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Abstract
Image reconstruction of ultrasound computed tomography based on the wave equation is able to
show much more structural details than simpler ray-based image reconstruction methods.
However, to invert the wave-based forward model is computationally demanding. To address this
problem, we develop an efficient fully learned image reconstruction method based on a
convolutional neural network. The image is reconstructed via one forward propagation of the
network given input sensor data, which is much faster than the reconstruction using conventional
iterative optimization methods. To transform the ultrasound measured data in the sensor domain
into the reconstructed image in the image domain, we apply multiple down-scaling and up-scaling
convolutional units to efficiently increase the number of hidden layers with a large receptive and
projective field that can cover all elements in inputs and outputs, respectively. For dataset
generation, a paraxial approximation forward model is used to simulate ultrasound measurement
data. The neural network is trained with a dataset derived from natural images in ImageNet and
tested with a dataset derived from medical images in OA-Breast Phantom dataset. Test results show
the superior efficiency of the proposed neural network to other reconstruction algorithms
including popular neural networks. When compared with conventional iterative optimization
algorithms, our neural network can reconstruct a 110× 86 image more than 20 times faster on a
CPU and 1000 times faster on a GPU with comparable image quality and is also more robust to
noise.

1. Introduction

Breast cancer is one of the most commonly diagnosed cancers for females (Ferlay et al 2016, Fitzmaurice et al
2018). Early breast cancer detection increases the chance of curative treatment (Ruiter et al 2012). Ultrasound
computed tomography (USCT) is a promising diagnostic tool in this respect. The method for tomographic
imaging with transmission ultrasound (i.e. ultrasound transmission tomography, UTT) has been intensively
studied in recent years. UTT can record the speed of sound and attenuation simultaneously. The speed of
sound is shown to be closely related to tissue density (Glide et al 2007). It has been proved that by combining
the speed of sound and attenuation images with reflection images, we can discriminate healthy tissue from
cancer masses better than the diagnosis only based on the speed of sound or attenuation (Johnson et al 2007).

Transmission tomography involves solving the wave equation (the Helmholtz equation), which is
associated with a heavy computational burden (van Dongen and Wright 2006, Taskin et al 2018, Kak et al
2002). To reduce the computational costs, approximation methods are used such as straight ray
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approximation, bent ray approximation (Dapp 2013), Born approximation (Duric et al 2011), Rytov
approximation (Simonetti et al 2009), and paraxial approximation (Dapp 2013). The straight ray
approximation ignores refraction and diffraction, which leads to the worst image resolution (Althaus 2016).
Among the above mentioned approximation methods, the paraxial approximation achieves the highest
precision that is similar to full-wave solutions with the computational complexity reduced effectively (Taskin
et al 2018). Recently, this approximation method has been combined with various optimization methods to
accelerate the reconstruction (Wang et al 2019). However, this iterative optimization reconstruction strategy
is sensitive to noise and needs regularization (Gemmeke et al 2016).

In recent years, deep learning has been demonstrated to improve the reconstruction of medical images.
The state-of-the-art deep-learning-based medical image reconstruction falls into two categories: one is to
combine deep learning with traditional algorithms to improve imaging quality, such as using deep learning
as prior (or regularization) term (Jin et al 2017); or using neural networks as post-processing method for
denoising, and artifact removal (Han and Ye 2018). The other category is neural-network-based direct image
reconstruction from measurement data (Zhu et al 2018, Häggström et al 2019, Li et al 2019). One of the
most successful algorithms in this category is Automap (Zhu et al 2018). It combines fully connected layers
with convolutional layers for MRI image reconstruction, where the fully connected layers are used for
domain transform while the convolutional layers are for extracting high-level features from the data and
forcing the image to be represented sparsely in the convolutional-feature space. However, the fully connected
layer requires a huge number of parameters for normal-size images, which makes Automap difficult for
practical applications. In the field of ultrasound imaging, there has been research works on applying neural
network for improving and accelerating the image reconstruction (Yoon et al 2018, Gao et al 2019). However,
up to now, the research on deep-learning-based image reconstruction of transmission tomography is quite
limited. The previous work in this respect yields a poor image quality with the neural network and involves
fully connected layers to deal with small-size images only (Cheng et al 2019). In this work, we propose a fully
learned image reconstruction approach using a fully convolutional neural network for UTT. The
contributions of this paper are embodied in four aspects:

• We designed a neural network that can efficiently reconstruct the UTT image. The proposed reconstruction
method overcomes the deficiency of fully connected neural networks and can work on normal-size inputs
with a reasonable number of model parameters.

• We show the importance of advanced down- and up-scaling (DUS)methods for efficient image reconstruc-
tion by neural networks, which allows a larger number of parameters with a less computational burden.

• Compared with other state-of-the-art neural networks, the proposed neural network convergesmuch faster
in the training process and achieved a higher imaging quality.

• Compared with traditional algorithms, the proposed neural network is more robust to noise, at least 20
times faster on a CPU and 1000 times faster on a GPU. Its robustness to uncertainties in ultrasound trans-
ducer locations is also demonstrated.

2. Problem formulation

The transmission tomography problem can be expressed as the minimization of the following objective
function:

J(η) = ∥T (η)− p∥22 (1)

where η ∈X is the target image to be reconstructed and p∈Y is the recorded data (frequency-dependent
pressure field). X and Y are typically Hilbert Spaces, and the forward operator T : X→ Ymodels the
relationship between the target image and the recorded data. In some conventional iterative algorithms, this
inverse problem is often regularized by assuming that the reconstructed speed-of-sound (SoS) profile is
smooth. The smooth constraint can be implemented by including the total variation (TV) of the
reconstructed SoS vector ∥c∥2TV (Ramirez et al 2016, Ozmen et al 2015). Then we have

J(η) = ∥T (η)− p∥22 +λ∥c∥2TV (2)

with weighting parameter λ.
As for the forward operator T , we consider the wave equation in the frequency domain. The Helmholtz

equation models the wave propagation of ultrasound through an acoustic background medium including
refraction, diffraction, and multiple scattering as

∆p+ k20(1+ η)2p= 0 (3)
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Figure 1. Steps of the paraxial approximation forward model. The ROI (indicated by the red circle) is covered by the
computational grid of paraxial approximation. The ultrasound is emitted in an approximately spherical wave from the emitter in
z-direction.

where p describes pressure field in the frequency domain (i.e. the Fourier transform of the raw waveform
data), and the background wave number k0 = ω/c0 with angular frequency ω and the SoS of the background
medium c0. The refractive index is 1+ η and η = a+ i µk0 accounts for the deviation of the inhomogeneity
from the background medium. Specifically, Re(η) = a= c0

c − 1 is related to SoS, where c and c0 are the SoS
in the soft tissue and the background medium, respectively. Im(η) = µ

k0
depends on the parameter µ that

accounts for frequency dependent attenuation with i=
√
−1.

The full solution of the Helmholtz equation poses a very high computational burden. In this paper we
use hereby the paraxial approximation (Taskin et al 2018, Althaus 2016, Thomson et al 1983, Levy 2000, Saad
and Lee 1986) which is faster to compute than the full-wave inversion.

According to Althaus (2016), we consider that the wave sources (i.e. the emitters) are arranged around a
circle and the receivers (i.e. transducers) are put in a line at the opposite side of the emitters, where the
relative position of the emitters and transducers is fixed. For each source, the wave propagates from a slice to
its neighboring slice (as shown in figure 1), where the average ray direction is denoted by z. The forward
propagation from the kth z slice to the (k+ 1)th z slice on a 2D computational grid [1,Nx]× [0,Nz] with
equidistant step width∆x and∆z can be calculated by the following equation:

pk+1 = ei∆zk0ηk · F−1{ei∆z
√

k20−ξ2 · F(pk)}. (4)

The index k at p and η represent the kth z slice. The spectral variable ξ = 2π
∆x(Nx−1) [−

Nx
2 + 1, . . . ,0, . . . ,

Nx
2 ]

T ∈ RNx . The 1D discrete Fourier transform with respect to the spatial coordinate x and the 1D inverse
discrete Fourier transform are denoted by F and F−1, respectively. For the emitter at different position of
the circle, we rotate the computational grid around the region of interest (ROI) accordingly. Supposing we
have NE emitters and NT transducers at the opposite position of each emitter and their relative positions are
fixed, a full scan consists of NE×NT recorded waves.

Our objective in this paper is to achieve fully learned direct reconstruction of image η from data p, i.e.
T −1 : Y→ X with a convolutional neural network only. The structure of the subsequent paper is organized
as follows. We will show the network architecture and training strategy in section 3; the material and
methods for experiments are illustrated in section 4; and the results in section 5; Finally, discussion and
conclusion are put in section 6.

3. Network architecture and training strategy

3.1. Neural network architecture
For direct image reconstruction from recorded data, the value of each pixel is related to the measurement
data from all sensors. Thus we need a neural network with a large receptive and projective field (Le et al

3
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Figure 2. The receptive and projective field of the hidden layers in different neural networks. (a) The convolutional network with
multiple down- and up-scaling operations; (b) the convolutional neural network without scaling operations; (c) the fully
connected neural network.

2017) that can cover the whole input sensor data and output image data. Recent work normally employs a
fully connected neural network to obtain the maximum receptive and projective field (as shown in figure
2(c). However, the fully connected neural network is limited to reconstructing small 2D images due to its
large memory requirements. Apart from fully connected neural networks, a UNet (Ronneberger et al 2015)
can be another option, which uses pooling units (for down-scaling) and unpooling units (for up-scaling) to
gain a large receptive and projective field. However, the normal UNet uses low-pass filters such as
max-pooling or average pooling methods to finish the downscaling operation. As demonstrated in Han and
Ye (2018), Ye et al (2018), even though the UNet has by-pass connection to compensate for the loss of high
frequency signal, it still emphasizes too much on the low-frequency signal because of the duplication of the
low frequency branch. In Liu et al (2018), wavelet-based scaling methods are used to give more focus on
high-frequency signals. However, as the wavelet transform is a special case of a convolutional layer, using the
wavelet for down-scaling may limit the performance when compared with the case of using a trainable
convolutional layer (Yu et al 2019). In this paper, we adopt a convolutional layer with a stride of 2 for tensor
down-scaling as in Yu et al (2019), Haris et al (2018). The sub-pixel convolutional unit (Shi et al 2016) is
used for up-scaling because of its low computational cost.

The overall architecture of the proposed neural network is shown in figure 3. The whole neural network
is like a big U-shaped residual neural network containing 4 densely connected small DUS units that each
forms a small U-shaped residual neural network. We hereby denorminate the neural network as multiple
W-net (mWnet for short). As a whole, the neural network comprises three parts: feature extraction, domain
transform, reconstruction.

• Initial feature extraction: The convolutional layers with a stride of 2 are used to down-scale the feature
map. At each scaling level, a residual block with nine convolutional layers (as shown in figure 3) is used to
encode the feature map.

• Domain transform: Since the domain transform is mainly done by the ‘high level’ layers (i.e. the hidden
layers processing highly down-scaled feature maps) with a large receptive and projective field, it is neces-
sary to put more parameters to the ‘high level’ layers. Inspired by the deep-learning-based work in image
denoising (Yu et al 2019, Abdelhamed et al 2019) and super-resolution (Haris et al 2018), we add multiple
down- and up-scaling (DUS) units to gain the number of ‘high level’ layers. Since these ‘high level’ layers are
used to process the highly scaled feature maps only, the filters from these layers are more computationally
efficient than those filters in the ’low level’ layers (i.e. the hidden layers processing feature maps with less
downscaling). Inspired by the work of DenseNet (Huang et al 2017), we give a dense connection between
these down- and up-scaling (DUS) units to further boost the performance.We use 1× 1 convolutional layer
for feature pooling and dimension reduction.

• Reconstruction: Immediately after the domain-transform part, we put a residual block after every up-
scaling operation to reconstruct the image. We use sub-pixel convolutional layers to up-scale the features
without degradation of features.With skip connection from the feature extraction part to the reconstruction
part, we can reuse the extracted feature at different scaling levels to enhance the accuracy of reconstruction.

We refer to the network with 1 DUS unit as mWnet_1 and the network with 4 DUS units as mWnet_4.
The size of input tensor is 2× 110× 128 (110 transducers and 128 emitters), and the size of output tensor is

4
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Figure 3. The architecture of the proposed network. (a) The overall architecture of mWnet with 4 DUS blocks; (b) the DUS block;
(c) Res-N block of N channels.

2× 110× 86 (containing the real and imaginary part of η that are related to the SoS and attenuation,
respectively). Before processed by convolutional layers, each input tensor is first padded into a 2× 128× 128
tensor. After the processing of convolutional layers, each output tensor is obtained by cropping a
2× 128× 128 tensor. The basic convolutional unit consists of one convolutional layer followed by PReLU
(He et al 2015) activation function. We only use convolutional kernels with size= 3× 3 or 1× 1. The total
number of parameters for mWnet_1 and mWnet_4 are about 34.5 million and 113.6 million, respectively.
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3.2. Training Strategy
The model is trained on the simulated data derived from natural images from ImageNet dataset (Deng et al
2009) using paraxial approximation forward model. In the training of the neural network, to augment the
data and speed up the convergence (Audhkhasi et al 2016), random Gaussian noise is added to the input
tensor with a probability of 0.7. As for the noise level, it should be noted that too high a noise level may affect
the accuracy of the reconstruction, while an excessively low noise level (close to zero) cannot lead to a decent
boost of convergence. Empirically, we set the SNR (Signal to Noise Ratio) range as 112–142 dB. Adam
optimizer and l1 loss are applied. For the implementation of l1 loss, the real part and imaginary part of η are
multiplied by a coefficient of τ and 1− τ , respectively. We empirically set τ = 0.9 for optimal training
performance. To reduce the training time, we adopt the training strategy described in Smith et al (2017) by
fixing the learning rate lr= 1.0 · 10−4 and increasing the batch size gradually. The model is first trained with
a batch size of 16 for 49 epochs, then a batch size of 32 for 8 epochs, a batch size of 64 for 8 epochs, a batch
size of 128 for 8 epochs, a batch size of 256 for 8 epochs, and finally a batch size of 512 for 8 epochs. To
implement the training with a large batch size, we split a large batch of samples into a few mini-batches of
size 16, and accumulate the gradients of these mini-batches before updating the variable.

To compare the neural networks with different numbers of DUS units, we implemented two different
models in Pytorch (Paszke et al 2017): mWnet_1 with one DUS unit only, and mWnet_4 with 4 DUS units.
The training of all these two models follows the same strategy. The training was performed on a server with
GPU of NVIDIA TITAN XP, where the training of neural network mWnet_1 and mWnet_4 needed about
4.5 and 6.3 days, respectively.

For comparison, we further trained three other neural networks with the same training strategy:
Automap, UNet, and FC-DenseNet103 (Jégou et al 2017). Both of these three neural networks have been
used in the reconstruction of MRI images successfully (Chen et al 2019).

For the tests on uncertainties in transducer locations, the mWnet_4 trained using the above training
strategy is further trained on the dataset simulated with perturbed settings and follows the same training
strategy.

4. Material andmethods

4.1. Data preparation
The image size for all phantoms is 110× 86 with each pixel of size 1.88 mm, where the radius of the
measuring device is 130 mm and the radius of the phantom is 79.7 mm, and 110 transducers and 128
emitters are simulated at the frequency of 0.5 MHz.

The natural images from ImageNet are used to generate training set and validation set. We obtain
grayscale images with pixel value x∈ [0, 255] by extracting Y-channel luminance from the RGB color images.
In total, 49,998 natural grayscale images are accumulated from ImageNet. Specifically, 47,998 images are
used as training set. The size of the training set is further quadrupled by combining two data augmentation
operations: grayscale-value reversing and 90 degree rotation. Considering any pixel with grayscale value x,
the grayscale value is reversed as 255− x. Each image is then rotated through 90 degrees to double the size of
the training set. After data augmentation, all the 47, 998× 4 images are scaled to a size of 110× 86. Then, for
validation set, the remaining 2000 images are used and scaled to the same size. For any grayscale image
derived from ImageNet set with value in the range of [0, 255], its grayscale value is scaled and discretized into
six integers i.e. 0, 1, 2, 3, 4 and 5 which represents water, skin, fat, gland, tumor, and calcification, respectively.

The test dataset comprises four standard test phantoms (as shown in figure 4) and nine medical images
that are randomly selected from the OA-Breast Phantom dataset (Lou et al 2017) (as shown in figure 5). As
for the nine medical images, the pixels for different tissues in the breast are labeled as: 0 for background, 2 for
fibro-glandular tissue, 3 for fat, 4 for skin layer, and 5 for blood vessel. All the images are scaled to the size of
110× 86.

Given the image set with each tissue labeled, we assign the value of η for each pixel according to the
property of SoS and attenuation for each tissue. Specifically, for water, skin, fat, gland, tumor, and
calcification, the values simulated for SoS are 1485, 1570, 1450, 1490, 1560, and 6420 m s−1, respectively; and
the values simulated for attenuation are 0, 2.08, 1.26, 0.88, 1.60, and 8.0 dB/cm/MHz, respectively. The η
image is then smoothed by a Gaussian filter so as to ensure that the area between different tissues has a
smooth gradient of SoS and attenuation and thus becomes more realistic.

The measurement data collected by receivers (i.e. frequency-dependent sound pressure p in the frequency
domain) is then calculated based on the η image and the paraxial approximation method for wave equation
as described in Althaus (2016). The complex-valued measurement data (of size 110× 128) is turned into a
2× 110× 128 real input tensor. Finally, the element values of all the input tensors and target images are
scaled to the range of (0, 1).
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Figure 4. Four standard test samples.

Figure 5. Nine medical image samples from the OA-Breast Phantom dataset.
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Figure 6. The learning curves for different neural networks with horizontal axis the training steps and vertical axis the l1 loss.

Table 1. The training time and number of parameters for different neural networks.

Automap UNet FC-DenseNet103 mWnet_1 mWnet_4

Training time (days) 4.6 2.1 4.7 4.5 6.3
Number of parameters (million) 356.0 7.8 9.3 34.5 113.6

Table 2. The average runtime per image for different algorithms.

Newton
CG L-BFGS Automap UNet

FC-Dense
Net103 mWnet_1 mWnet_4

Runtime 49.1 min
(CPU)

24.9 s
(CPU)

0.011 s
(GPU)

0.008 s
(GPU)

0.014 s
(GPU)

0.778 s
(CPU)

0.012 s
(GPU)

1.056 s
(CPU)

0.018 s
(GPU)

To test the algorithms’ robustness to uncertainties in transducer locations, we generate another set of
measurement data based on all the above-mentioned η images and the paraxial approximation method by
adding random additive white Gaussian noise to transducers’ location parameters. Specifically, we add
zero-mean white Gaussian noise of standard variance 0.02

◦
to the rotation angle, and we add zero-mean

white Gaussian noise of standard variance 0.01 mm to both the x value and the z value (as shown in figure 1)
of each receiver.

4.2. Performance evaluation
Imaging quality is quantified using two standard metrics: normalized root mean square error (NRMSE) and
structure similarity (SSIM). The NRMSE is defined as:

NRMSE=

√∑M
i=1

∑N
j=1[x(i, j)− y(i, j)]2

MN(xmax − xmin)2
(5)

where x and y denote the ground truth and the reconstructed image, respectively.M and N are the number
of pixels for row and column, respectively. xmax and xmin are the maximal and minimal pixel value of the
ground truth image, respectively.

The SSIM is defined as:

SSIM=
(2µyµx + c1)(2σyx + c2)

(µ2
y +µ2

x + c1)(σ2
y +σ2

x + c2)
(6)

where µy is an average of y, σ2
y is a variance of y, and σyx is a covariance of y and x. There are two variables to

stabilize the division such as c1 = (k1L)2 and c2 = (k2L)2. L is a dynamic range of the pixel intensities. k1 and
k2 are constants with k1 = 0.01 and k2 = 0.03 by default.

8
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Figure 7. The average RMSE and SSIM results on simulated images. The lines with different colors represent the quantitative
results for different algorithms. The lines marked with asterisks are results for the imaginary part of η and lines without asterisks
are results for the real part of η.

Figure 8. The reconstructed SoS (m s−1) and attenuation (dB/cm/MHz) results on Phan 5 with SNR= 50 dB.

5. Results

We compare mWnet_1 and mWnet_4 with three neural networks: Automap, UNet, and FC-DenseNet, and
two other traditional reconstruction algorithms that use different optimization methods: Gauss Newton CG
(Gemmeke et al 2016) and L-BFGS (Wang et al 2019) on a laptop with CPU Intel Core i5 8400 2.80GHz and
GPU Nvidia GeForce RTX 2070. All the algorithms are tested with their optimal default settings, where the
maximum iteration numbers for Gauss Newton CG and L-BFGS are 500 and 100, respectively.

9
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Figure 9. The reconstructed SoS (m s−1) and attenuation (dB/cm/MHz) results on Phan 6 with SNR= 40 dB.

Figure 10. The reconstructed SoS (m s−1) and attenuation (dB/cm/MHz) results on img07bx00328 from the OA-Breast Phantom
dataset with SNR= 30 dB.

Figure 11. The reconstructed SoS (m s−1) and attenuation (dB/cm/MHz) results on img07bz00347 from the OA-Breast Phantom
dataset without noise.

The learning curves for different neural networks are displayed in figure 6. We see that the proposed
neural networks converge much faster than other algorithms. Table 1 shows the general training time and
number of parameters. The average runtime per image for different algorithms is shown in table 2. We see
that compared with traditional algorithms, deep-learning-based algorithms are much faster on CPU.
Running on GPU can further speed up the deep-learning-based reconstruction significantly. Even though
the number of parameters of mWnet_4 is about 3 times as large as that of mWnet_1, the increase of runtime
of mWnet_4 is less than a factor of two. This is because the additional parameters in mWnet_4 lie only in the
DUS units that process the down-scaled tensors.

The quantitative results are presented in figure 7 for both the four standard test images and the medical
images derived from the OA-Breast Phantom dataset. We have the input data corrupted by Additive white
Gaussian noise at 4 different noise levels with the signal-noise-ratio SNR= 30, 40, 50 dB and noise-free,
respectively. As a whole, the neural network is more robust to noise and can reconstruct both the real part
and imaginary part well, while the traditional algorithms can only reconstruct noisy real part and the

10
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Figure 12. The reconstructed SoS (m s−1) and attenuation (dB/cm/MHz) results on img07bx00300 from the OA-Breast Phantom
dataset simulated with perturbed transducer locations.

imaging quality decreases significantly with the increase of noise. In addition, it can be noted that mWnet_4
is more robust to noise than mWnet_1, especially at a high noise level such as SNR= 30 dB.

The visual results for standard test samples and the medical images at different noise levels are shown in
figures 8–11, which verify the proposed neural network’s superior imaging quality for noisy inputs.
Specifically, on the one hand, for the reconstruction of the real part of η, image quality by mWnet is
comparable to that by traditional algorithms for noise-free cases, and mWnet is superior to the traditional
algorithms at a high noise level (i.e. SNR= 30 dB in figure 10). On the other hand, for the reconstruction of
the imaginary part, mWnet can always achieve a decent visual performance, while traditional algorithms
normally fail to reconstruct a meaningful image in the presence of noise.

In addition, mWnet_4 has much better visual performance than mWnet_1 for noisy cases. For example,
in figure 8, the sides of the rectangular are straight in the result for mWnet_4 but are distorted in the result
for mWnet_1; in figure 10, mWnet_1 has more artifacts than mWnet_4.

Figure 12 shows mWnet_4’s robustness to uncertainties in transducer locations compared with Gauss
Newton CG. With more training on the dataset simulated with perturbed settings, the mWnet_4’s imaging
quality is improved further.

6. Discussion and conclusion

The proposed neural networks show superior imaging quality to any other neural networks including the
Automap, FC-DenseNet, and the classical UNet. Among these three neural networks, the Automap is the
most inefficient one with the worst imaging quality and the highest number of parameters due to the use of
fully connected layers. On the other hand, the fully convolutional neural networks FC-DenseNet and UNet
have the smallest number of parameters but only yield a blurred result. Meanwhile, the proposed neural
networks show the highest imaging quality and maintain an acceptable inference speed. Compared with the
other two popular convolutional neural networks FC-DenseNet and UNet, the factors that lead to mWnet́s
superior performance in both imaging quality and efficiency are: 1) As demonstrated in the section of
Network Architecture and Training Strategy, the proposed neural networks use advanced down-scaling and
up-scaling operators, which give more emphasis on the high-frequency part of the data; 2) The proposed
neural networks iteratively implement multiple down- and up-scaling operator to gain the number of layers
with large receptive and projective field, which also allows the efficient implementation of a large number of
parameters.

The results show that with more DUS units in the hidden layers, the neural network obtains a higher
imaging quality and becomes more robust to noise, which is also confirmed by the works in Yu et al (2019),
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Haris et al (2018). Although the increase of the number of DUS units leads to a significant increase in model
size, it is still much smaller than the neural network using fully connected layers, and the computational
burden is controlled in an acceptable range. The multiple down-up scaling strategy allows the neural
networks to implement more parameters efficiently with much lower computational burden. It is also
possible to extend the mWnet to dealing with larger-size 2D or 3D images by putting more scaling operations
to both the initial feature extraction part and the reconstruction part. This kind of extension ensures that the
size of the feature maps processed by DUS units is within the receptive field and projective field of hidden
layers in DUS units. Adding more scaling operations will increase a tiny number of parameters and help
control the computational burden within a reasonable range. Apart from the number of scaling operations in
the initial feature extraction part and the reconstruction part, the number of DUS units in mWnet should
also be changed based on experiments.

The traditional algorithm Gauss Newton CG gives a result much better than the result by L-BFGS for the
noise-free test cases. It is because of their different settings on initialization, step length, and iterative number,
which make the implementation of Gauss Newton CG more suitable for noise-free cases. Meanwhile, we also
see that these conventional algorithms all perform better than mWnet on noise-free cases. One reason for
this phenomenon is that Gauss Newton CG and L-BFGS use exactly the same forward model for simulation
to iteratively optimize the solution, while neural network only learns the solution indirectly via the dataset
generated based on the forward model and ends up yielding an approximate solution. When training
dataset is increased, this gap between the traditional algorithms and neural networks can be narrowed
further.

It should be noted that the traditional iterative optimization algorithms (Gauss Newton CG and L-BFGS)
are often stuck into various local optimal solutions in the presence of noise or uncertainties in transducer
location, while the neural network can obtain an approximation solution that is closer to the global solution
easily. Meanwhile, the fully learned neural network approach is also much faster than the iterative
optimization approaches. However, in the case of low noise level, the neural network is inferior to traditional
algorithms in terms of imaging accuracy. For higher imaging accuracy of the neural network, one solution is
to enlarge the training set or to involve medical images into the training set for finetuning. In addition, the
imaging quality can be further improved by using the neural network to get a good initialization for
traditional optimization.

Since the wave-based transmission tomography has high degrees of scattering due to the long wavelength
at the scale of the objects, the UTT image reconstruction has higher complexity than Radon inversion in the
straight-ray-based tomography (such as x-ray CT) and is of high non-linearity, the favorable performance of
the proposed neural network on UTT image reconstruction proves its potential to tackle other image
reconstruction problems such as CT and MRI image reconstruction.

In the future work, we will continue investigating how to improve the efficiency of the neural network
further to deal with large-size images. We will also test the proposed neural networks on real data from
different imaging tasks.
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