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The supersonic aeroelastic stability of tow steered carbon reinforced composite panels, in

each layer of which the fibers follow curvilinear paths, is assessed. A structural model based

on the Rayleigh-Ritz method, combined with the aerodynamic piston theory, is derived to

represent the aeroelastic behavior of rectangular plates under different boundary conditions.

In this model, the Classical Lamination Theory, considering symmetric stacking sequence and

fiber trajectories described by Lagrange polynomials of different orders, is used. In addition,

manufacturing constraints, which impose limitations to the feasible fiber trajectories, and the

effect of in-plane loads, are also considered in the model. Using a multi-criteria Differential

Evolution algorithm, numerical optimization is performed for a variety of scenarios, aiming at

increasing the flutter and linear buckling stability margins of tow-steered plates, considering

the geometrical parameters defining the fiber trajectories on the layers as design variables.

Results obtained for the different optimization scenarios are compared, having a composite

plate with unidirectional fibers as the baseline, aiming at evaluating the benefits achieved by the

optimum tow-steered plates. Results enable to quantify the stability improvements by exploring

fiber steering, which has been shown to be beneficial, even in situations where manufacturing

constraints are accounted for.

I. Nomenclature

a = Plate length
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b = Plate width

D = Out of plane stiffness matrix, according to the Classical Laminate Theory

E1, E2 = longitudinal and transverse Young’s moduli of a composite lamina

G12 = In-plane shear modulus of a Composite lamina

I(1...5) = Material invariants

Ka, KG = Aerodynamic and geometric stiffness matrices

M, K = Plate mass and stiffness matrix

q = Generalized coordinates

Mp = Vectors of moments

r, s = numbers of terms used to approximate the transverse displacement field in x and y directions

t = Ply thickness

T = Plate kinetic energy

U = Potential energy

u, v,w = Local plate deflection components in x,y,z directions, respectively

V(1...4),W(1...4) = composite lamination parameters

x, y, z = Cartesian coordinates

w0 = Plate mid-plane transverse displacement

W = Virtual work done by aerodynamic load

α = Buckling eigenvalue problem

∆P = Aerodynamic pressure

ε = Strain vector

ζ = Modal damping ratio

θi j = Fiber angle defined at (i,j) control points

Θ = Local fiber angle relative to the x-direction

κ = Vector of plate curvatures

λ∗ = Dimensionless aerodynamic parameter

µ12 = In plane Poisson’s coefficient of a composite lamina

ρ = Mass density

χ = Eigenvalue of associated to the aeroelastic-buckling problem

Ψ = Matrix forme from Rayleigh-Ritz approximation functions

ω = Natural frequency
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II. Introduction
The safe design of panels against aeroelastic instability is driven by the determination of critical aerodynamic

conditions regarding Mach number and dynamic pressure [1]. Specifically in the design of rockets and supersonic

aircraft, the aeroelastic stability of composite panels is recognized as being worth of investigation.

Dowell[2] presents a review of panel flutter, introducing the theoretical mathematical analysis and correlations

with experiments. Yang [3] proposed a double curved thin shell finite element for the modeling of composite plates,

curved panels, and composite cylindrical shells. Mei and coworkers [4] developed finite element models to evaluate

nonlinear flutter of composite panels considering the von Kàrman large-deflection strain-displacement relations in the

time domain. Those authors also evaluated the nonlinear behavior of composite panels for different configurations

regarding aspect ratios, lamination angles and number of layers[5]. Afterwards, different approaches were developed

to improve design and control instabilities, such as active control based on piezoelectric actuators [6], consideration

of stiffeners base as structural elements [7] and the use of electro-rheological fluids as a semi-active approach [8].

Marques et al. [9] proposed the use of evolutionary optimization algorithms to optimize panels considering different

flow directions, elastic foundations and boundary conditions.

The classic strategy of aeroelastic tailoring consists in stacking plies in different orientations for achieving aeroelastic

benefits. This design approach has been employed in different projects, such as the flight demonstrator X-29, in

which the problem divergence taking place at low speed was solved by arranging the stacking sequence to explore the

bending-torsion coupling in its composite wings [10].

More recently, the emergence and development of automated manufacturing procedures culminated with the

development of novel, more efficient designs of composite laminates. The automated fiber placement (AFP) process

currently enables to manufacture the so-called variable stiffness composite laminates (VSCL), understood as those

whose local membrane and bending stiffnesses vary spatially over the laminate. This goal can be attained by varying the

fiber/matrix volume ratio or by varying the fiber trajectories. This last case characterizes the tow-steered composites

which are studied in this paper.

A number of previous research studies have demonstrated the possibility of achieving improved behavior of VSCL as

compared to traditional laminates, under different design goals. A number of studies have been reported in the literature,

in which VSCL could be designed to improve buckling resistance [11], reduce stress concentrations around holes [12],

maximize the fundamental natural frequency [13], and optimize aeroelastic characteristics of a composite wing structure

[14–17]. The work of Fazilati [18] presents the effect of delamination in the panel flutter behavior. However, some

practical limitations must still be addressed.

The impact of manufacturing defects in VSL, especially the effects of gaps and overlaps, had not been addressed in

the literature until recently [19] . The “defect layer" method highlights the influence of defects on the critical buckling

load and in-plane stiffness [20].
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The most common approach to design and manufacture variable stiffness plates consists in defining the steering

angle as functions of its values on the edges of the plate, which provides easy control of the turning radius from these

parameters. It has been verified that the occurrence of defects depends mainly on the turning radius, whose minimum

value is determined by the fiber tape width[21].

As compared to traditional non-steered counterparts, the difficulty in optimizing tow-steered laminates is a

consequence of the larger number of design variables required to define the fiber trajectory, layer thicknesses and

manufacturing constraints [22].

In this context, this paper proposes an improved numerical strategy for buckling and aeroelastic tailoring of

tow-steered composite panels under supersonic flow, considering manufacturing constraints. The problem is tackled in a

multi-criterion optimization framework, in which the critical buckling load and the flutter speed are chosen as objective

functions, and the parameters defining the fiber trajectories are the design variables.

The paper is organized as follows:under the hypotheses of linear elasticity and Classical Lamination Theory (CLT), a

symmetric low-dimension structural laminate model is derived based on the Rayleigh-Ritz (Assumed-Modes) approach.

The modeling procedure is duly adapted to accommodate curvilinear fiber trajectories, which are represented by

Lagrange polynomials whose orders can be arbitrarily chosen. The structural model is associated to the supersonic Piston

Theory to account for aerodynamic loads. First, the accuracy of structural model is verified by comparing a set of natural

frequencies and corresponding vibration mode shapes with their counterparts obtained from finite element analyses.

Then, the flutter and buckling instability boundaries are simultaneously optimized in a multi-objective optimization

framework. Numerical optimization is performed for simply-supported, constant thickness plates, considering different

orders of the polynomials used to interpolate the fiber trajectories. These orders determine the numbers of design

variables. A Differential Evolution (DE) algorithm is used to solve the constrained optimization problems. In recognition

of the importance of minimizing manufacturing defects, the optimization problem is reformulated in order to account

for the limitations imposed to the fiber trajectories.

III. Formulation
Figure 1(a) depicts the i-th ply of a rectangular tow-steered laminate of dimensions a × b, positioned on the xy plane,

in which θ(x, y) denotes the local fiber angle (steering angle) defined with respect to the ply axis x. Also indicated are

the laminate global axes XY, with respect to which the ply is oriented according to the angle Φi .

In Fig. 1(b) a single fiber is illustrated, as well as a set of points of coordinates (xm,yn), named herein control points,

which are used to define the function θ(x, y).

It is important to mention that once the fiber trajectories are defined for each ply according to θ(x, y), the laminate is

obtained by stacking plies with different orientations with respect to the global axes, according to the anglesΦi, i = 1, 2...,

in a procedure similar to that employed in traditional composite laminates.
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In the formulation that follows, the local fiber angle is represented as a function of the lamina coordinates x,y and

the angle values at the control points θmn in terms of Lagrange polynomials, following the approach proposed by Wu et

al. [22], as follows:

θi(x, y) = Φi +

M∑
m=0

N∑
n=0

θmn

M∏
k=0,k,m

x − xk
xm − xk

.

N∏
p=0,p,n

y − yp

yn − yp
. (1)

b

a

x

y

 �i

ϕi

X

Y

(a)

θ00

θ0n

θ0N
θmN

θM0
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θMNy
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θMn
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b

(b)

Fig. 1 Illustration of an individual ply of a tow-steered composite laminate. (a) indication of steering and ply
orientation angles; (b) indication of control points used to interpolate the steering angle.

It should be mentioned that, as the order of the polynomial increases, the nonlinearity of the fiber trajectories also

increases, and larger numbers of alternative fiber paths can be obtained.

The laminate is modeled by assuming that each ply is under plane stress state and small strains; linearmaterial behavior

is assumed. Under the assumptions of CLT, and considering only symmetric laminates (to avoid membrane-bending

coupling), the following relation between moments and curvature is obtained:

Mp (x, y) = D (x, y) κ (x, y) , (2)

in which, Mp (x, y) is the vector of moments, κ (x, y) is the vector of curvatures, and D (x, y) is the stiffness matrix. In

the case of tow-steered, this matrix must be computed accounting for the fiber angle variation over the ply according to

Eq. 1, as proposed by Wu et al.

Matrix D, derived from a combination of lamination parameters (Wi) (i=1 to 4), and invariants Ii (i=1 to 5), is
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expressed as follows:



D11(x, y) D12(x, y) D16(x, y)

D12(x, y) D22(x, y) D26(x, y)

D16(x, y) D26(x, y) D66(x, y)


=

h3

12
[Γ0 + Γ1W1(x, y) + Γ2W2(x, y) + Γ3W3(x, y) + Γ4W4(x, y)] , (3)

where h is the total thickness of the laminate.

The expressions for the laminate invariants gathered in matrices Γ0 to Γ4 are omitted here and can be found in

references [23, 24].

In Equation 3 it can be seen that the components of the stiffness matrix are functions of coordinates x and y, which

implies that the local stiffness depends on the position over the plate, and justifies the denomination “variable stiffness

composites” given to tow-steered composite laminates.

Accounting for the effects of in-plane normal and shear loads (Nxx , Nyy , Nxy [N/m]), based on the hypotheses of

the Kirchhoff’s plate theory, which is adequate for thin plates, the total potential and kinetic energies of the plate are

given, respectively, as [25]:

U =
1
2

∫ a

0

∫ b

0
κTDκdxdy − 1

2

∫ a

0

∫ b

0

[
Nxx

(
∂w

∂x

)2
+ Nyy

(
∂w

∂y

)2
+ 2Nxy

∂w

∂x
∂w

∂y

]
dxdy, (4)

T =
1
2
ρh

∫ b

0

∫ a

0

(
∂w

∂t

)2
dxdy, (5)

where ρ is the material density.

In the context of the Rayleigh-Ritz approach, the transverse displacement field for a fully simply-supported plate is

approximated as:

w(x, y, t) =
rmax∑
r=r0

smax∑
s=s0

qrs(t)sin
(
r

x
a

)
sin

(
s
y

b

)
= Ψq, (6)

where Ψ is the 1 × (rmax − r0 + 1) (smax − s0 + 1) matrix formed by the approximation functions and q is the

(rmax − r0 + 1) (smax − s0 + 1) × 1 vector of generalized coordinates.

The flow is assumed to occur in direction X . Aerodynamic loads are modeled based on potential flow assumptions.

The aerodynamic pressure ∆P, modeled according to the method proposed by Ashley [1], known as first order Piston

Theory, with dissipative effects neglected [26], is expressed as follows:

∆P = λ
∂w

∂x
, (7)
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λ being the parameter that represents the airflow conditions, defined as:

λ =
ρ∞U2

∞√
M2
∞ − 1

, (8)

where M∞ is the Mach number, U∞ is the flow velocity and ρ∞ is the air density.

The aeroelastic model is obtained by combining the expressions of the potential energy (Eq. 4), kinetic energy (Eq

5), aerodynamic generalized forces, and the Lagrange’s equations [25]. Such a procedure leads to the following set of

coupled, second order, differential equations:

MÜq (t) + (λKa + αKG +K)q (t) = 0, (9)

where M is the mass matrix, Ka is the aerodynamic stiffness matrix, KG is the geometric stiffness matrix, and K is the

structural stiffness matrix. In addition, α is the membrane load parameter.

Searching for the solution of Eq. 9 under the form q (t) = qeχt , the following eigenvalue problem is obtained, which

must be used for the combined linear buckling and aeroelastic stability analyses:

(
λKa + αKG +K + χ2M

)
q = 0. (10)

IV. Model validation
In this section, the Rayleigh-Ritz-based structural model (referred to as RR) described above is verified and validated

by comparing a set of natural frequencies and buckling loads obtained from the resolution of Eq. 10, disregarding the

aerodynamic term, with the counterparts obtained from finite element discretization using the commercial software

NASTRAN, for both unidirectional and tow steered configurations. It should be mentioned that such a validation is

indispensable since the predictive capability of Rayleigh-Ritz models strongly depends on the type and number of

approximation functions used in Eq. 6. However, the aeroelastic behavior is not included in this validation.

The FE model construted consists of 4800 rectangular CQUAD4 shell elements (80 elements in the spanwise

direction and 60 elements in the chordwise direction). Mesh convergence was checked to guarantee adequate convergence

of the first six natural frequencies.

For the computation of the natural frequencies of the tow-steered configuration using NASTRAN, a methodology

was developed to take into consideration arbitrary fiber paths by ascribing different fiber orientations to standard

unidirectional fiber elements, according to their positions over the plate. Such a procedure is described in [17] .

Table 1 shows the material properties of an individual lamina chosen for the numerical simulations of the panels

considered in this section. Simply-supported boundary conditions are assumed for all the edges of the plate.
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Table 1 Lamina physical properties and dimensions

Property Value Property Value

E1 129500 MPa a 400 mm
E2 9370 MPa b 300 mm
G12 5240 MPa ρ 1500 kg/m3

µ12 0.38 Ply thickness, t 0.19 mm

Model validation is performed for two different plate configurations. Configuration A is a traditional unidirectional

laminate, while configuration B is tow-steered. For configuration A, the stacking sequence of the eight layers has

been defined as [0o/45o/−45o/90o]s, and the material properties are given in Table 1. For configuration B, the fiber

deposition course, which is illustrated in Fig. 3 for both RR and NASTRAN models, is defined according to Eq. 1,

using second order Lagrange polynomials. It should be noticed that the stacking sequence defined for configuration A is

also used for configuration B, by setting accordingly the values of the angles Φi appearing in Eq. 1.

The accuracy of the first six natural frequencies computed can be evaluated in Table 2 for configuration A, and in

Table 3 for configuration B. In addition, Figure 2 portrays in color scale the values of the modal assurance criterion

(MAC), used to evaluate the degree of collinearity between natural mode shapes obtained from RR and NASTRAN.

M.A.C.
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R
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0.6
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0.8
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1
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1 2 3 4 5 6 7 8 9 10
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0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2 Mode Assurance Criteria for: (a) configuration A; (b) configuration B

It can be seen that: i) for both configurations, the RR models provide satisfactory accuracy as compared to FE

counterparts. The discrepancies between the values of the natural frequencies, though small for all the numbers

of approximation functions considered, diminish monotonically as these numbers are progressively increased. One

considers rmax = 6, smax = 6 sufficient to guarantee the model convergence with an acceptable error of 0.65% for the

steered configuration; ii) fiber steering exerts noticeable influence on the values of the natural frequencies; the intensity

of such an influence varies from one mode to the other. Based on this later observation, the possibility of maximizing
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the fundamental natural frequency by optimization of the steering path was addressed in references [27, 28] .

Table 2 Values of natural frequencies obtained by Rayleigh-Ritz and the FE models for configuration A

ω1 (Hz) ω2 (Hz) ω3 (Hz) ω4 (Hz) ω5 (Hz) ω6 (Hz)

Nastran 64.16 153.44 168.12 252.48 312.5 335.40
rmax=3, smax=3 64.64 154.26 169.10 254.81 315.60 337.37

(0.57) (0.49) (0.48) (0.85) (0.44) (0.37)
rmax=4, smax=4 64.53 154.20 168.93 254.63 313.88 336.64

(0.56) (0.40) (0.45) (0.68) (0.41) (0.36)
rmax=5, smax=5 64.52 154.06 168.88 254.20 313.80 336.62

(0.50) (0.39) (0.40) (0.66) (0.35) (0.33)
rmax=6, smax=6 64.48 154.05 168.81 254.16 313.62 336.51

(0.50) (0.35) (0.39) (0.60) (0.34) (0.32)
rmax=7, smax=7 64.48 153.99 168.79 254.00 313.59 336.50

(0.45) (0.35) (0.37) (0.59) (0.32) (0.31)
rmax=8, smax=8 64.45 153.98 168.76 253.98 313.52 336.45

(0.45) (0.33) (0.37) (0.56) (0.31) (0.31)
* Values indicated between parentheses are percent deviations

Table 3 Values of natural frequencies obtained by Rayleigh-Ritz and the FE models for configuration B

ω1 (Hz) ω2 (Hz) ω3 (Hz) ω4 (Hz) ω5 (Hz) ω6 (Hz)

Nastran 65.67 152.39 171.75 250.43 322.20 333.53
rmax=3, smax=3 66.03 153.29 172.80 252.79 326.56 337.03

(0.54) (0.59) (0.60) (0.94) (1.35) (1.04)
rmax=4, smax=4 66.00 153.03 172.49 252.26 324.34 335.19

(0.50) (0.42) (0.42) (0.72) (0.66) (0.49)
rmax=5, smax=5 66.00 153.01 172.47 252.11 323.34 334.79

(0.50) (0.40) (0.41) (0.66) (0.35) (0.37)
rmax=6, smax=6 65.97 152.98 172.43 252.08 323.31 334.69

(0.45) (0.38) (0.39) (0.65) (0.34) (0.34)
rmax=7, smax=7 65.97 152.95 172.41 251.96 323.30 334.68

(0.45) (0.36) (0.38) (0.60) (0.33) (0.34)
rmax=8, smax=8 65.96 152.94 172.39 251.94 323.25 334.64

(0.44) (0.36) (0.37) (0.60) (0.32) (0.32)
* Values indicated between parentheses are percent deviations

Additionally, the verification of the accuracy of buckling loads are shown in Table 4, for configurations A and B,

assuming only membrane loads Nxx applied to the plate. Again, rmax = 6, smax = 6 were sufficient to guarantee the

satisfactory maximum error of 0.9% for both configurations considered.
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Table 4 Values of buckling loads obtained by Rayleigh-Ritz and the FE models

Buck Load CA Buck Load CB
Nxx (N/m) Nxx (N/m)

Nastran 5986 6263
rmax=3, smax=3 6077 (1.5) 6330 (1.1)
rmax=4, smax=4 6053 (1.1) 6323 (1.0)
rmax=5, smax=5 6053 (1.1) 6323 (1.0)
rmax=6, smax=6 6043 (0.9) 6317 (0.85)
rmax=7, smax=7 6043 (0.9) 6317 (0.85)
rmax=8, smax=8 6040 (0.9) 6313 (0.8)
* Values indicated between parentheses are percent deviations

X

Y

T00

T10

T20

T01

T11

T21

T02

T12

T22

(a) (b)

Fig. 3 Steered lamina: (a) Rayleigh-Ritz model; (b) FE Model

V. Optimization procedure
In spite of typically high computation cost, evolutionary algorithms have been proven to be effective in solving

complex optimization problems, since they enable a more effective search over the solution space, thus increasing the

probability of reaching the global minimum. In addition, those algorithms do not require the computation of gradients,

thus being well adapted to deal with discontinuous objective functions and mixed continuous-discrete design variables

[29, 30]. Based on the previous experience of the authors with the use of Differential Evolution (DE) algorithm [17] was

used to obtain the maximum buckling/aeroelastic stability margin of non-steered and steered eight layer plates, based on

the model described by Eq. 9. In addition, the optimization tests were carried-out considering suitable numbers of

individuals in the populations (at least 6 times the number of design variables) and generations of the DE algorithm.

Given the stochastic nature of the optimization method, five runs were performed for each optimization test.

Five different optimization scenarios have been defined, as illustrated in Fig. 4: the first (O1) considers non-steered

fiber trajectories and admissible discrete fiber angles (90o,+45o, 0o,−45o). The second (O2) considers also a non-steered

plate, but the fiber angle of each of the eight layers can vary continuously from −90o to +90o. In the third optimization

(O3), one considers a tow steered plate with fiber paths defined by first order Lagrange polynomials in both x and y
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directions. Similarly, in the fourth (O4) and fifth optimizations (O5), the fiber trajectories are defined by second order

and third order Lagrange polynomials, respectively. In all cases, the layups are kept symmetric. For optimizations (O3),

(O4) and (O5), the layup adopted for (O1) is also used.

As can be seen in Fig. 4, for the optimizations involving tow-steered plates, the number of design variables, which

are the control angles, increases from 4 to 16 as the order of the polynomials used to represent the fiber paths is increased

from 1 to 3.
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θ21
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900

-450
-900

 900

Fig. 4 Configurations adopted for optimization

In Table 5 are summarized the descriptions of each optimization, the respective design variables and their types, as

well as the lateral constraints imposed to the design variables. Therefore, the optimization problem can be stated as:

Maximize: J1(θi) = λ∗f lutter,

Design Variables: as per second column of Table 5,

subject to: as per fourth column of Table 5

A. Augmented design space

Besides the optimization scenarios defined above, two additional scenarios, characterized by broader design spaces,

have been considered, as described in Tab. 6. The proposed configurations, denoted by O3-a and O4-a are similar to
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Table 5 Characteristics of the five optimization scenarios defined

Configuration Design Variables Variables Types Boundaries

O1 [θ1 θ2 θ3 θ4] Discrete [±45o 0o 90o]
O2 [θ1 θ2 θ3 θ4] Continuous [−90o 90o]

O3

[
θ01 θ11

θ00 θ10

]
Continuous [−90o 90o]

O4


θ02 θ12 θ22

θ01 θ11 θ21

θ00 θ10 θ20

 Continuous [−90o 90o]

O5


θ03 θ13 θ23 θ33

θ02 θ12 θ22 θ32

θ01 θ11 θ21 θ31

θ00 θ10 θ20 θ30


Continuous [−90o 90o]

configurationsO3 and O4, respectively, but the possibility of having different fiber paths among the layers is considered,

thus resulting in increased numbers of design variables: from 4 for O3 to 16 for O3-a, and from 9 for O4 to 36 for

O4-a. In these cases Eq. 1 is slight changed for:

θi(x, y) =
M∑
m=0

N∑
n=0

θmni

M∏
k=0,k,m

x − xk
xm − xk

.

N∏
p=0,p,n

y − yp

yn − yp
(11)

Table 6 Lay-up options and design variables for the increased desing space

Configuration Design Variables N. of Variables Boundaries

O3-a

[
θ01i θ11i

θ00i θ10i

]
i(1...4) 16 [−900 900]

O4-a


θ02i θ12i θ22i

θ01i θ11i θ21i

θ00i θ10i θ20i

 i(1...4) 36 [−900 900]

B. Manufacturing Constraints

As mentioned before, there is usually a direct relation between the increase of polynomial order and the complexity

of the optimized fiber trajectory. Complex, large-curvature paths can be unfeasible in practice due to limitations of the

AFP machines. In the current stage of manufacturing technology, the realization of tow-steered composites is limited

due to the fact that fiber trajectories with small curvature radius are frequently associated to larger densities of defects

(gaps and overlaps). In this sense, a convenient strategy proposed in the literature to tackle this limitation consists in

introducing manufacturing constraints, in which the the fibers are placed following constant curvature courses [20].

Hence, programming of the AFP machine becomes easier and the density of defects can be controlled in terms of the
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turning radius.

To comply with manufacturing limitations, the tow steered fiber path over an individual ply is formulated in terms of

three parameters (Φi, θ0 and θ1), where θ0 and θ1 are, respectively, the fiber angles at x = 0 and x = a. Accordingly, the

turning radius is determined in terms of these parameters as follows [31]:

r =
a

sinθ1 − sinθ0
. (12)

It should be mentioned that the turning radius is the most relevant manufacturing parameter that should be taken into

account to avoid local buckling, out-of-plane fiber wrinkle and crimping, which are prone to degrade the mechanical

properties of the laminate. Therefore, considering a typical tow width (3.17mm) the minimum turning radius allowable

is found to be 635mm; this value will be used to constrain the fiber paths.

Under these conditions, the steering angle, considering constant turning radius, is expressed as:

sinθ(x) = sinθ0 + (sinθ1 − sinθ0)
x
a
, (13)

and the fiber trajectory, obtained by integration of dy/dx = tan θ, is found to be expressed as:

y(x) =
a

√
1 −

(
sinθ0 − x (sinθ0−sinθ1)

a

)2

sinθ0 − sinθ1
(14)

Hence, it can be seen that parameters θ0, θ1 and a fully define the fiber path with constant curvature and allows the

inclusion of manufacturing constraints. This approach is slight different from the work of C. Walmart et al [32], in

which was considered the fiber placement in parallel.

VI. Optimization Results
The results of two groups of optimization tests are presented next: the first group is related to optimizations O1 to

textbfO5, defined in Table 4, for which no manufacturing constraints are considered and in-plane loads are disregarded

(which means that matrix KG is not considered in Eq. 9). In the second group, the optimization problem is reformulated

to account for in plane-loads and manufacturing constraints, as expressed by Eq. 14, and considers multi-criterion

optimization of buckling and flutter behavior.

A. Mono-criterion flutter optimization

Table 7 summarizes the optimization results, including the critical values of the dimensionless aerodynamic

parameter λ∗ = λa3/(G12h3), while Fig. 5 illustrates the fiber trajectories obtained for the tow steered configurations
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O3, O4 and O5. Although not shown here, the onset of aeroelastic instability is determined from successive analyses of

the eigenvalues of Eq. 10 for increasing values of the aerodynamic parameter λ, being characterized by the coalescence

of two natural frequencies and the occurrence of negative damping factors.

Table 7 Optimization Results

Configuration Optimal Values Flutter [ λ∗ ] Improvement *

O1 [0◦ 0◦ 0◦ 45◦] 779 —
O2 [−24.24◦ 31.79◦ 31.67◦ 24.95◦] 812 4.47%

O3

[
64.98◦ −64.56◦

−15.23◦ 11.34◦

]
796 2.46%

O4


−77.57◦ −26.31◦ −83.35◦

50.71◦ 7.88◦ 53.40◦

−74.33◦ −34.21◦ −63.44◦

 866 11.41%

O5


39.95◦ −75.60◦ −69.75◦ −14.01◦

−32.67◦ −10.82◦ 8.23◦ 30.14◦

−49.58◦ 11.18◦ −11.42◦ 55.71◦

−15.15◦ −55.95◦ 60.09◦ 1.65◦


937 20.50%

* Improvements of flutter speed with respect to optimization O1.

#O3 #O4 #O5

Fig. 5 Optimized trajectories for configurations O3, O4 e O5

Taking the optimized configuration obtained for O1 as reference, it can be noticed that the optimized configurations

obtained for O2 , O3 , O4 and O5 provide indeed increased flutter speeds, which means improved aeroelastic stability

margins. In addition, for the tow-steered configurations, the degree of improvement increases with the order of the

polynomials used to described the fiber trajectories. This is expected since higher polynomial orders correspond to

higher numbers of design variables (thus broader design spaces). Nonetheless, it can be seen that as the order of

the polynomials increases, more complex fiber paths are obtained, which, in practical cases, can be infeasible due to

manufacturing constraints.

As mentioned before, 5 runs were performed for each optimization case. Figure 6 illustrates the evolution of the DE

optimization for each of those runs, for cases O2 , O3 , O4 and O5.

Even though the results above were obtained disregarding in-plane loads, it was found interesting to check the
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Fig. 6 Evolution of the DE optimization runs. (a) O2; (b) O3; (c) O4; (c) O5

combined flutter-buckling behavior of the five optimized plates, according to Eq. 10, assuming the presence of the Nxx

membrane load. The results are shown in Fig. 7, in which the stability zone comprises the leftmost region of the graph.

It can be seen that the steered configurations O3, O4 and O5 have quite similar buckling behaviors. In addition, the

non-steered configuration O2, optimized with continuous angles, presents the best results regarding buckling.
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Compressive Load - N
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Fig. 7 Combined buckling-flutter evaluation
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The results for optimizations O3-a and O4-a are given in Tab. 8, indicating better performance when compared

to counterparts O3 and O4. This can be explained by the larger numbers of design variables, since the fiber fiber

trajectories on each layer were considered independently from the others. Certainly, this is an interesting result since

manufacturing of configurations O3-a and O4-a would only imply minor increase in the complexity of AFP machine

programming.

Similarly to Fig. 6, 8 illustrates the evolution of the 5 optimization runs, for both O3-a and O4-a. It is apparent

from these late that the differences of the convergence features from one run to the others, are more significant for O4-a

than for O3-a. Again, this behavior can be explained by the much larger number of design variables involved in O4-a.
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Fig. 8 Evolution of the DE optimization runs. (a) O3-a; (b) O4-a

B. Flutter-buckling multi criteria optimization

The results shown in Fig. 7 lead to conclude that the requirements for flutter and buckling stability can be conflicting

with each other. Therefore, the possibility of increasing the combined flutter-buckling stability margin in the λ∗-α plane

for tow-steered plates following a multi-objective optimization approach was investigated, being considered in this

sub-section.

The multi-objective optimization problem is stated as:

Maximize: J1(θi) = λ∗(θi),

J2(θi) = buckling load(θi),

subject to: − 90◦ ≤ θi ≤ 90◦

under constraints as per fourth column of Table 9;

Four other configurations were evaluated, as detailed in Table 9. Configuration O6 keeps the stacking sequence

adopted in O1, adopts constant curvature fiber placement, and accounts for the manufacturing constraints (r > 635mm)
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Table 8 Optimization Results for the augmented design space

Configuration Optimal Values Flutter [ λ∗ ] Improvement *

O3-a

[
−44.62◦ 48.01◦

−44.49◦ 25.41◦

]
i = 1

892 14.5%[
61.95◦ −56.38◦

45.70◦ −41.92◦

]
i = 2[

58.08◦ −62.17◦

36.27◦ −51.28◦

]
i = 3[

10.09◦ −0.22◦

76.93◦ −24.38◦

]
i = 4

O4-a


−39.31◦ −51.59◦ −72.46◦

57.98◦ 29.08◦ 59.34◦

−67.24◦ −51.59◦ −54.54◦

 i = 1

952 22.2%
66.84◦ 30.80◦ −52.42◦

−53.38◦ −33.36◦ −49.75◦

−68.22◦ 45.15◦ −2.41◦

 i = 2


−40.32◦ 35.13◦ −30.60◦

−56.56◦ −29.13◦ −61.69◦

−33.46◦ 21.62◦ 85.40◦

 i = 3


−3.37◦ −11.28◦ 60.49◦

30.26◦ −16.26◦ −26.40◦

51.39◦ 38.64◦ −40.36◦

 i = 4

* Improvements of flutter speed with respect to optimization O1.

according to subsection V-B; configuration O7 is similar to configuration O4 without any constraint imposed.

Configurations O8 and O9 explore the augmented design space (Section V-A), being O8 similar to O6, with the fiber

paths on each ply optimized separately, and considering constant curvature and manufacturing constraints; finally,

configuration O9 is similar to configuration O3-a considering the optimization of the fiber paths of each ply separately,

disregarding manufacturing constraints

Optimization computations were performed using a multi-criteria version of Differential Evolution algorithm [30] .

The optimal solutions (Pareto fronts) for configurations O6, O7, O8 and O9 are shown in Fig. 9. It can be seen that

configuration O6 exhibits a much inferior performance as compared to the other configurations, which is expected since

this configuration explores a reduced design space considering the same fiber path for all plies, under manufacturing

constraint. The optimization solution O7 provides the trade-off in a range of flutter onset (λ∗
f lutter

) from 730 and to 855

and buckling resistance from 5000 N/m to 6750 N/m. Moreover, configuration O8 exhibits much superior performance,

mainly regarding buckling load, as compared to configuration O6. This is expected since O8 explores a broader design
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Table 9 Configurations and design variables used in multi-objective flutter-buckling optimization

Configuration Design Variables Boundaries Constraint

O6 θ0, θ1 [−900 900] r > 635mm

O7


θ02 θ12 θ22

θ01 θ11 θ21

θ00 θ10 θ20

 [−900 900] –

O8 θ0i , θ1i i(1...4) [−900 900] r > 635mm

O9

[
θ01i θ11i

θ00i θ10i

]
i(1...4) [−900 900] –

space. The last optimization O9 produces the best results regarding the flutter behavior in a range of buckling load from

6750 N/m to 7150 N/m.
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(6868,871)

(8003,806)

Fig. 9 Pareto fronts obtained from multi-criteria optimization runs for configurations O6, O7, O8 and O9.

The stability diagrams for the optimal solutions indicated in Fig. 9 with black stars are depicted in Fig. 10. It can be

seen that constant-radius tow-steering does not provide any significant stability improvement considering the same fiber

paths for all plies, as opposed to the solutions that explored the augmented design space, even with the inclusion of the

manufacturing constraint. For illustration, the optimal fiber trajectories for configurations O6 and O7 are depicted in

Fig. 11.

VII. Summary and conclusions
The theoretical modeling and numerical investigation on the aeroelastic-buckling stability optimization of tow-steered

composite plates in the supersonic flow regime were presented in this paper.

The verified Rayleigh-Ritz based model was used to optimize tow-steered plates in a range of scenarios. Particular

attention was devoted to constraints which must be imposed on fiber trajectories to avoid the occurrence of manufacturing

defects, which must be dealt with in practical applications. Those constraints were considered by assuming fiber
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Fig. 11 Optimized trajectories for selected configurations O6 and O7

trajectories of constant radii, as suggested in the literature.

The numerical results obtained from optimization computations confirm previous findings that demonstrate that

tow-steering is an effective means of improving both aeroelastic and buckling performance of composite plates as

compared to traditional, unidirectional laminates. Additionally, it was observed that best performances are associated

with plates having more complex fiber trajectories, which might not be feasible using current manufacturing capabilities.

It was observed that the consideration of manufacturing constraints such as enforcing fiber paths of constant radius

in order to avoid manufacturing defects, considering the same path for all plies, could lead to virtually no improvements

of flutter-buckling stability as compared to unidirectional laminates of same stacking sequence. Hence, an alternative

strategy was considered (use of an augmented design space), which provided significant improvement of the stability

margin and, even under manufacturing constraints.

It was also verified that constant turning radius constraint excessively reduces the design space and leads to

unsatisfactory optimized configurations. Certainly, an intermediate and convenient scenario could be devised by

constraining the minimum turning radius, without however enforcing constant curvature of the fiber paths. In this case,

the modeling procedure should be adapted to include this constrain on the turning radius of the fiber paths using different
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polynomial orders. In addition, tradeoffs between buckling/aeroelastic criteria and other design requirements, such as

strength- and stiffness-related ones, can be searched in a multi-criteria optimization framework as the one suggested

herein.
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