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Fast Approximate Dynamic Programming for Input-Affine Dynamics
Mohamad Amin Sharifi Kolarijani and Peyman Mohajerin Esfahani

Abstract—We propose two novel numerical schemes for the
approximate implementation of the dynamic programming (DP)
operation concerned with finite-horizon optimal control of discrete-
time systems with input-affine dynamics. The proposed algorithms
involve discretization of the state and input spaces and are based
on an alternative path that solves the dual problem corresponding
to the DP operation. We provide error bounds for the proposed
algorithms, along with a detailed analysis of their computational
complexity. In particular, for a specific class of problems with sep-
arable data in the state and input variables, the proposed approach
can reduce the typical time complexity of the DP operation from
O(XU) to O(X + U), where X and U denote the size of the
discrete state and input spaces, respectively. This reduction in
complexity is achieved by an algorithmic transformation of the min-
imization in DP operation to an addition via discrete conjugation.

Index Terms—Computational complexity, conjugate duality,
dynamic programming, input-affine dynamics.

I. INTRODUCTION

Dynamic programming (DP) is one of the most common tools used
for tackling sequential decision problems with applications in, e.g.,
optimal control, operation research, and reinforcement learning. The
basic idea of DP is to solve the Bellman equation

Jt(xt) = min
ut

{C(xt, ut) + Jt+1(xt+1)} (1)

backward in time t for the costs-to-go Jt, whereC(xt, ut) is the cost of
taking the control action ut at the state xt (value iteration). Arguably,
the most important drawback of DP is its high computational cost in
solving problems with a large scale finite state space. For problems with
a continuous state space, which is commonly the case in engineering
applications, solving the Bellman equation requires solving an infinite
number of optimization problems. This usually renders the exact imple-
mentation of the DP operation impossible, except for a few cases with
an available closed-form solution, e.g., linear quadratic regulator [1,
Sec. 4.1]. To address this issue, various schemes have been introduced,
commonly known as approximate dynamic programming; see, e.g., [2],
[3]. A common scheme is to use a sample-based approach accompanied
by some form of function approximation. This usually amounts to
deploying a brute force search over a discretization/abstraction of the
state and input spaces, leading to a time complexity of at leastO(XU),
where X and U are the cardinalities of the discrete state and input
spaces, respectively.
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For some DP problems, it is possible to reduce this complexity
by using duality, i.e., approaching the minimization problem in (1)
in the conjugate domain. For instance, for the deterministic linear
dynamics xt+1 = Axt +But with the separable cost C(xt, ut) =
Cs(xt) + Ci(ut), we have

Jt(xt) ≥ Cs(xt) +
[
C∗i (−B�·) + J∗t+1

]∗
(Axt) (2)

where the operator [·]∗ denotes the Legendre–Fenchel transform, also
known as the (convex) conjugate transform. Under some technical
assumptions (including, among others, convexity of the functions Ci

and Jt+1), we have equality in (2); see [4, Prop. 5.3.1]. Notice how
the minimization operator in (1) transforms to a simple addition in (2).
This observation signals the possibility of a significant reduction in the
time complexity of solving the Bellman equation, at least for particular
classes of DP problems.

Approaching the DP problem through the lens of the conjugate
duality goes back to Bellman [5]. Further applications of this idea for
complexity reduction were later explored in [6], [7]. Fundamentally,
these approaches exploit the operational duality of infimal convolution
and addition with respect to (w.r.t.) the conjugate transform [·]∗ [8]:
For two functions f1, f2 : Rn → [−∞,+∞], we have (f1�f2)∗ =
f ∗1 + f ∗2 , where

f1�f2(w) := inf{f1(w1) + f2(w2) : w1 + w2 = w} (3)

is the infimal convolution of f1 and f2. This is analogous to the well-
known operational duality of convolution and multiplication w.r.t. the
Fourier transform. Actually, the conjugate transform plays a similar role
as the Fourier transform when the underlying algebra is the max-plus
algebra, as opposed to the conventional plus-times algebra. Much like
the extensive application of the latter operational duality upon the
introduction of the fast Fourier transform, “fast” numerical algorithms
for (discrete) conjugate transform can facilitate efficient applications of
the former one. Fortunately, such numerical algorithms for computing
conjugate functions are already available [9], [10], [11]. One of the
first and most widespread applications of these fast algorithms is in
solving the Hamilton–Jacobi equation [9], [12], [13]. Another inter-
esting area of application is image processing, where the Legendre–
Fenchel transform is commonly known as “distance transform” [14],
[15]. However, surprisingly, the application of these fast algorithms in
solving discrete-time optimal control problems seems to remain largely
unexplored. An exception is [16], where the authors propose the “fast
value iteration” algorithm for computing the fixed-point of the Bellman
operator arising from a specific class of infinite-horizon, discrete-time
DP problems (with state-independent stage cost C(x, u) = C(u) and
linear dynamicsx+ = Ax+Bu, whereA is invertible and monotone).

Another related line of work involves algorithms that utilize max-
plus algebra in solving continuous-time, continuous-space, determinis-
tic optimal control problems; see, e.g., [17], [18], [19]. These works
exploit the compatibility of the Bellman operation with max-plus
operations and approximate the value function as a max-plus lin-
ear combination. In particular, in [20], the authors use this idea to
propose an approximate value iteration algorithm for deterministic,
continuous-state Markov decision processes. In this regard, we note
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Fig. 1. Sketch of the proposed algorithms – the standard DP operation
in the primal domain (upper red paths) and the CDP operation through
the dual domain (bottom blue paths): (a) Setting 1 with dynamics x+ =
fs(x) + fi(x) · u and generic cost C(x, u). (b) Setting 2 with dynamics
x+ = fs(x) +B · u and separable cost C(x, u) = Cs(x) +Ci(u).

that the proposed algorithms in the current study also implicitly involve
representing cost functions as max-plus linear combinations.

In this study, we consider the approximate implementation of the DP
operation arising in the finite-horizon optimal control of discrete-time
systems with continuous state and input spaces. The proposed approach
involves discretization of the state space and is based on an alternative
path that solves the dual problem corresponding to the DP operation
by utilizing the Linear-time Legendre transform (LLT) algorithm [11]
for discrete conjugation. The main contributions of this work are as
follows:
1) From minimization to addition: For input-affine dynamics, we

propose an algorithm that transforms the minimization in the DP
operation to a simple addition at the expense of three conjugate
transforms; see Fig. 1(a). This leads to transferring the computa-
tional cost from the input domain U to the dual state domain Y
(Theorem 3.4).

2) From quadratic to linear complexity: For problems with separable
data in the state and input variables, we propose another algorithm
that further reduces the complexity from quadratic to linear; see
Fig. 1(b). To be precise, for this class, the time complexity of solving
the optimal control problem reduces to O(X + U), compared to
the standard O(XU) (Theorem 3.9).

3) Construction of dual domain: We provide specific guidelines for
construction of a dynamic discrete dual space based on our error
analysis (Theorems 3.6 and 3.10).

4) Towards quantum DP: The proposed algorithms are developed
such that any reduction in the complexity of conjugate transform
immediately translates to a reduced computational cost for these
algorithms. Particularly, motivated by the recent quantum speedup
for discrete conjugate transform [21], we envision that the proposed
method paves the way for developing a quantum DP algorithm.

5) Software package: We provide the discrete CDP (d-CDP) MAT-
LAB package [22] for the algorithms presented in this study.

We note that the extended version of this article is available in [23].
Notations: We use R to denote the real line and R = R ∪ {+∞} to

denote its extension. ‖ · ‖ and 〈·, ·〉 denote the two-norm and the dot
product in Rn, respectively. ForA ∈ Rm×n,A� denotes its transpose,
and ‖A‖ = supx{‖Ax‖ : ‖x‖ = 1} denotes it induced two-norm. We
use the common convention in optimization whereby the optimal value
of an infeasible minimization (resp. maximization) problem is set to
+∞ (resp. −∞). Continuous sets (infinite, uncountable) are denoted
as X,Y , . . .. For discrete (finite) sets, we use the superscript d as in
Xd,Yd, . . .. Moreover, we use the superscriptg to differentiate grid-like
(i.e., factorized) finite sets as in Xg = Πn

i=1Xg
i = Xg

1 × . . .×Xg
n ⊂

Rn, where Xg
i is a finite subset of R. The cardinality of a finite set Xd (or

Xg) is denoted byX . Let X,Y be two arbitrary sets in Rn. The convex
hull of X is denoted by co(X). The diameter of X is defined as ΔX :=
supx,y∈X ‖x− y‖. We use d(X,Y ) := infx∈X,y∈Y ‖x− y‖ to denote
the distance between X and Y . The one-sided Hausdorff distance from X
to Y is defined asdH(X,Y ) := supx∈X infy∈Y ‖x− y‖. Leth : Rn →
R be an extended real-valued function with a nonempty effective do-
main dom(h) = X := {x ∈ Rn : h(x) < +∞}. We use hd : Xd →
R to denote the discretization of h, where Xd is a finite subset of Rn.
Whether a function is discrete is usually also clarified by providing its
domain explicitly. We particularly use this notation in combination with
a second operation to emphasize that the second operation is applied

on the discretized version of the operand; e.g., we use h̃d : Rn → R to
denote the extension of the discretization hd. If the domain Xd = Xg

of hd is grid-like, we then use hd (as opposed to h̃d) for the exten-
sion using multilinear interpolation and extrapolation (LERP); see,
e.g., [24, Appendix D]. The Lipschitz constant of h over a set Y ⊂ X
is denoted by L(h;Y ) := supx,y∈Y |h(x)− h(y)|/‖x− y‖. We also
denote L(h) := L(h;X). The subdifferential of h at a point x ∈ X is
defined as ∂h(x) := {y ∈ Rn : h(x̃) ≥ h(x) + 〈y, x̃− x〉 , ∀x̃ ∈ X}.
The Legendre–Fenchel transform (convex conjugate) of h is the func-
tion h∗ : Rn → R, defined by h∗(y) = supx{〈y, x〉 − h(x)}. We note
that the conjugate function h∗ is convex by construction. We again use
the notation hd∗ to emphasize the fact that the domain of the underlying
function is finite, i.e.,hd∗(y) = supx∈Xd{〈y, x〉 − hd(x)}. The bicon-
jugate and discrete biconjugate operators are defined accordingly and
denoted by [·]∗∗ = [[·]∗]∗ and [·]d∗d∗ = [[·]d∗]d∗, respectively. We report
the complexities using the standard big O notations O and Õ, where
the latter hides the logarithmic factors. In this study, we are mainly
concerned with the dependence of the computational complexities on
the size of the finite sets involved (discretization of the primal and
dual domains). In particular, we ignore the possible dependence of the
computational complexities on the dimension of the variables, unless
they appear in the power of the size of those discrete sets; e.g., the
complexity of a single evaluation of an analytically available function
is taken to be of O(1), regardless of the dimension of its input and
output arguments.

II. PROBLEM STATEMENT AND STANDARD SOLUTION

We consider the optimal control of discrete-time systems

xt+1 = f(xt, ut), t = 0, . . . , T − 1 (4)

where f : Rn ×Rm → Rn describes the dynamics, and T ∈ N is
the finite horizon. In this study, we focus on deterministic dynamics;
we refer the reader to [23, Appendix C] for the extension of the
proposed algorithms for stochastic dynamics with additive noise. We
also consider state and input constraints{

xt ∈ X ⊂ Rn for t ∈ {0, . . . , T}
ut ∈ U ⊂ Rm for t ∈ {0, . . . , T − 1}. (5)

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2023 at 07:56:31 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 10, OCTOBER 2023 6317

Let C : X×U → R and CT : X→ R be the stage and terminal cost
functions, respectively. In particular, notice that we let the stage costC
take +∞ for (x, u) ∈ X×U so that it can embed the state-dependent
input constraints. For an initial state x0 ∈ X, the cost incurred by the
state trajectory x = (x0, . . . , xT ) in response to the input sequence
u = (u0, . . . , uT−1) is

J(x0,u) =

T−1∑
t=0

C(xt, ut) + CT (xT ).

The problem of interest is then to find the optimal control se-
quence u�(x0), i.e., a solution to the problem

J�(x0) = min
u
{J(x0,u) : (4)&(5)} . (6)

Throughout this study, we assume that the problem data satisfy the
following conditions.

Assumption 2.1 (Problem data): the dynamics f : Rn ×Rm →
Rn is locally Lipschitz continuous. The constraint sets X and U are
compact. The set of admissible inputs U(x) := {u ∈ U : C(x, u) <
+∞, f(x, u) ∈ X} is nonempty for all x ∈ X. The stage cost C :
X×U → R has a compact effective domain. Moreover,C andCT are
Lipschitz continuous.

The properties laid out in Assumption 2.1 imply that the set U(x) of
admissible inputs is nonempty and compact (because of compactness
of dom(C) and X, and continuity of f ), and the objective in (6) is
continuous. Hence, the optimal value in (6) is achieved.

The DP algorithm solves (6) by solving the Bellman equation

Jt(xt) = min
ut

{C(xt, ut) + Jt+1(xt+1) : (4) & (5)}

for each xt ∈ X, backward in time t = T − 1, . . . , 0, initialized by
JT = CT . The iteration finally outputs J0 = J� [1, Prop. 1.3.1]. In
order to simplify the exposition, let us embed the state and input
constraints in the cost functions (C and Jt) by extending them to +∞
outside their effective domain. Let us also drop the time subscript t and
focus on a single step of the recursion by defining the DP operator

T [J ](x) := min
u
{C(x, u) + J (f(x, u))} , x ∈ X (7)

so that Jt = T [Jt+1] = T (T−t)[JT ] for t = T − 1, . . . , 0.
Notice that the DP operation (7) requires solving an infinite number

of optimization problems for the continuous state space X. Except for
a few cases with an available closed-form solution, the exact imple-
mentation of DP operation is impossible. A standard approximation
scheme uses a sample-based approach with a function approximation
technique: In each iteration, we solve (7) for a finite number of points
x ∈ Xg, for a grid-like discretization Xg of the state space, to derive
[T [J ]]d : Xg → R as the output of the current iteration, and then use

these data points to form an extension ˜[T [J ]]d : X→ R to be used for
the next iteration. The extension can be realized, e.g., as a parametric
approximation, where the parameters are determined via regression
using the data points of the sampled state space.

Next to be addressed is the issue of solving the minimization

min
u∈U

{
C(x, u) + J̃d (f(x, u))

}
for each x ∈ Xg, where the next step cost-to-go is approximated by the

extension J̃d. Often, this problem is a difficult, nonconvex minimization
problem. Here, again, a common approximation involves enumeration
over a proper discretization Ud ⊂ U of the input space. We assume that
the joint discretization of the state-input space is such that Ud(x) :=
U(x) ∩Ud is nonempty for all x ∈ Xg.

These approximations introduce an error which, under some regu-
larity assumptions, depends on the discretization of the state and input

spaces and the extension operation; see [23, Prop. A.1]. Incorporating
these approximations, we can introduce the discrete DP (d-DP) oper-
ator, corresponding to a generic sample-based value iteration scheme
described above, as follows:

T d[Jd](x) := min
u∈Ud

{
C(x, u) + J̃d (f(x, u))

}
, x ∈ Xg. (8)

This generic d-DP operator/algorithm will be our benchmark for eval-
uating the performance of the alternative algorithms developed in this
study. To this end, we discuss the time complexity of the d-DP operation
in the following remark.

Remark 2.2 (Complexity of d-DP): Let the time complexity of a
single evaluation of the extension operator [̃·] in (8) be ofO(E). Then,
the time complexity of the d-DP operation (8) is of O(XUE).

III. ALTERNATIVE SOLUTION IN DUAL DOMAIN

In this section, we identify two classes of problems that allow
us to effectively employ conjugate duality for the DP problem. For
these classes of problems, we propose an alternative path that solves a
discretized version of the corresponding dual problem.

A. From Minimization to Addition

We now show that the linearity of dynamics in the input is the key
property in developing the alternative solution. In particular, we propose
an algorithm that transforms the minimization in the primal domain
into an addition in the dual domain at the expense of three conjugate
transforms for input-affine dynamics:

Setting 1: The dynamics is input-affine, i.e., f(x, u) = fs(x) +
fi(x) · u, where fs : Rn → Rn and fi : Rn → Rn×m.

1) d-CDP Algorithm: Alternatively, we can approach the opti-
mization problem in the DP operation (7) in the dual domain. Let us fix
x ∈ X, and consider the following reformulation of (7):

T [J ](x) = min
u,z
{C(x, u) + J(z) : z = f(x, u)} . (9)

Notice how for input-affine dynamics of Setting 1, the formulation (9)
resembles the infimal convolution (3). In this regard, consider the
corresponding dual problem

T̂ [J ](x) := max
y

min
u,z
{C(x, u) + J(z) + 〈y, f(x, u)− z〉} (10)

where y ∈ Rn is the dual variable. For input-affine dynamics, we can
derive the following equivalent reformulation of (10):

T̂ [J ](x)

=max
y

{
〈y, fs(x)〉 −max

u

[〈
−fi(x)�y, u

〉
− C(x, u)

]
− J∗(y)

}
where J∗(y) = maxz 〈y, z〉 − J(z). Now, let us define the partial
conjugate of the stage cost w.r.t. the input variable u as follows:

C∗x(v) := max
u
{〈v, u〉 − C(x, u)} , v ∈ Rm (11)

so that

T̂ [J ](x) = max
y

{
〈y, fs(x)〉 − C∗x(−fi(x)�y)− J∗(y)

}
.

Equivalently, we have

φx(y) := C∗x(−fi(x)�y) + J∗(y), y ∈ Rn (12a)

T̂ [J ](x) = φ∗x (fs(x)) , x ∈ X. (12b)

The construction above suggests an alternative path for computing
the output of the DP operator through the conjugate domain. We call
this alternative approach conjugate DP (CDP), and the corresponding
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Algorithm 1: For d-CDP Operator (13) and Setting 1.

Input: dynamics fs : Rn → Rn, fi : Rn → Rn×m;
discrete cost-to-go (at t+ 1) Jd : Xg → R;
conjugate of stage cost C∗x : Rm → R for x ∈ Xg;
grid Yg ⊂ Rn.

Output: discrete cost-to-go (at t) T̂ d[Jd](x) : Xg → R.
1: use LLT to compute Jd∗d : Yg → R from Jd : Xg → R;
2: for each x ∈ Xg do
3: ψd

x(y)← C∗x(−fi(x)�y) + Jd∗d(y) for y ∈ Yg;
4: T̂ d[Jd](x)← maxy∈Yg{〈fs(x), y〉 − ψd

x(y)}.
5: end for

operator (12) the CDP operator. Fig. 1(a) characterizes this alternative
path schematically. The numerical implementation of CDP operation
requires the computation of conjugate functions. In particular, CDP
operation involves three conjugate transforms. In this article, we assume
that the partial conjugate C∗x of the stage cost in (11) is analytically
available. We note however that one can also consider a numerical
scheme to approximate this conjugation; see [23, Appendix C] for
further details.

Assumption 3.1 (Conjugate of stage cost): The conjugate function
C∗x (11) is analytically available. That is, the time complexity of
evaluating C∗x(v) for each v ∈ Rm is of O(1).

The two remaining conjugate operations of the CDP path in Fig. 1(a)
are handled numerically. To be precise, we again take a sample-based
approach and compute T̂ [J ] for a finite number of states x ∈ Xg. More
importantly, we use the linear-time LLT algorithm [11] for the first
conjugation.1 That is, for computing the conjugate of J in Fig. 1(a),
we employ LLT to compute Jd∗d : Yg → R using the data points Jd :
Xg → R, for a grid-like discretization Yg of the dual domain. Proper
construction of Yg will be discussed in the next subsection. Now, let

ψd
x(y) := C∗x(−fi(x)�y) + Jd∗d(y), y ∈ Yg

be a discrete approximation of φx in (12a). The approximation stems
from the fact that we used the discrete conjugate Jd∗ instead of the
conjugate J∗. Then, we can also handle the last conjugation in Fig. 1(a)
numerically, and approximate φ∗x(fs(x)) in (12b) by

ψd∗
x (fs(x)) = max

y∈Yg
{〈fs(x), y〉 − ψd

x(y)}

computed via enumeration over y ∈ Yg. Hence, we can introduce the
d-CDP operator as follows:

Jd∗d(y) = max
x∈Xg

{
〈y, x〉 − Jd(x)

}
, y ∈ Yg (13a)

ψd
x(y) = C∗x(−fi(x)�y) + Jd∗d(y), y ∈ Yg (13b)

T̂ d[Jd](x) := ψd∗
x (fs(x)) , x ∈ Xg (13c)

withC∗x being the partial conjugate of stage cost defined in (11). Algo-
rithm 1 provides the pseudo-code for the numerical implementation
of the d-CDP operation (13). We next analyze the performance of
Algorithm 1 by considering its complexity and error.

2) Analysis of d-CDP Algorithm: We begin with the compu-
tational complexity of Algorithm 1. We will use the following result in
the analysis of the algorithms developed in this study.

Remark 3.2 (Complexity of LLT): Consider a function h : Rn → R
and its discretization over a grid-like set Xg ⊂ Rn such that Xg ∩

1LLT is an efficient algorithm for computing the discrete conjugate over
a finite grid-like dual domain. Precisely, to compute the conjugate of the
function h : X→ R, LLT takes its discretization hd : Xg → R as an input,
and outputs hd∗d : Yg → R, for the grid-like dual domain Yg. That is, LLT
is equivalent to the operation [·]d∗d. We refer the reader to [11] for a detailed
description of LLT.

dom(h) �= ∅. LLT computes the discrete conjugate function hd∗d :
Yg → R using the data points hd : Xg → R, with a time complexity
ofO(Πn

i=1(Xi + Yi)), whereXi (resp. Yi) is the cardinality of the ith
dimension of the grid Xg (resp. Yg). In particular, if the grids Xg and
Yg have approximately the same cardinality in each dimension, then
the complexity of LLT is of O(X + Y ) [11, Corollary 5].

Hereafter, in order to simplify the exposition, we consider the fol-
lowing assumption.

Assumption 3.3 (Grid sizes in LLT): The primal and dual grids used
for LLT have approximately the same size in each dimension.

Theorem 3.4 (Complexity of Algorithm 1): Let Assumptions 3.1
and 3.3 hold. The implementation of the d-CDP operator (13) via
Algorithm 1 requires O(XY ) operations.

Proof: By the assumptions and considering the complexity of LLT
given in Remark 3.2, the result follows by taking into account the time
complexity of each line of Algorithm 1.

Recall that the time complexity of the d-DP operator (8) is of
O(XUE); see Remark 2.2. Comparing this complexity to the one re-
ported in Theorem 3.4, points to a basic characteristic of CDP w.r.t. DP:
CDP avoids the minimization over the control input in DP and casts it as
a simple addition in the dual domain at the expense of three conjugate
transforms. Consequently, the time complexity is transferred from the
primal input domain Ud to the dual state domain Yg. This observation
implies that if Y < UE, then d-CDP is expected to computationally
outperform d-DP.

We now consider the error introduced by Algorithm 1 w.r.t. the DP
operator (7). We begin with an alternative representation of the d-CDP
operator that sheds some light on the main sources of error in the d-CDP
operation.

Proposition 3.5 (d-CDP reformulation): Let Assumption 2.1 hold.
Also, assume that C : X×U → R is convex in the input variable.
Then, the d-CDP operator (13) equivalently reads as

T̂ d[Jd](x) = min
u

{
C(x, u) + Jd∗d∗ (f(x, u))

}
, x ∈ Xg (14)

where Jd∗d∗ is the discrete biconjugate of J , using the primal grid Xg

and the dual grid Yg.
Proof: We can use (11) and (13) to write

T̂ d[Jd](x) = max
y∈Yg

{〈fs(x), y〉 − ψd
x(y)}

= max
y∈Yg

{
〈fs(x), y〉 − max

u∈domC(x,·)

[ 〈
−fi(x)�y, u

〉

− C(x, u)

]
− Jd∗d(y)

}

= max
y∈Yg

min
u∈domC(x,·)

{
C(x, u)+〈y, f(x, u)〉−Jd∗d(y)

}
.

Since C is convex in u and the mapping f is affine in u, the objective
function of this maximin problem is convex in u, with dom(C(x, ·))
being compact. Also, the objective function is Ky Fan concave in
y, which follows from the convexity of Jd∗. Then, by the Ky Fan’s
Minimax Theorem [25, Th. A], we can swap the maximization and
minimization operators to obtain

T̂ d[Jd](x) = min
u

{
C(x, u) + Jd∗d∗ (f(x, u))

}
.

�
Comparing (7) and (14), we note that the d-CDP operator T̂ d differs

from the DP operator T in that it uses Jd∗d∗ as an approximation of J .
This observation points to two main sources of error in the proposed
approach, namely, dualization and discretization. Indeed, T̂ d is a dis-
cretized version of the dual problem (10). Regarding the dualization
error, we note that the d-CDP operator is “blind” to nonconvexity; i.e., it
essentially replaces the cost-to-goJ by its convex envelope (the greatest
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convex function that supports J from below). The discretization error,
on the other hand, depends on the choice of the finite primal and dual
domains Xg and Yg. The following result captures this dependence.

Theorem 3.6 (Error of Algorithm 1): Let Assumption 2.1 hold.
Consider the DP operator T (7) and the implementation of the d-CDP
operator T̂ d (13) via Algorithm 1. Assume that C : X×U → R is
convex in the input variable. Also, assume thatJ : X→ R is a Lipschitz
continuous, convex function. Then, we have

−e2 ≤ T [J ](x)− T̂ d[Jd](x) ≤ e1(x), ∀x ∈ Xg (15)

where

e1(x) = c1(x) · d (∂T [J ](x),Yg)

e2 = [ΔYg + L(J)] · dH(X,X
g) (16)

and c1(x) = ‖fs(x)‖+ ‖fi(x)‖ ·ΔU +ΔX.
Proof: Fix x ∈ Xg and observe that

T [J ](x)− T̂ d[Jd](x)

=
[
T [J ](x)− T̂ [J ](x)

]
+

[
T̂ [J ](x)− T̂ d[Jd](x)

]
. (17)

First note that the convexity of C (in u) and J implies that the dual-
ization error T [J ]− T̂ [J ] in (17) is zero. Indeed, following a similar
argument to the one provided in the proof of Proposition 3.5 and using
Sion’s Minimax Theorem [26, Th. 3], we have

T̂ [J ](x) = min
u
{C(x, u) + J∗∗ (f(x, u))} , x ∈ X.

Since J is proper, closed, and convex, we have J∗∗ = J , and hence
T̂ [J ] = T [J ]. We next consider the discretization error T̂ [J ]− T̂ d[Jd]
in (17). From (12b) and (13c), we have (z = fs(x))

T̂ [J ](x)− T̂ d[Jd](x) = φ∗x(z)− ψd∗
x (z)

=
[
φ∗x(z)− φd∗

x (z)
]
+

[
φd∗
x (z)− ψd∗

x (z)
]

(18)

with φd
x : Yg → R being the discretization of φx : Rn → R. For φ∗x −

φd∗
x in (18), we can use Lemma 1.1 in Appendix to obtain

0 ≤ φ∗x (fs(x))− φd∗
x (fs(x))

≤ min
y∈∂φ∗x(fs(x))

{
[‖fs(x)‖+ L(φx; {y} ∪ Yg)] · d(y,Yg)

}

≤ min
y∈∂T [J](x)

{
[‖fs(x)‖+ ‖fi(x)‖ ·ΔU +ΔX] · d(y,Yg)

}

= [‖fs(x)‖+ ‖fi(x)‖ ·ΔU +ΔX] · min
y∈∂T [J](x)

d(y,Yg)

= c1(x) · d (∂T [J ](x),Yg) = e1(x) (19)

where for the last inequality, we used the fact that φ∗x(fs(·)) =
T̂ [J ](·) = T [J ](·), and

L (φx(·)) ≤ L
(
C∗x(−fi(x)�·)

)
+ L(J∗(·))

≤ ‖fi(x)‖ · L(C∗x) + L(J∗)

≤ ‖fi(x)‖ ·Δdom(C(x,·)) +Δdom(J)

≤ ‖fi(x)‖ ·ΔU +ΔX.

For φd∗
x − ψd∗

x in (18), first observe that for each y ∈ Yg, we have

φd
x(y)− ψd

x(y) = J∗d(y)− Jd∗d(y) = J∗(y)− Jd∗(y)

[see (12a) and (13b), and recall that hd is simply a sampled version
of h]. Moreover, since dom(J) = X is compact, we can again use

Lemma 1.1 in Appendix to write for each y ∈ Yg

0 ≤ J∗(y)− Jd∗(y) ≤ [‖y‖+ L(J)] · dH(X,X
g)

≤ [ΔYg + L(J)] · dH(X,X
g) = e2.

That is, 0 ≤ φd
x(y)− ψd

x(y) ≤ e2 for all y ∈ Yg. Then, using the
definition of the discrete conjugate, we have

0 ≤ ψd∗
x (fs(x))− φd∗

x (fs(x)) ≤ e2, , ∀x ∈ Xg. (20)

Combining the inequalities (19) and (20) completes the proof. �
Notice how the two terms e1 and e2 capture the errors due to the

discretization of the dual state space (Y ) and the primal state space
(X), respectively. In particular, the first error term suggests that we
choose Yg such that Yg ∩ ∂T [J ](x) �= ∅ for all x ∈ Xg. However,
even if we had access to T [J ], satisfying such a condition could lead
to dual grids of size Y = O(Xn). A more realistic objective is then to
choose Yg such that co(Yg) ∩ ∂T [J ](x) �= ∅ for allx ∈ Xg. With such
a construction, the distance d(∂T [J ](x),Yg) and hence e1 decrease
by using finer grids for the dual domain. To this end, we need to
approximate “the range of slopes” of the function T [J ] for x ∈ Xg.
Notice, however, that we do not have access toT [J ] since it is the output
of the d-CDP operation in Algorithm 1. What we have at our disposal
as inputs are the stage costC and the next step (discrete) cost-to-go Jd.
A coarse way to approximate the range of slopes of T [J ] is then to use
the extrema of the functions C and Jd, and the diameter of Xg in each
dimension. The following remark explains such an approximation for
the construction of Yg.

Remark 3.7 (Construction of Yg): Let CM = maxx,u C(x, u) and
Cm = minx,u C(x, u). Compute JM = maxx∈Xg Jd(x) and Jm =
minx∈Xg Jd(x), and then choose Yg = Πn

i=1Yg
i ⊂ Rn such that for

each dimension i = 1, . . . , n, we have

±α(CM + JM − Cm − Jm)/ΔXg
i
∈ co(Yg

i ).

Here,α > 0 is a scaling factor mainly depending on the dimension n of
the state space. Construction of Yg as described above requires O(X)
operations per iteration for computing JM and Jm via enumeration
over x ∈ Xg.

B. From Quadratic to Linear Complexity

We now focus on a specific subclass of the considered optimal control
problems and exploit the problem structure in this subclass to reduce
the computational cost of the d-CDP algorithm. In this regard, a closer
look to Algorithm 1 reveals a computational bottleneck in its numerical
implementation: The computation of the objects ψd

x : Yg → R, x ∈
Xg, and their conjugates which requires working in the product space
Xg × Yg. Hence, if the structure of the problem allows for the complete
decomposition of these objects, then a significant reduction in the time
complexity is achievable. This is indeed possible for problems with
separable data in the state and input variables:

Setting 2: 1) The dynamics is input-affine with state-independent
input dynamics, i.e., f(x, u) = fs(x) +B · u, where fs : Rn → Rn

and B ∈ Rn×m. 2) The stage cost is separable in state and input, i.e.,
C(x, u) = Cs(x) + Ci(u), where Cs : X→ R and Ci : U → R.

Note that the separability of the stage cost implies that there are no
state-dependent input constraints.

1) Modified d-CDP Algorithm: Under the conditions of Set-
ting 2, the state cost (Cs) can be taken out of the minimization in the
DP operator (7), i.e.,

T [J ](x) = Cs(x) + min
u
{Ci(u) + J (f(x, u))} , x ∈ X. (21)

Following the same dualization and then discretization procedure as in
Section III-A1, we can derive the corresponding d-CDP operator

Jd∗d(y) = max
x∈Xg

{
〈y, x〉 − Jd(x)

}
, y ∈ Yg (22a)
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Algorithm 2: For Modified d-CDP Operator (23) and Setting 2.

Input: dynamics fs : Rn → Rn, B ∈ Rn×m;
discrete cost-to-go (at t+ 1) Jd : Xg → R;
state cost Cs(x) : X→ R;
conjugate of input cost C∗i : Rm → R;
grids Yg,Zg ⊂ Rn.

Output: discrete cost-to-go (at t) T̂ d
m [Jd](x) : Xg → R.

1: use LLT to compute Jd∗d : Yg → R from Jd : Xg → R;
2: ψd(y)← C∗i (−B�y) + Jd∗d(y) for y ∈ Yg;
3: use LLT to compute ψd∗d : Zg → R from ψd : Yg → R;
4: for each x ∈ Xg do
5: use LERP to compute ψd∗d(fs(x)) from ψd∗d : Zg → R;
6: T̂ d

m [Jd](x)← Cs(x) + ψd∗d(fs(x));
7: end for

ψd(y) := C∗i (−B�y) + Jd∗d(y), y ∈ Yg (22b)

T̂ d[Jd](x) = Cs(x) + ψd∗ (fs(x)) , x ∈ Xg. (22c)

Here, again, we assume that the conjugate of the input cost is analyti-
cally available (similar to Assumption 3.1, now in the context posed by
Setting 2).

Assumption 3.8 (Conjugate of input cost): The conjugate func-
tionC∗i (v) = maxu{〈v, u〉 − Ci(u)} is analytically available; i.e., the
complexity of evaluating C∗i (v) for each v ∈ Rm is of O(1).

Notice that the function ψd in (22b) is now independent of the state
variable x. Hence, the computation of ψd requires O(X + Y ) opera-
tions, as opposed toO(XY ) for the computation ofψd

x , in Algorithm 1.
Next is the computation of the conjugate function ψd∗(fs(x)) =
maxy∈Yg{〈fs(x), y〉 − ψ(y)} for x ∈ Xg in (22c). The straightfor-
ward maximization via enumeration over y ∈ Yg for eachx ∈ Xg (as in
Algorithm 1) again leads to a time complexity ofO(XY ). The key idea
for complexity reduction is to use approximate discrete conjugation as
follows:
1) Use LLT to compute ψd∗d : Zg → R from the data points ψd :

Yg → R for a grid Zg;
2) For each x ∈ Xg, use LERP to computeψd∗d(fs(x)) from the data

points ψd∗d : Zg → R.
Proper construction of the grid Zg will be discussed shortly. With

such an approximation, the d-CDP operator (22) modifies to

Jd∗d(y) = max
x∈Xg

{
〈y, x〉 − Jd(x)

}
, y ∈ Yg (23a)

ψd(y) = C∗i (−B�y) + Jd∗d(y), y ∈ Yg (23b)

ψd∗d(z) = max
y∈Yg

{
〈z, y〉 − ψd(y)

}
, z ∈ Zg (23c)

T̂ d
m [Jd](x) := Cs(x) + ψd∗d (fs(x)) , x ∈ Xg (23d)

with C∗i being the conjugate of input cost defined in Assumption 3.8.
Algorithm 2 provides the pseudo-code of the preceding scheme.

2) Analysis of Modified d-CDP Algorithm: We again begin
with the time complexity of the proposed algorithm.

Theorem 3.9 (Complexity of Algorithm 2): Let Assumptions 3.3 and
3.8 hold. Then, the computation of the modified d-CDP operator (23)
via Algorithm 2 has a time complexity of Õ(X + Y + Z).

Proof: The results follow by considering the complexity of each line
of Algorithm 2, while taking into account Remark 3.2 and the fact that
LERP has a logarithmic complexity [23, Remark 2.2]. �

Comparing the time complexity of the d-CDP Algorithm 2 with
that of the d-CDP Algorithm 1, we can observe the reduction from
quadratic to (log-) linear complexity. In particular, assuming that all of
the involved grids (Xg,Yg,Zg) are of the same size, i.e., Y,Z = X
(this is also consistent with Assumption 3.3), the complexity of the

d-CDP Algorithm 1 is ofO(X2), while that of the d-CDP Algorithm 2
is of Õ(X). We next consider the error of the proposed algorithm.

Theorem 3.10 (Error of Algorithm 2): Let Assumption 2.1 hold.
Consider the DP operator T (21) and the implementation of the
modified d-CDP operator T̂ d

m (23) via Algorithm 2. Assume that the
input cost Ci : U → R is convex, and the function J : X→ R is a
Lipschitz continuous, convex function. Also, assume that the grid Zg

in Algorithm 2 is such that co(Zg) ⊇ fs(Xg). Then

− (e2 + e3) ≤ T [J ](x)− T̂ d
m [Jd](x) ≤ em1 (x), ∀x ∈ Xg (24)

where

em1 (x) := cm1 (x) · d (∂ (T [J ]− Cs) (x),Y
g)

e2 = [ΔYg + L(J)] · dH(X,X
g)

e3 := ΔYg · dH (fs(X
g),Zg) (25)

and cm1 (x) = ‖fs(x)‖+ ‖B‖ ·ΔU +ΔX.
Proof: Let T̂ d denote the output of the implementation of the d-CDP

operator (22) via Algorithm 1. Note that the computation of the modified
d-CDP operator T̂ d

m (23) via Algorithm 2 differs form that of the d-CDP
operator T̂ d (22) via Algorithm 1 only in the last step: T̂ d exactly
computesψd∗(fs(x)) for x ∈ Xg (see Algorithm 1:4), however, in T̂ d

m ,
the approximation ψd∗d(fs(x)) is used (see Algorithm 2:5), where the
approximation uses LERP over the data points ψd∗d : Zg → R. By
Lemma 1.2 in Appendix, this leads to an over-approximation of ψd∗

with the upper bound

e3 = ΔYg · max
x∈Xg

d (fs(x),Z
g) = ΔYg · dH (fs(X

g),Zg) .

Hence, compared to T̂ d, the operator T̂ d
m is an over-approximation with

the difference bounded by e3. That is

0 ≤ T̂ d
m [Jd](x)− T̂ d[Jd](x) ≤ e3, ∀x ∈ Xg.

The result then follows from Theorem 3.6 by taking into account the
effect of the state cost Cs. �

Once again, the terms em1 , e2, and e3 capture the errors due to the
discretization of y, x, and z, respectively. We now use this result to
provide some guidelines on the construction of the required grids.
Concerning the grid Yg, the error term em1 in (25) implies similar
guidelines to the ones provided in Section III-A2. In particular, no-
tice that em1 now depends on d(∂(T [J ]− Cs)(x),Yg), and hence
in the construction of Yg, we need to consider the range of slopes
of T [J ]− Cs. This essentially means using CM

i = maxu∈U Ci and
Cm

i = minu∈U Ci instead ofCM andCm, respectively, in Remark 3.7.
Next to be addressed is the construction of the grid Zg. Here, we are
dealing with the issue of constructing the dual grid for approximate
discrete conjugation. In particular, the condition co(Zg) ⊇ fs(Xg) in
Theorem 3.10 follows from Lemma 1.2 in Appendix. The following
remark summarizes this discussion.

Remark 3.11 (Construction of Zg): Construct the grid Zg such that
co(Zg) ⊇ fs(Xg). This can be done by finding the vertices of the
smallest hyper-rectangle that contains the set fs(Xg). Constructing Zg

in this way has a one-time cost of O(X).
We finish this section with some remarks on using the output of

the backward value iteration for finding a suboptimal control se-
quence u�(x0) for a given instance of the optimal control problem
with initial state x0. Having the discrete costs-to-go Jd

t : Xg → R,
t = 0, 1, . . . , T − 1, at our disposal (the output of the d-DP or d-CDP
algorithm), at each time step, we can use the greedy policy w.r.t. the
next step’s cost-to-go, i.e.,

u�
t ∈ argminut∈Ud

{
C(xt, ut) + ˜Jd

t+1 (f(xt, ut))
}

(26)

for a proper discrete input space Ud. Assuming these minimization
problems are handled via enumeration, they lead to an additional
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Fig. 2. Error of the computed discrete costs-to-go for N = 112 (left)
N = 412 (right). Notice that the time axis is backward.

computational burden ofO(UE) per iteration, where E represents the
complexity of the extension operation in (26). Then, the total time com-
plexity of solving a T -step problem (i.e., the time requirement of back-
ward value iteration for finding Jd

t , t = 0, 1, . . . , T − 1, plus the time
requirement of forward iteration for finding u�

t , t = 0, 1, . . . , T − 1)
of the three algorithms can be summarized as follows.

Remark 3.12 (Comparison of total time complexities): The total
time complexity of solving a T -step optimal control problem for a
given initial state, where the control input is generated using the greedy
policy (26), is as follows: 1) O(TXUE) for the d-DP algorithm;
2) O(T (XY + UE)) for the d-CDP Algorithm 1; 3) Õ(T (X + Y +
Z + UE)) for the d-CDP Algorithm 2, where E represents the com-

plexity of the operation [̃·] in (8) and (26).

IV. NUMERICAL EXPERIMENTS

We now examine the performance of the proposed d-CDP algorithms
(referred to as d-CDP 1 and d-CDP 2) in comparison with the generic
d-DP algorithm (referred to as d-DP) through a synthetic numerical
example. In particular, we use these numerical simulations to verify
our theoretical results on the complexity and error of the proposed
algorithms. We refer the reader to [23, Sec. 6 and Appendix C] for
more numerical simulations of these algorithms (and their extensions).
Finally, we note that all the simulations presented in this article were
implemented via MATLAB version R2017b, on a PC with an Intel Xeon
3.60 GHz processor and 16 GB RAM.

Throughout this section, we consider a linear system f(x, u) =
Ax+Bu with two states and two inputs, where A = [−0.5 2; 1 3]
and B = [1 0.5; 1 1], over the finite horizon T = 10, with the
state and input constraints xt ∈ X = [−1, 1]2 ⊂ R2 and ut ∈ U =
[−2, 2]2 ⊂ R2, respectively. Moreover, we consider quadratic state
cost Cs(x) = CT (x) = ‖x‖2 and exponential input cost Ci(u) =
e|u1 | + e|u2 | − 2. Note that the conjugate of the input cost is
given by C∗i (v) = 1 + 〈û, v〉 − e|û1 | − e|û2 |, v ∈ R2, where ûi =
max{−2, min{2, sgn(vi) ln |vi|}} if vi �= 0, and = 0 otherwise, in
each dimension i = 1, 2. Moreover, corresponding to the notation of
Section III-A, we have C∗x(v) = C∗i (v)− ‖x‖2.

We use uniform grid-like discretizations Xg and Ug for the state and
input spaces, such that co(Xg) = X and co(Ug) = U . The grids Yg

and Zg in d-CDP algorithms are also constructed uniformly, following
the guidelines of Remarks 3.7 and 3.11 (with α = 1). We note that
the extension of the discrete cost functions [in the d-DP operation (8)
and for generating greedy control actions in (26)] is also handled via
LERP. Moreover, we take all of the involved grids to be of the same
size N = X,U, Y, Z. We are interested in the performance of d-CDP
algorithms in comparison with d-DP, as the size N of these discrete
sets increases.

We begin with examining the error in d-DP and d-CDP algorithms.
Since the problem does not have a closed-form solution, our “ref-
erence” is the costs-to-go J�

t : X→ R computed numerically via a
high-resolution application of d-DP with X,U = 812. Fig. 2 depicts

Fig. 3. Performance for different sizes N of the grids Xg,Ug,Yg,Zg.
(a) Total running time for solving a random problem instance. (b) Aver-
age cost of controlled trajectories for 100 random initial states.

TABLE I
COARSE DUAL GRID Yg IN d-CDP 1

the maximum absolute error in the discrete costs computed using these
algorithms over the horizon. As expected and in line with our error
analysis (Theorems 3.6 and 3.10), using a finer discretization scheme
with larger N , leads to a smaller error. Moreover, over the time steps
in the backward iteration, due to the accumulation of error, a general
increase is seen in the error.

We next compare the performance of the three algorithms in solving
instances of the optimal control problem, using the cost functions
derived from the backward value iteration. To this end, we apply the
greedy control input (26) w.r.t. the computed discrete costs-to-go Jd

t

via d-DP and d-CDP algorithms, using the same discretization Ug of
the input space as in d-DP. Fig. 3(b) reports the average cost of the
controlled trajectories over 100 instances of the optimal control problem
with random initial conditions, chosen uniformly from X = [−1, 1]2.
As shown, d-CDP algorithms have effectively the same performance
as our benchmark d-DP when it comes to the quality of greedy control
actions.

Let us now consider the complexity of d-DP and d-CDP algorithms.
Fig. 3(a) reports the total run-time of a random problem instance for
different grid sizes. Regarding the reported running times, first, note
that they correspond to the given complexities in Theorems 3.4 and 3.9
and Remark 3.12: For our numerical example, the running time is of
O(TN2) for d-DP and d-CDP 1, and of O(TN) for d-CDP 2. The
difference can be readily seen in the slope of the corresponding lines in
Fig. 3(a) asN increases. Hence, as expected, the application of d-CDP 2
leads to a significant reduction in the running time. In particular, notice
how the lower complexity of d-CDP 2 allows us to increase the size
of the grids to N = 412, while keeping the running time at the same
order as d-DP with N = 112. Second, we note that d-CDP 1 gives us
an extra degree of freedom for the size Y of the dual grid. In particular,
if the cost functions are “compactly representable” in the dual domain
(i.e., via their slopes), we can reduce the time complexity of d-CDP 1
by using a more coarse grid Yg, with a limited effect on the “quality”
of computed cost functions. This effect is illustrated in Table I: For
solving the same optimal control problem, we can reduce the size of
the dual grid (and hence reduce the running time of d-CDP 1) by a
factor of 4, while achieving the same average cost in the controlled
trajectories.
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V. FINAL REMARKS

In this article, we proposed an alternative scheme for the approximate
implementation of the DP algorithm for solving discrete-time, optimal
control problems. The proposed d-CDP algorithms use the linear-time
LLT algorithm for solving the discretized version of the corresponding
dual problem. Due to this dualization, the d-CDP algorithms may suffer
from duality gap for problems with nonconvex costs-to-go. In particular,
we focused on input-affine dynamics with separable data in the state
and input variables: We first used the linearity of the dynamics in the
input to transform the minimization in DP operation into an addition
in the dual domain and then used the separability of the dynamics and
costs in the state and input to reduce the standard quadratic complexity
of DP operation to a linear one. Nevertheless, the proposed scheme still
suffers from the infamous “curse of dimensionality” in the sense that
the computational cost increases exponentially with the dimension of
the state and input spaces. However, in the d-CDP Algorithm 2, the
rate of exponential increase is max{n,m} (corresponding to O(X +
U) complexity), compared to the rate m+ n for the d-DP algorithm
(corresponding to O(XU) complexity).

We finish this section with some remarks on the extensions of
the proposed algorithms. First, the proposed algorithm, with some
modifications, can handle stochastic dynamics of the form xt+1 =
f(xt, ut) + wt with an independent, additive disturbance wt, while
achieving the same reduction in the time complexity. We note however
that for a generic disturbance, the expectation operation has a com-
plexity of O(XU), which dominates the complexity of the proposed
algorithm. Second, the assumption on the availability of the conjugate
of the stage cost can be restrictive. While for some functions such
as quadratic, the conjugate is available in closed form, for generic
functions, this is not the case. To address this issue, we also developed
a scheme for the numerical computation of these conjugate functions
with a (log-) linear complexity in the sizeU of the discrete input space.
The proposed scheme also introduces some error that mainly depends
on the grids that are used for the discretization of the input space
and its dual domain. We note that the provided MATLAB package
already includes these extensions; see [23, Appendix C] for more
details. Moreover, the application of the extended d-CDP Algorithm 2
for solving infinite-horizon, discounted cost problems, along with a
detailed error and complexity analysis, is available in [27].

APPENDIX

We refer the reader to [23, Sec. 2.4] for the proofs of the following
lemmas on the error of (approximate) discrete conjugation. Consider
the function h : X→ R and its discretization hd : Xd → R with finite
domain Xd ⊂ X �= ∅. Let hd∗d : Yg → R be the discretization of hd∗

with Yg ⊂ Rn, and hd∗d : Rn → R be the LERP extension of hd∗d.
Lemma 1.1 (Conjugate versus discrete conjugate): Let h be closed

and convex. Then, 0 ≤ h∗(y)− hd∗(y) ≤ ẽ1, ∀y ∈ Rn, where

ẽ1 := min
x∈∂h∗(y)

{
[
‖y‖+ L

(
h; {x} ∪Xd

)]
· d(x,Xd)}.

If, moreover, X is compact and h is Lipschitz continuous, then 0 ≤
h∗(y)− hd∗(y) ≤ ẽ2 := [‖y‖+ L(h)] · dH(X,Xd), ∀y ∈ Rn.

Lemma 1.2 (Approximate discrete conjugate): We have

0 ≤ hd∗d(y)− hd∗(y) ≤ ΔXd · d(y,Yg), ∀y ∈ co(Yg).
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