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Abstract

It is shown that ensemble averages computed in the Gibbs Ensemble with Con-

tinuous Fractional Component Monte Carlo (CFCMC GE) are different from those

computed in the conventional Gibbs Ensemble (GE). However, it is possible to com-

pute averages corresponding to the conventional GE while performing simulations in

the CFCMC GE. In this way, one can benefit from the nice features of CFCMC GE

(e.g. more efficient particle exchange) and at the same time compute the ensemble

averages that correspond to the conventional GE. As a case study, the equilibrium

pressure and densities of the systems of 256 and 512 LJ particles at different reduced
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temperatures (T =0.7, 0.8, 0.95) are computed in the conventional GE and CFCMC

GE. The validity of the expressions derived for computation of the thermodynamic

pressure and densities corresponding to the conventional GE and computed in the

CFCMC GE is examined numerically. The thermodynamic pressure in the conven-

tional GE and CFCMC GE typically differs by at most 3%. It is shown that a very

good estimate of the average pressure and densities corresponding to the conventional

GE can be obtained by performing simulation in CFCMC GE and ignoring the contri-

butions of the fractional molecule. It is also shown that the fractional molecule does

not have an influence on the structure of the liquid, even for very small system sizes

(e.g. 40 particles). The approach used here to compute the equilibrium pressure and

densities of the conventional GE using the CFCMC GE can be easily extended to other

thermodynamic properties and other ensembles.

Keywords: Continuous Fractional Component Monte Carlo, Thermodynamic Prop-

erties, Gibbs Ensemble, Vapor-Liquid Equilbria.
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Introduction

Coexistence properties at Vapor-Liquid Equilbria (VLE) are crucial to design many indus-

trial processes.1–3 Molecular simulations using Monte Carlo algorithms are widely applied to

provide information regarding the thermodynamic properties of coexisting phases.4–6 Since

the introduction of Gibbs Ensemble (GE) in 1980s by Panagiotopoulos,7–9 simulations in this

ensemble are frequently used to study Vapor-Liquid Equilbria of pure components and mix-

tures.10–14 Other methods such as histogram reweighting in the grand-canonical ensemble15,16

can be more efficient to study VLE. However, since the GE is convenient and sufficiently

accurate, it is still widely used for simulating phase coexistence of pure components and

mixtures.13,14

Similar to simulations in the grand-canonical ensemble, GE simulations rely on sufficiently

large acceptance probabilities for particle exchanges between the simulation boxes. However,

the acceptance probability for particle exchange can be very low when molecules are large or

when densities are high (e.g. adsorption close to saturation loading, or liquid phases at low

temperatures),17 even when advanced techniques like Configurational-bias Monte Carlo are

used. When the acceptance probability for insertion/deletion is low, it is not straightforward

to verify if the two phases have reached equilibrium and that the chemical potentials of a

certain component are equal in the simulation boxes. In this case, one should separately

check the conditions for chemical equilibrium (equality of pressures, chemical potentials,

and temperatures for all components in the two phases). The so-called expanded ensemble

methods are among possible solutions to overcome this problem.18–20 The Continuous Frac-

tional Component Monte Carlo (CFCMC), recently introduced by Shi and Maginn, is one of

the most commonly used expanded ensemble approaches .21–30 Poursaeidesfahani et al. have

introduced a more efficient formulation of the GE combined with the CFCMC technique.31

In this formulation, there is only a single fractional molecule per component which can be

in either one of the boxes. The chemical potential can be computed directly without any

extra calculations. These authors also showed that the computed chemical potentials are
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identical to those computed in conventional GE, which was validated for LJ particles and

water.31 For the simple LJ fluid, the acceptance probability for insertion/deletion of parti-

cles in CFCMC GE at a reduced temperature T = 0.7 is five hundred times larger than in

the conventional GE.31 Although CFCMC improves the acceptance probability of particle

exchange, it rises a very important question: How should one relate the properties computed

in CFCMC GE simulations to those computed in the conventional GE? As an example, when

computing the density of the two phases in CFCMC GE, it is not clear a priori if one should

count the fractional molecule or not.21,22,31 In this paper, we introduce general guidelines on

how to relate averages computed in the CFCMC GE to averages in the conventional GE.

We consider here the computation of pressure and densities in the conventional GE and in

the CFCMC GE introduced by Poursaeidesfahani et al.31 For both conventional GE and

CFCMC GE, we derive equations for thermodynamic pressure of the system. We show that

the calculated thermodynamic pressures of the two simulation boxes are exactly equal, and

that the thermodynamic pressure of the conventional GE and CFCMC GE are different.

We also show that the structure of the liquid is not influenced by the fractional molecule.

We show how the expansion of the conventional GE with the fractional molecule affects the

average pressure of the two boxes, and how one can compute the pressure corresponding to

the conventional GE in the CFCMC GE. The pressure is chosen because of its importance

in verification of the equilibrium between the two phases.

This paper is organized as follows. In section 2, the relevant equations for computing

the pressures in the conventional GE, the CFCMC GE.,31 and the pressure corresponding

to the conventional GE calculated in CFCMC GE are derived, Also, guidelines for com-

puting averages corresponding to the conventional GE and computed in the CFCMC GE

are presented. The pressures and densities of the two coexisting phases of LJ particles at

various temperatures computed in the conventional GE and the CFCMC GE are presented

in section 3. In this section, the influence of the fractional molecule on the structure of the

two phases is also investigated. Our findings are summarized in section 4.
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Methodology

In the CFCMC GE formulation introduced by Poursaeidesfahani et al.,31 there is only a

single fractional molecule per component which is distinguishable from the whole molecules.

In the case of LJ pair interactions, the LJ interactions of the fractional molecule are scaled

according to:22

uLJ(r, λ) = λ4ε

 1[
1
2
(1− λ)2 +

(
r
σ

)6]2 − 1[
1
2
(1− λ)2 +

(
r
σ

)6]
 (1)

where λ is the scaling parameter with λ ∈ 〈0, 1〉. The partition function of this system is

given by:31

QCFCMC =
1

Λ3(NT+1) (NT )!

2∑
i=1

NT∑
N1=0

1∫
0

dλ

VT∫
0

dV1V1
N1+δi,1(VT − V1)NT−N1+δi,2 (NT )!

(N1)! (NT −N1)!

×
∫
dsN1 exp[−βUint,1(s

N1 , V1)]

∫
dsNT−N1 exp[−βUint,2(s

NT−N1 , VT − V1)]

×

 δi,1

∫
ds1frac exp[−βUfrac,1(s

1
frac, s

N1 , λ, V1)]

+ δi,2

∫
ds2frac exp[−βUfrac,2(s

2
frac, s

NT−N1 , λ, VT − V1)]

 (2)

where β = 1/(kBT ) and Λ is the thermal wavelength. The fractional molecule can be

transferred between the boxes and i indicates the box where fractional molecule is in. Uint,i

and Ufrac,i are the total internal energy of the whole molecules and the internal energy of

the fractional molecule in box i, respectively. VT is the total volume and V1 is the volume

of box 1. δi,j equals 1 when i = j and zero otherwise.31 Except for the trial moves used for

the thermalization of the system and volume changes, three other trial moves are used to

facilitate particle exchanges between the simulation boxes:

• Changing the scaling parameter λ with λ ∈ 〈0, 1〉.

• Swapping the fractional molecule between the boxes.
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• Changing the identity of the fractional molecule with a randomly selected whole

molecule in the other simulation box, while keeping the value of λ constant

These trial moves are illustrated in Fig. 1. By applying an appropriate biasing function, the

first type of trial move allows for a smooth transformation of the fractional molecule from

a molecule with no interactions to a molecule with full interactions with its surroundings.

Swap and change trial moves are used to transfer the fractional molecule from one box to the

other. The former trial move is very efficient for low values of λ and the latter is very efficient

for high values of λ.31 Using these trial moves, the value of λ can be efficiently changed from

0 to 1 and the fractional molecule can be transferred between the boxes at all values of λ.

These trial moves, combined with volume-changes and particle displacements are sufficient

to sample the partition function of Eq. 2. To improve the efficiency of simulations, a biasing

function is added to make the observed probability distribution of the scaling parameter

λ in the two boxes flat. The unbiased probability distribution of this scaling parameter is

denoted by p(λ, j). A sample FORTRAN code for this algorithm is available from Ref.32 A

detailed description of the trial moves and their acceptance rules are provided in Ref.31

Computation of the Pressure

In molecular simulations, the thermodynamic pressure is usually computed by averaging over

the instantaneous microscopic pressures. In any NVT ensemble, the general expression for

the thermodynamic pressure P is33–35

P = kBT

(
∂ lnQ

∂V

)
T

(3)

Considering the fact the Gibbs ensemble is a special case of the NVT ensemble, Eq. 3 is

applicable to the GE and CFCMC GE. Starting from the partition function of the conven-

tional GE and following the steps presented in the Supporting Information, the pressure in
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the conventional GE is obtained by the conventional virial equation:35,36

PGE,j = kBT

〈
Nj

Vj

〉
GE

+

〈∑
a<b

fj(rab,j)rab,j

3Vj

〉
GE

(4)

where rab,j and fj(rab,j) are the distance and the force acting between particles ”a” and ”b”

in box ”j”(assuming pair potentials). The first term on the right hand side of Eq. 4 is the

ideal gas contribution and the second term is commonly known as the virial contribution.35

The labeling of the boxes is arbitrary, therefore, the same equation is obtained for the other

box. Since there is only one thermodynamic pressure for the system, the pressures of the

two boxes are on average equal. In the same way, as shown in the Supporting Information,

the thermodynamic pressure in the CFCMC GE is computed from:

PCFCMC,j = kBT

(
∂ lnQCFCMC

∂VT

)
T

= kBT

〈
Nj + δi,j

Vj

〉
CFCMC

+

〈∑
a<b

fj(rab,j)rab,j

3Vj

〉
CFCMC

(5)

In this equation, the contribution of the fractional molecule is included in the ideal gas

part and in the virial part. The thermodynamic pressures in the CFCMC GE (Eq. 5) and

conventional GE (Eq. 4) are clearly not identical. As shown in the Supporting Information,

it is possible to compute the pressure corresponding to the conventional GE while performing

simulations in the CFCMC GE:

P ∗GE,j = kBT

〈
δλ=0,i=j

Nj
V 2
j

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

+

〈
δλ=0,i=j

∑
a<b

fj(rab,j)rab,j

3V 2
j

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

= PGE,j (6)

The difficulty associated with computing P ∗GE,j using Eq. 6 is that only the states in which the

value of λ equals zero are contributing to the ensemble average. Therefore, long simulations

may be required to obtain reliable pressures especially for the liquid phase. Assuming that

there is no correlation between the volume and the number of whole molecules, and also no
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correlation between the volume and the virial part of the pressure, Eq. 6 reduces to

P ∗∗GE,j = kBT

〈
Nj

Vj

〉
CFCMC

+

〈 ∑
a<b,a,¬frac

fj(rab,j)rab,j

3Vj

〉
CFCMC

(7)

where the notation “¬frac” indicates that contribution of fractional molecule in virial part

of the pressure should be disregarded. It is important to note that P ∗∗GE is an approximation

for the pressure corresponding to the GE, and unlike P ∗GE, PGE, and PCFCMC, the quantity

P ∗∗GE may not be equal for both simulation boxes. In the gas phase, particles are usually

far enough from each other that the contribution of the virial part in the total pressure is

limited and not correlated with the volume of the box. However, in the liquid phase, stronger

correlation between the contribution of the viral part of the pressure and the volume of the

box is expected. The validity of the simplification of Eq. 7 is numerically investigated in the

next section. One can use the exact same approach to define different densities:

ρGE,j =

〈
Nj

Vj

〉
GE

(8)

ρCFCMC,j =

〈
Nj + δi,j

Vj

〉
CFCMC

(9)

ρ∗GE,j =

〈
δλ=0,i=j

Nj
V 2
j

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

(10)

ρ∗∗GE,j =

〈
Nj

Vj

〉
CFCMC

(11)

where ρGE,j is the average density of box j computed in the conventional GE, ρCFCMC,j is the

average density of box j computed in the CFCMC GE (including the fractional molecule),

ρ∗GE,j is the average density of box j computed in the CFCMC GE only when the value of λ

equals zero excluding contribution of the fractional molecule, and ρ∗∗GE,j is the average density

of box j computed in the CFCMC GE excluding the fractional molecule and averaged over

all values of λ.
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Simulation Details

To examine the validity of the equations provided in the Supporting Information, the VLE of

a system with 256 and 512 LJ particles is investigated at three different reduced temperatures

(T =0.7, 0.8, 0.95). The LJ potentials are truncated and shifted at σ = 2.5. Simulations

are carried out in the conventional GE and the CFCMC GE. The LJ parameters σ and ε are

used as units of length and energy respectively. Consequently, all calculated properties are in

reduced units. A biasing function W (λ, i) is computed iteratively to obtain a flat probability

distribution of λ and that the fractional molecule is located with equal probability in both

boxes. After 2 million equilibration cycles, a long production (500 million cycles) run is

carried out to reduce the uncertainties in the values computed for pressures introduced in

Eqs. 4 to 7. The number of Monte Carlo steps per cycle equals the total number of molecules

in the system, with a minimum of 20. For more simulation details the reader is referred to

Ref.31

Results

To compute the pressures and densities, simulations are performed in the conventional GE

and the CFCMC GE. In Tables 1 and 2, the average pressures derived in Eqs. 4 to 7 and

corresponding densities for the gas and liquid phases are shown for three different reduced

temperatures (T =0.7, 0.8, 0.95) and for two system sizes (256 and 512 particles).

An important point in Tables 1 and 2 is the fact that the thermodynamic pressures of the

two phases computed in the conventional GE (PGE) are equal. The thermodynamic pressures

of the two phases computed in CFCMC GE (PCFCMC) are also equal. However, the thermo-

dynamic pressures of the two ensembles, CFCMC GE and the conventional GE (PCFCMC,

and PGE) are clearly not equal. As discussed in the previous section, the presence of the frac-

tional molecule in the CFCMC GE simulations results in an increase in the thermodynamic

pressure. However, the computed values for P ∗GE and PGE are nearly identical. In the same
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way, densities computed in CFCMC GE including the fractional molecule (ρCFCMC) are not

equal to those computed in the conventional GE (ρGE). However, densities corresponding to

the conventional GE but computed in CFCMC GE (ρ∗GE) are equal to densities computed

in the conventional GE (ρGE). This numerically confirms the validity of the derivations pro-

vided for computing properties corresponding to the conventional GE in the CFCMC GE.

Only the states in which the value of λ is zero are contributing to the P ∗GE. As a result, the

uncertainties associated with P ∗GE values are much larger than the other ensemble averages.

The values of P ∗∗GE computed for the gas phase are very close to the values computed

for PGE and P ∗GE (deviation less than 0.2%). This is not the case for P ∗∗GE computed for the

liquid phase (deviation up to 4%). The gas phase density of the conventional GE can be

accurately estimated using ρ∗∗GE (see Tables 1 and 2). Since the contribution of the virial part

in the pressure of the gas phase is negligible and the ideal gas part is defined by the density,

P ∗∗GE for the gas phase can be used as an estimate of P ∗GE and PGE.

In the liquid phase, the presence of a fractional molecule (with scaling parameter larger

than zero) may influence the density and structure of the liquid phase. Radial Distribu-

tion Functions (RDFs) can be used to investigate the effect of the fractional molecule on the

structure of the phases. The CFCMC GE system can be considered as a binary system, there-

fore, there are three different RDFs gWW(r) (Whole-Whole), gWF(r) (Whole-Fractional), and

gFF (r) (Fractional-Fractional). Since there is only one fractional molecule, gFF (r) is always

zero. In Fig. 2, gWW(r) and gWF(r) are plotted for different densities and values of λ. To

reduce the number of particles and amplify the effect of the fractional molecule, the cutoff

radius is reduced to 2σ and minimum box size and number of particles are used for these

simulations. Simulations are performed in the NVT ensemble with only a single fractional

molecule with a fixed value of λ. As shown in Fig. 2, gWW(r) are almost identical for all

values of λ. To test the extreme case, the interactions of the fractional molecule with the

whole molecules were changed in such a way that the fractional molecule is acting as an

attraction site without any repulsive potential (uLJ = −aλσ6/(σ6 + r6)). For λ = 1 and
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a < 60kBT , hardly any changes were observed in the RDFs, when the density was close to

typical liquid densities (not shown here). This indicates that the structure of the liquid is

not affected by the fractional molecule.

In Fig. 3a, the dependency of the density (excluding the fractional molecule) to the

value of λ is investigated. An interesting point is that the densities corresponding to the

conventional GE are only recovered when the value of λ is close to zero. It can be observed

that the density of the gas phase increases and the density of the liquid phase decreases as λ

changes from 0 to 1. In Fig. 3b, the unbiased probability distribution of λ in the two phases

is shown. The fractional molecule is most of the times in the liquid phase. As a result, ρ∗∗GE

for the gas phase is close to ρ∗GE for the gas phase. It can be seen that the fractional molecule

is most of the times in the liquid phase with λ close to one. In this case, the density of the

liquid phase in underestimated. Therefore, one would expect the ρ∗∗GE to be slightly lower

than the values of ρ∗GE for the liquid phase. This is confirmed by data presented in Tables 1

and 2. Underestimation of the density of the liquid phase can influence both the ideal part

and virial contribution of ρ∗∗GE. This explains why the values reported for P ∗∗GE are slightly

off.

Conclusions

In this study, we showed that there are differences between the averages computed in the

CFCMC GE and those computed in the conventional GE. Although these differences may

be limited for many properties, it is important to know that they exist. For example,

the thermodynamic pressures in the conventional GE and CFCMC GE are different and

typically differ by at most 3% for a system of 256 LJ particles. We also introduced guidelines

for computing the averages corresponding to the conventional GE and computed in the

CFCMC GE. We showed analytically and numerically that these values are identical to values

computed in the conventional GE. As an example, we computed the pressure and density in
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the conventional GE and CFCMC GE introduced by Poursaeidesfahani et al.31 The pressure

and densities corresponding to the conventional GE and computed in the CFCMC GE are

equal to the pressure and densities computed in the conventional GE. However, due to the

limited sampling (only when λ = 0) of these averages in CFCMC GE, long simulations are

required to obtain reliable results. For the gas phase, the pressure is predominately defined

by the ideal gas part. Therefore, using the estimation provided by Eq. 7 (i.e. ignoring the

fractional molecule in the ideal gas part and the virial part), one can compute the pressure

corresponding to the conventional GE from the gas phase of a CFCMC GE simulation and

still sampling for all values of λ. We also showed that the structures of the two phases are

not influenced by the fractional molecule.
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Table 1: Computed pressures and densities in the conventional GE and the CFCMC GE
at different reduced temperatures for 256 LJ particles. PGE (Eq. 4) and PCFCMC (Eq. 5)
are the pressures in the conventional GE and the CFCMC GE, respectively. P ∗GE (Eq. 6)
indicates the pressure corresponding to that in the conventional GE and computed in the
CFCMC GE. P ∗∗GE (Eq. 7) is the computed pressure in the CFCMC GE, not counting the
contributions of the fractional molecule. The exact same definitions apply to the computed
densities (Eqs. 8 to 11). Statistical uncertainties in the last digit are shown in brackets, i.e,
14.21(1) means 14.21±0.01. The weight function in the CFCMC GE is calculated iteratively
so that the probability distribution p(λ, j) is uniform. The total volume for T = 0.8 and
T = 0.95 is VT = 2× 83 and for T = 0.7 is VT = 2× 12.53.

[Average Pressure]/10−3 [Average Density]/10−3

T = 0.7 Gas Liquid Gas Liquid

PCFCMC 4.89(1) 4.90(10) ρCFCMC 7.42(1) 786.44(9)

PGE 4.78(1) 4.75(5) ρGE 7.25(1) 786.50(0)

P ∗GE 4.78(1) 4.70(60) ρ∗GE 7.26(1) 786.50(0)

P ∗∗GE 4.77(1) 5.10(50) ρ∗∗GE 7.26(1) 785.00(0)

T = 0.8 Gas Liquid Gas Liquid

PCFCMC 14.21(1) 14.20(10) ρCFCMC 20.31(2) 731.00(0)

PGE 13.86(0) 13.87(6) ρGE 19.84(0) 731.16(9)

P ∗GE 13.87(1) 13.80(50) ρ∗GE 19.83(3) 731.16(9)

P ∗∗GE 13.87(1) 14.20(10) ρ∗∗GE 19.84(2) 729.00(0)

T = 0.95 Gas Liquid Gas Liquid

PCFCMC 45.02(3) 45.02(4) ρCFCMC 66.80(10) 623.02(8)

PGE 44.44(3) 44.42(6) ρGE 66.02(7) 623.30(10)

P ∗GE 44.42(6) 44.40(50) ρ∗GE 65.90(20) 623.30(0)

P ∗∗GE 44.50(7) 44.81(3) ρ∗∗GE 66.10(10) 621.52(8)
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Table 2: Computed pressures and densities in the conventional GE and the CFCMC GE at
different reduced temperatures for 512 LJ particles. PGE (Eq. 4) and PCFCMC (Eq. 5) are the
pressures in the conventional GE and the CFCMC GE, respectively. P ∗GE (Eq. 6) indicates
the pressure corresponding to that in the conventional GE and computed in the CFCMC GE.
P ∗∗GE (Eq. 7) is the computed pressure in the CFCMC GE, not counting the contributions of
the fractional molecule. The exact same definitions apply to the computed densities (Eqs. 8
to 11). Statistical uncertainties in the last digit are shown in brackets, i.e, 14.10(1) means
14.10 ± 0.01. The weight function in the CFCMC GE is calculated iteratively so that the
probability distribution p(λ, j) is uniform. The total volume for T = 0.7 is VT = 2 × 14.53

and for T = 0.8, VT = 2× 103 and for T = 0.95, the total volume is VT = 2× 8.653.

[Average Pressure]/10−3 [Average Density]/10−3

T = 0.7 Gas Liquid Gas Liquid

PCFCMC 4.95(1) 4.95(6) ρCFCMC 7.53(2) 787.0(0)

PGE 4.89(0) 4.89(4) ρGE 7.44(1) 787.09(1)

P ∗GE 4.89(1) 4.80(50) ρ∗GE 7.44(2) 787.02(4)

P ∗∗GE 4.88(1) 5.01(3) ρ∗∗GE 7.44(2) 786.20(0)

T = 0.8 Gas Liquid Gas Liquid

PCFCMC 14.10(1) 14.14(3) ρCFCMC 20.17(2) 730.84(7)

PGE 13.92(1) 13.91(2) ρGE 19.92(1) 730.95(4)

P ∗GE 13.93(1) 13.90(20) ρ∗GE 19.92(1) 730.93(4)

P ∗∗GE 13.92(1) 14.10(10) ρ∗∗GE 19.92(2) 729.83(4)

T = 0.95 Gas Liquid Gas Liquid

PCFCMC 44.88(3) 44.86(5) ρCFCMC 66.67(7) 623.39(4)

PGE 44.51(2) 44.51(2) ρGE 65.00(90) 623.60(10)

P ∗GE 44.50(1) 44.60(10) ρ∗GE 66.10(10) 623.60(10)

P ∗∗GE 44.53(2) 44.76(8) ρ∗∗GE 66.20(7) 622.30(10)
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Figure 1: Schematic representation of the additional trial moves in CFCMC GE. The red
sphere is the fractional molecule and the green spheres are the whole molecules. (a)→(b):
changing the scaling parameter λ with λ ∈ [0, 1]. (b)→(c): swapping the fractional molecule
between the boxes. (c)→(d): changing the identity of the fractional molecule with a ran-
domly selected whole molecule in the other simulation box, while keeping the value of λ
constant.
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(a) (b)

(c) (d)

Figure 2: (a) Radial distribution functions gWW(r) and (b) gWF(r) for 4 LJ particles at T = 1
and ρ = 0.05. (c) Radial distribution functions gWW(r) and (d) gWF(r) for 40 LJ particles at
T = 1 and ρ = 0.8. To reduce the number of particles and amplify the effect of the fractional
molecule, the cutoff radius is reduced to 2σ.
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(a) (b)

Figure 3: (a) ρ(λ∗, j)/ρGE for the two phases as a function λ. ρ(λ∗, j) =

〈
δλ=λ∗,i=j

Nj
Vj

〉
CFCMC

〈δλ=λ∗,i=j〉CFCMC

is the density of box j averaged over the configurations in which the fractional parti-
cle is in box j with λ = λ∗. Note: in calculation of these densities, the fractional molecule
was disregarded. (b) Probability distribution of λ for the two phases for 256 LJ particles at
T = 0.8.
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In this Supporting Information, expressions are derived to compute the pressure in the

conventional Gibbs Ensemble (GE), the Continuous Fractional Component Monte Carlo

Gibbs Ensemble (CFCMC GE), and the pressure corresponding to the conventional GE

which is computed in the CFCMC GE. The latter derivation can be easily modified to com-

pute any thermodynamic property corresponding to the conventional GE but computed in

the CFCMC GE. This will be shown explicitly at the end of this document. In these deriva-

tions, pair potentials are assumed, but the resulting expressions can be easily generalized to

other types of interactions.

Pressure the in Conventional GE

Starting from the conventional GE one can write for the partition function:1,2

QGE =
1

Λ3(NT ) (NT )!

NT∑
N1=0

NT

N1

 VT∫
0

dV1V1
N1(VT − V1)NT−N1

∫
dsN1 exp[−βU1(s

N1 , V1)]

×
∫
dsNT−N1 exp[−βU2(s

NT−N1 , (VT − V1))]

(S1)

The total number of particles and the total volume are constant

NT = N1 +N2

VT = V1 + V2 (S2)

Λ is the thermal wavelength. The subscripts 1 and 2 indicate the simulation box. NT is the

total number of particles, and VT denotes the total volume of the two boxes. The reduced

coordinates are denoted with s, and Uj is the total energy of box j. The thermodynamic

S2



pressure in the conventional GE is derived from the partition function:

PGE = kBT

(
∂ lnQGE

∂VT

)
T

(S3)

This leads to

∂ lnQGE

∂VT
=

1

Λ3(NT ) (NT )!

1

QGE

NT∑
N1=0

NT
N1

 ∂

∂VT


VT∫
0

dV1V1
N1(VT − V1)

NT−N1

∫
dsN1 exp[−βU1(sN1 , V1)]

×
∫
dsNT−N1 exp[−βU2(sNT−N1 , (VT − V1))]


(S4)

V1 is the running variable over which we integrate. It is important to note that the labeling of

the boxes is arbitrary, and therefore we will obtain a similar expression if we would integrate

over V2. We will see that integrating over V1 yields and expression for the pressure in box

2, and vice versa. Therefore, by definition, the average pressures of both boxes are exactly

identical.

The total volume VT is present inside the integral and also in the limits of the integral.

Therefore, the theorem for differentiation under the integral sign and product rule applies

here.3 This leads to

∂ lnQGE

∂VT
=

1

Λ3(NT ) (NT )!

1

QGE

NT∑
N1=0

NT
N1

 VT∫
0

dV1
∂

∂VT

V1
N1(VT − V1)

NT−N1

∫
dsN1 exp[−βU1(sN1 , V1)]∫

dsNT−N1 exp[−βU2(sNT−N1 , (VT − V1))]


(S5)

By applying the product rule to the terms inside the brackets, we obtain:

∂ lnQGE

∂VT
=

1

Λ3(NT ) (NT )!

1

QGE

NT∑
N1=0

NT
N1

 VT∫
0

dV1

V1
N1 (NT −N1) (VT − V1)

NT−N1−1
∫
dsN1 exp[−βU1(sN1 , V1)]∫

dsNT−N1 exp[−βU2(sNT−N1 , (VT − V1))]



+
1

Λ3(NT ) (NT )!

1

QGE

NT∑
N1=0

NT
N1

 VT∫
0

dV1

V1
N1(VT − V1)

NT−N1
∂

∂VT

∫
dsN1 exp[−βU1(sN1 , V1)]∫

dsNT−N1 exp[−βU2(sNT−N1 , (VT − V1))]


(S6)
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In the first term of the right hand side of Eq. S6, we rewrite V1
N1(NT −N1)(VT − V1)NT−N1−1

as V1
N1(N2

V2
)V2

N2 . Note that N2

V2
equals the density in box 2. Therefore

∂ lnQGE

∂VT
=

1

Λ3(NT ) (NT )!

1

QGE

NT∑
N1=0

NT
N1

 VT∫
0

dV1

V1
N1(

N2

V2
)V2

N2

∫
dsN1 exp[−βU1(sN1 , V1)]∫

dsNT−N1 exp[−βU2(sNT−N1 , V2)]



+
1

Λ3(NT ) (NT )!

1

QGE

NT∑
N1=0

NT
N1

 VT∫
0

dV1

V1
N1(VT − V1)

NT−N1
∂

∂VT

∫
dsN1 exp[−βU1(sN1 , V1)]∫

dsNT−N1 exp[−βU2(sNT−N1 , (VT − V1))]

 (S7)

Now we will mathematically manipulate the second term in Eq. S7 to obtain the well-known

virial part.4 We can write V2 = VT − V1 and as a result dV2 = dVT − dV1. Since V1 is the

running variable of the integrals in Eq. S7 and VT is constant, we obtain: dV2 = dVT . In the

second term of the right hand side of Eq. S7, we take the derivative with respect to VT (or

V2) inside the integral over box 2. Then this integral becomes

∫
dsNT−N1

∂

∂V2
exp

[
−βU2

(
sN2 , V2

)]
=

∫
dsNT−N1

∑
a<b

∂ (−βu2 (sab, V2))

∂V2
exp

[
−βU2

(
sN2 , V2

)]
(S8)

To obtain the virial part, we loop over all pair particles (denoted by a and b in the summation)

in the simulation box. sab denotes the reduced distance between a and b, and u2 (sab, V2) is

the pair potential calculated between the pair particles. Next, we change the derivative with

respect to the volume to the derivative with respect to actual coordinates between particle

pairs a and b. Starting from V2 = L3
2, we derive the partial derivative of the pair potential

as a function of real coordinates. For box 2, we have

dV2 = 3L2
2dL2 (S9)
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Taking the derivative of the pair potential with respect to volume, we obtain for box 2

∂

∂V2

∑
a<b

u (rab) =
∑
a<b

∂uab,2
∂rab,2

drab,2
dV2

=
1

3V2

∑
a<b

∂u (rab,2)

∂rab,2
rab,2 (S10)

With the virial part derived, we use Eq. S10 to rewrite Eq. S7

∂ lnQGE

∂VT
=

1

Λ3(NT ) (NT )!

1

QGE

NT∑
N1=0

NT
N1

 VT∫
0

dV1

V1
N1
N2

V2
V2
N2

∫
dsN1 exp[−βU1(sN1 , V1)]∫

dsNT−N1 exp[−βU2(sN2 , V2)]



+
1

Λ3(NT ) (NT )!

1

QGE

NT∑
N1=0

NT
N1

 VT∫
0

dV1V1
N1V2

N2 ×


∫
dsN1 exp[−βU1(sN1 , V1)]

1

3V2
×∫

dsNT−N1

∑
a<b

∂ (−βu2 (rab, V2))

∂rab,2
rab,2 exp

[
−βU2(sNT−N1 , V2)

]


(S11)

The right hand side of Eq. S11, contains two ensemble averages. The first term represents

the average denisty of box 2, and the second part becomes the average virial part. This leads

to

〈
N2

V2

〉
GE

=
1

Λ3(NT ) (NT )!

1

QGE

NT∑
N1=0

NT

N1

 VT∫
0

dV1

V1
N1

N2

(V2)
V2

N2

∫
dsN1 exp[−βU1(s

N1 , V1)]∫
dsNT−N1 exp[−βU2(s

N2 , V2)]


(S12)

and

〈∑
a<b

f(rab,2)rab,2

3V2

〉
GE

=
1

Λ3(NT ) (NT )!

1

QGE

NT∑
N1=0

NT

N1

 VT∫
0

dV1

V1N1(V2)
N2


∫
dsN1 exp[−βU1(s

N1 , V1)]
1

3V2∫
dsNT−N1

∑
a<b

f(rab,2)rab,2 exp[−βU2(s
N2 , V2)]




(S13)
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Combining Eq. S3, Eq. S11, Eq. S12, Eq. S13, leads to

PGE = kBT

(
∂ lnQGE

∂VT

)
= kBT

〈
N2

V2

〉
GE

+

〈∑
a<b

f(rab,2)rab,2

3V2

〉
GE

(S14)

in which we have used 〈...〉GE to denote ensemble averages in the conventional GE. This

expression is the same as the conventional expression to compute the pressure in the NVT

ensemble.2 Alternatively, one could integrate over the volume of box 2 in Eq. S1, and this

would lead to a similar expression as Eq. S14 but now with the label ”2” replaced by ”1”.

As the labeling of the boxes is arbitrary, it is clear that the average pressure of the boxes

are exactly identical.

Pressure in the CFCMC GE

The partition function of the CFCMC GE is defined as5

QCFCMC =
1

Λ3(NT+1) (NT )!

2∑
i=1

NT∑
N1=0

NT

N1

 1∫
0

dλ

VT∫
0

dV1V1
N1+δi,1(VT − V1)NT−N1+δi,2

×
∫
dsN1 exp[−βUint,1(s

N1)]

∫
dsNT−N1 exp[−βUint,2(s

NT−N1)]

×
[
δi,1

∫
ds1frac exp[−βUfrac,1(s

1
frac, s

N1 , λ)] + δi,2

∫
ds2frac exp[−βUfrac,2(s

2
frac, s

NT−N1 , λ)]

]
(S15)

the terms i in δi,j denotes the box in which the fractional molecule is present. If the fractional

molecule is in box 1, δi,1 = 1 and δi,2 = 0 and vise versa. sfrac and Ufrac are the reduced

coordinates and the potential energy of the fractional molecule, respectively. Note that in the

CFCMC GE partition function, NT denotes the number of whole particles, and N1 and N2

are the number of whole particles in box 1 and box 2. Other symbols have similar meaning

as explained in the previous section. The thermodynamic pressure in the CFCMC GE is

S6



defined as

PCFCMC = kBT

(
∂ lnQCFCMC

∂VT

)
T

(S16)

Differentiation with respect to VT leads to

∂ lnQCFCMC

∂VT
=

1

Λ3(NT+1) (NT )!

1

QCFCMC

NT∑
N1=0

NT

N1

 1∫
0

dλ

∂

∂VT



VT∫
0

dV1V1
N1+δi,1(VT − V1)NT−N1+δi,2

∫
dsN1 exp(−βUint,1(s

N1 , V1))

×
∫
dsNT−N1 exp(−βUint,2(s

NT−N1 , (VT − V1)))

×

 δi,1

∫
ds1frac exp(−βUfrac,1(sfrac, λ, V1))+

δi,2

∫
ds2frac exp(−βUfrac,2(sfrac, λ, (VT − V1)))





(S17)

The term VT is present both in the integrand and as one of the integral limits. Again we

make use of theorem for differentiation under the integral and use the product rule.3 It is

important to note that the labeling of the boxes is arbitrary. This implies that we obtain the

same mathematical expression for both boxes and, furthermore, it implies that the pressures

computed in both boxes should be exactly identical. This leads to

S7



∂ lnQCFCMC

∂V1
=

1
QCFCMC

Λ3(NT+1) (NT )!

NT∑
N1=0

NT
N1

 1∫
0

dλ

VT∫
0

dV1



V1
N1+δi,1 (NT −N1 + δi,2) (VT − V1)

NT−N1+δi,2−1

×
∫
dsN1 exp(−βUint,1(sN1 , V1))

×
∫
dsNT−N1 exp(−βUint,2(sNT−N1 , (VT − V1)))

×

 δi,1

∫
ds1frac exp(−βUfrac,1(sfrac, λ, V1))

+ δi,2

∫
ds2frac exp(−βUfrac,2(sfrac, λ, (VT − V1)))





+

1
QCFCMC

Λ3(NT+1) (NT )!

NT∑
N1=0

NT
N1

 1∫
0

dλ

VT∫
0

dV1



V1
N1+δi,1(VT − V1)

NT−N1+δi,2 ∂

∂VT

∫
dsN1 exp(−βUint,1(sN1 , V1))

×
∫
dsNT−N1 exp(−βUint,2(sNT−N1 , (VT − V1)))

×

 δi,1

∫
ds1frac exp(−βUfrac,1(sfrac, λ, V1))+

δi,2

∫
ds2frac exp(−βUfrac,2(sfrac, λ, (VT − V1)))




(S18)

The first expression in the right hand side of the Eq. S18 is related to the average density

of box 2, in which the fractional molecule is also counted. The second expression in the

right hand side of the Eq. S18, calculates the virial of all the pairs including the fractional

molecule. Following the similar guidelines as for the conventional GE, the final expression

for the thermodynamic pressure in the CFCMC GE is

PCFCMC,2 = kBT

(
∂ lnQCFCMC

∂VT

)
T

= kBT

〈
N2 + δi,2

V2

〉
CFCMC

+

〈∑
a<b

f(rab,2)rab,2

3V2

〉
CFCMC

(S19)

in which we have used 〈...〉CFCMC to denote ensemble averages in the CFCMC GE. By

comparing Eqs. S14 and S19 it becomes clear that the thermodynamic pressures of the

conventional GE and CFCMC GE are different, and therefore, one should be careful when

calculating the coexistence pressure from CFCMC GE simulations.
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Pressure Corresponding to the Conventional GE

Computed in the CFCMC GE

Averages in the GE can be computed by running simulations in the CFCMC GE. One can

write the following ensemble averages in CFCMC GE:

〈
δλ=0,i=1

1

V1

〉
CFCMC

=
1

QCFCMC

1

Λ3(NT+1) (NT )!

NT∑
N1=0

NT

N1

 VT∫
0

dV1V1
N1(VT − V1)NT−N1

×
∫
dsN1 exp(−βUint,1(s

N1 , V1))

∫
dsNT−N1 exp(−βUint,2(s

NT−N1 , (VT − V1)))
(S20)

〈
δλ=0,i=1

N1

V1
2

〉
CFCMC

=
1

QCFCMC

1

Λ3(NT+1) (NT )!

NT∑
N1=0

NT

N1

 VT∫
0

dV1V1
N1(VT − V1)NT−N1

×
(
N1

V1

)∫
dsN1 exp(−βUint,1(s

N1 , V1))

∫
dsNT−N1 exp(−βUint,2(s

NT−N1 , (VT − V1)))

(S21)

Dividing Eq. S20 by Eq. S21, the term QCFCMC in the nominator and the denominator cancel,

and we obtain〈
δλ=0,i=1

N1

V1
2

〉
CFCMC〈

δλ=0,i=1
1
V1

〉
CFCMC

=

NT∑
N1=0

NT

N1

 VT∫
0

dV1V1
N1(VT − V1)NT−N1

(
N1

V1

)
∫
dsN1 exp(−βUint,1(s

N1 , V1))∫
dsNT−N1 exp(−βUint,2(s

NT−N1 , (VT − V1)))


NT∑
N1=0

NT

N1

 VT∫
0

dV1V1
N1(VT − V1)NT−N1


∫
dsN1 exp(−βUint,1(s

N1 , V1))∫
dsNT−N1 exp(−βUint,2(s

NT−N1 , (VT − V1)))


(S22)
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This yields the average density in the Gibbs ensemble

〈
δλ=0,i=1

N1

V1
2

〉
CFCMC〈

δλ=0,i=1
1
V1

〉
CFCMC

=

〈
N1

V1

〉
GE

(S23)

In general, for any thermodynamic property Xj in box j, we can calculate 〈X〉GE from the

CFCMC GE simulations. Repeating the same mathematical steps for any thermodynamic

property property X, yields:

〈Xj〉GE =

〈
δλ=0,i=j

X
Vj

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

(S24)

We apply Eq. S24 to obtain the virial part of the pressure in the GE as well. Consequently,

the pressure of box j corresponding to the conventional GE but computed in CFCMC GE

becomes

P ∗
GE,j = kBT

〈
δλ=0,i=j

Nj

V 2
j

〉
CFCMC〈

δλ=0,i=j
1
Vj

〉
CFCMC

+

〈
δλ=0,i=j

∑
a<b

fj(rab,j)rab,j

3V 2
j

〉
CFCMC〈

δλ=0,i=1
1
Vj

〉
CFCMC

(S25)

which is identical to PGE,j.
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