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Abstract
Radiotherapy is one of the main treatment modalities available to treat cancer. Radiotherapy treatment
plans are created based on CT scans of the patient. In such scans the macroscopic tumor is visible,
but microscopic disease present in the surrounding tissue cannot be observed. To achieve an optimal
clinical outcome, both the macroscopic and the microscopic disease must be treated. Currently, the
macroscopic tumor is extended by a margin into the Clinical Target Volume (CTV) to include the micro
scopic disease in the treated volume. The same margin is used for all patients, although the extent of
microscopic disease is patientspecific and can vary largely among patients.

In this study, probabilistic treatment planning was investigated as a method to replace the margin con
cept. Probabilistic models were created by explicitly modeling uncertainties in the microscopic disease
into an objective function used in the treatment plan optimization. By optimizing either the expected
Tumor Control Probability (ETCP) or the expected Logarithmic Tumor Control Probability (ELTCP),
optimal dose distributions could be obtained. Two different onedimensional models for probabilistic
treatment planning were investigated.

In the first model, the uncertainty in the extent of the microscopic disease was modeled into an
objective function. This was done using a function that describes the probability of finding microscopic
disease at a certain distance from the macroscopic disease. In the second model, the uncertainty in
the tumor cell density in the microscopic disease area was modeled into an objective function. The
uncertainty was modeled by defining the tumor cell density field as a random field and generating
different realizations of the tumor cell density field using a KarhunenLoève (KL) expansion.

For the first model, both the ETCP and the ELTCP were used as objective functions and in the
second model, only the ETCP was used as an objective function. Furthermore, a penalized ETCP
objective function was investigated for both models. In this penalized objective function a penalty on
the dose was used to allow for controlling the balance between tumor control and sparing of normal
tissue.

Using the first model, two different types of dose distributions were found. When the ETCP was op
timized, the maximum dose was given to as large a volume as possible and no dose was given in
the rest of the investigated volume. When the ELTCP was optimized, dose was given throughout the
volume, so that the whole volume received as much dose as possible. Optimization of both objectives
resulted in good tumor control. When the penalized ETCP was optimized, dose was given to a much
smaller part of the volume than with the unpenalized objective, while the tumor control was still good.

Using the second model, it was shown that the KLexpansion is a promising method to model the
uncertainty in tumor cell density. Different shapes of the input mean tumor cell density field were inves
tigated. Optimizing the ETCP resulted in realistic dose distributions. Good tumor control was obtained
for the different shapes of the input mean tumor cell density field. Furthermore, using the penalized
ETCP, good tumor control was retained, while the dose deposited in the volume was decreased.

In conclusion, probabilistic treatment planning promises to be a good alternative to the current margin
concept. It was shown that good tumor control could be achieved in the microscopic disease area using
probabilistic objective functions. Both models showed promising results and the penalized objectives
showed that it is possible to balance between tumor control in the microscopic disease area and sparing
of normal tissue. Additional research is necessary to extend the onedimensional KLmodel into a more
detailed threedimensional model. Furthermore, the objectives need to be implemented in treatment
planning systems to create real patient plans. Such studies should be performed in cooperation with
clinicians and radiologists.
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1
Introduction

Cancer is a disease which is characterized by tumor growth, the uncontrolled reproduction of cells to
form a tumor mass. According to the National Cancer Institute, approximately 40% of men and women
in the USA will be diagnosed with cancer at some point in their life [1]. Furthermore, it is still one of the
major causes of death [2], with an estimated 1.93 million cancerrelated deaths in Europe in 2018 [3].

Cancer is often diagnosed using imaging modalities such as computed tomography (CT) or magnetic
resonance imaging (MRI). To visualize tumors with these imaging modalities, sometimes contrast fluid
also needs to be injected which builds up in the tumor. The tumor then becomes visible as an enhancing
mass on the scan. This visible tumor is called the macroscopic disease or the Gross Tumor Volume
(GTV). It is well known that there is a possibility for the spread of tumor cells in the area surrounding
the GTV [4], which is called microscopic disease. This microscopic disease consists of small groups of
tumor cells that are too small to be visualized on the scans, despite technological advances [4, 5]. How
far this microscopic disease can extend from the GTV into the surrounding tissue is both patientspecific
and tumorspecific.

There are several treatments available to treat a patient for cancer; the main treatment modalities are
surgery, radiotherapy and chemotherapy. In this work, we focus on radiotherapy, which is a treatment
modality that uses high doses of radiation to kill tumor cells. Specifically, we focus on the most common
form of radiotherapy, photon radiation therapy, in which xrays are used to irradiate the cancer. Photon
radiation therapy is used to treat many types of cancer throughout the body.

To obtain an optimal clinical outcome with radiotherapy, it is important that both the macroscopic and
microscopic disease are irradiated sufficiently. To irradiate potential microscopic disease, a margin is
applied to the GTV. This margin expands the GTV to the Clinical Target Volume (CTV), which should
include both the macroscopic and the microscopic disease. The CTV is defined on patient scans with
a fixed margin. Such an approach to defining the CTV, however, has downsides. As the microscopic
disease is patientspecific and invisible in the patient scans, there are large uncertainties in the extent
of the microscopic disease and in the tumor cell density in the tissue surrounding the GTV. Furthermore,
the CTV margin is currently a binary decision. A volume either belongs to the target volume and the
full dose is prescribed to it, or it does not belong to the target volume and then no dose is prescribed.
Consequently, treatment planning tries to have maximum dose in the target volume and a steep drop
off in the distribution to preferably no dose outside the target volume. The uncertainties in the extent of
the microscopic disease and the tumor cell density are not taken into account with such a fixed, binary
margin.

Recent studies have investigated probabilistic treatment planning to replace the CTV margin. In 2018,
Susharina et al. [6] introduced a probabilistic concept of the CTV, called the Clinical Target Distribution
(CTD). This CTD is a threedimensional, discrete distribution that describes the probability of voxels (a
volume element in a 3Dgrid) in the vicinity of the GTV to contain tumor cells. To deal with the uncer
tainties in the microscopic disease, this CTD can be implemented into an objective function in treatment
plan optimization algorithms. Such an implementation was further investigated by Bortfeld et al. [7].
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2 1. Introduction

Furthermore, two other studies performed at the Medical Physics & Technology department at the Delft
University of Technology [8, 9] investigated probabilistic treatment planning for microscopic disease
control using a continuous probability distribution which describes the probability of finding microscopic
disease at a certain distance from the GTV. This probability distribution can again be implemented into
a probabilistic objective function for treatment planning.

The goal of this master project is to further investigate probabilistic treatment planning as a method
to deal with the microscopic disease uncertainties. First, the probabilistic objective function derived in
[8] will be studied for different tumor sites. Subsequently, a new probabilistic objective function will be
derived. This objective function is based on the uncertainty in the tumor cell density field in the tissue
surrounding the GTV, instead of the uncertainty in the maximum extent of the microscopic disease. The
uncertainty in the microscopic disease is actually not just an uncertainty of the extent of the microscopic
disease, but an uncertainty of the shape of the tumor cell density field. Basing the objective directly on
the uncertainty in the tumor cell density field can thus allow for creating a more accurate model.

In Chapter 2, an introduction to radiotherapy and treatment planning is provided. In Chapter 3, proba
bilistic treatment planning is introduced. Subsequently, the probabilistic objective functions are derived
in Chapter 4. The results of the investigated models are presented in Chapter 5. Finally, in Chapter 6
the results are discussed, and overall conclusions are presented.



2
Radiotherapy

In this chapter, radiotherapy will be introduced. First, some background information will be provided
in Section 2.1. Subsequently, radiobiological models will be discussed in Section 2.2 and the clinical
volumes that are used for treatment planning are discussed in Section 2.3. Finally, an introduction to
treatment planning will be given in Section 2.4.

2.1. Radiotherapy
Radiotherapy is one of the main treatments for tumors. The goal of radiotherapy is to cause biological
damage and subsequent cell death in the tumor cells using radiation. Radiation can be applied to the
tumor area in different ways, using external beams of ionizing radiation aimed at the tumor (external
radiotherapy) or by implantation of a radiation source in the vicinity of the tumor (internal radiotherapy).
What type of radiation treatment a patient receives mainly depends on the location, type and size of
the tumor.

Because it is important in radiotherapy to irradiate the tumor sufficiently while minimizing the dam
age to the healthy tissue, the effect of radiation on both tumor cells and on the healthy tissue should
be known. Fractionation is used to manage the balance between tumor damage and normal tissue
damage. This means that the radiation dose is administered in multiple sessions (fractions). This frac
tionation allows healthy tissue cells to recover from possible damage. Tumor cells can also repopulate
in between fractions, but normal tissue tends to recover from radiation damage more quickly than tumor
cells. Different fractionation schemes can be used [10]. In conventional external beam radiotherapy,
each fraction consists of a small dose of about 1.8 to 2 Gy, so for example a prescribed total dose
of 60 Gy can be spread out over 30 fractions of 2 Gy each. Other options are hyperfractionation, in
which more fractions with smaller doses are administered, and hypofractionation, where the total dose
is divided into fewer fractions with a higher dose. An example of hypofractionation is stereotactic body
radiotherapy (SBRT).

Radiobiological models can be used to evaluate the effects of different fractionation schemes. Such
models allow converting physical quantities, such as the dose and the total number of fractions, into
clinically relevant quantities, such as the Biologically Effective Dose (BED), Tumor Control Probability
(TCP) and the Normal Tissue Complication Probability (NTCP) [11].

2.2. Radiobiological models
LinearQuadratic model
Cell survival can be modeled using the LinearQuadratic (LQ) model. In the basic LQ model, the
surviving fraction 𝑆𝐹 of tumor cells after receiving a single fraction of dose is:

𝑆𝐹𝑑 = e−(𝛼𝑑+𝛽𝑑2), (2.1)

where 𝛼 and 𝛽 are parameters related to the radiation sensitivity of the cell and 𝑑 is the fraction dose.
The ratio 𝛼/𝛽 is determined by the sensitivity of the cells to radiation and is therefore tissuespecific.
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4 2. Radiotherapy

For fractionated treatment with 𝑁𝑓 fractions of dose 𝑑, the surviving fraction is:

𝑆𝐹𝑁𝑓𝑑 = (𝑆𝐹𝑑)𝑁𝑓 (2.2)

= e−𝑁𝑓(𝛼𝑑+𝛽𝑑
2). (2.3)

The surviving fraction can then be rewritten by substituting the total dose 𝐷 = 𝑁𝑓𝑑 into Equation 2.3,
leading to

𝑆𝐹𝑁𝑓𝑑 = e−(𝛼𝐷+𝛽𝐷
2/𝑁𝑓). (2.4)

The relationship between the surviving fraction 𝑆𝐹𝑁𝑓𝑑 and the Biologically Effective Dose 𝐵𝐸𝐷 is as
follows:

𝑆𝐹𝑁𝑓𝑑 = e−𝛼𝐵𝐸𝐷 , (2.5)

where the BED is given by:

𝐵𝐸𝐷 = 𝐷 (1 + 𝑑
𝛼/𝛽) . (2.6)

The Biologically Effective Dose 𝐵𝐸𝐷 is a measure of the biological effect that is induced in the tissue
with a specific 𝛼/𝛽 ratio by the radiation.

Tumor Control Probability
The Tumor Control Probability (TCP) is the probability of local tumor control, which means that the TCP
equals 1 when all tumor cells have been eradicated. The TCP is therefore dependent on the number
of surviving tumor cells 𝜇 of an initial number of tumor cells 𝑁0, which is given by

𝜇 = 𝑁0 ⋅ 𝑆𝐹𝑁𝑓𝑑 = 𝑁0 ⋅ e−(𝛼𝐷+𝛽𝐷
2/𝑁𝑓). (2.7)

Themost generally used model for the TCP is based on the Poisson distribution, so the TCP for multiple
fractions is described by

𝑇𝐶𝑃 = e−𝜇 = exp (−𝑁0 ⋅ e−(𝛼𝐷+𝛽𝐷
2/𝑁𝑓)) . (2.8)

The TCP model can be used as a measure for treatment plan optimization or for treatment plan evalu
ation.

Normal Tissue Complication Probability
The Normal Tissue Complication Probability (NTCP) is the probability for a certain dose to cause com
plications in the normal tissue. The most wellknown model to predict the NTCP is the LymanKutcher
Burman model [12–15]. The NTCP can also be used for treatment plan optimization or evaluation and
in all treatments a balance between maximizing the TCP and minimizing the NTCP must be found.

2.3. Clinical volumes used for treatment planning
Treatment plans for radiotherapy are created based on a planning CT scan. On this CT scan, the
treatment planning volumes and organs at risk (OARs) are delineated. This delineation will be used
to steer the treatment plan. The treatment planning volumes are defined by ICRU Report 50 [16] as
the Gross Tumor Volume (GTV), Clinical Target Volume (CTV) and Planning Target Volume (PTV). A
schematic representation of these volumes is shown in Figure 2.1.

Gross Tumor Volume
Themacroscopic tumor visible on the planning CT scan is delineated to obtain the Gross Tumor Volume
(GTV).

Clinical Target Volume
The tumor cells are often not limited to the GTV and microscopic disease extension (MDE) is present
outside the GTV. As this MDE is not visible in the planning CT scan, a Clinical Target Volume (CTV)
is defined. The CTV is obtained by expanding the GTV by a margin to include microscopic disease
surrounding the GTV. This margin varies per tumor site and is based on histopathological studies in
vestigating the MDE [4, 5].
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Figure 2.1: Schematic representation of the gross tumor volume, clinical tumor volume and planning target volume. Adapted
from [10].

Planning Target Volume
Geometrical uncertainties in the location of the dose delivery are always present due to setup errors.
These errors consist of a systematic error and random errors. The systematic error is a fixed error,
that occurs for every fraction. The random errors are variations in the location of the tumor relative to
the isocenter of the treatment plan that change from day to day, for example due to organ motion and
patient positioning. To deal with these errors, the CTV is extended into the Planning Target Volume
(PTV) using the PTV margin. A commonly used method to define the PTV margin is the margin recipe
proposed by Van Herk et al. [17]. The Planning Target Volume is the volume that needs to be treated
with the prescribed dose, to ensure full dose coverage of the clinical target volume.

Organs at Risk
The Organs at Risk (OAR) should also be delineated on the planning CT. OARs are organs in the
vicinity of the tumor that are at risk for radiation damage. OARs need to be taken into account during
treatment planning as they are considered essential to the patient’s wellbeing and excessive radiation
to these organs must therefore be avoided.

2.4. Treatment planning
Treatment planning process
Radiotherapy treatments can only be given following an extensive treatment planning process, which
consists of several steps. First, a planning CT scan is made. Using this scan, all the clinical volumes as
discussed in Section 2.3 are delineated. Subsequently, a treatment plan is made. For this, a treatment
planning system (TPS) is used. Such systems allow for multicriteria optimization of the dose distribu
tion, taking into account requirements for the dose optimization, such as the minimum required dose
in the PTV and constraints on the maximum dose in OARs. The final step of the treatment planning
workflow is to evaluate the treatment plan. If the plan is unsatisfactory, adjustments are made to create
improved treatment plans.

Multicriteria optimization
During multicriteria optimization of the dose distribution, several objectives are used to create a treat
ment plan. An example of the objective for the PTV is the maximization of the minimum dose in the
PTV. On this objective, there is typically a constraint that specifies that at least 95% of the volume
needs to receive the prescribed dose. Similarly, for an OAR the objective could be to minimize the
maximum dose that is administered to the OAR with a hard constraint on the maximum allowed dose
in that OAR. The exact used objectives are dependent on the type of tumor and location of the tumor.

Dealing with uncertainties
As briefly discussed in Section 2.3, the GTV is expanded by two different margins to account for the
different uncertainties that are present. First, the GTV is expanded into the CTV to include potential
microscopic disease into the treated volume. Subsequently, the CTV is expanded into the PTV to deal
with the geometrical uncertainties in the location of dose delivery.

To create the CTV, a clinician delineates the CTV on the planning CT scan, using a fixed margin
that is used for all patients with the same tumor type. Such a margin is obtained from histopathological
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studies that investigate the extent of microscopic disease. In addition to this fixed margin, clinicians
take into account anatomical barriers when they delineate the CTV. These anatomical barriers restrain
the spread of tumors and therefore clinicians can be certain that no tumor cells will be found beyond
these barriers. The resulting CTV is then a volume with a margin that is the same in all directions,
except when it is restricted by anatomical barriers.

The goal of the PTV is to ensure that the dose is delivered at the planned location (the CTV). For
this, the margin recipe proposed by Van Herk et al. [17] is commonly used. This recipe can be used to
compute the margin 𝑀 based on the systematic and random errors that are present:

𝑀 = 2.5Σ + 0.7𝜎, (2.9)

where Σ and 𝜎 are the standard deviations of the systematic and random errors, respectively. These
standard deviations can be obtained from studies investigating the accuracy of radiotherapy treatments
in a patient population.



3
Probabilistic treatment planning

In this chapter, probabilistic treatment planning will be discussed. First the background of probabilis
tic treatment planning will be discussed in Section 3.1 and subsequently it will be introduced how
probabilistic treatment planning can be used for dealing with uncertainties in microscopic disease in
Section 3.2.

3.1. Background
In probabilistic treatment planning, uncertainties in the target volumes are directly included into the
treatment plan optimization, thereby replacing the explicit target volume margin [18]. This means that
for the uncertainties in the microscopic disease area, the Clinical Target Volume (CTV) margin would be
replaced by optimizing the dose distribution in the microscopic disease area while taking into account
the uncertainties present in this area. For the geometrical uncertainties, the Planning Target Volume
(PTV) margin would be replaced by optimizing the dose distribution while taking the geometrical uncer
tainties in the location of the dose delivery into account.

3.1.1. Probabilistic treatment planning to replace CTVPTV margin
To familiarize with the concept of how probabilistic treatment planning can be used for photon radio
therapy, a few studies investigating probabilistic treatment planning to replace the CTVPTV margin
will be discussed here. Probabilistic treatment planning offers an alternative to the traditional CTV
PTV margin based on the margin recipe [17], by allowing the explicit implementation of the geometrical
uncertainties into the treatment plan optimization.

In 2007, Witte et al. [19] introduced a probabilistic planning method where the geometrical uncer
tainties were incorporated into the TCP and NTCP cost functions of the treatment planning. Both
systematic and random errors were implemented into the cost functions by shifting the target volume
with respect to the dose distribution and blurring of the dose distribution, respectively. The expected
TCP was derived by assuming a threedimensional Gaussian distribution for both the systematic and
random errors. The expected NTCP was derived in a similar manner. The treatment plan was then
optimized for the expected TCP and NTCP functions. It was shown that the probabilistic treatment plan
resulted in a better balance between the expected TCP and the expected NTCP than a conventional
marginbased treatment plan.

Bohoslavsky et al. [20] improved on the probabilistic planning method from Witte et al. [19] by
introducing rotational uncertainties. Witte et al. only took into account translational uncertainties for
the systematic error by shifting the target volume with respect to the dose distribution. Bohoslavsky
et al. implemented the rotational uncertainties by rotating the target volume around all three axes at
regular angular intervals. Again, the treatment plans were optimized for the expected TCP and NTCP,
and it was shown that the probabilistic treatment plans achieved better dose distributions regarding the
expected TCP and NTCP than conventional marginbased treatment plans.

Tilly et al. [21] investigated a different probabilistic approach to replace the CTVPTV margin. They
implemented the geometrical uncertainties into a cost function that optimizes for a percentile dosage.
This percentile dosage is defined as the probability for a prescribed dose coverage, which is in turn

7



8 3. Probabilistic treatment planning

the minimum dose that a partial volume in a region of interest must receive. In this study only sys
tematic errors were implemented. These systematic errors were modelled by generating randomly
displaced geometrical states of the patient anatomy using statistical shape models and calculating the
dose distributions for both the original patient anatomy and the different randomized geometrical states.
The expected percentile dosage was derived from these dose distributions and treatment plans were
optimized using the expected percentile dosage as a constraint. This constraint was set such that
for 90% of the randomized geometrical states 98% of the target volume received the minimum dose
determined by the prescribed dose coverage. The probabilistic treatment plans were compared to con
ventional marginbased treatment plans. It was shown that the probabilistic plans showed an increase
in the dose in the CTV and a decrease in the dose in nearby OARs, compared to the conventional
plans.

In these studies on probabilistic treatment planning to replace the CTVPTVmargin, the geometrical
uncertainties were incorporated into a cost function that can be implemented in a treatment planning
system. Subsequently, expected value optimization for the TCP and NTCP or percentile dosage was
used.

3.1.2. Probabilistic treatment planning for proton therapy
Although the focus of this work is on photon radiotherapy, a short discussion of probabilistic treatment
planning for proton therapy is included here. For proton therapy, the same uncertainties as for photon
therapy are present, but additionally there are some proton therapy specific challenges. Proton therapy
allows for a much more localized dose deposition than photon therapy due to the finite range of protons.
There are however uncertainties in the exact location the protons will be deposited in the patient, mainly
because CT images are not an ideal input for the proton dose calculations. Furthermore, the impact
of setup errors and organ motion on the dose deposition is bigger in proton therapy than it is in photon
therapy, this is again related to the finite range of protons and the resulting the localized dose deposition.
As small displacements can lead to an entirely different (and incorrect) dose distribution than was
planned, probabilistic treatment planning can be especially helpful for proton therapy, to deal with both
the conventional geometrical uncertainties and the additional proton therapy specific uncertainties.

3.2. Probabilistic treatment planning to replace GTVCTV margin
The goal of using probabilistic treatment planning to replace the GTVCTV margin is to achieve an
optimal dose distribution for tumor control in the CTV while taking the uncertainties in the microscopic
disease into account. In order to do this, a probabilistic model based on the probability of finding
microscopic disease at a certain distance needs to be created. As shortly discussed in Chapter 1, a
few studies investigating such models have been performed before.

3.2.1. Previous studies
Susharina et al. [6] introduced a probabilistic concept of the CTV, called the Clinical Target Distribution
(CTD). This CTD is a threedimensional discrete distribution that contains the probability 𝑝𝑖 at voxel 𝑖
that this voxel contains tumor cells. These voxel probabilities range from 1 (near the GTV) to 0 (far away
from the GTV). This is in stark contrast with how the CTV works where the binary decision of including
voxels into the CTV or not results in voxel 𝑖 having a probability of either 1 or 0. To construct the
CTD, the authors proposed that a physician draws a number of margins around the GTV and assigns
a probability to each margin that tumor can be found outside this margin (at distances further from the
GTV). This distribution can be used to compute the probability 𝑝𝑖, which can be used in an objective
function. In this study, the quadratic underdose penalty (which penalizes underdosage in the target
volume) was used as the objective function. Bortfeld et al. [7] further investigated the use of this CTD
for probabilistic definition of the CTV. In this study, the margins with assigned probabilities are replaced
by volume shells which are prescribed a probability of being tumorous. Furthermore, the quadratic
underdose objective function is replaced by an objective function based on the TCP. This objective
function is used to maximize the tumor control within the volume shells while taking the probability of
the shells to be tumorous into account.

Both these studies showed promising results for the use of probabilistic treatment planning to
replace the GTVCTV margin. However, neither study provides a manner of deriving the CTD other
than having physicians manually delineate the margins or volume shells and assigning probabilities
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to these structures. To improve on the CTD concept, Briggeman [8] therefore introduced a simplified
onedimensional model based on the expected TCP. This model includes the uncertainties in the micro
scopic disease area using probability density functions for the maximum distance where MDE can be
found and the quantity of the tumor cell density. By maximizing the expected TCP, dose distributions
can be obtained that maximize the tumor control by taking the uncertainties in the microscopic disease
into account. A threedimensional extension of this model was investigated by Swart [9], where the
location of a number of small groups of microscopic disease is modelled using stochastic variables.

3.2.2. Introduction of the investigated models
For probabilistic treatment planning, we need an objective function that maximizes tumor control by
optimizing the dose distribution in the uncertain microscopic disease area. The Tumor Control Proba
bility (as introduced in Section 2.2) is used to compute the probability of local tumor control and is thus
suitable as a basis for our objective function:

𝑇𝐶𝑃 = exp [−𝑁0 ⋅ exp(−(𝛼𝐷 +
𝛽𝐷2
𝑁𝑓

))] . (3.1)

Here, 𝑁0 is the initial number of tumor cells, 𝛼 and 𝛽 are the radiosensitivity parameters of the tumor
tissue and 𝑁𝑓 is the number of treatment fractions. The initial number of tumor cells equals 𝑁0 =
𝜌 ⋅ 𝑉𝑡𝑢𝑚𝑜𝑟, where 𝜌 is the tumor cell density and 𝑉𝑡𝑢𝑚𝑜𝑟 the tumor volume. As we desire to optimize the
spatial dose distribution in the CTV, the dose 𝐷 is replaced by a spatially dependent dose distribution
𝐷(𝐫). An integral over the entire volume can then be used to obtain the TCP for a tumor with a spatially
dependent tumor cell density 𝜌(𝐫) that receives a dose 𝐷(𝐫):

𝑇𝐶𝑃(𝐷, 𝜌) = exp [−∫
𝑉
𝜌(𝐫) exp(−(𝛼𝐷(𝐫) + 𝛽𝐷(𝐫)

2

𝑁𝑓
))d𝐫3] . (3.2)

An alternative to the TCP is the logarithmic Tumor Control Probability (LTCP), which is computationally
more efficient than the TCP,

𝐿𝑇𝐶𝑃(𝐷, 𝜌) = −∫
𝑉
𝜌(𝐫) exp(−(𝛼𝐷(𝐫) + 𝛽𝐷(𝐫)

2

𝑁𝑓
))d𝐫3 . (3.3)

The goal of optimizing the TCP is to obtain the highest possible tumor control in the volume, whereas
the goal of optimizing the LTCP would be to avoid underdosing any part of the volume. Whenever any
part of the volume receives a too low dose, the LTCP becomes very large. This drives the optimizer to
avoid any cases of underdosage.

The uncertainties in the microscopic disease area are essentially uncertainties in the tumor cell
density field 𝜌(r): both the extension of the tumor cell density field from the gross tumor volume and
the quantity of the tumor cell density are uncertain. In this thesis, two different models of the uncertainty
in the microscopic disease are investigated.

First, we will further investigate the model that was introduced by Briggeman [8], where the uncer
tainties in the microscopic disease area are defined using probability density functions. A probability
density function is needed for both the microscopic disease extension and the value of the tumor cell
density. A probability density function for the MDE describes the probability of finding microscopic dis
ease at a certain distance from the GTV. Such a function can be obtained from histopathologic studies
that investigate the maximum MDE from a tumor (see Appendix A). Beyond the maximum MDE, the
tumor cell density will be 0, so the spatial distribution of the tumor cell density 𝜌(𝐫) is dependent on the
maximum MDE and therefore on the uncertainty of the MDE. Additionally, the value of the tumor cell
density is uncertain, so a probability density function for the tumor cell density needs to be defined as
well. It is assumed that the quantity of 𝜌 is uniformly distributed among patients. This model will be
derived in Section 4.1.

Subsequently, a model will be investigated that models the tumor cell density field explicitly. Such a
model makes sense as the uncertainty in the microscopic disease area is essentially just an uncertainty
of the actual tumor cell density field in this area. For this model, a KarhunenLoève (KL) expansion
is used to generate different realizations of the tumor cell density field to simulate different patients.
The KarhunenLoève expansion is a method which can be used to parameterize a random field into a
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linear combination of functions that describes the variation in the random field. To create this model,
we need to define the mean tumor cell density in the area and a correlation function that describes the
correlation of the tumor cell density. The KLmodel is presented in Section 4.6.



4
Models

In this chapter, the different models that are investigated for probabilistic treatment planning to account
for uncertainties in the CTV are introduced. Section 4.1 shows the derivation of two objective functions,
based on the expected TCP and expected LTCP (logarithmic TCP), in Section 4.2 these objective
functions are discretized and in Section 4.3 a penalized version of the objective function based on
the ETCP is derived. In Section 4.4, the optimization constraints are described and the tumor and
model parameters used are detailed in Section 4.5. Finally, in Section 4.6 a KarhunenLoève model is
introduced in which the tumor cell density field is parameterized using a KarhunenLoève expansion,
which is then used to derive an objective function based on this KL expansion.

4.1. Derivation of the objective function
For the probabilistic optimization, we assume a symmetric, spherical tumor with a radius 𝑅 and a spher
ical CTV shell of thickness Δ surrounding the tumor. This geometry is visualized in Figure 4.1.

𝑅

PTV

∆

MDE Volume

Figure 4.1: Conceptual geometry for a symmetric, spherical tumor with radius 𝑅, surrounded by a spherical CTV shell with a
thickness Δ. Adapted from [8]

Due to the assumption of a symmetric, spherical tumor geometry, the volume integral in the TCP
(Equation 3.2) can be replaced by an integral over r from the tumor radius 𝑅 up to 𝑅 + Δ. The TCP is
then as follows:

𝑇𝐶𝑃(𝐷, 𝜌) = exp [−∫
𝑅+Δ

𝑅
𝜌(r) ⋅ 4𝜋𝑟2 ⋅ exp(−(𝛼𝐷(r) + 𝛽𝐷(r)

2

𝑁𝑓
))dr] . (4.1)

The same can be done for the volume integral in the LTCP (Equation 3.3):

𝐿𝑇𝐶𝑃(𝐷, 𝜌) = log(𝑇𝐶𝑃(𝐷, 𝜌)) = −∫
𝑅+Δ

𝑅
𝜌(r) ⋅ 4𝜋𝑟2 ⋅ exp(−(𝛼𝐷(r) + 𝛽𝐷(r)

2

𝑁𝑓
))dr . (4.2)

The uncertainty in the CTV is actually an uncertainty in how far the tumor cell density field 𝜌(r) extends
from the GTV and an uncertainty in the value of the tumor cell density. We assume that the tumor cell

11
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density within the CTV shell is constant and drops to 0 after a distance Δ:

𝜌(r, Δ) = 𝜌 ⋅ 𝐻(𝑅 + Δ − r), (4.3)

where 𝐻 is the Heaviside function and r > 𝑅 as only the CTV is investigated. The uncertainty in the
extent of CTV volume is in the thickness of the CTV Δ, so we need a probability density function 𝑃Δ(Δ).
𝑃Δ(Δ) is derived from a cumulative distribution function 𝐹Δ(Δ):

𝐹Δ(Δ) = 1 − e−
Δ
𝐿 , (4.4)

where 𝐿 is a constant that is obtained by fitting this exponential function to data on the maximum MDE
obtained from histopathologic studies (Appendix A). The corresponding probability density function
𝑃Δ(Δ) is:

𝑃Δ(Δ) =
1
𝐿e

−Δ𝐿 . (4.5)

The corresponding maximum MDE distance Δ𝑚𝑎𝑥 can be computed from 𝐿. We assume that Δ𝑚𝑎𝑥
corresponds to a probability level of 𝑝 = 0.99:

𝑝 = 1 − e−
Δ𝑚𝑎𝑥
𝐿 = 0.99. (4.6)

We take 0.99 as the probability level as clinically it is impossible to irradiate the entire body of the
patient, so it is assumed that 99% of all tumor cells is within the investigated volume. Δ𝑚𝑎𝑥 can then
be computed as follows:

Δ𝑚𝑎𝑥 = −𝐿 ⋅ 𝑙𝑜𝑔(1 − 𝑝). (4.7)

To account for the uncertainty in the value of the tumor cell density, we assume that the tumor cell
density is uniformly distributed among patients, which gives a probability density function 𝑃𝜌(𝜌):

𝑃𝜌(𝜌) =
1

𝜌1 − 𝜌0
, (4.8)

where 𝜌0 is the minimum tumor cell density and 𝜌1 the maximum tumor cell density.
To account for the uncertainties, we will optimize either the expected value of the TCP:

𝔼(𝑇𝐶𝑃(𝐷, 𝜌)) = ∫
𝜌1

𝜌0
∫
∞

0
𝑇𝐶𝑃(𝐷, 𝜌)𝑃𝜌(𝜌)𝑃Δ(Δ)𝑑Δ𝑑𝜌

= ∫
𝜌1

𝜌0
∫
∞

0
exp [−∫

𝑅+Δ

𝑅
𝜌(r) ⋅ 4𝜋𝑟2 ⋅ exp(−(𝛼𝐷(r) + 𝛽𝐷(r)

2

𝑁𝑓
))dr] 𝑃𝜌(𝜌)𝑃Δ(Δ)dΔd𝜌 ,

(4.9)

or the expected value of the LTCP

𝔼(𝐿𝑇𝐶𝑃(𝐷, 𝜌)) = ∫
𝜌1

𝜌0
∫
∞

0
𝐿𝑇𝐶𝑃(𝐷, 𝜌)𝑃𝜌(𝜌)𝑃Δ(Δ)𝑑Δ𝑑𝜌

= ∫
𝜌1

𝜌0
∫
∞

0
−∫

𝑅+Δ

𝑅
𝜌(r) ⋅ 4𝜋𝑟2 ⋅ exp(−(𝛼𝐷(r) + 𝛽𝐷(r)

2

𝑁𝑓
))dr𝑃𝜌(𝜌)𝑃Δ(Δ)dΔd𝜌 .

(4.10)

4.2. Discretization
To implement Equation 4.9 and Equation 4.10 as objective functions, they need to be discretized. The
integrals for the probability density functions can be approximated using quadrature rules. To integrate
over Δ, a GaussLaguerre quadrature is applied with 𝑁𝑞𝑢𝑎𝑑 points at Δ𝑗 with corresponding weights 𝑤Δ𝑗 .
The integral over 𝜌(r) is approximated using a GaussLegendre quadrature with 𝑁𝑞𝑢𝑎𝑑 points at 𝜌𝑖 with
corresponding weights 𝑤𝜌𝑖 . The exact implementation of the quadratures can be found in Appendix C.
Additionally, the spatial integral is approximated by discretizing the radius into radii r𝑠, 𝑠 = 1, ..., 𝑆 + 1
such that the investigated volume is divided into 𝑆 concentric spherical shells of equal volume. Shells
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of equal volume are chosen to avoid the outer shells of the volume containing larger numbers of tumor
cells than the inner shells. The maximum distance r𝑆+1 is set equal to 𝑅 + 2 ⋅ Δ𝑚𝑎𝑥. We assume that
the dose within a shell is a constant 𝐷𝑠. This leads to the following discretizations of the 𝔼(𝑇𝐶𝑃(𝐷, 𝜌))
and 𝔼(𝐿𝑇𝐶𝑃(𝐷, 𝜌)):

𝐸𝑇𝐶𝑃(𝐷) =
𝑁𝑞𝑢𝑎𝑑

∑
𝑖=1

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

𝑤𝜌𝑖 𝑤Δ𝑗 exp [− ∑
𝑠∶r𝑠<𝑅+Δ𝑗

𝜌𝑖𝑉𝑠,𝑗 exp(−(𝛼𝐷𝑠 +
𝛽𝐷2𝑠
𝑁𝑓

))] (4.11)

𝐸𝐿𝑇𝐶𝑃(𝐷) = −
𝑁𝑞𝑢𝑎𝑑

∑
𝑖=1

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

𝑤𝜌𝑖 𝑤Δ𝑗 ∑
𝑠∶r𝑠<𝑅+Δ𝑗

𝜌𝑖𝑉𝑠,𝑗 exp(−(𝛼𝐷𝑠 +
𝛽𝐷2𝑠
𝑁𝑓

)) , (4.12)

where 𝑉𝑠,𝑗 is the volume of the shells, which is dependent on Δ𝑗. As the sum over the volumes should
only go up to Δ𝑗, the volume of the shell that contains Δ𝑗 (with r𝑠 < 𝑅 + Δ𝑗 and r𝑠+1 > 𝑅 + Δ𝑗) needs
to be modified, as it only partially contains tumor cells. The volumes of the shells are computed as
follows:

𝑉𝑠,𝑗 = {
0 if r𝑠 > 𝑅 + Δ𝑗
4/3𝜋 (r3𝑠+1 − r3𝑠) if r𝑠+1 < 𝑅 + Δ𝑗
4/3𝜋 ((𝑅 + Δ𝑗)3 − r3𝑠) if r𝑠 < 𝑅 + Δ𝑗 and r𝑠+1 > 𝑅 + Δ𝑗 .

(4.13)

For the optimization, the gradient and Hessian of the objective functions are necessary. Both can
be analytically calculated and thus implemented into the optimization. The gradient and Hessian of the
𝐸𝑇𝐶𝑃(𝐷) are:

d𝐸𝑇𝐶𝑃(𝐷)
d𝐷𝑙

=
𝑁𝑞𝑢𝑎𝑑

∑
𝑖=1

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

𝑤𝜌𝑖 𝑤Δ𝑗 exp [− ∑
𝑠∶r𝑠<𝑅+Δ𝑗

𝜌𝑖𝑉𝑠,𝑗 exp(−(𝛼𝐷𝑠 +
𝛽𝐷2𝑠
𝑁𝑓

))] ⋅

[𝜌𝑖𝑉𝑙,𝑗 exp(−(𝛼𝐷𝑙 +
𝛽𝐷2𝑙
𝑁𝑓

))] ⋅ (𝛼 + 2𝛽𝐷𝑙𝑁𝑓
) (4.14)

and

d2𝐸𝑇𝐶𝑃(𝐷)
d𝐷𝑙 d𝐷𝑚

=
𝑁𝑞𝑢𝑎𝑑

∑
𝑖=1

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

𝑤𝜌𝑖 𝑤Δ𝑗 exp [− ∑
𝑠∶r𝑠<𝑅+Δ𝑗

𝜌𝑖𝑉𝑠,𝑗 exp(−(𝛼𝐷𝑠 +
𝛽𝐷2𝑠
𝑁𝑓

))] ⋅

{[𝜌𝑖𝑉𝑙,𝑗 exp(−(𝛼𝐷𝑙 +
𝛽𝐷2𝑙
𝑁𝑓

))] ⋅ (𝛼 + 2𝛽𝐷𝑙𝑁𝑓
) [𝜌𝑖𝑉𝑚,𝑗 exp(−(𝛼𝐷𝑚 +

𝛽𝐷2𝑚
𝑁𝑓

))] ⋅ (𝛼 + 2𝛽𝐷𝑚𝑁𝑓
)+

𝛿𝑙,𝑚 [𝜌𝑖𝑉𝑙,𝑗 exp(−(𝛼𝐷𝑙 +
𝛽𝐷2𝑙
𝑁𝑓

))] [−(𝛼 + 2𝛽𝐷𝑙𝑁𝑓
)
2
+ 2𝛽𝑁𝑓

]} , (4.15)

where 𝛿𝑙 , 𝑚 is the Kronecker delta. The gradient and the Hessian of the 𝐸𝐿𝑇𝐶𝑃(𝐷) are:

d𝐸𝐿𝑇𝐶𝑃(𝐷)
d𝐷𝑙

= −
𝑁𝑞𝑢𝑎𝑑

∑
𝑖=1

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

𝑤𝜌𝑖 𝑤Δ𝑗 𝜌𝑖𝑉𝑙,𝑗 exp(−(𝛼𝐷𝑙 +
𝛽𝐷2𝑙
𝑁𝑓

)) ⋅ [−(𝛼 + 2𝛽𝐷𝑙𝑁𝑓
)] (4.16)

and

d2𝐸𝐿𝑇𝐶𝑃(𝐷)
d𝐷𝑙 d𝐷𝑚

= −
𝑁𝑞𝑢𝑎𝑑

∑
𝑖=1

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

𝑤𝜌𝑖 𝑤Δ𝑗 𝛿𝑙,𝑚𝜌𝑖𝑉𝑙,𝑗 exp(−(𝛼𝐷𝑙 +
𝛽𝐷2𝑙
𝑁𝑓

)) [(𝛼 + 2𝛽𝐷𝑙𝑁𝑓
)
2
− 2𝛽𝑁𝑓

] . (4.17)
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4.3. Derivation of penalized objective
The basic ETCP model takes only the maximization of the tumor control into account. To allow for
a better balance between the TCP of a treatment plan and the organ dosage of healthy tissue, a
penalized objective could be used. An example of a simple penalty that can be imposed on the ETCP,
is the normalized squared overdose 𝑑+𝑛𝑜𝑟𝑚:

𝑑+𝑛𝑜𝑟𝑚 =
∫𝑉 𝐷(r)2 dr
∫𝑉 𝐷2𝑚𝑎𝑥 dr

. (4.18)

Just like the ETCP, 𝑑+𝑛𝑜𝑟𝑚 has a value between 0 and 1 and can therefore be used to create a new
objective pen_obj = 𝔼(𝑇𝐶𝑃(𝐷, 𝜌)) − 𝑑+𝑛𝑜𝑟𝑚 in which the ETCP is penalized for a too high integral
dosage in the volume. A weight 𝑤𝑝𝑒𝑛 ∈ [0, 2] can be used to balance the influence of the ETCP and
the penalty on the optimization. The interval [0, 2] is chosen, so a weight of 1 corresponds to an equal
balance between the ETCP and the penalty, a weight of 0 corresponds to optimizing only the ETCP
and a weight of 2 corresponds to optimizing only the penalty. The resulting penalized model is

pen_obj = (2 − 𝑤𝑝𝑒𝑛) ⋅ 𝔼(𝑇𝐶𝑃(𝐷, 𝜌)) − 𝑤𝑝𝑒𝑛 ⋅
∫𝑉 𝐷(𝑟)2 dr
∫𝑉 𝐷2𝑚𝑎𝑥 dr

(4.19)

and by applying the same spatial discretization as was used for the 𝐸𝑇𝐶𝑃(𝐷), we obtain the discretized
penalized model,

pen_obj = (2 − 𝑤𝑝𝑒𝑛) ⋅ 𝐸𝑇𝐶𝑃(𝐷) − 𝑤𝑝𝑒𝑛 ⋅
∑𝑠 𝐷2𝑠 ⋅ 𝑉𝑠
∑𝑠 𝐷2𝑚𝑎𝑥 ⋅ 𝑉𝑠

, (4.20)

where 𝑉𝑠 = 4/3𝜋 (r3𝑠+1 − r3𝑠).
For the optimization, the gradient and Hessian are also required. The gradient is given by

d(pen_obj)
d𝐷𝑙

= (2 − 𝑤𝑝𝑒𝑛) ⋅
d𝐸𝑇𝐶𝑃(𝐷)

d𝐷𝑙
−𝑤𝑝𝑒𝑛 ⋅

2𝐷𝑙 ⋅ 𝑉𝑙
∑𝑠 𝐷2𝑚𝑎𝑥 ⋅ 𝑉𝑠

(4.21)

and the Hessian is given by

d2(pen_obj)
d𝐷𝑙 d𝐷𝑚

= (2 − 𝑤𝑝𝑒𝑛) ⋅
d2𝐸𝑇𝐶𝑃(𝐷)
d𝐷𝑙 d𝐷𝑚

− 𝛿𝑙,𝑚 ⋅ 𝑤𝑝𝑒𝑛 ⋅
2𝑉𝑙

∑𝑠 𝐷2𝑚𝑎𝑥 ⋅ 𝑉𝑠
. (4.22)

4.4. Optimization settings
The objectives are maximized in Python, using the trustconstr method of the SciPy optimize.minimize
function [22] which uses a trust region algorithm which is well suited for solving nonlinear constrained
optimization problems.

Two constraints are used for the optimization of the dose distribution. First, a bound constraint
0 ≤ 𝐷𝑠 ≤ 𝐷𝑚𝑎𝑥 is set on the dose, to ensure that the dose in the shells cannot be negative and does
not exceed a maximum dose 𝐷𝑚𝑎𝑥. Secondly, a linear total energy constraint

∑
𝑠
𝑉𝑠𝐷𝑠 ≤ 𝐶∑

𝑠
𝑉𝑠𝐷𝑚𝑎𝑥 (4.23)

is imposed on the optimization. 𝐶 is a constant, which can be varied to take any value between 0 and
1. The total energy constraint ensures that the integral dose deposited in the volume is constrained.
Without such a constraint, the optimization would result in maximum dose throughout the investigated
volume.

Furthermore, a scaling factor scale_fac can be provided to the optimization, which scales the ob
jective, gradient and Hessian as follows:

scaled objective = scale_fac ⋅ obj,

scaled gradient = scale_fac ⋅ d(obj)
d𝐷𝑙

,

scaled Hessian = scale_fac ⋅ d
2(obj)

d𝐷𝑙 d𝐷𝑚
.
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Instead of the original functions, these scaled functions are provided to the optimizer. As the TCP
is a sigmoidal function, the gradient values in dose areas where the TCP is almost 0 or almost 1 can
approach 0, which would prevent the optimization from further optimizing the dose values in these dose
areas. By using the scaled functions, the gradient values do not approach 0 as quickly and thus the
optimization can be pushed further towards the optimum.

4.5. Tumor and model parameters
4.5.1. Parameters for Section 5.1: Comparison to previous results
The first section of the results will focus on comparing the current model to previous results from Brigge
man [8]. For this, parameters similar to the ones used in that study will be used. The tumor site of
interest is prostate and the tumor and model parameters can be found in Table 4.1.

Table 4.1: Tumor and model parameters for the comparison to previous results.

Parameter Value

Tumor radius 𝑅 (mm) 3
Constant 𝐿 (mm) [1.1, 1.7, 2.6]
Max. CTV thickness Δ𝑚𝑎𝑥 (mm) [5.0, 8.0, 12.0]
Maximum dose 𝐷𝑚𝑎𝑥 (Gy) 38.0
Number of treatment fractions 𝑁𝑓 4
𝛼 (Gy−1) 0.15
𝛽 (Gy−2) 0.103
Minimum tumor cell density 𝜌0 (mm−3) 1 x 102
Maximum tumor cell density 𝜌1 (mm−3) 4 x 105
Energy constant 𝐶 0.5
Number of shells 𝑆 150
Number of quadrature points 𝑁𝑞𝑢𝑎𝑑 50

4.5.2. Parameters for Section 5.2: Different tumor sites
The second part of the results will focus on the use both the ETCP/ELTCP (Section 4.2) and penalized
ETCP (Section 4.3) as objectives to optimize dose distributions for the CTV for four tumor sites; brain,
breast, lung and prostate. An overview of all the used parameters is tabulated in Table 4.2. In Ap
pendix B, the determination of constant 𝐿 and corresponding Δ𝑚𝑎𝑥 by fitting Equation 4.4 to cumulative
data obtained from histopathologic studies on the extension of microscopic disease (Appendix A) are
demonstrated. For all tumor sites, the maximum tumor cell density 𝜌1 is obtained from literature and
the minimum tumor cell density 𝜌0 is assumed to be significantly lower than 𝜌1 as the tumor cell density
is expected to be lower in the CTV than in the tumor [23].

Brain parameters
The average tumor volume for brain tumors is 44 cm3 [24]. As a spherical tumor geometry is assumed,
the tumor radius 𝑅 is set to 22 mm. The used treatment scheme gives a maximum dose of 74.8 Gy in
34 fractions. This number of fractions 𝑁𝑓 and maximum dose 𝐷𝑚𝑎𝑥 are proposed by Pedicini et al. [25]
as a treatment scheme that yielded a much higher TCP (≈ 0.85) than conventional schemes (≈ 0.3) in
their study. Furthermore, the estimate of 𝛼, 𝛽 and maximum tumor cell density 𝜌1 are also obtained
from Pedicini et al. [25]. The values are 0.12 Gy−1, 0.015 Gy−2 and 2 x 10−1 mm−3, respectively. Due
to the large Δ𝑚𝑎𝑥, the investigated volume is quite large. The investigated volume is therefore divided
into 300 volume shells. The large volume also means that a relatively high energy constraint constant
𝐶 of 0.8 is necessary to allow enough dose for tumor control. This was determined by increasing the
constant from 0.5 in steps of 0.1, until high tumor control probabilities were obtained.

Breast parameters
We focus on breast tumors that are treated with a radiation boost after breast conserving therapy (BCT)
was performed. These are the types of tumors for which the histopathologic MDE data was examined
in Appendix A. A tumor radius of 10 mm is assumed, based on findings from such histopathologic
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Table 4.2: Tumor and model parameters for the four tumor sites

Parameter Brain Breast Lung Prostate

Tumor radius 𝑅 (mm) 22 10 22 30
Constant 𝐿 (mm) 17.4 17.2 6.15 1.75
Max. CTV thickness Δ𝑚𝑎𝑥 (mm) 80.2 79.2 28.3 8.04
Maximum dose 𝐷𝑚𝑎𝑥 (Gy) 74.8 50.0 54.0 60.0
Number of treatment fractions 𝑁𝑓 34 25 3 4
𝛼 (Gy−1) 0.12 0.30 0.70 0.15
𝛽 (Gy−2) 0.015 0.030 0.05 0.058
Minimum tumor cell density 𝜌0 (mm−3) 1 x 10−4 1 x 10−1 1 x 101 1 x 10−1
Maximum tumor cell density 𝜌1 (mm−3) 2 x 10−1 1 x 102 1 x 104 4 x 102
Energy constant 𝐶 0.8 0.8 0.3 0.5
Number of shells 𝑆 300 300 225 150
Number of quadrature points 𝑁𝑞𝑢𝑎𝑑 50 50 50 50
Objective scaling factor 𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐 1x106 1x106 1x106 1x106

studies [26, 27]. A fractionation scheme of 25 fractions to administer a maximum of 50.0 Gy is assumed
[28]. The used tumor parameters 𝛼 = 0.30 Gy−1 and 𝛽 = 0.030 Gy−2 are taken from Guerrero et al.
[29]. No studies were found where a tumor cell density was reported for breast tumors, so a maximum
tumor cell density of 1x102 mm−3 was chosen as it yields a realistic tumor control probability together
with 𝛼 and 𝛽. Just as for brain tumors, the Δ𝑚𝑎𝑥 is large, so the number of volume shells 𝑆 is set to 300
and an energy constraint constant 𝐶 of 0.8 is used.

Lung parameters
For lung tumors, we focus on tumors that are treated with Stereotactic Body Radiation Therapy (SBRT)
as the MDE data in Appendix A is also focused on such tumors. A typical tumor size is 45 cm3 [30],
which corresponds to a tumor radius 𝑅 of 22 mm. A fractionation scheme of 3 fractions for a maximum
of 54.0 Gy is used [31]. The values for 𝛼, 𝛽 and 𝜌1 are 0.70 Gy−1, 0.05 Gy−2 and 1x104 mm−3,
respectively and are taken from the study by Alaswad et al. [30]. The number of volume shells 𝑆 is set
to 225 as Δ𝑚𝑎𝑥 is smaller than for brain and breast tumors. An energy constraint constant 𝐶 of 0.3 is
applied as it was found that sufficient tumor control could be achieved with this value of the constant.

Prostate parameters
For treatment of prostate tumors, the whole prostate is irradiated, as prostate tumors are oftenmultifocal
with a primary tumor and secondary satellite lesions [32]. The typical volume of an entire prostate is
about 25 cm3 [33], which corresponds to a tumor radius of 30 mm for a spherical tumor. The used
treatment scheme is a maximum dose 𝐷𝑚𝑎𝑥 of 60.0 Gy given in 4 fractions [34]. The used tumor
parameters are taken from a study by Pedicini et al. [34] and are 0.15 Gy−1, 0.058 Gy−2 and 4x102
mm−3 for 𝛼, 𝛽 and 𝜌1, respectively. Finally, the number of volume shells 𝑆 is set to 150, as Δ𝑚𝑎𝑥 for
prostate is the smallest among the four tumor sites and an energy constraint constant 𝐶 of 0.5 is used.
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4.6. KarhunenLoève expansion to describe tumor density field
4.6.1. Random field parametrization
For the KarhunenLoève expansion method, we assume that the uncertainty of the CTV is the tumor
cell density field. We define the tumor cell density as a random field 𝜌(r, 𝜃), where r ∈ 𝐷, 𝐷 ⊂ ℝ the
radii that define the volume for which we want to optimize the dose distribution (the CTV surrounding
the GTV) and 𝜃 ∈ Θ a random event belonging to the sample space Θ. We assume the tumor cell
density field 𝜌(r, 𝜃) to be a Gaussian random field, with a mean 𝜇𝜌(r) and a standard deviation 𝜎𝜌(r).
Furthermore, we assume a Gaussian autocorrelation coefficient function of

corr𝜌𝜌(|r − r′|) = exp [−(|r − r
′|

𝑏 )
2
] , (4.24)

where 𝑏 is the correlation length and |r − r′| is the distance between r and r′. The autocovariance
kernel is then defined by

Cov𝜌𝜌(r, r′) = 𝜎𝜌(r)𝜎𝜌(r′) exp [−(
|r − r′|
𝑏 )

2
] . (4.25)

We use a KarhunenLoève expansion (KL expansion) to approximate 𝜌(r, 𝜃). A KarhunenLoève ex
pansion is a series expansion method that can be used to represent a random field as follows:

𝐻(r, 𝜃) = 𝜇(r) +
∞

∑
𝑖=1
√𝜆𝑖𝜙𝑖(r)𝜉𝑖(𝜃), (4.26)

where 𝜇(r) is the mean of the random field, 𝜉𝑖(𝜃) are normal, standard, uncorrelated random variables
and 𝜆𝑖, 𝜙𝑖 are the eigenvalues and eigenfunctions of the autocovariance kernel. These are obtained
by solving the homogeneous Fredholm integral of the second kind:

∫
𝐷
Cov𝜌𝜌(r, r′)𝜙𝑖(r′)dr′ = 𝜆𝑖𝜙𝑖(r). (4.27)

The eigenfunctions must be orthonormal to each other, following: ∫𝐷 𝜙𝑖(r)𝜙𝑗(r)d𝑟 = 𝛿𝑖,𝑗, where 𝛿𝑖,𝑗 is
the Kronecker delta.

To approximate the random field 𝜌(r, 𝜃), we use a truncated KL expansion, with 𝑀 modes:

𝜌(r, 𝜃) ≈ �̂�(r, 𝜃) = 𝜇𝜌(r) +
𝑀

∑
𝑖=1
√𝜆𝑖𝜙𝑖(r)𝜉𝑖(𝜃). (4.28)

To solve the eigenvalue problem of Equation 4.27, we use the Nyström method, which approximates
the eigenvalue problem as following:

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

𝑤𝑗Cov𝜌𝜌(r, r𝑗)𝜙𝑖(r𝑗) = 𝜆𝑖𝜙𝑖(r), ∀𝑖 = 1, ..., 𝑀, (4.29)

where rj with 𝑗 = 1, ..., 𝑁𝑞𝑢𝑎𝑑 ∈ 𝐷 are GaussLegendre quadrature integration points and 𝑤𝑗 the corre
sponding integration weights.

Equation 4.29 is then solved at the integration points:

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

𝑤𝑗Cov𝜌𝜌(r𝑛 , r𝑗)�̂�𝑖(rj) = 𝜆𝑖 , 𝜙𝑖(rn), ∀rn, 𝑛 = 1, ..., 𝑁𝑞𝑢𝑎𝑑 . (4.30)

This can be written in matrix form:
CWy𝑖 = 𝜆𝑖y𝑖 , (4.31)
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where C is a 𝑁𝑞𝑢𝑎𝑑 x 𝑁𝑞𝑢𝑎𝑑 matrix with 𝐶𝑛𝑗 = Cov𝜌𝜌(r𝑛 , r𝑗), W is a diagonal matrix of the weights 𝑤𝑗
and y𝑖 is a vector where 𝑦𝑖,𝑛 = 𝜙𝑖(r𝑛). This matrix eigenvalue problem can be reformulated into the
following matrix eigenvalue problem:

By∗𝑖 = 𝜆𝑖y∗𝑖 , (4.32)

where B = W
1
2 CW

1
2 . The eigenvalues 𝜆𝑖 and eigenvectors y∗𝑖 are obtained by solving this matrix eigen

value problem. The eigenvectors y𝑖 can then be computed as y𝑖 = W− 12 y∗𝑖 .
Finally, Equation 4.29 is solved to obtain the eigenfunctions 𝜙𝑖(r):

𝜙𝑖(r) =
1
𝜆𝑖

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

√𝑤𝑗𝑦∗𝑖,𝑗Cov𝜌𝜌(r, r𝑗). (4.33)

4.6.2. Objective function derivation
The tumor control probability is defined by

𝑇𝐶𝑃(𝐷, 𝜃) = exp [−∫
𝑉
𝜌(r, 𝜃) exp{(−(𝛼𝐷(r) + 𝛽𝐷(r)

2

𝑁𝑓
))}dr] , (4.34)

where 𝜌(r, 𝜃) is a Gaussian random field.
We are interested in the uncertainty in the tumor cell density field of the CTV. To simplify the problem,

we investigate a 1D, spherically symmetric model with a spherical GTV with a radius R surrounded by a
spherical shell CTV, which is defined from the tumor edge R to a maximum distance 𝑟𝑚𝑎𝑥. We assume
this distance to be constant. Then,

𝑇𝐶𝑃(𝐷, 𝜃) = exp [−∫
𝑟𝑚𝑎𝑥

𝑅
𝜌(r, 𝜃)4𝜋r2 exp{(−(𝛼𝐷(r) + 𝛽𝐷(r)

2

𝑁𝑓
))}dr] . (4.35)

The random field 𝜌(r, 𝜃) is approximated by the truncated KL expansion �̂�(r, 𝜃) (Equation 4.28). To
deal with the uncertainty in the tumor cell density field in the CTV, we aim to maximize the expected
value of the TCP:

𝔼(𝑇𝐶𝑃(𝐷, 𝜃)) = ∫
Ξ
𝑇𝐶𝑃(𝐷, 𝜃)𝑃𝝃(𝝃)d𝝃 , (4.36)

where 𝝃 = (𝜉1(𝜃), ..., 𝜉𝑀(𝜃))𝑇 ∈ Ξ ⊆ ℝ𝑀 and 𝑃𝝃(𝝃) is the joint probability density function of the uncorre
lated random variables 𝜉𝑖 of �̂�(r, 𝜃):

𝑃𝝃(𝝃) =
𝑀

∏
𝑖=1

𝑃𝜉𝑖(𝜉𝑖). (4.37)

The expected value of the TCP is approximated using 𝐾 realizations of �̂�(r, 𝜃). A more robust way to
approximate the expected TCP would be to use Gaussian quadratures to approximate the multidimen
sional integral in Equation 4.36. Time limitations on this research prevented us from implementing such
an approximation. For the demonstration of the applicability of the KLexpansion, using 𝐾 realizations
of �̂�(r, 𝜃) is however sufficient to approximate the expected TCP.

The same discretization of the spatial integral as in Section 4.2 is used. The investigated volume is
divided into 𝑆 concentric spherical shells of equal volume 𝑉𝑠 =

4
3𝜋(r

3
𝑠+1−r3𝑠) with radii r𝑠, 𝑠 = 1, ..., 𝑠+1.

The dose within a shell is a constant 𝐷𝑆. This yields the following approximation of the expected TCP:

𝔼(𝑇𝐶𝑃(𝐷, 𝜃)) ≈ 𝐸𝑇𝐶𝑃(𝐷, �̂�) = 1
𝐾

𝐾

∑
𝑘=1

exp [−
𝑆

∑
𝑠=1
�̂�𝑠,𝑘𝑉𝑠 exp(−(𝛼𝐷𝑠 +

𝛽𝐷2𝑠
𝑁𝑓

))] , (4.38)

where �̂�𝑠,𝑘 is the discretization of the 𝑘th realization of the KLapproximation �̂�(r, 𝜃) (Eq. 4.28):

�̂�𝑠,𝑘 = 𝜇𝜌𝑠 +
𝑀

∑
𝑖
√𝜆𝑖𝜙𝑖,𝑠𝜉𝑖,𝑘 . (4.39)
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For the optimization, we also need the gradient and Hessian of the ETCP. For the gradient, we have

d𝐸𝑇𝐶𝑃(𝐷, �̂�)
d𝐷𝑙

= 1
𝐾

𝐾

∑
𝑘=1

exp [−
𝑆

∑
𝑠=1
�̂�𝑠,𝑘𝑉𝑠 exp(−(𝛼𝐷𝑠 +

𝛽𝐷2𝑠
𝑁𝑓

))] ⋅

[�̂�𝑙,𝑘𝑉𝑙 exp(−(𝛼𝐷𝑙 +
𝛽𝐷2𝑙
𝑁𝑓

))] (𝛼 + 2𝛽𝐷𝑙𝑁𝑓
) (4.40)

and for the Hessian

d2𝐸𝑇𝐶𝑃(𝐷, �̂�)
d𝐷𝑙 d𝐷𝑚

= 1
𝐾

𝐾

∑
𝑘=1

exp [−
𝑆

∑
𝑠=1
�̂�𝑠,𝑘𝑉𝑠 exp(−(𝛼𝐷𝑠 +

𝛽𝐷2𝑠
𝑁𝑓

))] ⋅

{[�̂�𝑙,𝑘𝑉𝑙 exp(−(𝛼𝐷𝑙 +
𝛽𝐷2𝑙
𝑁𝑓

))] (𝛼 + 2𝛽𝐷𝑙𝑁𝑓
) [�̂�𝑚,𝑘𝑉𝑚 exp(−(𝛼𝐷𝑚 +

𝛽𝐷2𝑚
𝑁𝑓

))] (𝛼 + 2𝛽𝐷𝑚𝑁𝑓
)+

𝛿𝑙,𝑚 [�̂�𝑙,𝑘𝑉𝑙 exp(−(𝛼𝐷𝑙 +
𝛽𝐷2𝑙
𝑁𝑓

))] [−(𝛼 + 2𝛽𝐷𝑙𝑁𝑓
)
2
+ 2𝛽𝑁𝑓

]} . (4.41)

Apart from directly optimizing the ETC as an objective, we are also interested in a penalized ob
jective for the KLbased optimization. The same penalized objective as was derived in Section 4.3 is
used, but with 𝐸𝑇𝐶𝑃(𝐷, �̂�) instead of 𝐸𝑇𝐶𝑃(𝐷):

pen_obj = (2 − 𝑤𝑝𝑒𝑛) ⋅ 𝐸𝑇𝐶𝑃(𝐷, �̂�) − 𝑤𝑝𝑒𝑛 ⋅
∑𝑠 𝐷2𝑠 ⋅ 𝑉𝑠
∑𝑠 𝐷2𝑚𝑎𝑥 ⋅ 𝑉𝑠

, (4.42)

where 𝑉𝑠 = 4/3𝜋 (r3𝑠+1 − r3𝑠). The gradient is given by

d(pen_obj)
d𝐷𝑙

= (2 − 𝑤𝑝𝑒𝑛) ⋅
d𝐸𝑇𝐶𝑃(𝐷, �̂�)

d𝐷𝑙
−𝑤𝑝𝑒𝑛 ⋅

2𝐷𝑙 ⋅ 𝑉𝑙
∑𝑠 𝐷2𝑚𝑎𝑥 ⋅ 𝑉𝑠

(4.43)

and the Hessian is given by

d2(pen_obj)
d𝐷𝑙 d𝐷𝑚

= (2 − 𝑤𝑝𝑒𝑛) ⋅
d2𝐸𝑇𝐶𝑃(𝐷, �̂�)

d𝐷𝑙 d𝐷𝑚
− 𝛿𝑙,𝑚 ⋅ 𝑤𝑝𝑒𝑛 ⋅

2𝑉𝑙
∑𝑠 𝐷2𝑚𝑎𝑥 ⋅ 𝑉𝑠

. (4.44)
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4.6.3. Demonstration of KarhunenLoève expansion for CTV optimization
To demonstrate the use of the KarhunenLoève expansion in treatment plan optimization for uncer
tainties in the CTV, we use four different mean tumor cell density fields 𝜇𝜌 to create four KL models for
the tumor cell density �̂�.

First, we investigate a volume with a constant mean tumor cell density

𝜇𝜌𝑠 = 𝜇𝜌𝑖𝑛 (4.45)

and a volume with a mean tumor cell density that follows a Gaussian decrease over the distance

𝜇𝜌𝑠 = 𝜇𝜌𝑖𝑛 ⋅ exp(−
(r𝑠 − 𝑅)2
2𝜎2𝜇𝜌

) , (4.46)

where 𝜇𝜌𝑖𝑛 is the input mean tumor cell density and 𝜎2𝜇𝜌 is the variance of the Gaussian. The standard
deviation of the Gaussian random field 𝜎𝜌(r𝑠) (Equation 4.25) is set to be a constant 𝜎𝜌 throughout the
volume.

Secondly, we investigate two volumes with a simulated physical barrier. We assume that tumor
cells cannot grow beyond this physical barrier, which we place at r𝑠 = r𝑏𝑎𝑟𝑟. Again a volume with a
constant mean tumor cell density is investigated, but now we set 𝜇𝜌𝑠 = 0 from a distance r𝑠 = r𝑏𝑎𝑟𝑟.
Furthermore, the standard deviation of the Gaussian random field 𝜎𝜌(r𝑠) is set to be a constant 𝜎𝜌 up
to r𝑠 = r𝑏𝑎𝑟𝑟 and 0 beyond r𝑏𝑎𝑟𝑟:

𝜇𝜌𝑠 = {
0
𝜇𝜌𝑖𝑛

and 𝜎𝜌(r𝑠) = {
0 if r𝑠 > r𝑏𝑎𝑟𝑟
𝜎𝜌 if r𝑠 ≤ r𝑏𝑎𝑟𝑟

. (4.47)

The same barrier is also imposed on a volume with a Gaussian decreasing mean tumor cell density.

𝜇𝜌𝑠 = {
0

𝜇𝜌𝑖𝑛 ⋅ exp(−
(r𝑠−𝑅)2
2𝜎2𝜇𝜌

) and 𝜎𝜌(r𝑠) = {
0 if rs > r𝑏𝑎𝑟𝑟
𝜎𝜌 if r𝑠 ≤ r𝑏𝑎𝑟𝑟

. (4.48)
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Figure 4.2: Visualization of the construction of several tumor cell density field realizations �̂�𝑠,𝑘. (a) Inputs for the mean tumor cell
density field 𝜇𝜌. From top to bottom: constant 𝜇𝜌, Gaussian decreasing 𝜇𝜌, constant 𝜇𝜌 with a physical barrier and Gaussian
decreasing 𝜇𝜌 with a physical barrier. b The 4 eigenfunctions 𝜙𝑖 for volumes without (top) and with (bottom) a physical barrier.
(c) Examples of the series expansions ∑𝑀𝑖 √𝜆𝑖𝜙𝑖,𝑠𝜉𝑖,𝑘 of the tumor cell density field for volumes without (top) and with (bottom)
a physical barrier. (d) Examples of output realizations for the tumor cell density field �̂�𝑠,𝑘.

These mean tumor cell density fields are plotted in Figure 4.2a from top to bottom, respectively. In
Figure 4.2b, the first 4 eigenfunctions are plotted for the volumes without and with a physical barrier.
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Furthermore, the corresponding series expansions ∑𝑀𝑖 √𝜆𝑖𝜙𝑖,𝑠𝜉𝑖,𝑘 are plotted in Figure 4.2c for 6 ran
dom realizations of 𝜉𝑖,𝑘. The two plots correspond to the volumes without and with a physical barrier,
respectively. Finally, the 6 simulated random tumor cell density fields that correspond to the inputs in
Figure 4.2a4.2c are plotted in Figure 4.2d.

For the demonstration of probabilistic treatment plan optimization using the KL expansion, the pa
rameters detailed in Table 4.3 are used as well as the optimization constraints that were introduced in
Section 4.4.

Table 4.3: Parameters for the KarhunenLoève expansion of the tumor cell density field

Parameter Value

Standard deviation 𝜎𝜌 of 𝜌(r, 𝜃) (mm−3) 10
Correlation length 𝑏 of the autocorrelation function (mm) 8.0
Number of modes for KL expansion 𝑀 4
Number of quadrature points 𝑁𝑞𝑢𝑎𝑑 30
Number of shells 𝑆 150
Input mean tumor cell density 𝜇𝜌𝑖𝑛 (mm−3) 100
Variance of the Gaussian decreasing mean 𝜎2𝜇𝜌 (mm2) 12.5
Distance of the physical barrier r𝑏𝑎𝑟𝑟 (mm) 8.0
Number of realizations 𝐾 5000
Tumor radius 𝑅 (mm) 30
Maximum dose 𝐷𝑚𝑎𝑥 (Gy) 60.0
Number of treatment fractions 𝑁𝑓 4
𝛼 (Gy−1) 0.15
𝛽 (Gy−2) 0.058
Energy constant 𝐶 [0.5, 0.6]





5
Results

In this chapter, we will discuss the results of the investigation into probabilistic treatment planning for
CTV uncertainties. In Section 5.1, the current results will be compared to a previous investigation into
the problem. Subsequently, the results of the probabilistic optimization for different tumor sites will
be discussed in Section 5.2 and finally in Section 5.3, a novel approach will be demonstrated using a
KarhunenLoève expansion to simulate the tumor cell density field.

5.1. Comparison to previous results
In this section, the results of the conceptual ETCP model will be compared to the previous results of
Briggeman [8]. For this comparison, similar parameters were used as in [8]. The reader is referred to
[8] for the exact models used in that study.

Figure 5.1 shows the results for the parameters that were provided in Subsection 4.5.1 for 2 different
optimization options, without (Figure 5.1a) and with scaling (Figure 5.1b) of the objective function, for
𝐿 = 1.1 mm, 𝐿 = 1.7 mm and 𝐿 = 2.6 mm. The corresponding ETCP values and used energy as a
percentage of the maximum allowed energy are provided in Table 5.1.

Without scaling, the optimized dose distributions all follow a similar pattern where they slightly de
crease up until a dropoff at a certain distance from the GTV, after which the dose is constant at a much
lower level. This dropoff is at ≈ 5.1 mm, 6.5 mm, and 9.6 mm for 𝐿 = 1.1 mm, 1.7 mm and 2.6 mm,
respectively. The corresponding ETCP values are 0.995, 0.986 and 0.986. Furthermore, 99.7% of the
maximum allowed energy is used when 𝐿 = 1.1 mm, 99.5% when 𝐿 = 1.7 mm and 99.4% when 𝐿 = 2.6
mm.

With scaling, the optimized dose distributions follow the maximum dose up until a dropoff at a
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Figure 5.1: Optimized dose distributions as a function of the radius for three different ETCP models with three different constants
𝐿 = 1.1 mm (Δ𝑚𝑎𝑥 = 5 mm), 𝐿 = 1.7 mm (Δ𝑚𝑎𝑥 = 8 mm) and 𝐿 = 2.6 mm (Δ𝑚𝑎𝑥 = 12 mm). (a) Dose distributions optimized
without scaling the objective, (b) Dose distributions optimized using a scaling factor of 1x106 for 𝐿 = 1.1 mm and 𝐿 = 1.7 mm and
1x108 for 𝐿 = 2.6 mm.
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Table 5.1: Optimized ETCP values and used energy as a percentage of the maximum allowed energy for the models with Δ𝑚𝑎𝑥
= 5 mm, Δ𝑚𝑎𝑥 = 8 mm and Δ𝑚𝑎𝑥 = 12 mm for an unscaled and a scaled objective.

Maximum
(mm) 𝐿 (mm) Scale factor ETCP Energy (%)

Δ𝑚𝑎𝑥 = 5 1.1 1 0.995 99.7
1 x 106 0.999 100

Δ𝑚𝑎𝑥 = 8 1.7 1 0.986 99.5
1 x 106 0.999 100

Δ𝑚𝑎𝑥 = 12 2.6 1 0.986 99.4
1 x 108 0.999 99.9

certain distance from the GTV. The dose distribution for 𝐿 = 1.1 decreases slowly from the maximum
dose up until the dropoff. In all three dose distributions, the dose drops to (almost) 0 Gy after the
dropoff. This dropoff is at ≈ 7.5 mm, 12 mm, and 18 mm for 𝐿 = 1.1 mm, 𝐿 = 1.7 mm and 𝐿 = 2.6
mm, respectively. After scaling, the ETCP value has increased to 0.999 for all three values of 𝐿 and
the used energy has increased to 100%, 100% and 99.9% of the maximum allowed energy for 𝐿 = 1.1
mm, 𝐿 = 1.7 mm and 𝐿 = 2.6 mm, respectively.

In Figure 5.2, the previous results from Briggeman [8] are shown. These are the results for an
energy constraint constant 𝐶𝐵𝑟 = 1, which corresponds to 𝐶 ≈ 0.2 in the current model, as the linear
total energy constraint was computed differently. Briggeman [8] defined the constraint as follows:

∑
𝑠
𝑉𝑠𝐷𝑠 ≤ 𝐶𝐵𝑟∑

𝑠
𝑉𝑀𝐷𝐸𝐷𝑚𝑎𝑥 ,

where 𝑉𝑀𝐷𝐸 = 4/3𝜋 ((𝑅 + Δ𝑚𝑎𝑥)3 − 𝑅3) is the volume that corresponds to a CTV shell with outer radius
Δ𝑚𝑎𝑥. In the current model the energy constraint is defined as

∑
𝑠
𝑉𝑠𝐷𝑠 ≤ 𝐶∑

𝑠
𝑉𝑠𝐷𝑚𝑎𝑥 . (5.1)
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Figure 5.2: Optimized dose distributions from Briggeman [8] for the three different constants 𝐿 = 1.1 mm (Δ𝑚𝑎𝑥 = 5 mm), 𝐿 = 1.7
mm (Δ𝑚𝑎𝑥 = 8 mm) and 𝐿 = 2.6 mm (Δ𝑚𝑎𝑥 = 12 mm).

These optimized dose distributions follow a slowly decreasing curve, until they reach 0 Gy. The
corresponding ETCP values were 0.984, 0.985 and 0.976 and 84.1%, 90.0% and 93.0% of the energy
was used for 𝐿 = 1.1 mm, 𝐿 = 1.7 mm and 𝐿 = 2.6 mm, respectively. Intuitively, these results seem
correct as a decreasing probability density function 𝑃Δ(Δ) is used, which indicates that the probability for
tumor cells to be present is high close to the GTV and decreases as the distance to the GTV increases.
Therefore, it is expected that the highest dose is needed close to the GTV and the needed dose then
decreases as the distance from the GTV increases. However, some mistakes were found in the used
model and after correctly implementing the volume shell computation the results from [8] could not
be replicated. Instead, the results as shown in Figure 5.1 were obtained. If the ETCP of the dose
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distributions in Figure 5.2 is recomputed using the current model, the ETCP values were found to be
0.984, 0.983 and 0.980 for 𝐿 = 1.1 mm, 𝐿 = 1.7 mm and 𝐿 = 2.6 mm, respectively. These values are still
high, but they are not optimal, as shown by the higher ETCP values that were obtained for the scaled
objectives (Table 5.1).

Table 5.2: Optimized ETCP values for the dose distributions in Figure 5.2 from [8], the recomputed ETCP values using the
current model and used energy as a percentage of the maximum allowed energy for different values of Δ𝑚𝑎𝑥.

Maximum
(mm) 𝐿 (mm) ETCP accor

ding to [8]
recomputed
ETCP Energy (%)

Δ𝑚𝑎𝑥 = 5 1.1 0.984 0.984 84.1
Δ𝑚𝑎𝑥 = 8 1.7 0.985 0.983 90.0
Δ𝑚𝑎𝑥 = 12 2.6 0.976 0.980 93.0

Optimization behavior
There are two main explanations for the optimized dose distribution results displayed in Figure 5.1a.

Firstly, the TCP has a multiplicative nature, so if any part of the volume is underdosed, the TCP
quickly drops towards 0. This means that to maximize the TCP for a particular Δ, all the parts of the
CTV have to be dosed properly to avoid the TCP from dropping towards 0. Intuitively, it is expected
that the optimized dose distributions would look more like in Figure 5.2, where most dose is distributed
close to the GTV in the high probability areas and the dose declines over the distance until it becomes
0 in the lower probability areas. However, decreasing some dose in the high probability areas would
decrease the TCP much more, than increasing the dose in the lower probability regions would increase
the TCP. To maximize the TCP, the dose distribution is therefore driven to give the maximum allowed
dose to as large a volume as is allowed by the energy constraint. This conclusion is strengthened by
the percentage of the maximum energy that is used: in all the models, almost all the allowed energy is
used in the distributions if no scaling is used for the ETCP.

Aside from the multiplicative nature of the TCP, there is a second reason for the optimized results.
The TCP is a sigmoidal (Slike) function of the dose, as is shown in Figure 5.3. This means that for
low and high dose values, the function is almost constant and the gradient values become ≈ 0. This
causes numerical inaccuracies and is the reason that the dose after the dropoff does not get pushed
to 0 using the unscaled objective. Pushing this dose to 0 would allow for a slightly larger area to obtain
the full maximum dose, thus resulting in a higher ETCP. The optimizer is however not able to do this,
as the gradient is ≈ 0 after the dropoff due to the low ETC at the lower dose values. The same problem
is encountered before the dropoff, where the ETCP becomes ≈ 1 and the gradient again is ≈ 0, which
prevents the optimizer from pushing the dose to the maximum dose here. As shown in Figure 5.1b,
scaling the objective function helps to increase the values in the gradient to force the optimization to
run for longer. The dose before the dropoff is pushed to the maximum for as large an area as allowed
by the energy constraint and the dose is also pushed down more towards 0 after the dropoff due to the
scaling. This is illustrated further by the fact that 100% of the allowed energy is used when the ETCP
objective is scaled by a scale factor.
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Figure 5.3: TCP as a function of the dose. The TCP follows an Scurve.
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5.2. Results for the different tumor sites
In this section, the results of dose optimization using the different objectives that were derived in
Section 4.2 and 4.3 will be discussed for the four tumor sites. First, the results for the ETCP and
ELTCP models are shown in Subsection 5.2.1, followed by the results for the penalized ETCP models
in Subsection 5.2.2.

5.2.1. Optimizing the ETCP/ELTCP for different tumor sites
Figure 5.4 shows the optimal dose distributions for the different tumor sites, for both the ETCP and the
ELTCP model. The corresponding ETCP values and used energy as a percentage of the maximum
allowed energy are provided in Table 5.3.
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Figure 5.4: Optimized dose distributions for the 4 different tumor sites, for both the ETCP model and the ELTCP model.

Table 5.3: Optimized ETCP values and used energy as a percentage of the maximum allowed energy for the tumor sites for the
ETCP and ELTCP models.

Tumor Site Model ETCP Energy (%)

Brain ETCP 0.790 99.8
ELTCP 0.790 100

Breast ETCP 0.900 99.9
ELTCP 0.897 100

Lung ETCP 0.999 100
ELTCP 0.836 100

Prostate ETCP 1.00 100
ELTCP 0.996 100

Brain
The dose distribution obtained by optimizing the ETCP objective follows the maximum allowed dose
up until the optimized dose drops down at a distance of ≈ 140 mm from the GTV to a lower dose level.
The dose is constant after the drop. The corresponding ETCP is 0.790 and almost all of the maximum
allowed energy (99.8%) is used. The optimal dose distribution would give the maximum dose to as big
an area as allowed by the energy constraint and zero dose elsewhere. As discussed in Section 5.1, the
gradient is ≈ 0 after the dropoff, so the optimizer cannot push the dose further towards the optimum.
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The resulting dose values from the ELTCP model follow the maximum dose up until ≈ 80 mm from
the GTV, after this the dose starts decreasing slowly. The corresponding ETCP is 0.790 as well and all
the allowed energy is used up. Clearly, the optimizer is optimizing the ELTCP by giving dose throughout
the whole volume. This is due to the nature of the logarithmic TCP: if for any part of the volume the
TCP comes close to 0, the ELTCP value becomes very large, which drives the optimization to avoid any
cases where this happens. This means that even in the lower probability areas (outer volume shells),
a high dose is necessary to yield a satisfying optimization result. The slight decrease is likely due to
the influence of the probability distribution of the MDE 𝑃Δ(Δ).

Despite the relatively big difference in the dose distributions for both objectives, the obtained ETCP
is approximately equal. The ETCP objective gives the maximum dose to as large a volume as possible
and then tries to get zero dose elsewhere, whereas the ELTCP objective tries to give dose throughout
the volume. This means that with the ELTCP objective, some dose gets redistributed from the inner
regions to the outer regions of the volume. Clearly, the redistribution of dose by the ELTCP objective
results in a large enough gain of tumor control in the outer regions to make up for the loss in tumor
control in the inner regions, thus resulting in similar ETCP values for both models.

Breast
The optimized dose distributions for breast look similar to the optimized dose distributions for brain.
The dose distribution resulting from optimizing the ETCP has the maximum allowed dose up to ≈ 140
mm from the GTV after which the dose drops down to a lower dose level. The corresponding ETCP is
0.900 and 99.9% of the maximum allowed energy is used. The optimized dose after the dropoff is not
0 Gy due to the ≈ 0 values in the gradient that prevent the optimizer from pushing the dose values to 0
Gy.

The resulting dose distribution from optimizing the ELTCP follows the maximum dose up until ≈ 50
mm from the GTV after which the dose starts slowly decreasing. The corresponding ETCP is 0.897
and thus slightly lower than the ETCP obtained from optimizing the ETCP itself. Furthermore, 100% of
the allowed energy is used in the dose distribution, which is as expected if you take into account that
underdosing any part of the volume is avoided in the ELTCP optimization as was just discussed for the
brain dose distribution results.

Similar to the results for brain, the obtained ETCP is approximately equal for both the ETCP and
the ELTCP model. For breast however, the ETCP value for the ELTCP model is slightly lower than for
the ETCP model. The gained tumor control in the outer region from the redistribution of dose thus does
not make up entirely for the loss in tumor control in the inner region.

Lung
The dose distribution for lung obtained from optimizing the ETCP, is slowly decreasing until a dropoff
at ≈ 40 mm from the GTV. The dose is ≈ 0 Gy after the dropoff. The corresponding ETCP is 0.999
and 100% of the maximum allowed energy is used in the dose distribution. In the case of the lung, a
smaller energy constraint constant of 0.3 was used as this already resulted in a very high ETCP. The
optimizer was able to push the dose values to 0 Gy after the dropoff, so the scaling factor makes the
values of the gradient large enough to help the optimizer push the dose after the dropoff to 0 Gy. The
slight decrease in the dose before the dropoff is likely a result of the small influence of the probability
distribution of the MDE 𝑃Δ(Δ). This effect can likely show up as the dose does not need to be pushed
to the maximum dose for a high ETCP value.

The resulting dose distribution from the ELTCP model has much lower dose values than the result
from the ETCP model. It slowly decreases throughout the volume, as the ELTCP optimization results
in dose necessary in the whole volume for a high ETCP. The corresponding ETCP value is 0.836 and
is significantly lower than for the ETCP model. This is to be expected, as the energy constraint forces
the dose to be significantly lower than it was in the ETCP model, before the dose drops off to 0 Gy.
Accordingly, the maximum allowed energy is used for the dose distribution.

Prostate
The results for prostate look similar to the results for lung. The dose distribution resulting from optimizing
the ETCP, decreases slowly over the distance up until a dropoff point at ≈ 14 mm, after which the dose
is ≈ 0 Gy. The corresponding ETCP is 1.00 and 100% of the maximum allowed energy is used. Again,
the slight decrease over the distance is likely a result of the small influence of the probability distribution
of the MDE 𝑃Δ(Δ).
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When the ELTCP is optimized for prostate, the dose is distributed throughout the volume, but the
dose is only slightly lower than for the ETCP optimization. This results in a high ETCP of 0.996, while
the maximum allowed energy is used.

Comparison between tumor sites
The optimizations for brain and breast yield similar results for both the ETCP and the ELTCP objectives.
Similarly, the results for lung and prostate also resemble each other. The main difference between both
groups is that for the first group, the maximum ETCP is nowhere near 1, while for the second group
ETCP values of ≈ 1 are obtained. For brain, the maximum ETCP that can be obtained with the used
tumor parameters by administering themaximum allowed dose to the full volume is 0.790 and for breast,
the maximum obtainable ETCP is 0.900. The optimized dose distributions allow for tumor control that
is similar to this maximum possible tumor control, despite not depositing the maximum dose throughout
the volume. However, as the ETCP does not approach 1.00, a large part of the volume receives the
maximum dose, unlike in the cases of lung and prostate, where no part of the volume receives the
maximum dose. Furthermore, the optimization is able to push the dose to 0 Gy for both lung and
prostate, while it cannot do this for brain and breast. The investigated volumes for brain and breast are
much larger than those for lung and prostate, as the Δ𝑚𝑎𝑥 is much larger as well. The dose optimization
is sensitive to the maximum radius of the investigated volume, as a larger volume is more difficult for
the optimizer to handle. We use an exponential distribution for the probability distribution of the MDE
𝑃Δ(Δ), which is implemented in the model using a GaussLaguerre quadrature. For a model with a high
maximum radius, many of the quadrature points will be far away and have very low weights. Shells
that are far away from the GTV will therefore be difficult to optimize, due to the very small quadrature
weights that cause the values of the gradient to approach 0. This effect can also somewhat be observed
in Figure 5.1b as well, as the dose distribution for 𝐿 = 1.1 mm is ≈ 0 Gy after the dropoff, but the dose
after the dropoff for both 𝐿 = 1.7 mm and 𝐿 = 2.6 mm is progressively further away from 0 Gy. To
counter this problem for larger volumes, an explicitly truncated distribution could be used for 𝑃Δ(Δ), so
that there are less quadrature points at large distances from the GTV with very low weights.

5.2.2. Penalized model for different tumor sites
Figure 5.5 shows the optimal dose distributions for the different tumor sites, for the penalized ETCP
model. The used penalty is the squared overdose, which penalizes dose present in the volume. The
penalized model is detailed in Section 4.3. The corresponding ETCP values and used energy as a
percentage of the maximum allowed energy are provided in Table 5.4.

0 50 100 150
0

20

40

60

Do
se

 (G
y)

Brain
Initial guess
weight=0.5
weight=1
weight=1.5

0 50 100 150
0

20

40

Breast
Initial guess
weight=0.5
weight=1
weight=1.5

0 10 20 30 40 50
Distance from GTV (mm)

0

20

40

Do
se

 (G
y)

Lung
Initial guess
weight=0.5
weight=1
weight=1.5

0 5 10 15
Distance from GTV (mm)

0

20

40

60
Prostate

Initial guess
weight=0.5
weight=1
weight=1.5

Figure 5.5: Optimized dose distributions for the 4 different tumor sites for the penalized ETCP model. The results are displayed
for 3 different weights of the squared overdose penalty: 𝑤𝑝𝑒𝑛 = 0.5, 𝑤𝑝𝑒𝑛 = 1 and 𝑤𝑝𝑒𝑛 = 1.5.



5.2. Results for the different tumor sites 29

Table 5.4: Optimized ETCP values and used energy as a percentage of the maximum allowed energy for the 4 tumor sites for
the penalized ETCP model for three different weights 𝑤𝑝𝑒𝑛.

Tumor Site Penalty weight ETCP Energy (%)

Brain
𝑤𝑝𝑒𝑛 = 0.5 0.785 8.31
𝑤𝑝𝑒𝑛 = 1.0 0.774 4.60
𝑤𝑝𝑒𝑛 = 1.5 0.743 2.50

Breast
𝑤𝑝𝑒𝑛 = 0.5 0.897 11.2
𝑤𝑝𝑒𝑛 = 1.0 0.890 6.19
𝑤𝑝𝑒𝑛 = 1.5 0.888 6.12

Lung
𝑤𝑝𝑒𝑛 = 0.5 0.965 17.2
𝑤𝑝𝑒𝑛 = 1.0 0.964 16.7
𝑤𝑝𝑒𝑛 = 1.5 0.923 10.7

Prostate
𝑤𝑝𝑒𝑛 = 0.5 0.995 55.5
𝑤𝑝𝑒𝑛 = 1.0 0.980 33.4
𝑤𝑝𝑒𝑛 = 1.5 0.917 18.3

Brain
The optimized dose distributions for brain for the different penalty weights all follow the maximum dose
up until a certain distance from the GTV and then the dose drops down to 0 Gy. The dose distributions
drop off at ≈ 52 mm, 40 mm and 30 mm, for a penalty weight 𝑤𝑝𝑒𝑛 of 0.5, 1.0 and 1.5, respectively.
The corresponding ETCP values are 0.785, 0.774 and 0.743 and only 8.31%, 4.60% and 2.40% of the
allowed energy was used. The penalized dose distributions drop off much earlier within the volume than
was the case for the optimized dose distribution from the unpenalized ETCP objective which dropped off
at ≈ 140 mm (Figure 5.4). In the unpenalized ETCP model the optimizer had trouble pushing the dose
to 0 Gy as the gradient values of the ETCP objective were ≈ 0. In the penalized model, this problem
is not present, as the gradient values of the penalized objective are driven by both the ETCP and the
squared overdose. When the gradient of the ETCP becomes ≈ 0, the gradient of the squared overdose
pushes the optimization further and drops the dose to 0 Gy. Additionally, dose in the low probability
areas of the volume is pushed towards 0 Gy as well by the penalty. The volume that receives dose
decreases, by increasing 𝑤𝑝𝑒𝑛. The squared overdose pushes the dose to 0 Gy, until the contribution
of the ETCP to the optimization objective becomes big enough to overcome the penalty and push the
dose to the maximum. The ETCP obtained by the unpenalized ETCP was 0.790, which is only slightly
higher than the ETCP values obtained from the penalized model. A large reduction in deposited energy
was thus obtained using the penalized model, while the ETCP values only decreased slightly.

Breast
For breast, the optimized dose distributions for the different penalty weights again follow the maximum
dose up until a certain distance from the GTV after which the dose drops down. The dose distributions
drop off to 0 Gy at ≈ 65 mm, 52 mm and 52 mm from the GTV, for a penalty weight 𝑤𝑝𝑒𝑛 of 0.5, 1.0 and
1.5, respectively. The corresponding ETCP values are 0.897, 0.890 and 0.888 and only 11.2%, 6.19%
and 6.12% of the allowed energy was used. Again, the penalized distributions drop off to 0 Gy much
closer to the GTV than for the unpenalized ETCP model (at ≈ 140 mm, Figure 5.4).

The ETCP value for the unpenalized model was 0.900. Using a penalized model allowed for a
large reduction in deposited energy (from 100% of the maximum allowed energy to 6.1211.2%), while
maintaining a high ETCP of 0.8880.897.

Contrary to brain, there seems to be only a small difference in the dose distribution for the penalty
weights 𝑤𝑝𝑒𝑛 of 1 and 1.5. There is a small decrease in the used energy (6.19% to 6.12%), but the
dropoff point is at the same distance of 52 mm from the GTV. Upon close inspection, it is observed
that the dose right before the dropoff is slightly lower for 𝑤𝑝𝑒𝑛 = 1.5, than for 𝑤𝑝𝑒𝑛 = 1. The results for
brain show a clear decrease in the irradiated volume by increasing the penalty weight from 1 to 1.5.
As such a clear decrease is not present for breast, the optimized dose distributions were investigated
for more penalty weights. The dropoff points of the dose for breast for penalty weights ranging from
0 to 2 are plotted in Figure 5.6a. Clearly, the dropoff point does not linearly decrease by increasing
𝑤𝑝𝑒𝑛. Instead, there are only a few distances at which a dropoff point can be found for the different
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Figure 5.6: (a) Dropoff points of the dose as a function of the penalty weight 𝑤𝑝𝑒𝑛 for the breast model. b top: GaussLaguerre
quadrature weights 𝑤Δ𝑗 as a function of the corresponding quadrature points Δ𝑗 for the breast model up to a distance of ≈140
mm from the GTV; bottom: penalty weight 𝑤𝑝𝑒𝑛 as a function of the dropoff points of the dose for the breast model to show that
the dropoff points correspond to the quadrature points.

weight factors. By examining the dose distributions, it is seen that upon increasing 𝑤𝑝𝑒𝑛 by 0.1, there
is either a decrease in the distance of the dropoff point or the dropoff point does not move, but there
is a decrease in dose in the last few shells before the dropoff. After inspection of dose distributions
for different weights for brain, lung and prostate, it can be concluded that this behavior also happens
for the other tumor sites. This stepping behavior results from the GaussLaguerre quadrature that was
used to discretize the integration in Equation 4.9 over Δ. A selection of these quadrature points up to
≈140 mm from the GTV is shown in the top plot in Figure 5.6b. In the bottom plot, the dose dropoff
points and corresponding penalty weights 𝑤𝑝𝑒𝑛 are again plotted, but with flipped axes. From these
two figures, it is clear that the location of the dropoff points is related to the location of the quadrature
points. The dropoff points are located in the nearest volume shell with a larger distance from the GTV
than the quadrature points. All shells that correspond to the volume between two quadrature points
have the same probability of having microscopic disease. Therefore, in the shells between quadrature
points, the ETCP is constant and the only thing driving the optimization is the penalty, which pushes
the dose down to 0. Essentially what this means, is that the volume is subdivided into different regions
defined by the quadrature points and the dropoff points correspond to these quadrature points. Near
which quadrature point the dose drops off, is dependent on the weight of the penalty.

Lung
For lung, the optimized dose distributions slowly decrease up until a certain distance from the GTV after
which the dose drops down. Themaximum dose close to the GTV is ≈ 2425 Gy for all 3 penalty weights
𝑤𝑝𝑒𝑛, which is significantly lower than the maximum dose that was obtained using the unpenalized
ETCP model (≈ 33 Gy). The dose distributions drop off to 0 Gy at ≈ 19 mm, 19 mm and 14 mm, for
a penalty weight 𝑤𝑝𝑒𝑛 of 0.5, 1.0 and 1.5, respectively. The corresponding ETCP values are 0.965,
0.964 and 0.923 and 17.2%, 16.7% and 10.7% of the allowed energy was used.

For the unpenalized ETCP model, the ETCP value was 0.999, 100% of the allowed energy was
used and the dose dropped to 0 Gy at ≈ 40 mm from the GTV. Clearly, a large reduction in deposited
energy is obtained using a penalized model, while high tumor control is maintained.

Prostate
The optimized dose distributions for prostate for the different penalty weights slowly decrease until
a dropoff after which the dose is ≈ 0 Gy. The maximum dose close to the GTV is ≈ 3335 Gy for
the different 𝑤𝑝𝑒𝑛, while the maximum dose was 40 Gy for the unpenalized ETCP model. The dose
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distributions drop off to 0 Gy at ≈ 10 mm, 6.7 mm and 4.2 mm, for a penalty weight 𝑤𝑝𝑒𝑛 of 0.5, 1.0
and 1.5, respectively. The corresponding ETCP values are 0.995, 0.980 and 0.917 and 55.5%, 33.4%
and 18.3% of the allowed energy was used. For the unpenalized ETCP model, an ETCP of 1.00 was
obtained, 100% of the allowed energy was used and the dose dropped to 0 Gy at ≈ 14 mm.

Penalized ETCP objective
Clearly, using a penalized ETCP objective can help to avoid giving large amounts of dose to the healthy
tissue, while still achieving high tumor control. The balance between a high ETCP value and sparing
healthy tissue can be adjusted by varying the penalty weight 𝑤𝑝𝑒𝑛 that is used. As discussed, the drop
off points of the dose are related to the used quadrature points. The results are therefore dependent
on the discretization that was used for the integration and the dose only drops off at certain locations,
despite the use of a large number of volume shells to discretize the microscopic disease area.

In Figure 5.7 the ETCP is shown as a function of the integral organ dose that is deposited into
the investigated volume, for the different tumor sites. For both brain and breast, the ETCP value
quickly rises to almost the maximum achieved ETCP for a relatively small integral organ dose. This
corresponds to the fact that only small percentages of the maximum allowed energy were used in the
penalized ETCP models for both these tumor sites (Table 5.4). For lung and prostate, the ETCP value
increases more slowly to the maximum achieved ETCP and accordingly, indeed larger percentages
of the maximum allowed energy were used in the penalized ETCP models for these two tumor sites
(Table 5.4). It must be kept in mind that the investigated volumes for brain and breast are much larger
than those for lung and prostate, which likely has a large influence on the dependence of the ETCP on
the integral organ dose. Especially for brain and breast, the penalized objective results in a massive
decrease in dosage to the low MDE probability areas, while still maintaining a high tumor control. As is
evidenced for all the tumor sites, using the overdose penalty allows for organ sparing, with minimal loss
to the tumor control and thus effectiveness of the treatment plan. The balance between maximizing
tumor control and sparing of normal tissue can be adjusted to preference by varying the weight of the
penalty. It must be decided what is most important to achieve the desired balance. Maximizing tumor
control in the CTV will result in the need to accept extra dose to normal tissue and sparing the normal
tissue will result in a loss of tumor control.
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Figure 5.7: ETCP as a function of the integral organ dose.
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5.3. Demonstration of the KLexpansion model
In this section, the optimization of the dose distribution using the KLexpansion to simulate random
tumor cell density fields in the CTV area will be discussed.
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Figure 5.8: Eigenvalues 𝜆 of the KL expansions of the tumor cell density field, (a) without physical barrier and (b) with physical
barrier.

To create tumor cell density field realizations, the KarhunenLoève expansion is truncated. The first
6 eigenvalues are shown in Figure 5.8a for the tumor cell density field without physical barrier and in
Figure 5.8b for the field with physical barrier. These figures suggest that using the first 4 modes will
result in a sufficiently accurate approximation of the covariance in both KLexpansions. Additionally,
the retained energy in the first 4 modes as a fraction of the total energy 𝐸𝑓𝑟𝑎𝑐 = ∑𝑀𝑖 𝜆2𝑖 /∑

𝑁𝑞𝑢𝑎𝑑
𝑖 𝜆2𝑖

is computed to check if this truncation indeed gives an accurate approximation. For the field without
physical barrier, 𝐸𝑓𝑟𝑎𝑐 is found to be 0.997, so > 99% of the total energy is retained in the first 4 modes.
For the field with physical barrier ≈ 100% of the total energy is retained in the first 4 modes (𝐸𝑓𝑟𝑎𝑐 =
0.99998). This strengthens the assumption that the use of the first 4 modes will give a sufficiently
accurate approximation of the covariance in both KLexpansions.
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Figure 5.9: Optimized dose distributions as a function of the radius for the ETCP model using 5000 realizations of the tumor cell
density field �̂�. The different figures correspond to the different input mean tumor cell density fields 𝜇𝜌 (Figure 4.2) for energy
constraint 𝐶 = 0.5 and 𝐶 = 0.6 for the unpenalized model and 𝐶 = 0.5 for the penalized model. (a) Tumor cell density field with a
constant mean, (b) Tumor cell density field with a Gaussian decreasing mean, (c) Tumor cell density field with a constant mean
and a physical barrier, (d) Tumor cell density field with a Gaussian decreasing mean and a physical barrier.

Figure 5.9 shows the optimized dose distributions for the different KLmodels. The first two plots
correspond to the volumes where no physical barrier was present and the last two plots correspond
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to the volumes where a physical barrier was simulated after which no tumor cells can be found. For
each volume, the results are plotted for 2 different energy constants (𝐶 = 0.5 and 𝐶 = 0.6) for both the
unpenalized model and the penalized model.

5.3.1. Volumes without physical barrier
Constant mean
Figure 5.9a shows the optimized dose distributions for a volume for which a constant mean tumor cell
density was assumed to create the KLexpansion model of the random tumor cell density field. The
corresponding ETCP values and the used energy (percentage of the maximum allowed energy) are
tabulated in Table 5.5. As can be expected for a field with a constant mean tumor cell density, the
optimized dose distributions are constant throughout the volume.

For the unpenalized model, it is clear that the dose increases if the energy constant is increased.
Themaximumallowed energy is used by the dose distribution for both energy constraints. By increasing
the energy constraint from 0.5 to 0.6, the ETCP value increases vastly from 0.493 to 0.999. For the
lower energy constraint, the allowed maximum energy is clearly not enough to obtain a satisfying tumor
control, but by increasing the energy constraint slightly, almost full tumor control is achieved.

For the penalized model, the ETCP and organ overdose were weighted equally. The resulting
penalized dose distribution for 𝐶 = 0.5 is equal to that of the unpenalized model: the dose distributions
overlap and the yielded ETCP values are equal. This is to be expected as the ETCP value for the
unpenalized model was already quite low and therefore penalizing organ overdose can not push the
dose further down without yielding a low ETCP value. For the slightly higher energy constant 𝐶 = 0.6 the
penalized dose distribution is lower than for the unpenalized model and 93.4% of the allowed energy
is used in the penalized distribution. The ETCP value is 0.985. The penalty thus allows for a drop in
the deposited energy, while maintaining a high tumor control.

Table 5.5: Optimized ETCP values and used energy as a percentage of the maximum allowed energy for two energy constraints
𝐶 = 0.5 and 𝐶 = 0.6 for both the penalized and the unpenalized KL model with a constant 𝜇𝜌.

Energy constraint Penalized ETCP Energy (%)

𝐶 = 0.5 No 0.493 100
Yes 0.493 100

𝐶 = 0.6 No 0.999 100
Yes 0.985 93.4

Gaussian decreasing mean
In Figure 5.9b the results for the KLmodel where the tumor cell density field in the volume was assumed
to have a Gaussian decreasing mean are shown. The corresponding ETCP values and used energy
can be found in Table 5.6. The optimized dose distributions all follow a similar pattern where the
dose decreases over the distance up to a certain point, after which the dose appears to stay constant
throughout the rest of the volume. This is consistent with the shape of the tumor cell density field
realizations, as the input mean of the field decreases to 0 mm−3, but for many realizations, the tumor
cell density in the volume at a distance of 1016 mm from the GTV is > 0 mm−3. Furthermore, in all the
field realizations the tumor cell density was set to 0 mm−3 where the simulated tumor cell density was
negative. This slightly skews the mean of the realizations away from 0 mm−3. To gain proper tumor
control in this area, the optimization pushes the dose distribution to a constant dose, that is slightly
lower than the optimized dose values for the constant 𝜇𝜌.

By optimizing the ETCP objective based on the uncertainty of Δ (Section 5.1), the dose got pushed
to the maximum in as large a volume as possible. This behavior is explained by the fact that giving
up dose in the high probability areas would result in a much larger decrease in the ETCP, than giving
dose to the low probability areas would result in a gain in ETCP. This effect of pushing the dose to
the maximum for as large a volume as possible is not present here. As evidenced by the example
realizations of the tumor cell density field in Figure 4.2d (second plot from the top), a significant number
of these tumor cell density fields have a tumor cell density > 0 mm−3. Specifically, the tumor cell density
in this area can range from 0 up to ≈ 40 mm−3. In this case, giving more dose to the area with a higher
mean tumor cell density (before ≈ 10 mm) and decreasing the dose after ≈ 10 mm results in a large
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decrease in the ETCP, as any underdosage in that area severely decreases the ETCP.
For the unpenalized model, the dose distribution at the lower energy constraint 𝐶 = 0.5 has a good

tumor control with an ETCP of 0.930.The dose distribution again shifts up as the energy constraint is in
creased to 0.6 and the corresponding ETCP increases from 0.930 to 1.00. For both energy constraints,
the optimized dose distribution uses the maximum allowed energy.

Table 5.6: Optimized ETCP values and used energy as a percentage of the maximum allowed energy for two energy constraints
𝐶 = 0.5 and 𝐶 = 0.6 for both the penalized and the unpenalized KL model with a Gaussian decreasing 𝜇𝜌.

Energy constraint Penalized ETCP Energy (%)

𝐶 = 0.5 No 0.930 100
Yes 0.930 100

𝐶 = 0.6 No 1.00 100
Yes 0.986 87.7

Just like for the constant mean KL model, for 𝐶 = 0.5, the optimized dose distributions of the penal
ized model and the unpenalized model overlap and both have an ETCP of 0.930. For 𝐶 = 0.6, the dose
distribution of the penalized model drops almost to the dose distribution of 𝐶 = 0.5 and has an ETCP
value of 0.986. It uses 87.7% of the maximum allowed energy. The dose values are only slightly higher
than the dose values for 𝐶 = 0.5, so the deposited energy is slightly higher, while the ETCP is increased
from 0.930 to 0.986. In comparison to the unpenalized model with 𝐶 = 0.6 the penalty maintains a high
tumor control, while allowing a decrease in deposited energy.

5.3.2. Volumes with physical barrier
Constant mean
The results for the KLmodel with a constant mean tumor cell density and an imposed physical barrier
after which the tumor cell density is 0 are shown in Figure 5.9c. The corresponding ETCP values and
energy as a percentage of the maximum allowed energy are shown in Table 5.7. As is expected for a
tumor cell density field with a physical barrier after which the tumor cell density drops to 0 mm−3, the
optimized dose distributions all follow the same pattern of a constant dose up until a dropoff point and
again a constant dose after that dropoff. The dropoff point is located at 8 mm, which is the distance
at which the physical barrier was placed.

For the unpenalized model, the dose distributions for both energy constraint constants have similar
dose values up to the dropoff point. After the dropoff point, the dose is constant and it is higher for 𝐶
= 0.6, than for 𝐶 = 0.5. This is a direct effect of the higher maximum allowed energy, as for both results,
100% of the allowed energy is used. Both dose distributions have a ETCP value of 1.00. It must be
noted that the dose before the dropoff is much higher than the optimized dose in Figure 5.9a, even
though the tumor cell density is equal in this area for both the constant mean model and the constant
mean with physical barrier model. Furthermore, the dose does not drop to 0 Gy after the dropoff even
though it would be expected that no dose is necessary in this area due to a tumor cell density of 0
mm−3. This can both be explained by the fact that the gradient is ≈ 0 in both the area before and after
the dropoff, blocking the optimizer to push the dose down further.

Using the penalized model, the dose distributions for both energy constraint constants are equal
and constant up to the physical barrier. The dose values drop down to 0 Gy after the physical barrier.
The corresponding ETCP values are 0.993 for both energy constraint constants, which is only slightly
lower than for the unpenalized model. As the dose distributions are equal, the same amount of energy
is deposited in either case. This corresponds to 43.9% of the maximum allowed energy for an energy
constraint constant 𝐶 = 0.5 and 36.6% of the allowed energy for 𝐶 = 0.6. The penalty allows the
optimizer to push the dose values down to a much lower dose level before the physical barrier and to
0 Gy after the dropoff, without a significant loss in the ETCP value.

Gaussian decreasing mean
The results for the KLmodel with a Gaussian decreasing mean tumor cell density and an imposed
physical barrier after which the tumor cell density is 0 are shown in Figure 5.9d. The corresponding
ETCP values and energy as a percentage of maximum allowed energy are shown in Table 5.8.Just
like for the constant mean model, the dose drops off at 8 mm, where the physical barrier was placed.



5.3. Demonstration of the KLexpansion model 35

Table 5.7: Optimized ETCP values and used energy as a percentage of the maximum allowed energy for two energy constraints
𝐶 = 0.5 and 𝐶 = 0.6 for both the penalized and the unpenalized KL model with a constant 𝜇𝜌 and an imposed physical barrier.

Energy constraint Penalized ETCP Energy (%)

𝐶 = 0.5 No 1.00 100
Yes 0.993 43.9

𝐶 = 0.6 No 1.00 100
Yes 0.993 36.6

Furthermore, before the dropoff, the dose distributions follow the same decreasing pattern as the
results for the model with a Gaussian decreasing mean without physical barrier.

Using the unpenalized model to optimize the ETCP, the dose values for both energy constraint
constants are approximately the same before the dropoff. After the dropoff the dose distributions
are similar to the results for the constant mean with physical barrier (Figure 5.9c). Again the dose is
constant beyond the physical barrier and the dose is higher with 𝐶 = 0.6 than with 𝐶 = 0.5 due to more
energy being allowed to be deposited in the volume (in both cases almost all of the allowed energy
is used). The corresponding ETCP is 1.00 for both energy constraints. The dose before the dropoff
is much higher than in Figure 5.9b, despite the tumor cell density being the same in this area for the
model with and without physical barrier. The dose after the dropoff is not 0 Gy, although this would
be expected as the tumor cell density is 0 mm−3 in this area. These problems are equal to those for
the model with constant mean and a physical barrier and are caused by the gradient values being ≈ 0
throughout the volume.

When the penalized model is optimized, the dose distributions for both energy constraints are equal
and slowly decrease up until the dropoff. After the dropoff the dose is 0 Gy, as is expected as the
tumor cell density in this area is also 0 mm−3. The corresponding ETCP values are 0.994 for both
energy constraint values. This is only slightly lower than for the unpenalized model. However, the
amount of used energy is significantly decreased, from 99.8% to 42.8% and 35.7%, for 𝐶 = 0.5 and 𝐶 =
0.6, respectively. The actual amount of used energy is the same for both energy constraint constants,
as the dose distributions are equal. Due to the penalty on the ETCP objective, the optimizer is thus able
to push the dose values down to a lower dose level before the dropoff and to 0 Gy after the dropoff,
without a significant loss in the ETCP value.

Table 5.8: Optimized ETCP values and used energy as a percentage of the maximum allowed energy for two energy constraints
𝐶 = 0.5 and 𝐶 = 0.6 for both the penalized and the unpenalized KL model with a Gaussian decreasing 𝜇𝜌 and an imposed physical
barrier.

Energy constraint Penalized ETCP Energy (%)

𝐶 = 0.5 No 1.00 99.8
Yes 0.994 42.8

𝐶 = 0.6 No 1.00 99.8
Yes 0.994 35.7

KLmodel for CTV optimization
In this section, the results of optimizing the objective based on the KarhunenLoève model as derived
in Section 4.6 were discussed. It was shown that realistic optimized dose distributions can be obtained
for different types of tumor cell density fields. The optimized dose distribution for fields where there are
tumor cells throughout the volume (without physical barrier), show that dose is necessary throughout
the volume, as is expected. If the input mean 𝜇𝜌 follows a Gaussian decreasing function, the resulting
dose distribution also follows a decreasing pattern up until a point from where the dose is constant.
The results for the fields where a physical barrier was imposed in the volume, resemble the results that
were obtained for the normal ETCP objective as discussed in Section 5.2, with a dropoff at a certain
point. The location of this dropoff is steerable when the KL model is used to simulate the tumor cell
density field, while this is not the case for the normal ETCP objective.
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Conclusions

6.1. Comparison to previous results
In Section 5.1, it was shown that the optimal dose distribution obtained by optimizing the ETCP is the
maximum dose for as large a volume as is allowed by the energy constraint and a dose of 0 Gy in
the rest of the volume. This is due to the multiplicative nature of the TCP. If any part of the volume
does not receive enough dose, the ETCP quickly drops towards 0. By giving the maximum dose to
as large a volume as possible, the optimizer avoids such a scenario. The optimizer however has a
hard time reaching this optimal dose distribution as the gradient values in the volume become very
small. This is the case both if the TCP in a shell approaches 1 and if it approaches 0 and is a result
of the fact that the TCP is a sigmoidal function of the dose. It is shown that by scaling the optimization
objective, the optimization can be pushed further towards the optimal dose distribution. The results from
a previous study were also shown, which display a slowly decreasing curve for the dose distribution
with the highest dose close to the GTV. A mistake was found in the model that was used in this study
and these results could not be replicated after this mistake was fixed. Although the dose distributions
from the previous study did obtain a high ETCP (of around 0.98) and therefore can yield proper tumor
control, the dose distributions are not optimal.

6.2. Results for the different tumor sites
In Section 5.2, the expected TCP and expected LTCP were investigated as optimization objectives for
four different tumor sites with different tumor parameters and different maximum distances for the MDE
Δ𝑚𝑎𝑥. Different results were obtained for the four tumor sites, where both brain and breast had similar
results and similarly, lung and prostate also yielded similar optimized dose distributions. When the
ETCP is used as an objective, the optimized dose distribution has a dropoff point in the volume after
which the dose dropped significantly for all 4 tumor sites. This dropoff point is related to the energy
constraint as the volume that receives the maximum dose is determined by the maximum energy that
is allowed to be deposited (≈ 100% of this allowed energy is used for all the tumor sites). When the
ELTCP is used as an objective, the optimizer gives dose throughout the whole volume. This is due
to the logarithmic TCP, which becomes very large if the TCP comes close to 0. Such situations are
thus avoided by the optimizer, by giving as much dose as possible even to the low MDE probability
regions of the investigated volume. A slight decrease is present in the optimized dose distributions,
which is credited to the small effect of the probability distribution 𝑃Δ(Δ) on the optimization. The ETCP
optimization is sensitive to the maximum radius of the investigated volume. The larger the investigated
volume, the more difficult it is to optimize the dose in the shells far away from the GTV.

A penalized version of the expected TCP was also investigated for the different tumor volumes. This
penalized model uses the squared overdose as a penalty in the irradiated volume, which also contains
healthy tissue. A penalty weight can be assigned to balance the maximization of the ETCP and mini
mization of the squared overdose. The optimized dose distributions resulting from the penalized ETCP
objective have dose in a much smaller part of the volume than for the unpenalized ETCP objective.
Furthermore, the dose is pushed to 0 Gy beyond the dropoff, as the gradient of the penalty helps push
the dose down to 0 Gy when the gradients from the ETCP are too small to drive the optimization. The
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ETCP values that correspond to these dose distributions still show that proper tumor control can be
achieved even when the dose is 0 Gy in most of the volume. Using different weight factors allows for
steering of the balance betweenmaximizing the tumor control andminimizing the damage to the healthy
tissue in the volume surrounding a tumor. However, as described in Subsection 5.2.2, the penalized
model is dependent on the location of the quadrature points used for the discretization of the integral
over Δ. By varying the penalty weight, dropoff points were only found at certain shells, related to the
location of the quadrature points in the investigated volume. Ideally, a dropoff point could be located at
any shell in the volume so that there is a direct linear relation between the assigned penalty weight and
the distance of the dropoff point. The limited number of quadrature points in the investigated volume
is what currently prevents this direct linear relation.

6.3. KLexpansion model
In Section 5.3, a novel approach to probabilistic treatment planning for CTV uncertainties is investi
gated. A new ETCP based objective was derived, where the uncertainty of the CTV is assumed to be
the tumor cell density field. This tumor cell density field is simulated using a KarhunenLoève expan
sion. For the demonstration, 4 different CTV models were created, with a constant mean or a Gaussian
decreasing mean and either a physical barrier or no physical barrier present. Optimizing the ETCP for
5000 realizations of these 4 different models resulted in realistic dose distributions. It was shown that by
slightly increasing the energy constraint constant, high ETCP values could be obtained for all models.
Furthermore, when a penalized ETCP objective was used, high tumor control was maintained while
the used energy was decreased. The different models give an example of the variety of tumor cell
density fields that can be simulated using the KLexpansion method and the realistic dose distributions
are a promising outcome for the applicability of the KLexpansion method for the probabilistic treatment
planning to deal with CTV uncertainties.

6.4. Future research
6.4.1. Different tumor sites
ETCPbased and ELTCPbased optimization was investigated for four tumor sites, namely brain, breast,
lung and prostate. It was shown that for different tumor parameters and different maximum distances
of the MDE, different optimized dose distributions are obtained. However, only a single set of tumor
parameters was investigated for each tumor site and for future research it is recommended to zoom in
on each tumor site separately to investigate different values for 𝛼 and 𝛽. In a previous study [9], uncer
tainties in 𝛼 and 𝛽 were included in the ETCPmodel similarly to how the uncertainty in 𝜌 is included in
the current model. There it was found that these uncertainties had little influence on the results, but the
model from [8] was used for the study. As we now know that this model was incorrect, the influence of
the uncertainties in 𝛼 and 𝛽 on the optimization should be investigated again.

Furthermore, a penalized ETCP objective was investigated for the different tumor sites as well. Fu
ture research should focus on this penalized objective as it allows for control over the balance between
tumor control and normal tissue sparing. Further investigations into the optimal weight factors for the
penalty should be performed based on advice from radiologists and treating clinicians. Additionally,
to solve the problem related to the limited number of dropoff points, two different approaches can be
used. Firstly, one could increase the number of quadrature points to approximate the integral over Δ.
This will lead to an increase in the number of possible dropoff points. However, a large downside of
increasing the number of quadrature points is that it will lead to a significant increase in the required
time for the ETCP computation. Using an explicitly truncated distribution for 𝑃(Δ) could help to avoid a
large increase in computation time. Secondly, another numerical integrator could be used, where one
has more control over both the number and location of quadrature points in the investigated volume.
In the current method, the GaussLaguerre quadrature, a large number of quadrature points is located
outside the investigated volume, and therefore it is inefficient when the investigated volume is relatively
small.

6.4.2. KLexpansion model
The results for the optimization of the KLexpansion model were promising, but there are some limita
tions to the results that can be addressed in future research.
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For the demonstration of the KLexpansion model, only a single value for the standard deviation of
the tumor cell density field was used. Furthermore, only a single correlation length of the autocorrelation
function was investigated. The effect of these values on the simulated tumor cell density field and
subsequent optimized dose distributions should be investigated.

Currently, the ETCP in the KLmodel is computed using 5000 realizations of the tumor cell density
field. A more robust way to compute the ETCP would be to use cubatures to perform multidimensional
integration over all the random variables 𝜉𝑖 that are used to compute �̂�(,𝜃), the KLapproximation of the
tumor cell density field (Equation 4.36). Cubatures are the multidimensional equivalent of the quadra
tures that were used in this study. It is recommended to use this approach for future investigations into
the KLmodel to improve the accuracy of the model and potentially speed up calculation time.

The KLexpansion can be used to create different models of the microscopic disease area. As
shown in this thesis, such a model can have a physical barrier present in the volume. Other shapes of
the mean tumor cell density 𝜇𝜌(r), such as a tumor cell density field that decreases linearly over the
distance, can be designed and investigated as well.

Furthermore, more explicit data on the distribution of microscopic disease groups in the microscopic
disease area could help to improve the KLmodel. Such data can be used to improve the inputs of the
model such as the shape of the mean tumor cell density 𝜇𝜌(r) and the standard deviation 𝜎𝜌(r) of
the tumor cell density field 𝜌(r, 𝜃). The histopathological studies that were found and discussed in
Appendix A only reported the maximum distance where microscopic disease was found. To create
accurate models of the microscopic disease, more explicit data on the location and size of the micro
scopic disease groups would be helpful. For this, new histopathological studies need to be performed
or the explicit data from already performed studies should be made available.

Finally, we investigated a 1D version of the KLmodel, but the KLmodel is wellsuited to be extended
into a threedimensional model to simulate more complex tumor cell density fields. An example of a
more complex threedimensional field is a CTV where the tumor cell density might be high in one
direction over a large distance from the GTV, while in another direction there is a physical barrier
present and the tumor cell density field therefore extends only slightly from the GTV. For this, a three
dimensional model of the tumor and the surrounding microscopic disease area build up out of voxels will
need to be created to replace the onedimensional model based on volume shells. With a 3Dmodel,
the four different tumor sites and their differences in microscopic disease can be investigated in more
detail. Different spatial data on the extension of microscopic disease was identified in Appendix A for
the different tumor sites. This data could be used to model the input mean tumor cell density field to
reflect the differences in the tumor cell density field in the different directions outwards from the GTV.

6.4.3. Use of the probabilistic models in practice
In this thesis, conceptual 1Dmodels incorporating the uncertainties in the microscopic disease area
were investigated with the goal of probabilistic treatment planning to replace the CTV margin. To apply
these models in practice, the investigated objective functions need to be implemented into treatment
planning systems. As treatment planning systems typically allow for multicriteria optimization, a prob
abilistic objective can be implemented as a cost function alongside cost functions on for example the
OARs. It is possible to use the 1Dmodels in a treatment planning system, despite the fact that the
TPS creates dose distributions on threedimensional patients scans. The volume domain here is di
vided into voxels and the distance of each voxel can be calculated to the edge of the PTV. This distance
can then be used as 𝑟 for the probabilistic model. The treatment planning system will optimize the dose
per voxel, instead of per volume shell. In this manner, the investigated models could already be used
to investigate probabilistic treatment planning in real patient plans. When a threedimensional model
is created, the implementation of such a model could be even more straightforward as it is already
a voxelbased model. To gain optimal insight in the use of these probabilistic models in practice, it is
important to involve clinicians and radiologists to gain a clinical perspective on the used parameters,
such as the penalty weight for balance between tumor control and normal tissue sparing and on the
resulting optimized dose distributions.

Both the model based on the uncertainty in the extension of the microscopic disease and the KL
model based on the uncertainty in the tumor cell density field have been shown to allow for achieving
good tumor control in the microscopic disease area, and therefore probabilistic treatment planning
shows to be a promising alternative to the binary CTV margins that are currently in practice. Further
investigation of the KLmodel using conceptual geometries will improve the probabilistic optimization,
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but it is recommended to simultaneously investigate the use of the probabilistic objective functions in
actual real patient plans. This will allow for direct feedback on the clinical applicability of the objective
functions.

Probabilistic treatment planning was investigated for four tumor sites. These four tumor sites were
chosen as the most histopathological data was present for these sites. In future research, the use of
the probabilistic objective functions can be investigated for other tumor sites as well.



A
Literature study

A.1. Histopathological and radiological MDE studies for different
tumor sites

As discussed in Chapter 1, there is a possibility of microscopic disease in the area surrounding a
tumor. Due to limitations in the imaging modalities, this microscopic disease is not visible on CT or MRI
scans [4, 5]. To assess the microscopic disease extensions, histopathological examinations of surgical
specimens are thus essential to obtain information about the distance up to which MDE can be found,
to be able to determine appropriate CTV margins.

In the search for literature on the distance of microscopic disease extensions , studies on MDE were
identified for different tumor sites: brain, breast, lung and prostate. The results of the literature search
will be presented here.

For MDE studies to be useful for probabilistic treatment planning (Chapter 3), it is important to have
an idea of which data is reported in the literature and how this data was acquired. For some tumors,
the microscopic disease might be more prevalent in a certain direction from the tumor than others. For
example, a large percentage of the MDE might be found in the posterolateral direction from the Gross
Tumor Volume. Such a preference for a certain direction could be included into probabilistic treatment
planning. Furthermore, there is a potential for shrinkage of the tumor between freshly excised tumor
specimens and tumor specimens after fixation [35–40]. It is therefore important to check if a correction
is used for the tumor shrinkage, when the microscopic disease distance is measured. Finally, to be able
to properly compare the MDE distance data from different studies, it is also important to keep in mind
how big the specimens were that were investigated. If one study uses a surgical margin of 1 cm, while
in another study wholeorgan specimens were investigated, there could be a difference in the range of
the MDE distance that is found. The former study might have a smaller maximum MDE distance than
the latter study, which could be due to a smaller area being investigated.

A.2. Brain cancer
The main treatment for primary brain cancer is surgery followed by radiotherapy to a volume surround
ing the original tumor bed and often additional chemotherapy is also given to the patient [41–43]. To
determine the clinical target volume for irradiation of the tumor bed and surrounding tissue, studies on
microscopic disease extension are essential.

Two types of studies onmicroscopic disease in brain cancer were found in the literature, a histopatho
logic brain autopsy study and recurrence pattern studies. In histopathologic brain autopsy studies, the
microscopic disease extensions are measured in microscopic slices of brain tissue [44]. In recurrence
pattern studies, CT or MRI scans of patients with recurrent brain cancer are studied and it is assumed
that the recurrent tumors are the result of microscopic disease left behind after the treatment of the orig
inal tumor by surgery and radiation therapy [45–47]. The MDE distance is then evaluated by measuring
the distance from the original tumor to the recurrent tumor.

41
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A.2.1. Histopathologic study
In 1988, microscopic disease extension was studied by Burger et al. [44]. In this study, the brains of
15 adults that were diagnosed with glioblastoma multiforme (the most common form of primary brain
cancer [44, 48]) were obtained through autopsy. The authors determined the maximum distance from
the edge of the original tumor where tumor cells could be identified. This was done in a 1.02.0 cm thick
twodimensional section of the brain. The maximum reported MDE was 5.0 cm. Furthermore, MDE
could be found at a distance larger than 2 cm from the tumor visible on CT in 3/15 patients (20%) and
in 2/15 patients (13%) the MDE was larger than 3 cm, this distribution is plotted in Figure A.1.
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Figure A.1: Probability of finding microscopic disease beyond a certain distance from the macroscopic tumor visible in CT scans
in patients with glioblastoma; the maximum microscopic disease distance was measured in brain autopsy sections [44].

A.2.2. Recurrence pattern studies
Wallner et al. [45] studied recurrence patterns in 34 patients using CT scans of the initial and recurrent
tumor. All patients underwent surgery to remove their primary tumor and received subsequent whole
brain radiation. Twentyseven patients also received chemotherapy. Twentyfive patients received an
additional radiation boost to the tumor bed. Of the 34 patients, 2 patients initially had multiple tumors.
The authors reported the results from these patients separately from the other 32 patients. Of the
patient with only a single tumor, 16% recurred within the tumor bed of the original tumor, 65% recurred
within 1.0 cm from the original tumor and 78% recurred within 2.0 cm. The maximum observed distance
between original and recurrent tumor was 9.2 cm. This patient recurred in the opposite side of the brain.
Of the two patients with multiple tumors, one patient recurred within 1.0 cm from the original tumor
volume and the other recurred more than 2.0 cm from the initial tumor volume. The exact maximum
distance is provided for each of the 34 patients in a figure showing their recurrence patterns and a
cumulative distribution of this data is plotted in Figure A.2.

In a study by Gaspar et al. [46], recurrence patterns were investigated using CT scans of 70 patients.
All patients had surgery to remove the tumor and subsequent wholebrain radiation in combination with
an additional radiation boost in the area surrounding residual tumor visible on the postoperative CT
scan. In 51/70 (73%) patients, a recurrent tumor was found in the brain at followup (at least 18 months
after radiation therapy). The maximum distance between the original tumor visible on the preoperative
scan and the recurrent tumor was found to be 4 cm. 96% (49/51) of the tumors recurred within 2 cm
from the original tumor, 98% (50/51) recurred within 3 cm and all 51 of the recurrences within the brain
recurred within 4 cm from the original tumor. This data has been plotted in Figure A.2 in adapted form.

Aydin et al. [47] investigated recurrence patterns in 46 patients using CT or MRI scans. In all
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patients, the tumor was removed surgically and subsequent local radiotherapy was given to a clinical
target volume with a margin of 2 to 3 cm beyond the original tumor visible on the preoperative CT scan.
The maximum distance between the original tumor on the preoperative CT scan and the recurrent
tumor was ≤ 2 cm in 73.9% of the patients (this value is incorrect, see Subsection A.2.3) and ≤ 3 cm
for 93.5% of the patients. The exact maximum distance for each of the 46 patients was given by the
authors in a figure containing the 46 recurrence patterns and a cumulative distribution of this data is
plotted in Figure A.2.
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Figure A.2: Probability of finding microscopic disease beyond a certain distance from the macroscopic tumor in patients with
brain cancer, determined from recurrence studies [45–47]. In these studies, the maximum microscopic disease distance was
assumed to be equal to the maximum distance of a tumor recurrence from the original tumor.

A.2.3. Brain MDE data
An overview of the literature findings for microscopic disease extension in brain cancer is summarized
in Table A.1 and a plot of the cumulative distributions obtained from the different studies is presented
in Figure A.3.

Table A.1: Overview of the literature findings on MDE in brain cancer: the number of patients with MDE vs. the total number of
studied patients, the mean/median MDE distance, the range of MDE, whether any spatial information was provided and whether
a shrinkage factor was used.  indicates that this variable is not provided by the authors; * indicates that the variable was
computed from data provided by the authors; † indicates that here ‘MDE patients’ is set equal to patients with recurrences that
occured at least partly outside of the original tumor bed and ‘total patients’ equals the amount of patients with a recurrences; /
indicates that this variable is irrelevant (no histopathological study).

Burger
et al. [44]

Wallner
et al. [45]

Gaspar
et al. [46]

Aydin
et al. [47]

MDE patients/total
patients (%)

15/15 (100) 29/34 (85) † /51 () † 46/46 (100) †

MDE distance (mm)  
Mean: 15.9 *

 
Mean: 17.9 *

MDE range (mm) Maximum: 50 092 040 248
Spatial information
provided

Yes
(transverse plane)

Yes
(transverse plane)

No Yes
(transverse plane)

Shrinkage factor Yes / / /

In Table A.1 it is noted that none of these studies reported a mean or median value of the MDE
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distance. From the exact data that was provided by Wallner et al. [45] and Aydin et al. [47], the mean
MDE distance was computed to be 15.9mmand 17.9mm, respectively. As themaximumMDE distance
reported in these studies was 92 and 48 mm, respectively, these mean values seem to be in reasonable
agreement with each other and the maximum MDE distance of 92 mm could be seen as an outlier.

The investigated area in both the histopathological study and the recurrence studies is mainly in the
transverse plane. In Burger et al. [44], wholebrain sections in the transverse plane were investigated.
This means that it is likely that the entire extent of the microscopic disease was found in the transverse
plane. A limitation of this study is that these wholebrain sections were obtained from a 1.0 to 2.0 cm
thick brain section through the tumor, so microscopic disease in the craniocaudal direction outside this
brain slab might have been missed. In the recurrence studies [45–47], CT slices were used to measure
the MDE. Such slices are in the transverse plane. The preoperative CT slices with the maximum
initial tumor size were superimposed with anatomically comparable CT slices from the recurrent tumor.
From this the maximum distance between the border of the recurrent tumor and the initial tumor was
measured. This means that the maximum distance was measured in the transverse plane, but the
distance in the craniocaudal direction was not evaluated. To conclude, both the histopathological study
and the recurrence studies did not investigate the MDE in the craniocaudal direction and therefore it
is possible that the maximum distance of microscopic disease is underestimated.

In the histopathological study from Burger et al. [44] the authors corrected for tissue shrinkage, as
they had found in a previous study [35] that tissue shrinkage ranged from 10% to 17%.

In three of the studies (Burger et al. [44], Wallner et al. and Aydin et al.) maps were drawn for all the
patients, indicating the extent of the MDE in the transverse plane. These maps could be used to infer
spatial information about the MDE. From visual inspection of these maps, it can be concluded that in
the transverse plane there is no preference for microscopic disease to extend in a specific direction.
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Figure A.3: Probability of finding microscopic disease beyond a certain distance from the macroscopic tumor in patients with
brain cancer, determined from brain autopsy sections [44] or from recurrence studies [45–47]. In the recurrence studies, this
distance was assumed to be equal to the maximum distance of a tumor recurrence from the original tumor.

It is important to note that the recurrence studies might be biased towards patients that are more
sensitive for recurrence. All of the patients included in these studies were treated with radiotherapy
after the surgery. Aydin et al. [47] and Wallner et al. [45] only included patients that had a recurrence,
despite their treatment. No information was provided on how many patients did not have a recurrence
over the course of the study. It is possible that in all these excluded patients, the microscopic disease
was either not present or so close to the GTV, that it was treated by the radiotherapy. Gaspar et al. [46]
did include information on howmany patients did not have a recurrence. The MDE distance information
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that was provided by the authors however is not very extensive. Furthermore, it is not disclosed how
many of the recurrent tumors recurred within the original tumor bed, only how many of the tumors
recurred within 2, 3 and 4 cm from the original tumor.

Finally, the cumulative distributions for the different studies are plotted in Figure A.3. A general trend
is visible in the decrease of the probability of finding microscopic disease beyond a certain distance
from the macroscopic tumor. The data from the histopathological study is relatively well in agreement
with the recurrence studies. The cumulative distribution from Aydin et al. indicates a probability of
37% to find MDE beyond 20 mm from the macroscopic tumor. This corresponds to 63.0% of the
patients having a recurrence within 2 cm from the original tumor, contradicting the 73.9% the authors
reported (Subsection A.2.2). As the cumulative distribution was computed from the raw distance data
provided by Aydin et al. it is clear that the authors reported an incorrect value in their study and further
investigation of the raw data leads to the conclusion that the reported value of 73.9% is the percentage
of patients within 2 cm after the raw distance data is rounded to whole centimeters. The reported value
for patients with a recurrence within 3 cm (93.5%), however is based on the unrounded values and
corresponds to the probability of finding MDE beyond 3 cm of 6.5%, as in Figure A.3. Finally, caution
is warranted when combining the MDE data from the histopathological study with the data from the
recurrence studies, as these are retrieved in a completely different way and therefore are not directly
comparable.

A.3. Breast cancer
For patients with earlystage breast cancer, there are two common therapies: mastectomy, where the
whole breast is removed [49] and breastconserving therapy (BCT). Breastconserving therapy con
sists of surgery to excise the tumor, known as lumpectomy or wide local excision, and subsequent
wholebreast irradiation (WBI) [26, 27, 49]. Typically, a surgical margin of at least 1 cm is used during
lumpectomy [26, 27, 50]. After surgery, the whole breast is irradiated with 50 Gy and an additional
radiation boost of 10 to 26 Gy is given to the excision site and the surrounding tissue to account
for microscopic disease extension [27, 51, 52]. The radiation boost has an impact on the cosmetic
outcome [53], therefore it is important to optimize the size of the boost that allows adequate MDE
coverage without compromising the cosmetic outcome. To assess the extension of microscopic dis
ease, histopathological studies have been carried out on mastectomy and lumpectomy specimens to
determine the optimum clinical target volume for the boost.

A.3.1. Histopathological studies
In 1985, Holland et al. [54] studied the presence of microscopic disease in 282 mastectomy specimens.
Of these, 177 (63%) specimens displayed microscopic disease in the tissue surrounding the macro
scopic tumor. In 56/282 (20%) the MDE did not extend further than 2 cm from the macroscopic tumor,
whereas in 121/28 (43%) the maximum MDE was larger than 2 cm from the macroscopic tumor. The
range of microscopic tumor spread was reported to be 010 cm. More specific distance data up to 10
cm for macroscopic tumors with a size of maximum 4 cm (tumors larger than 4 cm are not admissable
for BCT [50, 54]) was provided in a plot, and has been reproduced in Figure A.4.

Faverly et al. [50] studied tumor spread in 135 mastectomy specimens of patients who might have
been eligible for BCT. They measured the distance between the edge of the macroscopic tumor and
the identified MDEs. They simulated surgical margins of 1, 2 and 3 cm and reported the percentage of
specimens that would have residual microscopic disease after BCT with these surgical margins. It was
reported that 47% of the breasts had microscopic disease beyond 1 cm from the macroscopic tumor,
39% had residual MDE beyond 2 cm and 22% of the specimens had residual disease beyond 3 cm
from the macroscopic tumor. This distribution is plotted in Figure A.4.

A large study on 333 reexcision specimens by Vicini et al. in 2004 [55] studied the maximum dis
ease extension from the edge of the original lumpectomy specimens into the reexcision specimen of
patients receiving BCT. A reexcision is performed when microscopic disease is found on the edges of
the initial excision specimen. Of the 333 specimens, 214 (64.3%) had residual microscopic disease in
the reexcision specimen. The mean and median distance of MDE was 7.9 and 6.0 mm, respectively.
The reported range was 1.029.0 mm. A more specific distribution of the MDE was reported in the text
and is plotted in Figure A.4.

Stroom et al [27] investigated the extension of microscopic disease in patients receiving BCT. They
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Figure A.4: Cumulative distribution of the probability of finding microscopic disease beyond a certain distance from the macro
scopic tumor in patients with breast cancer for different histopathological studies [26, 27, 50, 54, 55].

studied 38 lumpectomy specimens from BCT patients and found microscopic spread in 31 of the 38
specimens. The authorsmeasured the distance from themacroscopic tumor to themicroscopic disease
and noted the orientation of the microscopic finding relative to the macroscopic tumor in the breast.
They found that the distribution of microscopic spread is isotropic in the three main directions (nipple
lateral, leftright, skinthorax). The mean microscopic extension was found to be 1 cm and the range
was reported to be 325 mm. The maximum measured MDE distribution was reported in a plot and has
been reproduced in Figure A.4.

Finally, Schmitz et al. [26] examined 64 lumpectomy specimens from 62 patients to determine the
distance of microscopic disease from the GTV on MRI. MDE was present in 53 of the 64 (83%) spec
imens. In 3 specimens the macroscopic tumor was not visible on MRI, these were excluded from the
MDE analysis. The mean distance from the tumor on MRI scans to microscopic disease found in the
specimens was 5.0 mm. The authors provided the probability of microscopic disease for distances up
to 50 mm in a plot, this data is plotted in Figure A.4.

A.3.2. Breast MDE data
An overview of the literature findings is summarized in Table A.2 and the cumulative distribution and a
plot of the cumulative distributions obtained from the different studies is presented in Figure A.4.

To compare the MDE data between the different studies in Table A.2, it is important to first note the
size of the specimen that was studied. Holland et al. [54] and Faverly et al. [50] studied mastectomy
specimens and therefore investigated all of the breast tissue for the presence of MDEs. Vicini et al. [55]
investigated reexcision specimens and it must be kept in mind that their distance data does not include
the surgical margin of the original lumpectomy specimen. The used surgical margin is not reported
in the study, it is only noted that along with the macroscopic tumor, a rim of normal breast tissue was
excised. As the typical used surgical margin is at least 1 cm [26, 27, 50], it is safe to assume we need
to add at least 10 mm to the measured MDE distance from Vicini et al. Finally, Stroom et al. [27] and
Schmitz et al. [26] only studied initial lumpectomy specimens and therefore examined a smaller tissue
volume than the studies by Holland et al. Faverly et al. and Vicini et al. investigated. In the study by
Stroom et al. it is noted that in three of the specimens tumor was found at the resection margin, but
after further investigation it was concluded that it is unlikely there would be further microscopic disease
in 2 of the patients. The third patient was reexcised, but no residual microscopic disease was found in
this reexcision specimen. Schmitz et al. report that in 21 specimens tumor was found at the resection



A.3. Breast cancer 47

Table A.2: Overview of the literature findings on MDE in breast cancer: the number of patients with MDE vs. the total number of
studied patients, the mean/median MDE distance, the range of MDE, whether any spatial information was provided and whether
a shrinkage factor was used.  indicates that this variable is not provided by the authors.

Holland
et al. [54]

Faverly
et al. [50]

Vicini
et al. [55]

Stroom
et al. [27]

Schmitz
et al. [26]

MDE patients/total
patients (%)

177/282 (63) /135() 214/333
(64.3)

31/38 (82) 53/61 (87)

MDE distance (mm)   Mean: 7.9
Median: 6.0

Mean: 10 Mean: 5

MDE range (mm) 0100  1.029.0 325 042
Spatial information
provided

No No No Yes No

Shrinkage factor No No No No No

margin. No further information is reported on these specimens. It is possible that the MDE data from
Stroom et al. and Schmitz et al. underestimates the actual distribution of microscopic disease, as there
might be microscopic disease further from the original tumor that was not removed during surgery and
could therefore not be identified.

In three of the studies, a mean value is reported for the maximum MDE distance: Vicini et al.
[55], Stroom et al. [27] and Schmitz et al. [26] reported a mean MDE distance of 7.9 mm, 10 mm
and 5 mm, respectively. Keeping in mind that the value for the MDE distance from Vicini et al. is likely
underestimated, the differences between the maximumMDE distance in these studies is quite big. The
range of the maximum extent is reported in Holland et al. [54], Vicini et al. [55], Stroom et al. [27] and
Schmitz et al. [26]. The range of MDE reported in Holland et al. is 0100 mm, which is much larger than
the reported ranges from the other studies (129 mm, 325 mm and 042 mm for Vicini et al. Stroom
et al. and Schmitz et al. respectively). This is because Holland et al. investigated a much larger tissue
volume. Furthermore, it is unknown if patients included in the investigation by Holland et al. would be
eligible for BCT if the modern standards for BCT eligibility as used in Vicini et al. Stroom et al. and
Schmitz et al. would be applied. It is therefore possible that the MDE data found by Holland et al. is
not representative for BCT eligible patients, but shows an overestimation of the extent of microscopic
disease for such patients.

Next, it is important to note whether a study compensated for tumor shrinkage. As is noted in
Table A.2, none of the studies used a shrinkage factor. This will therefore not introduce differences be
tween them. However, studies investigating tumor shrinkage in breast tissue suggest that size changes
for the tumor and the surrounding tissue can occur. In Pritt et al. [36], a decrease ranging from 07 mm
in tumor size was noted in 40% of the investigated specimens. In another study no significant change
in tumor size was found, but a 15%20% decrease was found in the distance from the gross tumor to
the excision margin [40]. This suggests that although the tumor tissue did not change in size, the sur
rounding normal breast tissue did shrink. As MDE studies for breast tissue investigate the surrounding
normal breast tissue, it is possible that the measured maximum distance in the studies underestimates
the actual extent of microscopic disease.

Only Stroom et al. [27] reported an investigation of the spatial distribution of themacroscopic disease
extension. They concluded that there was no significant difference in the microscopic extension in the
different investigated directions.

Lastly, the cumulative distributions of the probability of finding microscopic disease beyond a certain
distance from Figure A.4 are discussed. Clearly, the distribution of Holland et al. suggests higher
probabilities for larger distances and is quite similar to the trend suggested by the data from Faverly
et al. for a distance beyond 20 mm from the macroscopic tumor. The cumulative distributions from the
most recent studies by Stroom et al. and Schmitz et al. are very similar to each other. The cumulative
distribution from Vicini et al. suggests much lower probabilities for disease up to 30 mm than the other
studies. However, as discussed earlier, it is safe to assume that at least 10 mm should be added to
the MDE data from Vicini et al. to account for the surgical margin of the initial excision specimen. In
Figure A.5, the data from Vicini et al. is adjusted for a surgical margin of 10 mm. Clearly, the distribution
from Vicini et al. has become much more similar to that from Stroom et al. and Schmitz et al.
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Figure A.5: Cumulative distribution of the probability of finding microscopic disease beyond a certain distance from the macro
scopic tumor in patients with breast cancer for different histopathological studies, with the data from Vicini et al. adjusted for an
assumed surgical margin from the original excision specimen [26, 27, 50, 54, 55].

A.4. Nonsmall cell lung cancer
Nonsmall cell lung cancer (NSCLC) is the most prevalent type of lung cancer, approximately 84%
of lung cancer patients are diagnosed with NSCLC [56]. Surgery (lobectomy, removal of the lobe
containing the tumor from the lung) is the main treatment method for earlystage NSCLC [57]. However,
for patients who are not eligible for surgery, stereotactic body radiation (SBRT) is the treatment of choice
[57]. To properly define the CTV for a highprecision radiation treatment, such as SBRT, it is important
to know the microscopic extent of the tumor.

A.4.1. Histopathological studies
Giraud et al. [58] investigated the microscopic disease extension for the two most prevalent types of
nonsmall cell lung cancer, adenocarcinoma (ADC) and squamous cell carcinoma (SCC). The authors
measured the MDE from 70 lobectomy or pneumonectomy (removal of an entire lung) specimens (32
ADC and 38 SCC specimens). 28 of these specimens (9 ADC and 19 SCC) were excluded from the
analysis, as the lung cells in these specimens displayed an insufficient degree of insufflation. Unlike
in most histopathological studies, the authors measured the maximum MDE distance on each of the
slides that were obtained from these specimens and analysed the MDE for all of the slides instead
of for only the maximum MDE per specimen. A total of 222 slides were obtained from the included
specimens. The reported mean MDE for ADC was 2.69 mm and for SCC 1.48 mm. These averages
include the slides for which no tumor extension was found. The authors reported the exact maximum
MDE distributions for adenocarcinoma and squamous cell carcinoma in tables. This data can be used
to compute the overall mean of the MDE for both cancer types combined, which is 2.16 mm. The
overall cumulative distribution of MDE was also computed using the distributions for ADC and SCC
and is plotted in Figure A.6.

In 2003, Goldstein et al. [59] studied the MDE in 31 wedge resection specimens from adenocarci
noma patients. They reported the mean and median of the maximum microscopic disease to be 7.4
and 7 mm, respectively. The range of MDE is reported to be 3.014.0 mm. No further specific distance
data is given for the MDE.

In a study by Grills et al. [60], the microscopic disease extension was investigated in 35 adeno
carcinoma lobectomy specimens. The mean microscopic extension was 7.2 mm and the range was
216 mm. The authors provided a plot of the cumulative percentage of cases at maximum microscopic
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extension distances up to 15 mm. This data is plotted in Figure A.6.
Loon et al. [61] studied the microscopic disease extension in three directions in lobectomy speci

mens from 34 patients. MDE was found in 17 patients (50%) and the authors reported that in 90% of
the patients MDE does not extend beyond 26 mm. The authors also examined the distribution of the
MDE in the transverse plane and conclude that it is isotropic in the transverse plane (medial of GTV
in 26%, lateral 29%, dorsal 23% and ventral 22% of patients). No MDE was found in the cranial and
caudal direction, which is likely due to undersampling in the craniocaudal directions with slices at 1 cm
from each other. The cumulative distribution of the maximum MDE distance is reported by the authors
in a plot and is plotted in Figure A.6.

Finally, Meng et al. [62] studied MDE in 39 lobectomy specimens from ADC and SCC patients.
MDE was present in 38/39 (97%) patients. The reported mean MDE is 3.38 mm. The exact MDE of
each patient was provided in a table and was used to compute the cumulative distribution plotted in
Figure A.6.
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Figure A.6: Cumulative distribution of the probability of finding microscopic disease beyond a certain distance from the macro
scopic tumor in patients with nonsmall cell lung cancer for different histopathological studies [58, 60–62].

A.4.2. Lung MDE data
An overview of the literature findings is summarized in Table A.3 and a plot of the cumulative distribu
tions obtained from the different studies is presented in Figure A.6.

First, we take a look at the investigated area in the different studies. In the study by Giraud et al.
[58], lobectomy and pneumonectomy specimens were studied and in Grills et al. [60], Van Loon et al.
[61] and Meng et al. [62] lobectomy specimens were included. Giraud et al. Grills et al. and Meng et al.
only investigated themicroscopic slides that contained some part of the macroscopic tumor from the ob
tained lobectomy and pneumonectomy specimens. This means that slides from tissue directly adjacent
to the tumor are excluded. This method might therefore miss some microscopic disease that is present
in the direction perpendicular to the slides, leading to a possible underestimation of the microscopic
disease extent. Van Loon et al. investigated all microscopic slides with lung tissue at a minimal margin
of 2 cm from the tumor, allowing for an adequate threedimensional analysis of microscopic disease.
Goldstein et al. [59] investigated the MDE in wedge resection specimens. These are the smallest type
of resection specimens that can be used to excise tumor from lung patients. Goldstein et al. state that
an “ample” rim of healthy tissue was present surrounding the excised macroscopic tumor, but the exact
surgical margin that was used is not provided. The authors did report the mean, median and range
of the minimal distance between microscopic disease and the edge of the specimen. The mean and
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Table A.3: Overview of the literature findings on MDE in lung cancer: the number of patients with MDE vs. the total number of
studied patients, the mean/medianMDE distance, the range of MDE, whether any spatial information was provided and whether a
shrinkage factor was used.  indicates that this variable is not provided by the authors; *indicates that the variable was computed
from data provided by the authors.

Giraud
et al. [58]

Goldstein
et al. [59]

Grills
et al. [60]

Van Loon
et al. [61]

Meng
et al. [62]

MDE patients/total
patients (%)

/70() 31/31 (100) 35/35 (100) 17/34 (50) 38/39 (97)

MDE distance (mm) Mean:
2.69 (ADC)
1.48 (SCC)
Mean*: 2.16

Mean: 7.4
Median: 7

Mean: 7.2  Mean: 3.38

MDE range (mm) 012 (ADC)
013 (SCC)

3.014.0 216 060 013

Patients without
MDE included
in mean/median

Yes No No  Yes

Spatial information
provided

No No No Yes No

Shrinkage factor No No No Yes No

median were 2.3 and 2.0 mm and the range was 04.0 mm. As the minimum distance reported was 0
mm, it is likely that microscopic disease was missed in this study. The reported extent of the MDE from
Goldstein et al. is therefore likely underestimated.

As noted in Table A.3, a mean value of the maximum MDE was reported or could be computed
from data provided by the authors in four of the five studies. The mean value for the data from Giraud
et al. was computed to be 2.16 mm. This is smaller than the measured mean MDE from Goldstein et
al. (7.4 mm), Grills et al. (7.2 mm) and Meng et al. (3.38 mm). The measured mean of Goldstein et
al. and Grills et al. are in good agreement with each other. The range of the MDE was reported by
all studies, and is similar in Giraud et al. Goldstein et al. Grills et al. and Meng et al. (013, 314,
216 and 013 mm, respectively). Van Loon et al. reported a range of 060 mm and therefore found a
much larger MDE distance than the other studies. From the mean MDE and the range of the MDE, it
can be concluded that a large variation exists in the measured extent of microscopic disease from the
macroscopic tumor.

There is one main factor that can explain the large discrepancy of the range of microscopic disease
that was reported in Van Loon et al. compared to the other studies. This study was the only study that
attempted to account for tumor deformation after surgery. In a previous study [39], the authors had
determined that the lung tissue surrounding the macroscopic tumor had decreased in size by 57% on
average. Van Loon et al. therefore used the methodology described in that study to account for post
surgical tissue shrinkage. Given the large decrease in size of the healthy lung tissue that was found
by Siedschlag et al. [39], the reported maximum MDE distance from the other four studies is probably
a large underestimation of the actual MDE distance. Meng et al. [62] note that in a previous study
[63] they found that tumor volume reduced to 82% ±10% of the original tumor volume, but despite this
knowledge they did not attempt account for tumor shrinkage.

Only Van Loon et al. reported a spatial distribution of the location of microscopic disease, relative
to the macroscopic tumor. In the transverse plane, the distribution was found to be isotropic. No MDE
was found in the craniocaudal directions from the tumor, due to undersampling in these directions.
Microscopic slices were cut perpendicular to the craniocaudal directions at 1 cm from each other.
Therefore, microscopic disease present between two slices was missed. The authors assumed that
the microscopic disease is also distributed isotropically in the craniocaudal direction.

To conclude, there is also a large difference between the cumulative distributions of the probability
of finding microscopic disease beyond a certain distance from the different studies (Figure A.6. The
distributions from [58] and [62] show quite a similar trend for the probability of finding microscopic dis
ease beyond a certain distance. The main difference is in the probability of finding microscopic disease
beyond the tumor edge: in Meng et al. this percentage was 97%, whereas in Giraud et al. this percent
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Figure A.7: Cumulative distribution of the probability of finding microscopic disease beyond a certain distance from the macro
scopic tumor in patients with MDE with nonsmall cell lung cancer for different histopathological studies [58, 60–62].

age was 63%. This difference also explains the large difference in the mean MDE distance reported for
both studies in Table A.3 (2.16 mm and 3.38 mm for Giraud et al. and Meng et al. respectively). The
similarity between the distributions can be better assessed by excluding the samples where no MDE
was found from the cumulative distributions. Such a plot is provided for all four cumulative distributions
in Figure A.7). In this plot, it is clear that the cumulative distributions from Giraud et al. and Meng et al.
are very similar. The mean MDE after exclusion of samples without MDE is also very similar, 3.44 mm
and 3.47 mm for Giraud et al. and Meng et al. respectively. The cumulative distribution obtained from
Van Loon et al. is significantly different from the other distributions, this is probably largely due to the
fact that Van Loon et al. accounted for tissue deformations, unlike the other studies.

A.5. Prostate cancer
Prostate cancer is known as an often multifocal disease with an index lesion and multiple satellite le
sions spread throughout the prostate and therefore it is common practice to treat the entire prostate
[32]; prostate cancer is predominantly treated by radiotherapy or surgery (prostatectomy) [64]. In pa
tients with prostate cancer a type of microscopic extension, called extracapsular extension (ECE) or
extraprostatic extension (EPE), can occur. This ECE or EPE is defined as the extension of prostate
cancer beyond the prostate boundaries[65]. Several histopathological studies were carried out to de
termine the radial extent of ECE beyond the prostate boundaries, to allow for determination of an ap
propriate CTV margin [66–70]. In all these studies, the ECE was defined as the distance that the tumor
extends from the outer margin of the prostate capsule, measured perpendicularly to the surface. In
specimens with multiple sites of ECE, the distance at the site with the largest extension was recorded.

A.5.1. Histopathological studies
Davis et al. [66] studied ECE in 376 prostatectomy specimens andmeasured the radial distance of ECE.
In 105/376 (28%) a total of 248 ECE sites were found. The authors reported a mean and median maxi
mum radial distance of 0.8 mm and 0.5 mm, respectively. The range of ECE distance was 0.044.4 mm.
The distribution of the radial distance of ECE was provided in a table and is plotted in Figure A.8. The
authors also recorded the location of the ECE sites with respect to the craniocaudal direction (bladder
base, superior, middle prostate or inferior), lateral direction (right or left) and anteroposterior direction
(anterior, later or posterior). The spatial distribution was reported as following: laterally, the ECE sites
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Table A.4: Extent of extrapcapsular extension for different locations.

Location Median ECE (mm) Range of ECE (mm) 90th percentile (mm)

Posterolateral 1.1 0.17.0 2.9
Posterior 0.5 0.13.5 3.3
Lateral 0.6 0.110.0 3.9
Base 1.5 0.110.0 9.4

were evenly distributed between the left (52%) and right (48%) sides of the prostate; craniocaudally,
57% of the sites was located in the midprostate, 38% in superior locations, 5% in inferior locations and
<1% at the bladder base; anteroposteriorly, 56% of the ECE sites was located in the posterior prostate,
28% in lateral locations and 15% in anterior locations.

In 2000, Sohayda et al. [67] studied ECE in 256 prostatectomy specimens. ECE was identified in 92
(35%) specimens, but measurements were only performed in 79 of these 92 cases. A total of 98 ECE
sites were found. The mean and median maximum radial distance was 1.7 and 1.1 mm, respectively.
The range of ECE was 0.110.0 mm and the 90th percentile was at 3.8 mm. A more specific distribution
of the maximum ECE was reported in the text and is provided in the plot in Figure A.8; in this plot the
13 cases for which the ECE was not measured, are omitted from the distribution. The authors also
recorded the spatial locations of the ECE sites: the location of the ECE sites was posterolateral in 53%
of the ECE sites, lateral in 24%, posterior in 13% and at the bladder base in 10% . Additionally, the
median ECE, range of ECE and 90th percentile for each location were tabulated, this data can be found
in Table A.4.

Teh et al. [68] analysed the ECE in a large population of 712 prostatectomy specimens. ECE
was identified in 299/712 (42%) of the specimens, but measurable extension was present in only 185
specimens. The mean, median and range of ECE were 2.93, 2.00 mm and 0.512.00 mm, respectively.
The distribution of the radial distance of ECE was provided in a table and is plotted in Figure A.8.

In 2006, the radial distance of ECE was studied by Chao et al. [69] in 371 prostatectomy specimens.
ECE was found in 121/371 (33%) specimens. The authors reported the mean, median and range of
ECE to be 2.4 mm, 2.3 mm and 0.057 mm; the 90th percentile of ECE was 5.0 mm. More specific
distance information of the extent of ECE is provided in a dot density plot and this information was
used to plot the cumulative distribution in Figure A.8. Most of the identifiable ECE was found in the
posterolateral region of the prostate and all of the ECE sites with a distance ≥2 mm from the prostate
were found in this region.

Finally, Schwartz et al. [70] investigated the radial distance of ECE in 2007; 404 prostatectomy
specimens were analysed of which 121 (30%) contained ECE. The mean, median and range of the
ECE were 0.9 mm, 0.6 mm and 0.05.7 mm, respectively. It is furthermore indicated how many patients
there where with an ECE smaller than the median (59 (15%)) and bigger than the median (62 (15%)).
Further specific distance information is not reported by the authors, so this course distribution is plotted
in Figure A.8.

A.5.2. Prostate MDE data
An overview of the literature findings is summarized in Table A.5 and a plot of the cumulative distribu
tions obtained from the different studies is presented in Figure A.8.

In all the studies, the entire prostatectomy specimen was investigated for extracapsular extensions.
It can therefore be assumed that all the present ECEs were identified. In some cases an ECE extends
to the edge of the surgical specimen. In Davis et al. [66], it is indicated that if an ECE site extended to
the edge of the specimen and had the maximummeasured distance from all ECE sites in the specimen,
the maximum ECE distance was recorded as the distance from the prostatic capsule to the edge of the
specimen. This was the case in 27 of the 105 specimens with ECE, for these cases the actual maximum
ECE distance is therefore underestimated. This could be an explanation In Sohayda et al. [67], 38 of
the 79 specimens with ECE had at least one ECE site that extended to the edge of the specimens. It
was however not indicated if the maximum measured ECE distance in these specimens corresponded
to an ECE that extended to the edge of the surgical specimen. Teh et al. [68] reported a total of 48 of the
185 specimens with ECE to have at least once ECE site that extended to the edge of the specimens.
Again, it was not noted whether the maximum measured ECE distance corresponded to an ECE that
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Figure A.8: Cumulative distribution of the probability of finding extracapsular extension beyond a certain distance from the
macroscopic tumor in patients with prostate cancer for different histopathological studies [66–70].

extended to the edge of the specimen. Chao et al. [69] reported that in 62% of the specimens displaying
ECE, tumor was found on the edge of the specimen. It is however not clear whether this was tumor from
an ECE site or tumor located inside the prostate due to an inadequate surgical excision of the entire
prostate volume. Schwartz et al. [70] does not report how many specimens had a positive margin.
They do mention in their method that it was noted if an ECE site was measured to have the maximum
ECE distance of a specimen, but do not report if and for how many specimens this was the case. To
conclude in all the studies there is a chance at an underestimation of the extent of ECEs due to ECE
extending beyond the edge of the surgical specimen. With the information provided by the authors, it
is however difficult to estimate for how many specimens this was the case and it is unknown how far
the ECE might have extended beyond the surgical edge.

A median value of the maximum ECE distance was reported in all studies and a mean value was
reported in Davis et al. Chao et al. and Schwartz et al. (Table A.5). The mean and median values
from Davis et al. and Schwartz et al. are similar, as are the median values from Teh et al. and Chao
et al. The median value reported by Sohayda et al. is in between the values from the other studies.
The reported range of the maximum ECE distance differs between all the studies: the largest reported

Table A.5: Overview of the literature findings on ECE: the number of patients with measurable ECE vs. the total number of
studied patients, the mean/median ECE distance, the range of ECE, whether any spatial information was provided and whether
a shrinkage factor was used.

Davis
et al. [66]

Sohayda
et al. [67]

Teh
et al. [68]

Chao
et al. [69]

Schwartz
et al. [70]

ECE patients/ (%) 105/376 (28) 79/265 (35) 185/712 (26) 121/371 (33) 121/404 (30)
total patients
ECE distance (mm) Mean: 0.8

Median: 0.5
Median: 1.1 Median: 2.0 Mean: 2.3

Median: 2.4
Mean: 0.9
Median: 0.6

ECE range (mm) 0.044.4 0.110.0 0.512.0 0.057 0.05.7
Spatial information
provided

Yes Yes No Yes No

Shrinkage factor No No Yes No No
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maximum ECE distance ranges from 4.4 mm in Davis et al. to 12.0 mm in Teh et al. Tumor shrinkage
was only adjusted for with a shrinkage factor in the study by Teh et al. They used a linear shrinkage
factor of 1.14, which was reported in Schned et al. [71].

Information on the spatial distribution of the ECE sites was provided by Davis et al. Sohayda et
al. and Chao et al. Both Sohayda et al. and Chao et al. report a high incidence of ECE sites in the
posterolateral prostate (53% and ‘most of the ECE’ according to Sohadya et al. and Chao et al. re
spectively). Davis et al. uses a different manner of reporting the spatial distribution, but is in agreement
that the posterior prostate had the highest incidence of ECE sites (56%), if the anteroposterior direction
is regarded.

The cumulative distributions from Sohayda et al. Teh et al. Chao et al. and Schwartz et al. (Fig
ure A.8 show somewhat similar trends, but the exact probabilities of finding extracapsular extension
beyond certain distances vary quite a bit. The cumulative distribution from Davis et al. shows a much
steeper decrease in the probability of finding ECE beyond a certain distance than the other four studies.
Although the median values of the maximum ECE distance were similar for Davis et al. and Schwartz
et al. this is not true for their cumulative distributions. The cumulative distribution from Schwartz et
al. is more comparable to the cumulative distribution found by Sohayda et al. than to the distribution
found by Davis et al. The distributions from Teh et al. and Chao et al. are also similar. It is interesting
to note that Teh et al. accounted for tumor shrinkage, whereas Chao et al. did not. The maximum ECE
distance is clearly much larger in the data from Teh et al. than for Chao et al. but in the range between
1 and 6 mm the probability for finding microscopic disease is quite similar for both cumulative distribu
tions. This implicates that if Chao et al. would also have corrected for tumor shrinkage, the cumulative
distribution of finding disease would probably shift slightly to the right, resulting in higher probabilities
of microscopic disease at larger distances from the macroscopic tumor.

A.6. Comparing reported data between tumor sites
As could be concluded from the previous sections, a range of different types of data is reported in
histopathological and radiological studies on microscopic disease extension. In this section the differ
ences and similarities in reported data between the different tumor sites will be investigated.

There are two types of studies that have been discussed in this chapter, namely histopathological
studies and radiological recurrence studies. Five histopathological studies were identified through the
literature search for breast, lung and prostate cancer. For brain, 4 studies were found, but only one
of these was a histopathological study and the other three were recurrence studies. Histopathological
studies will always provide a more accurate assessment of the extent of microscopic disease, so the
found data for MDE in brain tumor is not as reliable as the data for the other tumor sites.

The size of the investigated area varies among the tumor sites. Regarding the brain cancer studies,
12 cm thick transverse wholebrain sections were studied in the histopathological brain study [44] and
the recurrence studies [45–47] studied CT slices in the transverse plane at the height of the maximum
original tumor size. In all these studies, any microscopic disease in the craniocaudal direction could
have been missed and the extent of microscopic disease could therefore be underestimated. In the
breast cancer studies, different sizes of specimens were investigated. Two studies [50, 54] studied
mastectomy specimens. For these studies it can be assumed that all MDE was found, as the entire
breast was studied for presence of microscopic disease. One study investigated reexcision specimens
[55], which means that their data underestimates the range of microscopic disease by at least 1 cm
from the initial excision specimen. The last two studies [26, 27] studied initial lumpectomy specimens.
The data from these studies potentially underestimates the actual extent of microscopic disease as the
investigated area was smaller in these studies than in the other three. From the lung cancer studies,
one study [58] investigated both lobectomy and pneumonectomy specimens, three studies [60–62]
investigated lobectomy specimens and the fifth study [59] investigated wedge resection specimens.
Both lobectomy and pneumonectomy specimens contain a rather large area of tissue surrounding the
tumor, so it can be assumed that all tissue containing microscopic disease was available for investiga
tion. Three of the studies using lobectomy or pneumonectomy specimens [58, 60, 62] only investigated
transverse slides that contained some part of macroscopic tumor, so any microscopic disease present
in the direction perpendicular to the slides could have been missed. The other study [61] investigated
all slides at a minimal margin of 2 cm from the tumor, also in the direction perpendicular to the slides.
It can therefore be assumed that this study provides a more accurate MDE distribution than the former
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three studies. Wedge resection specimens are the smallest type of resection specimens. In the study
investigating wedge resection specimens [59], it was reported that for some specimens microscopic
disease was found at the edge of the specimen. It is thus likely that microscopic disease further away
from the macroscopic tumor was missed. All of the prostate cancer studies investigated entire prosta
tectomy specimens. It is thus likely that all the present ECEs were identified. In some cases the ECEs
extended to the edge of the prostatectomy specimens. If this was the case, the radial distance of the
ECEwas reported as the distance to the edge of the specimen, which could result in an underestimation
of the actual extent of the ECE.

Themanner of reporting the microscopic disease extent differs among study type as well. Two of the
radiological recurrence studies [45, 47] reported the exact maximum distance between the recurrent
tumor and the initial tumor for each patient. The third recurrence study [46] only reported how many of
the recurrences were within a certain distance from the original tumor. Histopathological studies mea
sure the distance of the macroscopic tumor to the microscopic disease in microscopical tissue slices. In
almost all of the histopathological studies only the maximum identified MDE distance is reported. In one
study for lung cancer [58] the complete MDE distance distribution throughout the analyzed specimen
was reported. Furthermore, most of the histopathological studies do not even provide the exact max
imum microscopic extension for each patient. The only study that reported such patientspecific data,
was a study investigating the MDE in lung cancer [62]. Most of the histopathological studies reported
probability distributions or cumulative distributions of the maximum MDE distance, some studies re
ported only the number of patients with a certain maximum MDE distance. The histopathological study
from the brain tumor site [44] reported the number of patients in which microscopic disease could be
found up to a certain distance. For the breast cancer studies, four of the five studies reported a cumu
lative distribution of the maximum MDE distance [26, 27, 50, 54] and one study reported a probability
distribution [55]. From the lung cancer studies, two studies reported a cumulative distribution [60, 61],
one study reported the maximum MDE for each patient [62], one study reported the complete MDE
distance distribution [58] and the last study did not report any information on the distribution of the
maximum MDE [59]. Two of the prostate cancer studies reported the number of patients in which
microscopic disease could be found up to a certain distance, the probability distribution and a cumula
tive distribution of the maximum MDE [66, 68], two of the studies reported both the number of patients
in which microscopic disease could be found up to a certain distance and the probability distribution
[67, 70] and the last study only reported the number of patients in which microscopic disease could be
found up to a certain distance [69].

Some histopathological studies adjusted for tissue shrinkage. The extent of shrinkage of tissue post
excision depends on the tissue type. Therefore, there are differences in how big this tissue shrinkage is
of influence on the measured maximum MDE distance. The histopathological brain cancer study used
corrected for tissue shrinkage as they had previously found that brain tissue shrinkage ranged from
10% to 17% of the original volume. None of the breast cancer studies corrected for tissue shrinkage,
despite studies suggesting that tumor shrinkage could range up to a decrease of 7 mm in size [36]
and shrinkage of the tissue surrounding the tumor could range up to 20% [40]. One of the five lung
cancer studies adjusted for tissue shrinkage [61] as in a previous study they had discovered an average
decrease of 57% in the size of the lung tissue surrounding the macroscopic tumor. From the prostate
cancer studies, only one study [68] corrected for tissue shrinkage. They used a linear shrinkage factor
of 1.14, from a study [71] that determined that the overall net linear shrinkage due to fixation is 4.3%.
Tissue shrinkage was only corrected for in a maximum of one study per tumor site and furthermore,
only 3 of the 16 studies performed such a correction. The extent of tissue shrinkage that was corrected
is quite different between tumor sites. In the prostate the effect of shrinkage that was corrected for was
a shrinkage of 4.3%, this is relatively small in comparison with shrinkage of 10% to 17% in brain tissue
and shrinkage of up to 20% of breast tissue. The largest shrinkage that was corrected for was in lung
tissue, where a shrinkage of approximately 57% was reported. Lung tissue is likely extra sensitive to
shrinkage, due to its nature. Lung cells can expand and deflate to allow air into the cells for exchange
of mainly oxygen and carbon dioxide. These cells are therefore already extra flexible and probably
deflated before tissue fixation, which then escalates the tissue deformation even further. Therefore, it
is extra important for studies investigating the extent of microscopic disease in lung tissue to account
for such tissue shrinkage. Unfortunately, only one of the five studies performed this correction, which
is clearly visible by the large discrepancy in the resulting cumulative distributions (Figure A.6).

To conclude, the extent of microscopic disease varies between the different tumor sites, from a
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maximum extension of 12 mm for prostate to a maximum extension of 100 mm for breast cancer.
For all tumor sites, probability distributions of the extent of microscopic disease were retrieved from
the studies. An isotropic spatial distribution of the location of microscopic disease was found for brain,
breast and lung cancer. ECE in prostate cancer was found to have a high incidence at the posterolateral
side of the prostate. The probability distribution of the radial distance at which microscopic disease can
be found, and the spatial distribution can be used in tumor sitespecific probabilistic treatment planning.
When using the probability distribution for probabilistic treatment planning, it is important to keep in mind
the uncertainties in the obtained distributions, e.g. due to the size of the investigated tissue and tumor
shrinkage.



B
Fitting of L for each tumor site

For the ETCP/ELTCP models, the parameter 𝐿 needs to be determined. We use the MDE data that
was gathered in Appendix A to obtain 𝐿. As discussed in Section 4.1, the cumulative density function
𝐹Δ(Δ) is assumed to be as follows:

𝐹Δ(Δ) = −e−
Δ
𝐿 (B.1)

The gathered MDE data consists of cumulative distributions, but the probability of finding MDE in a
patient is included in the data that was presented in Appendix A. Therefore, this data was adjusted to
represent only the cumulative probability of finding MDE beyond a certain distance, given that a patient
has MDE, by removing all patients without MDE from the data sets. Furthermore, the adjusted MDE
data sets are all reverse cumulative distributions, with a cumulative probability of 1.0 at a distance of 0
mm from the macroscopic tumor to a cumulative probability of 0.0 at larger distances. Therefore we fit
the reverse of Equation B.1 to the data to obtain 𝐿:

− 𝐹Δ(Δ) = e−
Δ
𝐿 (B.2)

Figures B.1B.4 show the adjusted MDE data sets with the corresponding fitted curves in black. The
found values for 𝐿 are 17.4 mm, 17.2 mm, 6.15 mm and 1.75 mm for brain, breast, lung and prostate,
respectively.
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Figure B.1: Cumulative distribution of the probability of finding microscopic disease beyond a certain distance from the macro
scopic tumor in patients with brain cancer for different studies [44–47] and the fitted curve in black.
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Figure B.2: Cumulative distribution of the probability of finding microscopic disease beyond a certain distance from the macro
scopic tumor in patients with breast cancer for different histopathological studies, with the data from Vicini et al. adjusted for an
assumed surgical margin from the original excision specimen [26, 27, 50, 54, 55] and the fitted curve in black.
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Figure B.3: Cumulative distribution of the probability of finding microscopic disease beyond a certain distance from the macro
scopic tumor in patients with MDE with nonsmall cell lung cancer for different histopathological studies [58, 60–62] and the fitted
curve in black.

0 2 4 6 8 10 12 14
Distance (mm)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

Davis et al.
Sohayda et al.
Teh et al.
Chao et al.
Schwartz et al.
e /1.75

Figure B.4: Cumulative distribution of the probability of finding extracapsular extension beyond a certain distance from the
macroscopic tumor in patients with prostate cancer for different histopathological studies [66–70] and the fitted curve in black.





C
Quadrature Rules

Quadrature rules are used to perform the numerical integration in the basic ETCP and ELTCP models
(Section 4.2). The use of the quadrature rules in the model will be explained in more detail in this
appendix.

Quadrature rules can be used to integrate any function that resembles a polynomial. Different rules
are available to approximate an integral over different intervals. The integral is approximated using a
weighted sum of function values at specific points in the domain. The weights used in the summation
correspond to the specific points and both the points and weights are dependent on the used quadrature
rule. A GaussLegendre quadrature is used to compute the integral over the density 𝜌 and a Gauss
Laguerre quadrature is used to compute the integral over the MDE distance Δ.

C.1. GaussLegendre quadrature
The GaussLegendre quadrature can be used to approximate a function 𝑓(𝑥) on the interval [−1, 1]:

∫
1

−1
𝑓(𝑥)d𝑥 ≈

𝑁𝑞𝑢𝑎𝑑

∑
𝑖=1

𝑤𝑖𝑓(𝑥𝑖) (C.1)

where 𝑁𝑞𝑢𝑎𝑑 is the number of quadrature points, 𝑥𝑖 is the 𝑖th quadrature point and 𝑤𝑖 is the correspond
ing weight. The GaussLegendre quadrature is used to compute the following integral over 𝜌:

𝔼(𝑇𝐶𝑃) = ∫
𝜌
𝑇𝐶𝑃(𝐷, 𝜌)𝑃𝜌(𝜌)d𝜌 = ∫

𝜌1

𝜌0

𝑇𝐶𝑃(𝐷, 𝜌)
𝜌1 − 𝜌0

d𝜌 (C.2)

As we are interested in an integral over the interval [𝜌0, 𝜌1], a change of interval needs to be performed
to the quadrature points from [−1, 1] to [𝜌0, 𝜌1]. To approximate Equation C.2, we then have

𝔼(𝑇𝐶𝑃) = ∫
𝜌1

𝜌0

𝑇𝐶𝑃(𝐷, 𝜌)
𝜌1 − 𝜌0

d𝜌 ≈
𝑁𝑞𝑢𝑎𝑑

∑
𝑖=1

𝑤𝜌𝑖 𝑇𝐶𝑃(𝐷, 𝜌𝑖) (C.3)

where 𝑤𝜌𝑖 =
𝜌1−𝜌0
2 𝑤𝑖 and 𝜌𝑖 =

𝜌1−𝜌0
2 𝑥𝑖 +

𝜌0+𝜌1
2 .

Similarly, the GaussLegendre quadrature is used in the ELTCP model:

𝔼(𝐿𝑇𝐶𝑃) = ∫
𝜌1

𝜌0

𝐿𝑇𝐶𝑃(𝐷, 𝜌)
𝜌1 − 𝜌0

d𝜌 ≈
𝑁𝑞𝑢𝑎𝑑

∑
𝑖=1

𝑤𝜌𝑖 𝐿𝑇𝐶𝑃(𝐷, 𝜌𝑖) (C.4)

C.2. GaussLaguerre quadrature
The GaussLaguerre quadrature can be used to approximate a function 𝑓(𝑥) on the interval [0,∞]:

∫
∞

0
e−𝑥𝑓(𝑥)d𝑥 ≈

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

𝑤𝑗𝑓(𝑥𝑗) (C.5)
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62 C. Quadrature Rules

The GaussLegendre quadrature is used to compute the following integral over Δ:

𝔼(𝑇𝐶𝑃) = ∫
Δ
𝑇𝐶𝑃(𝐷, Δ)𝑃Δ(Δ)dΔ = ∫

∞

0
𝑇𝐶𝑃(𝐷, Δ) ⋅ 1𝐿e

−Δ𝐿 dΔ (C.6)

The GaussLaguerre quadrature can only be used for exponents of the form e−𝑥. Therefore, Δ
𝐿 is

replaced by Δ′ = Δ
𝐿 . The resulting integral is then

𝔼(𝑇𝐶𝑃) = ∫
∞

0
𝑇𝐶𝑃(𝐷, Δ′𝐿) ⋅ 1𝐿e

−Δ′ dΔ′𝐿 = ∫
∞

0
𝑇𝐶𝑃(𝐷, Δ′𝐿) ⋅ e−Δ′ dΔ′ (C.7)

This integral can be approximated using the GaussLaguerre quadrature as follows:

𝔼(𝑇𝐶𝑃) = ∫
∞

0
𝑇𝐶𝑃(𝐷, Δ′𝐿) ⋅ e−Δ′ dΔ′ ≈

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

𝑤Δ𝑗 𝑇𝐶𝑃(𝐷, Δ𝑖) (C.8)

where 𝑤Δ𝑗 = 𝑤𝑗 and Δ𝑗 = 𝑥𝑗𝐿.
Similarly, the GaussLaguerre quadrature is used for the ELTCP model:

𝔼(𝐿𝑇𝐶𝑃) = ∫
∞

0
𝐿𝑇𝐶𝑃(𝐷, Δ′𝐿) ⋅ e−Δ′ dΔ′ ≈

𝑁𝑞𝑢𝑎𝑑

∑
𝑗=1

𝑤Δ𝑗 𝐿𝑇𝐶𝑃(𝐷, Δ𝑖) (C.9)



D
Glossary

Anteroposterior direction The direction from the front (anterior) to the back (posterior)
or vice versa.

Craniocaudal direction The direction from head to feet or vice versa, this direction is
perpendicular to the transverse plane

Initial tumor Tumor for which the patient was originally diagnosed with cancer
Inferior Indicates that a structure is located below something,

e.g. the mouth is located inferior to the nose
Lateral Indicates that a structure is located towards the side,

e.g. the ears are located lateral to the nose
Lobectomy Surgical removal of a lung lobe
Lumpectomy Surgical removal of a tumor in the breast and a rim of healthy

tissue surrounding the tumor, also known as wide local excision
Mastectomy Surgical removal of entire breast
Pneumonectomy Surgical removal of an entire lung
Prostatectomy Surgical removal of the entire prostate
Reexcision specimen An additional surgical removal of tissue after an initial surgical

tumor removal, such as lumpectomy
Recurrent tumor A new tumor diagnosed in the patient posttreatment of the

initial tumor
Superior Indicates that a structure is located above something,

e.g. the eyes are located superior to the nose
Transverse plane Horizontal plane through the body, which divides the body in

upper and lower parts
Tumor bed The tissue that surrounds the tumor site, after surgical

tumor removal
Wedge resection Surgical removal of a small, triangle shaped piece of tissue,

to remove a small tumor
Wide local excision Surgical removal of a tumor in the breast and a rim of healthy

tissue surrounding the tumor, also known as lumpectomy

63





E
Abbreviations

ADC Adenocarcinoma
BCT Breast Conserving Therapy
BED Biologically Effective Dose
CT Computed Tomography
CTD Clinical Target Distribution
CTV Clinical Target Volume
ECE Extracapsular Extension
EPE Extraprostatic Extension
ETCP Expected Tumor Control Probability
ELTCP Expected Logarithmic Tumor Control Probability
GTV Gross Tumor Volume
Gy Gray
KL KarhunenLoève
LQ Linear Quadratic
LTCP Logarithmic Tumor Control Probability
MDE Microscopic Disease Extension
MRI Magnetic Resonance Imaging
NSCLC Nonsmall Cell Lung Cancer
NTCP Normal Tissue Complication Probability
OAR Organ at Risk
PTV Planning Target Volume
SBRT Stereotactic Body Radiotherapy
SCC Squamous Cell Carcinoma
SF Surviving Fraction
TCP Tumor Control Probability
TPS Treatment Planning System
WBI Wholebreast Irradiation
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