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Abstract Geological mass flows extruding from a point source include mud, lava, and salt issued from
subsurface reservoirs and ice from surface feeders. The delivery of the material may occur via a salt stock, a
volcanic pipe (for magma and mud flows), or a valley glacier (for ice). All these source flows are commonly
skewed by a superposed far-field velocity vector imposed by the topographic slope and thus develop plumes
having a wide range of shapes. The morphological evolution of the perimeter of the plumes (in plan view) can
be simulated by varying the key parameters in a simple analytical flow description on the basis of Rankine
equations. Our model systematically varies the strength of the point source relative to the downslope far-field
velocity of its expelled mass. The flow lines are critically controlled by the relative speed of the two rates,
which can be concisely expressed by the dimensionless Rankine number (Rk, introduced in this study). For
steady flows, plume widths can be expressed as a function of Rk. The viscosity of the rock, mud, or lava mass
involved in the gravity flow affects Rk and thus the appearance of the plumes. For unsteady source strength, Rk
becomes time dependent and the plume width varies over time. The model flow shapes suggest that the
plume shapes of natural gravity flows of terrestrial surface materials (mud, lava, salt, and ice) commonly express
fast initial flux of the source, followed by an exponential decline of the source strength. Flows having initially
higher Rk but otherwise equal life cycles create broader plumes. Peaks in the source flux due to magmatic
pulsing during the eruption cycle can explain the formation of pillow lavas. Rather than instantaneously
reaching full strength before declining, some natural source flows start by swelling slowly, leading to the
creation of unique plume shapes like a flying saucer.

1. Introduction

We develop a gravity flow model using potential theory to describe the planform evolution of high-viscosity
fluids issued from a point source onto planar, solid surfaces, perfectly horizontal or with a slope. Potential flow
theory can be directly applied, without any adaptations, to many flows involving incompressible, viscous
fluids subjected to irrotational flow [Joseph and Liao, 1994; Joseph, 2003, 2006; Joseph et al., 2007; Weijermars,
2014]. The frequently encountered misperception that potential flow descriptions would only apply to
inviscous fluids probably follows from an overly cautious approach: inviscous fluids will always flow in
irrotational fashion—even when boundaries are present—and therefore automatically fulfill the requirements
of potential flow. Joseph [2006] emphasized that irrotational flow is a property of the flow; viscosity is a
property of the material. Consequently, irrotational flows may occur in both viscous and inviscous fluids. An
independent mathematical proof of potential flow as a scalable description of irrotational flow in viscous
fluids (incompressible) is given in Appendix A.

Major examples of viscous or viscoplastic gravity flows of terrestrial surfacematerials frompoint sources include
the crystalline creep of salt and ice in glaciers. Ice glaciers and salt glaciers are both composed of crystalline
rocks which very high flow resistance follows from effective viscosity estimates of 1012–1017 Pa s for ice
[Marshall, 2005] and 1015–1019 Pa s for salt [Van Keken et al., 1993;Wagner and Jackson, 2011]. Bothmaterials are
practically incompressible when deposited and compacted into dense crystalline layers. The initial condition of
flow onset is given by a certain discharge from a point source as that occurs in nature when buried rock salt is
pressurized by geological forces and flows onto the surface from a salt stock to form salt glaciers (Figure 1).
The feeder stock is in our study approximated by a point source. In the case of ice glaciers, the source region is a
firn basin filled by snowfall before being compacted and flowing downslope similar to a salt glacier. When
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valley glaciers exit a mountain range, they
flow out onto a broad, unconfined plain to
become a so-called piedmont glacier.
Elephant Foot Glacier (Greenland) is a
piedmont glacier and provides a pristine
example of a fan-shaped gravity flow
(Figure 2a). The shapes of relatively
unconstrained terminal tongues of ice
glaciers on Axel Heiberg Island tend to be
more elongated (Figure 2b). Piedmont
glaciers are built when the glacier leaves its
channel vent and is allowed to spread over a
relatively flat plane to form a wide fan or
plume. The upstream valley is the feeder of
the piedmont glacier’s source flow.

The kinematics of aforementioned
geological gravity flows are generally
similar, but a wide variety of plume-like

shapes is observed. Our aim is to determine how the key flow parameters (slope/viscosity/source strength)
affect the geometric evolution of gravity flows in 2-D top views. Themass flow sets on whenmaterial is issued
from the feeder with strength m onto the planar slope and is unable to resist downslope creep due to the
gravitational pull. Crystalline ice and salt bodies both behave essentially as power law fluids at high stresses
but become Newtonian when stresses are low. This means that no flow resistance exists when a deviatoric
stress results in the downslope direction. The source strength may either be steady or time dependent.
We explore the effect of both steady and time-dependent source strength on the geometry of the
perimeter of the gravity flow. Any fluid issued with a certain strength m will be carried off faster by a
low-viscosity fluid than by a high-viscosity fluid. Consequently, lower viscosity fluids tend to develop mass
flows that move in thin streaks down a planar slope, while higher-viscosity fluids are carried off more slowly
and thus the superposed slope flow has less effect on the perimeter expansion of the source flow. High-
viscosity sources on a planar slope therefore can be expected to more readily evolve into broader fans
rather than thin streaks (assuming similar slopes). In all cases considered here, the geological media have
viscosities high enough to ensure that the gravity flow remains within the range of very low Reynolds
numbers (Re< 1). This means that such flows show parabolic velocity profiles, which becomes apparent
when height of the fluid is exaggerated relative to horizontal extent in vertical cross sections (Figure 3a).
The lateral change in the thickness of such very low Re gravity flows is controlled by a scaling parameter α
(see section 2.1). The class of gravity currents that develop hydraulic jumps farther away from the flow
source (Figure 3b) is not considered here; such jumps are restricted to flows involving inertia effects
(Re> 1) [Bush et al., 2006; Huppert, 2006; Slim and Huppert, 2011]. Turbulent gravity currents at Re>~103

(Figure 3c) are also excluded from our analysis (for details on such gravity currents see Hacker et al. [1996]
and Birman and Meiburg [2006]).

We discuss our simplifying assumptions (section 2), outline the Rankine model equations (section 3), and
visualize the flow simulations (sections 4 and 5) followed by a discussion of the implications for the
interpretation of geological flows (section 6). Our conclusions are presented in section 7.

2. Previous Research, Model Design, and Basic Assumptions
2.1. Previous Research (2-D Analytical Models of Vertical Sections)

Analytical models of gravity flows having low Reynolds number based on similarity solutions of subaerial
gravity currents have used a scaling parameter, α, which can be used to characterize the vertical flow profiles
of source flows [Huppert, 1982a; Fletcher et al., 1995]. The global continuity equation is [Huppert, 2006]

∫
RN tð Þ

0

2πrð Þnh r; tð Þdr ¼ Qtα m3
� �

(1a)

Figure 1. Salt glaciers (white flows) in central Zagros Mountains (Iran).
Highly pressurized infra-Cambrian Hormuz salt rose up diapiric stocks
in core of Miocene anticlines. Field of view 50 by 50 km looking due east.
ASTER satellite image (false color, acquired in 2001) draped over digital
elevation model. Gach diapir, foreground, 27.56°N, 54.47°E; Siah Tagh
diapir, middle ground, 27.51°N, 54.57°E. (Image: http://asterweb.jpl.nasa.
gov/gallery/images/salt-iran-view.jpg.)
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with flux, Q, time, t, radial position, r, layer
height, h, and horizontal extent, RN(t), of the
flow front. Integer n =1 for axisymmetric
gravity flows and n=0 for 2-D flows. The
flow profile is controlled by the flux of the
source that supplies the fluid for the gravity
spreading. The source flux, Q, at any time, t,
is given by [Fletcher et al., 1995]

Q tð Þ ¼ αKαt
α�1 m3 s�1

� �
(1b)

where constant Kα is a dimensional
measure of initial source strength and α is a
positive nondimensional number.
Figures 4a–4d highlight the various shapes
of gravity flows spreading onto a flat
horizontal surface for different α values.
For α=0, no fluid volume is added from
the source (which is a spreading salt sheet
when applied to halokinesis; Figure 4a).
This situation has been termed the
“dam-break problem” or “mass slumping”
[Betelu et al., 1997]. It corresponds to the
sudden spread of a gravity current after a
constant volume of stored fluid is
instantaneously released (so that Q= 0)
[Huppert and Simpson, 1980]. For α=1, a
steady state flow profile occurs with the
flux, Q, remaining constant (Figure 4b). The
gravity flow expands but does not change
height above the source. For each specific
viscosity fluid, the cross-sectional shape of
the gravity current is determined by the

balance between the source flux and the viscous resistance to spreading. Radial pressure drops steadily
toward the unconstrained outer edge of the fluid, which has a certain thickness and mass [Didden and
Maxworthy, 1982]. For α< 1, the region above the flux source thins as the gravity current wanes (Figure 4c).

For α> 1, a dynamic bulge grows above the flux source (Figure 4d), as modeled by Huppert [1982a]. The
dynamic bulge is a viscous fountain supported by the dynamic pressure of rising fluid. In summary, for α=1,
the flow is approximately steady state and the topographic profile widens but maintains the same height.
For all other conditions, flowprofiles are transient: for α> 1, the spreading flow thickens over time; for 0≤ α< 1,
the spreading flow thins over time. Examples of waning and waxing flux sources on a slope (α< 1 and α> 1)
where gravity currents carry the fluid downslope have been modeled by Lister [1992].

2.2. Laboratory and Analytical Flow Setup, Basic Assumptions (No Slope)

A physical model was constructed supplying a silicone polymer using a pump that issued the silicone via a
feeder onto a flat, horizontal surface (Figures 5a and 5b). The fluid flux accelerated (α> 1) during the
model stages contoured in Figure 5a. The flux acceleration is indicated by the evenly spaced time contours
mapped using multiple images of the base of the spreading fluid as time progressed; even spacing requires
accelerating flux for the ever-increasing perimeter to advance. These contours of spreading rate fit well
with those implied by α> 1 models of both Huppert [1982a] and Fletcher et al. [1995]. The continuous
advance of the 3-D viscous spreading of the fluid is similar to that in Figure 4d.

The viscous fountain model for α> 1 shows a prominent dynamic bulge (Figure 5a), which was earlier
modeled analytically by Huppert [1982a] and smoothed by Fletcher et al. [1995]. Both studies concede that
the near-apex shape of the bulge suffers from unstable solutions. The presence of a dynamic bulge is a useful

Figure 2. Piedmont ice glaciers. (a) Elephant Foot Glacier, photo-
graphed in July 1997 at 81°N on east coast of Greenland (courtesy
Philippe Huybrechts). (b) Ice glaciers at Axel Heiberg Island in summer
2004 (courtesy Martin Jackson).
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clue to gravity flows over flat surfaces fed by
geological fluids at unknown fluxes, Q, and is
a common feature of active subaerial salt
glaciers in Iran [Talbot, 1998]. We emphasize
that a dynamic bulge requires an
accelerating source supply rate (α> 1). Such
dynamic bulges will disappear after a supply
source starts to wane (α< 1) or dies (α=0).
This ebbing phase has also been simulated
in our physical model. Figure 5b shows the
viscous relaxation of the bulge after the
source flow was cut (α=0). Unlike the
accelerating flux in Figure 5a, thewaning flux
in Figure 5b shows time contours that bunch
together as the flow ebbs and the viscous
fountain evolves into a viscous droplet.

This bunching of time contours for the
source flow periphery displacement also
occurs for axisymmetric source flows having
constant flux. The ever-expanding

Figure 4. Diagnostic evolution of gravity flow profiles (Re< 1) for various flux rates based on 2-D gravity current models. (a)
Dam-break gravitational collapse with zero strength of source flux (α=0). Basal velocity decelerates exponentially, and the
layer thinning takes infinitely long; all units are nondimensional. (b) Steady state strength of source flux (α=1), where the
basal velocity declines as function of radial spread, but the height of the layer remains constant once steady state flow profile
is established. (c) Waning strength of source flux (α< 1), where both basal velocity and height of layer vary at rates inter-
mediate between Figures 4a and 4b. (d) Growing strength of source flux (α> 1), where basal velocitymay become constant or
even accelerate depending upon rate of flux increase. Height of layer will continue to increase as long as the source flux grows.
Note that vertical scale is exaggerated in Figures 4b–4d, and Figure 4a starts out with artificial height (Figure 4a after Betelu
et al. [1997] and Figures 4b–4d after Fletcher et al. [1995]).

Figure 3. Three modes of gravity currents: (a) Laminar flow (Re< 1),
(b) laminar flow with a peripheral hydraulic jump (1< Re<~1000),
and (c) turbulent flow (Re>~1000). (Figure 3b image after Bush et al.
[2006] and Figure 3c after Birman and Meiburg [2006].)
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circumference of the constant flow causes the radial velocity to decline. The timeline contours for the
advancing outline of a radial expanding 2-D source flow with a constant source flux (α= 1) are mapped in
Figure 6. Any flux change immediately translates to a lateral velocity change in the thin layer approximation
due to the exclusion of height changes.

The analytical model of a 2-D source flow can approximate the vertically averaged velocity profile for certain 3-
D gravity flows onto a flat, horizontal surface with constant fluxQ (Figure 6). The simplifying assumption of a 2-D
flow neglects any changes in height h of the fluid bulge occurring in a 3-D flow, essentially a Hele-Shaw cell

flow, the limitations of which are discussed
in section 2.5. In the absence of a slope, the
fluid expelled from the 2-D source spreads
radially, and when the flux strength, Q, is
steady, the radial velocity declines with the
radial distance to the source by Q/2πhr.
When layer thickness h remains constant
throughout the layer, the farther the source
fluid travels, the slower it flows.

The radial velocity, ur, at any distance, r,
from the 2-D source origin (assuming h is a
constant unit height) is at any one time
related to the source flux, Q:

Q ¼ h∫
2π

0

urrdθ m3 s�1
� �

(2)

The tangential velocity is everywhere zero.
From equation (2) follows that the radial
velocity, ur, is

ur ¼ Q=2πhr m s�1
� �

(3)

Figure 5. Planform and cross-section views of silicone (viscosity 5×104 Pa s [Weijermars, 1986, 1988]) spreading from source
onto horizontal surface in physical model. Radial velocity components (ur) were mapped with digital image laser scanning
device using time series of 80 images. A thin dusting of ceramic microspheres was sifted onto the upper surface of the trans-
parent silicone in order to get a return from the laser scanner. (a) Dynamic bulge of source flow with α >1 due to increasing
flux rate. (b) Relaxation of silicone droplet after switching off the source flux so that α=0. Thewhite circles in Figures 5a and 5b
are isochrons showing advance of the spreading fluid for equal time intervals. Vertical exaggeration (VE) is 2.5.

Figure 6. Steady state source flow with stream lines (blue rays) and
expansion of extrusion outline (red circles) for regular time steps.
This is the projected stream line and velocity profile for a 2-D source
emanating onto perfectly horizontal plate.
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The strength, m, of the source (positive for a source and negative for a sink) can be defined as

m ¼ Q=2πh m2 s�1
� �

(4)

The radial velocity, ur, can be concisely expressed by

ur ¼ m=r ms�1
� �

(5)

The radial velocity profile becomes time dependent when the flux strength Q is unsteady (and thus time
dependent itself [Q(t)]).

The thin sheet approximation retains some important characteristics of geological gravity flows and is
adopted here because it allows for a concise mathematical analysis. This study is restricted to gravity flows of
high-viscosity fluids (Re< 1) that spread subaerially from a circular orifice onto a planar surface (either
perfectly horizontal or sloping). The high-viscosity fluid is incompressible; its viscosity is assumed to remain
constant and Newtonian over time. The source flow advances in laminar fashion; inertia remains absent in
high-viscosity fluids. An infinite flow space can be adopted as a good approximation of the boundary
conditions at all times, because the flow is carried by a high-viscosity fluid displacing air, which has a
negligible resistance to flow; hence, the assumption of an infinite 2-D flow continuum is justified. In the
potential model approximation, issued fluid propagates with spatially varying but steady rates in an any
particular location of the 2-D flow space (r,Ө) when the flux Q is steady from the onset. In the absence of a
slope (no far-field flow) the radial velocity profile is given by uR=Q/2πhr. The spatial variation of ur graphed in
Figure 6 includes the contours for progressive spreading of the outline of the fluid volume issued from the
source, assuming constant Q.

Gravity flows in high-viscosity fluids may occur either in steady state or various modes of transient flow,
depending upon the rate and steadiness of the source flux. In the Hele-Shaw approximation above
relationships between Q and ur still hold, even when Q is time dependent. The constant thickness
approximation of our model corresponds to curl free and thin flow. The vorticity (curl) is negligible (ω̇≈0),
because (1) the contribution of the vertical pressure gradient to the lateral velocity field can be neglected and
(2) lateral boundaries in the 2-D flow plane are absent. In many natural flows the effects of lateral changes in h
on the flow kinematics remain small when the spreading layer evolves as a thin sheet and with lateral
thickness variations remaining small compared to the mean thickness and occurring much slower than the
relatively rapid changes in the horizontal extent of the flow (see section 2.3). We focus on the plan view
development of the gravity flows and show that a 2-D potential flow will closely match the vertically
averaged spreading velocity of 3-D gravity flows provided α ≤ 1. However, differences between the vertical
flow profiles in 2-D analytical descriptions and 3-D gravity flows in nature may lead to deviations from the 3-D
prototypes being larger or smaller as per α value (see section 2.5).

2.3. Natural Examples

Numerous geological gravity flows over flat surfaces originate from sources issuing creeping masses at
unknown fluxes (Q). Figure 7a shows a small puddle of gaseous mud issued from a central vent and spreading
by gravity like pancake batter. Figure 7b is a satellite image of the radially spreading Syahoo salt glacier. The
two orthogonal cross sections (Figure 7c) show that the topography changes are minimal (except for its
southern ramp) and have negligible impact on the spreading of the salt source. The dynamic bulge observed
during the flow of this viscous fountain model (Figure 5a) is similar to that seen in the Syahoo salt diapir
in Iran (Figure 7c). The cross-sectional shape of the surface bulge is, at any time, a function of the flux strength
and the lateral spreading rate, which is retarded by viscous forces. The presence of a central dynamic
bulge in the Syahoo salt sheet indicates that it is actively fed by a diapir with a waxing salt flux (α> 1 in
accordance with Huppert [1982a]). Isochrons for edge displacement of a gravity flow with waxing flux are
included in the model of Figure 5a. Although the edge displacement rate for gravity flows with α> 1 may
remain steady (as is the case in Figure 5a), it may even accelerate with r for α→∞ [Huppert, 1982a].

2.4. Downslope Flow Model Assumptions

Next we adapt our model to take into account the effect of basal slope tilt on the morphological evolution of
geological source flows. Unconfined salt glaciers (Figure 1) and piedmont ice glaciers (Figure 2) are gravity
flows that move downslope as 3-D sheets. Figures 8a and 8b show our model setup for describing 3-D gravity
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Figure 8. (a) Radial velocity profile of source flow on slope will be perturbed by far-field flow due to slope. (b) Flow of mass
on slope can be approximated by channel flow profile; for free-slip, thin layer model, downslope velocity can be approxi-
mated by mean velocity. (c) Time series for the planform evolution of a 3-D gravity flow in physical experiment of silicone
fluid (viscosity as in Figure 5) issued with a constant flux on a gentle slope (left column). Corresponding analytical 2-D flow
approximation (right column) uses virtual superposed far-field flow (green curves for flow lines and black contours for
isochrones of flow advancement). The issued source fluid itself has blue curves for flow lines and red contours for fluid
displacement isochrons. All time contours are spaced for 20 nondimensional time steps and Rk=100.

Figure 7. (a) Radial spread of mud fromminor vent near Bakharmud volcano, 57 km SWof Baku, Azerbaijan (Courtesy: Salle
Kroonenberg, photo taken 2001). (b) Orthogonal satellite image of Syahoo salt diapir, Iran (27.82°N, 56.25°E) (Courtesy:
Google Earth). (c) Geological cross section of salt fountain in Figure 7b showing central bulge, which indicates α> 1, and
thus, increasing flux strength.
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flows on a slope by a 2-D analysis (not in vertical cross sections but in plan view). The source flux determines
the perimeter growth of the mass on the slope (Figure 8a), the angle of which adds the gravitational pull that
superposes a downslope velocity on the expelled mass (Figure 8b). The 2-D sheet becomes a proxy model for
the 3-D flow by replacing the vertical velocity gradient, which in the real flow displays a Poiseuille flow profile
due to a no-slip base (Figure 8b), by a uniform mean velocity uXMEAN that for channel flow is a function of
uMAX in the top of the fluid layer [e.g., Spurk and Aksel, 2008]:

UXMEAN ¼ 2=3ð ÞuXMAX ms�1
� �

(6)

Even if lateral thickness changes occur in downslope direction, expression (6) is still valid. The principal
driving force in downslope direction is the downslope component of gravity; pressure variations due to liquid
depth changes are assumed negligible.

A physical laboratory experiment was conducted with silicone fluid issued at constant flux onto a gentle
slope to illustrate the evolution of a high-viscosity gravity flow spreading subaerially with steady flux Q
(Figures 8c, left column). The planform outlines of the 3-D gravity flow on the planar slope (Stages I–III) are
compared to those of a 2-D analytical model, using appropriate similarity scaling parameters (Figures 8c, right
column). The perimeters of the 3-D physical gravity flow and 2-D analytical solutions match very closely in all
stages of the gravity current advance.

In all our 2-D models we use a scalable but constant mean velocity for the far-field flow. In the physical
models (Figure 8c) and in nature (Figures 1 and 2), the far-field velocity vector is determined mainly by the
topographical slope and viscosity of the source fluid. More precisely, Poiseuille channel flow due to the
pressure gradient induced by the slope will have a mean velocity, uXMEAN, determined by the horizontal
velocity ux in the vertical flow profile:

uXMEAN ¼ ∫
h

0

ux yð Þ
h

dy ms�1
� �

(7a)

The velocity profile, ux(y), is for the downslope gravity flow given by [Spurk and Aksel, 2008, p. 173]

ux yð Þ ¼ ρg sinβ
2η

h2 2� y
h

h i y
h
¼ ρg sinβ

2η
2hy � y2
� �

ms�1
� �

(7b)

Parameters in equation (7b) are the layer thickness, h, basal slope angle, β, gravity acceleration, g, fluid
density, ρ, and fluid viscosity, η. The maximum velocity, uXMAX, occurs in the top of the fluid layer (where y= h)
and where equation (7b) simplifies to

uXMAX ¼ ρg sinβ
2η

h2 ms�1
� �

(7c)

The mean velocity for the parabolic flow profile is uXMEAN = 2/3(uXMAX) [e.g., Spurk and Aksel, 2008]. Thus, the
mean of the downslope flow rate is inversely proportional to the viscosity. The sine of the slope angle β varies
only within a tight fractional range, but the viscosity may vary over many orders of magnitude, which is why
uXMEAN may also vary over many orders of magnitude for gravity flows ranging from salt to mud. Table 1
summarizes the established viscosity ranges for salt, ice, lava, and mud flows. Gravity flow shapes are also
affected by the flux rate history of the flow source. Because natural materials have such a large variation in
effective viscosities—generally larger than the other factors (h, β, g, and ρ)—it is clear that gravity flows may
evolve with a large variation in planforms and perimeters.

In spite of the large variation in viscosity, the kinematics of subaerial gravity flows of high-viscosity fluids
(Re< 1) are generally similar and can be approximated by a Rankine flow model (section 3). Scaling of the
flow equations reveals that the shape of such gravity flows on subplanar slopes is largely determined by the
relative magnitude of the volumetric flux strength of the source and the downslope gravity flow rate, which
in turn is determined by the slope angle and viscosity of the mass moving downslope. Using this insight, our
study shows how differences in the plume-like planforms of natural gravity flows arise mainly from their
different viscosity ranges and whether their supply comes from a pulsed or a steady feeder source. The 2-D
gravity flow approximation described here for general application has already been successfully applied to
model the evolution of the Chao coulee (Chile), using multiple source vents on a slope [Weijermars, 2014].
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2.5. Limitations of Thin
Layer Approximation

A limitation of the 2-D
analytical flow description
introduced in this study is that
lateral thickness changes
occurring in natural gravity
flows are precluded in the
model. To demonstrate what
this means for the validity of
our 2-D thin layer description

of 3-D gravity flows, we first evaluate the nature of thickness changes in 3-D creeping gravity flows for a range
of initial conditions.

For flows with constant volume (V, for α=0), transient flow occurs to establish, no matter what the initial
shape was, the typical equilibrium shape for a spreading fluid on a horizontal plane; duration of the transition
depends on the initial shape and height (h0) of the dead mass (Figure 9a). A gravity current for the constant

volume case will maintain an average height h, which for a 2-D gravity flow with x axis in direction of
horizontal flow and perimeter extent xN, at anyone time is given by

h ¼ V
xNd

m½ � (8a)

The unit length scale, d, is normal to the

plane of view. Height h will continue to
decline as time passes and as xN advances
laterally outward.

When a dead mass collapses on a sloping
plane (Figure 9b), the fluid develops a
surficial envelope that has been described
in detail by Huppert [1982b]. Independent
experimental data (Figure 9c) (unaware of
Huppert [1982b] when originally published
by Brun and Merle [1985]) confirm the
theoretical predicted shape development.
The average height given in equation (8a)
will still apply, but h(x,t) will increase

beyond h in downslope direction. Although
the thickness of h increases near the nose
of the current, the actual slope remains
extremely shallow in most natural flows
(generally much less than 10°). Cases of
α=0 (either on horizontal or sloping planar
surface) have no active source flux and
therefore are not described by our
analytical model.

Our study focuses on gravity currents fed by
active point sources. For growth or decline
of the flux, Q, parameter, α, used in gravity
current literature [Huppert, 1982a, 2006]
provides a measure for the volumetric flux
change at any time (~tα): when 0< α< 1, the
flux is declining; for α> 1, the flux is
growing; and for α=1, the flux is constant. In

Table 1. Effective Viscosities of Mass Flows

Mass Pa s

Mud 106–1014 Kadirov and Mukhtarov [2004]
Lava Spera [2000]
Rhyolite 107–1010

Dacite 105–108

Andesite 102–105

Basalt 10–102

Komatiite 10�1–10°
Salt 1015–1019 Van Keken et al. [1993] andWagner and Jackson [2011]
Ice 1012–1017 Marshall [2005]

Figure 9. Layer thickness changes during viscous collapse of dead
weight masses. (a) Progressive spreading stages (I–III) of high-viscosity
silicone (viscosity as in Figures 5 and 8c) with passive dye stripes
starting out as a rectangular block (Stage 0). (b) Principle sketch of
equilibrium envelope for constant volume flow on a slope. (c) Sketch
of silicone fluid spreading on a gentle slope to the right, with final
stages of the actual experiment shown in two identical cross sections
but dyed with originally horizontal and vertical stripes, respectively.
(Sources: (Figure 9a) Ramberg [1981], p. 224, (Figure 9b) Huppert
[1982b], and (Figure 9c) Brun and Merle [1985].)
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subaerial gravity flows on a horizontal
planar surface, a steady state flow profile
(where the gravity flow expands but
maintains the same shape) will only
occur when the flux, Q, is constant
(Figure 4b). For constant flux sources
and 2-D gravity flows, an epoch of
transient flow occurs to establish the
equilibrium height above the source
after which a constant thickness h will
be retained by the fluid above the

source. The average height h of the
spreading sheet is (Figure 10a)

h ¼ Qt
xNd

m½ � (8b)

This expression applies to all 2-D gravity
flows with an active source: Q may be
constant, waxing, or waning. When Q is

constant, h will remain constant
throughout the spreading history. There
is no significant layer thickness change
above steady sources, and vertically
averaged velocities are time
independent (Figure 10a (top)). When Q

is waxing,hwill increase; reversely, when

Q is waning, h will decline according to
expression (8b).

For axisymmetric spreading flows with a

point source the average height h is
(Figure 10a (bottom))

h ¼ Qt

πR2N
m½ � (8c)

For constant Q heighthwill decline with 1/RN. For waxing Q, heighthmay become constant or even grows as

the fluid advances (Figure 10b); for waning Q height h will decline (Figure 10c), all according to Q/RN .

Our 2-D analytical solutions are exact for constant thickness flows (see sections 3–5) but are only qualitatively
valid for natural gravity flows with 0< α ≤ 1, because lateral thickness changes do occur in such 3-D flows.
However, the constant layer thickness approximation in our thin layer model is defensible for all cases of
mature gravity flows when 0< α ≤ 1 where layer height rapidly becomes several orders of magnitude smaller
than lateral length. Changes in layer thickness remain relatively small as the perimeter of the expanding
source flow moves away from the source and the horizontal extent of the spreading fluid becomes rapidly
much larger than its vertical thickness. This explains the close match between 3-D physical models and 2-D
analytical models of gravity flow with constant flux (e.g., Figure 8c). We argue that our 2-D thin layer
approximation still yields reasonable kinematic similarity [Weijermars and Schmeling, 1986] for mature 3-D
gravity flows when 0< α ≤ 1, because transient layer thickness changes occur at rates relatively insignificant
as compared to the lateral displacement rates. Arguably, many natural flows set on very rapidly, almost with
an instantaneous flux start, such as is the case in volcanic eruptions, followed by declining flux rates during
the life cycle of the eruption (i.e., α ≤ 1, as modeled in Figures 20a–20c, see later).

For α> 1, the flux rate increases over time and a dynamic bulge grows above the flux source [Huppert, 1982a;
Lister, 1992] due to which the kinematic similarity between natural 3-D gravity flows and the 2-D model

Figure 10. Principle diagrams of gravity flow envelope development
(vertical sections) for various initial conditions with active source flux Q.
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approximation progressively breaks down.
Any increase of the flux rate causes storage of
fluid in height appreciation. Some natural
gravity flows may be fed by an initial waxing
flux (α> 1) from their feeder stock that later
reverses into a waning flux (α< 1) due to
depletion of the source fluid (and pressure
drop in the feeder stock) as can bemodeled by
bell-shaped flux rate curves (see Appendix D).
As noted, for α> 1 our thin layer approximation
will more rapidly loose kinematic similarity with
3-D gravity flows. In spite of the limitations of
our 2-D potential flow approximation, we
believe that our quantitative 2-D model
results provide important insight for the
planform evolution of 3-D gravity flows.

3. Rankine Flow Model

Our models systematically map the
theoretical range in shapes evolving by
various combinations of source flux strengths

and downslope (“far-field”) velocity due to gravity. The flow visualizations are based on 2-D mathematical
descriptions of source flows (Appendix B). The visualizations are valid for incompressible (vanishing
divergence) and irrotational flows (vanishing curl), meaning free slip is assumed at any physical boundaries.
Our simplifying assumptions provide valid results for the overall approximation of the flow dynamics in a
monitoring layer that is sufficiently far away from boundary layer effects. The uniform flow rate downslope
always becomes more dominant farther from the source, hence the steep curvature of the instantaneous
flow paths near the source (Figure 11).

The dimensional velocity field around source flows perturbed by a superposed uniform far-field flow
(Figure 11) follows from equations introduced by Rankine [cf.White, 2011]. Although the final set of equations
is found in basic textbooks [cf. White, 2011], we think that it is useful to demonstrate in a rigorous
approach how these specific solutions relate to the Navier-Stokes equation for a viscous fluid in motion
(Appendices A and B). The final set of equations (equations (B16a) and (B16b)) then provides a robust starting
point for our subsequent analysis:

ux ¼ U∞ þ m=rð Þ cos θ ms�1
� �

(9a)

uy ¼ m=rð Þ sin θ ms�1
� �

(9b)

The nondimensional velocities (ux*, uy*) in the gravity flow field are given by

ux* ¼ ux=U∞ ¼ 1þ b*=r*ð Þ cos θ (10a)

uy* ¼ uy=U∞ ¼ b*=r*ð Þ sin θ (10b)

The scaling parameters are b* = b/r0, r* = r/r0, and b=m/U∞, and r0 is a characteristic length scale. The Rankine
number (Rk) introduced here is defined as

Rk ¼ b* ¼ m= U∞r0ð Þ (11a)

For any chosen length unit r0, the nondimensional number Rk uniquely determines the flow pattern due to
a source flow with strength m with a superposed uniform far-field flow U∞. When we have a constant
source strength, constant fluid viscosity and constant slope, the shape of the streamlines can be
characterized by the Rk value (Figure 12):

Rk ¼ b* ¼ m= uXMEAN r0ð Þ (11b)

Figure 11. Top view for superposition of source flow and uniform far-
field flow results in 2-D Rankine half body. Flow direction between
source vent and stagnation point is opposite to overall flow direction.
Separation distance “b” between source and stagnation point is
determined by the relative rates of source flow and far-field flow.
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The streamlines can be traced by letting particles at an initial position (r*, θ) travel according to the velocity
field of equations ((10a) and (10b)) using nondimensional time steps given by

t* ¼ t U∞ð Þ= b (12)

The flow lines of Figure 12 are valid for steady state Rk numbers (positive Rk indicates a source flow and
negative Rk designate a sink flow). Flow lines have been evaluated as discrete particle path solutions using
MATLAB. The stagnation point is located at (x,y) = (�b,0). We also varied the b values, implied in the Rk
number, using various mathematical functions, resulting in time-dependent particle paths as illustrated
in Figures 13a–13c.

4. Basic Model Results

We used the functions that control Rk to map the range of possible plume shapes for source flows on a slope.
The (virtual) downslope far-field flow component is separately visualized andwill occur as straight downslope
lines (Figure 14) that remain unperturbed when no source is activated. When a source is active, we distinguish
between steady sources (section 4.1) and nonsteady sources (section 4.2).

Each set of equations for our models is simple, but varying the key parameters creates huge variations in
morphology. This is illustrated below, using a MATLAB code to plot the shapes of the deforming source flows
based on the nondimensional Rankine flow equations developed in the previous section. The visualized rates
and shapes help to understand how variations in finite plume shapes in natural gravity flows reveal
something about their geophysical flow conditions.

Figure 12. Visualizations of flow lines of uniform far-field flow (red curves) superposed on source flow (blue curves). Fluid particle paths from far-field flow and source
flow do not cross and are separated by green curve through stagnation point. Nondimensional field of view, scaled relative to unit length= 100 by 100. All Rk
numbers are upscaled by factor 2π/5 for practical convenience. MATLAB models generated from our analytical flow equations.
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4.1. Steady Source Flows (α=1; Constant Rk)

When source flows with constant source strength are skewed by a constant far-field flow, one can consider
different cases, for the relative strength of the source and the far-field flow to control Rk and map the full
range of possible plume shapes. Figure 15 illustrates how source flow geometry evolves for a range of
positive constant Rk values. Each plot in Figure 15 shows the same time increments (200 units of
nondimensional time) in all six graphs. Far-field flow lines are green, and source flow lines are blue. Black
contours are timelines in the far-field flow. Far-field flow lines (green) show the advance of fluid particles
during the same nondimensional time as for the source flow contours (red). Red contours outline the shape
change (during 20 nondimensional time steps) of an initially circular fluid body (at t* = 0) extruding from the

Figure 13. (a–c) Visualizations of particle paths due to superposition of a uniform far-field flow (red curves) and source
flows (blue curves) with various time-dependent Rk values. Fluid particle paths from far-field flow and source flow cross
as stagnation point moves toward the center of source flow. Only a final region outlined by green particle path separates (1)
particle paths originating from source (blue curves) that were never crossed by (2) particle paths from far-field flow (red
curves). Nondimensional field of view, scaled relative to unit length, is 100 by 100. On right-hand side, corresponding
decline curves start at Rk=20 and decline according to a decline function with rates �0.005, �0.01, and �0.05 over 200
nondimensional time steps (horizontal scales). MATLAB models generated from our analytical flow equations.
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source. The green flow lines and black contours
visualize the slope velocity, but they are also
valid for a horizontal planar surface where a
source flow is engulfed by a far-field fluid
having the same viscosity as the source flow.

The plots in Figure 15 are based on the
Rankine flow equations. The relative strength
of source flow and far-field flow are both
constant for a given Rk (labeled in Figure 15 by
Rk value on top of each graph). For example,
Rk=1 means that the strength of the source
flow matches the far-field flow rate down the
slope. Assuming a constant slope, when Rk
increases, the source flow strengthens relative
to the superposed uniform flow. When an
extrusion becomes faster relative to the
constant far-field flow, the plume shape of the
source flow predictably broadens.

Figure 16 shows a natural example of a volcanic
mud flow, which is narrow and long,
suggesting that Rk is low. The hyperbolic flow
profile of this gravity flow with laterally free

boundaries is mirrored in the wrinkles resulting from folding of the mud’s cooling, drying surface skin. Similar
structures are well known in pahoehoe lava flows having a cooling skin. The maximum width W of a Rankine
body far downstream is given by 2πm/U∞, which means m=2πWU∞ [m2 s�1]. Observing the flow rate U∞ in a
flow of known width thus can provide estimates for the source strength m. For the 60 cm wide mud flow of
Figure 16 and observed maximum flow rates of U∞=4mms�1 [Hovland et al., 1997], the corresponding peak
extrusion flux will be m=0.015m2 s�1 or 0.9m2min�1.

Figure 17 outlines plume shapes for very large Rk values. Conditions are similar to those in Figure 15 but the
field of view is zoomed out to encompass the plume outline. When the Rk value approaches infinity (modeled
in Figure 17 by Rk=2000), the source flow becomes increasingly axisymmetric (resembling the single
unperturbed source flow of Figure 6); the effect of the downslope flow becomes negligible. Note that the
“imaginary” far-field flow representing the superposed flow due to the slope senses the source even before
“hitting” it, because both flows are part of a viscous continuum.

4.2. Nonsteady Source Flows (0< α< 1; Declining Rk)

Most source flows in nature are unlikely to flow steadily over long timescales. For example, glaciers vary
greatly in their volumetric flux. From our survey of high-viscosity geological flows we conclude that declining
flux strengths are the most common type in nature. We therefore first modeled source flows with 0< α< 1,
using various decline functions. The examples of Figures 18a and 18b show the shape evolution of two
separate gravity flows, each with declining source flow strengths. The source in Figure 18b declined 10 times
faster than the flow in Figure 18a. The time series show how their respective plumes develop into final shapes
we coined as racket- and teardrop-shaped plumes.

Such shapes are frequently encountered in natural mud flows. Volcanic mud can have a wide range of
viscosities (Table 1), so gravity flows from mud vents can develop into tadpole and teardrop shapes (lower
viscosity mud, Figures 19a and 19b), racket shapes (intermediate-viscosity mud, Figure 19c), and pear shapes
(higher-viscosity mud, Figure 19d). Although variations in the overall slope may cause fractional changes in the
initial Rk number, viscosity is the more important factor because it may vary over several orders of magnitude
(Table 1) and therefore it impacts the downslope velocity more than does a change in slope (see equation (7c)).
The plume shapes are affected by radial fanning, once a gravity flow reaches a subhorizontal surface.

Flow eruption dynamics of mud volcanoes is briefly outlined below to explain why their source strength can
decline steeply after an initial, almost instantaneous pulse of flux. About 2000 major mud volcanoes have

Figure 14. Steady state uniform far-field flow of thin fluid film on
planar surface with uniform slope toward the right with particle
paths (green lines) and displacement marker contours (black lines)
for regular time steps.
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been identified worldwide, both
onshore and offshore [Dimitrov, 2002].
Many of these mud volcanoes are
particularly large, up to 400m high, and
they erupt regularly and episodically. In
Azerbaijan, mud volcanism is associated
with onshore and offshore hydrocarbon
seepage. Approximately 220 onshore
mud volcanoes have been reported
near Baku, within an area of about
16,000 km2 [Guliyev and Feizullayev,
1997]. The Bakhar mud volcano, located
57 km SW of Baku, has seen eight strong
eruptions since 1823. Bordag-Kobi,
located 20 km NW of Baku, erupted in
1827, 1894, 1902, 1953, and 1957
[Scholte, 2005]. Numerous gryphons,
small mounds built by eruptions of
mud, occur as small satellites near these
major mud volcanoes. The temperature

Figure 16. Mud flow near the Dashgil mud volcano 57 km SW of Baku,
Azerbaijan. Total width of the flow is approximately 60 cm. Stream is
marked by manually dropped mud flakes to measure flow displacement.
Photo was taken in 2001 (courtesy Salle Kroonenberg).

Figure 15. Final planforms of steady state flows with time contours for far-field flow (green curves for flow lines, black contours for time steps) and for source flow
(blue curves for flow lines, red contours for time steps). Time contours are spaced for 20 nondimensional time steps. Total run time t* = 200 nondimensional time
steps. Different plume shapes due to various (but constant) Rk values. Nondimensional field of view, scaled relative to b unit length, is 450 by 450. Flow line spacing of
source flows reduced for lower Rk to avoid clustering of lines. MATLAB models generated from our analytical flow equations.
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of the expelled mud is approximately 21–23°C. The feeder conduits can be as deep as 12 km. Major factors
causing episodic mud volcanism in Azerbaijan are tectonic overpressure, density inversion, sediment loading,
and gas hydrate dissociation [Guliyev and Feizullayev, 1997; De Lange and Brumsack, 1998; Lerche and Bagirov,
1998; Milkov, 2000; Aloisi et al., 2000a, 2000b; Kopf, 2002]. Mud volcanoes are also reported from the Salton
Sea geothermal system (California), where gryphons are exposed in the onshore Davis-Schrimpf seep field
[Svensen et al., 2007, 2009]. The composition of volcanic mud is highly variable but usually corresponds
directly to the nature of the conduit, the presence of hydrocarbons, and the lithology of the mobilized
sediments or parent rocks [Kopf, 2002]. Our conclusion is that mud eruptions are relatively short lived, which
will be reflected in their shapes as typical for erupted mass flows with rapid source strength decline.

The eruption mechanism of mud volcanoes suggests that they start with a certain flux rate (α=1) which
immediately decays, effectively varying α between 1 and 0 over the life cycle of the eruption. Wemapped out
a full set of runs with instantaneous onset of a specific source flux rate followed by source rate decline using a
range of decline functions. Several hundred runs were completed to map out a full range of possible shapes.
The final plume shapes of source flows on a slope (after 600 nondimensional run time) in Figures 20a–20c
were selected as a systematic summary of with representative cases from our simulation runs. The range of
finite plume shapes is typical of time-dependent Rk numbers, with Rk(t) declining exponentially as plotted in
the bottom row of Figures 20a–20c. To facilitate comparison of the model results with natural flows, we
introduce qualitative terms for the range in plume shapes observed (pendulum, teardrop, tadpole, racket,

Figure 17. Final planforms for increased strength of source flow (but steady state for each case) resulting in faster sheet spreading and reduction of the relative
impact of superposed far-field flow. Time contours are spaced for 20 nondimensional time steps. Total run time t* is 200 nondimensional time steps.
Nondimensional field of view, scaled relative to b unit length, is 100 by 1200. (top) A zoomed-out version of Figure 14, with far-field flow starting farther from the
source. For Rk=∞ the flow resembles that in Figure 6, and only perfect circular shapes will occur for source flows with superposed far-field flow that is negligible (as
implied by Rk=∞). MATLAB models generated from our analytical flow equations.
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Figure 18. Time series for evolution of plume shapes for time-dependent decline of source flow rate (time-dependent b values). (a) Racket-shaped plume growth for
initial Rk value of 100 and decline rate of �0.005. (b) Teardrop-shaped plume growth for initial Rk value of 100 and faster decline rate of �0.01. Run times from top
to bottom rows: t* =200, 300, 400, and 500 nondimensional time units. Corresponding decline curves are included in the summary of Figure 20. Time contours spaced
for 50 nondimensional time-lapse intervals. Nondimensional field of view is 800 by 500. Flow line spacing of source flows reduced for lower Rk numbers to avoid
clustering of lines. MATLAB models generated from our analytical flow equations.
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carrot, club, pear, cigar, torpedo, and eggplant, as annotated in Figures 20a–20c). For all these plume shapes,
their narrower ends point upstream.

We also modeled source flows with waxing strengths (α> 1; see Appendix C), and these resulted in
egg-shaped plumes with the narrower end pointing downstream, which is a conclusive criterion for
distinguishing gravity flows formed by waning and waxing source strengths. Although for α> 1 our 2-D
model will suffer from progressive loss of similarity with 3-D gravity flows in nature (see section 2.5); the
general diagnostic criterion formulated here is assumed to apply to 3-D cases.

5. Advanced Model Results (Oscillating α and Rk)
5.1. Planform Symmetry and Changes in Width of Lava Flows

Figure 21 shows an 8 km long andesitic lava flow stretching down the Andean Altiplano slope to theWSW from
a source at La Poruña scoria cone in the upper left corner of the image. Because of the dominant eastward
winds, air fall tephra erupted from the scoria cone fell largely to the east of the vent, while the andesite lava
flowed westard. La Poruña scoria cone has a basal diameter of 900m and is 180m high. A prominent bocca on
the west flank of the cone is the source of the 8 km long compound lava flow. Isolated eruption centers are
scattered all over the central Andes (Chile) above dilational zones of regional faults. East of La Poruña cone is the
major San Pedro volcano, of which the La Poruña cone may be a satellite vent [O’Callaghan and Francis, 1986;
Wörner et al., 1988]. The viscosity of andesitic lavas having typical extrusion temperatures between 900° and
1300°C ranges between 103 and 105 Pa s [Spera, 2000]. The width of the Poruña lava field varies as it moves
down the plane and can only in part be explained by local topography. Small lobes form where topography
is locally depressed, but the central section of the Poruña lava sheet is narrow. Variations of wider and narrower
sections are mirror imaged about the length axis of the lava flow, which do not correlate with any undulations
in topography. We modeled the shapes resulting from cyclic variations or pulsations in source strength during

b)a)

d)c)

Figure 19. (a) Tadpole-shaped mud flow from gryphon near Gobustan mud volcano, Azerbaijan (courtesy Steve Lioy). (b)
Teardrop-shaped mud flow at Gobustan volcano, Azerbaijan (courtesy I.S. Guliyev). (c) Racket-shaped mud flow from
gryphon in Davis-Schrimpf mud seep field, California (courtesy Andrew Alden). (d) Similar racket-shaped mud flows at
Lokbatan, Azerbaijan.

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011315

WEIJERMARS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 18



Figure 20. Comprehensive overview of different final plume shapes as source flow ebbs (time-dependent Rk values). Time contours spaced for 50 nondimensional
time steps. Total run time 600 nondimensional time steps. Nondimensional field of view, scaled relative to unit length, is 1000 by 500. Flow line spacing of source
flows reduced for lower Rk numbers to avoid clustering of lines. (a) Left-hand column for initial Rk values of 100. (b) Middle column for initial Rk values of 50. (c) Right-
hand column for initial Rk values of 25. Top row for slowest decline rate of source flows, second row from the bottom for fastest decline rate of source flow.
Corresponding decline rates are shown in the bottom row. MATLAB models generated from our analytical flow equations.
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the eruption (section 5.2), which can
explain the changes in width of a
volcanic lava sheet like the Poruña lava
field as it travels along its axis.

5.2. Models for Periodic Eruption
Pulses of Lava Flows

If a source flow oscillates in strength,
complex plume shapes may evolve. For
example, peanut-shaped plumes
develop when the source flow waxes
and wanes (Figure 22). These oscillating
source strengths could conceivably
result from pulses of magma squeezing
up a volcanic vent. Figures 22a–22f
show a time series; the stage of
Figure 22e resembles the shape of the
La Poruña lava field of Figure 21,

suggesting that three briefly spaced eruptive pulses were responsible for its emplacement. Our conclusion is
that lava fields can attain various shapes even when erupting onto a relatively planar slope. The plume shape
depends on the spacing and intensity of the magma pulses.

Figures 23a–23f model the effect on the final plume shapes for a range of magmatic pulse rates, which can
explain the wide range of lava field shapes that may occur in nature. When plume width perpendicular to its
downstream symmetry axis varies greatly, this means that the eruption pulses varied similarly in strength.
When the plume width is nearly pinched (Figure 23f), eruption strength paused longer before resuming fuller
strength again. Figure 23f is a shape typically observed in pillow lavas, where pulses of expulsion from each
pillow are widely spaced in time.

The example of a pillow lava field (Figure 24a) shows that flow in the basal part of two extruding lava pillows
is influenced by preexisting minitopography and diverts around a preexisting ridge. The upper lava layers
may flow over the basal layers so that the overall lava plume shape is still controlled by the flux strength of its
vent source relative to the superposed downslope speed. In spite of the undulations in basal topography, the
examples of lava flows in Figures 24a–24c all suggest that major eruption pulses are responsible for their
formation. The frontal part of their principal flows is broader, form which their source strengths can be
concluded to all have waned after the initial eruption pulse. In conclusion, lava flows, with their enormous
range of compositional and temperature-sensitive viscosities [see Spera, 2000], may exhibit the full range of
gravity flow geometries modeled in Figures 20, 22, and 23.

6. Discussion

The gravity spreading of terrestrial source flows reshapes our planetary surface in both endogenic mass cycles
(plate tectonics and magmatism) and exogenic mass cycles (meteoritic impacts, weathering, and erosion). A
variety of geological materials is emplaced in high places by active geological forces after which passive gravity
forces eventually may pull these masses down a topographical slope once again. Major examples of viscous or
viscoplastic gravity flows of terrestrial surface materials from point sources include the noncrystalline flow of
lava and mud from volcanic vents and the crystalline creep of salt and ice in glaciers. The wide range of gravity
flow shapes encountered in nature can be simulated by our models (but with limitations for α> 1).

Ice glaciers and salt glaciers are composed of crystalline rocks having viscosities higher than those of lava
flows and higher than most mud flows (Table 1). The flows in the piedmont part of such glaciers with free
lateral space fit our Rankine model; the ice streams confined in the upstream valleys act as feeders for the
source flow. Elephant Foot Glacier (Greenland) provides a pristine example of a pear-shaped plume formed
by issuance of glacier ice onto a piedmont plane (Figure 2a). The shapes of relatively unconstrained terminal
tongues of ice glaciers on Axel Heiberg Island provide additional piedmont glacier examples that are
predominantly club and torpedo shaped (Figure 2b). Such shapes are typical for gravity flows with large Rk

Figure 21. La Poruña andesite flow, from vent at SW base of a cinder
cone that is a satellite vent to the Volcan San Pedro. False color the-
matic mapper image ID= 50378-14014, scene 23377, May 1985
(21°53′33″S, 68°29′55″W).
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Figure 22. (a–f ) Time series for the evolution of source flow plumes due to oscillating strengths of source (time-dependent Rk values as shown in the bottom graph).
Peanut-shaped plume evolves after increasing time steps. Top to lower rows: t* = 100, 200, 300, 400, 500, and 600 nondimensional time units. Time contours in
peanut and downslope gravity flow spaced for 50 nondimensional time steps. Nondimensional field of view, scaled relative to unit length is 800 by 500. MATLAB
models generated from our analytical flow equations.
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Figure 23. (a–f ) Comprehensive overview of different final plume shapes resulting from oscillating source flow rates. Curves for oscillating Rk values shown above
final shapes resulting after at total run time t* of 600 nondimensional time. In all animations, time contours spaced for 50 nondimensional time-lapse intervals.
Nondimensional field of view, scaled relative to unit length, is 1000 by 500. MATLAB models generated from our analytical flow equations.
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numbers (due to high viscosity of ice) and only slowly declining source strength (0< α< 1), as summarized in
our models of Figures 20a–20c (top row).

Other glaciers may have formed by a relatively steady supply of ice from their valley channels (i.e., α→ 1). This
conclusion is based on the appearance of Malaspina ice glacier in southeastern Alaska, a compound
piedmont glacier fed by glaciers flowing from ice fields in the Saint Elias Mountains (Figure 25). The glacier

Figure 25. Perspective view of Malaspina Glacier (right, outlined by red dots) and adjacent Agassiz Glacier (left, red dots),
created from Landsat satellite image and elevation model generated by Shuttle Radar Topography Mission. Vertical
exaggeration = 2X; view due north. Data were taken on 11 February 2000. (Image URL: http://photojournal.jpl.nasa.gov/
catalog/pia03386.)

Figure 24. (a) Pillow lava plumes at Kilauea (courtesy Luci Yamamoto, Lonely Planet). (b) Thermal image of major Kilauea
lava stream (courtesy USGS Hawaiian Volcano Observatory, March 2011). (c) Night image Kilauea lava (courtesy Bruce
Applegate, April 2000).
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flows from its confining valleys onto a coastal plain and forms an eggplant shape (term defined in Figure 20),
which is typical for high Rk number flows with little decline of source strength. The internal folds are clear
evidence that plastic deformation is a strong component of glacial flow, andmoraines line the margins of the
glacier. The Malaspina Glacier extends up to 45 km (28 miles) from the mountain front nearly to the sea.
Malaspina Glacier is flanked by the Agassiz Glacier (to its left, W side), from which it is separated by an
interlobate ridge of moraine material. The Agassiz Glacier has a similar eggplant shape (Figure 25).

Our study was initially started to develop a simple geomechanical model that could explain the shape
evolution of salt glaciers in Iran (Figure 1). A magnified image of the Siah Tagh salt sheet (Figure 26a) shows
that the salt mass issued from the Siah Tagh feeder stock has become elongated, due to the superposed
downslope flow, into a mature torpedo-shaped salt sheet (as in the model flow of Figure 20b, top). Our
modeling insight can be used to confirm that natural salt sheets like Siah Tagh are emplaced with relatively
modest (but steady) decline in source strength (0< α< 1).

As a general observation we conclude that ice glaciers (Figures 2 and 25) and salt glaciers (Figures 1 and 26)
both exhibit gravity flows that develop into sheets with shapes confined to eggplant, pear, torpedo, club, and
possibly cigar (terms and shapes in Figure 20). This is very unlike volcanic mud flows (Figures 18) and lava
flows (Figure 24) which may develop plumes shaped like pendulum, teardrops, and tadpoles (Figure 20). The
latter shapes are typical for gravity flows of relatively low viscosity materials erupting by one or several pluses,
followed by a rapid decline in source strength. High-viscosity ice and salt glaciers generally emplace with
higher Rankine numbers than volcanic mud and lava flows. The latter flows have relatively lower viscosities
and therefore lower Rankine number flow shapes.

Some caution must be taken in inferring flow dynamics from a single shape observation in nature, as follows
from an additional time series of our models for the development of eggplant- and pear-shaped plumes
typical for ice and salt sheets (Figure 27). The two model flows of Figures 27a and 27b are in their early stages
indistinguishable. The flow outlines of mature gravity flows will be diagnostic for its flux decline rate.
Furthermore, some circular pancake-shaped salt glaciers in Iran, such as the Syahoo salt diapir (Figure 7b),
indicate increasing source flux strengths (α> 1). We have run an additional suite of models simulating
plumes developing on slopes with an initially waxing source strength pattern (summarized in Appendices C
and D), which develop typical plume shapes different from Figures 20a–20c. These complementary shapes are
classified here as egg- and flying saucer-shaped plumes for easy reference to its diagnostic features. What is
characteristic for such flows with initially increasing source flux strengths (α> 1) is that their leading edges are

Figure 26. (a) False color satellite image of Siah Tagh salt glacier, ZagrosMountains, SW Iran (27.51°N, 54.57°E). This salt glacier
is also visible in central part of Figure 1 (courtesy Google Earth). (b) Geological cross section of salt glacier in Figure 26a.
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b)a)

Figure 27. Time series for the evolution of source flow shapes for time-dependent decline of source flow rate (time-dependent b values). (a) Eggplant-shaped plume for
initial Rk value of 100 and decline rate �0.001. (b) Pear-shaped plume for initial Rk value of 100 and faster decline rate: 0.0025. Run times from top to bottom rows:
t* = 200, 300, 400, and 500 nondimensional time units. Corresponding decline curves are included in Figure 20. Time contours spaced for 50 nondimensional time steps.
Nondimensional field of view, scaled relative to unit length, is 500 by 800. Flow line spacing of source flows reduced for lower b numbers to avoid clustering of lines.
MATLAB models generated from our analytical flow equations.
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narrower. This is unique for source fluxes α> 1, which result in plume shapes narrowing in downslope direction
(Figures C1, C2, and D2). In contrast, gravity flows developing from sources with declining flux strengths (α< 1)
evolve with plume shapes narrowing in upslope direction (Figures 20 and 27).

7. Conclusions

This study has simulated point-sourced gravity flows of Earth materials spreading over subplanar slopes
using analytical flow descriptions based on Rankine flow equations. The approximation of the radial velocity
profile by a 2-D axisymmetric Hele-Shaw source flow is a deliberate simplification to facilitate modeling,
including time-dependent changes in source strength. The shape of the plumes around source flows on a
slope is determined by the relative strength of the source flux and the downslope flow rate. The ratio of the
two rates divided by a characteristic length scale is defined here as the Rankine number (Rk). This
dimensionless number remains constant for sources having a steady source flux strength on a constant slope.
The weaker the source flux strength, the narrower a plume will evolve. For Rk= 1, the plume becomes a
narrow streak; for Rk=100 (source flux strength 100 times that of the far-field flow rate) a broad, expanding
plume evolves.

Natural gravity flows commonly have unsteady source fluxes; the volumetric flux strength is not constant
over time (α≠ 1). Our study included models for a range of declining flux strengths (α< 1), which can
generate a wide range of plume shapes, depending upon the starting Rk value and subsequent decline rate
of the source flux. By systematically varying the initial Rk and decline rates, a range of possible plume shapes
has been simulated. For ease of use in applications to natural flows, simple geometrical terms have been
proposed to describe the range of plumes seen in our models: eggplant, pear, racket, torpedo, club, cigar,
carrot, tadpole, teardrop, and pendulum shapes (see Figure 20 for summary).

Volcanic mud flows generally have shapes characteristic of gravity flows having lower effective viscosities
(tadpole- and racket-shaped plumes), whereas lava flows exhibit racket-, club-, and carrot-shaped plumes.
The lower Rankine number shapes occur for lower viscosity material. The effect of magmatic pulses on a lava
field has been modeled to explain the undulating width of La Poruña lava field in the Chilean Andes.

Crystalline creep of ice glaciers onto piedmonts typically develops into immature or mature eggplant, club,
and torpedo shapes. Mature eggplant plume shapes apply to the Malaspina and Agassiz ice glaciers (SE
Alaska; Figure 25), Elephant Foot Glacier (Greenland; Figure 2a), and unconstrained terminal tongues of ice
glaciers on Axel Heiberg Island (Canada; Figure 2b).

Subaerial salt glaciers typically develop torpedo shapes when on a slope (Siah Tagh salt sheet, Iran; Figure 26)
and pancakes when a regional slope is negligible (Syahoo salt diapir, Iran; Figure 7c). Future work applies our
model to explain the formation of subaqueous salt sheets near the Mississippi Delta (e.g., Mitchell, Farnella,
Gloria, and Whiting domes) and analyzes how these spread under gravity down the continental slope of the
Gulf of Mexico. The model has also been successfully applied to reconstruct the emplacement of Chao dacite
complex from three source vents along a fracture that started to emit magma as the fracture propagated
[Weijermars, 2014]. The examples given in our present and related studies provide evidence that Rankine flow
models can be successfully applied to model the overall planform evolution of gravity flows on a slope.

Appendix A: Viscous Applications of Stream Function Solutions

The Navier-Stokes equation for an incompressible fluid (constant density ρ) and Newtonian dynamic viscosity
μ can be expressed in terms of the Jacobian determinant using a stream function ψ:

∂
∂t

∇2ψ þ ∂ ψ;∇2ψ
� �
∂ x; yð Þ � ν∇4ψ ¼ 0 (A1)

This assumes that there are no other body forces other than those due to a pressure gradient. The kinematic
viscosity ν (=μ/ρ, with density ρ) accounts for constant material properties of the fluid continuum. The first
two terms in equation (A1) are inertia terms, which vanish in creeping flow so that the Jacobian flow
descriptor becomes

ν∇4ψ ¼ 0 (A2)
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When fluid viscosity is scaled out, equation (A2) can be further simplified to

∇4ψ ¼ 0 (A3)

The description may still apply to viscous flow, and the viscosity may have any possible value, but remains
constant throughout a given flow space. Scaling the viscosity out at this stage provides a concise
flow description.

The stream function description of fluid flow was normalized by the viscosity (see equations (A2) and (A3)),
which often is represented as a description of nonviscous flow. This section shows how the so-called
“inviscous description” still contains the strain rate and can be redimensionalized to provide a constitutive
relationship between stress and strain rate. The velocity gradient tensor can be expressed in terms of the
stream function:

∇V ¼
∂2ψ
∂x∂y

∂2ψ
∂y2

�∂2ψ
∂x2

� ∂2ψ
∂y∂x

2
6664

3
7775 (A4)

The decomposition in the symmetric and the antisymmetric part gives

∇V ¼
∂2ψ
∂x∂y

1
2

∂2ψ
∂y2

� ∂2ψ
∂x2

� �
1
2

∂2ψ
∂y2

� ∂2ψ
∂x2

� �
� ∂2ψ
∂y∂x

2
6664

3
7775þ

0
1
2

∂2ψ
∂y2

þ ∂2ψ
∂x2

� �

�1
2

∂2ψ
∂y2

þ ∂2ψ
∂x2

� �
0

2
6664

3
7775 (A5)

The first matrix is the strain rate tensor E, and the second matrix is the rigid rotation rate tensor W.

The principal strain rates in terms of the stream function are

e1; e2 ¼ ±
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2ψ
∂x∂y

þ ∂2ψ
∂x∂y

� �2

þ ∂2ψ
∂y2

� ∂2ψ
∂x2

� �2
s

(A6)

The maximum shear strain rate is

exy;max ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2ψ
∂x∂y

þ ∂2ψ
∂x∂y

� �2

þ ∂2ψ
∂y2

� ∂2ψ
∂x2

� �2
s

(A7)

The total stress tensor for incompressible viscous flow is

σij ¼ �pδij þ τij (A8)

The static pressure p is due to uniform compression, and the deviatoric or viscous stress tensor τij account for
the viscous flow resistance of the fluid continuum. The viscous stress τij depends on gradients of velocity and
vanishes if there is no velocity gradient (uniform flow). The original flow description can now be
dimensionalized by adopting equation (A2), valid for a fluid continuumwith a specific viscosity. The preferred
viscosity measure to express shear resistance is the dynamic viscosity μ:

τij ¼ 2μ

∂2ψ
∂x∂y

1
2

∂2ψ
∂y2

� ∂2ψ
∂x2

� �
1
2

∂2ψ
∂y2

� ∂2ψ
∂x2

� �
� ∂2ψ
∂y∂x

2
6664

3
7775 (A9)
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The deviatoric stresses τxx for any point in the flow follows from the principal strain rate in a
constitutive relationship:

τij ¼ 2μeij (A10)

The dynamic viscosity μ accounts for viscous resistance of the fluid continuum.

Appendix B: Equations

Source flows enjoy the attention of applied mathematicians because such flows can be described by concise
functions with analytical solutions. Streamlines may be visualized by mapping complex contour integrals
using the vector field representation with conformal mapping of complex variables, as formalized by Pólya
[Pólya and Latta, 1974]. A similar method has been used in fluid mechanics, using complex functions for
concise mathematical representation of the potential function and the stream function [Batchelor, 1967;
Weijermars and Poliakov, 1993; Kundu and Cohen, 2002]. These functions can describe the physical transport
of particles in basic flow fields (vortices, sources, sinks, doublets, and uniform flows).

Assuming a stream function ψ that provides a valid solution of the Navier-Stokes equation for a particular
flow (Appendix A, equation (A1)), a valid potential function, ϕ, follows from ψ:

∂ψ
∂y

¼ ∂ϕ
∂x

(B1a)

∂ψ
∂x

¼ � ∂ϕ
∂y

(B1b)

A good number of flow patterns can be described by an appropriate pair of potential functions and stream
functions that satisfy the Cauchy-Riemann equations. When satisfied, these equations imply that divergence
and curl are negligibly small. The key property of analytical functions of complex line integrals is that the
complex variables map the spatial position of the complex function; the variables also describe valid
solutions for the fluid flow in each position. For detailed definitions of the analytical functions and line
integrals, see Needham [1967, pp. 197 and 383, respectively]. To be valid, the analytical description requires
(1) conservation of mass, which requires divergence to be zero and assumes incompressibility and (2)
irrotational flow so that vorticity (also termed curl or circulation) is zero. Advanced numerical analyses of
nonlinear flow solutions can solve the differential equations by approximate solutions [Anderson, 1995]. As a
result, fluid mechanics has shifted from analytical solutions for linear flow (exact solutions of approximate
flow descriptions) to numerical methods for solving nonlinear differential equations (approximate solutions
of exact problems [Drazin and Riley 2006]). Nonetheless, describing fluid flow by exact solutions of the
Navier-Stokes equation elucidates the fundamentals of fluid flow [Barenblatt, 1996]. Analytical equations
therefore remain useful for description of laminar flow in geologic systems that lack inertia effects
[Weijermars and Schmeling, 1986].

B1. Complex Potential

The description of source flows in terms of complex functions enjoys a revived interest in applied
mathematics [Churchill and Brown, 1984; Potter, 2008; Zill and Shanahan, 2009; Brilleslyper et al., 2012]. We

adopt the complex function F(z) with independent variable z= x+ iy, where i ¼ ffiffiffiffiffiffiffi�1
p

:

F zð Þ ¼ φ x; yð Þ þ iψ x; yð Þ (B2)

with potential function φ (x, y) and stream function ψ(x, y) as the real partℜ(z) of z and the imaginary part ℑ(z)
of z (which can be obtained by multiplying the real number with i).

The conditions of incompressible and irrotational flow are fulfilled when ∇2φ= 0 and ∇2ψ =0, meaning that
both φ and ψ are harmonic functions. The derivative of F(z) with respect to z gives the vector field, which in
Cartesian coordinates is given by

V zð Þ ¼ dF=dz ¼ ∂ϕ
∂x

þ i
∂ψ
∂x

¼ ux � iuy (B3a)
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And in plane-polar coordinates

V zð Þ ¼ ur � iuθð Þ exp �iθð Þ (B3b)

The spatial velocity vectors are respectively given by (ux,uy) and (ur, uθ).

B2. Application to Source Flow

A single-source flow located at z= 0 (the origin) is given by the complex potential (using z= |z|eiθ with
modulus |z| = r)

W zð Þ ¼ m log zð Þ ¼ m ln zð Þ ¼ m ln rei
θ

	 

(B4)

V zð Þ ¼ m=z ¼ m= rei
θ

	 

(B5)

with strength m=Q/2πr (for r~ 1) with total fluid volume Qtot generated at any radius equal to Qtot =m2π r
(and with dimension [m2 s�1], due to unit length in the third dimension; fluid emerging from a diapiric stock
of horizontal cross-sectional area πr2 flows at a rate Q=Umean πr

2 [m3 s�1]).

Comparing equations (B3b) and (B5) reveals that the components of the velocity field are

ur ¼ m=r (B6a)

uθ ¼ 0 (B6b)

The corresponding stream functions and potential functions in Cartesian coordinate are

φ x; yð Þ ¼ 1=2ð Þ m ln x2 þ y2
� �

(B7a)

ψ x; yð Þ ¼ m tan�1 y=xð Þ (B7b)

and in polar coordinates (using r2 = x2 + y2 and θ = tan�1 (y/x)):

φ r; θð Þ ¼ m ln r (B8a)

ψ r; θð Þ ¼ mθ (B8b)

Equations (B7a), (B7b), (B8a), and (B8b) fulfill the conditions ∇2φ= 0 and ∇2ψ =0.

B3. Application to Far-Field Flow

For a uniform flow with velocity components (ux,uy) the corresponding stream functions and potential
functions in Cartesian coordinates are

φ x; yð Þ ¼ uxx þ uyy (B9a)

ψ x; yð Þ ¼ uxy � uyx (B9b)

The superposed uniform flow and the source flow are given by adding the potential and stream function
descriptions flow field given in equations B8a, B8b, B9a, B9b. The result is given below, with hybrid notation in
polar and Cartesian coordinates for practical convenience:

φ ¼ uxx þ uyy þm lnr (B10a)

ψ ¼ uxy � uyx þmθ (B10b)

We can take x and y derivatives of this flow field to compute the velocity field. The distance, d, between the
point source (xs,ys) and a general point (x,y) is

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � xsð Þ2 þ y � ysð Þ2

q
(B11)
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Thus, taking into account where the source has been placed, the velocity potential, in Cartesian form, is

φ x; yð Þ ¼ m=2ð Þ ln x � xsð Þ2 þ y � ysð Þ2
h i

þ uxx þ uyy (B12)

and the velocities are

ux ¼ ∂φ
∂x

¼ m
4

x � xsð Þ
x � xsð Þ2 þ y � ysð Þ2 þ ux (B13a)

uy ¼ ∂φ
∂y

¼ m
4

y � ysð Þ
x � xsð Þ2 þ y � ysð Þ2 þ uy (B13b)

The dimensional description of the uniform far-field flow is given by U∞ in polar coordinates (r, θ) and is
given by

ψ r; θð Þ ¼ U∞r sinθ (B14)

B4. Superposition of Far-Field Flow and Source Flow

Superposition of the stream function for a far-field flow (equation (B14)) with the stream function of the
source flow (equation (B8b)) gives the expression for Rankine flow around a half body:

ψ r; θð Þ ¼ U∞r sinθ þ mθ (B15)

The dimensional velocity field is given by

ux ¼ ∂ψ
∂y

¼ U∞ þ m=rð Þ cosθ (B16a)

uy ¼ � ∂ψ
∂x

¼ m=rð Þ sinθ (B16b)

These functions are used as the basis for a particle path tracing that lead to the results in the main text.

Appendix C: Egg Shapes for Increasing Source Rates (α> 1; Logarithmic and
Exponential Rk)

The upstream pointed plume shapes form when sources extruding fluid at constant or declining flux
strengths (Figure 20). If the source flux progressively decelerates, egg-shaped plumes form with their
narrower ends directed downstream; all forms shown are for runtime 600 but the differences in specific
shape result from the specific inflation-rate profile of the flux strength (see graphs in second row from the
bottom, Figure C1a). Similar egg-shaped plumes, but pointing downslope, evolve for progressively
accelerating flux strengths (Figure C1b). This geometry provides a criterion to interpret from a plume shape of
a natural mass flowwhether the source extruded at increasing or decreasing rates. Figures C2a and C2b show
time series for the most striking examples of egg-shaped salt sheets extruding at accelerating flow rates.

Appendix D: Flying Saucer Shapes for Bell Curve Source Rates (First α> 1
Then α< 1)

Natural source flows cannot accelerate exponentially indefinitely. For example, pipe flow physics and the
finite volume of the source layer of mud and lava flows suggest that extrusion rates could rise slowly before
declining. This kind of bell-shaped change in flux strengths could result in plumes having a flying saucer-
shape (Figure D1). Figures D2a and D2b show time series for the most striking examples of flying saucer-
shaped plumes.
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a)

b)

Figure C1. Final plume shapes for time-dependent growth of source flow rate (time-dependent Rk values). (a) Top four animations are final shapes for logarithmic
growth of source rate. (b) Bottom two animations are final shapes for exponential growth of source rate. Corresponding Rk value curves are graphed in the bottom
row of Figure C1a (left, logarithmic growth in source strength; right, exponential growth of source strength). In all graphs, time contours spaced for 50 nondimen-
sional time steps. Total run time= 600 nondimensional time steps. Nondimensional field of view, scaled relative to unit length, is 1000 by 450. MATLAB models
generated from our analytical flow equations.
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b)a)

Figure C2. Time series for the evolution of plume shapes for time-dependent increase of source flow rate (time-dependent b values). (a) Left-hand column for growth
with logarithmic deceleration of flux strength toward maximum rate. (b) Right-hand column for source flux growth with exponential increase. Run times from top to
bottom rows: t* =200, 300, 400, and 500 nondimensional time units. Corresponding decline curves are given in the third row of Figure C1. Time contours spaced for 50
nondimensional time steps. Nondimensional field of view, scaled relative to unit length, is 800 by 500. MATLAB models generated from our analytical flow equations.
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a)

c)

e)

b)

d)

f)

h)g)

Figure D1. (a–h) Different final plume shapes resulting from time-dependent growth and decline of source flow rate (time-dependent b values). Corresponding bell
curves for Rk values shown in right-hand graph at bottom row for sigma values of 150, 125, 100, 75, 50, 25 (for Rkmax = 100) and one run for Rkmax = 50 with
sigma= 25. Total run time: t* = 600 nondimensional time and time contours in all animations spaced for 50 nondimensional time-lapse intervals. Nondimensional
field of view, scaled relative to unit length, is 1000 by 500. MATLAB models generated from our analytical flow equations.

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011315

WEIJERMARS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 33



b)a)

Figure D2. Time series for the development of plume shapes for bell curve evolution of source flow rate (time-dependent Rk values). (a) Left-hand column is for rise
and fall of source flow rate following bell curve with spread sigma of 100 and maximum Rk value of 100. (b) Right-hand column is for rise and fall of source flow rate
following bell curve with spread sigma of 25 and maximum Rk value of 100. Corresponding bell curves included in lower right-hand graph of Figure D1. Run times
from top to bottom rows: t* = 200, 300, 400, and 500 nondimensional time units. Time contours spaced for 50 nondimensional time-lapse intervals. Nondimensional
field of view, scaled relative to unit length, is 800 by 500. MATLAB models generated from our analytical flow equations.
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