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Equilibrium Path Analysis Including
Bifurcations with an Arc-Length Method
Avoiding A Priori Perturbations

H. M. Verhelst, M. Möller, J. H. Den Besten, F. J. Vermolen,
and M. L. Kaminski

Abstract Wrinkling or pattern formation of thin (floating) membranes is a phe-
nomenon governed by buckling instabilities of the membrane. For (post-) buckling
analysis, arc-length or continuation methods are often used with a priori applied
perturbations in order to avoid passing bifurcation points when traversing the
equilibrium paths. The shape and magnitude of the perturbations, however, should
not affect the post-buckling response and hence should be chosen with care. In
this paper, our primary focus is to develop a robust arc-length method that is
able to traverse equilibrium paths and post-bifurcation branches without the need
for a priori applied perturbations. We do this by combining existing methods
for continuation, solution methods for complex roots in the constraint equation,
as well as methods for bifurcation point indication and branch switching. The
method has been benchmarked on the post-buckling behaviour of a column, using
geometrically non-linear isogeometric Kirchhoff-Love shell element formulations.
Excellent results have been obtained in comparison to the reference results, from
both bifurcation point and equilibrium path perspective.
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1 Introduction

Linear buckling analysis of (maritime) structures is widely used in engineering to
estimate the loads for which instabilities or even collapse will occur. Post-buckling
analysis is often considered to assess the load carrying capacity after instability or
collapse. For (floating) thin membranes-like offshore solar platforms [14], (post-)
buckling analysis involves the wrinkling phenomenon when loads on the membrane
exceed critical values [3, 8, 15, 18–20].

When modelling instabilities like wrinkling, a priori perturbations of some shape
andmagnitude are often applied to initiate post-bucklingwithout passing bifurcation
points. Perturbations are required since bifurcation points introduce singularities in
the system matrix, meaning that commonly used solution procedures are not able
to provide the post-buckling response. However, as previously reported by Taylor et
al. [18], the magnitude of the initial perturbations might influence the final solution.

Hence, in this paper our primary focus is to develop a numerical procedure—
based on a combination of the conventional and extended arc-length method [5, 6],
solution methods for complex roots [12, 24], as well as methods for bifurcation
point indication and branch switching [9] (Sect. 2). The performance of the proposed
method is illustrated using a benchmark problem (Sect. 3) and conclusions are
drawn to complete the work (Sect. 4).

2 The Arc-Length Method

The arc-length method, also known as a path-following algorithm or a continuation
method, is a method to advance through a solution space w(u, λ) of the system

G(u, λ) = N(u) − λP = 0, (1)

where N(u) is a vector function in terms of solution vector u and P is a constant
vector multiplied by scaling λ. Both N and P can follow from a finite element
discretization of a system of partial differential equations based on the finite solution
vector u ∈ R

n. The function G can thus be used to find the solution u for a
particular scaling λ (i.e. “load control”) or vice-versa (i.e. “displacement control”).
Alternatively, one can use the functionG and a constraint equation f (w) to find the
combination w = (u, λ) that satisfies G(w) = 0 and f (w) = 0. This principle is
used in the arc-length method [4, 16], which will be used to obtain the solution of
Eq. (1) in the case that the solution is not known to be unique.
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2.1 Conventional and Extended Arc-Length Method

The constraint equation f (w) is often imposed on the solution increment �w =
(δuk, δλk) and can take different forms, e.g. using Riks’ method [16] or Crisfield’s
method [4]. The latter imposes:

f (w) = δu�
k δuk + �2δλ2kP

�P = �l2. (2)

Here, �l is the arc-length or the radius of the constraint equation, � is a scaling
factor to incorporate the dimensionality of the system in the factor λ. The constraint
equation of Crisfield was used because this method always finds a solution, despite
the curvature of the equilibrium path. The disadvantage, however, is that two
solutions are found per iteration, and hence, that a particular solution needs to be
selected. Note that the square root of the constraint equation,

√
f (w), is a proper

norm.
Crisfield [4] originally used � = 0, referred to as a spherical constraint, but

the elliptical constraint is used to maintain displacement and load steps in the same
order of magnitude for different refinements:

�2 = u�
0 u0/λ

2
0P

�P. (3)

Here, λ0 and u0 correspond to the solutions on a previous equilibrium point (i.e. a
converged point). In the originw0 = (u0, λ0) = (0, 0), a slightly different procedure
is used [12]. As a consequence of the constraint equation, the system matrix, if
banded, loses its banded nature hence affecting convergence behaviour of nonlinear
solvers [21]. Therefore, the system of equations is solved in a segregated way. To
this extent, Eq. (1) is considered in terms of the unknown increments δλk and δuk at
iteration k, such that

Kδuk = G(u, δλk) = N(u) − δλkP. (4)

Where the splitting of the incremental displacement δuk in terms of a standard load-
controlled Newton-Raphson method δūk and a component from the increment δλk

being δûk is used:

δuk = βδūk + δλkδûk. (5)

The line-search parameter β is relevant when dealing with complex roots (see
Sect. 2.2) and is equal to 1.0 otherwise. Then, for iteration k,

Kδūk = G(wk), (6)

Kδûk = P. (7)
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where K is the Jacobian of the system to be solved and has to be computed once.
A disadvantage is that no solutions can be found on limit points, since the Jacobian
is singular there [6]. At each iteration, the load and displacement increments are
updated using

�wk = (�uk,�λk) = (δuk−1, δλk−1) + (δuk, δλk) (8)

Using the constraint equation from Eq. (2) and using the fact that the iterative
increment δuk is depending on the unknown δλk , the constraint equation can be
written as a polynomial in δλk:

aδλ2k + bδλk + c = 0, (9)

With,

a = δû�
k δûk + �2P�P = a0,

b = 2
(
δû�

k �u + �λ�2P�P
)

+ 2βδû�
k δūk = b0 + βb1,

c = β2δū�
k δūk + 2βδū�

k �u + �u��u + �λ2�2P�P − �l2

= c0 + βc1 + β2c2.

(10)

where�u = (�u,�λ) (indices omitted) denotes the increment in the previous load
step. Since ut and ū are known from Eqs. (6) and (7), the only unknown in Eq. (9)
is the load increment δλ. Therefore, Eq. (9) is a scalar quadratic equation that is
easily solved for δλk and has two solutions. The choice of the solution is based on
the ‘angle’ between the arc-length increment �w of the previous load step and the
current �wk . Since this term is minimised for the increment δλk , it is sufficient to
look at the following roots [17]:

�r = δλr

(
�u�δûk + �2�λ

)
r = 1, 2. (11)

The root δλr for which �r is largest is the selected root. In the original work of
Crisfield [4] a differentmethodwas proposed,where the increment�uk is computed
for both values of �λr and the largest inner-product is taken. Both methods were
implemented and no major changes in the robustness of the methods were observed.
By comparing the current increment with the previous load increment, both methods
are robust as long as no sharp snap-back behaviour is present with respect to the
chosen arc-length �l.

In the first iteration of a new load step, the vector δuk−1 and the scalar δλk−1
are equal to zero. Hence, the trivial solution is found for Eq. (9). Therefore, the
following method is used to initialize the method in a new load step. Note that by
Eqs. (6) and (7) δûk is non-zero and ū is zero since the residual in the first iteration
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G(w0) is zero. Therefore, the load increment in the first iteration is defined as [5, 12]:

�λ0 =

⎧
⎪⎨
⎪⎩

�l/

√
2δû�

k δûk, if (u0, λ0) = (0, 0)

�l/

√
δû�

k δûk + �2P�P otherwise.

(12)

Its sign is determined by the previous load increment �w [7]:

sign(�λ0) = sign(�u�δûk + �λ�2P�P). (13)

2.2 Solution Methods for Complex Roots

In the case of complex roots for Eq. (9), i.e. when b2 − 4ac < 0, the numerical
procedure as discussed in the previous section fails [2]. Complex roots occur when
the equilibrium path is strongly curved in the region that is covered by one step. As
a solution to complex roots, the arc-length can simply be bisected until real roots
are found [1] or by utilising a pseudo line-search technique [12, 24]. The methods
in the latter works are slightly different in the choice of the line-search parameter as
will be detailed later.

As complex roots occur when b2 − 4ac < 0 in Eq. (9), a line-search parameter
β̃ �= 1 exists such that b2−4ac ≥ 0 is satisfied. Substitution of the coefficients from
Eq. (10) in this condition provides a quadratic equation in terms of the unknown
line-search parameter β̃:

asβ̃
2 + bsβ̃ + cs ≥ 0,

with [17]:

as = b21 − 4a0c2, bs = 2b0b1 − 4a0c1 and cs = b20 − 4a0c0,

and which can be solved for the equality. When the parameter β̃ is obtained, Eq. (9)
can again be solved to find the roots for δλk . Selection of β̃ can be done using
0 < β̃ ≤ β̃max, where β̃max = min(1, β̃2), since the solutions β̃1,2 (β̃1 < β̃2) are
of opposite sign and if β̃ is between those roots (i.e. if ascs > 0), the constraint
equation is satisfied. If β̃ is close to zero, the iterative method becomes inefficient
and it is recommended to cut the arc-length [17, 24].
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2.3 Methods for Bifurcation Point Indication and Branch
Switching

When applying the arc-length method on buckling analysis, singular points indicate
a transition between stability and instability. The singular points can be charac-
terised as either limit points or bifurcation points. The tangential stiffness matrix
K is singular, i.e. the determinant of this matrix is equal to zero. Additionally, the
first eigenvector φ1 of the tangential stiffness matrix on a singular point represents
the buckling mode shape in case of a bifurcation point. Limit points and bifurcation
points are distinguished by considering the inner product φ�

1 P. If this product is
non-zero, a limit point is found [22].

When passing a singular point, the determinant of this matrix becomes negative,
or equivalently, the product of the diagonal entries of the diagonal matrix D of the
LDL� Cholesky decomposition changes sign. Unless a bifurcation point is exactly
passed—which rarely occurs in practice—the matrix K is symmetric positive-
definite. In this case, the LDL� decomposition can be used to factorise and solve
Eqs. (6) and (7) and bifurcation points can be pinpointed by considering the sign
of the lowest values of the diagonal matrix D. These determine the sign of the
determinant of K and thus the stability of the system [21].

The bifurcation points are approached using the extended arc-length [23],
which provides the solution w and the first eigenvector φ1 of corresponding to
the bifurcation point. This method converges quadratically since it is based on a
Newton-Raphson method for solving the equilibrium equations G(u, λ) = 0, the
singularity condition K(u, λ)φ1 = 0 and a constraint equation to prevent the trivial
solution φ1 = 0 to be found [21–23].

When a bifurcation pointwP = (uP , λP ) is found within a specified tolerance of
the extended arc-length method, the eigenvector φ1 is known from this method and
the method can switch to the bifurcation branch by applying perturbation using the
buckling mode shape, i.e. using φ1. Branch switching is simply done by perturbing
the displacements uP at the bifurcation point by the normalized eigenvector φ̄1
multiplied by a factor τ . This factor can be chosen arbitrarily small [21].

3 Benchmark Problem

The geometrically linear isogeometric Kirchhoff-Love shell [11] formulation in the
open-source Geometry+Simulation Modules (G+Smo1) [10] are used to model a
thin shell. The benchmark is a column, i.e. a beam fixed at one side and loaded
in-plane at the other side [13]. The column has length 1 [m], thickness 0.01 [m]
and Young’s modulus of 75 [MPa]. In both models, 32 elements of order 2 over

1The source of G+Smo can be found on github.com/gismo.

github.com/gismo
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Fig. 1 Deformation of a column subject to a vertical end load. (a) Horizontal (u) and vertical
(w) displacement (bottom and top axis, resp.) of the end-point versus the applied load. The inset
represents the undeformed (dashed) and deformed (solid) configuration. (b) Convergence of the
present arc-length method to the buckling load, for different knot vector spacings �ξ and B-spline
orders p

the length and one element of order 2 in other directions are used. The eigenvector
perturbation factor τ is 10−3.

The results obtained with the arc-length method (Fig. 1a) show excellent
agreement with the reference results [13] for both bifurcation point prediction
and post-buckling behaviour. Furthermore, Fig. 1b shows the convergence of
the extended iterations to the buckling point for both models with respect to
P̄ = 4λPrefL

2/π2EI , where Pref is the applied reference load. Convergence of the
first order to the analytical solution is observed irrespective of the B-spline order.
Hence the speed of convergence is not depending on the spline order p, but the
magnitude of the error is.

4 Conclusions

In this paper, an arc-length method that does not require a priori perturbations
was presented. The procedure is based on the Crisfield arc-length method with
extensions for complex roots in the constraint equation for more robustness, and is
able to find bifurcation branches without the need for a priori applied perturbations.
For benchmarking, the model was applied on buckling and post-buckling analysis
of a column with a compressive end load, modelled using isogeometric Kirchhoff-
Love shell elements. The benchmark results show that the present method is able
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to provide accurate results in both path following as well as bifurcation point
prediction. In future work, we will apply the present model on modelling wrinkles
in thin (supported) sheets subject to large strains for validation and verification with
previous studies [3, 8, 15, 18–20].

Acknowledgments The authors are grateful to Delft University of Technology for its support.
Additionally, the authors are grateful to the community of the Geometry and Simulation Modules
(G+Smo) for laying the basis of the developed code.
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