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Abstract: Bayesian networks (BNs) are popular models that represent complex relationships
among variables. In the discrete case, these relationships can be quantified by conditional
probability tables (CPTs). CPTs can be derived from data, but if data are not sufficient,
experts can be involved to assess the probabilities in the CPTs through Structured Expert
Judgment (SEJ). This is often a burdensome task due to the large number of probabilities
that need to be assessed and the structured protocols that need to be followed. To lighten
the elicitation burden, several methods have previously been developed to construct CPTs
using a limited number of input parameters, such as InterBeta, the Ranked Nodes Method
(RNM), and Functional Interpolation. In this study, the burden/accuracy trade-off of
InterBeta is researched by applying the method to reconstruct previously elicited CPTs
and simulated CPTs, first by comparing these CPTs to ones constructed using RNM and
Functional Interpolation. After that, InterBeta extensions are proposed and tested, including
an extra mean function (shifted geometric mean), the elicitation of additional middle rows,
and the newly proposed extension ExtraBeta. InterBeta with parent weights is found to be
the best-performing method, and the ExtraBeta extension is found to be promising and is
proposed for further exploration.

Keywords: Bayesian networks; expert judgment; InterBeta; RNM; functional interpolation

1. Introduction
Bayesian networks (BNs) are powerful probabilistic graphical models widely used

to represent complex systems in fields such as healthcare [1] and nuclear safety [2]. A
BN is defined by an acyclic graph, whose nodes represent random variables and directed
arcs represent potential dependencies between the variables (more precisely, the lack of
arcs represents (un)conditional independence statements). Arcs are directed from parent
node(s) to child node(s), suggesting that a child is dependent on or caused by a parent.
Both discrete and continuous distributions can be used to model the variables represented
by the nodes. For each node, a (conditional) probability distribution can be specified. When
all variables are discrete, the (conditional) probabilities are summarized in conditional
probability tables (CPTs).

CPTs can be estimated from data, and it is noteworthy that their size grows expo-
nentially with the number of parent nodes, making large discrete BNs with many nodes
and variable states computationally intensive. In cases where certain parts of the data are
not available, various imputation methods have been developed based on BNs (see, for
example, [3–5]).
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With sparse or completely missing data, CPTs must be estimated through expert
elicitation. Structured Expert Judgment (SEJ) methods, including the Delphi method [6],
the Classical Model [7], and the IDEA protocol [8], facilitate this process by systematically
gathering expert input while managing uncertainty. The Delphi method collects individual
expert assessments over multiple rounds, allowing updates based on shared information,
and aggregates results using equal weights. The Classical Model improves this by weight-
ing experts’ uncertainty assessments based on their performance on calibration questions,
reflecting the statistical accuracy (also known as calibration) and informativeness of their
uncertainty assessments. Calibration questions are questions whose answers are known to
the analyst but not to the experts at the moment of the elicitation. The IDEA protocol com-
bines initial individual assessments with a discussion phase, followed by final assessments
and aggregation, using either equal or performance-based weights.

As mentioned previously, CPTs can become very large for complex BNs, making full
expert elicitation resource-intensive. To ease this burden, methods like Noisy-OR [9], the
Ranked Nodes Method (RNM) [10], InterBeta [11], and Functional Interpolation [12] reduce
the number of required probability inputs. However, their application and comparative
performance remain underexplored. Although some methods have been tested individually
or against data [13–15], a comprehensive comparison is lacking.

This research evaluates methods for parameterizing BNs and their CPTs in situations
where data are unavailable, thus requiring expert elicitation. By assessing the limitations
of existing methods (as mentioned above) and comparing results from expert-elicited
and simulated CPTs, this study aims to identify approaches that best balance accuracy
and expert effort, ultimately providing practical guidance for method selection in data-
sparse environments.

1.1. Related Works

We begin with a recap of the existing methods and approaches found in the literature,
their applications, existing comparisons, and most notable findings.

The Noisy-OR method, RNM, InterBeta, and Functional Interpolation have all been
applied to varying extents, with Noisy-OR being the most studied due to its longer history.

The applicability of the Noisy-OR(/MAX) method has been studied previously on
existing BNs. It was found that the Noisy-MAX gate provides a good fit for as many as
50% of CPTs in two out of three BNs [16]. Another study investigated the effect of using
a leaky Noisy-OR version of a BN, which was used for the early detection of classical
swine fever in pigs, reducing the number of necessary parameters from 470 to 348. It was
cautiously concluded that the method can indeed be applied for diagnostic applications.
More recently, applications of the Noisy-OR/MAX method include the development of BNs
for the investment strategies of farmers [17], the occurrence of hydrogen leakage in proton-
exchange membrane fuel cells [18], and construction project risk [19]. The reduction in
the elicitation burden is logarithmic, meaning that the Noisy-OR(/MAX) method requires
parameters on the order of the number of parents rather than the full CPT.

Other methods include the EBBN method [20], Cain’s method [21], and Røed’s
method [22]. A comparative study investigated the performance of the RNM, Functional
Interpolation, the EBBN method, Cain’s method, and Røed’s method [14]. The findings
highlighted the need to address strong factor influences and uncertainty. While Functional
Interpolation performed best in this regard, it imposed a higher elicitation burden. The
study also noted challenges in representing multi-factor influences for the EBBN method,
Cain’s method, and Røed’s method.

RNM has been used to model teamwork quality in agile teams [23] and, alongside
Noisy-OR, for disaster assessment in the oil and gas supply chain [24]. It has also been
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combined with other methods (e.g., DEMATEL, which stands for Decision-Making Trial
and Evaluation Laboratory and is a popular causal modeling approach in the multiple
criteria decision-making domain) to construct BNs in a case study with 14 experts from
the automobile industry [25]. Functional Interpolation has been applied in dynamic BN
modeling to assess the residual life of corroded subsea pipelines [26], with suggestions for
combining it with actual data to reduce expert burden.

InterBeta has not yet been used to reconstruct full CPTs, although it has been tested on
fully elicited BNs [27]. One of the InterBeta versions produced CPTs similar to fully elicited
ones, but its performance with fully elicited parameters remains untested.

We selected methods for further investigation based on two factors: (1) the promising
accuracy and efficiency in parameter reduction identified in the literature review, and
(2) the methods’ potential for operationalizing parameters, making them easier for experts
to assess.

1.2. What to Expect in This Paper

This study examines the trade-off between the elicitation burden and the accuracy of
CPT reconstruction by first comparing InterBeta with RNM and Functional Interpolation.
Extensions of InterBeta are proposed and compared with the InterBeta method. The
next section describes these extensions, along with proposed extensions for RNM and
Functional Interpolation.

Section 2 commences with an overview of the data used to test the construction
methods. The term “data” in this context means “expert-elicited data” rather than ob-
served/measured data. The section details the InterBeta method, including its variations
and extensions; provides brief overviews of the RNM and Functional Interpolation meth-
ods; and concludes with a summary of the measures used to assess the accuracy and
elicitation burden of each method.

Section 3 presents the results, starting with a comparison of InterBeta, RNM, and
Functional Interpolation. It then focuses on InterBeta and its extensions, concluding with
a discussion on the trade-off between the elicitation burden and accuracy, and offering
guidance on best practices for applying InterBeta.

2. Methodology
The Functional Interpolation, RNM, and InterBeta CPT construction methods were

implemented in Python, along with algorithms to find the optimal input parameters for
each method. All analyses were conducted on a laptop running Windows 11. The system
was equipped with an Intel Core i7 and 16GB of RAM. Computations were performed using
Python v3.11.5. The optimization algorithms aim to find the optimal input parameters
by minimizing the difference between the “true” CPT and the reconstructed CPT. The
code for each of the methods, including the optimization algorithms and the generation of
simulation data, was written by one of the co-authors (Bodille Blomaard) and is available
at https://github.com/Bodille1/BN_parameterization, accessed on 28 May 2025. The
difference measures used to optimize these parameters are later also used to determine
the reconstruction accuracy and are presented at the end of this section. In addition to the
reconstructed CPTs’ accuracy, the performance of a CPT construction method also considers
the elicitation burden. The elicitation burden is measured by the number of parameters, as
no alternative burden metric exists for different parameter types.

This section provides an overview of the data—both previously elicited and simulated
CPTs—followed by an introduction to InterBeta, its variations, and proposed extensions.
Then, RNM and Functional Interpolation, along with their respective extensions, are
presented. For a more detailed presentation of these methods, see [28].

https://github.com/Bodille1/BN_parameterization
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2.1. Data

The term “data” in this context means elicited data; more precisely, elicited en-
tries/parameters of the BN-associated CPTs. Moreover, these elicited CPTs need to corre-
spond to ordinal discrete variables, whose dependencies are represented by a BN whose
nodes are ranked, and the states of a ranked node are ordered in terms of their influence on
the child node. The InterBeta, RNM, and Functional Interpolation approaches all assume
that the highest (lowest)-ranked state of the parent node shifts the mean of the child node’s
distribution toward its highest (lowest)-ranked state the most.

The availability of such fully expert-elicited CPTs for BNs is limited, and among those
available, the data are often not publicly accessible. A noteworthy exception is BayesFu-
sion’s public model repository https://www.bayesfusion.com/bayesbox/, accessed on
16 October 2024.

This study uses fully elicited CPTs from three recent BN studies, as well as simulated
CPTs. The elicited data are introduced first in the context of separate BNs. Afterward, the
simulation method used to generate the CPTs is briefly outlined. Both the elicited and
simulated full CPTs are treated as the “ground truth” for evaluating the accuracy of the
partially specified CPTs (corresponding to the different selected approaches).

2.1.1. Elicited Data

Data were collected from three distinct BNs, yielding 34 unique CPTs across the
following applications: the abundance of pollinators (bees) in the UK [29]; household food
security in Victoria, Australia [30]; and the persistence of polar bears [31].

Pollinator Abundance (PA)

The first BN application used in this paper models the abundance of pollinators in the
UK [29]. Since disease pressure, weather, and the environment affect pollinator abundance,
they are modeled as its parents in the BN. The full BN is shown in Figure A1 in Appendix A,
along with the CPT used here in Figure A2.

All CPTs were fully elicited using the IDEA protocol [8] from a group of ten experts.
Thirty-two CPT values were elicited, including 16 for bee abundance and 8 for each of the
other child nodes. The experts provided best estimates and credible intervals for each value
over two elicitation rounds. Initially, the parent nodes were intended to have more than
two states, but this number was reduced to ensure that the elicitation could be completed
in time.

The experts also participated in a calibration exercise, which revealed no significant
differences in the calibration scores. The BN was ultimately parameterized using an
equally weighted combination of expert assessments. In the context of the Classical Model
for SEJ, the final aggregation of judgments is called a decision maker (to indicate that a
decision maker adopts the aggregated group judgment as their own). The equally weighted
combination of expert assessments is called an equal weight decision maker (EWDM).

For this study, only the CPT for the ‘honey bee abundance’ node was considered. All
other CPTs were small enough to allow full elicitation. The comparison dataset included
individual expert assessments, along with the EWDM and the performance-based weight
decision maker (PWDM).

Food Security (FS)

The next BN application focuses on household food security in Victoria, Australia [30].
The BN models the influence of physical access, availability, and equivalized income on
food security levels. This BN is part of a broader, integrated decision support system for
food security [32].

https://www.bayesfusion.com/bayesbox/
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Similar to the pollinator abundance study, the IDEA protocol was used to elicit all
parameters. Five experts participated, and a total of 48 values were elicited to complete the
CPT, along with additional calibration questions. The final elicited values were aggregated
using performance-based weights. The study revealed that one parent node had a dominant
effect on the child node. While the effects of physical access and food availability on food
security levels were significant, household equivalized income was by far the strongest
determinant. As above, individual assessments, the EWDM, and the PWDM were used
for comparison.

Polar Bears (PB)

The final BN considered in this study examines the relative influence of environmental
and anthropogenic stressors on polar bear persistence [31]. This BN is significantly larger
than the previous examples and comprises 48 nodes. Among these, the CPTs of 21 nodes
were elicited from experts, while the remaining 27 nodes are root nodes defined by uniform
marginal distributions. The CPTs were constructed through a consensus process, in which
an Excel file was circulated among a team of eight experts. Unlike the previous examples,
the elicitation did not use one of the SEJ methods discussed in Section 1, and no calibration
exercise was conducted. As a result, each CPT had only a single final assessment.

In this study, we use a subset of 16 unique CPTs.

2.1.2. Simulated Data

While the three elicited BNs and their CPTs are valuable, they are insufficient for gen-
eralizing the results. Ideally, more elicited BNs with diverse dependence structures would
be analyzed. In their absence, simulated data—reflecting similar and varied dependence
patterns—serve as the next best alternative. It is noteworthy that the simulated data are
not aimed at replicating how experts provide assessments, but rather at obtaining full CPTs
to enable the analysis of the considered methods.

Even though this study concerns discrete BNs and dependencies represented as CPTs,
there is a strong theoretical and practical relationship between rank correlation structures
for discrete ordinal variables and their continuous counterparts (ordinal discrete random
variables can be written as monotone transformations of uniform variates). We use this
relationship, as defined in [33], to justify the use of Spearman’s rank correlation matrices
in the simulations to both represent the dependence in the elicited CPTs and to simulate
different dependence structures.

A BN with four nodes (one child node and three independent parent nodes) is con-
sidered. Spearman’s rank correlation matrices are calculated from samples drawn from
the CPTs (for details on the simulation exercise, see [28], and for details on the theoretical
underpinning of using rank correlations to approximate the dependence between ordinal
discrete variables, see [34]). Four types of correlation structures are chosen between the
child node and the parent nodes based on the observed correlation structures in the PA, FS,
and PB studies:

• Equal and low (EqL): The same low correlation (0.23) is set between each parent node
and the child node.

• Equal and high (EqH): The same high(er) correlation (0.37) is set between each parent
node and the child node.

• Increasing (Incr): The correlations between the parent nodes and the child node in-
creases, with values of 0.15, 0.30, and 0.45 for the three parent–child pairs, respectively.

• Outlier (Out): The correlation between one parent node and the child node is signifi-
cantly higher than the correlation between the other parent nodes and the child node,
with values of 0.1, 0.1, and 0.9 for the three parent nodes, respectively.
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These matrices were used to sample data on which a discrete BN can be fitted. The
full details of the method are presented in [28].

2.2. InterBeta

InterBeta [11] is a method for constructing CPTs through interpolation when only best-
and worst-case scenarios are available. InterBeta assumes ranked nodes with weighted
parental influence, which are combined using an independent function. The core assump-
tion of the method is that the distribution of the child node can be approximated by a beta
distribution. Note that the beta distribution can take on a uniform (α, β = 1), unimodal
(α, β > 1), or bimodal (0 < α, β < 1) shape within the interval [0,1]. This section describes
the InterBeta method, its existing variants, and proposed extensions.

2.2.1. Method

Given a CPT structure and an empty table with assigned parent node state combina-
tions for each row, CPT values are calculated by interpolating the parameters of the beta
distribution between the best and worst rows. Note that a CPT row refers to the conditional
distribution of the child node for a certain combination of parent node states. For example,
the best row is a multinomial that describes the distribution of the child node when all of
the parent nodes are in their most positive state.

To start, experts provide the best and worst rows of the CPT by assessing the multi-
nomial distributions or by providing beta distribution parameters, either by specifying
the α and β parameters directly or by providing the mean and standard deviation. If
multinomials are provided, InterBeta fits the beta distributions for the best and worst rows
using the method of moments and the following optimization strategy:

1. The mean (µ) and variance (σ2) are derived from the multinomial distribution, and
the alpha (α) and beta (β) parameters are then calculated using the method of mo-
ments [11].

2. The α and β parameters are iteratively adjusted using Gaussian noise, accepting only
those mutations that improve the Kullback–Leibler (KL) divergence between the
discretized fitted beta distribution and the original elicited multinomial distribution.
This process typically converges within 1000 iterations [11].

The α and β parameters of the intermediate rows between the best and worst rows
are then derived through interpolation. To calculate these parameters, each CPT row is
assigned a weight Wk ∈ [0, 1], where the best and worst rows have weights of 1 and
0, respectively. If the worst row is approximated by Beta(α↓, β↓), and the best row by
Beta(α↑, β↑), then the parameters can be calculated using the following equations:

α̂k = gα(xk) = Wk · α↑ + (1 − Wk) · α↓,

β̂k = gβ(xk) = Wk · β↑ + (1 − Wk) · β↓.
(1)

The row weight (Wk) can be either elicited directly from experts or calculated based on
expert-elicited parent weights (wi) and state weights (ωk

i,j). In this case, the modeler can
decide to aggregate the weights using one of the following mean functions:

arithmetic mean: Wk =
1
n

n

∑
i=1

ωk
i,j, geometric mean: Wk =

(
n

∏
i=1

ωk
i,j

) 1
n

,

shifted geometric mean: Wk =

(
n

∏
i=1

(ωk
i,j + δ)

) 1
n

− δ, harmonic mean: Wk =
n

∑n
i=1

1
ωk

i,j

,
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where k is the row index. Note that the parent state weights depend on the parent weights
in the following way: ωi,1 = wi, ωi,2 = wi − wi

sC−1 , ωi,3 = wi − 2wi
sC−1 , ..., ωi,sC = 0, for

parent node i in state j, and for sC the number of child states. The parent and state weights
can be elicited from experts by considering, for example, weights proportional to the
correlations between the given nodes. To the best of our knowledge, no structured protocol
exists for eliciting those weights. Alternatively, default values can be used, i.e., wi = 1 for
all i = 1, ..., sC.

The arithmetic and geometric means were employed in the pollinator abundance
and household food security CPTs [27], and the harmonic mean was also suggested as an
option. However, both the harmonic and geometric means have a major drawback: they
yield zero if any entry is zero. Given that the weight of a node’s worst state is zero, these
mean functions result in a zero weight for all rows where at least one parent node is in its
worst state. To address this issue, a straightforward extension is proposed: the “shifted
geometric mean”. A constant (δ > 0) is added to each entry in the geometric mean and
then subtracted from the result. This avoids the issue of zero entries affecting the mean
calculation. In the analysis of the (simulated) data, the constant δ was set to one, based on
trial and error.

Finally, the CPT values are derived by discretizing the beta distributions found. The
[0,1] interval is divided into sC equally spaced intervals, corresponding to the number of
child states. The multinomial distribution is then derived by calculating the probability
mass for each interval. For a combination of parent states Xk = xk = (X1 = xk

1, . . . , Xk
n = xn),

the child node distribution obeys the following conditional probability:

(XC | Xk) ∼ Beta
(

gα(xk), gβ(xk)
)
, (2)

where k indicates a particular combination of parent states and the functions gα and gβ are
the interpolated distribution parameters based on the relationship in Equation (2). The
cumulative distribution function (cdf) of the beta distribution, denoted by F(x; α̂k, β̂k), is
discretized to calculate the CPT values

(XC = xi
C | X1 = xk

1, . . . , Xn = xk
n) = F

(
sC + 1 − i

sC
; α̂k, β̂k

)
− F

(
sC − i

sC
; α̂k, β̂k

)
, (3)

for i = 1, . . . , sC, where sC represents the number of states of the child node.

2.2.2. Versions

The InterBeta method has several versions: best–worst rows, parent weights, parent
state weights, and row weights, depending on which input parameters are elicited from
experts. Table 1 gives an overview of the parameters that need to be elicited for each
version of the InterBeta method. For each version, the best and worst CPT rows need to be
elicited. The best and worst rows represent scenarios where all parent nodes are in their
most positive state and their least positive state, respectively.

Table 1. Overview of the number of elicited input parameters for each version of the InterBeta method
and additional assumptions.

InterBeta Version # Parameters Additional Assumptions

Row weights 2·sc + ∏n
i=1 si Beta distribution with linearly interpolated parameters between best and worst rows.

Parent state weights 2·sc + ∑n
i=1 si No parental synergy (i.e., increased combined effects of parent nodes).

Parent weights 2·sc + n Uniformly increasing influence of states for each parent.
Best–worst rows 2·sc Equal weights for each parent node.
Default 0 Beta(4,1), Beta(1,4) to model best and worst rows.
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2.2.3. Extensions

This study proposes several extensions of the InterBeta method. The first extension
involves aggregating parent weights using a shifted geometric mean. A key limitation of
the InterBeta method lies in its rigid requirement for experts to assess only the best and
worst rows of the CPT. This inflexibility can be restrictive in certain contexts. To address
this limitation, two significant extensions are introduced in this study: the inclusion of an
additional intermediate elicited row between the best and worst rows, and the option for
experts to assess “good” and “bad” rows instead.

The former involves eliciting not only the best and worst rows but also one or more
intermediate rows. This approach increases the flexibility of the beta parameters and
potentially improves the performance of InterBeta. Specifically, an intermediate row where
all parent nodes are in states between their best and worst states (referred to as middle
states) is considered. This choice balances the extremes while avoiding the expert burden
that would arise from eliciting many extreme rows, as seen in methods like Functional
Interpolation [12].

The latter proposed extension, ExtraBeta, diverges only in interpolation by allowing
experts to assess scenarios within their frame of knowledge. Similar to the weighted-sum
algorithm [35], experts group compatible parent configurations. Here, instead of the best
and worst rows, experts select a “good” row and a “bad” row themselves for elicitation,
which are part of the upper and lower halves of the CPT, respectively. This entails that
the default weight of a good row is greater than 0.5 and that the default weight of a bad
row is less than 0.5. In addition, for each combination of parent states, the mean value
of the elicited multinomial of the good row must be strictly greater than the mean of the
elicited multinomial of the bad row. The remaining CPT values are then constructed via
interpolation and extrapolation of the beta parameters. It is noteworthy that ExtraBeta
retains InterBeta’s flexibility in weight options, including parent weights, parent state
weights, and row weights. Notably, the elicitation burden is increased by two parameters
in comparison to InterBeta since experts are asked to select two scenarios for elicitation.
For the InterBeta method, the scenarios are fixed.

A potential limitation of ExtraBeta is that if experts do not assess the same CPT rows,
their assessments cannot be aggregated before constructing the full CPT. However, prior
research suggests that the difference between interpolating aggregated assessments and
aggregating interpolated assessments is insignificant [27].

2.3. Other CPT Construction Methods

For comparison purposes, the performance of the InterBeta method is first assessed
against the Ranked Nodes Method (RNM) and the Functional Interpolation method. These
two methods are not discussed in detail here; only their most important characteristics are
reviewed, and some extensions are introduced. Reference [28] provides a detailed overview
of these methods.

2.3.1. Ranked Nodes Method

The Ranked Nodes Method (RNM) [10] is frequently used with discretized continuous
nodes. The method requires a weight function to be selected by the analyst, as well as
a set of weights and a variance parameter for the child node distribution. Experts are
encouraged to identify appropriate parameters in multiple stages using trial and error. The
CPT is then calculated by assuming that a truncated normal distribution describes the child
node distribution. For a more detailed description, see [28].

One of the main flaws of RNM is its reliance on experts to use trial and error to
determine the weight and variance parameters. Therefore, an extension (AutoRNM) has
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been developed [28] and is proposed in this study to automate the process. AutoRNM
incorporates an automated parameter determination for RNM. That is, instead of eliciting a
weight function, a set of weights, and a variance parameter from experts, a total of 2(n + 1)
CPT rows are elicited, where n is the number of parent nodes. The rows that need to be
elicited include the best and worst CPT rows, and extra rows are chosen such that all parent
nodes are in their best state, except for one that is in its worst state, or vice versa. The
necessary parameters for RNM are then found by optimizing the output of RNM to fit the
elicited CPT rows.

2.3.2. Functional Interpolation

Similar to InterBeta, the Functional Interpolation method relies on interpolating prob-
ability distribution parameters for constructing CPTs [12]. Experts are required to assess a
total of 2n CPT rows, where n is the number of parent nodes, one for each combination of
the best and worst states of the parent nodes. The method originally assumed the normal
distribution for describing the child node distribution. To extend the method, the beta
distribution and truncated normal distributions are included in this study as possible child
node distributions.

2.4. Performance Metrics

To assess the performance of a CPT construction method, several measures can be
used that reflect the accuracy and the elicitation burden of a construction method. It is
assumed that the originally elicited CPTs, or the simulated CPTs, are the true CPTs. The
accuracy measures used in this paper are the mean Kullback–Leibler (KL) divergence
and the percentage of agreement. The elicitation burden is measured by the number of
parameters that experts are asked to assess.

2.4.1. Kullback–Leibler Divergence

The KL divergence of P from Q can be interpreted as the expected surprise when
using Q as a model when the actual distribution is P. A KL divergence close to zero shows
that the two distributions are very similar. If both P and Q are probability mass functions
(pmfs) that have s possible states, the metric is defined as

DKL(P∥Q) = −
s

∑
i=1

P(i) log
Q(i)
P(i)

. (4)

Applied to CPTs, the KL divergence is measured between each CPT row, which can
then be averaged into a single measure. It would also be possible to compare the KL
divergence between the joint distributions, but this also depends on the KL divergence of
the conditional distributions, as shown in [28]. For a combination of parent node states
k : (xk

1, . . . , xk
n), the KL divergence is calculated as

Dk
KL(P(XC | X1, ..., Xn)∥Q(XC | X1, ..., Xn)) = ∑

xC∈XC

P(xC | xk
1, ..., xk

n) ln
P(xC | xk

1, ..., xk
n)

Q(xC | xk
1, ..., xk

n)
,

where, for ease of notation, we replaced Xi = xi with xi, for i = 1, . . . , n, C. The mean KL
divergence between two CPTs is defined as

DKL(CPTP ∥CPTQ) =
1

# CPT rows

# CPT rows

∑
k=1

Dk
KL(P(XC | X1, ..., Xn)∥Q(XC | X1, ..., Xn)).
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We note that the mean KL divergence aims to capture good overall performance, or its
lack thereof, while it may fail to detect significant differences (or agreement) for single
conditional probabilities.

2.4.2. Percentage of Agreement

A more intuitive measure is the percentage of agreement on the most likely state
the child node can take in different scenarios. This measure was used for testing the
performance of the EBBN method [20]. For each CPT row, it is checked whether the two
CPTs “agree” on which child node state has the largest probability.

For S = ∏n
i=1 si combinations of parent node states, it is checked whether the corre-

sponding child states are equal for the constructed CPT and the true CPT:

Agreement % =
100
S

S

∑
k=1

δ{xk
C = x̂k

C} ,

where xk
C is the child state with the highest probability for the combination of parent states

k in the true CPT and x̂k
C is the child state with the highest probability for the combination

of parent states k for the constructed CPT. Thus, δ{xk
C = x̂k

C} = 1 when the true and
constructed CPTs give the highest probability to the same child node state. So, for this
performance measure, a value close to 100% is desired.

2.4.3. Burden

The process of eliciting parameters from experts imposes a burden that can be quanti-
fied by the number of parameters to be elicited. As the complexity of a BN increases, so does
the number of parameters, leading to a greater burden on experts. For a node with ns states,
for which parent i, where i = 1, ..., k, has ni states, the total number of parameters gives the
CPT size = ns · ∏i=1,...,k ni. So, the CPT of a node with three parent nodes, where each node
has three states, requires the elicitation of 81 conditional probabilities. Adding another
parent node with three states increases the elicitation requirement to 243 probabilities. This
illustrates the exponential growth in the number of parameters with the addition of nodes
in a BN. Increasing the number of states of the nodes leads to a similar increase in the
elicitation burden.

However, not all parameters are equally complex to assess for experts. For example,
when dealing with a child node that has two states, only one probability needs to be directly
assessed, since the second can be deduced, which reduces the overall burden. Along with
probabilities, other parameters such as weights, variance, or correlation structures can also
be elicited. While probabilities might be quite intuitive to assess, other parameters may be
less “natural” to assess. Unfortunately, quantifying these subtle differences is very difficult,
if not impossible.

In this work, the elicitation burden of a CPT construction method is quantified by
the number of parameters required to be elicited. Although different types of parameters
may impose varying levels of elicitation burden, this study assumes that the burden is
equivalent across parameter types due to the lack of a more precise metric.

3. Results
This section presents the results, starting with a comparison of InterBeta, RNM, and

Functional Interpolation in terms of elicitation burden and CPT reconstruction accuracy,
including InterBeta’s performance with elicited middle rows. It also examines the results
for the shifted geometric mean and ExtraBeta.
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3.1. Comparison

To compare the performance of the InterBeta, RNM, and Functional Interpolation
methods, the elicited or aggregated data from the pollinator abundance, food security,
and polar bear BNs were used. The comparisons included the AutoRNM extension and
the extension of InterBeta, where middle rows were also elicited. For the Functional
Interpolation method, the results are shown for the best-fitting probability distribution, and
for InterBeta, the results are shown for the best combination of the interpolation parameters
and mean function. These parameters were optimized such that the constructed CPTs fitted
as closely as possible to the true CPTs by minimizing the mean KL divergence. For more
details, see [28].

The results of the comparison between the CPT construction methods for one fully
elicited CPT are presented in Figure 1 and Table 2, where performance is measured in terms
of the KL divergence, and the burden is measured in terms of the number of parameters that
need to be elicited. The PB Ice CPT was chosen because it was the largest CPT included in
the elicited data and therefore shows the differences in performance and elicitation burden
clearly. A full overview of the comparison of the CPT construction methods, including all
elicited CPTs, can be found in Figure A3 and Tables A1–A3 in Appendix A.

The Ice CPT shows that the InterBeta method with row weights achieved the lowest
mean KL divergence; nonetheless, it required the elicitation of 78 parameters. The original
InterBeta method, using only the best and worst rows, outperformed RNM, AutoRNM, and
Functional Interpolation while requiring fewer parameters than these methods. Introducing
parent weights reduced the KL divergence by nearly 30%, although further eliciting parent
state weights provided only a marginal additional improvement of about 8%. Thus, for
this CPT, InterBeta with parent weights offered an efficient balance, achieving a significant
reduction in the number of parameters (96%) to be elicited compared to full elicitation.

In summary, InterBeta, particularly when combined with parent weights, offers an ef-
fective approach to CPT construction with reduced parameter elicitation while maintaining
competitive accuracy. It should also be noted that the accuracies of RNM and AutoRNM
were similar throughout the comparison, and only the number of parameters that needed
to be elicited differed. This would suggest that RNM outperformed AutoRNM, but it does
not consider the relative burden of eliciting different parameters.

Figure 1. Comparison of mean KL divergence results with respect to the number of elicited parameters
for PB Ice CPTs constructed using variants of the InterBeta (blue, red, and orange), RNM (green), and
Functional Interpolation (purple) methods.
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Table 2. Comparison of the mean KL divergence and the percentage of agreement results with respect
to the number of elicited parameters for PB Ice CPTs constructed using variants of the InterBeta,
RNM, and Functional Interpolation methods.

Mean KL Divergence
Percentage

of Agreement
Number of

Elicited Parameters

InterBeta

Best–worst rows 0.23 70.8% 8
Parent weights 0.13 76.4% 11
State weights 0.12 73.6% 18
Row weights 0.03 81.9% 78

InterBeta with
elicited middle
rows

Best–worst rows 1.03 66.7% 12
Parent weights 0.65 80.6% 15
State weights 0.32 69.4% 22
Row weights 0.06 83.3% 82

Functional
Interpolation

Normal 0.30 61.1% 32
Truncated normal 0.38 70.8% 32
Alpha/beta 0.25 62.5% 32

RNM 0.35 56.9% 16

AutoRNM 0.28 54.2% 32

3.2. InterBeta Extensions

Three extensions of InterBeta are introduced in this paper: the elicitation of middle
rows, the addition of a new mean function (shifted geometric mean), and ExtraBeta. The
results of InterBeta with elicited middle rows have already been discussed in Section 3.1;
therefore, they are not included in this section.

3.2.1. Shifted Geometric Mean

The shifted geometric mean was evaluated alongside the arithmetic, geometric, and
harmonic means. First, all means were used to calculate row weights for a given BN with
three parent nodes and one child node. Figure 2 shows the row weights calculated by the
different functions for all CPT rows, ordered from best to worst. The x-axis represents
the CPT rows (x1, x2, x3), where xi ∈ {0, 1

2 , 1} denotes the state of parent i. The figure
highlights that the calculated row weights were zero for a large portion of the CPT when
either the geometric mean or harmonic mean was used. This is because these means return
zero when at least one of the input weights is zero. The shifted geometric mean behaved
like a slightly smoothed version of the arithmetic mean.

Figure 2. Row weights when the arithmetic mean (blue), geometric mean (green), shifted geometric
mean (orange), or harmonic mean (red) was used for a node with three parent nodes, each with
three states (x1, x2, x3), where xi ∈ {0, 1

2 , 1}, and the parent and state weights were set to their
default values.
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Simulated data based on the correlation structures described in Section 2.1.2 provided
insights into the performance of InterBeta with either the arithmetic or shifted geometric
means. The geometric and harmonic means were not considered, as they assigned zero
row weight to many CPT rows. The accuracy results measured by the KL divergence are
shown in Figure 3. Figure A4 in Appendix A depicts the percentage of agreement results.
The x-axis indicates the number of states for each parent node, ranging from two to four,
represented as (s1, s2, s3), where si is the number of states for parent i. Also, it should be
noted that the row weights version of InterBeta is not included in this figure, as this version
does not use a mean function. Finally, the α and β parameters of the beta distribution
were interpolated.

Figure 3. Mean and 95% confidence interval of InterBeta performance (KL divergence) over 100 repli-
cations using simulated data with four different correlation structures (EqL, EqH, Incr, and Out)
when the arithmetic (blue) and shifted geometric (orange) means were considered, with α and β as
interpolation parameters. The CPT size increases on the x-axis scale (s1, s2, s3), where si is the number
of states for parent i.

The arithmetic mean consistently outperformed or matched the shifted geometric
mean across various correlation structures and numbers of parent node states. This per-
formance gap was particularly pronounced in the parent and state weights versions. For
the correlation structures EqL, EqH, and Incr, the difference in performance diminished as
the number of parent nodes increased. When parent nodes had three or more states, the
95% confidence intervals for both mean functions widened and overlapped, suggesting
comparable performance. Future research could explore a broader range of parent node
states to further investigate this trend. For the Out correlation structure, the performance
difference between the arithmetic and shifted geometric means was minimal when using
the best–worst rows version of InterBeta. However, when parent or state weights were in-
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cluded, the arithmetic mean exhibited a significantly lower mean KL divergence, indicating
superior performance.

The percentage of agreement results, as depicted in Figure A4 in Appendix A, generally
favored the arithmetic mean over the shifted geometric mean, except for the Out correlation
structure when using the best–worst rows version of InterBeta.

In general, the arithmetic mean is recommended over the shifted geometric mean
across most tested scenarios. The shifted geometric mean may only be preferable when the
correlation structure includes an outlier and the best–worst rows version of InterBeta is used,
as shown in Figure A4. However, since using (parent) weights is advised when outliers are
known, situations in which the shifted geometric mean outperforms the geometric mean
should rarely occur. Based on the simulation results, the arithmetic mean is the preferred
choice, especially when parent nodes have up to four states.

3.2.2. ExtraBeta

ExtraBeta, the extension of InterBeta that does not fix which CPT rows need to be
elicited, was not included in the comparison of all CPT construction methods, as there
would be too many results to compare. ExtraBeta was applied to reconstruct both the
elicited CPTs and a collection of simulated CPTs. The results are reported for each combi-
nation of a good and a bad row as input for ExtraBeta. In addition, dominating parents
were identified. A dominating parent is a parent node that has a significantly larger in-
fluence on the child node distribution than the other parent nodes and therefore is given
a larger weight.

For the pollinator abundance CPT, no dominating parent was identified in any of the
experts’ CPTs. Sixteen potential combinations of good and bad rows were tested for each
expert’s assessments, and the results are shown in Figure 4. The performance, measured in
terms of the mean KL divergence, is presented against the absolute difference between the
means of the input good and bad rows. The orange dots represent the results of InterBeta,
which is equivalent to having the best and worst rows as input for ExtraBeta. The yellow
dots are the results when either the best row or the worst row was included in the input,
and the blue dots represent the results when the best and worst rows were not used.

Figure 4. Results of reconstructing the pollinator abundance CPTs using ExtraBeta (arithmetic, α/β),
based on all possible combinations of “good” and “bad” rows as input. The KL divergence is plotted
against the absolute difference between the means of the input good and bad rows. The figure
includes the InterBeta results (orange), the results where either the best row or the worst row was
included as input (yellow), and the results where both the best and worst rows were not used (blue).

A noticeable trend emerged, indicating that as the difference between the means of
the good row and bad row increased, the accuracy of ExtraBeta improved. This trend
was most evident in the parent weights version, with a less pronounced yet observable
effect in the best–worst rows version. Across all versions, numerous combinations of input
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rows—excluding the best or worst rows—performed as well as, or even better than, the
standard InterBeta method. In the row weights version, performance differences between
the various input rows were minimal, particularly when the mean difference exceeded 0.2,
where no significant performance disparities were observed.

For each of the food security CPTs, there were 25 combinations of good and bad rows.
The results of using ExtraBeta are shown in Figure 5. It was found that the equivalized
income had the largest influence on the child node [28]. In this figure, the dots are colored
green for when the equivalized income was in its best state for the good row and in its
worst state for the bad row.

Figure 5. KL divergence results for reconstructing food security CPTs using ExtraBeta (arithmetic,
α/β), based on possible combinations of “good” and “bad” rows as input. The figure includes the
InterBeta results (orange), the results where the good row had equivalized income in its best state
and the bad row had equivalized income in its worst state (green), and the results for the remaining
combinations (blue).

The downward trend was even more evident than it was in the pollinator abundance
CPTs. For the parent weights, state weights, and row weights versions, an elbow is visible
in the graph when the difference between the means of the elicited multinomials was
around 0.25. If the dominating parent was fixed to the extreme states as input for ExtraBeta,
the performance was generally better than when using other input rows. Especially for the
parent, state, and row weights versions of ExtraBeta, the performance was close to that of
InterBeta when fixing the dominant parent node state. Fixing the dominant parent to its
extreme states enforced the input rows to be in significantly different scenarios, resulting in
relatively large differences between the input row means.

The results of reconstructing all considered CPTs of the polar bear BN can be found in
Figures A5 and A6 in Appendix A. Four of the polar bear CPTs were not considered, as
they were too large to test all possible input row combinations within a reasonable time.
Note that these CPTs each had more than 144 values. The ExtraBeta reconstruction results
of three selected CPTs are shown in Figure 6.

As observed for the pollinator abundance and food security CPTs, there was a negative
correlation between the mean KL divergence and the difference between the input row
means. This suggests that adding more weights to the method further reduced the mean KL
divergence across all input row combinations. Specifically, in the case of ExtraBeta applied
to the SASur CPT, the performance plateaued when the mean difference of the input rows
exceeded 0.5 for the parent and state weights versions, and this plateau occurred at a mean
difference of 0.2 for the row weights versions.

Fixing the dominating parent node once again ensured a large mean difference between
the input rows. Consequently, the ExtraBeta results closely aligned with the InterBeta
outcomes. In the Recr CPT, the similarity was particularly pronounced due to the parent
node’s full dominance. When this parent was in its best state, the child node distribution
mirrored the best row, and when it was in its worst state, it mirrored the worst row. As
weights were introduced into both ExtraBeta and InterBeta, the performance gap between
the two methods significantly reduced.
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Figure 6. KL divergence results for reconstructing three polar bear CPTs using ExtraBeta (arithmetic,
α/β), based on all possible combinations of “good” and “bad” rows as input. The figure includes the
InterBeta results (orange); the results of the dominant parent node fixed to its best and worst states for
the good and bad rows, respectively (green); and the results for the remaining combinations (blue).

In addition to the elicited CPTs, ExtraBeta was also applied to reconstruct the simulated
CPTs. Along with the correlation structure introduced in Section 2.1.2, two additional
correlation structures that contained an outlier were considered. In this context, an outlier
corresponds to a dominating parent. The two new correlation structures were variations
of the Out correlation structure but with less pronounced outliers. The following two
Spearman’s rank correlation matrices were used:

OutL:


1 0 0 0.25
0 1 0 0.25
0 0 1 0.5

0.25 0.25 0.5 1

 OutM:


1 0 0 0.2
0 1 0 0.2
0 0 1 0.7

0.2 0.2 0.7 1

.

The CPT simulation methodology is detailed in [28]. One hundred simulations were
performed, and for each replication, a discrete BN was fitted to the simulated data. Note
that the structure remained the same throughout all the simulations (one child node with
three parents). Similar to the CPTs from the expert judgment studies, the researched
methods were tested for the CPTs obtained from the simulated data.

The results are shown in Figure 7. For the EqL and EqH correlation structures, setting
the third parent node to its extreme states had minimal impact, as this parent was not really
a dominating parent node. Notably, InterBeta’s performance was relatively poor, with
ExtraBeta demonstrating superior reconstruction accuracy in over half of the tested input
row combinations. Once again, the accuracy improved as the difference in the means of the
input rows increased.

For the Incr correlation structure, the effect of setting the third parent, with the largest
parent–child correlation, to its extremes was significant. A downward trend in the KL
divergence relative to the difference between the input multinomial means remained
present, particularly in ExtraBeta versions incorporating parent, state, or row weights.
For these versions, fixing the dominant parent to its extreme states resulted in CPTs with
accuracy levels comparable to those generated by InterBeta.
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For correlation structures with a clear outlier—OutL, OutM, and Out—the accuracy
trend was even more pronounced, and incorporating weights as input significantly en-
hanced CPT reconstruction accuracy. In the OutL structure, ExtraBeta with fixed dominant
parent states outperformed InterBeta when considering parent, state, or row weights. For
OutM and Out, the CPT reconstruction accuracy of ExtraBeta with fixed dominant parent
states was not significantly different from that of InterBeta in these weighted versions.

Figure 7. Mean KL divergence results of reconstructing 10 repetitions of simulated CPTs using
ExtraBeta (arithmetic, α/β), with all potential combinations of “good” and “bad” rows as input.
Includes the InterBeta results (orange), the results where the good row had the dominating parent in
its best state and the bad row had the dominating parent in its worst state (green), and the results for
the remaining combinations (blue).
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In general, for part of the good and bad input rows of ExtraBeta, the results were
very similar to those of InterBeta. In some cases, the performance of ExtraBeta was better
than that of InterBeta. However, the improved performance came at the cost of a slightly
increased elicitation burden, since experts were asked to choose two rows. To increase
the likelihood of experts selecting rows as input that perform similarly to, or better than,
InterBeta, the difference between the means of the input rows should be as large as possible.
In an elicitation, experts should therefore be guided in the row-selection process.

Based on the simulation results, a potential elicitation protocol for ExtraBeta is pro-
posed in Figure A7 in Appendix A. This protocol provides elicitation guidelines based on
prior knowledge of parent influence or potential weights when such knowledge is absent.

In practice, if experts are familiar with CPTs, an empty CPT with highlighted good and
bad rows can be shown for assessment. After eliciting two input rows, the modeler should
review them—if their means are too similar, the process may be repeated. Otherwise, the
rows and weights can be used in the ExtraBeta method.

4. Discussion
This study compared methods for constructing CPTs, focusing on the trade-off be-

tween the elicitation burden and accuracy. RNM, Functional Interpolation, and InterBeta
were implemented in Python, with parameter optimization using grid and greedy search
algorithms. While these algorithms achieved high accuracy, their real-world application
depends on expert input, introducing uncertainty in parameter precision. This study as-
sumed that experts can estimate (parent/state) weights to the nearest 0.5 and row weights
to two decimal places, highlighting a key consideration regarding method robustness.

In practice, fatigue from fully eliciting CPTs could result in less thorough assessments.
This highlights a potential advantage of CPT construction methods, such as InterBeta,
which require fewer parameters and may yield more consistent results. Although these
methods do not perfectly replicate fully elicited CPTs, the CPTs they construct may still be
closer to the “ground truth”, as they avoid the pitfalls of expert fatigue.

Parameter flexibility proved beneficial only for the row weights version, with limited
gains for parent and state weights. While further testing on simulated CPTs may not be war-
ranted, exploring alternative input rows—like those used in Functional Interpolation—may
yield better results.

ExtraBeta, a variant of InterBeta, aims to increase input flexibility by allowing experts
to assess different “good” and “bad” rows instead of the strict best and worst rows. This
adaptation can help mitigate biases, particularly when experts are asked to assess unfamiliar
scenarios. Allowing them to assess rows that are within their frame of knowledge could
improve the accuracy of the constructed CPTs and reduce the effects of cognitive biases.

In the simulation study comparing the arithmetic and shifted geometric means for
InterBeta, the arithmetic mean consistently outperformed the shifted geometric mean across
different correlation structures. However, the study was limited to parent nodes with up
to four states. As the number of states increased, performance differences narrowed,
highlighting the need for future research on methods handling more than four states.

Finally, this study explored the impact of dominant parent nodes on ExtraBeta’s
accuracy. When a dominating parent was present, and parent, state, or row weights were
used, ExtraBeta’s performance matched that of InterBeta. Even in scenarios without a
dominant parent, ExtraBeta performed comparably to InterBeta for many input rows.
Future studies should further investigate the proposed elicitation guidelines and how
optimized weights change when different input rows are used with ExtraBeta.

A key limitation of this research is the reduced number of studies considered. While
simulations helped address this, they were not able to capture all aspects. More studies
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would provide greater expert diversity and more varied elicitation or aggregation methods.
Ideally, diverse expert groups should be used to evaluate each method’s performance under
controlled conditions.

Recommendations

Two main recommendations for future research follow from the above discussion.
First, the comparison of the elicitation burden could be improved by examining whether
some parameter types are more burdensome to elicit than others. This would refine the
burden/accuracy trade-off across CPT construction methods. Case studies with timed
tasks, expert surveys, and calibration exercises could offer valuable insights into parameter-
specific burden.

Second, a case study using InterBeta or ExtraBeta is a key next step for validation with
real experts. Ideally, multiple expert groups would follow different elicitation protocols,
including full CPTs, InterBeta variants, and ExtraBeta. If expert availability is limited, a
student-based calibration exercise could serve as a practical alternative.

5. Conclusions
This study compared the accuracy and elicitation burden of InterBeta, the Ranked

Nodes Method, and Functional Interpolation in reconstructing previously elicited CPTs.
InterBeta emerged as the best-performing method, particularly the parent weights version,
which balanced good accuracy with low burden. The best–worst rows version of Inter-
Beta required fewer elicited parameters than the parent weights version but performed
considerably worse in terms of accuracy.

Based on the results of the comparison between the arithmetic and shifted geometric
means, it was found that, for the tested scenarios, the arithmetic mean performed best.
However, the performance difference between the means diminished as the number of
parent node states increased.

The newly proposed ExtraBeta shows promise as an extension to InterBeta, especially
when a dominant parent node can be identified, making its performance comparable to
that of InterBeta. ExtraBeta requires experts to select two rows for assessment, which
may increase the elicitation burden but could allow experts to evaluate scenarios with
which they are more comfortable. The potential gain in accuracy might justify this added
effort, although the impact may vary by expert group, subject matter, and the likelihood
of ever observing extreme (best and worst) cases. Further research is needed to draw
definitive conclusions.
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Appendix A

Figure A1. Bayesian network structure of the pollinator abundance study.

Figure A2. Unelicited conditional probability table for the honey bee abundance child node in the
pollinator abundance Bayesian network.

Figure A3. Comparison of the KL divergence between elicited CPTs and constructed CPTs for the
following methods: variants of the InterBeta (blue, red, and orange), RNM (green), and Functional
Interpolation (purple).
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Table A1. Results of the KL divergence and the percentage of agreement performance for InterBeta,
rounded to four decimals and one decimal, respectively. This table contains the information shown
in Figure A3.

CPT RNM Functional Interpolation

(KL div. / % Agreement) Original AutoRNM Normal t-Normal Beta

Polar bears Ice 0.3509/56.9 0.2833/54.2 0.2996/61.1 0.3769/70.8 0.2501/62.5
Polar bears Disturb 0.1205/60.5 0.1547/48.1 0.0913/80.2 0.1525/85.2 0.0912/80.2

Polar bears CumPop 0.2119/72.2 0.2324/72.2 0.2163/75.0 1.5414/55.6 0.2015/75.0
Polar bears AFBod 0.186/91.7 0.2327/97.2 0.3125/69.4 0.6553/50.0 0.1522/91.7
Polar bears SASur 0.3026/63.9 0.3204/72.2 0.4699/63.9 0.8802/61.1 0.1005/94.4
Polar bears AdSur 0.3113/63.9 0.3312/72.2 0.5344/63.9 0.8427/55.6 0.124/94.4

Polar bears OthMor 0.148/77.8 0.181/70.4 0.1712/74.1 0.2521/74.1 0.1061/85.2
Polar bears EvMort 0.1332/100.0 0.1518/100.0 0.1833/92.6 0.3768/66.7 0.1031/92.6
Polar bears TerrPry 0.22/100.0 0.2745/100.0 0.4597/62.5 0.9088/50.0 0.2109/100.0

Polar bears Recr 0.2418/100.0 0.2596/100.0 0.6192/75.0 0.7533/58.3 0.2718/91.7
Polar bears Mrn 0.138/50.0 0.1412/75.0 0.1911/75.0 0.4872/75.0 0.1008/91.7
Polar bears Hab 0.417/55.6 0.4197/55.6 0.178/77.8 0.9017/55.6 0.1474/77.8
Polar bears Terr 0.0923/91.7 0.0999/91.7 0.0846/91.7 0.6179/75.0 0.1288/91.7

Polar bears PrimPrey 0.1983/77.8 0.227/77.8 0.2511/100.0 0.2791/66.7 0.2115/77.8
Polar bears MrnPry 0.0862/88.9 0.1425/88.9 0.0594/100.0 0.5905/77.8 0.0688/88.9
Polar bears BioStr 0.1472/77.8 0.1633/77.8 0.2262/66.7 0.2582/66.7 0.1417/77.8

Food security EWDM 0.1843/66.7 0.1851/66.7 0.1043/91.7 0.0631/91.7 0.0171/91.7
Food security PWDM 0.1863/50.0 0.1752/58.3 0.1005/75.0 0.109/66.7 0.0242/66.7

Food security 1 0.188/66.7 0.1733/58.3 0.1221/75.0 0.1558/66.7 0.0237/66.7
Food security 2 0.2108/58.3 0.1848/41.7 0.1238/75.0 0.1073/66.7 0.0284/66.7
Food security 3 0.2005/50.0 0.1697/75.0 0.1299/66.7 0.1831/58.3 0.0816/58.3
Food security 4 0.1903/66.7 0.2223/58.3 0.0852/100.0 0.0758/75.0 0.0235/83.3
Food security 5 0.4594/41.7 0.4761/66.7 0.5775/66.7 0.1192/100.0 0.028/100.0

Pollinator abundance EWDM 0.0032/100.0 0.0031/100.0 0.0/100.0 0.0/100.0 0.0/100.0
Pollinator abundance 1 0.01/100.0 0.0099/100.0 0.0/100.0 0.0/100.0 0.0/100.0
Pollinator abundance 2 0.0094/100.0 0.0082/100.0 0.0/100.0 0.0/87.5 0.0/100.0
Pollinator abundance 3 0.0088/100.0 0.0083/100.0 0.0/100.0 0.0/87.5 0.0/100.0
Pollinator abundance 4 0.004/100.0 0.0027/100.0 0.0/100.0 0.0/100.0 0.0/100.0
Pollinator abundance 5 0.0201/87.5 0.0161/100.0 0.0/100.0 0.0/100.0 0.0/100.0
Pollinator abundance 6 0.0043/100.0 0.0054/100.0 0.0/100.0 0.0/100.0 0.0/100.0
Pollinator abundance 7 0.0166/75.0 0.0153/87.5 0.0/100.0 0.0/100.0 0.0/100.0
Pollinator abundance 8 0.0247/75.0 0.0238/75.0 0.0/100.0 0.0/87.5 0.0/100.0
Pollinator abundance 9 0.0219/87.5 0.0201/75.0 0.0/100.0 0.0/100.0 0.0/100.0

Pollinator abundance 10 0.0086/100.0 0.0071/100.0 0.0/100.0 0.0/100.0 0.0/100.0
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Table A2. Results of the KL divergence and the percentage of agreement performance for InterBeta,
rounded to four decimals and one decimal, respectively. This table contains the information shown
in Figure A3.

CPT InterBeta

(KL div. / % Agreement) Best–Worst Rows Parent Weights State Weights Row Weights

Polar bears Ice 0.2284/70.8 0.1347/76.4 0.1158/73.6 0.0337/81.9
Polar bears Disturb 0.1885/75.3 0.1885/75.3 0.1853/72.8 0.1346/67.9

Polar bears CumPop 0.3701/63.9 0.3554/72.2 0.3407/77.8 0.2367/88.9
Polar bears AFBod 0.704/47.2 0.2047/97.2 0.1799/97.2 0.1324/97.2
Polar bears SASur 0.6735/58.3 0.2423/75.0 0.0792/97.2 0.0298/100.0
Polar bears AdSur 0.6897/58.3 0.201/80.6 0.0753/97.2 0.0256/100.0

Polar bears OthMor 0.1616/77.8 0.133/77.8 0.1188/77.8 0.0766/85.2
Polar bears EvMort 0.4037/55.6 0.1105/100.0 0.1096/100.0 0.084/92.6
Polar bears TerrPry 0.7762/62.5 0.2977/100.0 0.2896/100.0 0.258/100.0

Polar bears Recr 0.7226/58.3 0.2264/100.0 0.149/100.0 0.1165/91.7
Polar bears Mrn 0.2361/83.3 0.2015/83.3 0.1302/100.0 0.0545/100.0
Polar bears Hab 0.6701/55.6 0.3285/66.7 0.2724/77.8 0.1915/88.9
Polar bears Terr 0.1646/91.7 0.1394/91.7 0.0612/83.3 0.0478/100.0

Polar bears PrimPrey 0.2239/66.7 0.2021/100.0 0.2019/100.0 0.1528/88.9
Polar bears MrnPry 0.341/66.7 0.1533/88.9 0.1445/88.9 0.0707/100.0
Polar bears BioStr 0.1641/77.8 0.1641/77.8 0.1602/88.9 0.1063/77.8

Food security EWDM 0.1819/66.7 0.0288/91.7 0.0285/91.7 0.0221/91.7
Food security PWDM 0.1987/41.7 0.0273/83.3 0.0272/83.3 0.0184/75.0

Food security 1 0.1756/50.0 0.0477/75.0 0.0381/75.0 0.0163/75.0
Food security 2 0.1982/50.0 0.0348/91.7 0.0348/91.7 0.0247/75.0
Food security 3 0.2111/66.7 0.1114/91.7 0.1054/91.7 0.0638/83.3
Food security 4 0.2164/50.0 0.0346/75.0 0.0342/75.0 0.0214/83.3
Food security 5 0.2759/75.0 0.11/100.0 0.0307/100.0 0.0233/100.0

Pollinator abundance EWDM 0.0164/87.5 0.0027/100.0 0.0027/100.0 0.0/100.0
Pollinator abundance 1 0.0265/87.5 0.0133/100.0 0.0133/100.0 0.0/100.0
Pollinator abundance 2 0.0374/87.5 0.0063/100.0 0.0063/100.0 0.0/100.0
Pollinator abundance 3 0.0132/87.5 0.0097/87.5 0.0097/87.5 0.0/100.0
Pollinator abundance 4 0.041/87.5 0.0031/100.0 0.0031/100.0 0.0/100.0
Pollinator abundance 5 0.0391/100.0 0.024/100.0 0.024/100.0 0.0/100.0
Pollinator abundance 6 0.0405/87.5 0.0141/100.0 0.0141/100.0 0.0/100.0
Pollinator abundance 7 0.0235/100.0 0.012/100.0 0.012/100.0 0.0/100.0
Pollinator abundance 8 0.042/87.5 0.0218/87.5 0.0218/87.5 0.0/100.0
Pollinator abundance 9 0.0318/87.5 0.0206/87.5 0.0206/87.5 0.0/100.0

Pollinator abundance 10 0.0553/87.5 0.0046/100.0 0.0046/100.0 0.0/100.0
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Table A3. Results of the KL divergence and the percentage of agreement performance for InterBeta
when the middle rows are also elicited, rounded to four decimals and one decimal, respectively. This
table contains the information shown in Figure A3.

CPT InterBeta with Elicited Middle Rows

(KL div. / % Agreement) Best, Worst, Mid Parent Weights State Weights Row Weights

Polar bears Ice 1.0349/66.7 0.6539/80.6 0.3214/69.4 0.0636/83.3
Polar bears Disturb 1.2857/75.3 1.2857/75.3 1.27/75.3 0.6246/82.7

Polar bears CumPop 0.7845/66.7 0.4828/63.9 0.4663/66.7 0.1197/86.1
Polar bears AFBod 1.7942/47.2 0.3596/97.2 0.1425/88.9 0.0584/91.7
Polar bears SASur 1.6724/58.3 0.2478/88.9 0.223/97.2 0.0337/100.0
Polar bears AdSur 1.6483/58.3 0.299/88.9 0.2623/97.2 0.0277/100.0

Polar bears OthMor 0.8206/77.8 0.7762/77.8 0.7429/77.8 0.2117/92.6
Polar bears EvMort 1.312/55.6 0.3012/100.0 0.3003/100.0 0.1189/96.3
Polar bears TerrPry 1.6725/56.2 0.0618/100.0 0.0524/100.0 0.0441/100.0

Polar bears Recr 1.702/50.0 0.4709/100.0 0.1893/100.0 0.0501/100.0
Polar bears Mrn 0.6355/75.0 0.5673/91.7 0.3914/91.7 0.0722/100.0
Polar bears Hab 1.3242/55.6 0.075/88.9 0.0667/88.9 0.0584/100.0
Polar bears Terr 0.496/91.7 0.3498/91.7 0.3084/100.0 0.1547/100.0

Polar bears PrimPrey 1.0344/66.7 0.6767/100.0 0.6757/100.0 0.3311/77.8
Polar bears MrnPry 1.0919/66.7 0.2235/88.9 0.2043/100.0 0.0347/100.0
Polar bears BioStr 0.8446/77.8 0.7387/77.8 0.7387/77.8 0.3464/77.8

Figure A4. Mean and 95% confidence interval of InterBeta performance (percentage of agreement)
over 100 replications. Using simulated data with four different correlation structures, the arithmetic
and shifted geometric means are compared, with α and β as interpolation parameters.
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Figure A5. Results of reconstructing the polar bear CPTs using ExtraBeta (arithmetic, α/β), based on
all possible combinations of good and bad rows as input. The figure includes the InterBeta results
(orange); the results with the dominant parent node fixed to its best and worst states for the good and
bad rows, respectively (green); and the results for the remaining combinations (blue).
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Figure A6. Results of reconstructing the polar bear CPTs using ExtraBeta (arithmetic, α/β), based on
all possible combinations of good and bad rows as input. The figure includes the InterBeta results
(orange); the results with the dominant parent node fixed to its best and worst states for the good and
bad rows, respectively (green); and the results for the remaining combinations (blue).
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Figure A7. Proposed elicitation protocol for ExtraBeta.
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