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ABSTRACT: 

This work presents an approach to automatically detect structural floor elements such as steps or ramps in the immediate environment 
of buildings, elements that may affect the accessibility to buildings. The methodology is based on Mobile Laser Scanner (MLS) point 
cloud and trajectory information.  First, the street is segmented in stretches along the trajectory of the MLS to work in regular spaces. 
Next, the lower region of each stretch (the ground zone) is selected as the ROI and normal, curvature and tilt are calculated for each 
point. With this information, points in the ROI are classified in horizontal, inclined or vertical. Points are refined and grouped in 

structural elements using raster process and connected components in different phases for each type of previously classified points. At 
last, the trajectory data is used to distinguish between road and sidewalks. Adjacency information is used to classify structural elements 
in steps, ramps, curbs and curb-ramps. The methodology is tested in a real case study, consisting of 100 m of an urban street. Ground 
elements are correctly classified in an acceptable computation time. Steps and ramps also are exported to GIS software to enrich 
building models from Open Street Map with information about accessible/inaccessible entrances and their locations. 

1. INTRODUCTION 

3D models are becoming essential to represent cities and the basis 
for storing and using the information of the as-built environment. 
Streets can be rapidly depicted with a high level of detail with 
Mobile Laser Scanner systems (Puente et al., 2012), providing a 
large amount of unstructured data in the form of point clouds.  

Reconstruction from point clouds is still a challenging research 
topic since different applications are increasingly requiring more 
realistic and more detailed models. Path planning is one example 
of an application requiring a high level of detail. An in-depth 
knowledge of floor elements is essential to diagnose the 
accessibility to public spaces, especially in the case of people 
with reduced mobility (PRM) and people with disabilities that 
have different motor skills (Hashemi and Karimi, 2010) since a 

small step may become a barrier to access to a specific location. 
Accessibility diagnosis from point clouds has been mostly 
studied, from an indoor or from an outdoor perspective, as stair 
or curb detection.  In outdoors, Serna and Marcotegui (2013) 
combine raster images with mathematical morphology to 
complete occlusions in point clouds and detect curbs and their 
absence (considering curb-ramps). From airborne point clouds, 
Vosselman and Liang (2009) analyse small height jumps close to 
ground to detect curbs and they extract separately with connected 

components. Rodríguez-Cuenca et al. (2015) support curb 
detection with the use of MLS trajectory, working in 
perpendicular sections to trajectory direction. Modelling entire 
regions and detecting stairs in them is another way of 
accessibility analysis (Sanchez and Zakhor, 2012). Schnabel et 
al. (2008) use topology graphs of complex elements, as stairs and 
columns, to detect their features in a scene. The robotics 
community also has an interest in accessibility analysis. Mobile 

robots based on legs (Luo et al., 2013; Oßwald et al., 2011) or 
wheels (Riascos, 2015; Zhang et al., 2011) should perceive and 
understand their immediate environment to be able to move 

*
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through them, detecting and climbing curbs and stairs. Unlike 
methodologies based on large point clouds, robots focus on the 

acquisition and processing in small zones near them, without 
difference between indoor and outdoor environments. 
Accessibility in indoors is analysed from the creation of a buffer 
in Díaz-Vilariño et al. (2016). The buffer, a 3D prism 
representing a person, is used to detect obstacles along indoor 
paths. Its size can be adapted to simulate PRM conditions. 
Transition areas between indoors and outdoors such as building 
entrances along façade lines are of special relevance for ensuring 

a seamless path planning in public spaces. Entrances are mainly 
approximated by doors in detection and modelling. The 
limitation of this method lies in the fact that when a door does not 
exist or it is occluded, any entrance is detected in the building. 
Many authors model doors as façade elements, joined with 
windows or balconies (Friedman and Stamos, 2011; Nguatem et 
al., 2014; Pu and Vosselman, 2009). Schmittwilken and Plümer 
(2010) reconstruct parts of facades, including doors and stairs. 
Their methodology pre-filters the TLS point cloud, working with 

less point density. Next they extract features and locations of 
small façade elements and, with a decision tree supported by a 
scored function, they predict element type. Stairs are estimated 
as a combination of treads and risers. In indoor scenes, doors and 
their gaps are detected, but not analysed regarding their 
accessibility, mainly because doors do not usually present any 
steps or physical barrier to PRM in indoors scenes. Díaz-Vilariño 
et al. (2015) model indoor spaces and detect closed doors from 

imagery and point cloud. By contrast, Quintana et al. (2016) 
focus indoor door detection in empty voxels in walls on detecting 
doors and Ochmann et al. (2014) use overlapping between 
different scan positions to detect door gaps. 
The aim of this work is to analyse accessibility of building 
entrances and their immediate environment from MLS street 
point clouds, automatically detecting steps, ramps, curbs, and 
curb-ramps. The proposed methodology employs trajectory as 
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semantic information and to save computing time in the 
segmentation process. Topology information is applied to 

improve classification quality of final results and to not only 
depend on geometric information. Stairs are considered as a 
group of steps, and the step detection is based on the vertical 
components (risers), that present better point density than the 
horizontal elements (treads) and they are the real architectonic 
obstacle for PRM. Ramps and steps usually are associated to 
entrances to shops, dwellings or basic services, so it is not 
necessary any methodology based on door detection. Elements 

detected can be georeferenced exported to enrich models 
reconstructed with other methodologies. 
 

2. METHODOLOGY 

The methodology starts by analysing the geometry of the point 

cloud. First, the street point cloud is segmented in regular 
stretches and a ROI is selected to focus future calculus only in 
this zone, saving computer time and resources. Next, points in 
the ROI are classified in horizontal, inclined and vertical points 
using normal and curvature to refine them separately. In the 
refinement process, raster and connected components are used to 
filter and group points to detect the preliminary floor elements 
that are topologically classified in the last phase. Figure 1 shows 

the general workflow of the methodology.  
 

2.1 Geometric segmentation 

2.1.1 Trajectory segmentation: Trajectory data is a set of 

points geo-located along the trajectory of the vehicle registered 
during the acquisition. It has a smaller size than the point cloud, 
so processing trajectory data is faster than processing the street 
point cloud with the same operations. The trajectory information 
is used in this work to segment street point cloud in regular 
stretches. The set of points of the trajectory T = (XT, YT , ZT) 

(Figure 2.a) is segmented in regular intervals searching 
neighbours within a distance l = 1 meter (Figure 2.b). The set of 

points is transformed into vectors VT = (Vx, Vy, Vz), with 

‖VT‖ ≈ 𝑙 and let VTi = Ti(i𝑙 + 1) − Ti(i𝑙) (Figure 2.c). At this 

moment, street point cloud P = (XP, YP, ZP) is loaded and 

segmented in stretches S = {S1 , S2 … Sn} perpendicular of each 

vector at the final point Si = {P: <⊥ Ti(i𝑙 + 1)} (Figure 2.d). 

 
2.1.2 ROI isolation: The region of interest  CROIi ⊂  Si is the 

ground zone corresponding with the lowest d = 0.5 meters of each 

stretch, this points of the ROI are selected using M-estimator 
SAmple Consensus (MSAC) (Torr and Zisserman, 2000) and 
oriented according to the ground vector to compensate the 
trajectory tilt (Figure 3). The ground vectors are calculated as the 
cross product VG = VT × VF, being the façade vectors 

perpendicular to trajectory vectors with null Vz, VF =
 (−Vy, Vx, 0). 

 

 
2.1.3 Classification: A bidirectional classification is needed 
to differentiate the tilt in the trajectory direction VT and the 

perpendicular tilt to the trajectory direction ꓕVT. The curvature 

associated with each point in relation to neighbour points also is 
used in the classification process. Tilts are calculated with the 

normals N = (NVT
, NꓕVT

, Nz) referenced to the trajectory 

direction (Eq. 1-3). The number of neighbours to estimate 
normals is established at k = 50 points with KNN search, a 
balance of run-time and point cloud noise. The curvature Nvar is 

calculated as the mean of normal variance components of the k 

nearest points (Eq. 4).  

tiltVT
= abs(atang

NVT

Nz
) (1) 

tiltꓕVT
= abs(atang

NꓕVT

Nz
) (2) 

tg = abs(atang
√VGx

2 + VGy
2

VGz
) 

 

(3) 

Figure 1. Workflow of the methodology. 

Figure 2. Trajectory segmentation: a) point line of MLS 

trajectory, b) radius search along trajectory, c) stretch vectors, 

d) point cloud in stretches. 

 

Figure 3. Ground vector calculation in stretches and ROI 
selection. 
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Nvar =
1

3
∑(Ni − Ni

̅̅̅)2

n

i=1

 (4) 

There are three thresholds in the bidirectional tilt classification 
(Figure 4). The 5º threshold is used to filter noise, and to correct 
small gradients and deformations in the ground because the floor 
is not completely horizontal and plane. In the trajectory direction, 

the threshold is compensated with ground tilt 𝑡𝑔  in order not to 

consider all inclined floors in streets as ramps. The 20º threshold 
is based on ISO-21542 (ISO, 2011) that sets the max tilt in 
passable surfaces on 15º (5º degrees more provide robustness to 

the classification method). Finally, the 90º threshold limits 
vertical surfaces.  

 

Figure 4. Bidirectional thresholds in the classification of points 

with an associated tilt horizontal-H, inclined-I and vertical-V. 

The abovementioned thresholds produce good results except in 
the union between horizontal and vertical regions (difference in 

Figure 5). Tilts and normals do not change abruptly; the k 
neighbours used in the normal estimation produce a gradual 
change and wrong classified points with intermediate inclined 
tilts (blue vectors in Figure 5.a). To solve this, the points 
associated with an inclined tilt and high curvature c 
(experimentally set in c ≥ 0.01) are saved in a temporal dataset to 
classify them as floor elements in future phases. 

 

Figure 5. Normal estimation in a vertical (a) and inclined (b) 

element. In green, vector associated to vertical points; in blue, 

inclined; and in yellow, horizontal. 

2.2 Refinement 

2.2.1 Horizontal regions: The points H with a horizontal 
associated tilt are refined in each stretch using connected 
components. It is a technique commonly used in image 
processing (Bieniek and Moga, 2000; Di Stefano and Bulgarelli, 
1999; Samet, 1981) and recently in 3D point cloud processing 
(Trevor et al., 2013). First, the adjacency relations between points 
are calculated within a distance r = 5cm (Figure 6.b). Points and 
their adjacency relations are ordered in graphs and connected 
components are applied to group points in regions (Figure 6.c). 

The regions with less than np = 50 points are considered as noise 
and they are deleted. At last, points with an inclined tilt and high 
curvature, saved in the temporal dataset in the previous phase, are 
joined to the nearest group.  
 

 

Figure 6. Connected components for horizontal regions: a) 

points with horizontal tilt, b) adjacency relation between points, 

c) points grouped. 

2.2.2 Inclined regions: The points I with an inclined 
associated tilt and low curvature are joined from all stretches. The 
adjacency is calculated and connected components is applied to 
group them. In difference with horizontal regions, inclined 
regions are filtered by a minimum size. The minimum size is 
80cm (ISO-21542), called free passage surface, because it 
ensures enough space for crossing it comfortably by a person. 
 

2.2.3 Vertical regions: The points W with a vertical 
associated tilt are refined in two phases: a raster process followed 
by connected components. First, stretch by stretch, points are 
rotated R and adjusted to a grid (resolution of 10cm) along the 
trajectory direction (Eq. 5-6) and rasterised (Figure 7). Then, the 
pixels with a height jump between 5cm (measure defined by scan 
resolution) and 20cm (measure based on max step height in built 
environment) are detected at less than dg = 30cm distance to the 

ground to prevent false positives. 
 

αi =  atan(Vxi −Vyi⁄ ) (5) 

Hi = WiRi = Wi [
cos(αi) −sin(αi) 0
sin(αi) cos(αi) 0

0 0 1

] (6) 

 

 
Figure 7. Point adjustment to raster grid: a) points and trajectory 

vector, b) points in the raster grid without adjustment, c) points 

rotated in the raster grid. 

The points belonging to the selected pixels are extracted and 

joined by the same type of points in the others stretches. 
Connected components are now applied, with the same aim and 
parameters as the inclined points. 
 

2.3 Topology classification 

In this phase, relations between regions are analysed. Horizontal 
regions RH can be roads or sidewalks; inclined RI can be ramps 

or curb-ramps and vertical RV can be steps or curbs. First, in each 

stretch, the road region is detected as the nearest region to the 
trajectory data Rroadi = (RHi: min|RHi − Ti|) and the other 

regions are classified as sidewalks. The classified RH are now 

joined from all the stretches. Finally, the relations of inclined and 
vertical regions with roads and sidewalks are processed to label 
each region with the correct element (Figure 8). 
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Figure 8. Adjacency relations between floor elements and the 

trajectory. 

If a vertical region has adjacency with a road, it is a curb, else it 
is a step. If an inclined region has adjacency with a road and a 
sidewalk, this region is a curb-ramp, if only has adjacency with a 
sidewalk, it is a ramp; and if it only has adjacency with a road, 
this region is a camber and points that formed it are joined to the 

corresponding road region. 
 

3. EXPERIMENTS 

3.1 Results 

The methodology was tested in a real case study with 12.7 million 
points in 125 meters of Florida Avenue, in Vigo, Spain (Figure 
9). It is an urban street with shops, dwellings and garage 
entrances. It was acquired using MLS LYNX Mobile Mapper of 

Optech (Puente et al., 2013). The code was run on an Intel Core 
i7 CPU 3.40 GHz with 16GB RAM using MATLAB. The time 
processing was 535 seconds (about 9 minutes), an acceptable 
computing time in processing large zones in urban environments. 
The results are quantified as the number of points correctly 
classified using precision, recall and F1 indices (Vo et al., 2015), 
they are calculated with Eq. 7 to 9. The automatically processed 
point cloud is compared with a reference hand-made classified 

point cloud in steps, curbs, ramps and curb-ramps. True positive 

points (TP) are those that pertains to the same element in both 

point clouds. False positive (FP) points are wrongly classified as 
a specific element when in the reference point cloud they pertain 
to another element. False negatives points (FN) are wrongly not 
classified as a specific element when in the reference point cloud 
they belong to it. The results of the quantitative evaluation of the 
dataset are shown in Table 1 and Figure 10, with the threshold 
values exposed in the methodology (Section 2). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|TP|

|TP| + |FP|
 (7) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
|TP|

|TP| + |FN|
 (8) 

𝐹1 = 2 x
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 x 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (9) 

 

3.2 Discussion 

Steps were correctly detected with a 92.75% of success rate 
(Figures 10.a,b,d,e,f). All steps in building entrances are correctly 
detected if their height is in the threshold explained in Section 

2.2.3. There are not false positives caused by objects on 
sidewalks, as pedestrians, trees or containers; false positive 
points correspond to objects placed into building entrances and 
buildings and in shop windows with a similar geometry than a 
step. 
Ramps are correctly detected in a 75.83%, being the lowest 
success rate of all classified elements (Figure 10.c). In the 
dataset, there are a lot of tree gratings (Figures 10.f,g). They are 

horizontal elements composed by curved elements with inclined 
normals. The normals are used in the methodology to classify 
points into horizontal/inclined regions as groups of points with 
horizontal/inclined normals. As they have similar size than an 
entrance ramp, connected components do not filter tree gratings 
and leave them as ramps. The rest of ramps in entrances are 
correctly classified. The recall index, by contrast, has a more 
elevated value, near to global results. All ramps in entrances are 

correctly detected, even in anomalous situations (Figures 10.b,d), 
when a ramp is built united with a step, ramps were correctly 
detected. 
Curbs have the highest success rate among all classes: 98.66%. 
Their proximity to the laser scanner and the lack of occlusions 
produce their classification correctly (Figures 10.e-g). Only small 
fragments with greater height than the established thresholds are 
not detected (Figure 10.e).  

Table 1. Results. 

                TP               FP             FN precision Recall  F1 

steps 28114 3011 1385 90,33% 95,30% 92,75% 

ramps 11486 6528 796 63,76% 93,52% 75,83% 

curbs 99747 947 1772 99,06% 98,25% 98,66% 

curb-ramps 33740 4674 4896 87,83% 87,33% 87,58% 

Figure 9. Florida Avenue point cloud. 
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There are two curb-ramps in the tested dataset, both are 

associated to garage entrances and not pedestrian crossings. The 
87.58% of their points were correctly detected (Figure 10.g). The 
false positive points are in zones near sewers and sidewalks with 
an elevated camber. The rest of camber regions are correctly 
classified as road in topology classification. The false negative 
points are near true curb-ramps, they were not detected because 
of local deformations.  

The variation of the thresholds influences final success rates. The 
classification thresholds (Section 2.1.3.) are especially relevant 
in final results and they are analysed in order to maximize the F1 
index. Figures 11 to 13 show the F1 variation with different 

values of k, tilt and c, respectively. The rest of parameters are 
fixed in k = 50 neighbours, tilt = 5º to 20º and c = 0.001, values 
for the optimum results (Table 1). 
The methodology has high success rates, and errors are 
uncommon and are located in specific zones. The results are good 
even in zones out of classic distributions of urban ground and 
building entrances: uncommon combinations of ramps with 
steps. The processing time is acceptable to classify one side of 

the street.  
Modifying the size and the position of the ROI, the search can be 
focused on specific elements: curbs and curb-ramps selecting the 
zone near trajectory as the ROI, or ramps and steps selecting the 

zone near façades. A smaller size of the ROI involves the 
diminution of time processing. 
The methodology offers a robust solution against small 
occlusions caused by pedestrians, trees or pole-likes. In contrast, 
if the acquisition is carried out from a MLS mounted on a van 
and there are cars parked on the street, the point cloud could be 

very occluded and incomplete. In this case, the laser scanner must 
be installed in another mobile solution to acquire the point cloud 
with enough quality in terms of completeness. 
 

3.3 Model enrichment 

Many times it is not necessary to model a complete zone, on the 
internet there are databases where cities are modelled in a low 
level of detail. Open Street Map, for example, is a project to 
create free maps by users manually, but not automatically. People 
can map elements and zones using orthoimages, where streets 
and roofs are clearly visible. Although entrances are considered, 
they are not usually represented because they are difficult to 

detect in the orthoimages. Therefore, users can only mark the 
entrances if they already know their approximate location. 

Figure 11. Relation between F1 index and k value 

 

Figure 10. Results. Colour code: steps in orange, ramps in blue, 

curbs in green, curb-ramps in violet, sidewalks in olive, road in 

grey and the rest of elements in dark green.  

 

Figure 12. Relation between F1 index and bidirectional tilt 

ranges 

Figure 13. Relation between F1 index and c value 

Figure 11. Relation between F1 index and k value 
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In this work, the floor elements detected with the proposed 

methodology are georeferenced (MLS provides georeferenced 
point cloud). Therefore, ramps and steps detected are exported as 
georeferenced points (middle point of each element) and, from 
Open Street Map, building polygons from the Florida Avenue 
were extracted to QGIS. Combining the two layers in the same 
Coordinate Reference System and applying the vector operation 
of intersecting, entrance steps and ramps are associated to the 
building polygons (Figure 14). Out of building polygons, false 

positives caused by tree gratings can be separated. 

 

Figure 14. Location of step and ramp entrances. Colour code: 

buildings in semi-transparent red, step entrances in green, ramp 

entrances in blue and tree gratings and entrance errors in red. 

4. CONCLUSSION 

This paper presents an automatic methodology for accessibility 

analysis in building entrances and their immediate environment. 
It is based on step and ramp detection without requiring a 
previous phase of door or gap detection. As the methodology is 
applied to small stretches of the street, it is scalable to large 
zones. 
The methodology was tested on a real dataset, 125 meters of a 
street. The computing time was 9 minutes, an acceptable time to 
process urban zones. The results show a success rate of 75.9% to 

98.7%, depending on the type of element, working even with a 
complex combination of elements (groups of stairs and ramps). 
There is a low rate of false detection, caused by specific elements 
(tree gratings) or local deformations. Elements detected can 
easily export to a GIS database to enrich maps or models 
reconstructed with other methods. It is possible to associate 
entrances with accessibility information to buildings, the 
existence of steps, ramps or both elements in entrances.  
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