed and ball touches and possibly many
more metrics, the raw data from the sensor needs to be processed. Various
methods can be used to provide the different metrics, ranging from custom
algorithms to Machine Learning approaches.

This thesis provides an approach using neural networks to detect ball touches
in real-time on these insole sensors. This approach combines the challenge to
classify the ball touches correctly with the additional challenge to do so on a
constrained embedded device, an Arm Cortex-M4 microcontroller. A develop-
ment flow is set up using the TensorFlow framework. Recorded data can be
used to develop and train a neural network model, after which the model is
converted and optimized to be deployed to the sensor. Several neural network
models and settings have been benchmarked both on classification performance
and resource usage. The final approach to this classification task samples the
data from the IMU at 500 Hz, detects ball-touch candidates and creates a win-
dow of samples, which is then fed to a one-layer Convolutional Neural Network
(CNN) model. This model achieves an accuracy of 95.8%, while the implement-
ation on the sensor uses 64.9 KB Flash, 5.0 KB RAM and has an execution time
of 8 ms per classification.

iv

Preface

This thesis marks the end of my years of study in Delft, both at The Hague
University of Applied Sciences and Delft University of Technology. I have en-
joyed studying both Electrical Engineering and Embedded Systems, which led
me through many different study, internship and work experiences. Applying
Embedded Machine Learning in my thesis, provides an interesting end to these
years, as it is a rapidly developing field with many promising applications. I am
grateful for all good memories, and also for the challenges, which show that one
shouldn’t rely too much on their own strength. Finally, I am looking forward
to put everything I have learned to good use in my future career.

I would like to thank my colleagues at JOGO, and especially Michaël, for
the introduction to and support with my exploration of Embedded Machine
Learning. Also many thanks to my thesis supervisor, Koen Langendoen, who
pointed me in the right direction when I lost overview and provided countless
helpful comments on my thesis.

Furthermore, I want to thank my friends, for showing interest in my work,
joining me for lunch walks during Corona lockdowns and enabling me to relax
after a week of hard work. My girlfriend, for supporting me during my whole
studies, in different ways throughout my bachelor and master. And finally, my
parents, to whom I am grateful for encouraging and motivating me uncondi-
tionally throughout all these years.

Koos Habte

Delft, The Netherlands
1st June 2022

v

vi

Contents

Preface v

1 Introduction 1

1.1 Context . 1

1.2 Research Question . 3

1.3 Contributions . 4

1.4 Thesis Structure . 4

2 Background and Related Work 5

2.1 Sport Movement Classification 5

2.1.1 Continuous Classification 6

2.1.2 Event-based Classification 6

2.1.3 Ball-touch Classification in Football 7

2.2 Embedded Machine Learning . 8

2.2.1 Convolutional Neural Networks 9

2.2.2 Recurrent Neural Networks 10

2.2.3 TensorFlow . 11

2.2.4 Performance Optimizations 11

2.3 Discussion . 12

3 Design and Implementation 13

3.1 Integration in JOGO’s Sensor Platform 13

3.1.1 Storage . 14

3.1.2 Execution Time . 15

3.1.3 Memory Usage . 15

3.2 System Overview . 16

3.3 IMU Data Analysis and Preprocessing 16

3.3.1 Event Detection . 16

3.3.2 Ball-touch Features . 18

3.4 Neural Network Design . 20

3.4.1 Dense Layer Approach . 20

3.4.2 One-layer CNN Approach 20

3.4.3 Multi-layer CNN Approach 21

3.4.4 LSTM Approach . 21

3.5 TensorFlow Training Process . 22

3.6 TensorFlow on the Sensor . 22

vii

4 Experiments 23
4.1 Classification Experiments . 23

4.1.1 Sampling Frequency . 23
4.1.2 Training Set Size . 25
4.1.3 Window Size . 25
4.1.4 Neural Network Performance Comparison 26
4.1.5 XGBoost . 27

4.2 Resource Experiments . 28
4.2.1 Window Size . 29
4.2.2 Number of Convolutional Layers 30
4.2.3 Kernel Size . 30
4.2.4 Number of Kernels . 31
4.2.5 Number of Dense Layers 32
4.2.6 Optimizations . 32

4.3 Discussion . 33

5 Conclusions and Future Work 35
5.1 Conclusions . 35
5.2 Future Work . 36

A Resource Experiment Data 41

viii

Chapter 1

Introduction

Classifying human movement is a challenge encountered in many forms. As
humans, we subconsciously classify someone who runs as going slow or fast.
When we see someone lift an object, we estimate how heavy the object is.
While these classifications are often quite coarse, they give an indication of the
activity.

However, often the human classification capabilities are not sufficient. Ima-
gine trying to monitor the actions of all twenty-two players during a game of
football. Some interesting metrics would be covered distance, maximum sprint-
ing speed, leg distribution and the number of different kinds of ball touches.
Impossible for a human to keep track of. This challenge can be partly solved
by recording the game and applying automated video analysis. However, this
still does not give the detailed insight into an individual player’s performance
we would expect from modern-day technology.

A better approach would be to be able to detect a person’s movements, not
based on a fixed camera setup, but using a wearable device. A common way to
detect human motion with a wearable, is using an Inertial Measurement Unit
(IMU). Such a wearable, consisting of sensors that detect accelerations and
rotations, could give a more detailed insight into the biomechanical behaviour
of a human. This is applied to our use case of monitoring football players. The
gathered data can provide information about their current performance and can
be used to monitor their gait to prevent injuries. The same technology could be
applied in industrial applications to monitor a mechanic’s physical status and in
healthcare to monitor elderly people or to provide long-term monitoring during
a medical rehabilitation process.

1.1 Context

JOGO1, a Dutch startup focused on football player development, has taken up
the challenge to build a sensor that can provide insight into the performance
of a football player during a training session or a match. This sensor is to
be placed in the shoe insole of a player and contains an IMU to measure the
movements of the foot. Using this approach, the acquired measurements can
provide information about each individual player. The sensor should be able to

1https://www.jogo.ai/

1

https://www.jogo.ai/

Figure 1.1: Usage flow of the JOGO sensor.

provide metrics such as covered distance, speed, acceleration, ball touches and
more. Additionally, smart features such as automatic starting and stopping of
a session need to be implemented.

To view and analyze the results of a session, a smartphone with the JOGO app
is required. Many use cases can be realized: showing the results of your most
recent session, comparing your performance over time and even competing with
others through online leaderboards. The user flow, illustrated in Figure 1.1, is
as follows:

1. Activate the sensors, either manually through the app or with an optional
automatic start algorithm.

2. Play football.

3. Download the data from the sensor to the smartphone after the session is
stopped.

4. Display the player’s performance in the app.

5. Upload the data to the cloud, for further cumulative statistics and lead-
erboards.

An important part of the user experience is that the sensor should be able to
store multiple match or training sessions without the need to download them
immediately, and secondly, when the user decides to download the data, the
download time should not be too long. An analysis of the user experience, as
described in Section 3.1, reveals that the available storage and download time
are limiting factors. When storing raw sensor data on the sensor, the duration
of a session would be limited to only 20 minutes, and the resulting download
time would be about 5 minutes. Since a football match or training often lasts up
to two hours, this limitation is not desirable. And even if the available storage
would allow storing two hours of data, downloading the data would take roughly
30 minutes. Clearly, a user does not want to wait that long for the results after
a session. This shows the need for processing the raw data on the sensor itself.

With all this in place, JOGO can provide insight into your football perform-
ance similar to popular sports tracking apps like Strava2. Within such an online
environment, personalized challenges and leaderboards can be set up, encour-
aging younger and older people to go outside, play football and improve their
skills or just adopt a healthier lifestyle.

2https://www.strava.com/features

2

Figure 1.2: Flow from a trained TensorFlow model to running on an
embedded device.

A second approach to using the sensor and the data provided by the sensor
is the use by football clubs. If every player of a (youth) team is equipped with
a sensor, the coach can be provided with detailed insight into every player’s
development over time. This can help in providing personal training schedules
for each player, tailored to their strong and weak skills. In the long term, based
on the gathered data of many players, it might even be possible to predict which
characteristics are signs of a talented player.

1.2 Research Question

As described in Section 1.1, the sensor should be able to calculate multiple gen-
eric movement metrics as well as specific football-related statistics. Calculating
acceleration, speed and distance accurately is a problem often solved with a
biomechanical approach, using the IMU, a Kalman filter and integration of the
accelerations to speed, and the speed to distance [1, 2, 3]. The other aspect is the
football-specific movements. For this we need to be able to detect when a player
touches a ball, and also classify the corresponding type of ball touch. From an
Embedded Systems perspective, classifying football movements in real-time of-
fers an interesting challenge to apply Embedded Machine Learning, which is
a quickly emerging field. Therefore, the subject of this thesis will be focused
on classifying ball touches such as dribbles, passes and shots, bringing together
sports science and Embedded Machine Learning.

Machine Learning is a broad subject and has many subdomains. One of those
subdomains is neural networks, which is an approach based on how the human
brain works. Multiple studies suggest that the self-learning capabilities of neural
networks result in better accuracy for classifying motions and ball touches than
conventional machine learning methods [4, 5]. Considering that the classification
needs to be performed on an embedded device, there are multiple constraints
and challenges since the memory and computing performance of the targeted
kind of embedded device are limited.

3

To target such a constrained embedded device, a neural network model can
be designed and trained in a regular way, with a framework like TensorFlow.
However, before it can be deployed to an embedded device, the model needs to
be optimized to be more lightweight, as illustrated in Figure 1.2.

Taking into account the desired classification task, the promising performance
of neural networks and the challenging context of Embedded Machine Learning,
we arrive at the following research question:

How can neural networks be applied for embedded real-time
classification of ball touches in football?

1.3 Contributions

This thesis provides an analysis of the possibilities and challenges of running
neural networks on an ARM Cortex-M4 microcontroller, a Nordic nRF52832,
in the context of an existing application with IMU and BLE connectivity. To
explore the possibilities and limitations we use the problem of classifying ball
touches as dribbles, passes and shots. This results in three contributions:

1. Exploration of technical possibilities and limitations of running neural
networks in TensorFlow Lite for Microcontrollers on an ARM Cortex-M4
microcontroller.

2. A development flow to design, train, test and deploy neural networks on
the nRF52832 within JOGO’s application.

3. An accurate approach to classifying ball touches with neural networks on
an embedded sensor using IMU data.

1.4 Thesis Structure

Throughout this thesis, the following structure is followed:

• Chapter 2 describes some background theory on sports science and Em-
bedded Machine Learning, and discusses relevant related work.

• Chapter 3 describes the design and implementation process, including data
analysis and neural network design choices.

• Chapter 4 describes the experiments conducted to analyze the classific-
ation performance as well as the resource performance in the embedded
context.

• Chapter 5 presents the conclusions, an answer to the research question
and recommendations for future work.

4

Chapter 2

Background and Related
Work

The subject of this thesis, classifying ball touches with neural networks, brings
two research areas together: sports science and neural networks. This chapter
covers the necessary background theory and related work on both these topics.

2.1 Sport Movement Classification

A well-known way of analyzing football matches is using video recordings [6, 7,
8]. The camera-based approach can provide match highlights, tactical analysis
and a summary of team and personal statistics. While some of these video-based
analyses can provide individual ball-touch information, the actual information
is limited by the camera resolution, frame rate and field of view. Some of these
restrictions can be avoided by placing multiple cameras, however, this obviously
adds up in cost and setup time. Also note that for every training or match
location, a camera setup is required, or the setup needs to be moved between
locations. Another important drawback is that a lot of manual actions are
required to extract information, while still not providing very detailed insights
on player level as noted by Fischer et al. [6].

Another common way of monitoring sports activity is to have players wear a
smart vest equipped with GPS and sometimes an IMU, as analyzed by Theodoro-
poulos et al. [9] and Neville et al. [10]. This method mainly provides insight
into player velocity, acceleration, and covered distance. This way the vest can
distinguish different activities such as walking, running and jumping. In case
the vest features an IMU, limited information can be provided on events. Re-
liably detecting ball touches is not possible, since the sensor is located at the
upper body, but other events such as tackles, jumping for a header and impact
from another player can be detected.

A third method, which lacks the drawbacks of the first two methods, is to
have players wear a sensor with an IMU in their shoes. Cust et al. [11] analyze
the application of IMUs in many different sports. A few of the advantages of
using IMU sensors are the relatively low cost, small form factor, and scalability
to multiple players and multiple locations. Another very relevant feature is the
option to place the sensor at the relevant position for the sport in question,

5

in JOGO’s application the shoes of a football player. This specific placement
provides additional biomechanical insight into the player’s movements and im-
pact of the ball on the foot. Similarly, when applying this to basketball, the
sensor can be attached to the arms of a player, or in the case of hockey even
incorporated into the hockey stick.

When using an IMU, two kinds of classification can be applied: continuous
and event-based. In Section 2.1.1 continuous classification is described. With
this approach, a window size is selected, and every window will be classified to
determine the current activity. This could be used to classify whether a player
is standing still, running, dribbling or performing another activity. Section 2.1.2
describes event-based classification. This approach is more focused on detecting
possible interesting events, such as a dribble or a shot, and then performing the
classification. To do this, a ”simple” peak detection algorithm selects candidate
windows, which will then be classified.

2.1.1 Continuous Classification

An example of continuous classification is shown by Taghanaki et al. [5]. The
authors propose a method to classify running styles using five IMUs, with a
500 Hz sampling frequency, placed on the feet, legs and lower back. By analysing
the running features, such as heel and toe strikes, stride length and the space
between both feet, suggestions can be given to runners to improve their stance
and prevent injuries. The authors propose a Convolutional Neural Network
(CNN) and a Long Short Term Memory (LSTM) model. The CNN model
achieves an 86% accuracy and the LSTM model achieves a 93% accuracy in
classifying eight different running styles correctly. Unfortunately, while the
paper uses data from wearable sensors, the presented neural networks are not
implemented on the sensors, but on a development PC.

The implementation focuses on detecting running style, using ten-second win-
dows as input for the various neural networks. While this might be applied to
football to detect whether a player is walking, running, dribbling or juggling
for a consecutive time period, it is not optimal for detecting a single event like
a pass or shot. The ball touch might occur right at the end of one window
and the beginning of the next window, thus missing a part of the data when
classifying the windows individually. Another issue with this continuous classi-
fication is that, even with a low false-positive percentage, the absolute number
of false-positive ball-touch classifications might get large over time. This shows
the need for a method that only selects windows that meet certain requirements
for classification, as described in the next section.

2.1.2 Event-based Classification

Hollaus et al. [12] proposed a method to detect successful catches in American
Football. The system consists of two devices, one for each wrist. Multiple
sensors are used, including an accelerometer, gyroscope, magnetometer and a
microphone. The authors propose a three-layer CNN, which processes the raw
data of the four sensors. The accelerometer and magnetometer show the most
significant contribution to the classification accuracy. On a dataset with 541
catches and 218 drops, an accuracy of 93% is achieved with true positives rates
of 83.3% and 96.3% for drops and catches, respectively. It should be noted that

6

the authors do not propose an actual event-detection mechanism for possible
touches, thus the performance would presumably be lower if the training set
would also contain samples that are not a catch or a drop.

Kautz et al. [13] proposed a CNN model to perform activity recognition in
beach volleyball using an accelerometer located on the wrist. Data is gathered
from actual beach volleyball game situations, and can be grouped into ten dif-
ferent action classes, including a null class, which indicates a significant motion
not related to beach volleyball. A high-pass Butterworth filter is applied to
detect peaks in the acceleration data, and when it crosses a certain threshold,
the peak is considered a relevant event. This event-detection algorithm has an
accuracy of 99%. A two-layer CNN is used, which first applies convolution to
each accelerometer axis, and then in the second layer, applies convolution to the
three axes at once. This approach achieves an accuracy of 83.2% on a dataset
with 4242 actual events and 7938 false-positive events. Several other machine
learning approaches were analyzed, all achieving lower accuracy than the CNN.

2.1.3 Ball-touch Classification in Football

The event-based classification method is the most relevant approach to the ball-
touch classification problem. Schuldhaus et al. [14] have proposed a very relevant
approach to classifying ball touches of football players. The authors use a 6-axis
IMU with a sampling frequency of 1000 Hz, located in the insole at the back of
both shoes. Data has been gathered from two studies. The first study consists
of single passes and shots, varying in intensity. The second study consists of
passes and shots taken from a dynamic situation in an 11 vs. 11 match.

The accelerometer data from both feet is filtered using a high-pass Butter-
worth filter. The high-pass filter highlights the events with a big, sudden impact
on the feet, while removing smooth, low-frequency movements like walking. To
find the peaks that could indicate a ball touch, the magnitude of the accelero-
meter axes is calculated for both feet separately. Subtracting both magnitudes,
and taking the absolute value results in the signal for peak detection. This
subtraction uses the assumption that when one leg is used to touch the ball,
the other leg is the supporting leg, thus having a low signal intensity. After the
subtraction, every remaining peak above a certain threshold will be considered
for classification. Contrarily, when the magnitudes of both feet are similar, it is
evident there can be no ball touch.

To classify the peak, a one-second window around the peak is taken, four
statistical features are calculated for each axis and fed into several Machine
Learning classifiers, of which the Support Vector Machine (SVM) gives the
best results. Figure 2.1a shows the results for classifying a pass or shot event
versus other high-intensity events, giving an 89.5% mean classification accuracy.
Figure 2.1b shows the result of classifying passes versus shots, giving an 84.2%
mean classification accuracy.

Stoeve et al. [4] compared the ball-touch classification performance of the
well-performing SVM to multiple neural network implementations, which were
not considered by Schuldhaus et al. [14]. While this approach records the data at
200 Hz, the other details are very similar. Data is recorded from both single ball
touches and real matches, possible ball touches are provided by a peak detection
algorithm, and the windows are either 1 or 2 seconds. From the comparison
between the SVM, CNN and LSTM, the CNN shows the best results.

7

(a) Relevant event vs. other. (b) Pass vs. shot.

Figure 2.1: Confusion matrices showing classification results from [14,
Table 3 and 4]. (a) Event samples: 354. Other samples: 3581. (b)
Pass samples: 278. Shot samples: 15.

2.2 Embedded Machine Learning

While self-developed algorithms, like the peak detection in Section 2.1.3, are
often a good and lightweight approach to detect events in data, they might not
suffice when dealing with more complex, multidimensional data. Considering
the six axes of data the IMU provides, and the many small differences there are
in the movements from person to person, it appears that classifying ball touches
should be approached with machine learning. As mentioned in Section 2.1.3,
classification can be performed continuously, but for ball touches the focus will
be on event-based classification. A common approach for classifying IMU data
is to extract statistical features from the selected window, and feed those into
a machine learning model, such as Naive Bayes, k-nearest neighbor, SVM or
XGBoost [4, 12, 13, 15, 16].

An often used and well-performing conventional Machine Learning method is
XGBoost, a Gradient Boosting framework [17]. Gradient Boosting is considered
a state-of-the-art approach to many classification challenges, which is achieved
by using multiple decision trees to boost the accuracy of a prediction. McGrath
et al. [15] and van den Tillaar et al. [16] show that Gradient Boosting is the best
performing method in classifying cricket and handball touches. Therefore this
method will be used as an example of conventional Machine Learning approach
to compare to the proposed neural network implementations in Section 4.1.5.

Stoeve et al. [4] and Zhao et al. [18] mention that conventional machine learn-
ing approaches require a manual selection of features. However, when dealing
with time-series data such as IMU data, using neural networks would be benefi-
cial [11]. Neural networks can basically extract deep features from the data [18],
these deep features perform better at highlighting significant details in the raw
data than manually selected statistical features.

8

Figure 2.2: A simple CNN, illustrating the use of kernels on an image.

2.2.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a special type of neural network
that features a convolutional layer, as illustrated in Figure 2.2. This layer
performs convolution on an image (or IMU data) by going over the data with
a kernel of a certain size. By using this kernel, features such as circles, lines
and curves can be extracted from an image. Usually, when going over an image
with the convolution, multiple kernel configurations are used, to be able to
detect different features, resulting in an increasing number of channels after
each convolutional layer, as seen in Figure 2.2.

For example, a 5x5 kernel takes 25 pixels of an image and calculates one value
from this. By shifting the kernel over the picture, a new picture is created with
highlighted features, different in each channel. A convolutional layer is often
combined with a max-pooling layer, which also goes over the picture with, for
example, a 2x2 filter, but now keeping just the maximum value out of the four
pixels, resulting in a smaller image. This smaller image has the advantage that
the next layer has to process fewer pixels, but thanks to the convolution also the
most predominant information is preserved, basically highlighting the desired
feature. This combination of convolution and max-pooling can be repeated on
the resulting smaller image, as seen in Figure 2.2, and is finally flattened into
an array of values and fed into two fully-connected layers producing the actual
classification. These fully-connected layers consist of neurons, which apply a
function to each of the inputs. The applied function depends on the weight of
the neuron, which is selected through the training process of the neural network.
By connecting all these inputs and outputs, each value from the convolution
will have an impact on the classification output. While not shown in Figure 2.2,
often one or more additional dropout layers are applied during training, which
prevent or reduce overfitting by randomly leaving some nodes out [19]. This
approach is used in related applications, for example by Hollaus et al. [12] and
Kautz et al. [13].

9

Translating this concept from an image to IMU data, convolution can be used
to detect peaks and slopes in the data that are indicators of a certain type of ball
touch. This is commonly applied in processing IMU data for detecting human
and sports movements [12, 13, 20].

Faraone and Delgado-Gonzalo [21] show the use of CNNs implemented on
a Nordic nRF52 microcontroller, very similar to the one used in this thesis,
as noted in Section 1.3. With an input size of 1x256 and seven convolutional
layers, the resulting model size is 200 KB, and the execution time is 94.8 ms.
The most demanding layers are the convolutional layers, contributing most to
the memory usage, execution time and power consumption.

2.2.2 Recurrent Neural Networks

Another type of neural network is a Recurrent Neural Network (RNN). RNNs
have a special feature to remember information. While regular neural network
layers only know about their current input, RNNs also remember information
from the previous input [22]. Figure 2.3 shows an example of an RNN. When
analyzing the first input x0, there is no additional information, however when
processing the second input x!, there is information available from the previous
input. This is a quite naive notion of memory, considered short-term memory.
There is only information available from the last input, and there is no indication
whether the information was actually meaningful or not.

Figure 2.3: On the left an RNN with the memory loop, on the right
its unrolled equivalent [22].

An improved, or special kind of RNN are Long Short Term Memory (LSTM)
networks, which provide the desired long-term memory. LSTMs have been intro-
duced by Hochreiter and Schmidhuber [23], an example is shown in Figure 2.4.
This kind of network provides a solution to remember relevant information for
the long term. To achieve this, an LSTM uses three gates, a forget gate (rep-
resented by the first sigmoid layer), an input gate (represented by the second
sigmoid layer and the tanh layer), and an output gate (represented by the final
sigmoid layer). The forget gate is used to forget irrelevant information, the
input gate selects the relevant information and finally, the resulting output is
retrieved through the output gate.

Since this approach provides information over time, it seems to be a relevant
addition to ball-touch detection with IMU data, where the classification of a ball
touch could be performed better with information from the past. For example,
when a player passes a ball, it could be that he tilts his foot in a certain manner
a few milliseconds before the ball touch, this information can then be used at the

10

Figure 2.4: Illustration of an LSTM implementation [22].

moment of the actual ball touch. LSTMs have been applied by Sherratt et al. [24]
to detect human motions, by Taghanaki et al. [5] to detect running styles, and
by Stoeve et al. [4] to detect ball touches. An LSTM approach provides good
results for detecting human movement styles, while it is outperformed by a CNN
when detecting ball-touch events in research by Stoeve et al. [4].

2.2.3 TensorFlow

While the classification performance and resource requirements are very import-
ant, the development flow is also a significant factor, as indicated in Section 1.3.
Therefore, a Machine Learning framework to design, train and test the mod-
els is preferred over a custom implementation tailored to the experiments in
this thesis. Many options exist such as Embedded Learning Library [25] and
Caffe [26], but TensorFlow Lite for Microcontrollers is a well-suited candidate
that shows some relevant benefits over other options [27]:

• The development environment of the regular TensorFlow framework can
be used to design, train and test models.

• The framework is under active development.

• Hardware-specific optimizations, such as CMSIS-NN [28], can be easily
integrated.

2.2.4 Performance Optimizations

Since running neural networks on embedded devices is subject to several resource
limitations, such as execution time, memory size and battery capacity, many
approaches can be found on how to overcome these issues. A few relevant
methods are highlighted.

Integer Quantization

To optimize a neural network model for an embedded device, a technique
called integer quantization can be used in TensorFlow, as described by Krish-
namoorthi [29]. Instead of using 32-bit float values for the parameters of a

11

model, these values can be quantized to 8-bit integers. This reduces the accur-
acy, but with less than a 2% decrease. The model size however is reduced by a
factor of four, and the speedup can be up to three times.

CMSIS-NN

To enhance to execution of Neural Networks on Arm Cortex processors, Lai
et al. [28] presented CMSIS-NN. This library provides optimized software im-
plementations of certain functions for neural networks, such as matrix multi-
plication, convolution, pooling layers and activation functions. The first step in
the optimization is also using quantization. The commonly used 32-bit floating-
point data is converted to 8-bit or 16-bit integers. This has a minimal impact on
accuracy, while having the mentioned advantages of quantization. In the case of
CMSIS-NN the quantization brings another advantage, it enables the main op-
timization of using Single Instruction Multiple Data (SIMD) instructions. The
quantized 8-bit or 16-bit values can be fit in 32-bit registers, thus being able to
apply a CPU instruction to multiple values at the same time. By rearranging
the data to use SIMD instructions, matrix multiplication (the cornerstone of
neural networks) can be heavily optimized. The implementation shows a 4.6x
improvement in execution time and a 4.9x improvement in energy efficiency on
a set of baseline implementations, without a notable impact on classification
performance.

2.3 Discussion

Section 2.1 describes some of the available methods to classify sports move-
ments, such as camera analysis, smart vests and IMU sensors. To be able to
provide detailed insight into the performance of a single player, the related work
shows that a wearable sensor equipped with an IMU is the best solution. Since
the goal is to detect ball touches, which occur irregularly, the event-based ap-
proach makes the most sense. The approach therefore needs to include an event
detection algorithm to select ball-touch candidates in the IMU data.

Section 2.2 shows that using neural networks yields better classification res-
ults than conventional machine learning algorithms, with CNNs being the most
promising approach. To also ensure easy deployment on the embedded device,
TensorFlow Lite for Microcontrollers should be considered, as it includes sup-
port for hardware-specific performance optimizations and the models can be
trained and tested using the regular TensorFlow framework.

12

Chapter 3

Design and Implementation

This chapter describes the design and implementation of neural networks for ball
touch detection on the JOGO sensor. To arrive at a neural network design, we
need to consider many aspects, such as the data collection, the training process
and especially the restrictions of the embedded device. We want to process
the IMU data in real-time, so the available resources of the sensor have to be
explored, to see what restrictions the neural network designs have to adhere to.
The following subjects provide the necessary context and building blocks for the
designs in this chapter and the experiments in Chapter 4:

• Requirements in the context of JOGO’s existing hardware and firmware.

• An overview of the system from data collection to real-time inference.

• Analysis and preprocessing of the IMU data and neural network design.

• The use of TensorFlow for training and deployment on the sensor.

Section 3.1 covers the given constraints of the existing hardware and firmware.
Section 3.2 introduces an overview of the system. Section 3.3 gives some insights
into the data gathering, how the data looks, and the necessary preprocessing of
the data. Section 3.4 explains the design choices towards the neural networks
that will be used for the experiments. Section 3.5 and Section 3.6 describe the
use of TensorFlow both for training on the PC and inference on the sensor.

3.1 Integration in JOGO’s Sensor Platform

The core of JOGO’s sensor platform consists of a Nordic nRF52832, a 64 MHz
Cortex-M4 microcontroller with a Floating Point Unit (FPU) equipped with
512 KB Flash and 64 KB RAM storage. A 6-axis IMU (accelerometer + gyro-
scope) records the measurement data, 16 MB external Flash is available for
storing raw or processed data and an 85 mAh battery provides power to the
system. A summary of the specifications is shown in Table 3.1.

To show the restrictions of the system that have to be taken into account,
this subsection covers the relevant components and provides some example cal-
culations. As a reference for the sampling frequency, we use 1000 Hz as used in
prior research [14] and commercial applications like Playermaker [1], as well as
200 Hz as used by Stoeve et al. [4].

13

Component Type Details

Processor
Nordic nRF52832

64 MHz Cortex-M4F
Flash 512 KB
RAM 64 KB

IMU ICM-42686-P
Accelerometer ±32g (18 bits)
Gyroscope ±4000dps (19 bits)

External Flash - 16 MB
Battery - 85 mAh

Table 3.1: Details of the sensor.

3.1.1 Storage

Considering the storage, we first show why processing on the sensor is necessary,
as opposed to storing raw data on the sensor and offloading it after a football
session. An IMU sample, containing raw data of the six axes, is stored as a 23-
byte object in the current firmware. With the available external Flash memory
of 16 MB, we get the maximum session duration depending on the sampling
frequency using the following equation:

session duration(s) =
16MB

data(bytes)
∗ 1

fs(Hz)
(3.1)

Using Equation (3.1) with a sampling frequency of 1000 Hz results in a max-
imum session duration of only 12 minutes, and even with a sampling frequency
of 200 Hz, we end up with only 60 minutes. This maximum duration is clearly
not sufficient, as a regular session, match or training, could last up to two
hours. Additionally, with the current firmware implementation, downloading
this 16 MB of data to an Android phone via BLE takes about half an hour.
While the theoretical BLE throughput of the nRF52832 is 2 Mbps, the actual
throughput depends on many factors, such as packet size, phone model and
the environment, and is currently limited to approximately 10 KB/s [30]. Both
the required storage and downloading time show why we actually need to do
(some of) the processing on the sensor, instead of downloading everything and
processing it on a phone or in the cloud.

If we instead process the raw IMU data on the sensor, we can for example
reduce the update rate to 10 Hz, and compress the data to only contain covered
distance and ball-touch information, resulting in a 12-byte object. Using Equa-
tion (3.1) with a data size of 12 bytes and a sample rate of 10 Hz, we get a
maximum of about 40 hours, which is more than enough to store multiple ses-
sions. Modifying Equation (3.1) to show the data size based on the session
duration, we get:

session size(KB) =
session duration(s) ∗ fs(Hz) ∗ data(bytes)

1024
(3.2)

Using Equation (3.2) for a session of 2 hours, 12 bytes data and 10 Hz, we get
a data size of 844 KB, which can be downloaded in approximately one and a half
minute. Considering that firmware changes might improve the download time,
and the sensor could automatically start offloading the data when the player’s
phone is nearby, this results in an acceptable and user-friendly storage usage
and download time.

14

3.1.2 Execution Time

There are two restrictions concerning the execution time. The first is the dur-
ation of the event to be analyzed. The classification of an event should not
take longer than the duration of the event itself. If the execution time would
be longer, a new event could be triggered before the previous classification is
finished. This will result in a lag in event handling, and eventually in missing
events.

The other restriction is the buffer size of the IMU. While the neural network
inference is in progress, the microcontroller can not process incoming IMU data,
so the IMU has to store it in its internal buffer. When the microcontroller has
finished the classification, it can again retrieve new samples from the IMU.
With the selected high resolution data mode, the maximum number of samples
that can be stored in the buffer is 100 samples [31]. Depending on the sampling
frequency this results in a maximum execution time, as shown in Equation (3.3).

execution timemax(s) =
100

fs(Hz)
(3.3)

To summarize, there are two restrictions on the execution time, which should
both be met, therefore the smallest value of the two restrictions is leading:

1. The execution time should be smaller than the duration of the event.

2. The execution time should be smaller than the time it takes to fill the
IMU buffer with new samples, see Equation (3.3).

To illustrate these two restrictions, we use Equation (3.3) with a sampling fre-
quency of 1000 Hz. This results in a maximum allowed execution time of 100 ms,
while when using a sampling frequency of 200 Hz, the resulting maximum exe-
cution time is 500 ms. These values show the strict maximum execution time
based on the given sampling frequency, which could be further restricted if the
event duration is actually shorter. So when using an event duration of 50 ms at
1000 Hz, the resulting maximum execution time is 50 ms, while when using an
event duration of 150 ms at 1000 Hz the execution time is still limited to 100 ms.

3.1.3 Memory Usage

The current firmware on the sensor, including IMU processing, storage and
Bluetooth communication takes approximately 388 KB Flash and 44 KB RAM,
respectively 76% and 69% of the total available memory. This leaves 124 KB
Flash and 20 KB RAM for the neural network implementation, as shown in
Table 3.2.

Flash RAM
KB % KB %

Total 512 100 64 100
Used 388 76 44 69
Available 124 24 20 31

Table 3.2: Overview of memory used by the firmware, and the amount
available for neural network implementation.

15

3.2 System Overview

Figure 3.1 shows an overview of the system, and the separate sections of data
processing, training and real-time classification. The data section starts with
recording the raw IMU data on the sensor, where the sampling frequency is
the main parameter of importance. The event detection and window creation
are performed on the PC during the training process, but are also implemented
on the sensor for real-time use. The event detection has fixed parameters, as
determined by JOGO’s data scientists, while the window size can be optimized
based on the use case and resource limitations.

The training section happens completely on the PC. The data in the created
windows is normalized, split into training and test sets, and the label distribu-
tion is calculated to be able to perform a balanced training. The model that will
be trained can have various designs, featuring dense layers, convolutional layers
and LSTM layers, which is described in detail in Section 3.4. Also, every kind
of layer has its own parameters such as the number of neurons, the convolution
kernel size, and the number of kernels. The training process in TensorFlow is
described in Section 3.5, and after this process is finished, the trained model is
converted to a TensorFlow Lite model, which can be transferred to the sensor.

Finally, the inference section runs completely on the sensor. The settings
for window creation are set in the firmware, the trained and converted neural
network model is stored in the memory, and the classification can be performed
whenever the event detection is triggered. The output of the classification will
then be stored in the external Flash memory until it is downloaded to the
player’s phone.

Given this system overview, in the context of the restrictions described in
Section 3.1, the remainder of this chapter describes the different design and
implementation steps.

3.3 IMU Data Analysis and Preprocessing

This section covers the data coming from the IMU, and the necessary analysis
and processing of this data. The IMU data consists of three accelerometer
axes and three gyroscope axes. The accelerometer measures accelerations in the
range ±32g, and the gyroscope measures angular velocity in the range ±4000
degrees per second.

3.3.1 Event Detection

The event detection approach is not within the scope of this project, as it was
already provided by JOGO’s data scientists, but is briefly covered for complete-
ness.

To detect events that are possibly a ball touch, the gyroscope is used. The
approach to event detection, as shown in Figure 3.2, is to calculate the mag-
nitude of the gyroscope axes, then a second-order Butterworth 200 Hz high pass
filter is applied, using a similar approach as Schuldhaus et al. [14] and McGrath
et al. [15]. Using the high pass filter, the low-frequency parts of for example
walking and running are removed, while the sudden and rough impact of pos-
sible ball touches is highlighted and can be found using a simple peak finding

16

Figure 3.1: Overview of the use of TensorFlow. On the left the training
process, on the right the process on the sensor. Grey elements are
custom implementations. Blue objects use regular TensorFlow. Yel-
low objects use TensorFlow Lite, and green objects use TensorFlow
Lite for Microcontrollers.

17

Figure 3.2: Event detection flow.

algorithm. As these peaks indicate when the event has happened, they can be
used to create a window around it with a user-preferred length, to perform the
classification.

3.3.2 Ball-touch Features

Before we go into the details of each type of event, it needs to be clear how the
axes of the IMU correspond to the orientation of the sensor in the shoe, which is
shown in Figure 3.3. The x-axis is in the forward/backward direction, the y-axis
in the left/right direction, and the z-axis in the up/down direction. Note that
this illustrates the right shoe. To handle the changed physics for the left shoe,
the accelerations on the y-axis and the rotations around the x-axis and z-axis
are inverted in the firmware. By inverting these axes, the same data processing
and models can be applied to both the left and right foot.

Figure 3.3: Illustration of the sensor location and the axes orientation
of the right shoe.

After a window is selected as a ball-touch candidate, the actual classification
needs to take place. To make sure no ball touches are missed, the event detection
algorithm settings can not be too strict, as a consequence there will also be false
positives among the selected candidates. To distinguish the false positives (or
so-called noise samples) from the actual ball touches, it needs to be clear what
the distinctive features are. These features can then also be used to classify the
various ball touches.

Figure 3.4 shows an overview of noise, dribble, pass and shot samples. For a
clear overview in the plots, only the accelerometer values are shown. A first look
at the data already shows clear differences between the different ball touches,
but we will go over them one by one to explain the relation between the data
and the physics of the ball touch.

Figure 3.4a shows a noise sample, showing some accelerations that indicate
movement. However, compared with the other ball touches, we notice that the

18

(a) Noise sample (b) Dribble sample

(c) Pass sample (d) Shot sample

Figure 3.4: Overview of accelerations per type of ball touch.

accelerations do not follow a clear pattern. These might be steps, foot flicks or
other sudden movements or impacts.

Figure 3.4b shows a dribble sample. Note the two peaks in the ax axis. The
first peak indicates the ball touch, the second peak indicates the foot hitting
the ground after the dribble. While the combination of the two peaks is very
distinctive for the dribble event, it is important to note that the magnitudes of
the first peak are very similar to a noise sample, thus hard to distinguish.

Figure 3.4c shows a pass sample. To perform a pass, the foot is rotated
outwards to touch the ball with the inside of the foot, and the movement is
slightly upwards to give power to the pass. The distinctive peak in ay indicates
the use of the inside of the shoe, while the peak in az represents the slight
upwards motion. Interesting to note is that the accelerations of the foot during
a pass have a short impact, but are coming close to the maximum range in
amplitude.

Finally, Figure 3.4d shows a shot sample. The shot is performed on the laces,
thus acting both in the forward/backward direction as well in the up/down

19

direction, which is visible through the large values of ax and az. Note that
due to the power of the shot, the acceleration measurement is clipped at the
maximum reading.

Looking at these accelerometer values, it is apparent that the different ball
touches each have their own specific pattern. The amplitudes of the different
axes, the width of the peaks, and the relation between the different axes are all
indicators of the specific ball touch. Additionally, there is similar information
coming from the gyroscope readings, however for visualizing this, the gyroscope
is less suitable.

3.4 Neural Network Design

By now we know that the six axes of IMU data provide relevant distinctive
information on the ball-touch events, and we have an event detection algorithm
to trigger when a candidate event happens. Before the raw IMU data is ready
to be used as input to a neural network, we need to take one more step to
prepare the data, which is to normalize the data. This is necessary because
of the different scales of the accelerometer and gyroscope data. In such a case
normalizing is considered common practice when working with neural networks,
as it improves the training and optimization process [32]. The accelerometer
data is provided in the range of -314 to 314 m/s2, while the gyroscope data
ranges from -4000 to 4000 rad/s, and is normalized to values between 0 and 1.

3.4.1 Dense Layer Approach

The simplest approach is to use a neural network with just a dense layer, as
shown in Figure 3.5. This approach takes all six IMU axes, appends them into
a single array of numbers and then feeds it to the dense layer. This is a very
lightweight approach, but the dense layer now considers the data without any
sense of the six different axes. The output of the dense layer is then forwarded
to the output dense layer for the final classification outcome.

Figure 3.5: Network design with a dense layer.

3.4.2 One-layer CNN Approach

The second, more interesting approach, is to use a convolutional layer to process
the six axes from the IMU, as shown in Figure 3.6. This convolutional layer is
used to extract the distinctive features of the different ball touches, as described
in Section 3.3.2. After moving over the data with a set number of different
kernels, the data size is reduced by a pooling layer. This helps both to reduce
any chance on overfitting, as well as to keep execution size and model size

20

small. After flattening the output, a dropout layer is applied to reduce the risk
of overfitting, then finishing with the output dense layer, which provides the
classification result.

Figure 3.6: Network design with one convolutional layer.

3.4.3 Multi-layer CNN Approach

Figure 3.7 shows an extended version of the one-layer CNN model, now with
two convolutional layers. This approach is often used to be able to retrieve more
complex information from the data. The model can be extended with more con-
volutional layers in the same manner. As the complexity of the model increases
compared to the one-layer CNN model, a multi-layer CNN can optimize better
for the training data, thus starting to overfit on the training data. To counter
this, the dropout rate is increased to 0.5.

Figure 3.7: Network design with two convolutional layers.

3.4.4 LSTM Approach

Since many papers mention the use of LSTMs for the added benefit of looking at
historical data, this approach is also applied [4, 5]. The structure of the network,
as shown in Figure 3.8, is similar to the one-layer CNN approach, however with
an added LSTM unit after the convolutional layer. This LSTM layer processes
the six separate IMU axes, and is able to not just go over the data and process
the numbers, but also utilize historical information within the window. For
example, when looking at Figure 3.4b, the LSTM could ”remember” the peak
at 50 ms, and make a more sure classification when it encounters the second
peak at 170 ms.

Figure 3.8: Network design with LSTM layer.

21

3.5 TensorFlow Training Process

The training process in TensorFlow is straightforward. The candidate window
data is imported, after which the dimensions of each window are checked to
ensure all axes are present and every window has the correct window size. To
compensate for an over-representation of a specific event type in the data, the
occurrence of the different classes is counted and a weight is calculated. Tensor-
Flow takes this weight into account during training, to prevent overfitting on an
over-represented event type. This is relevant since there are significantly more
noise samples in the dataset than actual shot samples.

Finally, the data is split into a training and test set by using an 80%/20% split,
after which the training set is split into training and validation data again using
an 80%/20% split, and the training process can start. The training is performed
using the TensorFlow framework with the models covered in Section 3.4, using
the Adam optimizer, since it is a very common and effective optimizer [33, 34].
During the training process, the optimal parameters for the neurons in the
neural network are determined using the optimizer, which tries to minimize
the error of the classification by applying small changes to those parameters in
every training iteration. After a set number of iterations, the training process
is stopped, resulting in a trained neural network.

Until now, every step was performed using the regular TensorFlow framework.
However, after the training is finished we switch to TensorFlow Lite. Using the
built-in tools, the trained model can be converted to a TensorFlow Lite model.
The TensorFlow Lite model is optimized compared to a regular model, such that
it only contains strictly necessary operations. The model size can be reduced
further by applying quantization, as explained in Section 2.2.4. This uses only
8-bit integers for the model instead of 32-bit floats, reducing both the model
size as well as the computational load for the sensor. The final step is to convert
the TensorFlow Lite model to a byte array, which can then be incorporated into
the TensorFlow Lite for Microcontrollers implementation on the sensor.

3.6 TensorFlow on the Sensor

Finally, using the byte array representation of the model, we can move to the
implementation on the sensor. TensorFlow Lite for Microcontrollers provides
a C++ based implementation to run models with only a select subset of oper-
ations. One of the restrictions is that the LSTM model, as described in Sec-
tion 3.4.4, can not be executed. Since the nRF52832 is an Arm Cortex-M model,
the CMSIS-NN library with optimized kernels can be included in the framework,
as described in Section 2.2.4. This comes at a slight cost in Flash usage, but
improves the execution time, as shown in Section 4.2.6.

The implementation on the sensor consists of two parts, handling setup and
inference. The setup has to be executed once, this loads the model, checks its
properties and allocates the required amount of RAM for the inputs and the
model parameters. The inference part can then be triggered every time the
event detection algorithm selects a candidate. The input window is checked to
see if it corresponds to the model input parameters, after which the inference
starts. After finishing the inference, the result is returned as a probability per
class, which can then be used to select the predicted class.

22

Chapter 4

Experiments

This chapter describes several experiments based on the models described in
Chapter 3. Section 4.1 highlights a selection of interesting classification differ-
ences between different models and settings. Section 4.2 shows how different
models and settings contribute to the resource usage.

4.1 Classification Experiments

Based on the different neural network models as described in Chapter 3, we
first look at the impact of various parameters on the classification performance.
Also, based on the related work described in Chapter 2 we compare the neural
network approach to an implementation with XGBoost, both in terms of per-
formance and development approach. The dataset used for the classification
consists of candidates provided by the event detection algorithm described in
Section 3.3.1, containing noise, dribble, pass and shots samples. The distribu-
tion of the different classes is shown in Table 4.1.

Type Number
Noise 1200
Dribble 565
Pass 435
Shot 101

Table 4.1: Dataset distribution.

4.1.1 Sampling Frequency

As mentioned in Chapter 2, classifying sports movements with IMU-based sensors
has been applied before, and others use sampling frequencies ranging from
200 Hz to 1000 Hz [1, 4, 14]. To find the optimal sampling frequency, we evaluate
multiple sampling frequencies to compare their performance, using the one-layer
CNN model described in Section 3.4.2. The window size is for each sampling
frequency set to match a window duration of 200 ms, which contains all relevant
characteristics of the various ball touches, as explained in Section 3.3.2.

23

Figure 4.1: Classification accuracy at different sampling frequencies.

(a) Sampling frequency at 500 Hz. (b) Sampling frequency at 100 Hz.

Figure 4.2: Confusion matrices showing the difference in classification
performance at a sampling frequency of (a) 500 Hz and (b) 100 Hz.

The accuracy results are shown in Figure 4.1. While the decreasing perform-
ance for the lower sampling frequencies makes sense, the lower performance at
1000 Hz is unexpected, since more information on the movement would be ex-
pected to yield better results. However, in the case of processing with a neural
network, the most probable explanation is that there is too much information
in the windows. Therefore the model overfits on the detailed windows, which
do not properly match the slightly different windows in the test set.

Figure 4.2 compares the classification results at a sampling frequency of
500 Hz to the results at a sampling frequency of 100 Hz. We note that all shots
are being classified correctly at both sampling frequencies. Figure 4.2a shows
that at 500 Hz each class has a satisfactory true positive rate of more than 0.9.
If we compare this to Figure 4.2b, which shows the 100 Hz results, we notice

24

clearly lower true positive rates. We note that shots are still properly classified,
as they show a clear pattern of multiple samples at maximum sensor readings,
which is retained at 100 Hz. However, for the shorter and more subtle peaks in
the noise, dribble and pass samples, we note that the distinguishing patterns
vanish due to the lower sampling frequency, leading to a lot of misclassifications
between these classes.

Based on this experiment we continue to use a sampling frequency of 500 Hz.

4.1.2 Training Set Size

When performing data collection it is relevant to know when there is enough data
available to develop a well-performing model. Figure 4.3 shows the classification
results when reducing the number of training samples. We notice that when
only dropping 10% of the training the performance already drops, therefore we
can conclude that more training could be beneficial to improve the accuracy.
When using 10% of the training set, we still get an accuracy higher than 90%,
due to the large number of noise samples in the dataset. However, we note in
Figure 4.3b that it results in clear misclassifications of dribbles as noise, which
makes sense, since the noise samples can contain many random movements.
Since the model can not properly generalize yet what a dribble is supposed to
look like, it often considers it as noise. Similarly for the shots, since there are
only a few examples of shots in the training set, and a soft shot can be very
similar to a pass, they might be misclassified as a pass.

(a) Accuracy at different training set sizes. (b) 10% of the training set size.

Figure 4.3: Classification results with varying training set sizes.

4.1.3 Window Size

Varying the window size we find that using 100 samples, which translates to
200 ms at 500 Hz, is the optimal setting. This corresponds to the findings in
Section 3.3.2, that show a helpful characteristic peak in the dribble window
which clearly distinguishes between noise and a dribble. Looking at Figure 4.4a,
we notice that using larger windows provides a similar performance, showing

25

that all relevant information is in the 200 ms window. Since the resource use
increases significantly with larger window sizes, as shown in Section 4.2.1, there
is no added value to utilize them. When lowering the window size to 25 samples
and looking at the corresponding confusion matrix in Figure 4.4b, a few values
stand out. As explained, the model can not properly distinguish between noise
and a dribble, thus many noise samples are classified as dribbles. Similarly,
the window size limits the capability to distinguish the short peak of a pass
from the longer time of the impact of a shot. Finally, we notice the spread
of misclassifications. While misclassifying some noise samples as dribbles is
unavoidable in machine learning, a noise sample should never be classified as a
shot.

(a) Accuracy at different window sizes. (b) Window size of 25.

Figure 4.4: Classification results with varying training set sizes.

4.1.4 Neural Network Performance Comparison

As shown in Section 3.4, we compare a dense layer model, a one-layer CNN
model, a multi-layer CNN model and an LSTM model. Additionally, we analyze
the impact of the following parameters: window size, number of convolutional
layers, kernel size, number of kernels and number of dense layers. Figure 4.5
shows the accuracy of the mentioned different neural models, all run with a
window size of 100 at 500 Hz.

The classification performance of the one-layer CNN is covered already in
Section 4.1.1, and the multi-layer CNN models unfortunately show no improved
results. Especially with three convolutional layers, we notice the accuracy actu-
ally going down again. While the multi-layer CNN models show no statistically
relevant higher accuracy, with more insight into the training data and network
design, it might be possible to utilize the additional layers to better extract the
relevant features.

The LSTM model described in Section 3.4.4 does not show improved clas-
sification performance compared to the CNN models, while the model size is
more than 15 times larger. Additionally, LSTM layers are currently still un-

26

der development to be supported in TensorFlow Lite Micro1. While the LSTM
approach does not show added value for ball-touch detection, corresponding to
the findings by Stoeve et al. [4], when the implementation is available and the
resource usage can be benchmarked, other applications can be considered that
are better suited for the use of LSTMs, as shown by Taghanaki et al. [5] and
Sherratt et al. [24]. The dense layer approach clearly performs worse than the
CNN models, but has still a reasonable accuracy, considering that it just looks
at the raw data as numbers. Due to this way of processing the data it has a
hard time distinguishing the difference between noise and pass samples.

The experiments not yet covered, varying the kernel size and the number of
kernels, show a non-significant difference in accuracy varying between 94.0%
and 95.8%, and are therefore not extensively covered. Again, while they show
no added value for in classification performance, the resource usage analysis of
these parameters in Section 4.2 is still relevant, as it might be useful for future
different classification tasks.

Figure 4.5: Accuracy of various models.

4.1.5 XGBoost

As mentioned in Section 2.2, XGBoost is a state of the art machine learning
algorithm, used in many classification problems. Compared to neural networks,
we can not feed the raw IMU data to train an XGBoost model. Instead, stat-
istical features need to be selected and calculated, which can then be used for
training. As a comparison, an XGBoost model has been trained with the min-
imum, maximum, mean, kurtosis, skew and standard deviation values of the six
separate axes. Figure 4.6 shows the classification result. The first conclusion
we can draw is that it is hard for the model to distinguish a shot from a pass.

1https://github.com/tensorflow/tflite-micro/issues/920

27

https://github.com/tensorflow/tflite-micro/issues/920

This makes sense if we look back at Figure 3.4c and Figure 3.4d, where we see
that a strong pass and a shot both have peaks at the maximum accelerometer
reading, with the difference that the shot sample has multiple of those readings.
This approach takes just a minimum and maximum value for the whole window,
and therefore misses the fact that multiple samples in a shot window are at the
minimum and maximum value. Similarly, when differentiating between noise
and a dribble, the pattern throughout the window is important, which is missed
by this approach.

Of course when calculating the statistical features for the XGBoost model,
we could divide the event window into multiple subwindows, and calculate the
statistical features for each subwindow. However, that would require a lot of
manual fine-tuning to select the right number of subwindows, and select the
relevant features which actually add information. Due to this downside, the
neural network approach shows to be a proper improvement, considering the
self-learning capabilities and the good results.

Figure 4.6: Confusion matrix of classification with XGBoost.

4.2 Resource Experiments

In addition to the classification experiments, this section covers a selection of
resource experiments. To understand how design decisions will impact the per-
formance and resource usage, parameters such as the window size, number of
network layers, kernel size and number of kernels are changed and benchmarked.
The results are visualized in graphs in this section, while the details can be found
in Appendix A. The experiments are performed with the one-layer CNN model

28

Figure 4.7: Results of resource experiment with varying window size.

as described in Section 3.4.2, using four kernels, a 3x1 kernel size and a window
size of 100 at 500 Hz, unless specified otherwise.

Before going into details, it is important to note the purpose of the Flash and
RAM when using TensorFlow. The Flash is used to store the complete model,
information about the network design, the number and kind of layers, and fixed
values such as the weights for the neurons in the dense layers. The RAM is used
to store the input buffer to the network, but also convolution values, which are
calculated on-the-go during the execution of the model.

As mentioned in Section 3.1.3, there is 124 KB Flash and 20 KB RAM avail-
able. The baseline memory usage for the TensorFlow Lite for Microcontrollers
implementation on the sensor is 41.3 KB Flash when using just dense layers,
and 57.8 KB Flash when also using convolutional layers. The RAM usage is in
both cases 0.4 KB. This baseline usage is displayed in the figures in this section
as a percentage of the total memory usage.

4.2.1 Window Size

Figure 4.7 shows the results of the window size experiment. The window size
setting starts at 25 and goes up to 800. The impact on Flash usage is caused by
the general increase of parameters in the model. While the increase at smaller
window sizes is still small due to overhead, the increase gets more significant
as the window size gets larger. The RAM usage increases exponentially, so at
a window size of 800 the limit of the RAM is reached, and the model can not
be run on the sensor anymore. This increase is caused by the doubling of input
values, but also the additional convolution values which have to be calculated,
since there are more input values. Finally, the execution time doubles every
time the input window size doubles, which is a clear linear relation with the
number of values the neural network has to process.

29

Figure 4.8: Results of resource experiment with varying number of
convolutional layers.

4.2.2 Number of Convolutional Layers

Figure 4.8 shows the results of the convolutional layer experiment. When adding
more convolutional layers, the convolution process has to be performed multiple
times. However, as explained in Section 3.4.3, between every additional convo-
lutional layer, a pooling layer is added. This pooling layer halves the number
of input values to the next convolutional layer, resulting in fewer input values
for the final dense layer. Since the input size to the final dense layer is an im-
portant contributor to the model size, we see a slight decrease in Flash size as
a result. On the other hand, since every convolutional layer requires values to
be calculated, additional RAM is needed to store those values. The execution
time increases as expected with every added convolutional layer. The decaying
increase is also expected, again because of the pooling layers. For example with
the four convolutional layers, the input to the final convolutional layer is only a
10x6 window, compared to an input window of 100x6 to the first convolutional
layer, thus having a smaller contribution to the total execution time.

4.2.3 Kernel Size

Figure 4.9 shows the results of the kernel size experiment. When using a bigger
kernel size, the output of the convolutional layer will be smaller, since the kernel
needs more spacing at the borders. This results in a smaller model size and less
Flash usage, since the final dense layer has to process fewer values. Similarly,
the RAM usage is also smaller, since fewer convolution result values have to be
stored. Contrary to the very small decrease in memory usage, the execution time
does in fact increase. This increase is expected since the matrix multiplication
as part of applying the convolution kernel to the data, gets more complex the
bigger the kernel is.

30

Figure 4.9: Results of resource experiment with varying kernel size.

Figure 4.10: Results of resource experiment with varying number of
kernels.

4.2.4 Number of Kernels

Figure 4.10 shows the results of the kernel number experiment. With this exper-
iment, all metrics get bigger when the number of kernels increases. This makes
sense, since this method is strictly adding information to every convolution step.
This adds up to the total number of parameters that will be fed to the final
dense layer, thus adding to the Flash memory usage. Since more buffers are
needed to store all these values, which are calculated during the execution of
the network, we notice that while there is some overhead at smaller numbers of
kernels, the RAM usage doubles when using 16 or more kernels. This results
in a maximum feasible number of kernels of 16. Finally, the execution time
increases as expected.

31

Figure 4.11: Results of resource experiment with varying number of
neurons per dense layer.

4.2.5 Number of Dense Layers

Figure 4.11 shows the results of the number of neurons experiment. This ex-
periment uses the dense model as described in Section 3.4.1, with one or two
dense layers. The numbers on the horizontal axis indicate how many neurons
are used and whether the model uses one or two dense layers. This experiment
clearly shows the difference between the convolution, which is a mathematical
processing step, and applying a dense layer. The dense layer consists of neurons
with a certain fixed weight as a result of the training process, and therefore
significantly impacts the Flash memory as the number of neurons increases.
Following the same reasoning that there is just an increase in fixed numbers,
the RAM usage does not significantly increase when adding more neurons. Fi-
nally, the execution times are quite small compared to a convolutional model,
corresponding to the network analysis by Faraone and Delgado-Gonzalo [21],
mentioned in Section 2.2.1.

4.2.6 Optimizations

Figure 4.12 and Table A.6 show a comparison of the resource usage of different
optimizations of the one-layer CNN model described in Section 3.4.2. It ap-
pears that, as a result of quantization, the model size is decreased by a factor
2.9, which decreases the Flash and RAM requirements significantly, as they now
do not have to store float values, but just 8-bit integer values. The speedup from
using CMSIS-NN brings the execution down significantly, however increases the
Flash usage by 8 KB due to the necessary source code for the implementation.
An odd observation is that the execution time of the network when applying
quantization while not using CMSIS-NN results in a higher execution time than
when using the non-optimized network. Further investigation should be con-
ducted to find the cause, since it seems to be a bug.

Comparing the model with quantization and CMSIS-NN enabled to the model
without these optimizations results in an 8% decrease in Flash usage, 67% de-

32

Figure 4.12: Results of resource experiment with varying optimization
settings.

crease in RAM usage and a 2x improvement in execution time. While the au-
thors of CMSIS-NN advertise a higher improvement in execution time of 4.6x,
this was achieved on a higher-end microcontroller using a larger network, con-
sequently with smaller overhead and more room for improvement. Still, the
improvements both in memory usage and execution time, make these optimiza-
tions very valuable and allow to deploy more complex neural networks on such
constrained devices.

4.3 Discussion

This chapter described the performance of different models and their paramet-
ers, explaining both classification performance and resource performance. Based
on the experiments we conclude that a one-layer CNN model, as described in
Section 3.4.2, with 4 kernels and a 3x1 kernel size and a window size of 100
at 500 Hz is best suited for the classification problem of distinguishing noise,
dribble, pass and shot samples with an accuracy of 95.8%.

The LSTM approach appeared not to be of added value to the ball-touch
classification problem, but should still be considered in the future for other
classification tasks on the JOGO sensor, such as running style as shown by
Taghanaki et al. [5] and Sherratt et al. [24].

Section 4.2 shows the various parameters and their impact on the resource
usage. This provides a reference for future development of the neural network
approach for the JOGO sensor.

33

34

Chapter 5

Conclusions and Future
Work

The goal of this thesis project was to explore the possibilities and limitations
of running neural networks on a constrained Cortex-M based sensor platform
to accurately classify ball touches in football. Multiple papers are available
proposing the use of neural networks to process IMU sensor data for sports
movement classification, however they only use the sensor to gather the data,
while the classification is done on a PC [5, 12, 13, 14]. While this thesis proposes
a similar approach, the approach itself is also actually implemented on the
embedded device, highlighting the distinguishing challenge in this work. This
challenge has been summarized in the following research question in Section 1.2:

How can neural networks be applied for embedded real-time
classification of ball touches in football?

5.1 Conclusions

A development flow has been set up, which consists of some preparatory steps,
the actual training of the network, and deployment to the sensor. The pre-
paratory steps include importing the labeled data, preprocessing and network
design setup. The actual training can then be performed, with options to modify
the relevant parameters, after which the training results are visualized. If the
model performance is satisfactory, the model can be converted to a byte array
and included in the modified firmware.

With the neural network designs provided in Chapter 3 several experiments
have been conducted, as described in Chapter 4. We find that we can use
IMU data sampled at 500 Hz, combined with a one-layer CNN to achieve the
result as shown in Figure 4.2a, with a classification accuracy of 95.8%. The
implementation of this neural network on the sensor uses 64.9 KB Flash and
5.0 KB RAM, and takes 8 ms to execute, which is well within the restriction
described in Section 3.1.

In addition to a satisfactory classification performance, Section 4.2 explores
the resource impact of different parameters. This provides insight into the
possibilities when JOGO’s data scientists continue development with neural

35

networks, either to improve the current approach, or to solve other classification
problems.

To summarize, we have shown how we can apply neural networks for real-time
classification of ball touches, by proposing an approach which fits well within
the resource limitations of the sensor, and offers similar or better classification
compared to other sport classification research [12, 14], which did not offer real-
time classification.

5.2 Future Work

An important footnote is that this work has been conducted mainly from an
embedded perspective. While JOGO’s data scientists have shared their know-
ledge during the development, there are aspects that they can further improve
when integrating neural networks in the next version of the sensor. One of the
limitations during the design was the lack of insight into what happens between
multiple convolutional layers, improving this combined with more training data
and optimizing the use of convolution, might actually unlock the full potential
of using multiple convolutional layers instead of just one. Similarly, the LSTM
approach might have more to offer. While it shows no added value to classify
ball touches, Taghanaki et al. [5] and Sherratt et al. [24] show the benefit of
LSTM for specific insight into walking and running styles. Therefore, it might
be suited for other football-related classification tasks, which can be added to
the sensor in the future. Possible examples are fatigue monitoring, or an auto-
matic start and stop of a session that can detect when a person starts playing
football, by distinguishing the gait of a person during a match compared to
regular activities.

Two methods to improve the event detection and the ball-touch classification
are worth mentioning. The first is matching the IMU data from both feet in
real-time. Schuldhaus et al. [14] applied this concept, while not in real-time, to
enhance the event detection. This works by comparing the peak in the data of
the foot that hits the ball with the data of the standing leg, which is still on the
ground. This could be a beneficial approach to, for example, lower the number
of false positives in the event detection or to find a relation between the two feet
for each ball touch. However, it comes at an additional cost of processing time,
battery usage and complexity of the communication between the two sensors.

The second method is using piezoelectric material as an additional sensor.
This kind of sensor comes in different forms, for example as proposed by Mao
et al. [35] and de Fazio et al. [36]. Such a sensor can provide pressure inform-
ation on multiple points of the foot, which can be used as additional inputs
for ball-touch classification, or for gait and fatigue monitoring. In addition to
the provided sensor data, piezoelectric sensors can be used for energy harvest-
ing. This is quite promising as a football player is constantly moving and thus
providing energy to the sensor. Combined with further research into the power
consumption of the different neural network implementations, this approach
could be beneficial to prolong the battery life or to extend the power budget for
the sensor to allow more functionality.

36

Bibliography

[1] Mark Waldron, Jamie Harding, Steve Barrett, and Adrian Gray. A New
Foot-Mounted Inertial Measurement System in Soccer: Reliability and
Comparison to Global Positioning Systems for Velocity Measurements Dur-
ing Team Sport Actions. Journal of Human Kinetics, 77(1):37–50, 2021.

[2] Hongyu Zhao, Zhelong Wang, Sen Qiu, Yanming Shen, Luyao Zhang, Kai
Tang, and Giancarlo Fortino. Heading Drift Reduction for Foot-Mounted
Inertial Navigation System via Multi-Sensor Fusion and Dual-Gait Ana-
lysis. IEEE Sensors Journal, 19(19):8514–8521, 2018.

[3] Maoran Zhu, Yuanxin Wu, and Shitu Luo. f2IMU-R: Pedestrian Naviga-
tion by Low-Cost Foot-Mounted Dual IMUs and Interfoot Ranging. IEEE
Transactions on Control Systems Technology, 30(1):247–260, 2021.

[4] Maike Stoeve, Dominik Schuldhaus, Axel Gamp, Constantin Zwick, and
Bjoern M Eskofier. From the Laboratory to the Field: IMU-Based Shot
and Pass Detection in Football Training and Game Scenarios Using Deep
Learning. Sensors, 21(9):3071, 2021.

[5] Setareh Rahimi Taghanaki, Michael Rainbow, and Ali Etemad. Wearable-
based Classification of Running Styles with Deep Learning. arXiv preprint
arXiv:2109.00594, 2021. Accepted to the 17th IEEE-EMBS International
Conference on Wearable and Implantable Body Sensor Networks (BSN).

[6] Maximilian T Fischer, Daniel A Keim, and Manuel Stein. Video-based
Analysis of Soccer Matches. In Proceedings Proceedings of the 2nd Inter-
national Workshop on Multimedia Content Analysis in Sports, pages 1–9,
2019.

[7] Carlos Cuevas, Daniel Quilon, and Narciso Garćıa. Techniques and applic-
ations for soccer video analysis: A survey. Multimedia Tools and Applica-
tions, 79(39):29685–29721, 2020.

[8] Takamasa Tsunoda, Yasuhiro Komori, Masakazu Matsugu, and Tatsuya
Harada. Football Action Recognition Using Hierarchical LSTM. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 99–107, 2017.

[9] John S Theodoropoulos, Jeremy Bettle, and Jonathan D Kosy. The use of
GPS and inertial devices for player monitoring in team sports: A review of
current and future applications. Orthopedic reviews, 12(1), 2020.

37

[10] Jonathon G Neville, David D Rowlands, James B Lee, and Daniel A James.
A Model for Comparing Over-Ground Running Speed and Accelerometer
Derived Step Rate in Elite Level Athletes. IEEE Sensors Journal, 16(1):
185–191, 2015.

[11] Emily E Cust, Alice J Sweeting, Kevin Ball, and Sam Robertson. Machine
and deep learning for sport-specific movement recognition: A systematic
review of model development and performance. Journal of sports sciences,
37(5):568–600, 2019.

[12] Bernhard Hollaus, Sebastian Stabinger, Andreas Mehrle, and Christian
Raschner. Using Wearable Sensors and a Convolutional Neural Network
for Catch Detection in American Football. Sensors, 20(23):6722, 2020.

[13] Thomas Kautz, Benjamin H Groh, Julius Hannink, Ulf Jensen, Holger
Strubberg, and Bjoern M Eskofier. Activity recognition in beach volleyball
using a Deep Convolutional Neural Network. Data Mining and Knowledge
Discovery, 31(6):1678–1705, 2017.

[14] Dominik Schuldhaus, Constantin Zwick, Harald Körger, Eva Dorschky,
Robert Kirk, and Bjoern M Eskofier. Inertial Sensor-Based Approach for
Shot / Pass Classification During a Soccer Match. In KDD workshop on
large-scale sports analytics, pages 1–4, 2015.

[15] Joseph McGrath, Jonathon Neville, Tom Stewart, Hayley Clinning, and
John Cronin. Can an inertial measurement unit (IMU) in combination
with machine learning measure fast bowling speed and perceived intensity
in cricket? Journal of Sports Sciences, 39(12):1402–1409, 2021.

[16] Roland van den Tillaar, Shruti Bhandurge, and Tom Stewart. Can Machine
Learning with IMUs Be Used to Detect Different Throws and Estimate Ball
Velocity in Team Handball? Sensors, 21(7):2288, 2021.

[17] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pages 785–794, 2016.

[18] Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya
Wu. Convolutional neural networks for time series classification. Journal
of Systems Engineering and Electronics, 28(1):162–169, 2017.

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting. Journal of Machine Learning Research, 15(1):1929–
1958, 2014.

[20] Franz MJ Pfister, Terry Taewoong Um, Daniel C Pichler, Jann Goschen-
hofer, Kian Abedinpour, Muriel Lang, Satoshi Endo, Andres O Ceballos-
Baumann, Sandra Hirche, Bernd Bischl, et al. High-Resolution Motor State
Detection in Parkinson’s Disease Using Convolutional Neural Networks.
Scientific reports, 10(1):1–11, 2020.

38

[21] Antonino Faraone and Ricard Delgado-Gonzalo. Convolutional-Recurrent
Neural Networks on Low-Power Wearable Platforms for Cardiac Ar-
rhythmia Detection. In 2020 2nd IEEE International Conference on Ar-
tificial Intelligence Circuits and Systems (AICAS), pages 153–157. IEEE,
2020.

[22] Christopher Olah. Understanding LSTM Networks. http://colah.

github.io/posts/2015-08-Understanding-LSTMs/, 2015. Last accessed:
Mar. 24, 2022.

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory.
Neural computation, 9(8):1735–1780, 1997.

[24] Freddie Sherratt, Andrew Plummer, and Pejman Iravani. Understanding
LSTM network behaviour of IMU-based locomotion mode recognition for
applications in prostheses and wearables. Sensors, 21(4):1264, 2021.

[25] Embedded Learning Library (ELL). https://microsoft.github.io/

ELL/. Accessed: 2021-11-10.

[26] Caffe Model Development on MNIST Dataset with CMSIS-NN Library.
NXP Semiconductors, 4 2020. Rev. 0.

[27] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries,
Jian Li, Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, et al.
TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems.
Proceedings of Machine Learning and Systems, 3:800–811, 2021.

[28] Liangzhen Lai, Naveen Suda, and Vikas Chandra. CMSIS-NN: Effi-
cient Neural Network Kernels for Arm Cortex-M CPUs. arXiv preprint
arXiv:1801.06601, 2018.

[29] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for
efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[30] Chris Coleman. A Practical Guide to BLE Throughput. https://

interrupt.memfault.com/blog/ble-throughput-primer, 2019. Last ac-
cessed: May 16, 2022.

[31] ICM-42688-P Datasheet. TDK InvenSense, May 2021. Rev. 1.5.

[32] Warren S. Sarle. comp.ai.neural-nets FAQ, Part 2 of 7: Learning. http://
www.faqs.org/faqs/ai-faq/neural-nets/part2/, 2002. Last accessed:
Apr. 17, 2022.

[33] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optim-
ization. arXiv preprint arXiv:1412.6980, 2014. Published as a conference
paper at the 3rd International Conference for Learning Representations,
San Diego, 2015.

[34] Jason Brownlee. Gentle Introduction to the Adam Optimization Al-
gorithm for Deep Learning. https://machinelearningmastery.com/

adam-optimization-algorithm-for-deep-learning/, 2017. Last ac-
cessed: May 16, 2022.

39

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://microsoft.github.io/ELL/
https://microsoft.github.io/ELL/
https://interrupt.memfault.com/blog/ble-throughput-primer
https://interrupt.memfault.com/blog/ble-throughput-primer
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

[35] Yupeng Mao, Mailun Shen, Bing Liu, Lili Xing, Song Chen, and Xinyu
Xue. Self-Powered Piezoelectric-Biosensing Textiles for the Physiological
Monitoring and Time-Motion Analysis of Individual Sports. Sensors, 19
(15):3310, 2019.

[36] Roberto de Fazio, Elisa Perrone, Ramiro Velázquez, Massimo De Vittorio,
and Paolo Visconti. Development of a Self-Powered Piezo-Resistive Smart
Insole Equipped with Low-Power BLE Connectivity for Remote Gait Mon-
itoring. Sensors, 21(13):4539, 2021.

40

Appendix A

Resource Experiment Data

Window size
Model

parameters
Model size

(KB)
Flash
(KB)

RAM
(KB)

Execution
time (ms)

25 1076 3.6 61.3 2.4 2
50 2324 4.8 62.5 3.3 4

100 4724 7.2 64.9 5.0 8
200 9524 12.0 69.5 8.5 16
400 19124 21.6 78.9 15.5 32
800 38324 40.8 97.7 29.4 xxx

Table A.1: Results of resource experiment with varying window size.

Convolutional
layers

Model
parameters

Model size
(KB)

Flash
(KB)

RAM
(KB)

Execution
time (ms)

1 4724 7.232 64.9 5.0 8
2 2280 5.656 63.3 5.3 12
3 1084 5.328 63 5.6 13
4 560 5.664 63.3 6.0 14

Table A.2: Results of resource experiment with varying number of
convolutional layers.

Kernel
size

Model
parameters

Model size
(KB)

Flash
(KB)

RAM
(KB)

Execution
time (ms)

3x1 4724 7.2 64.9 5.0 8
7x1 4548 7.1 64.7 4.9 11

11x1 4372 6.9 64.6 4.8 15
15x1 4196 6.7 64.4 4.7 18
19x1 4020 6.5 64.2 4.6 20

Table A.3: Results of resource experiment with varying kernel size.

41

Number of
kernels

Model
parameters

Model size
(KB)

Flash
(KB)

RAM
(KB)

Execution
time (ms)

2 2364 4.8 39.9 3.3 6
4 4724 7.2 41.6 5.0 8
8 9444 12.1 44.1 7.5 11

16 18884 21.7 52 15.4 17
32 37764 41.0 66 29.4 xxx

Table A.4: Results of resource experiment with varying number of
kernels.

Number of
neurons

Model
parameters

Model size
(KB)

Flash
(KB)

RAM
(KB)

Execution
time (ms)

10 6054 8.0 49.2 2.4 0.5
25 15129 17.1 58.0 2.4 1
50 30254 32.2 72.8 2.4 2

100 60504 62.4 102.3 2.4 3
2x10 6164 8.6 49.7 2.9 0.5
2x25 15779 18.2 59.2 2.9 1
2x50 32804 35.3 75.8 2.9 2

2x100 70604 73.2 112.9 2.9 4

Table A.5: Results of resource experiment with varying number of
neurons per dense layer.

CMSIS-NN
enabled

Quantization
enabled

Model
parameters

Model size
(KB)

Flash
(KB)

RAM
(KB)

Execution
time (ms)

No
No 4724 20.9 70.4 15.4 16
Yes 4724 7.2 57.0 5 28

Yes
No 4724 20.9 78.3 15.4 14
Yes 4724 7.2 64.8 5 8

Table A.6: Results of resource experiment with varying optimization
settings.

42

	Preface
	Introduction
	Context
	Research Question
	Contributions
	Thesis Structure

	Background and Related Work
	Sport Movement Classification
	Continuous Classification
	Event-based Classification
	Ball-touch Classification in Football

	Embedded Machine Learning
	Convolutional Neural Networks
	Recurrent Neural Networks
	TensorFlow
	Performance Optimizations

	Discussion

	Design and Implementation
	Integration in JOGO's Sensor Platform
	Storage
	Execution Time
	Memory Usage

	System Overview
	IMU Data Analysis and Preprocessing
	Event Detection
	Ball-touch Features

	Neural Network Design
	Dense Layer Approach
	One-layer CNN Approach
	Multi-layer CNN Approach
	LSTM Approach

	TensorFlow Training Process
	TensorFlow on the Sensor

	Experiments
	Classification Experiments
	Sampling Frequency
	Training Set Size
	Window Size
	Neural Network Performance Comparison
	XGBoost

	Resource Experiments
	Window Size
	Number of Convolutional Layers
	Kernel Size
	Number of Kernels
	Number of Dense Layers
	Optimizations

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Resource Experiment Data

