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Estimation of Diffusion Properties
in Crossing Fiber Bundles
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Kees A. Grimbergen, Lucas J. van Vliet, and Frans M. Vos

Abstract—There is an ongoing debate on how to model diffu-
sivity in fiber crossings. We propose an optimization framework
for the selection of a dual tensor model and the set of diffusion
weighting parameters �, such that both the diffusion shape and
orientation parameters can be precisely as well as accurately es-
timated. For that, we have adopted the Cramér-Rao lower bound
(CRLB) on the variance of the model parameters, and performed
Monte Carlo simulations. We have found that the axial diffusion
needs to be constrained, while an isotropic fraction can be modeled
by a single parameter ���. Under these circumstances, the Frac-
tional Anisotropy (FA) of both tensors can theoretically be indepen-
dently estimated with a precision of 9% (at SNR � ��). Leven-
berg–Marquardt optimization of the Maximum Likelihood func-
tion with a Rician noise model approached this precision while the
bias was insignificant. A two-element �-vector � � � � � � � 	
��� mm �s was found to be sufficient for estimating parameters
of heterogeneous tissue with low error. This has allowed us to es-
timate consistent FA-profiles along crossing tracts. This work de-
fines fundamental limits for comparative studies to correctly ana-
lyze crossing white matter structures.

Index Terms—Cramér-Rao analysis, diffusion properties, dif-
fusion weighted magnetic resonance imaging, dual tensor model,
Monte Carlo simulations.
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I. INTRODUCTION

T HE integrity of white matter structures in the brain is fre-
quently studied by means of diffusion Weighted magnetic

resonance imaging (DW-MRI). Classically, the diffusion in the
brain is described by a rank-two diffusion tensor which is es-
timated from the diffusion weighted images (DWIs). The local
geometry of axons is quantified by measures such as the frac-
tional anisotropy (FA), which measures the anisotropy of the
diffusion process within a voxel. The orientation information,
extracted from the DWIs, allows the reconstruction of white
matter bundles by means of fiber tractography [1].

There is an ongoing debate on how to model diffusivity in
fiber crossings. Here the diffusion profile cannot be adequately
described by a single tensor [2]. We propose an optimization
framework for the estimation of diffusion parameters at such
locations. Our focus is on unbiased and highly reproducible es-
timation of both the diffusion shapes and the orientations of the
fiber bundles. The diffusion shapes reveal fiber integrity that
can be used as biomarkers: both in animal [3] and human brain
tissue [4], axial and radial diffusivities were related to under-
lying biology. Concurrently, the optimal acquisition parameters

are determined to facilitate the diffusion parameter estima-
tion. It has already been noted that when diffusivity informa-
tion in multiple compartments is required, data need to be ac-
quired at multiple -values [5]. We assume constant scanning
time and uniformly distributed gradient directions. We will use
the framework to determine the optimal dual tensor model. It
will be shown that the axial diffusion of the two tensors involved
must be constrained (taken identical), while an isotropic fraction
can be simultaneously modeled by a single parameter. More-
over, it will be demonstrated that under these circumstances the
FA of the both tensors can be independently estimated with high
precision.

We adopt the Cramér-Rao lower bound (CRLB) on the vari-
ance of the dual tensor model parameters to determine in theory
the optimal precision of the parameters. Monte Carlo simula-
tions are performed to study the degree to which this precision
is achieved in practice and to address a potential bias in the es-
timation. We will verify the findings by reconstructing FA-pro-
files along crossing fiber bundles.

The relevance of our work is in comparative studies where the
goal is to assess subtle differences in diffusion shape between
patients and matched controls. As an example, an increase in
FA in the posterior limb of the internal capsule, as reported in
a study of schizophrenia [6], might need reinterpretation due
to possibly incorrect single tensor modeling in the presence of
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the crossing superior longitudinal fasciculus. A study of Amy-
otrophic Lateral Sclerosis reported decreased FA-values in the
corticospinal tract, except at the crossing with the corpus cal-
losum [7]. Preliminary work on estimation of diffusion shape
parameters of a dual tensor model resulted in unstable results
[8].

II. BACKGROUND

A. Diffusion Modeling

We aim to quantify the independent diffusion profiles of
two axonal bundles that appear as “crossing fibers” within
the typical resolution of DW-MRI (2 mm at a field strength
of T). A number of solutions has been proposed for these
situations, mainly focusing on reconstructing fiber orientations.
Two- or multi-tensor approaches [9]–[11], higher order tensors
[12] or constrained spherical deconvolution [13] parametrically
extend conventional diffusion tensor imaging. Nonparametric
approaches have also emerged, including q-ball imaging [14].
Tractography results are becoming more accurate when per-
formed in a dual tensor field [15]–[17] or in a fiber orientation
distribution field [18].

Assuming the diffusion to be mono-exponential and
Gaussian, the measured diffusion weighted signal is
initially modeled to contain a contribution of up to two fiber
bundles and an isotropic part

(1)
with being the signal without diffusion weighting, the
amount of diffusion weighting corresponding to a gradient di-
rection , selected from a vector of length with unique
components, and the (3 3) diffusion tensors of the two
fibers, the scalar amount of isotropic diffusion and the
volume fractions of the diffusion processes summing up to one,
i.e., .

An incorrect representation of the noise properties, particu-
larly assuming a Gaussian instead of a Rician noise distribu-
tion in the DWIs, may also render an inappropriate (i.e., biased)
signal model [19]. A single tensor model was extended by esti-
mating the Rician noise level in a maximum likelihood frame-
work [20], [21]. Rician noise reduction by spatial regularization
[22], [23] can be used to limit the bias in estimates of a single
tensor model. Recently, the linear minimum mean square error
(LMMSE) estimator [24] was proposed to decrease the noise in
DWIs in an efficient way.

Previously, the Fisher Information matrix was used to assess
the expected (co)variance of parameters of a single tensor model
[20], which was also explored by means of an error propagation
framework [25].

B. Optimization of Diffusion Imaging

The diffusion weighting parameter selects the diffusivity
scale of the measurements. The amount of diffusion weighting
is determined by the diffusion weighting parameter , which is
calculated from the selected gradient strength and diffusion time

, where is the time between both gradients and
the diffusion weighting gradient duration [26].

The expected diffusivity values determine the range for which
is optimal. Measurements of the apparent diffusion coeffi-

cients (ADC) in white matter show values in the range of
to mm s [27]. At first glance the inverse1

diffusion values indicate that -values in the range of
mm s to mm s should be selected. For lower

-values, only isotropic diffusion between axonal boundaries is
measured. Measuring at higher -values ( mm s)
will introduce a sensitivity to different compartments such as the
myelin sheet [30], giving rise to restricted and hindered diffu-
sion [31]. In the latter case, the Gaussian diffusion assumption
is no longer valid, which is beyond the scope of this work.

For a broad range of applications (such as stroke), these
diffusivity values are best determined with a -value of

mm s [32], by means of a spin-echo EPI sequence
with typically 6–45 gradient directions [7]. Multiple fiber
orientations are best modeled at a higher diffusion weighting
contrast using mm s [8], [33]. Multiexponential
signal decay emanating from multicompartments in a study to
Multiple Sclerosis was only visible at an even higher -value
of mm s [34]. In order to independently estimate
two diffusion profiles, a vector containing two distinct values
( ) must be used [5].

The DW-signal is increasingly attenuated with higher
-values, as is shown in (1), such that its signal-to-noise ratio

( ) is optimal at low -values ( mm s
[35]). For high values ( mm s) noise dominates
the signal for all expected diffusion values. Concurrently, a
low diffusion weighting implies poor contrast between low and
high diffusivities. The contrast-to-noise ratio is thus expected
to be optimal for intermediate -values.

By minimizing the CRLB, was optimized for higher ra-
tios of the maximum and minimum diffusion coefficients in
the sample, modeled by a single tensor [36]. Maximal gradient
strengths for varying axon diameters were found in a composite
hindered and restricted model of diffusion, allowing for mea-
suring direct tissue-microstructure features [37].

III. THEORY

A. Dual Tensor Model Parameterization

The dual tensor model [(1)] needs to be parameterized such
that its estimated values reside in a well-defined range. We will
parameterize by its eigenvalues and rotations ,

. The matrices describe rotations around the
–, – and –axes: .

The first two rotations determine the orienta-
tion of the plane in which the principal eigenvectors of both
tensors reside; represents the mean orientation

with deviations of the principal eigenvectors of the two
tensors , 2. The eigenvalues are contained in the diagonal
matrices . The diffusion perpendicular to the fiber orientation
is assumed to be isotropic such that its eigenvalues are identical
[5], which reduces the number of free parameters. Let and

1The naive inverse balances reported optimal values for � of ������ [28] and
����� [29].
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TABLE I
DUAL TENSOR MODELS WITH INCREASING DEGREES OF FREEDOM. PARAMETERS MAY BE ESTIMATED (’�’), CONSTRAINED TO OTHER PARAMETERS

(E.G., � � � ), SET CONSTANT, OR OMITTED (‘0’). IN EACH MODEL THE NOISE LEVEL � IS SET TO THE VALUE ESTIMATED WITH MODEL #2.
THE UNITS OF THE DIFFUSION VALUES ARE ����� � �� mm s . MEAN ��� AND STANDARD DEVIATION OF THE PARAMETER VALUES ��� ����	

USED IN THE EXPERIMENTS, IN WHICH THE ANGLES � ARE RANDOMLY CHOSEN (RND)

denote respectively the axial and perpendicular diffusion.
Now yields

Non-negativity of diffusivity values is imposed by adopting the
exponential mappings . The model needs to be further
constrained such that the eigenvalues are sorted, i.e., .
For that purpose, the axial diffusivity is computed by adding
the average perpendicular diffusivity to a
positive difference between axial and perpendicular diffusivity

. This formulation also allows us to impose an equality
constraint on and (see Table I below). Volume fractions
are defined in the range by error functions , in
which . All these constraints
are implemented in the following parametrization:

(2)

Employing this parameterization, the DW-signal [(1)] is de-
scribed by the 11-dimensional parameter vector

(3)
The [38] of an axially symmetric tensor is given by

(4)

B. Maximum Likelihood Estimation

The DWIs contain the magnitude of the complex MR signal.
It is assumed that the constituting components are indepen-
dently affected by Gaussian noise, such that the result is Rician
distributed [39]. Consequently, the probability density function

of a measured signal in a certain gradient direction
with a chosen diffusion weighting is given by

(5)
with the true underlying value given the parameter vector

(and ), the standard deviation of the noise and
the zeroth order modified Bessel function of the first kind. Since
the DWIs are independent, the joint probability density function

of the signal profile in a voxel is given by the
product of the marginal distributions for the measured signal
in each of the diffusion weighted directions

(6)

However, given measurements and unknown , the
function is considered a likelihood function, indi-
cated by . The Maximum Likelihood (ML) estimate
of the parameters is obtained by maximizing the log likeli-
hood function: . When the DWIs
are assumed to be Rician distributed, the likelihood function is
given by

(7)

For high signal-to-noise ratio ( [19]) the
Rician distribution can be approximated by a Gaussian distri-
bution. In that case the ML estimator reduces to a least-squares
estimator.

The ML estimator has a number of favorable statistical prop-
erties. First, it can be shown that, under very general condi-
tions, the ML estimator asymptotically achieves the CRLB, in-
troduced in Section III-C) i.e., for an increasing value of .
Second, it can be shown that the ML estimator is consistent,
which means that it asymptotically converges to the true value of
the parameter in a statistically well-defined way [40]. Whether
these properties also apply to a small number of observations
can be assessed by experiments on synthetic (noise corrupted)
data.
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C. Cramér-Rao Analysis for Model Selection and Optimizing

Any chosen model and its parameterization should be such
that the parameters can be estimated precisely. Simultaneously,
the acquired data should support the model to be fitted: the
model, as described in Section II-A, is to be selected with re-
spect to the precision in the estimation of . The dimensionality
of should be constrained in case the precision in specific pa-
rameters is low. In addition, the diffusion weighting influences
the model fit (as argued in Section II-A) and needs to be care-
fully selected. For these purposes, we will adopt a Cramér-Rao
analysis. The CRLB is the theoretical lower bound on the vari-
ance of any unbiased estimator of the parameters.

The Fisher information matrix is a measure of the amount of
information about that is present in the data. It is derived from
the probability density function of the data [41], [42]

(8)

Diagonal elements of the inverse of the Fisher Information ma-
trix reflect the variance of parameters, whereas off-diagonal
elements relate to covariance between parameters. Effectively,
the CRLB is a function for the curvature of the cost function,
given by . The CRLB-inequality yields [19]

(9)

Here, is the Jacobian of a potential transformation
of the parameter vector to a measure of interest, as

explained in the appendix .
The CRLB implies that no unbiased estimator can be found

for which the variance of the estimated parameters is lower
than the diagonal elements of the CRLB matrix [40]. This
inequality does not directly bound the off-diagonal elements,
which specify the covariance between two parameters. It may
be shown however, that the covariance of two ML-estimated pa-
rameters will converge to the corresponding
off-diagonal element when the number of samples
goes to infinity [40].

The CRLB is quadratic in the parameters and is thus not di-
rectly comparable to the parameter values. We examine, there-
fore, the dimensionless relative CRLB (rCRLB), defined by

(10)

where the indices denote the respective matrix element of
CRLB and the true parameter value.

The type of noise that affects the measurements needs to be
properly addressed in the Fisher Information Matrix. For the
Rician noise model the Fisher information matrix is given by
[43]

(11)
with and a modified Bessel function of
the first kind. The expected value can be calculated numerically

[43]. For high SNR, the noise distribution can be approximated
by a Gaussian. Equation (11) then simplifies to

(12)

IV. EXPERIMENTS

First, we build the dual tensor model by analyzing which
model parameters can be sufficiently precisely estimated and
which need to be constrained (Section IV-A). Second, the op-
timal -values are determined for the chosen diffusion model
in which we consider both a “homogeneous” and a “heteroge-
neous” sample, the latter containing a distribution of parameter
values (Section IV-B). Cramér-Rao and Monte Carlo analyses
allow us to do so. Third, in brain data FA-profiles are derived
along fibers tracked through a crossing of white matter tracts in
data of varying quality using different model parameterizations
(Section IV-C).

A. Model Selection

We aim to build a dual tensor model such that its parame-
ters can be estimated both precisely and accurately given a spe-
cific SNR and the number of diffusion encoding directions (see
below). Different models of increasing complexity are proposed
in Table I. For these models, we study how the axial and per-
pendicular diffusion parameters of the tensors need to be con-
strained to be estimated with low error. Also, the parameteri-
zation of the isotropic compartment is studied. Including such
a compartment, for a single tensor model, yields a degenerated
problem [44].

1) Maximal Precision: Cramér-Rao Analysis: The rCRLB,
denoting the maximal precision by which parameters of interest
( ) can be estimated, is defined in (10). The upper limit for the
rCRLB to be maintained throughout this paper is 15%. This
value is times larger than the 10% limit by which single
tensor model parameters are estimated [20], since the length of
our parameter vector is approximately twice that of [20].

The CRLB depends on the hypothetical true values of the
parameters and as such representative parameters need to be
defined. To determine representative diffusion values, we se-
lected the anisotropic voxels having and

mm s after a single tensor fit in a randomly selected
dataset. The mean (diffusion) value and corresponding standard
deviation were determined for the largest and smallest eigen-
values and ( may be biased in crossing fiber voxels),
and assigned to and . Notice that marginally perturbed
values were chosen for and . The volume fraction of
the first tensor is . The isotropic compartment is taken
small ( ), while the isotropic diffusion approximates
the diffusivity of free water at 37 : mm s .
The representative parameters are given in Table I.

A -vector of length two mm s is
chosen, the selection of these values is addressed in the next sec-
tion. The number of gradient directions is assumed constant:
for each unique element of the -vector an identical series of 92
three-fold tessellated icosahedric gradient directions is used. We
adopt a modest SNR .
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Fig. 1. (a) rCRLB-matrices for models involving different constraints (cf. Table I). The diagonals of these matrices contain the relative Cramer-Rao lowest bounds.
Model #3 is consistently used in our further analyses. Values above 0.2 are trimmed. (b) Distributions of estimated parameters determined in a Monte-Carlo
experiment involving model #3. The small black bars (at the bottom of the graphs) correspond to the true parameter values; relative biases are annotated. (c) Square
root of the absolute covariance matrix emanating from the Monte Carlo experiment. The diffusion weighting was � � � ��� ��� � � �� mm s (Please refer to
the online version for illustration in color).

The calculated rCRLB-matrices for the four models (see
Table I) are depicted in Fig. 1(a). The Cramér-Rao analysis
reveals that even if and are constant cannot
be estimated independently for the two tensors (model #1):
the values on the diagonal indicate for all
parameters except . We hypothesize that the imprecision in

emanates from the high diffusion and hence the low signal
measured along the axial orientation. In model #2 and
are set to be equal, while and are still included in the
model. The second image in Fig. 1(a) shows that the constraint
enables precise estimation of the remaining parameters. What is
more, we find that constraining even allows for estimating

with sufficient precision ( ) as shown by
the third image (model #3): adding does not significantly
increase the CRLB of other parameters. The fourth image
(model #4) confirms that and cannot be estimated
simultaneously.

2) Estimated Accuracy and Precision: Monte Carlo Simula-
tion: Additionally, a Monte Carlo simulation is performed to
study whether the theoretical lower bounds on the precision can
be practically reached by the ML-estimator. Moreover, a po-
tential bias and the uniqueness of the obtained ML-estimation
are assessed. Parameter values are directly substituted into the
diffusion model equation to generate signal values [(1)]. Sub-
sequently, 500 of such simulated measurements are distorted
by Rician noise. The ensembles of estimated parameter values
for these measurements are expected to be Gaussian distributed
[45].

The two-tensor model was implemented in Matlab (The
MathWorks, Natick, MA). Levenberg–Marquardt optimiza-

tion was used in all parameter estimations. The two-tensor
model was initialized based on a single tensor estimation
with three (sorted) eigenvalues and a rotation matrix

(without -term). We initialized anisotropic tensors
by , , and with opening
angle . The initial volume fractions
were and .

A Monte-Carlo experiment involving model #3 rendered
the histograms of the estimated parameter values depicted
in Fig. 1(b). It shows that the distributions of the estimated
parameters in each experiment are unimodal, while the bias is
negligable (the maximal bias is -3% in ). This proves both a
good initialization and the uniqueness of the solution.

The estimated relative standard deviations in the Monte-Carlo
experiment approximate the rCRLBs: see Fig. 1(c). All esti-
mated precisions were within 10% above the corresponding
rCRLBs.

B. Optimizing for Different Tissue Configurations

We aim to find the optimal for estimating the diffusion
shape of two crossing fiber tracts using the previously se-
lected model. images (no diffusion weighting involved)
are assumed to be acquired in all cases. Since the diffusion
parameters are to be estimated with sufficient precision for
two compartments, a vector with at least two supplementary
nonzero values is needed [5], in order to prevent the Fisher
Information matrix from being rank deficient. Further, a larger
vector with a high range of values may be needed to ad-
equately capture the heterogeneous diffusion in the data, as
explained in Section II-B. The experiments for optimal selec-
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Fig. 2. (a) rCRLB-values for different parameters as a function of � , SNR �

��. Values above 0.4 are trimmed. (b) The configurations in which the rCRLB
is determined are based on ����. (Table I) while adusting � and � respec-
tively. Along the vertical axis the � -value is given, maintaining another non-
zero �-value fixed at � � ��� � �� mm s. (top) Horizontally � is varied
while � is constant. (bottom) � is varied while � is constant. Values
above 0.2 are trimmed. The solid line in the figures give the � -value at which
the rCRLB is minimal. The white dashed line denotes the upper-boundary of
the region where the Gaussian diffusion assumption holds (see text).

tion focus on model #3 (independent perpendicular diffusion
and included).

1) Single Configuration: We will first determine the optimal
for a single configuration of crossing fibers , see Table I.

The selected model (see Section IV-A) is adopted, and rCRLB-
values will be computed for a two-element -vector. To min-
imize the rCRLB we also explore the high -value range, al-
though in Section II-B we argued that Gaussian diffusion cannot
be assumed beyond mm s. The optimum will be
determined for SNR .

Fig. 2(a) presents the rCRLB for the mean parameter vector
(Table I) for varying supplementary -values (along the

axes). Note that values on the diagonals effectively involve

merely one -value. A detailed inspection of the results
presented in Fig. 2(a) shows that the are min-
imal at mm s, with

. The rCRLB of all parameters remain
close to their optimal rCRLB around these -values.

2) Varying Perpendicular Diffusion: Then, the op-
timal is determined for varying perpen-
dicular diffusion values involved in the model con-
figuration . rCRLB-values are computed for

mm s . Simultaneously, the -value
is varied, taking the -value fixed at mm s.
If we observe significant variation in rCRLB at the location of
the minimum, this can be considered to be an indication that
multiple -values are needed to model the entire diffusion
range with low error.

The rCRLBs under these circumstances are depicted in
Fig. 2(b). The rCRLB at optimal are not significantly different
from the rCRLB at constant mm s,
which is about the optimum for the entire parameter
vector. Only slightly improves from 14%
( mm s) to 10% ( mm s)
for a low diffusion value mm s .

3) “Heterogeneous” Sample: Third, we looked into the
number of values of needed to measure a “heterogeneous”
sample precisely and accurately, by considering a series of
different crossing fiber configurations. The mean parameter
values and corresponding standard deviations in Table I are
at the basis to generate 100 Gaussian distributed parameter
values.

In all these experiments, the total number of DWIs stays
constant. This is realized by randomly assigning an equal
number of gradient directions to each supplementary -value.
Optimizing this distribution over is beyond the scope of this
paper. -values in the range of mm s
are considered. Note that Gaussian diffusion can be safely
assumed only if mm s [31].

The mean (averaged for both tensors) is deter-
mined using all 100 configurations for an increasing length of .
The selected and the corresponding mean rCRLB are given in
Table II. The table shows that the mean rCRLB remained con-
stant when employing a with more than two values. This ex-
periment shows that a of length two is also sufficient to reach
the smallest rCRLB over a range of expected parameter values.

Additionally, a Monte-Carlo experiment is performed by
simulating measurements of these configurations that are
distorted by Rician noise to yield 100 noise realizations per
parameter configuration. The bias, standard deviation and root
mean squared error (RMSE) in FA and MD (averaged for both
tensors) are computed for each combination of .

The outcome of the Monte-Carlo experiment is given in
Fig. 3. This figure shows that the optimal value of to be chosen
for a heterogeneous sample is mm s,
because for these values of the RMSE in both FA and MD
is minimal. The RMSE balances between a minimum in the
bias at a lower mm s and the standard
deviation at a slightly higher mm s
respectively. is the optimal number of elements in ,
since RMSE(FA) remains constant for . The relative
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TABLE II
�-VECTOR YIELDING A MINIMUM MEAN RCRLB ON THE FA AND A MINIMUM

MEAN RMSE ON THE FA, ON CONFIGURATIONS DRAWN FROM TABLE I.
DIFFERENT �-VALUE CONFIGURATIONS, AS DESCRIBED IN SECTION IV-B,
WERE USED. NOTE THAT IN THE CRAMÉR-RAO ANALYSIS A SUB-OPTIMAL

RESULT WITHIN THE GAUSSIAN DIFFUSION RANGE ( ) IS INCLUDED

Fig. 3. Bias in the estimated parameter value (left), the corresponding stan-
dard deviations (middle) and the root mean squared error, all averaged over both
tensors, on simulated measurements (drawn from the distributions indicated in
Table I). The axes correspond to the �-values at which this Monte-Carlo exper-
iment was performed. The white dashed line denotes the upper-boundary of the
region where the Gaussian diffusion assumption holds.

standard deviation closely approaches the rCRLB determined
in Table II. Also, notice the high standard deviation along the
diagonal (reflecting the usage of merely one -value), which is
in accordance with the Cramér-Rao analysis.

C. Validation in Brain Data

A quantitative validation of estimated diffusion properties
within fiber crossings in the human brain is complicated by the
lack of a ground truth. To the best of our knowledge, a phantom
with known diffusion properties (apart from fiber orientations
[46]) is unavailable. We have chosen to track fibers through a
crossing fiber region, where gyral projections of the corpus cal-
losum (commissural fibers) are crossing the corticospinal tract.
FA-profiles along the tracts will be compared for data acquired
with different .

1) Data Acquisition and Preprocessing: Diffusion Weighted
Image acquisition of 20 axial slices (mid-brain) of a healthy
volunteer was performed on a Philips Intera 3.0T MRI scanner
(Philips Intera, Philips Healthcare, Best, The Netherlands) by
means of a spin echo EPI-sequence. An imaging matrix of
112 110 was used, from which a 128 128 sized slices were

reconstructed, with a voxel size of 1.7 1.7 2.2 mm . An
echo time of ms and repetition time of TR ms
were used. The diffusion weighting was along 92 three-fold
tessellated icosahedric gradient directions, with five -values:

mm s. Per -value,
one non-diffusion weighted image was acquired. 20 axial
slices were acquired, resulting in a total scanning time of
30 min. Deformation induced by eddy currents was corrected
for using an affine registration in the phase encoding direction
[47]. In addition, a rigid registration of the -images and
coregistration of the DWIs corrected for patient head motion
(up to 2 voxels). One average -image was computed and
used in all experiments with subsets of -values. Subsequently,
Rician noise in the data was reduced using an adaptive linear
minimum mean square estimator (LMMSE) [24], [48]. This
filtering approach uses an estimate of the noise level . is
estimated per voxel by fitting a dual tensor model which does
not include an isotropic compartment: model #2 from Table I.

2) Consistent Parameter Estimation: From the acquired
DWIs, different data sets with a two-element -vector were
generated. From the antipodally symmetric set of gradient-di-
rections, one gradient direction was randomly chosen and
assigned to the first -value. Simultaneously, the antipodal
gradient direction was assigned to the second -value, resulting
in 46 gradients per -value. In this way, the angular resolution
over all permutations of was equal. In addition, the entire
scanned dataset—involving a five-element -vector and all
DWIs—was used to assess an improved FA-estimation when
sampling a broader range of diffusion values. The dual-tensor
model was fit to all created datasets. The estimated perpendic-
ular diffusivity and -values are sorted into and

and , respectively.
Model #3 was estimated taking constant

mm s and varying -values. Fig. 4(a) shows axial slices
depicting the parameter values estimated on data involving

mm s. Notice that there is high
inter-voxel “consistency.” The image displays good contrast
between white and gray matter, whereas the -image mainly
highlights the CSF. Isolated black voxels may be observed in
the image. These correspond to samples containing
only a single anisotropic compartment. Here and

are undefined since the volume fraction of the
corresponding tensor approximates zero.

We adopted a grid approach to perform the experiments using
the infrastructure of the Dutch Virtual Laboratory for Medical
Image Analysis [49]. Thus, computing times were reduced from
one week (estimated) to 6 h, a 28:1 improvement in speed.

3) FA-Profiles Along Crossing Fiber Tracts: Fiber tracking
was performed using High Angular Fiber Tracking [50]. As
an extension to common streamline tracking algorithms, this
method generates branches of fibers if, within a voxel, the angle
between both tensors exceeds 12.5 . The curvature threshold
was set to 20 per voxel, and the single tensor FA threshold
yielded . One seeding region of interest (ROI)
and one additional ROI through which fibers should pass were
defined. Fibers were tracked through the crossing of the cor-
ticospinal tract with gyral projections of the corpus callosum
(commissural fibers). The corticospinal tract was only partially
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Fig. 4. Results in brain data. (a) � � � , � and �� estimated in one axial slice, � � � ��� ��� � � �� mm s. �� are colored
magenta and green respectively, such that white colored voxels reflect �� � �� and green voxels �� � �� . (b) Tracked fibers: the corticospinal
tract (CST) and commissural fibers. Color denotes the FA. (c) Mean FA-profiles (in bold) with standard deviations calculated through dual (red) and single (blue)
tensor fits as a function of the arc length (in units of 2 mm) of the commissural fibers (left) and the corticospinal tract (right). The data was acquired at different
�-value configurations as annotated. The crossing is indicated with a dashed line and is considered the origin.

tracked, due to the limited scanning region; it was confirmed that
the crossing region was completely present in the data, though.
Two ROIs per tract sufficed to successfully track the fibers.

During tracking, the most closely aligned tensor per voxel
is selected. Along the tracked fibers, FA-profiles are computed
using the aligned tensors. The mean and standard deviation of
the FA in voxels through which fibers traverse are estimated in
the plane perpendicular to the centerline of the tracts. At the lo-
cation of the fiber crossing, oblate single tensors are expected
whose FA is biased, i.e., lower than the FA-values of the pro-
late dual tensors. Dual-tensor FA-profiles are higher (i.e., less
biased) than their single-tensor counterparts at the location of
the fiber crossing. An additional global offset in the FA may be
apparent due to the included isotropic fraction in the dual tensor
model. In addition, there should be spatial consistency in FA in
adjacent single- and dual-tensor regions.

Fig. 4(b) shows the corticospinal and commissural fibers
tracked in this data. The FA-profiles along those tracts are

displayed in Fig. 4(c) in which we estimate parameters for two
models: a single tensor model and dual tensor model #3. At the
position of the crossing, the bias of the single tensor model is
most distinct. It can also be seen that dual tensor FA-profiles
are consistent at the transition of a single to a dual orientation
region, whereas single tensor profiles show a reduction in FA.
Additionally, the standard deviation of the estimated FA slightly
decreases for higher -values, particularly in the corticospinal
tract, and is minimal for mm s. Notice
that the dual tensor FA-profiles are systematically higher than
the single tensor profiles (also remote from the crossing). This
effect emanates from the inclusion of an isotropic component
in the model. Finally, estimating the model with a five-element

-vector renders only marginally different profiles.

V. DISCUSSION

A framework was presented for model selection and op-
timization of acquisition parameters for estimating diffusion
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properties in fiber crossings. A dual tensor model was studied
for which the optimal diffusion weighting was determined.
The framework is directly applicable to other parameterized
diffusion models and different experimental conditions.

A. Model Selection

The Cramér-Rao analysis showed that at a modest SNR the
perpendicular diffusion can be precisely estimated in
model #3, whereas the axial diffusions cannot be inde-
pendently modeled, since they result in a large rCRLB in model
#1. This may be explained by higher DW-signal attenuation
along the axial orientation, which has a higher diffusion and
thus a lower . In other words, our inability to indepen-
dently estimate is a limitation of the DW-MRI modality
under the described circumstances. The strength of our work
is in independently capturing myelin degradation in crossings.
Histology in ischemic mice confirms myelin degradation and
because of that increased mobility of the water molecules per-
pendicular to the axons, measured by DW-MRI as an increased

[3].
An isotropic compartment was modeled by a single param-

eter in model #3. In fact, it was shown that adding the isotropic
compartment to model #2 does not reduce the precision of the
other parameters. Simultaneously estimating and led
to a degeneration in model #4 [Fig. 1(a)].

In previous work, particularly the angular resolution attracted
attention. An angle of between the tensors could be ac-
curately determined by a model that only estimated orienta-
tions, (the experiment involved a single mm s)
[33]. Q-ball imaging and the Diffusion Orientation Transform
also achieved an angular resolution of [51]. The experi-
ments that we have performed involve a lower angular resolu-
tion ( ) since our main interest is to ensure a low
error in the estimated diffusivity parameters. Lower values of
will e.g., result in under equal measurement
conditions.

The Monte Carlo simulation showed that the estimator con-
verged to a unique solution. Moreover, the observed precisions
were close to the CRLB, which demonstrates a good estimator
performance. Simultaneously estimating the diffusion “size”
and “shape” parameters was previously reported to be a difficult
problem [8]. The eigenvalue parameterization [(2)] prevents
degeneration of the parameter estimation.

The dual tensor model (#3) was estimated independently per
voxel. In other work, the spatial continuity of the parameters
was included as a constraint [52]. The maximal precision to be
achieved in this approach might also be quantified by means of
our Cramér-Rao framework. The framework is directly appli-
cable to multitensor approaches [9]–[11], higher order tensors
[12], constrained spherical deconvolution [13] or a series ex-
pansion of the PDF made of Gaussian-Laguerre and Spherical
Harmonics functions [53], which all are parametric models. Ad-
ditionally, the ML-approach could be extended to a Bayesian
estimation scheme by incorporating prior distributions on pa-
rameters [33].

B. Optimizing for Different Tissue Configurations

The Cramér-Rao analysis also showed that a two-element
-vector is needed for independently estimating axial and per-

pendicular diffusion as well as an isotropic compartment [model
#3, Fig. 2(a)]. This result confirms previous statements [5]. A
minimal was found for

mm s, which only marginally raised
for mm s within the Gaussian diffusion
range. In the Monte Carlo analysis, the RMSE was minimal at
a lower mm s, due to an increasing bias
at higher -values. Notice that the precisions were well below
the maximally allowed value, e.g., .

We observed that the minimum in rCRLB and RMSE as a
function of is rather “shallow” (see e.g., Fig. 2). Accordingly,
the results on brain data were fairly robust with respect to mod-
ification of . A significantly higher bias in the FA for low
-values ( mm s, see Fig. 3) is in agreement with

earlier findings [35].
The associated with a minimum rCRLB did not vary as

was changed [Fig. 2(b)]. Moreover, it was shown that two
elements in suffice for estimating the parameters in a hetero-
geneous sample: and RMSE(FA) did not decrease
when a up to length four was used. In previous work, the op-
timal -value was shown to be mainly dependent on the mean
diffusivity [8], which is in contrast to our findings. We attribute
this to a difference in model selection: Alexander and coworkers
constrained the diffusivity values to be equal for both tensors. A
single nonzero -value then suffices for estimating the diffusion.
This value appears to be more sensitive to the expected diffu-
sivity values. Our independent parameterization of the perpen-
dicular diffusivity minimizes bias and variance in the parameters
when the distance between the -values is large. This allows us
to independently estimate the FA in both compartments.

It may be expected that the optimal -values found in
the Cramér-Rao analysis correspond to the underlying
diffusivity scales. The inverse diffusion weighting values

and indicate that lower
diffusion values are emphasized (we used diffusion values of
around mm s and mm s in the model
of the experiments). Optimization of acquisition parameters
previously resulted in mm s [8], which
is close to our optimum for .

C. Validation in Brain Data

Model #3 was used to estimate the diffusion shape in the
crossing of the corticospinal tract and the corpus callosum. It
yielded a “consistent” FA-profile at the location of the crossing,
whereas single tensor profiles showed a reduction in FA. The
standard deviation of the estimated FA was minimal for

mm s. It was demonstrated that the FA pro-
files for did not differ significantly from the FA-profiles
emanating from with more elements.

FA-values estimated in brain data were systematically lower
for the single tensor model than for a two tensor model even
in noncrossing tissue regions (Fig. 4). We attribute this to the
isotropic compartment that is lacking in the single tensor model.
Previous work considered the relative proportion of anisotropic
signal rather than the FA per tensor [54]. Note that exploring
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data-driven model selection, such as automatic relevance detec-
tion [33] is beyond the scope of this work.

This work defines fundamental limits for comparative studies
to correctly analyze complex white matter structures.

APPENDIX

Derivatives to Estimated Parameters: The performance
of the Levenberg–Marquardt optimization is significantly in-
creased by including derivatives of the signal to the parameters

. To obtain the derivatives to our reparameterization,
we first write

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

Note that . The rotation matrices for both
tensors are written as

(A.19)

from which derivatives are obtained and substituted
in (A.15). The computed signal per tensor equals

(A.20)

Derivatives to our parameterization then are

(A.21)

(A.22)

(A.23)

(A.24)

with a constant scaling factor to achieve approximately
equal order of magnitude for all parameter values in numerical
optimization.

Cramér-Rao Lower Bounds on Eigenvalues and FA: We
will now derive the CRLB on eigenvalues and FA, as men-
tioned in Section III-C. Exponential and error function map-
pings are ignored in calculating the CRLB, since they merely
aim to constrain the optimization. Equation (2) then reduces to
a parametrization of the axial diffusivity

(A.25)

and an adapted parameter vector

(A.26)
Equation (9) describes the CRLB-inequality including

, which is the Jacobian of a potential transforma-
tion of the parameter vector to a measure of interest. For
the purpose of calculating the CRLBs of the eigenvalues, such
as , we write the
following transformations:

(A.27)

based on the adopted parametrization described above in (A.25).

To compute , the

derivatives of to are derived to be

(A.28)
The derivatives of to the eigenvalues are

with

while similarly for

with



1514 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 8, AUGUST 2010

ACKNOWLEDGMENT

The authors would like to thank P. de Boer, M. Stam,
T. Glatard, J. J. Keizer, J. Engelberts, and grid.support@sara.nl
for their contributions to this work. The authors would also like
to thank Prof. I. T. Young for revising the manuscript.

REFERENCES

[1] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “In vivo
fiber tractography using DT-MRI data,” Magn. Reson. Med., vol. 44,
pp. 625–632, 2000.

[2] D. S. Tuch et al., “High angular resolution diffusion imaging of the
human brain,” in Proc. 8th ISMRM, Philadelphia, PA, 1999, p. 321.

[3] S.-K. Song, S.-W. Sun, W.-K. Ju, S.-J. Lin, A. H. Cross, and A. H.
Neufeld, “Diffusion tensor imaging detects and differentiates axon and
myelin degeneration in mouse optic nerve after retinal ischemia,” Neu-
roImage, vol. 20, pp. 1714–1722, 2003.

[4] M. D. Budde, M. Xie, A. H. Cross, and S. K. Song, “Axial diffusivity is
the primary correlate of axonal injury in the experimental autoimmune
encephalomyelitis spinal cord: A quantitative pixelwise analysis,” J.
Neurosci., vol. 29, pp. 2805–13, 2009.

[5] T. Hosey, G. Williams, and R. Ansorge, “Inference of multiple fiber ori-
entations in high angular resolution diffusion imaging,” Magn. Reson.
Med., vol. 54, pp. 1480–89, 2005.

[6] M. Caan, K. Vermeer, L. van Vliet, C. Majoie, B. Peters, G. den Heeten,
and F. Vos, “Shaving diffusion tensor images in discriminant analysis:
A study into schizophrenia,” Med. Image Anal., vol. 10, pp. 841–849,
2006.

[7] C. Sage, R. Peeters, A. Gorner, W. Robberecht, and S. Sunaert, “Quan-
titative diffusion tensor imaging in amyotrophic lateral sclerosis,” Neu-
roimage, vol. 34, pp. 486–499, 2007.

[8] D. Alexander and G. Barker, “Optimal imaging parameters for fiber-
orientation estimation in diffusion MRI,” Neuroimage, vol. 27, no. 2,
pp. 357–367, 2005.

[9] L. R. Frank, “Anisotropy in high angular resolution diffusion-weighted
MRI,” Magn. Reson. Med., vol. 45, pp. 935–939, 2001.

[10] B. Kreher et al., “Multitensor approach for analysis and tracking
of complex fiber configurations,” Magn. Res. Med., vol. 54, pp.
1216–1225, 2005.

[11] S. Peled et al., “Geometrically constrained two-tensor model for
crossing tracts in DWI,” Magn Reson Med., vol. 24, pp. 1263–1270,
2006.

[12] E. Özarslan and T. H. Mareci, “Generalized diffusion tensor imaging
and analytical relationships between diffusion tensor imaging and high
angular resolution diffusion imaging,” Magn. Reson. Med., vol. 50, pp.
955–965, 2003.

[13] J. D. Tournier, F. Calamante, and A. Connelly, “Robust determination
of the fibre orientation distribution in diffusion MRI: Non-negativity
constrained super-resolved spherical deconvolution,” Neuroimage, vol.
35, no. 4, pp. 1459–1472, 2007.

[14] D. Tuch, “Diffusion MRI of complex tissue structure,” Ph.D. disserta-
tion, MIT, Cambridge, 2002.

[15] A. A. Qazi, A. Radmanesh, L. O’Donnell, G. Kindlmann, S. Peled, S.
Whalen, C. F. Westin, and A. J. Golby, “Resolving crossings in the
corticospinal tract by two-tensor streamline tractography: Method and
clinical assessment using fMRI,” Neuroimage, 2008.

[16] J. Malcolm, M. Shenton, and Y. Rathi, “Two-tensor tractography using
a constrained filter,” in Proc. Med. Image Computing Computer Assist.
Intervent. (MICCAI), 2009, pp. 894–902.

[17] J. Malcolm, M. Shenton, and Y. Rathi, “Neural tractography using an
unscented kalman filter,” in Inf. Process. Med. Imag. (IPMI), 2009, pp.
126–138.

[18] M. Descoteaux, R. Deriche, T. Knosche, and A. Anwander, “Determin-
istic and probabilistic tractography based on complex fibre orientation
distributions,” IEEE Trans. Med Imag., vol. 28, no. 2, pp. 269–286,
Feb. 2009.

[19] A. J. den Dekker and J. Sijbers, “Estimation of signal and noise param-
eters from MR data,” in Advanced Image Processing in Magnetic Reso-
nance Imaging. Boca Raton, FL: CRC, 2005, vol. 27, Signal Process.
Commun., ch. 4, pp. 85–143.

[20] J. L. Andersson, “Maximum a posteriori estimation of diffusion
tensor parameters using a Rician noise model: Why, how and but,”
Neuroimage, vol. 42, pp. 1340–56, 2008.

[21] B. Landman, P. L. Bazin, and J. Prince, “Diffusion tensor estimation
by maximizing Rician likelihood,” in Proc. IEEE 11th ICCV, 2007, pp.
2433–40.

[22] P. Fillard, X. Pennec, V. Arsigny, and N. Ayache, “Clinical DT-MRI
estimation, smoothing, and fiber tracking with log-euclidean metrics,”
IEEE Trans. Med. Imag., vol. 26, no. 11, pp. 1472–1482, Nov. 2007.

[23] S. Basu, T. Fletcher, and R. Whitaker, “Rician noise removal in dif-
fusion tensor MRI,” in Proc. Miccai ’06, 2006, vol. 4190, LNCS, pp.
117–125.

[24] S. Aja-Fernandez, M. Niethammer, M. Kubicki, M. Shenton, and
C.-F. Westin, “Restoration of DWI data using a Rician LMMSE es-
timator,” IEEE Trans. Med. Imag., vol. 27, no. 10, pp. 1389–1403,
Oct. 2008.

[25] C. G. Koay, L. C. Chang, C. Pierpaoli, and P. J. Basser, “Error propa-
gation framework for diffusion tensor imaging via diffusion tensor rep-
resentations,” IEEE Trans. Med. Imag., vol. 26, no. 8, pp. 1017–1034,
Aug. 2007.

[26] D. LeBihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M.
Laval-Jeantet, “MR imaging of intravoxel incoherent motions: Appli-
cation to diffusion and perfusion in neurologic disorders,” Radiology,
vol. 161, pp. 401–407, 1986.

[27] C. Pierpaoli et al., “Diffusion tensor MR imaging of the human brain,”
Radiology, vol. 201, pp. 637–648, 1996.

[28] D. Jones, M. Horsfield, and A. Simmons, “Optimal strategies for
measuring diffusion in anisotropic systems by Magnetic Resonance
Imaging,” Magn. Reson. Med., vol. 42, pp. 515–525, 1999.

[29] Y. Bito, S. Hirata, and E. Yamamoto, “Optimal gradient factors for
ADC measurements,” in Proc. ISMRM, 1995, p. 913.

[30] S. Peled, “New perspectives on the sources of white matter DTI signal,”
IEEE Trans. Med. Imag., vol. 26, no. 11, pp. 1448–55, Nov. 2007.

[31] Y. Assaf and P. J. Basser, “Composite hindered and restricted model
of diffusion (CHARMED) MR imaging of the human brain,” Neu-
roImage, vol. 27, pp. 48–58, 2005.

[32] P. Kingsley and W. Monahan, “Selection of the optimum �-factor
for diffusion-weighted magnetic resonance imaging assessment of
ischemic stroke,” Magn. Reson. Med., vol. 51, pp. 996–1001, 2004.

[33] T. Behrens, H. Berg, S. Jbabdi, M. Rushworth, and M. Woolricha,
“Probabilistic diffusion tractography with multiple fibre orientations:
What can we gain?,” NeuroImage, vol. 34, pp. 144–155, 2007.

[34] Y. Assaf, D. Ben-Bashat, J. Chapman, S. Peled, I. Biton, M. Kafri,
Y. Segev, T. Hendler, A. Korczyn, M. Graif, and Y. Cohen, “High
�-value �-space analyzed diffusion-weighted MRI: Application to
Multiple Sclerosis,” Magn. Reson. Med., vol. 47, pp. 115–126,
2002.

[35] D. K. Jones and P. J. Basser, “Squashing peanuts and smashing pump-
kins: How noise distorts diffusion-weighted MR data,” Magn. Reson.
Med., vol. 52, no. 5, pp. 979–993, 2004.

[36] O. Brihuega-Moreno, F. P. Heese, and L. D. Hall, “Optimization of
diffusion measurements using cramer-rao lower bound theory and its
application to articular cartilage,” Magn. Reson. Med., vol. 50, no. 5,
pp. 1069–76, 2003.

[37] D. C. Alexander, “A general framework for experiment design in diffu-
sion MRI and its application in measuring direct tissue-microstructure
features,” Magn. Reson. Med., vol. 60, no. 2, pp. 439–48, 2008.

[38] P. Basser and C. Pierpaoli, “Microstructural and physiological features
of tissues elucidated by quantitative-diffusion-tensor MRI,” J. Magn.
Reson. B, vol. 111, pp. 209–219, 1996.

[39] H. Gudbjartsson and S. Patz, “The Rician distribution of noise MRI
data,” Magn. Res. Red., pp. 910–914, 1995.

[40] A. van den Bos, Parameter Estimation for Scientists and Engineers.
Hoboken, NJ: Wiley., 2007.

[41] A. J. den Dekker, S. van Aert, A. van den Bos, and D. van Dyck, “Max-
imum likelihood estimation ofstructure parameters from high resolu-
tion electron microscopy images. Part I: A theoretical framework,” Ul-
tramicroscopy, vol. 104, pp. 83–106, 2005.

[42] J. Sijbers and A. J. den Dekker, “Maximum likelihood estimation of
signal amplitude and noise variance from MR data,” Magn. Reson.
Med., vol. 51, pp. 586–594, 2004.

[43] O. T. Karlsen, R. Verhagen, and W. Bovee, “Parameter estimation from
Rician-distributed data sets using a maximum likelihood estimator: Ap-
plication to T-1 and perfusion measurements,” Magn. Reson. Med., vol.
41, no. 3, pp. 614–623, 1999.

[44] C. Pierpaoli and D. K. Jones, “Removing CSF contamination in
brain DT-MRIs by using a two-compartment tensor model,” in Proc.
ISMRM, 2005, p. 1215.

[45] J. D. Carew, C. G. Koay, G. Wahba, A. L. Alexander, M. E. Meyerand,
and P. J. Basser, The asymptotic behavior of the nonlinear estimators
of the diffusion tensor and tensor-derived quantities with implications
for group analysis Univ. Wisconsin, Tech. Rep. 1132, 2006, Tech. Rep.
1132.



CAAN et al.: ESTIMATION OF DIFFUSION PROPERTIES IN CROSSING FIBER BUNDLES 1515

[46] J. D. Tournier, C. H. Yeh, F. Calamante, K. H. Cho, A. Connelly, and C.
P. Lin, “Resolving crossing fibres using constrained spherical decon-
volution: Validation using diffusion-weighted imaging phantom data,”
Neuroimage, vol. 42, no. 2, pp. 617–625, 2008.

[47] J.-F. Mangin, C. Poupon, C. Clark, D. L. Bihan, and I. Bloch, “Eddy-
current distortion correction and robust tensor estimation for MR dif-
fusion imaging,” in Proc. MICCAI’01, 2006, pp. 186–193.

[48] M. Caan et al., “Adaptive noise filtering for accurate and precise diffu-
sion estimation in fiber crossings,” in Proc. MICCAI, 2010.

[49] S. Olabarriaga, T. Glatard, K. Boulebiar, and P. T. de Boer, “From
’low-hanging’ to ’user-ready’: Initial steps into a healthgrid,” in
HealthGrid. Chicago, IL: IOS Press, 2008, Studies Health Technol.
Informatics, pp. 70–79.

[50] N. Toussaint, A. van Muiswinkel, F. G. Hoogenraad, R. Holthuizen,
and S. Sunaert, “Resolving fiber crossings: A two fiber model simula-
tion result,” in Proc. ISMRM, 2005, vol. 13, p. 1339.

[51] V. Prckovska, A. F. Roebroeck, W. Pullens, A. Vilanova, and B. M.
T. Romeny, “Optimal acquisition schemes in high angular resolution
diffusion weighted imaging,” in Proc. MICCAI, 2008, vol. 5242, pp.
9–17.

[52] O. Pasternak, Y. Assaf, N. Intrator, and N. Sochen, “Variational mul-
tiple-tensor fitting of fiber-ambiguous diffusion-weighted magnetic
resonance imaging voxels,” Magn. Reson. Imag., vol. 26, pp. 1133–44,
2008.

[53] H. E. Assemlal, D. Tschumperle, and L. Brun, “Efficient and robust
computation of PDF features from diffusion mr signal,” Med. Image
Anal., vol. 13, no. 5, pp. 715–29, 2009.

[54] T. P. Hosey, S. G. Harding, T. A. Carpenter, R. E. Ansorge, and G. B.
Williams, “Application of a probabilistic double-fibre structure model
to diffusion-weighted MR images of the human brain,” Magn. Reson.
Imag., vol. 26, pp. 236–45, 2008.


