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Abstract
Bicycle networks are made up of different types of infrastructure for cars, bikes and mixed use,
which has resulted in various definitions being used to describe them. However, it’s crucial to bring
these definitions together to understand the structural differences among them and the impact of
choices and investments in bike infrastructure. This study examines different definitions of bicycle
networks in 47 cities, analysing scaling effects and various network metrics for four different
definitions. Understanding structural characteristics of different bicycle networks definitions
contributes to the body of knowledge necessary for design interventions by policymakers.

Keywords
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Introduction

Biking is looked upon as an efficient and sustainable means of transportation. It has a huge impact
on reducing congestion, and various forms of pollution, and is a major driver in promoting active
and healthy lifestyles. Yet, in practise, we often see that bicycle infrastructure is disadvantaged by
providing a limited amount of space for it Szell (2018); Gössling et al. (2016), and a highly
fragmented street network Orozco et al. (2020). Based on the spatial structure of a city and the
activity patterns of its inhabitants, policymakers have to decide how limited and contested space is
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distributed between the different transport modes. It is challenging to allocate dedicated space to
bicycle infrastructure, as traditionally street networks are designed for car-use and can often be
substituted for informal biking.

Traditional street networks are made of different infrastructure types for car-use, bicycles or
mixed use OSM (2021b). Street networks used for cars are efficient and well-connected: the amount
of street infrastructure per capita decreases as population increases Bettencourt (2013). To promote
other active forms of transportation (e.g. biking) policymakers require a fundamental understanding
of how these infrastructure types scale with the size of a city population, and how can they be
expanded or developed.

Multiple scholars have advanced our understanding of bicycle networks Mekuria et al. (2012);
Schoner and Levinson (2014); Buehler and Dill (2016); Orozco et al. (2020). But some studies
attempting to define bicycle networks have done so in an ad-hoc manner, which makes results
difficult to replicate and generalise, and provide tailored evidence to policymakers for targeted
interventions in the expansion and design of bicycle infrastructure. This ultimately impedes building
upon previous findings and slows the epistemological advances in the domain of active mode
infrastructure. Bicycle networks can be defined by considering the aggregation of different in-
frastructure types. Identifying which infrastructure types make-up a bicycle network is not easy, yet
it highly impacts the results of space allocation studies by making a city seem more bike-friendly
than it is if one considers a bike network made of all streets where it is possible (instead of safe or
comfortable) to cycle on. As summarised in Figure 1, studies on space allocation and network
characteristics have adopted very different bicycle networks definitions Murphy and Owen (2019);
Wu et al. (2021); Szell (2018); Nello-Deakin (2019), which inevitably affect the result of the
analysis and hinders any type of comparison between studies.

Moreover, previous research suggests that, adding bike infrastructure (dedicated or shared) may
not be enough to stimulate bicycle use, if it does not reinforce the network structure (e.g. density and
connectivity) Schoner and Levinson (2014). Thus, it is crucial to bring together the definitions of
bicycle networks and compare structural differences among them to understand consequences of the
choices and investments made in bike infrastructure networks. A comparison between bicycle
network definitions would identify the positive or negative structural characteristics of different
bicycle network definitions, which ultimately influence bicycle attractiveness Kamel and Sayed
(2021). A multi-city comparison with common definitions of bicycle networks would bridge this
gap by systematically analysing the same networks over multiple cities to identify worldwide
relations, thus contributing to the body of knowledge necessary for design interventions by
policymakers.

Figure 1. Previous studies on space allocation and network analysis have used different definitions of bicycle
networks.
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In this article, we systematically define and analyse different types of bicycle networks to
understand how the city size affects infrastructure development per mode and if the selected bicycle
network definition affect characteristics of the network. We apply the analysis to 47 cities to provide
empirical evidence and facilitate comparison in structural properties of the networks. We structure
the analysis by asking two questions:

1. As larger cities build less infrastructure per capita, how do the different infrastructure types
scale with city size and how is the scaling relation of the different bicycle network definitions
affected?

2. As different definitions of bicycle network exist, how can we provide evidence-based
knowledge on the structural differences and similarities of bicycle networks worldwide?

Understanding the scaling relations between infrastructure types and city size can unravel how
demographic changes in cities, resulting from increasing urbanisation, will impact the transport
system and ultimately the travel behaviour of residents. We carry out a novel bicycle network
analysis over multiple cities and multiple network definitions. Our findings will help researchers
understand the different structural properties of bicycle network definitions and their impact on
network evaluation methods. Policymakers will be able to identify the bike network that meets their
policy objectives. This analysis is particularly relevant now given the ‘window of opportunity’ that
the COVID-19 pandemic has created for many policymakers to convert car-dominated streets into
bike lanes. Our analysis, for example, shows the changes in structural properties if a city makes all
its residential streets truly bikeable. Moreover, our numerical analysis will provide unique
benchmark values that urban planners can use to set their network objectives against the average or
best-performing cities.

This manuscript is structured as follows. In the Methodology section we present the network data
and methods used. Then the Empirical Analysis and Results section illustrates the outcome of the
analysis for 47 cities. The Implications for practice section discusses practical relevance. Finally, the
Discussion and Conclusions section follows.

Methodology

The goal of this study is to understand how the city size affects infrastructure availability per mode
and to systematically define and analyse different types of bicycle networks to observe if the
selected bicycle network definition affects characteristics of the network. The methodology consists
of 5 steps as shown in Figure 2 and the following sections describe each step.

Selected cities and city boundaries

We analyse bicycle networks in different cities. The sample composition is built in such a way to
include cities from as many different continents, with small to large population scale and with all
ranges of bicycle mode share (from 1 to 46%).We decide to use Open Street Map (OSM) data due to
its open accessibility, while being aware of the potential data quality issues. In fact, Ferster et al.
(2019) report observing inconsistent tagging of bicycle infrastructure types. On the other hand, they
also report that OSM can be more updated than municipality records, given the higher frequency
with which ‘the crowd’ contributes to updating the OSM compared to the city releasing updated
data.

The sample selection was constrained to the availability of OSM data; we only selected countries
with OSM network data exceeding 80% completeness Barrington-Leigh and Millard-Ball (2017)
and with medium to high levels of bicycle ownership Oke et al. (2015). We believe that country
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OSM data is a good representation for cities if we are to consider national level policies in provision
of infrastructure. However, some cities could be more complete than the country they are part of
because of external events (e.g. like Covid is highlighting in Paris) and this selection criteria may
exclude interesting cities from the analysis. This choice inevitably biases the city sample towards
more developed countries for which these data are digitally available, leading to more similar
typologies of street patterns among cities Louf and Barthelemy (2014). Moreover, in order to have a
representative sample of cities with high bicycle mode share, the sample has an over-representation
of the dutch cities, which are typically of small size (population of maximum 1 million inhabitants).
To address this concern, we included a sufficient number of small-sized cities that have lower
cycling rates than in the Netherlands, in order to not bias the sample with small-sized cities that only
represent a high cycling mode share level. In light of the selection method explained above, city
selection in this paper could be biased, and further research that helps in identifying less biased
selection would be extremely valuable. The list of cities under analysis is reported, for lack of space,
in Table S1 in the Supplementary material.

Defining the city boundaries is a non trivial task. Cities are not well-defined entities that can be
described by administrative boundaries, functional economic areas, urban form, and presence and
movement of people Rybski et al. (2019). Cities, differently to urban centres, have an administrative
and cultural identity that influences bicycle network investments and travel behaviour. Instead,
urban centres are made of dense territories which may be composed of different local political
administrations. We selected city boundaries based on Nominatim OSM (2021a) (a tool to search
OSM data by name) administrative boundaries. If more than one boundary is available for a city we

Figure 2. Overview of the research methodology.
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always avoid city metropolitan boundaries which, in most cases, incorporate scarcely populated
areas and more than one local administration. After extracting municipality borders, we use https://
www.citypopulation.de/website as a visual reference to extract the corresponding population and
area information. This ensures that the population matches the selected city boundaries. Area,
population and bicycle mode share information per city is reported in the Supplementary material
(see section city data).

Scaling infrastructure to population

We extract urban network, of the selected city boundaries, from the OpenStreetMap (OSM) project
via OSMnx Boeing (2017) we compute the respective kilometre length of each infrastructure type
(e.g. primary roada, secondary road and pedestrian street) for each city. Next, we employ a log-
normal analysis using the Bayesian information criterion (BIC) to model a power-law distribution
for the kilometres of infrastructure and population, and examine the scaling exponents. For further
details on the BIC and its suitability for this type of analysis, please refer to Leitão et al. (2016).

Identification of bicycle network bounds

Combining the results of the scaling laws with best practices identified in the literature we define
four bicycle network definitions (bounds). To define bicycle networks, we use infrastructure types
used in OSM. In Table 1 we report the keys, values and definitions of the main infrastructure types,
as defined on OSM. The remainder of the paper refers to these definitions when describing types of
street infrastructure.

Table 1. Description of the main urban street tags from Open Street Map OSM (2021b).

Key Value Description

Highway motorway Restricted access major divided highway, with 2 or more running lanes plus
emergency hard shoulder.

trunk The most important roads in a country’s system that aren’t motorways.
primary The next most important roads in a country’s system.
secondary The next most important roads in a country’s system.
tertiary The next most important roads in a country’s system.
residential Roads which serve as an access to housing, without function of connecting

settlements. Often lined with housing.
living_street Residential streets where pedestrians have legal priority over cars, speeds are kept

very low and where children are allowed to play on the street.
pedestrian Roads used mainly for pedestrians, in shopping and some residential areas which may

allow access by motorised vehicles only for very limited periods of the day.
footway For designated footpaths; that is, mainly/exclusively for pedestrians. This includes

walking tracks and gravel paths.
path A generic path open to all non-motorised vehicles and not intended for motorized

vehicles unless tagged so separately. This includes walking and hiking trails, bike
trails and paths, and horse trails.

cycleway Indicates a separate way for the use of cyclists
bridleway For horse riders. Pedestrians are usually also permitted, cyclists may be permitted

depending on local rules/laws. Motor vehicles are forbidden.
track Roads for mostly agricultural or forestry uses.

Cycleway lane A lane is a route that lies within the roadway
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Since there is no universally accepted definition of a bicycle network, we systematically estimate
upper and lower bound definitions and use them as candidate definitions for our network analysis.
Driven by previous studies and the ability of employing these definitions to any city worldwide, we
identify four definitions of bicycle networks. The network definitions are step-wise incremental,
thus the lower bound is the smallest in size and the upper bound network is the largest, as it includes
all the streets included in the previous definitions. Going from the most physically separated from
vehicular traffic (widely considered as the safest) to the least segregated (also considered the least
safe1 to cycle on) we label them lower bound, medium-lower bound, medium-upper bound and
upper bound.

· The lower bound network is made of bicycle tracks that are physically separated from
vehicular traffic, living streets with very low speed limits, and recreational paths. Studies of
Szell (2018); Orozco et al. (2020); Nello-Deakin (2019) use only bicycle streets that are
physically separated (protected) from vehicular traffic because of their higher safety levels. In
our definition of lower bound, in addition to the separated bicycle streets, we also include
living streets and paths which can be considered equally safe and comfortable because active
modes have priority over cars OSM (2021b). Thus, the lower bound definition consists of
only protected bicycle streets.

· We define the medium-lower bound network as a combination of protected and unprotected
bicycle streets because unprotected bicycle lanes (considered less safe) are mostly present in
Western countries with the strongest car culture Szell (2018). Note that bike lanes are visually
(not necessarily physically) separated form vehicular traffic.

· The medium-upper bound extends the previous definition by adding residential streets. These
are streets for local traffic which typically have low volumes of through movement. During
the COVID-19 pandemic, some cities have transformed these into slow streets WHO (2020).
This motivates the definition of a bicycle network that assumes all residential streets to be
suitable for cycling.

· Finally, the upper bound network includes all streets where cycling is not prohibited by law,
which encapsulates the broad definitions of bicycle networks used in literature Wu et al.
(2021); Yen et al. (2021).

For reproducibility purposes, the OSM queries used to define the four bicycle networks are
reported in Table S3 in the Supplementary material.

Note that the bikeability2 and safety of all bicycle streets is generally dependent on the city and its
culture. This is especially true for non–bicycle-separated streets, for example, residential streets,
bike lanes (with no physical separation) and all vehicular roads where cycling is allowed. However,
it is reasonable to assume that the lower bound network is the safest bicycle network in all countries,
whereas the upper bound also includes the least safe streets.

The taxonomy of bicycle networks is schematically visualised and explained in Figure 3. The
four networks are step-wise incremental since all streets included in the lower bound network are
also present in the upper bound networks. To illustrate how the bicycle network bounds are different
in structure and extension, in Figure S2 in the Supplementary material we visualise the four bicycle
networks for a small (Delft) and large (Rome) city.

Scaling bike networks to population

Similarly to step 2, we use the Bayesian information criterion (BIC) to fit a power-law distribution.
In this step we analyse how the kilometres of the bicycle network bounds scale to population.
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Structural analysis and network measures

As illustrated in Figure 3, there are disparities in the extent to which a bicycle network spans a city.
To provide an information basis for policymakers to direct infrastructure investments, it is im-
perative to study network structural characteristics more systematically. Most structural charac-
teristics are correlated to travel behaviour and can be influenced by policymakers to incentivise
bicycle use. A pioneering study on bicycle network analysis identified size, fragmentation, di-
rectness, density and connectivity as macroscopic factors to measure bicycle network quality
Schoner and Levinson (2014). Besides these characteristics, we also include granularity –measured
as average street length – due to its wide adoption in urban street network analysis studies Boeing
(2021); Yen et al. (2021). These network measures are a good proxy for information about land use
and transportation system (i.e. cost of travel) of the city Van Wee et al. (2013); Schoner and
Levinson (2014); Kamel and Sayed (2021). The measurements are computed with standard
(python) libraries in the network community such as NetworkX and OSMnx. A definition of each
measurement is reported hereafter.

Size, or extension, of urban bicycle networks measures the total kilometre length of the network.
To measure a specific infrastructure type (e.g. residential streets) the relative size is measured as the
ratio of that infrastructure type over the extension of the whole network. The extension, in absolute
and relative terms, shows investment decisions of cities and allows to analyse space distribution
between transport modes. Previous studies have found positive relationships between the size of a
city’s bicycle facility network and its bicycle commute share Dill and Carr (2003); Buehler and
Pucher (2011); Parkin et al. (2007).

Fragmentation, as defined in this work, measures the number of the connected components of a
network and their size distribution. A network made of only one connected component, implies that
there is a path between every pair of nodes in the network. Whereas, networks made of many
connected components result in more isolated parts which do not connect to all nodes of the
network. The size of a connected component is computed as ratio of the kilometre extension of the
connected component over the total extension of the network. Most cities have one giant connected
component that makes up the car, pedestrian, and rail network, whereas the bicycle street network is
often fragmented into many connected components Orozco et al. (2020). Having either a few
medium sized components or one dominant component facilitates bicycling, but excessive

Figure 3. Taxonomy of bicycle network types.
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fragmentation with small fragments should be avoided Schoner and Levinson (2014). Moreover,
fragmentation of the network can constitute a resistance to cycling by reducing safety and comfort.

Granularity of an urban street network measures block size which is the elementary component
of an urban map. The average street length is a proxy to measure city granularity. Previous empirical
results have shown that this indicator has positive relationship with levels of economic vitality for
cities Long and Huang (2019). Fine-grained urban areas are also naturally more attractive for active
modes because there are more locations to stop along the way, than in coarse-grained urban areas.
We study how network granularity changes over the bicycle network definitions. Note that the
underlying street network stays the same, so the physical street layer has always the same gran-
ularity, however the bicycle networks have different granularity depending on which components of
the street network are included in the definition. Cyclists experience higher or lower granularity
depending on the streets they deem bikeable.

Directness, the inverse of circuity, measures the ratio of euclidean (straight line) to street
distance. This network characteristic describes the directness and the efficiency of transportation
networks. Cyclists are affected from the directness of their routes, so policies that make bicycle trips
more direct and efficient will increase adoption of cycling as a mode of transportation Rietveld and
Daniel (2004).

Network density provides information on the land use of a city and can be measured in a number
of ways. We measure it as intersection density (intersections/km2). Density has been identified as
the most influential factor for bicycle commuting among network characteristics in a study across
US cities Schoner and Levinson (2014). That study concluded that: ‘cities hoping to maximise the
impacts of their bicycle infrastructure investments should first densify their bicycle network before
expanding its breadth’. Studies on the relationship between the built environment and travel have
identified that residents of high-density neighbourhoods use the bicycle more often Van de
Coevering (2021) and that a change in the density factor score of one standard deviation corre-
sponds to a 77% increase in rates of bicycle commuting Schoner and Levinson (2014).

Connectivity describes how well locations (nodes) are connected via network links and can be
measured in a variety of ways. In this work, similar to previous urban studies Boeing (2017, 2021);
Schoner and Levinson (2014), connectivity is measured in terms of streets3 per node, proportion of
streets per node and clustering coefficient of nodes. These characteristics, respectively, shed light on
the average node level connectivity, distribution of node level connectivity and neighbourhood level
connectivity. The average streets per node measures the average number of physical streets that
emanate from each node (i.e. intersection or dead-end). It is the street equivalent of the network’s
average node degree. The clustering coefficient of a node is the ratio of the number of edges between
its neighbours to the maximum possible number of edges that could exist between these neighbours.
The average clustering coefficient is the mean over all nodes of the network and expresses how
robustly the neighbourhood of some node is linked together Kamel and Sayed (2021). The pro-
portion of streets per node describes the type and distribution of node level connectivity. Empirical
results in previous studies have shown a positive and significant relation between connectivity and
bicycle commute share Schoner and Levinson (2014).

To test if the network measures are statistically different over the four bicycle network bounds
(statistically speaking these are groups), we need a repeated measures non-parametric test, because
the groups are dependent and not normally distributed. We use the non-parametric Friedman test,
similar to the parametric repeated measures ANOVA, used to detect differences in treatments across
multiple test attempts. If the H0 hypothesis of the Friedman’s test is rejected, we conduct a post hoc
analysis to identify among which bike network bound there is a statistical difference. The post hoc
analysis in this case requires a Wilcoxon test with Bonferroni adjustment because we are making
multiple comparisons, which makes it more likely that Type I error appears.
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Finally, to assess the different types of network definitions, we calculate relative change in
network measurements as

Ii ¼ jCi � Ciþ1j
Ci

× 100 (1)

where Ci is the characteristic (e.g. density) in i � th network ( the medium-upper bound network)
and Ci+1 is the same characteristic computed for the following network definition (so in this case the
upper bound network).

Empirical analysis and results

This section presents results of the scaling analysis and of the structural analysis of bicycle net-
works. In particular, sections Scaling infrastructure type to population and Scaling bicycle network
kilometres to population investigate on research question 1 and the subsequent sections investigate
on research question 2.

Scaling infrastructure type to population

To test if scaling relations (i.e. Y = αXβ) hold between individual types of road infrastructure length
and city population we conducted a log-normal analysis using the Bayesian information criterion
(BIC). When comparing the scaling relation of bicycle infrastructure in cities, it’s crucial to consider
that different cities may be at different stages of development and have varying amounts of cy-
cleway infrastructure, making it important to establish different network bounds for accurate
comparisons. Figure 4 reports β, estimation error, p-value, BIC difference between the maximum-
likelihood of the log-normal model with the corresponding model where β = 1 (methodology and

Figure 4. Scaling of urban infrastructure types. Relation between total kilometres of infrastructure and
population of the corresponding 47 cities. The table groups infrastructure types into public transport
(green), active mode (orange), and vehicular infrastructure (grey). The plot on the right uses shades of those
three colours to visualise some relations. Lines are drawn using the β values obtained via a log-normal fit
analysis with Bayesian Information Criteria with required successes set to 10 (see Leitão et al. (2016)).
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code extracted from Leitão et al. (2016)). If ΔBIC > 6 the model with β ≠ 1 provides a sufficiently
better description of the data.

The analysis confirms that the size of all road infrastructure scales sublinearly with population,
meaning that cities are economies of scale and are efficient in providing road infrastructure. This is
in line with the findings from urban scaling law studies Bettencourt (2013). Zooming into the
specific infrastructure types, Figure 4 shows that, the metro infrastructure scales sublinearly with β =
0.79, the car infrastructure scales sublinearly with an exponent β 2 [0.71 � 0.96], and the cycling
and pedestrian infrastructure scales sublinearly but more slowly; β 2 [0.22 � 0.76]. The p-value
quantifies whether the fluctuations in the data are compatible with the expected fluctuations from the
model and whether the residuals are uncorrelated (see paper Leitão et al. (2016) for more info). In
case of p-value < 0:05 the model is rejected and the corresponding entry in table of Figure 4 is
marked with an asterisk. Although population size is not the only influencing factor of active mode
infrastructure growth, our analysis shows statistical evidence that larger cities provide overall less
active mode infrastructure per capita. In particular, cycleway infrastructure grows 70% slower than
the average road infrastructure.

Scaling bicycle network kilometres to population

The previous section has shown how the scaling rate changes as we look at different infrastructure
types. Thus, depending on which infrastructure type is included in the bicycle network definition,
one can observe different scaling relations between bicycle network etension and city size. From this
section onwards we will analyse bicycle networks defined in section.

In absolute terms, the size of the bicycle network increases as the definition includes more
infrastructure types by definition. All bicycle network types have statistically different sizes in terms
of kilometres of network. In particular adding unprotected bike lanes increases the average network
size by 1.75%, adding residential streets and streets where cycling is not prohibited respectively
increases the network size by 228.12% and 134.04%.

The four types of bicycle networks scale at a different rate to population size. The lower and
medium-lower bound in Figure 5 scale half as slower than the medium-upper and upper bound. The
inclusion of non-dedicated bicycle street (as in the definition of medium-upper and upper bound
networks) increases the scaling rate, between kilometres of bicycle infrastructure and city size, from

Figure 5. Size of the bicycle networks. Scaling of the four types of bicycle network kilometres to population.
Data for 47 cities extracted from OSM in 2020. Lines are drawn using the β values obtained via a log-normal
fit analysis with Bayesian Information Criteria (see Leitão et al. (2016)).
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β; 0.4 to β; 0.7. So, the fastest way for a city to increase kilometres of bike network per person is to
increase safety of residential streets and streets where cycling is not prohibited (if they are not
bicycle friendly already), for instance by reducing speed limits.

In conclusion, we see that different bike network bounds scale differently with population. It all
depends on the infrastructure types included in the bicycle network definitions. In the next sections
we study the aggregated structural characteristics of the four candidate definitions of bicycle
networks.

Fragmentation

The number of connected components is significantly different depending on the type of bicycle
network, as is shown by applying a Friedman test. A post hoc analysis with Wilcoxon signed-rank
tests, with a Bonferroni correction applied (pvalue = 0.083), showed significant differences between
all networks except between the lower bound and the medium-upper bound and between the
medium-lower bound and medium-upper bound. Thus each network definition has on average a
different number of connected components, except for the medium-upper bound which has a similar
distribution to the other lower bound networks.

By analysing the number of connected components of the four bicycle network types, we see in
Figure 6(a) that as the bike network definition includes more infrastructure types (different shades of
blue in Figure 6(a)) the number of connected components decreases. An exception to this is the
addition of residential streets (medium-upper bound). Namely, the slope of the fitted line in the
medium-upper bound is larger than the slope of the lower bound, meaning that for cities with a small
population the residential streets behave as a ‘connector’ (since the number of connected com-
ponents is less than the connected component in the lower bound), and for big cities they behave as
‘separators’ (since the number of connected components is higher than the connected component in
the lower bound).

Figure 6(b) shows the difference in the connected component size distribution of the four bicycle
networks. In the lower bound network the largest connected components (i.e. rank of connected
component = 1) are small (average relative size is below 0.5), and the following components are of
medium size (relative size of 0.2 to 0.1). Moving towards the upper bound network the networks
have the largest connected components of relative size close to 1 and the other components of
negligible small size. From Figure 6(b) we note that the addition of residential streets does not
change the component size distribution, though Figure 6(a) shows that residential streets do change
the total number of connected components. The real difference in component size distribution is
given by adding all streets where cycling is not forbidden. This results in the upper bound network
being the least fragmented network.

Granularity

Figure 7(a) shows that city granularity significantly decreases in value and dispersion as the bicycle
network definition broadens to include non-dedicated bicycle streets. This indicates that the broader
bicycle network definition has more homogeneous street segment lengths between cities compared
to the lower bound bicycle network. The average street length of the lower bound network varies
from maximum of 311 m in Bogota to a minimum of 57 m in Helsinki. Whereas the average street
length of the upper bound network varies from maximum of 223 m in Shanghai to a minimum of
47 m in Helsinki. This empirically confirms that the lower bound bicycle network can be considered
as the safe backbone network for cycling, with a few long and direct streets (with not many
branches), and the other networks as an expansion to it, with more branches and intersections.
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The Friedman test showed a significant difference in granularity depending on the type of bicycle
network. Themedian average street length for the lower, medium-lower, medium-upper and upper bound
network are 109, 87, 76 and 74, respectively. A post hoc analysis withWilcoxon signed-rank tests, with a
Bonferroni correction applied (pvalue = 0.083), showed significant differences between all networks.

Directness

The average street circuity decreases in value and dispersion as the bicycle network definition
broadens as shown in Figure 7(b). The Friedman test showed a significant difference in the average

Figure 6. Connected components of the bicycle networks. (a) Number of connected components in relation
to bicycle network definition and city size. (b) The connected component size distribution of 47 cities over
lower, medium-lower, medium-upper, and upper bound bicycle network types. The abscissa is constrained to
10 connected components; the connected component of rank 1 is the largest connected component, rank 2 is
the second largest connected component and so on. The ordinate shows the relative size of each connected
component with respect to the total network kilometres. For a given city, the sum of all relative sizes over all
connected components is equal to one.
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circuity depending on the type of bicycle network. The median circuity for the lower, medium-
lower, medium-upper and upper bound network are 1.098, 1.077, 1.054 and 1.068, respectively. The
Wilcoxon signed-rank tests (with a Bonferroni correction) showed significant differences between
all networks except between the medium-lower and the upper bound.

The average street circuity of the bicycle networks are higher than the circuity of street networks
of many world sub regions Boeing (2021). For example, Europe has a street circuity between 1.065
and 1.059 according to Boeing (2021). Our analysis, instead, shows that Fukuoka, Boston and
Rome have the circuity of 1.20 and Rotterdam of 1.04; these are the highest and lowest circuity
values for the lower bound network.

The network with lowest circuity is the medium-upper bound, which shows the convenience of
adding residential roads to the bicycle network definition. Residential streets create within
neighbourhood connections. For this reason by including them in the bike network definition they
result in more direct routes that do not meander around residential areas but cut through them. We
notice that circuity increases from the medium-upper to the upper bound network, one explanation is
that the upper bound network does not only add within neighbourhood connections, it adds all
streets where cycling is allowed. The latter results to be more circuitous than the residential streets.

Figure 7. Structural characteristics of bicycle networks. (a) Average street length, (b) Average street circuity,
(c) Average intersection density, (d) Average streets per node, (e) Clustering coefficient, (f) Proportion of
streets per nodes.
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Density

Figure 7(c) reports intersection density values for the different bicycle network definitions across 47
cities. Data shows that the lower bound network has significantly lower densities, in terms of
number of intersections over square km, compared to the other networks. The Friedman test showed
a significant difference in average intersection density among the different bicycle networks. The
median density for the lower, medium-lower, medium-upper and upper bound network are 6.1, 14.7,
49.8 and 61.8, respectively. These densities are much higher than the vertex densities (average 1.55
vertex/km2) of bicycle networks reported in Schoner and Levinson (2014). The reason could be
linked to the choice of the cities in the two studies. Our study selected cities over four continents but
still has a large representation of European cities, while the other study was entirely focused on US
cities.

The Wilcoxon signed-rank tests (with a Bonferroni correction) showed significant differences
between all networks. This confirms that the network becomes more dense of intersections as more
infrastructure types are added to the network. The biggest increase in density is between the
medium-lower bound and the medium-upper bound. This is interesting because it highlights the
crucial role of residential streets in densifying the network.

Connectivity

Empirical results in Figure 7(d) show that the lower bound network has a significantly lower number
of streets per node. The Friedman test showed a significant difference in values and the Wilcoxon
signed-rank tests (with a Bonferroni correction) showed significant differences between all net-
works except medium-lower andmedium-upper bound. The medium bound networks have a similar
amount of streets per network, showing that residential streets do not increase the average node
connectivity. Interestingly it is not the upper bound network that has the highest number of streets
per node. Our interpretation is that the upper bound network, although it has the largest network in
size, it does not connect the streets to existing nodes. It most likely adds new nodes, as well as street,
components to the network.

Figure 7(e) shows that the bicycle network with the highest clustering coefficient is the upper
bound meaning that network is the most clustered and connected at the neighbourhood level. The
Friedman test showed a significant difference in values. The post hoc Wilcoxon signed-rank tests
did not show significant difference between the lower and medium-upper bound and the medium-
lower and the medium-upper bound network, indicating that residential streets do not play a crucial
role on the neighbourhood level connectivity. For the upper bound, instead, the clustering coef-
ficient significantly increased with the addition of all streets where cycling is allowed. The reader
should note that although the clustering coefficient is a commonly used metric for assessing
networks, the resilience of a network requires more complex analysis on clustering vulnerability.

Results in Figure 7(f) highlight a big difference between the lower bound network and the others.
The lower bound network is characterised by a very big share of dead-ends (64%), lower share of 3-
way intersections (33%) and an even lower share of 4-way intersections (6%). The large proportion
of dead-ends in the lower bound bicycle network makes clear that this type of bicycle network has
many loose ends, resulting in a less connected network. This is very different from the average
vehicular street network. Boeing (2017) has shown that the average USA urban agglomeration is
characterised by a preponderance of three-way intersections. The typical urbanised area has many
three-way intersections (59%), fewer dead-ends (21%) and even fewer four-way intersections
(18%). The medium-upper bound bicycle network, instead, has very few dead ends (10%), many 3-
way intersections (64%) and a few four-way intersections (24%). Thus adding residential streets to
the bicycle network results in more 3- and 4-way intersections.
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Relation between indicators

This section explains how the previous indicators are related and how they support or contradict
different findings. This will be discussed through the example of Delft and Rome. The summary of
network indicators for these two cities (across the four bicycle networks) is reported in Figure S3,
which for lack of space is in the Supplementary material.

As the total street length increases also intersection density seems to increase. However, the
relation is dependent on how the new streets are added. If streets are added as disconnected
components they will increase the node density but not the intersection density. Whereas if the new
streets are linked to the existing network, their addition increases the intersection density. Thus, the
increase in total street length has a higher impact on intersection density if the number of network
components does not increase. This is visible in Figure S3 between the medium-lower and medium-
higher bound networks. Rome has a bigger increase in total street length than Delft; however, it also
has a much higher increase in number of components. The result is that Delft’s medium-upper
bound network has a much higher intersection density.

As we go from the lower to the upper bound network the average street length decreases.
Previous researches have shown that longer links are safer to travel given that there are less
discontinuities and hindrances Kamel and Sayed (2021). This reinforces our definition of lower
bound network being the safest, and upper bound network being the least safe, not only for the
infrastructure type but because of the higher exposure to road discontinuities. The advantage of
lower average street length is the lower average circuity of an edge, which leads to more direct
routes.

Finally, the clustering coefficient indicator and the average street per node show two different
aspects of network connectivity. In fact, the clustering coefficient relates to the average node degree
and not so much to streets per node indicator. The average streets per node is based on the number of
physical streets and not the network edges (in practice there can be one physical street but two
network edges, one for each riding direction). By using the average street per node indicator, we
look at the connectivity of an undirected representation of the network; reasonable if we assume that
it is common that cyclists use a bike lane in both directions Viero (2020). To measure connectivity
and robustness of the directed network the clustering coefficient (or the average node degree) are
more suitable.

Implications for practice

The findings of this paper are of interest for researchers and policymakers. The type of bicycle
network a researcher analyses in her study has implications on the study results; for example, the
lower bound network turned out to be the most fragmented whereas the upper bound network is
significantly more connected. Policymakers can use the average structural performance of bicycle
networks as benchmark values to assess existing urban networks or plan urban development
elsewhere. Moreover, policymakers can identify the type of bicycle network that meets their policy
objective and determine the traffic calming measures needed to make the network suitable for
different user groups. In the following, we illustrate a simplified framework of how policymakers
can use the outcome of our analysis. For additional details on the network design the reader may
refer to CROW (2017).

1. A city sets its objectives regarding the bicycle network based on the desired network
characteristics. Network requirements are defined in terms of size, fragmentation, granu-
larity, directness, density and connectivity according to the city context.
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2. Once the objectives have been set, the network structural indicators should be computed over
the four bicycle network definitions.

3. Then, the city can proceed to identify which (or a combination) of the four bicycle networks
fits all the determined structural requirements4 (as defined in step 1.).

4. Finally, the city determines what needs to be done to make all roads (e.g. in terms of traffic
regulations) included in the identified (at step 3) network definition truly bikeable. This
analysis can be carried out per user group, referring to the four user groups proposed by
Geller (2009).

In reality the decision process of developing a bike network is more complex, as planners do not
only consider the structural characteristics, but also dynamic variables like traffic volume.

Discussion and conclusions

In this study, we tested the scaling relation between kilometre of infrastructure and city population to
reveal the different growth rates of road infrastructure. In addition, we systematically defined four
types of bicycle networks and conducted statistical tests to investigate the structural characteristics
of bicycle network worldwide. The following sections elaborate on the results and draw conclusions
by answering the questions stated in the introduction.

As larger cities build less infrastructure per capita, how do the different infrastructure
types scale with city size and how is the scaling relation of bicycle networks affected?

Empirical results show that all types of infrastructure scale sublinearly. Although the types of in-
frastructure dedicated to active modes (cycleway, living street and pedestrian) scale sublinearly, they
scale slower than non-activemode infrastructure. Namely, we observed that cities that have double the
population appear to have 24% more kilometres of bicycle dedicated infrastructure but around 80%
more primary, secondary and tertiary car road infrastructure. This provides a striking insight on cities’
investment decisions. Cities have been defined as efficient places due to their economies of scale in
infrastructure. Our results confirm this efficiency but point out at the less liveable and sustainable side
of large cities. Larger cities systematically invest less in bicycle dedicated infrastructure.

We observe that cities that have better biking conditions also have traffic norms that make car
roads also bikeable. Since car roads can be used by bikes, but not vice versa, cities can compensate
for the difference in bicycle infrastructure per capita by making multi-modal use of the streets safe
for both modes, and across user groups. This is supported by our results showing that the scaling
relation between kilometres of bicycle network and population is faster if the bike network includes
multi-modal streets.

Following the logic of the built environment influencing attitude and ultimately travel behaviour,
there is a risk that larger cities provide less bicycle friendly environment which may results in less
positive attitude towards the bike. This risk is smaller if the bicycle network (used by most user
groups) is made of more than just the separated bicycle tracks. We note that, among urban areas,
large cities are places with larger disparity between active and non-active mode infrastructure
supply. Sustainable and active mode challenges in urban mobility seem to lie in the large cities.

As different definitions of bicycle network exist, how can we provide evidence-based
knowledge on the structural differences and similarities of bicycle networks worldwide?

We have designed a multi-city and multi-definition analysis of bicycle networks. This allowed us to
numerically analyse the structural differences between bicycle networks and build evidence-based
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knowledge on unified definitions of bicycle networks. Our results show that network characteristics
significantly change between different bicycle network definitions. Almost all characteristics are
significantly different over the four network definitions. The lower bound network is significantly
less extended, dense and connected and more coarse-grained and circuitous. This confirms that the
four bicycle networks identified in this study are structurally different. It also implies that the choice
of the bicycle network definition is a fundamental one and has consequences on accessibility, equity
and safety evaluations of a city. For example, it can result in opposite accessibility evaluations if one
were to compare accessibility per mode based on the upper instead of the lower bound network.

Studies have shown the fragmented and underdeveloped nature of many bicycle networks
worldwide and advise significantly extending the protected bicycle lanes to create complete bicycle
networks. For example, in cities like Seville, a fully protected bike lane network was feasible and
materialised through consistent government funding into active modes of transportation Marqués
and Hernández-Herrador (2017). Although we are in favour of spatial equity and justice between
modes, and in reducing barriers to cycling, we challenge this type of notion based on the idea that a
fully separated bicycle network is often not a feasible outcome. As an example, in cities that
prioritise cycling, there are many segregated bike paths but also many shared streets where bikes go
together with pedestrians and cars (think of historical city centre areas or residential areas). In some
cases, bike networks can even be designed depending on the use of streets by different demo-
graphics, thus challenging municipalities to address multiple needs by developing protected,
segregated or shared spaces for biking and other mixed land use. Driven by the question: ‘What type
of streets make up a bicycle network’we propose four definitions of bicycle networks, from the fully
separated to the least (which includes also car streets where cycling is allowed) and systematically
analyse their structural characteristics. This enables to evidence that the lower bound network is
much more fragmented than the upper bound, both in number of connected components and size
distribution of the components. This means that a policymaker aiming to reduce fragmentation of
the bicycle street network can focus its efforts on making the infrastructure of the upper bound
network (which is not dedicated exclusively to bicycles) truly bikeable, instead of expanding the
size of the lower bound network.

Our empirical multi-city analysis showed the importance of residential streets which, by creating
within neighbourhood connections, increase the network density, directness, connectivity and
significantly extend its size. Including residential streets expands the total kilometres extension of
more than 200%, reduces circuity by 4% and increases the density of intersections more than 700%.
These are streets that already exist in the urban texture and are less expensive to transform into
bicycle streets. In most city contexts, the physically-separated-from-traffic cycle tracks are not
sufficient for people to reach their daily activity destinations by bicycle. However, the hierarchical
combination of separated cycle tracks and residential streets (used by multiple modes) improves the
network structure allowing cyclists to reach many more destinations within their neighbourhood.

Limitation of the methodology of scaling and power-law analysis

Many natural phenomena exhibit power-law distributions, in that when one quantity varies, the
other also varies proportionally, based on the power of the first one. This pattern is observed in many
physical and natural events, and analysing the parameters estimated from these distributions can
reveal underlying processes. However, the selection of scale and magnitude of empirical data can
impact the resulting parameter values Pickering et al. (1995). In social sciences, this becomes even
more complex because power-laws occur through several policy decisions or demand-side
adoption. Our analysis shows that bike infrastructure scales sub-linearly with population growth
and is 70% slower than other road infrastructure. The exponent β, although biased by sample
selection, informs us about specific decision-making aspects that have led to this infrastructure
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development: 1) bicycle ownership, 2) mode share, 3) systematic versus rapid share increase due to
external events (like Covid), 4) level of data completeness and several other conceivable factors.

Although our results provide statistical evidence that the data is consistent with the scaling law
model (as for the method proposed by Leitão et al. (2016)), the selection of cities may have biased
the scaling parameter. To mitigate this limitation, a larger sample size of cities should be considered.
However, caution must be taken to control for other factors when analysing a larger sample, as this
could lead to inaccurate conclusions on a different scale or magnitude. To address this, we rec-
ommend investigating additional statistical evidence of non-linear relationships and low scaling
parameters in cycleway infrastructure with larger samples.

Summary and final remarks

In conclusion, this analysis unravelled a disparity in the supply of active mode infrastructure,
especially in big cities which systematically invest less in bicycle-dedicated infrastructure.
Moreover, our finding suggests that city authorities could focus more on improving residential
streets that already exist (with bicycle ad-hoc measures such as speed limit) rather than pre-
dominantly focussing on developing new separated or semi-separated bicycle streets. Depending on
the legislation and the street design these can be very safe or unsafe roads for cyclists. Once a city
has identified the definition of bicycle network it wants to refer to, it should take action to make it
bikeable for its target user group. By doing so, planners can design cities not only to be exciting and
efficient but also apt for sustainable mobility.
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Notes

1. Note that this attribute of safety is based on expert advice used to tag the streets and literature. In reality
perceived safety of cyclists might differ.

2. We refer to bikeability as the extent to which the actual and perceived, physical and cultural, cycling
environment is adequate for the use of bicycles.

3. Streets are edges of an undirected representation of a street network. The bicycle networks to some extent
can be directed. It can however be complicated to determine whether a given segment in the network is
directed or not Viero (2020). Cities can have many configurations: two-way streets which only have one
bike lane on one side; one way streets with one (or two) bike lane in the same/or opposite (both) direction as
the car traffic; mixed use streets where both directions are allowed. Given that it is in many places common
for cyclists to bike against the allowed direction (even though it is illegal), and the available data from the
city do not describe whether a given segment represent bike lanes on both sides or only one side/direction
Viero (2020), the following analysis will therefore assume that the network is undirected.

4. Note that it could happen that the requirements are too stringent for the current street network so none of the
defined bicycle networks meets all the defined conditions. This suggests that either the city needs to re-
define the structural characteristics based on the existing street network of the city or it should consider a
network growth strategy to build new streets Orozco et al. (2020).
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