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Abstract - In this paper the potential of Motion Incongruence Rating (MIR) models for the optimization of Motion
Cueing Algorithms (MCAs) is investigated. In a human-in-the-loop simulator experiment, two optimization-based
MCAs are compared for a roundabout scenario simulated on a medium-stroke hexapod simulator. The first MCA
uses standard cueing error weights from reference literature in its cost function, while for the second case these
weights were based on a MIR model fitted to previous experiment data. Results show that such models provide a
promising cueing error weight estimation method for optimization-based MCAs, but also highlight the limitations of
these models due to, for example, their dependency on the richness of the datasets to which they are fitted.
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Introduction
One of the main challenges in vehicle motion simu-
lation is finding the simulator motions, given vehicle
motions and simulator limitations, that result in the
highest perceived cueing quality. Lately, more and
more optimization-based Motion Cueing Algorithms
(MCAs) are being developed which use a cost func-
tion based on the difference between simulator and
vehicle motions to find an optimal simulator input at
each time step [Kat18, Kat17, Fan12, Bru17].
Such optimization-based MCAs avoid the often
“worst case” parameter tuning that results from using
classical, filter-based MCAs [Gra96]. The cost func-
tion in an optimization-based MCA, however, also
contains many parameters that need to be tuned.
Currently, as off-line automatic cueing quality assess-
ment is still difficult, this tuning is generally done by
experts [Nas12, Dag09, Beg12].
An example of an optimization-based MCA is the al-
gorithm developed at the Max Planck Institute (MPI)
for Biological Cybernetics [Dro18, Kat18, Kat17].
This MCA relies on Model Predictive Control (MPC)
to optimize the simulator control inputs at each time
step and uses of a mathematical model of the simu-
lator and a prediction of the desired vehicle motions
over a specified prediction horizon. The optimization
uses a cost function that includes the weighted error
between the reference motion, i.e., the vehicle mo-
tion, and the simulator motion over this horizon.
In the implementation of this optimization-based
MCA, the output includes the simulator’s linear ac-
celeration and rotational velocity. Currently, the al-
gorithm uses generic output weights based on the
rough absolute value difference between linear ac-
celeration and rotational velocity, i.e., weights on lin-
ear acceleration (in m/s2) that are on average around

ten times smaller than those on rotational velocity
(in rad/s), respectively [Kat15]. These output error
weights are thus not chosen based on understand-
ing human motion perception, but purely chosen to
account for the differences in output error units.

To directly include knowledge of human perception of
motion mismatches into MCA optimization, this paper
uses a Perceived Motion Incongruence (PMI) model
[Cle20] to objectively retrieve a set of perception-
based output error weights. This PMI model was
fitted to continuous rating (CR) data obtained in
two car driving experiments performed by our team
[Cle18, Cle19]. As the resulting cueing error weights
correspond to the “best fit” to the CR data, it was
expected that these optimized and perception-based
weights would indeed result in improved MCA qual-
ity compared to generic optimization-based MCA
weights.

To assess whether the perception-based output er-
ror weights indeed result in improved MCA quality, a
human-in-the-loop experiment was performed, where
both error weight sets were compared during a pas-
sive car driving simulation. The experiment has a
similar set up as the previous experiments described
in [Cle18] and [Cle19], where the participants experi-
enced (as passengers) a simulation of a Roundabout
(RA) section in a hexapod motion simulator and used
a continuous rating (CR) method to provide a time-
varying measure of cueing quality. Additionally, par-
ticipants were requested to provide one overall rating
(OR) of the cueing quality per condition and fill out
a questionnaire, to obtain more insight in the factors
affecting their ratings.
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Motion Cueing Algorithm
Optimization-based MCA
For the experiment explained in this chapter the
Model Predictive Control (MPC)-based MCA de-
signed at the Max Planck Institute (MPI) for Biological
Cybernetics [Kat18, Kat17] is used. This MCA uses
a linearised model of the hexapod simulator to com-
pute the future simulator inputs over a chosen pre-
diction horizon for a provided (future) reference mo-
tion. An advantage of this type of MCA, compared
to classical filter-based approaches, is that the simu-
lator limits are evaluated explicitly at each time step
[May01]. This avoids the need for worst case MCA
parameter tuning, often resulting in strongly scaled-
down motions [Gra96].
The MPC-based MCA considered here optimizes the
simulator inputs uk –i.e., the platform specific forces
and rotational accelerations – for a desired simulator
output, linear acceleration and rotational velocity in
head frame, over a prediction horizon. This optimiza-
tion is performed at each simulation time step and
only the first optimized input is actually sent to the
simulator. The simulator output y (xk,uk) for a given
input is compared to a reference motion ŷk over this
prediction horizon. While ideally this reference mo-
tion equals the exact vehicle motions that will occur
during this prediction horizon, during active driving
these future motions are, of course, unknown. Even
though the passive driving experiment described in
this paper does not require active driving, for appli-
cation purposes and realism, the reference motion
and prediction horizon length were chosen to be rep-
resentative for online motion cueing. The reference
motion is therefore assumed to be equal to the cur-
rent vehicle motion and kept constant over a predic-
tion horizon of 2 seconds, as also used in [Kat17].
During the optimization a cost (J) is calculated for
a certain set of simulator inputs over the prediction
horizon with:

J = ‖xN − x̂N‖2
WxN

+
N−1∑
k=0

(
‖xk − x̂k‖2

Wx
+

‖uk − ûk‖2
Wu

+ ‖y (xk,uk)− ŷk‖2
Wy

)
, (1)

where k is the discrete time step, N the prediction
horizon length, x the simulator state vector (plat-
form position/orientation and linear/rotational veloc-
ity), u the simulator inputs (platform specific force
and rotational acceleration) and y the simulator out-
puts (platform specific force and rotational velocity).
The variables x̂, û and ŷ indicate the reference state,
input and output, respectively. The diagonal matri-
ces WxN

= diag(wxN )2, Wx = diag(wx)2, Wu =
diag(wu)2 and Wy = diag(wy)2 represent the ter-
minal state, state, input and output error weighting
matrices, respectively.
The input and terminal state related costs are used
for stability and ensure convexity of the optimization
problem [Kat17]. Their references (û and x̂N ) are
here set to zero. The weights wu and wxN were
tuned for stability of the output and set to 1 and 2.5,
respectively. The state-related cost can be used for
washout of the simulator motion when setting its ref-
erence x̂ to zero over the full prediction horizon. As

only the platform positions need to be washed out
here, the position-related weights of wx were set to 4
and the velocity related states were set to zero.

Cost function output weights
The output-related cost in (1) influences how well a
certain output channel is reproduced by the simulator
platform. This can be tuned with the weights for the
different motion channels (specific forces and rota-
tional velocities) in wy. The reported standard setting
for the weights in wy [Kat15] is based on the relative
magnitude of specific forces (in m/s2) and rotational
velocities (in rad/s) in typical car manoeuvres, which
differs by about a factor of ten. This results in the
standard weights, here referred to as wys , as listed in
Table 1. These standard weights only account for dif-
ferences in linear acceleration and rotational velocity
units. The possible relative importance of perceivable
errors in different motion channels for the perceived
cueing quality is not taken into account.

Table 1: MPC cost function weight settings.

Tuning
wy weights

ax ay az ωr ωp ωy

wys 1 1 1 10 10 10
wyp 0.71 3.32 6.17 17.87 0 4.93

In this paper, we compare an output error weights
setting based on perceived motion incongruence
measures, i.e., wyp , to the standard weights of wys .
The weights for wyp , were calculated from a Motion
Incongruence Rating (MIR) model fit to the data from
the two main driving simulator studies described in
[Cle20]. The fit MIR model was a static, zero input
delay model with linear acceleration and rotational
velocity cueing errors as inputs, which is in fact com-
parable to the output error related part of the cost
function described in (1). The weights of the MIR
model were estimated by finding the combination of
weights that best described the full set of continu-
ous ratings from both experiments. These weights
thus provide an estimate of how much the six dif-
ferent cueing errors likely contributed to participants’
perceived motion mismatches. For more details on
the MIR model and fitting procedure, please refer
to [Cle20]. To obtain an equivalent overall scaling
of the perception-based weights, all weights in wyp

were scaled equally to ensure that the sum of the
perception-based weights (wyp ) equals the sum of
the standard weights (wys ), see Table 1.

The perception-based weights thus give about three
times more weight to ay and about six times more
weight to az than wys , while the weight for ax is re-
duced by about one third. Using wyp is thus expected
to result in a better following of the lateral and verti-
cal acceleration. For wyp also the roll rate weight is
almost a factor 2 higher, while the weight for yaw rate
is reduced by around 50% compared to the standard
weights. Cueing errors in pitch rate are not penalized
at all for wyp . As the roll and pitch rates are close to
zero during car driving, using wyp is expected to re-
sult in lower simulator roll rates but higher pitch rates
due to tilt coordination than when using wys .
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Figure 1: Specific forces and rotational velocities of the car during the car simulation, together with the motions calculated with
either wys or wyp and the corresponding measured (IMU) motions on the simulator.
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Figure 2: Predicted MIR for simulator motions resulting from either wys (left) or wyp (right).
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Predicted cueing quality
To investigate the effects of the different output er-
ror weight settings on the simulator motion quality, a
short car simulation scenario was defined, including
maneuvers with both notable changes in lateral and
longitudinal specific force. During the simulation the
car first accelerates from standstill to 50 km/h and
then slows down to 30 km/h to enter a roundabout.
While exiting the roundabout at the second exit, the
car accelerates back to 50 km/h and finally decel-
erates to a full stop. Fig. 1 shows the vehicle spe-
cific forces and rotational velocities for this simulation
scenario. Additionally, the motions calculated with the
MPC-based MCA using either wys or wyp as defined
in Table 1 are shown. Finally, Fig. 1 also shows the
corresponding motions as measured with the IMU on
the simulator platform.

Fig. 1 shows that the different weights mainly affect
the amount of tilt coordination that is used to follow
the vehicle lateral specific force. When using wyp the
average scaling difference between vehicle and sim-
ulator lateral acceleration is around 0.9, while the use
of wys results in a much lower gain of around 0.6. Ad-
ditionally, the reduced weight on yaw for wyp results
in a small worsening of the vehicle yaw rate cueing,
which is not very good in general due to the use of a
hexapod simulator.

To verify if using the optimized perception-based
weights wyp indeed reduces the predicted MIR, the
MCA outputs shown in Fig. 1 were fed through the fit
MIR model that was also used to estimate wyp . The
resulting predicted MIR as a function of time is shown
in Fig. 2 for wyx (left) and wyp (right). The sum of the
predicted MIR over time for both MCA settings is in-
dicated in the legend of each plot and shows that in-
deed better motion quality, i.e., an overall lower MIR
of around 17%, is predicted for wyp . The largest dif-
ferences occur during the roundabout (RA) section
and for the MIR caused by ay cueing errors.

Experiment
For experimental comparison of the differences be-
tween using wys and wyp as the error weights for an
MPC-based MCA, a human-in-the-loop driving sim-
ulator experiment was performed. In the experiment,
participants experienced the same driving scenario
introduced in the previous section as passengers for
both error weight settings. Their subjective impres-
sion of the resulting motion quality was measured us-
ing the same subjective rating method as in [Cle18].

Independent Variables and
Dependent Measures
The only independent variable of the experiment was
the output error weight setting of the MPC-based
MCA, as listed in Table 1. We compare the baseline
(wys ) weights [Kat15] with those optimized based on
previously measured perceived motion incongruence
(wyp ) [Cle20].

The dependent measures are the measures for MCA
quality, obtained using the Continuous Rating (CR)

method from [Cle18], resulting in a continuous rat-
ing of the cueing quality throughout the simulation
for each participant. In addition, participants provided
a separate overall rating (OR) after each simulation
trial, resulting in one quality rating per condition. To
be able to verify the consistency of the participants’
ratings, both the CR and OR measurements were re-
peated three times for both MCA settings.

As the MIR model analysis (see Fig. 2) predicts a
lower MIR when using the optimized wyp output er-
ror weights instead of the heuristically-tuned weights
wys , the hypothesis is that the perceived motion cue-
ing quality improves. This improvement should be
visible in both the measured OR and CR data, es-
pecially throughout the roundabout section.

Apparatus
The experiment was performed in the CyberPod
Simulator at the MPI for Biological Cybernetics,
which has a hexapod motion platform (eMotion-1500-
6DOF-650-MK1 from Bosch Rexroth) with a stroke
length of 0.65 m. The experiment set up is shown in
Fig. 3. The visuals were projected on a screen about
one meter in front of the participant using a VPixx
technologies ProPixx beamer with 1920x1080 reso-
lution and a 120 Hz update rate, providing the partic-
ipants with a 80-deg horizontal field-of-view.

Figure 3: Experiment set up in the hexapod simulator of the
MPI for Biological Cybernetics.

The vehicle motions were generated using CarSim
software and the visuals were generated using Unity.
The steering wheel in the visuals was animated using
the steering wheel angle provided by CarSim. The
participants used a custom made rotary knob with
visual feedback in the form of a rating bar to provide
their rating during the experiment, see Fig. 3.

Participants
15 participants, of which five female, performed the
experiment. The participants were between 20 and
61 years (average of 30 years) old and all possessed
a valid car driving license. All but three participants
had no prior knowledge or experience with motion
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cueing algorithms. Participants volunteered to per-
form the experiment and those not working at the
MPI were compensated for their time (eight euros per
hour).

Instructions and Procedures
The task of the participants was to rate the perceived
motion incongruence, or mismatch, between the vi-
sual and inertial motions during a passive car driving
simulation. After reading the experiment instructions,
participants were further briefed about the goal of the
experiment and their tasks verbally.

The experiment started with a training phase in which
the simulation scenario was experienced twice for
both MCA settings, i.e., four simulation trials in to-
tal. Throughout the experiment, the simulation trials
were performed in pairs including both MCA settings,
but the order of the setting within one pair was ran-
domized across participants. During the first repeti-
tion of such a trial pair, participants were asked to
observe the mismatches and try to anchor the rat-
ing scale to the minimum and maximum mismatch
perceived over both simulations. During the second
repetition, participants were requested to use the an-
chored rating scale to provide a continuous rating
(CR) throughout the simulations, by moving the rating
bar on the screen using a rotary knob. After each sim-
ulation they were also requested to provide an overall
rating (OR) on the same scale, indicating a summary
of their continuous rating, using the rotary knob.

After this training phase, another three repetitions per
MCA setting, i.e., in total six simulation trials, were
performed to collect, as consistently as possible, the
CR and OR data for analysis.

To monitor simulator sickness a misery score (MISC)
[Bos05] was requested after each simulation pair.
The total experiment lasted around 45 minutes per
participant and none of the participants became sick.

Data processing and analysis
For each participant the OR and the CR data were
collected for three repeated simulation trials of both
MCA settings. Each participant was explicitly asked
to anchor the rating scale to the maximum and min-
imum mismatch present during the two simulation
and thus use the whole rating scale for their CR for
each simulation pair. To correct for any remaining dis-
crepancies, the CR data were normalized in post-
processing, such that both the maximum and mini-
mum ratings were obtained at least once during each
pair of trials. For each participant, the final OR or CR
per MCA setting was calculated as the mean over all
three repetitions.

To determine whether significant differences are
present between the MCA settings, statistical tests
were performed. For comparisons between suffi-
ciently normally distributed data, a two-sample t-
test was performed and the t-statistic, degrees-of-
freedom and p-value are reported. For those com-
parisons that include non-normal data, a Wilcoxon
signed-ranks test was used instead and the corre-
sponding W -statistic, or for bigger samples the Z-
statistic, and p-value are reported.

Results
Rating consistency
During the experiment the participants were asked to
judge the perceived motion incongruence by giving
both a Continous Rating (CR) and an Overall Rat-
ing (OR) for each MCA setting. Although subjective
ratings are likely not to be exactly the same for each
repetition, it is expected that participants at least con-
sistently prefer the same MCA. To determine if the
participant understood and performed the given task
correctly, here the consistency of this preference is
checked. All but two of the 15 participants indeed
showed a consistent preference for one of the MCAs,
i.e., only Participants 1 and 11 changed their prefer-
ence across the different repetitions and thus did not
show a consistent preference. Their OR results are
therefore excluded from further analysis.

The consistency of the CR data was also
checked for each of the fifteen participants.
Following the same approach taken before
[Lam11, Cle18, Cle19, Lee19], consistency is
calculated with Cronbach’s alpha (α) [Cro51]. Sets
of ratings with an α below 0.7 are considered incon-
sistent [Hai10] and are excluded from further CR
analysis.

In total, 11/15 participants showed consistent CRs
(mean α: 0.89, std: 0.061). Fig. 4 shows example CR
data of two participants who are either very inconsis-
tent (α = 0.58) or very consistent (α = 0.96) across
the three trials. With α values of 0.58, 0.53, 0.55 and
0.51, Participants 1, 3, 9 and 12, respectively, gave
inconsistent CRs and their results are thus excluded
from the CR analysis.

Participant groups
The data showed that not all participants had the
same MCA preference. Next to presenting the overall
(averaged) rating results, the results of two partici-
pant groups, namely those preferring wys and those
preferring wyp , will therefore also be shown in this
paper. In Fig. 5 the relative rating differences be-
tween MCA settings are shown for both the mean OR
and CR per participant. The gray colored bars indi-
cate the participants that were excluded from further
analysis of either the OR or CR data due to lacking
consistency.

Fig. 5 shows that all participants except Participant
1, showed a consistent preference when rating with
the OR or CR. Five out of the fourteen participants
preferred wyp , while nine preferred the generic wys

setting. In the next section,all results are shown sep-
arately for these two groups.

Rating results
Overall ratings (OR)
For the analysis of the ORs, the consistent data of 13
participants are used. For each participant one OR
per MCA setting is calculated as the average over
three repetitions. In Fig. 6 the OR data results for all
consistently rating participants, as well as for each
participant group – wys preferred (N = 9) and wyp

preferred (N = 4)– are shown in a boxplot.
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Figure 5: Rating differences between both MCA settings per participant. A positive or negative difference indicates a preference for
settings wyp or wys , respectively.

For all participants combined, see Fig. 6, no signif-
icant difference between the two MCA settings was
found (t(24) = 0.58, p ≥ 0.05), nor for the participant
group that preferred wys (t(16) = 2.09, p ≥ 0.05). For
the participants who preferred wyp the difference in
OR between the MCA settings (mean OR for wys =
0.57, mean OR for wyp = 0.31) was found to be sig-
nificant (t(6) = 4.15, p < 0.05).

Continuous ratings (CR)
For the CR data analysis, the consistent data of 11
participants are used, see Fig. 5. The CR per partic-
ipant is calculated as the mean over all three rep-
etitions. Fig. 7 shows the median and interquartile
range of the CRs across all participants per MCA set-
ting for all consistently rating participants, as well as
the two participant groups, i.e., wys preferred (N = 7)
and wyp preferred (N = 4). The figures are divided
in five sections, each showing the data belonging to
a different section of the simulation, with RA referring
to Roundabout.

Fig. 7 shows that the CRs mainly increase during
the roundabout section of the simulation scenario
for both MCA settings. Especially Fig. 7(a) indicates

that overall the difference between the two MCA set-
tings is relatively small. For a more direct compari-
son of the CR data between the two MCA settings,
the CR of each participant is summarized with the
time-averaged mean CR over all time steps. Fig. 8
shows the resulting time-averaged mean CR data in
boxplots, matching the presentation of the OR data
in Fig. 6.

From Figs. 7 and 8 it is clear that when looking at
the CR data for all participants, no significant dif-
ferences seem to be present. Statistical analysis of
the time-averaged mean CR confirms this (t(20) =
0.8735, p ≥ 0.05). While the CR data show the same
effects observed for the OR data for the two partici-
pants groups, overall the CR differences for both the
participant groups preferring wys (t(12) = 1.5047, p ≥
0.05) and preferring wyp (t(6) = 0.5933, p ≥ 0.05) are
not found to be statistically significant.

Conclusions
In this paper an example of how Motion Incongru-
ence Rating (MIR) models [Cle20] can be used for
Motion Cueing Algorithm (MCA) optimization is ex-
plained and tested. The obtained results do not show
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Figure 8: Boxplots of the mean CR over time and all three repetitions per MCA setting for participants with a consistent CR. The
box shows the interquartile range and the median over all ratings.
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a clear difference between the cueing quality of an
optimization-based MCA optimized with the help of a
MIR model and a generic tuning based on the typ-
ical variance difference between specific forces and
rotational velocities for typical car manoeuvres.

Unexpectedly, more participants preferred the
generic tuning as compared to the optimization using
MIR models. This preference seems to mainly be
based on a preference for lower than unity gains
between vehicle and simulator motions [Cor14].
The predicted preference for the optimization using
MIR models did hold for about one third of the
participants. Additionally, the low impact of cueing
errors in longitudinal motions as compared to lateral
motions was also predicted accurately.

The fact that for one third of the participants optimiza-
tion using a MIR model was preferred indicates that,
while not as broadly applicable as was done here,
MIR models can be useful for MCA optimization. It is
expected that more sophisticated MIR models (i.e.,
models that separately account for different cueing
error types [Cle20]) estimated from a much richer
dataset will result in an MCA that is preferred by a
wider range of participants. To fully understand the
use of MIR models for MCA optimization, however, it
is recommended to first further develop these models
under conditions that are more similar to those which
the resulting optimized MCA quality will be tested un-
der, such as the same motion platform, visual system
and participant group.
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