

Delft University of Technology

Neural Network based Decoders for the Surface Code

Varsamopoulos, Savvas

DOI
10.4233/uuid:dc73e1ff-0496-459a-986f-de37f7f250c9
Publication date
2019
Document Version
Final published version
Citation (APA)
Varsamopoulos, S. (2019). Neural Network based Decoders for the Surface Code. [Dissertation (TU Delft),
Delft University of Technology]. https://doi.org/10.4233/uuid:dc73e1ff-0496-459a-986f-de37f7f250c9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:dc73e1ff-0496-459a-986f-de37f7f250c9
https://doi.org/10.4233/uuid:dc73e1ff-0496-459a-986f-de37f7f250c9

NEURAL NETWORK BASED DECODERS FOR
THE SURFACE CODE

NEURAL NETWORK BASED DECODERS FOR
THE SURFACE CODE

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Tuesday 4 June 2019 at 10:00 o’clock

by

Savvas VARSAMOPOULOS

Master of Science in Electronic Physics,
Aristotle University of Thessaloniki, Greece

born in Thessaloniki, Greece.

This dissertation has been approved by the promotors:

Prof. Dr. ir. K. L. M. Bertels (promotor)
Dr. C. Garcia Almudever (copromotor)

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. Dr. ir. K. L. M. Bertels, Delft University of Technology, promotor
Dr. C. Garcia Almudever, Delft University of Technology, copromotor

Independent members:
Prof. Dr. Ir. S. Hamdioui, Delft University of Technology
Prof. Dr. D. DiVincenzo, RWTH Aachen, Germany
Prof. Dr. C. W. J. Beenakker, Leiden University, The Netherlands
Dr. O. E. Scharenborg, Delft University of Technology

Other Members:
Dr. Ir. Z. Al-Ars, Delft University of Technology

Keywords: Quantum Error Correction, Quantum Error Detection, Neural
Network based Decoders

Printed by: Proefschriftmaken.nl

Front & Back: Beautiful cover art created by Despoina Pouniou.

Copyright © 2019 by S. Varsamopoulos

ISBN 000-00-0000-000-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ACKNOWLEDGEMENTS

I would like to show my appreciation to all the people that stood by me during my
Ph.D. journey. The last four and a half years, constitute a beautiful chapter in my
life that I will never forget.

First of all, I have to show my immense gratitude to Prof. Dr. Koen Bertels,
who is the reason that I had the chance to come to Delft. Koen believed in me
from the first Skype interview that we did and happily invited me to his newly
formed team. Although that the first couple of years included a lot of learning and
patience, Koen kept believing in me. He supported my ideas and gave me valuable
advice and suggestions.

Next, I would like to thank Dr. Carmen Garcia Almudever for all the invaluable
things that she has done. Carmina, you have been the most involved person in
my research and you are an intricate part of writing this thesis. Thank you for
teaching me and learning with me, thank you for the time spend reviewing my
presentations, reports, posters and papers. Thank you for all the conversations
and thank you for trusting my instincts.

I am also incredibly thankful to Dr. Daniel B. Criger. Ben, you played the role
of the mentor and teacher when I needed it the most. You were there for me at
every step of the road ever since our collaboration started. Your critical thinking
and your undying passion to advance science is mesmerizing. You always guided
me and gave me confidence to develop innovative work.

Dr. Xiang Fu, you are one of the most hard-working and persistent people
that I know. You were always making detailed arguments and looked beneath
the surface. Thank you for being there with me when our Ph.D. journey started.
Ling Ling, you are very smart and very sweet. You are a great researcher and I
enjoyed our conversations a lot. You are the mastermind of our group and every-
body listens carefully to what you suggest. Leon, you are very charismatic. From
science till music and from serious conversations till partying until the early morn-
ing, you can do it all. I am deeply thankful for our collaboration that lead to a
publication. Your office will always be reminded as the office that everyone had a
great time. Nader and Imran, you are both smart and humble. You are very pro-
ductive and have proven to work efficiently through very stressful periods. Your
suggestions aided in the development of my work and improved my writing skills.
Hans, it was a pleasure interacting with you. You always asked the right questions
and were eager to learn even more. Moreover, I would like to thank all the recent
colleagues in the Quantum and Computer engineering lab, Aritra, Abid, Miguel,
Amitabh, Daniel, Alejandro, Anneriet, for the interesting conversations and the
fun that we had together. Also, I would like to thank Andreas and Nikolas, the
Greeks that were part of the Quantum Computer Architecture lab. Even though
that your stay was short, you really made a difference to my everyday life. Talking

v

vi

to you was always relaxing and inspiring. Special thanks also to the secretaries
of Quantum and Computer engineering lab, Lidwina and Joyce for their help in
administration issues.

A big thank you goes out to Prof. Dr. Leonardo Di Carlo and all the members of
his group, for the frequent interaction that we had and the stimulating discussions.
The DiCarlo group is one of the best groups in their field and the people working
there are excellent researchers. Thank you for all the Monday meetings and the
suggestions that you always gave me.

Finally, I would like to thank all my close friends, my girlfriend and my parents
for supporting me throughout this period of my life. Completing a Ph.D. is not
an easy task and there are a lot of ups and downs. However, having these people
behind me, gave me the strength to accomplish my goal. Thank you!

CONTENTS

Acknowledgements v

List of Tables ix

List of Figures xi

Table of Acronyms xvii

1 Introduction 1
1.1 Building a fault tolerant quantum computer 1
1.2 Quantum error correction . 3
1.3 Research challenges . 5
1.4 Dissertation contributions and organization 6

2 Background 9
2.1 The power of quantum computing 9
2.2 Fault tolerant computation and quantum error correction 14

2.2.1 Quantum error correcting codes 15
2.2.2 Surface code . 16
2.2.3 Decoding the surface code . 19
2.2.4 Quantum error decoders . 22

2.3 Quantum errors. 24
2.3.1 Error propagation and transformation 24
2.3.2 Simulated error models . 25

2.4 Neural networks . 26

3 Pauli Frames for Quantum Computer Architectures 31
3.1 Introduction . 31
3.2 Background . 32

3.2.1 Quantum error correction . 33
3.3 Pauli frames . 35
3.4 A quantum computer architecture with Pauli frame 35

3.4.1 Benefits . 36
3.4.2 Implementation. 37

3.5 Simulation setup . 38
3.5.1 Logical error rate calculation. 40

3.6 Results . 40
3.7 Conclusions. 42
3.8 Acknowledgments . 43

vii

viii CONTENTS

4 Decoding Small Surface Codes with Feedforward Neural Networks 45
4.1 Introduction . 45
4.2 Need for fast decoding . 46
4.3 Related work . 46
4.4 Neural network decoder . 47
4.5 Results . 49
4.6 Discussion and conclusion . 55
4.7 Acknowledgments . 57

5 Designing neural network based decoders for surface codes 59
5.1 Introduction . 59
5.2 Designing neural network based decoders 62

5.2.1 Inputs/Outputs. 63
5.2.2 Sampling and training process. 63
5.2.3 Evaluating performance . 63

5.3 Implementation parameters . 65
5.3.1 Error model . 66
5.3.2 Choosing the best dataset . 66
5.3.3 Structure of the neural network 67
5.3.4 Training process . 70

5.4 Results . 72
5.4.1 Depolarizing error model . 73
5.4.2 Circuit noise model. 74

5.5 Conclusions. 76

6 Decoding surface code with a distributed neural network based de-
coder 77
6.1 Introduction . 77
6.2 RG decoding . 79
6.3 Distributed decoding with overlapping tiles 81
6.4 Results . 83

6.4.1 Optimizing for the size of training dataset 86
6.5 Conclusions. 88

7 Conclusions and future outlook 91
7.1 Conclusions. 91
7.2 Future research direction. 93

Bibliography 94
References . 94

Summary 103

Samenvatting 105

Curriculum Vitæ 107

List of Publications 109

LIST OF TABLES

2.1 Comparison between decoders . 23

3.1 Variables used in the execution schedules. 34
3.2 Execution steps for different operations when using a Pauli frame. . 36
3.3 The ESM circuit used in our test setup. 39

4.1 Layer sizes for the neural networks used throughout this work. The
number of input nodes is determined by the number of syndromes
in the quantum error correction scenario, using only X (or Z) syn-
drome bits for independent X/Z errors, and all syndrome bits for
depolarizing errors. For fault tolerance error models, d rounds of
measurement are followed by readout of the data qubits, and cal-
culated stabilizer eigenvalues are included in the input. The output
layer is restricted to two nodes for independent X/Z errors, since
logical X/Z errors are also independent. In all other scenarios, four
nodes are used to discriminate between I, X̄, Ȳ, and Z̄. The number
of nodes in the hidden layer is determined by analyzing the perfor-
mance of the resulting decoder empirically. 49

5.1 Pseudo-threshold values for the tested decoders (d=3) under depo-
larizing error model . 69

5.2 Average time for surface code cycle under depolarizing error model 72
5.3 Pseudo-threshold values for the depolarizing error model 73
5.4 Pseudo-threshold values for the circuit noise model 74

6.1 Size of training datasets . 80
6.2 Reduction in required inputs of the neural network 84

ix

LIST OF FIGURES

1.1 Overview of the full system stack required for building a quantum
computer . 3

1.2 Representation of encoding and decoding process 4

2.1 Visualization of a single qubit state in the Bloch sphere 10
2.2 Symbolic representation of the Pauli matrices. 12
2.3 Symbolic representation of the Hadamard, T and Phase gate. 12
2.4 Quantum circuit representation of the CNOT, the CZ and the Toffoli

gate. 14
2.5 Quantum circuit describing the application of a single-qubit gate Us

to qubit q0. 14
2.6 Quantum circuit describing the application of a multi-qubit gate Um

to m qubits. 14
2.7 Popular quantum error correcting codes and their respective families 16
2.8 Surface code structure. Data qubits are placed in the corners, X-type

ancilla qubits are placed inside the white squares and Z-type ancilla
are placed inside the grey squares. 17

2.9 Error syndrome measurement circuit for the distance-3 rotated sur-
face code [1–3]. Left: Measurement circuit for individual Z tiles (top)
and X tiles (bottom), including an ancilla qubit to be placed at the
center of each tile as seen at the right side. Ancilla qubits are pre-
pared in the +1-eigenstate of the appropriate basis, four CNOT gates
are executed, and the ancilla qubits are measured in the appropriate
basis. Right: Interleaving of separate parity check measurements,
including late preparation and early measurement for weight-two
parity checks. 18

2.10 Rotated surface code with code distance 3. Data qubits are placed
at the corners of the tiles and are enumerated from 0 to 8 (D0-D8).
X-type ancilla are placed in the center of the white tiles and Z-type
ancilla are placed in the center of grey tiles. 18

2.11 Rotated surface code with code distance 5. Errors are shown with X
or Z on top of the data qubits and detection events that correspond
to these errors are shown with red dots. 20

2.12 Rotated surface code with code distance 3 at consecutive time steps.
The alternating pattern on the measurement value of the same parity-
check, indicates the presence of a measurement error. 20

2.13 Decoding performance indicating the threshold of the surface code
and the pseudo-thresholds of each code distance. 21

xi

xii LIST OF FIGURES

2.14 Representation of an artificial neural network with 4 layers 27
2.15 A conceptual visualization of the recurrent nature of an RNN. 28
2.16 Structure of the LSTM cell and equations that describe the gates of

an LSTM cell. 28

3.1 Schematic of a SC17 logical qubit. 34
3.2 Execution schedule of a SC17. 34
3.3 Execution schedule with Pauli frame. 37
3.4 Simplified architecture of a QCA targeting a SC17 logical qubit. . . . 37
3.5 High level architectural view of the PFU. 38
3.6 ESM results used for successive decoding windows. 39
3.7 The QPDO control stack used for the simulations. 40
3.8 Calculated LER for XL errors for d=3 rotated surface code under cir-

cuit noise error model. The points denoted with circles are assuming
the use of a Pauli frame and the points with squares do not. Each
curve depicted with a different color, assumes a different td as de-
scribed in the legend. 41

3.9 Relative reduction in tcycle and LER by using a Pauli frame for dif-
ferent td. 42

4.1 A surface code error E decomposed into three components; a stabi-
lizer S, a fixed Pauli C which produces the same syndrome as E, and
a logical operator L. 47

4.2 The graphical and functional descriptions of a feed-forward neural
network. In the graphical description (left), inputs xj are passed to
neurons in a hidden layer, and each of these neurons outputs σ (~w ·~x + b),
where ~w and b are a local set of weights and a bias, and σ(x) is a non-
linear activation function (we use σ(x) = (1+ exp(−x))−1 for all neu-
rons considered in this work). The final outputs yk can be rounded to
{0, 1}, and interpreted as a class label. In the functional picture, the
weights and biases are assembled into matrices and vectors, respec-
tively, allowing the output vector to be expressed as a composition
of functions acting on the input vector. 48

4.3 Code capacity error model without measurement errors for Surface
Code with distance 3. Performance comparison of the neural net-
work decoder (blue) to the MWPM algorithm (orange) partial look-
up table (green). The black dashed line represents the points that the
physical error rate is equal to the logical error rate x = y. All points
of all three curves are lying on top of each other. 50

4.4 Code capacity error model without measurement errors for Surface
Code with distance 5. Performance comparison of the neural net-
work decoder (blue) to the MWPM algorithm (orange) partial look-
up table (green). The black dashed line represents the points that the
physical error rate is equal to the logical error rate x = y. 51

LIST OF FIGURES xiii

4.5 Code capacity error model without measurement errors for Surface
Code with distance 7. Performance comparison of the neural net-
work decoder (blue) to the MWPM algorithm (orange) partial look-
up table (green). The black dashed line represents the points that the
physical error rate is equal to the logical error rate x = y. 51

4.6 Depolarizing error model without measurement errors for Surface
Code with distance 3. Performance comparison of the neural net-
work decoder (blue) to the MWPM algorithm (orange) partial look-
up table (green). The black dashed line represents the points that the
physical error rate is equal to the logical error rate x = y. 52

4.7 Depolarizing error model without measurement errors for Surface
Code with distance 5. Performance comparison of the neural net-
work decoder (blue) to the MWPM algorithm (orange) partial look-
up table (green). The black dashed line represents the points that the
physical error rate is equal to the logical error rate x = y. 52

4.8 Depolarizing error model without measurement errors for Surface
Code with distance 7. Performance comparison of the neural net-
work decoder (blue) to the MWPM algorithm (orange) partial look-
up table (green). The black dashed line represents the points that the
physical error rate is equal to the logical error rate x = y. 53

4.9 Code capacity error model with measurement errors for Surface Code
with distance 3. Performance comparison of the neural network de-
coder (blue) to the MWPM algorithm (orange) partial look-up table
(green). The black dashed line represents the points that the physical
error rate is equal to the logical error rate x = y. 54

4.10 Depolarizing error model with measurement errors for Surface Code
with distance 3. Performance comparison of the neural network de-
coder (blue) to the MWPM algorithm (orange) partial look-up table
(green). The black dashed line represents the points that the physical
error rate is equal to the logical error rate x = y. 54

4.11 Circuit error model for Surface Code with distance 3. Performance
comparison of the neural network decoder (blue) to the MWPM al-
gorithm (orange) partial look-up table (green). The black dashed
line represents the points that the physical error rate is equal to the
logical error rate x = y. 55

5.1 Overview of the quantum computer system stack 60
5.2 Overview of the quantum micro-architecture [4] 61
5.3 Description of the decoding process of the low level decoder for a

d=5 rotated surface code. (a) Observed error syndrome shown in
red dots and bit-flip errors on physical data qubits shown with X
on top of them. (b) Invalid data qubits corrections and the corre-
sponding error syndrome. (c) Valid data qubits corrections and the
corresponding error syndrome. 64

xiv LIST OF FIGURES

5.4 Description of the decoding process of the high level decoder for a
d=5 rotated surface code. (a) Observed error syndrome shown in
red dots and bit-flip errors on physical data qubits shown with X on
top of them. (b) Corrections proposed by the simple decoder for the
observed error syndrome. (c) Additional corrections in the form of
the X̄ logical operator to cancel the logical error generated from the
proposed corrections of the simple decoder. 65

5.5 Different configurations of layers and nodes for the d=5 rotated sur-
face code for the depolarizing error model. The nodes of the tested
hidden layers are presented in the legend. Training stops at 500
training epochs for all configurations, since a good indication of the
training accuracy achieved is evident by that point. Then, the one
that reached the highest training accuracy continues training until
the training accuracy cannot increase any more. 68

5.6 Left: Comparison of decoding performance between Blossom algo-
rithm, low level decoder and high level decoder for the d=3 rotated
surface code for the depolarizing error model. Right: Zoomed in at
the region defined by the square. 69

5.7 Execution time for the high level decoder (hld) and the low level de-
coder (lld) for Feed-forward (FFNN) and Recurrent neural networks
(RNN) for d=3 rotated surface code for the depolarizing error model. 71

5.8 The design for the high level decoder that was used for the depolar-
izing and the circuit noise model. 72

5.9 Decoding performance comparison between the high level decoder
trained on a single probability dataset, the high level decoder trained
on multiple probabilities datasets and Blossom algorithm for the de-
polarizing error model with perfect error syndrome measurements.
Each point has a confidence interval of 99.9%. 73

5.10 Decoding performance comparison between the high level decoder
trained on a single probability dataset and the high level decoder
trained on multiple probabilities datasets for the circuit noise model
with imperfect error syndrome measurements. Each point has a con-
fidence interval of 99.9%. 75

6.1 Abstract comparison between decoding performance and execution
time of various decoding algorithms 78

6.2 Encoding levels of a concatenated code. At level 0 there are nine
qubits, that are encoded in three qubits at level 1 and these qubits
are encoded in one qubit at level 2. Arrows show the information flow. 80

6.3 Tile segmentation that represents the levels of concatenation in a
concatenated code. The smallest level of concatenation is represented
by the green tiles, the next level of concatenation is represented by
the red tiles, the following level of concatenation is represented by
the blue tiles, etc. 81

LIST OF FIGURES xv

6.4 Description of the simple decoder operation for the rotated surface
code with distance 5. Detection events are presented with the red
dots. Red lines indicate which data qubits are going to be corrected. . 82

6.5 Segmentation of a d=5 rotated surface code into four overlapping
tiles of d=3 rotated surface codes. 83

6.6 Comparison of decoding performance between the distributed de-
coder with four overlapping tiles of d=3 rotated surface codes in-
side a d=5 rotated surface code (blue), the unoptimized version of
the Blossom algorithm (red) and the neural network based decoder
(green). 85

6.7 Comparison of decoding performance between the distributed de-
coder with nine overlapping tiles of d=3 rotated surface codes in-
side a d=7 rotated surface code (blue), the unoptimized version of
the Blossom algorithm (red) and the neural network based decoder
(green). 85

6.8 Comparison of decoding performance between the distributed de-
coder with sixteen overlapping tiles of d=3 rotated surface codes in-
side a d=9 rotated surface code (blue), the unoptimized version of
the Blossom algorithm (red) and the neural network based decoder
(green). 86

6.9 Description of the design flow of the optimized version of the dis-
tributed decoder. 87

6.10 Comparison between the optimized version of the distributed de-
coding (blue) to the unoptimized version (red), the unoptimized ver-
sion of the Blossom algorithm (pink) and the neural network based
decoder (green). 88

TABLE OF ACRONYMS

2D Two-dimensional
3D Three-dimensional
FPGA Field Programmable Gate Array
FT Fault Tolerant
GPU Graphical Processing Unit
CPU Gentral Processing Unit
HDL Hardware Description Language
NISQ Noisy Intermediate-Scale Quantum
NN Neural Network
PF Pauli Frame
QEC Quantum Error Correction
QECC Quantum Error Correction Code
QED Quantum Error Detection
ESM Error Syndrome Measurement
LER Logical Error Rate
PER Physical Error Rate
PEL Physical Execution Layer
PFU Pauli Frame Unit
QPDO Quantum Platform Development Framework
QCU Quantum Control Logic
QISA Quantum Instruction Set Architecture
RBLUT Rule Based Look Up Table
PLUT Partial Look Up Table
ASIC Application-Specific Integrated Circuit
RG Renormalization Group
MWPM Minimum Weight Perfect Matching
MLD Maximum Likelihood decoder
MCMC Markov Chain Monte Carlo
CA Cellular Automaton
NNbD Neural Network based Decoder
LSTM Long Short-Term Memory
TPU Tensor Processing Unit
FFNN Feed-Forward Neural Network
RNN Recurrent Neural Network

xvii

1
INTRODUCTION

1.1. BUILDING A FAULT TOLERANT QUANTUM COMPUTER
Quantum computers as a theoretical model and later as realistic implementation
have been studied for almost 40 years now. The main reason is the immense com-
putational power that quantum computers can potentially achieve through super-
position and entanglement, and the fact that they can produce solutions to NP-hard
problems that are intractable or need an exponential amount of time to be solved
classically.

The idea of building a quantum computer was introduced by Feynman in 1981
[5]. Feynman proposed to use a universal quantum computer that would be able
to simulate in an exact way a quantum system, instead of a classical computer that
will perform an approximate simulation. Following this theoretical idea of build-
ing a quantum computer, the same year Toffoli introduces the Toffoli gate which
together with the NOT and XOR gates provides a set of reversible gates that can
be used for reversible classical computation. In 1982, Benioff introduces the first
theoretical framework of a quantum computer [6] and in 1985 Deutsch describes
a universal quantum computer similar to the concept of the universal Turing ma-
chine [7]. From 1994 until 1997, there are significant advances in quantum com-
puting in terms of quantum algorithms and first experimental implementations.
Shor introduces Shor’s algorithm [8], which is a factorization algorithm of prime
numbers that can achieve almost exponential speedup compared to its classical
counterpart [9]. Grover proposes the quantum database search algorithm, which
has a quadratic speedup compared to classical algorithms and can be applied to
a wide variety of problems [10]. Shor [11] and Steane [12–14] independently pro-
pose their schemes for quantum error correction and Monroe and Wineland imple-
ment the first experimental CNOT gate [15]. DiVincenzo proposes a list of criteria
that should be satisfied for creating a quantum computer [16]. In 1998, a work-
ing two-qubit quantum computer solves Deutsch’s problem [17, 18] and a three-
qubit working computer based on Nuclear Magnetic Resonance (NMR) is created

1

1

2 1. INTRODUCTION

[19, 20]. Grover’s algorithm is executed and the proof that a subclass of quantum
computations can be efficiently simulated in a classical computer (Gottesman–Knill
theorem) is provided [21].

In the following decades, many more quantum algorithms have been proposed
for various applications, such as quantum simulation [22, 23], search [24], machine
learning [25], and solving graph and algebraic problems [26, 27], etc.

The fragility of the quantum bits and the inability of creating scalable devices
are the main reasons that are keeping us from the realization of a large-scale quan-
tum computer. There are many competing quantum technologies that are being
explored, such as ion traps [28, 29], superconducting [30–32], semiconducting [33–
35], nitrogen-vacancy centers [36, 37], nuclear magnetic resonance [19, 20], photon
polarization modes [38], majoranas [39], that have their own advantages and disad-
vantages. Based on the construction and the connectivity of the qubits, quantum
computation and storage might be easier with a given quantum technology. At
the moment, the most promising quantum technologies are the ion traps and the
superconducting, for which demonstration of the DiVincenzo criteria has been ac-
complished [29–31, 40]. We should also mention that semiconducting technology
can potentially scale faster than the other two technologies as proposed in [41].

According to the DiVincenzo criteria [16], all these technologies have to obey
the minimum requirements needed to perform quantum computing in a physical
system. These requirements are namely i) a scalable physical system with well-
characterized qubits, ii) the ability to initialize the state of the qubits to a simple
fiducial state, such as |000 · · ·〉, iii) long relevant coherence times, much longer
than the gate operation time, iv) a "universal" set of quantum gates and v) a qubit-
specific measurement capability.

Moreover, building a quantum computer involves more than developing good
quantum technologies. Building a quantum computer implies that the quantum
software and quantum hardware will work in tandem. It implies the development
of an entire system stack, as shown in Figure 1.1, that connects both hardware
and software and allows the execution of quantum algorithms on quantum pro-
cessors. Quantum algorithms can be written in a high-level language and then
translated through a compiler to executable instructions for the hardware called
Quantum Instruction Set Architecture (QISA). These instructions are sent to the
micro-architecture that among other tasks, it translates the instructions into low-
level signals that are sent to operate on the qubits.

An important note that needs to be mentioned is that quantum hardware is still
error-prone and control of the quantum hardware is imperfect. These factors will
lead to poor quantum computation if no measure against noise is taken. Quantum
error correction (QEC) is the suggested solution to that problem, since by employ-
ing more resources and continuously monitoring the system, fault tolerant compu-
tation can be achieved.

As can be seen from the third dimension of Figure 1.1, various quantum error
correcting codes (QECCs) exist and they affect different software and hardware
layers of the system stack. For all these reasons, QEC is deemed as necessary in
order to have reliable quantum computation and storage with noisy components.

1.2. QUANTUM ERROR CORRECTION

1

3

Figure 1.1: Overview of the full system stack required for building a quantum computer

1.2. QUANTUM ERROR CORRECTION
In order to overcome the obstacle of the fragile nature of quantum bits and im-
perfect quantum operations, an error correction process can be employed. Qubits
suffer from decoherence, undesirable alteration of the quantum state, even when
there is no action upon them due to unavoidable interaction with their environ-
ment. Short coherence times, time that the desired state is available, make the
time budget for quantum computation limited. Furthermore, noise can be inserted
in the quantum system due to the imperfect application of quantum operations
through the classical control electronics.

To counteract the presence of noise, researchers came up with quantum error
correction techniques. QEC is the framework that allows reliable performance of
quantum computation and safe storage of the quantum information for a long pe-
riod of time.

The origins of quantum error correction can be found in classical error correc-
tion. In classical error correction bits are encoded by making an odd number of
copies of the initial bit. For instance a 0 is encoded as 000 and a 1 is encoded as
111. The 000 and 111 are the codewords of the encoded version of the code. Errors
can be detected and identified by performing majority voting. This process of error
identification is known as decoding.

It can be proven that if the error probability of a single bit is less than 1/2, then
the probability of no error while using encoding - decoding techniques is much
better [42]. This can be easily seen at the binary symmetric channel, where the
probability of no bit-flip error is (1 − p) and the probability of a bit-flip error is
p. Therefore, for p < 1/2, error correction increases the fidelity of the outcome.
Finally, this type of encoding is known as repetition. By repeating the bit 0 or
1 with itself, one can accomplish safer (less error prone) transmission of the bit
value; the probability that two or more bits are flipped is 3p2(1− p) + p3, so the
probability of an error is pe = 3p2 − 2p3 compared to the probability of an error of
the unencoded bit that is pe = p [42].

1

4 1. INTRODUCTION

However, there are three fundamental differences between classical and quan-
tum computing that make the principles of classical error correction not directly
applicable to quantum error correction. These differences are the following:

• A quantum state cannot be copied

There are already developed schemes that create a copy of a desired pure state
with decent fidelity [43], however a copying mechanism of an unknown state is
in general prohibited by quantum mechanics [42]. Therefore, we cannot copy a
qubit state for encoding. A solution would be to use entanglement between the
qubits.

• Quantum errors are continuous

Quantum errors are continuous, which means that they cannot be completely
discretized into Pauli errors with the finite resources that we provide. Such
errors can be amplitude decreasing, rotations in a slightly different angle than
desired, leakage to non-computational states, and many more [44]. Therefore,
qubits do not suffer a complete bit- or phase-flip, but an angular shift. A solu-
tion would be to use a discretization process of continuous to Pauli errors.

• Quantum measurements are destructive

As will be explained in Section 2.1, measuring a qubit that is in a superposition
state will project the qubit into a post-measurement state of |0〉 or |1〉, destroying
the initial state of superposition. Therefore, we cannot directly measure the qubit
to detect errors [42, 45]. A solution would be to use extra qubits to perform in-
direct measurements that do not affect the quantum state, while simultaneously
provide error information.

Similar to classical error correction, quantum error correction involves an en-
coding process of the quantum information into multiple qubits and a decoding
process that identifies and counteracts the noise that is inserted in the quantum
system, as shown in Figure 1.2.

Physical qubits

Logical qubits

Encoding

Pauli
errors

Detection

Pauli
gates

Correction
Decoding

Figure 1.2: Representation of encoding and decoding process

Many unreliable physical qubits are encoded to one more reliable qubit, known
as logical qubit. The encoding process creates logical qubits that are more resilient
to noise, however quantum errors can still occur at the physical qubits. There-
fore, we need a decoding process that identifies the errors at the physical level.

1.3. RESEARCH CHALLENGES

1

5

As mentioned quantum error correction adds extra qubits to the quantum sys-
tem. These qubits are called ancillary or ancilla qubits and are not used to store
quantum information. They are entangled to the qubits that store quantum infor-
mation, known as data qubits, and perform parity-checks between the state of the
data qubits that they are entangled to. By measuring the ancilla qubits, we obtain
information about changes in data qubit states (errors), without explicit measure-
ment of the data qubits that will lead to loss of the quantum information. The state
of the ancilla qubit is collapsed when it is measured, however this does not affect
the state of the quantum system. The measurement result is a binary value that is
used to identify the location and type of errors. The collection of all measurement
results from the ancilla qubits are forwarded to the classical unit that contains the
decoder, which is the topic of this thesis. The decoder proposes corrections based
on the measurement results and the corrections can be applied in the quantum
system to erase the errors that have accumulated. Since both the errors and the
corrections are considered Pauli errors and corrections, they can be easily tracked
and monitored in the classical system. A Pauli frame [46] can be used to keep
track of errors and corrections, therefore there is no need to apply the corrections
to the quantum system and potentially introduce extra errors due to the imperfect
application of the corrective gates.

Since errors are generated randomly in the quantum system, constant decoding
is required. In a fault tolerant quantum computation, an error correction cycle that
includes the state preparation of the ancilla, the entangling process between the
ancilla and the data qubits and the measurement of the ancilla, is required after
each logical operation. The decoding process should take at most as much time
as it is required to do an error correction cycle, so that the corrections out of the
decoder are provided in time and no stalling of any operation is required.

Finally, we should mention that there are other forms of quantum error correc-
tion, which include techniques that minimize or even completely suppress noise
[47], known as a passive quantum error correction or error mitigation [48]. Tech-
niques such as decoherence free subspaces, composite pulse sequences, positive-
operator valued measure (POVM) and others are used to avoid many of the error
inducing mechanisms [44]. However, in the context of this thesis, we are focusing
on the active form of quantum error correction as was described in this section.

1.3. RESEARCH CHALLENGES
In this thesis, we mainly focus on the development of high decoding performance
and high speed decoders that can be applied to different quantum error correcting
codes, with emphasis on the surface code. The main challenges of developing such
decoders are:

• Execution time: It is quantified as the time between the moment that all data
have reached the input of the decoder and the moment that the decoder outputs
the corrections. Due to the current limited budget for the execution time of the
decoder, a high speed implementation is required. The decoder can work in
parallel to the quantum error correction circuit, however, it cannot exceed the

1

6 1. INTRODUCTION

time budget of quantum error correction. If the execution time is larger than
the available time, either a backlog of data is created or the quantum operations
need to be stalled. In the former case, errors keep accumulating as they are
not being corrected, which will lead to wrongful computation or storage. In
the latter case, stalling of quantum operations in order to give more time to the
decoder to identify the errors will lead to less operations being applied, since
qubits decohere.

• Decoding performance: It is described based on the ability of the decoder to
correctly identify physical errors. The more errors that are properly identified
and corrected by the decoder, the higher the decoding performance. Typically,
the decoding performance is synonymous to the rate of logical errors. Naturally,
good decoding performance is the main objective of a decoder. The decoding
performance needs to be as high as possible for the given encoding scheme and
error model. Furthermore, it needs to stay high (correct a specified minimum
amount of errors) as the size of the quantum system increases.

• Scalability: It is the ability of the decoder to successfully decode any quantum
system regardless of its size. Successful decoding can be though in terms of
the decoding performance and the execution time. In terms of decoding perfor-
mance, the decoder needs to successfully correct the minimum weight of errors
based on the encoding scheme and the quantum error correcting code. In terms
of the execution time, the decoder should scale in such a way that no back-log
of input data is created while also no quantum operations are stalled to perform
the decoding.

More information about these metrics is given throughout the thesis.

1.4. DISSERTATION CONTRIBUTIONS AND ORGANIZATION
In Chapter 2, we provide the background information to topics like quantum error
correction, surface code, error models, decoding algorithms and neural networks
that are required for the rest of the thesis.

We start our investigation on decoding algorithms in Chapter 3 with a simple
rule-based decoder that performs error correction only for the surface code with
17 qubits. This decoder is added in a Pauli frame unit that can perform the exe-
cution schedule of the quantum operations required for a surface code cycle. We
investigate the case where the error syndrome measurements occur in parralel with
the decoding process and present a more efficient execution schedule for a logical
qubit that reduces the cycle time tcycle. We found that this execution schedule also
relaxes the timing constraints on both the error syndrome measurements and the
decoder. Furthermore, we showed that as a result of the reduced tcycle, the decod-
ing performance of such a logical qubit, can be reduced up to 70% when the time
required for error correction equals the decoding time tec = td.

However, this approach does not scale well since it was based on a rule-based
approach. Moreover, this approach is similar to other classical decoding algo-
rithms like the Blossom algorithm. Blossom algorithm can reach good decoding

1.4. DISSERTATION CONTRIBUTIONS AND ORGANIZATION

1

7

performance but the execution time scales polynomially with the size of the sys-
tem. Furthermore, for a given quantum system, Blossom scales polynomially with
the physical error rate at which errors are generated. This is due to the graph
matching approach that it uses to solve the decoding problem. To avoid this non-
constant execution time with the physical error rate and still observe high decoding
performance and scalability with the number of qubits, we decided to investigate
neural network based decoders in Chapter 4.

We explored decoders that include neural networks, because it has been proven
that neural networks exhibit constant execution time after being trained. This is
also known as inference time, which means that regardless of which input is se-
lected, the output of the neural network will be generated after the same time.
Therefore for the same quantum system, the inference time will be constant, which
is really valuable for decoding. In Chapter 4, we present our initial design for a
neural network based decoder, which consists of a classical (a non-neural network)
decoding module and a neural network. This design was enough to act as a proof
of concept that such kind of neural network based decoder can successfully decode
small distance surface codes for different error models. Our neural network based
decoder reached equivalent performance to the Blossom decoder and showed good
levels of generalization. For the code capacity error model, Blossom and neural net-
work based decoder reached exactly the same performance due to the simplicity of
the error model and the small code distances that were tested. For the depolarizing
error model, the neural network based decoder outperformed Blossom from 2% to
38% for various physical error rates for all code distances tested. For the case of
the noisy error syndrome measurements, we only tested for d=3, and the improve-
ment achieved by the neural network based decoder ranged from 4% to 43%. The
generalization was shown through comparison with a Look-Up Table (LUT) that
consisted of all the training samples and was significantly under-performing com-
pared to the neural network based decoder. For small code distances like d=3, most
and in some cases all of the state space is used as training samples, therefore there is
not any difference between the decoding performance of the neural network based
decoder and the LUT. However, as the code distance increases and a small frac-
tion of the state space is being used as training samples, the neural network based
decoder significantly outperforms the LUT decoder. We reach improvement up to
99%. Moreover, we present a theoretical estimation of the execution time of such a
decoder in a hardware implementation. We argue that a hardware implementation
would be fast enough to decode based on the given time budget for error correc-
tion. Based on the structure of the neural network that was used, we upper bound
the execution time to ~3.6-18µsec for a d=3 rotated surface code. We reach that
result by using a high-level synthesis tool which permits hardware-synthesizable
code to be generated from C [49], but does not ensure that the resulted code is
optimized for speed. The available time budget for quantum error correction is
dependent to the quantum technology and the fidelity of the quantum operations,
however this result seems to be in the order of magnitude that most quantum tech-
nologies require.

Following the work of Chapter 4, there were many other implementation de-

1

8 1. INTRODUCTION

signs proposed by various research groups. All of the proposed designs can be cat-
egorized in two distinct categories: i) decoders that only include neural networks
and predict corrections directly at the physical level and ii) decoders that include a
classical module working alongside a neural network and predict corrections at the
logical level. Most of these approaches are focused in reaching the highest decod-
ing performance possible, but in our research we focus on creating a decoder with
the smallest possible execution time while reaching at least equivalent decoding
performance to Blossom. In Chapter 5, we compare both approaches and argue
about the advantages and disadvantages of each design. We analyze the details
of each approach and compare them in terms of execution time and decoding per-
formance. Also, we provide an analysis about the tuning of the neural network
parameters and provide a set of guidelines that can be used when such neural net-
work based decoders need to be created. We select the best design out of the ones
compared and test it against Blossom algorithm for the depolarizing error model
with noiseless error syndromes. We reach an improvement between 2% and 37%
compared to Blossom, in terms of decoding performance. We also show efficient
decoding for the circuit noise model with noisy error syndrome measurements.
Since the main goal of this research is to have high speed decoders, we avoid de-
signs that use only a neural network module to act as the decoder, due to their need
to repeat the prediction step. This repetition is affecting the execution time of the
decoder in a polynomial way as the physical error rate increases.

The main challenge of neural network based decoders is the ability to scale ef-
ficiently as the code distance scales. In Chapter 6, we present a distributed way
of decoding, that attempts to solve this issue. We propose the division of the error
correction code into small areas, where a neural network based decoder performs
the decoding in a local way. Error information is obtained from each small area,
which is used by the neural network to identify whether the classical decoding
module will provide the desired corrections. We show that there is no significant
loss in the decoding performance compared to the design without the distributed
decoding, while providing the same dataset to both decoders. Furthermore, we
note that based on the construction of the classical decoding module, the introduc-
tion of an additional neural network can be beneficial. The added neural network
in our design operates as a controlling mechanism that decides how the neural
networks will be used based on the input data. Our simulations have shown that
the same decoding performance can be achieved through the distributed decoding
approach, while providing the ability of increasing the amount of relevant training
samples in the original neural network. Therefore, the same improvement between
2% and 37% compared to Blossom is achieved with the distributed decoding ap-
proach.

Finally, in Chapter 7, we provide conclusions about our research and give some
outlook for future work.

2
BACKGROUND

This chapter presents the background information about the topics discussed in this thesis.
In Section 2.1 we provide the quantum computing basics. Following that, in Section 2.2
we describe different aspects of quantum error correction. In Section 2.2.1, we introduce an
overview of the QEC codes and in Section 2.2.2 we present the surface code, which is the
QEC code that we used throughout this thesis. In Section 2.2.3, we explain how decoding is
performed in the surface code and in Section 2.3 we describe the error models that were used
in our work. Finally, since we developed decoders based on neural networks, in Section 2.4
we provide some background information about neural networks.

2.1. THE POWER OF QUANTUM COMPUTING
The basic unit of information in quantum mechanics is called quantum bit or qubit.
Contrary to the classical bit that only exists in a binary state of 0 and 1, the qubit
has the ability to exist in a superposition of these two basis states, |0〉 and |1〉, with
the superposition state ψ given by:

|ψ〉= α |0〉+ β |1〉 (2.1)

where

α, β ∈C and |α|2 + |β|2 = 1 (2.2)

The state of a single qubit can be described graphically as a vector in the Bloch
sphere as depicted in Figure 2.1.

9

2

10 2. BACKGROUND

Ψ

0

1

1
2
(0 i 1 (

1
2
(0 1 (

1
2
(0 i 1 (

1
2
(0 1 (

z

y

x

θ

φ

Figure 2.1: Visualization of a single qubit state in the Bloch sphere

The Bloch sphere is a tool that visualizes the state of a single qubit. It is a
unit sphere and the basis state |0〉 and |1〉 corresponds to the intersection of the
sphere with the positive and negative z-axis, respectively. Any superposition state
is described as a point on the sphere. Other common states besides the basis states
are on the x-axis and the y-axis, which are the 1√

2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉) and the

1√
2
(|0〉+ i |1〉), 1√

2
(|0〉 − i |1〉), respectively.

A superposition state can be represented, by a complex-valued two-vector

|ψ〉=
[

α
β

]
(2.3)

Any state in the Bloch sphere as depicted in Figure 2.1 can be mathematically
given by:

|ψ〉= cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 , (2.4)

with ϕ, θ satisfying
ϕ ∈ [0,2π) and θ ∈ [0,π]. (2.5)

In classical computers, readout of the bit by direct measurement will provide
the bit value with 100% probability when the measurement process is error-free. In
quantum computers, due to the superposition state of the qubits, the measurement
process is non-deterministic. Readout of the qubit state will result in a probabilistic

2.1. THE POWER OF QUANTUM COMPUTING

2

11

result based on the coefficients α and β according to eq. 2.1 and 2.2. That is, when
a qubit is measured, a result "0" is obtained with probability |α|2 or a result "1" is
obtained with probability |β|2. Note that the measurement result is a binary value
that cannot be used to reconstruct the original superposition state.

In classical computers, a system with n bits can represent 2n possible states.
This system can be in one of the 2n states at a time. On the other hand, in quantum
computers, a system with n qubits that exist in a superposition state can represent
the system state as the tensor product of each qubit state:

|ψ〉=(a0 |00〉+ b0 |10〉)⊗
· · · ⊗ (an−2 |0n−2〉+ bn−2 |1n−2〉)⊗ (an−1 |0n−1〉+ bn−1 |1n−1〉)

(2.6)

This state shown in eq. 2.6 is known as a product state since it consists of the
product of all the independent 2n qubit states.

If we expand the product state, we get a superposition of all states:

|ψ〉= α0···00 |0n−1 · · ·0100〉+ · · ·+ α1···10 |1n−1 · · ·1100〉+ α1···11 |1n−1 · · ·1110〉 , (2.7)

where

αin−1···i1i0 =
n−1

∏
k=0

[(1− ik) · ak + ik · bk] , ik ∈ {0,1}, (2.8)

It can be easily verified that the state |ψ〉 is also normalized:

1

∑
in−1=0

· · ·
1

∑
i1=0

1

∑
i0=0
|αin−1···i1i0 |

2 = 1. (2.9)

The product state in eq. 2.6 can always be expanded to eq. 2.7, however the
reverse is not always possible, especially when qubits are not independent of each
other. This phenomenon is called entanglement and suggests that the state of one
qubit cannot be described independently based on the state of the others. The
immense power and parallelism that quantum computers exhibit is the outcome of
the superposition and entanglement.

PERFORMING QUANTUM COMPUTATION
Quantum computation can be performed in various ways. The most common
models are the measurement based quantum computing model [50], the adiabatic
quantum computing model [51] and the topological quantum computing model
[52] and the quantum circuit. The last one is the most popular one.

The quantum circuit model performs quantum computation as a series of re-
versible quantum gates. A quantum circuit can be described as a set of quantum
operations that are going to be performed in a system of qubits. There are three
procedures that need to be employed, namely preparation of an input quantum
state in a computational basis, unitary evolution of the quantum state while gates
are applied and measurement, which will probabilistically provide the output state
[50].

In this thesis, we are using the quantum circuit model of computation.

2

12 2. BACKGROUND

SINGLE-QUBIT GATES
A single-qubit gate acts on a single qubit and alters its state. A single-qubit gate is
represented as a rotation Rn̂(θ) on the Bloch sphere along the axis n̂ = (nx,ny,nz) (
|n̂|2 = 1) by an angle θ. The representation of this rotation by the unitary matrix is
given by:

Rn̂(θ) = cos
(

θ

2

)
I − i sin

(
θ

2

)
(nxX + nyY + nzZ) (2.10)

where I, X, Y and Z are the Pauli matrices that represent the Pauli gates

I ≡
[

1 0
0 1

]
, X≡

[
0 1
1 0

]
, Y≡

[
0 −i
i 0

]
, Z≡

[
1 0
0 −1

]
(2.11)

The symbolic representation of these gates is given in Figure 2.2:

I X Y Z

Figure 2.2: Symbolic representation of the Pauli matrices.

The effects of single-qubit Pauli gates to a qubit state are given below:

I : |0〉 7→ |0〉|1〉 7→ |1〉 , X : |0〉 7→ |1〉|1〉 7→ |0〉 , Z : |0〉 7→ |0〉
|1〉 7→ −|1〉 , Y : |0〉 7→ i |1〉

|1〉 7→ −i |0〉 (2.12)

Other single-qubit gates that are commonly used in quantum computation are
the Hadamard (H) gate, the T gate and the Phase (S) gate, which have the following
matrix representation:

H ≡ 1√
2

[
1 1
1 −1

]
, T ≡

[
1 0
0 eiπ/4

]
, S≡

[
1 0
0 eiπ/2

]
(2.13)

The symbolic representation of these gates is given in Figure 2.3:

H T S

Figure 2.3: Symbolic representation of the Hadamard, T and Phase gate.

MULTI-QUBIT GATES
A multi-qubit gate acts on multiple qubits at the same time and alters their state.
Since multi-qubit gates operate on more than one qubit, their effect cannot be repre-
sented in the Bloch sphere. The most common multi-qubit gates are the Controlled-
NOT (CNOT) and the Controlled-Phase (CZ) gate, which both act on two qubits.

The CNOT gate is applied to two qubits at the same time. One qubit is the
control qubit and the other is the target qubit, that are represented by the top and

2.1. THE POWER OF QUANTUM COMPUTING

2

13

the bottom one, respectively in Figure 2.4. The state of the target qubit is going
to be changed from |0〉 to |1〉 and vice-versa, if the state of the control qubit is |1〉,
otherwise the state of the target qubit remains unchanged. This operation is a bit-
flip (X) operation on the target qubit state conditioned on the state of the control
qubit.

In case of the CZ gate, the state of the control qubit is going to be changed
from |1〉 to −|1〉, if the state of the target qubit is |1〉, otherwise the state of the
control qubit remains unchanged. This operation is a phase-flip (Z) operation on
the control qubit state conditioned on the state of the target qubit.

They then perform the following transformations:

CNOT :

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

, CZ :

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |10〉
|11〉 →−|11〉

(2.14)

The corresponding matrix representation is given by:

CNOT≡

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ≡

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Multi-qubit gates are essential to create entanglement in the system, since they

can map certain product states onto entangled states.
As another example of a multi-qubit gate, we present the Toffoli gate, also

known as the Controlled-Controlled-NOT (CCNOT) gate. The Toffoli gate is per-
formed into three qubits and applies a bit-flip operation (X) on the target qubit, if
the two control qubits have a value of |1〉.

The matrix representation of the Toffoli gate is given by:

Toffoli≡

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

(2.15)

The circuit representation of the most common multi-qubit gates, the CNOT,
the CZ and the Toffoli gate, is shown in Figure 2.4.

2

14 2. BACKGROUND

Control

Target

Control

CNOT CZ Toffoli

Figure 2.4: Quantum circuit representation of the CNOT, the CZ and the Toffoli gate.

In direct analogy to the classical case, a universal quantum gate set can be found
that includes a set of quantum gates that can be used to perform any quantum
operation. More accurately, this gate set should be able to approximate any m-
qubit operation Um to arbitrary precision, where m≥ 1. The most commonly-used
universal quantum gate set is {H, T,CNOT}.

QUANTUM CIRCUIT

As we mentioned, in the quantum circuit model of computation, a quantum circuit
consists of a sequence of reversible quantum gates that are applied on the qubits.
In a quantum circuit, qubits are represented with horizontal lines and quantum op-
erations are represented with blocks. Figure 2.5 shows the application of a single-
qubit gate Us to a qubit q0 and Figure 2.6 shows the application of a multi-qubit
gate Um to m qubits. If the initial state before the application of the gate is |ψ〉, then
the output can be calculated as |ψ′〉= Us |ψ〉 and |ψ′〉= Um |ψ〉, respectively.

Usq0

Figure 2.5: Quantum circuit describing the application of a single-qubit gate Us to qubit q0.

q0

Um

q1

qm-1

Figure 2.6: Quantum circuit describing the application of a multi-qubit gate Um to m qubits.

2.2. FAULT TOLERANT COMPUTATION AND QUANTUM ER-
ROR CORRECTION

As mentioned in Section 1.2, quantum error correction is required to correct errors
that accumulate in the quantum system as it evolves. However, encoding physical
qubits to logical qubits and decoding in order to find the errors are not sufficient
on their own to allow reliable quantum computation and storage.

2.2. FAULT TOLERANT COMPUTATION AND QUANTUM ERROR CORRECTION

2

15

Due to the extra resources that quantum error correction introduces, more faulty
operations are inserted. Furthermore, propagation of errors as quantum gates are
applied is inevitable. Therefore, we need another mechanism that does not allow
errors to spread uncontrollably in ways that we cannot predict. If that is the case,
then decoding will fail to identify errors and preserve the system in the desired
quantum state.

The procedure of performing reliable computation and storage while errors are
present as the system is evolving, is called fault tolerant quantum computing. A
quantum operation is assumed to be fault tolerant if only one component in a cer-
tain operation (e.g. state preparation, measurement, application of a gate, idling)
fails, then the failure will cause at most one error in each encoded block of qubits at
the output of the operation [42]. Fault tolerant operations and syndrome extraction
circuits included in QEC are required, to avoid potential propagation of errors that
will quickly lead to a failure of the quantum computation.

Nevertheless, to achieve fault tolerant quantum computation the error rate at
which errors are inserted in the quantum system, must be below a certain thresh-
old. The threshold theorem states that a quantum computer in the presence of
noise can perform close to ideal quantum computation, if the failing probability
for the noisy system is less than a certain threshold [42, 53]. The threshold value is
dependent on the quantum error correcting code, the error model and the decoder
selected. The highest threshold reached so far is 1% for the surface code assuming
faulty operations [2].

2.2.1. QUANTUM ERROR CORRECTING CODES
In order to protect quantum information against errors, a quantum error correcting
code needs to be used. Many families of QECCs have been developed providing
different advantages, such as simple code structure and transversal implementa-
tion of gates. Many of the codes developed belong to more than one family, in an
effort to gain advantages from multiple families of QECCs. A non-exhaustive rep-
resentation of the most popular QECCs and the families they belong to, can be seen
in Figure 2.7. QECCs differ in the way that the quantum information is represented
in the state space of many physical qubits, the way that fault-tolerant gates are per-
formed and the way that the error information through quantum measurements is
obtained.

The codes found in Figure 2.7 are namely: Calderbank-Shor-Steane (CSS) code
[12, 54], Shor code [11], low-density parity-check (LDPC) code [55], Bacon-Shor
code [56], 2D color code [57], 3D color code [58], Steane code [12–14], surface code
[59, 60], subsystem surface code [61], gauge color code [62], code deformation in
toric code [1] and condensed matter systems [60].

Although these QECCs differ in many aspects, there are some principles that
need to be followed by any QECC. The encoding procedure should be simple and
effective, making the code fault tolerant to avoid fast accumulation of errors. More
accurately, the code should be able to operate below a certain threshold, so that
the extra overhead in resources added by QEC will increase the decoding perfor-
mance of the code. Moreover, the code should be defined by its operators which

2

16 2. BACKGROUND

CSS

Shor

LDPC

2D color
code

Steane
code

Surface
code

3D color
code

Subsystem surface code
Gauge color code

Code
deformation
(Toric code)

Condensed
matter

systems

Topological

Subsystem

Stabiliz
er

2D Bacon-
Shor

Figure 2.7: Popular quantum error correcting codes and their respective families

indicate how the encoded state changes and any geometrical constraints should
be provided to the decoder to assist with the decoding process. Finally, the code
should be easily abstracted to dimensions higher than 2.

2.2.2. SURFACE CODE
Many quantum error correcting codes have been proposed, but throughout this
thesis we only consider the surface code [1, 2, 63–69], one of the most promising
QEC codes. The surface code is a Topological Stabilizer code that has a simple
structure, local interactions between qubits and is proven to have high tolerance
against errors. It is usually defined over a 2D lattice of qubits [69, 70], although
higher dimensions can be used.

Topological codes distribute the qubits in a certain topology and exploit the
local interactions between qubits. The greatest advantage of topological codes is
the simple and scalable geometry in which qubits are allocated and the high er-
ror threshold exhibited by this family of codes. Stabilizer codes are based on the
stabilizer formalism and use stabilizer operators (parity-checks) to perform error
detection and correction. The main advantage is that they provide a clear and sim-
ple framework which can be exploited by various quantum error correcting codes.
The surface code inherits the advantages out of both families of codes, thereby
making it a promising solution as a quantum error correcting code.

The surface code consists of two types of physical qubits, ones that store quan-
tum information, known as data qubits, and others that can be used to detect er-
rors in the logical qubit through their measurement, known as ancillary or ancilla
qubits. Since quantum errors are continuous, we need to discretize them to make
the identification process easier. We discretize quantum errors into Pauli bit-flip
(X̂) errors, phase-flip (Ẑ) errors and bit- and phase-flip errors (Ŷ). Based on that,
the surface code only needs to identify and correct these two types of errors. There-
fore, only X-type and Z-type ancilla qubits are required, which identify phase-flip
and bit-flip errors, respectively. An example of a 2D surface code is presented in
Figure 2.8.

2.2. FAULT TOLERANT COMPUTATION AND QUANTUM ERROR CORRECTION

2

17

20 21 22 23 24

15 16 17 18 19

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4

AZ0

AZ1

AZ2

AZ3

AZ4

AZ5

AZ6

AZ7

AX0

AX1

AX2

AX3

AX4

AX5

AX6

AX7

Figure 2.8: Surface code structure. Data qubits are placed in the corners, X-type ancilla qubits are placed
inside the white squares and Z-type ancilla are placed inside the grey squares.

In order to detect both type of errors, each ancilla qubit is entangled with its
neighboring data qubits based on the circuit presented in Figure 2.9. This circuit
is used to collect the ancilla measurements for the surface code and therefore is
known as the error syndrome measurement (ESM) circuit. It signifies a surface
code cycle which includes the preparation of each ancilla in the appropriate state,
followed by 4 CNOT gates that entangle each ancilla qubit with its 4 neighboring
data qubits. ESM ends with the measurement of all ancilla qubits in the appro-
priate basis. In principle, all ancilla measurements in the lattice can be performed
in parallel, therefore obtaining the error information for the whole lattice in one
surface code cycle.

The measurement result of the ancilla is a parity-check, which is a value that is
calculated as the parity between the state of the data qubits connected to it. Note
that the parity-checks are used to identify errors in the data qubits without hav-
ing to measure the data qubits explicitly and collapse their state. The state of the
ancilla qubit at the end of every parity-check is collapsed through the ancilla mea-
surement, but is initialized once more in the beginning of the next error correction
cycle. The collection of parity-checks out of one or multiple error correction cycles
is known as the error syndrome. The error syndrome is provided to the decoder
to identify the location and type of errors and propose corrections that erase these
errors. Note that, the parity-checks must commute with each other, anti-commute
with errors and commute with the logical operators.

A critical issue when gathering the error syndrome, is the order in which we
perform the CNOT gates in the ESM circuit presented in Figure 2.9. As described
in [3], a correctable error might be generated, but due to the order of the CNOTs, it
can propagate to more errors, leading to the creation of a logical error. There exist a
schedule of the CNOT gates in the ESM circuit that will alleviate this issue, which
visually looks like an "S" or a "Z" shape in terms of the order of the CNOTs on
the data qubits. By following that schedule, no correctable errors will propagate
catastrophically to the rest of the qubits, so a logical error will be avoided, thus
making the circuit fault-tolerant.

2

18 2. BACKGROUND

|0〉 Z

|+〉 X

Figure 2.9: Error syndrome measurement circuit for the distance-3 rotated surface code [1–3]. Left: Mea-
surement circuit for individual Z tiles (top) and X tiles (bottom), including an ancilla qubit to be placed
at the center of each tile as seen at the right side. Ancilla qubits are prepared in the +1-eigenstate of the
appropriate basis, four CNOT gates are executed, and the ancilla qubits are measured in the appropriate
basis. Right: Interleaving of separate parity check measurements, including late preparation and early
measurement for weight-two parity checks.

There are two main ways that encoding is performed in the surface code, known
as planar encoding [60] and encoding with defects [63], however, in this thesis we
focus only on planar encoding. Planar surface code requires less number of qubits
compared to the defect for the same level of protection [63]. Therefore, planar
surface code seems to be a better approach for short-term experimental platforms
[40, 71]. One of the smallest surface codes that constitutes a logical qubit is pre-
sented in Figure 2.10. This is the rotated surface code that was introduced in [72].
It consists of 9 data qubits placed at the corners of the square tiles and 8 ancilla
qubits placed inside the square and semi-circle tiles. Each ancilla qubit can inter-
act with its neighboring 4 (square tile) or 2 (semi-circle tile) data qubits, which is
shown through the parity-checks of Figure 2.10.

AX0

AZ1

AZ0 AZ2

AZ3

AX2

AX1

AX3

XL

ZL

Parity checks
AX0=X0X1
AX1=X1X2X4X5
AX2=X3X4X6X7
AX3=X7X8

AZ0=Z3Z6
AZ1=Z0Z1Z3Z4
AZ2=Z4Z5Z7Z8
AZ3=Z2Z5

Figure 2.10: Rotated surface code with code distance 3. Data qubits are placed at the corners of the tiles
and are enumerated from 0 to 8 (D0-D8). X-type ancilla are placed in the center of the white tiles and
Z-type ancilla are placed in the center of grey tiles.

2.2. FAULT TOLERANT COMPUTATION AND QUANTUM ERROR CORRECTION

2

19

A logical qubit in the surface code is defined by its logical operators (X̄,Z̄) that
determine how the logical state of the qubit can be changed. Any operator of the
form X⊗n or Z⊗n that creates a chain that span both boundaries of the same type
can be regarded as a logical operator, with n being the number of data qubits that
are included in the logical operator. Typically, the logical operator with the smallest
n is selected.

An important feature of any QECC is the code distance. Code distance (d),
describes the degree of protection against errors. Distance can be regarded as the
minimum weight of a Pauli operator commuting with all parity-checks and acting
non trivially on the system containing the quantum information. More accurately,
it is the minimum number of physical operations required to change the logical
state [44, 73]. In surface code, the degree of errors (d.o.e.) that can be successfully
corrected, is related to the code distance and is calculated according to the follow-
ing equation:

d.o.e. = bd− 1
2
c (2.16)

Therefore, for the d=3 surface code of Figure 2.10, only single errors can be
successfully corrected.

Surface Code is a very promising quantum error correcting code with many ad-
vantages. It has a simple structure with local constraints between qubits, therefore
requiring only nearest neighbor interactions. Most of the gates can be performed
transversally (theoretically) in planar encoding and in general gates do not have
much spatial overhead. Furthermore, the dominant gate is the CNOT or equiva-
lently the CZ, which has experimentally been implemented with a fidelity of 99%.
Moreover, the highest known threshold (1%) has been achieved with the surface
code.

However, there are also some limitations. It has up to 4 parity check operators
per qubit, therefore requiring more resources compared to other QECCs. Also, due
to the increased number of qubits, it produces a large volume of error informa-
tion that requires fast decoding. Another limitation is that it requires a distillation
process [63], in order to have a universal set of gates.

2.2.3. DECODING THE SURFACE CODE
As we just mentioned, after running a surface code cycle, the parity-checks will
be forwarded to the decoding algorithm. These binary values will be combined in
order to identify the location and type of errors in the code. In the rotated surface
code, each ancilla performs a parity-check of the form of X⊗4/Z⊗4 (square tile) and
X⊗2/Z⊗2 (semi-circle tile), as presented in Figure 2.9. When the state of the data
qubits involved in a parity-check has not changed, then the parity-check will return
the same value as in the previous surface code cycle. In the case where the state of
an odd number of data qubits involved in a parity-check is changed compared to
the previous surface code cycle, the parity-check will return a different value than
the one of the previous cycle (0↔ 1). The change in a parity-check in consecutive
cycles is known as a detection event.

2

20 2. BACKGROUND

Assuming no ancilla errors, a single data qubit error will cause two neighboring
parity-checks to indicate two detection events (Z error in the bottom of the lattice
in Figure 2.11), unless the error occurs at the corner of the lattice which will lead to
only one parity-check indicating one detection event (Z error in the top corner of
the lattice in Figure 2.11). Multiple data qubit errors that occur near each other form
chains of errors (X errors in Figure 2.11), which causes only two detection events
located at the parity-checks existing at the endpoints of the error chain [1, 63, 73].

X

X

Z

Z

Figure 2.11: Rotated surface code with code distance 5. Errors are shown with X or Z on top of the data
qubits and detection events that correspond to these errors are shown with red dots.

In the case that the measurement process is imperfect, a different type of errors
will be present. A measurement during the readout of the ancilla value is known as
a measurement error. When a measurement readout is misinterpreted, the decoder
will get information about an error that does not exist, since it was just the misin-
terpretation of the ancilla value. In that case, a correction might be applied where
no error existed and vice-versa. The way that a measurement error is observed is
by comparing the measurement values of multiple consecutive surface code cycles
for the same parity-check, as presented in Figure 2.12.

In the case where the error probability for a data qubit error is equal to the
error probability for a measurement error, d surface code cycles are deemed enough
to successfully identify measurement errors [74]. When a measurement error is
successfully identified, no correction is required.

1st time step

2nd time step

3rd time step

Figure 2.12: Rotated surface code with code distance 3 at consecutive time steps. The alternating pattern
on the measurement value of the same parity-check, indicates the presence of a measurement error.

Thus, through observation of the parity-checks throughout multiple surface

2.2. FAULT TOLERANT COMPUTATION AND QUANTUM ERROR CORRECTION

2

21

code cycles, identification of errors is made in space (data errors) and in time (mea-
surement errors). The decoder receives the error syndrome out of multiple surface
code cycles and analyzes the detection events. Then, it proposes a set of corrections
that will cancel out the errors that have accumulated.

However, totally suppressing the noise is unfeasible, since the decoder might
misinterpret the information coming from the error syndrome. The main reason
for such misinterpretations, comes from the fact that the surface code is a degener-
ate code. This degeneracy means that different sets of errors create the same error
syndrome. Therefore, based on the physical error rate of the quantum operations,
different sets of errors are more likely than others. This puts an extra assump-
tion to the decoder, since it should output different corrections based on the error
probability. Based on all these reasons, it is evident that no decoder can perfectly
suppress all noise.

Evaluating the decoding performance is done by calculating the logical error
rate for a large range of physical error rates. The logical error rate is calculated
as the ratio of logical errors created over the number of surface code cycles run.
Plotting a graph containing the physical error rates and the corresponding logical
error rates, provides a clear picture about the decoding performance, as seen in
Figure 2.13.

Ps-thr
d=3

Ps-thr
d=5

Ps-thr
d=7

FT-thr

Figure 2.13: Decoding performance indicating the threshold of the surface code and the pseudo-
thresholds of each code distance.

The decoding performance of a decoder as well as the level of protection of a
QEC code for a given error model can be characterized by the metric known as
threshold. Threshold is defined as the point of intersection between all the curves
representing the logical error rates of multiple code distances and constitutes the
highest physical error rate at which the extra resources of quantum error correction
are aiding the error identification process, see FT-th dashed line in Figure 2.13.

2

22 2. BACKGROUND

In Figure 2.13, we also point out the pseudo-threshold values for d=3,5 and
7 with the Ps-th d=3, Ps-th d=5 and Ps-th d=7 lines, respectively. The pseudo-
threshold is defined as the highest physical error rate that the quantum device
should operate, in order for error correction to be beneficial for the given code
distance. Operating at higher than the pseudo-threshold probabilities will cause
worse decoding performance, due to the extra faulty operations inserted by QEC.
Pseudo-threshold is defined as the point of intersection between the curve consist-
ing of the logical error rates for a given code distance with the curve where the
physical error rate is equal to the logical error rate (y = x).

Note that both the threshold and the pseudo-threshold depend on the QECC,
the decoding strategy and the error model. In order to obtain a physical error rate
versus logical error rate graph, as shown in Figure 2.13, several surface code cycles
are performed in which errors are inserted based on a specified error model. In Sec-
tion 2.3, we will describe the different error models that we used in the simulations
performed for this thesis.

As we mentioned in Section 1.3, there are certain challenges in decoding such
as the limited decoding time, the decoding performance and the scalability of the
decoder.

2.2.4. QUANTUM ERROR DECODERS
As we just explained, the decoding process is about identification of the quantum
errors. The main parameters that define a "good" decoder are the high decoding
performance, the ability to efficiently scale to large code distances and the small
execution time.

There already exist classical decoders that can reach good decoding perfor-
mance, enough to make fault-tolerant quantum computing possible. Some of the
popular classical decoding algorithms are the maximum-likelihood algorithm [75],
the Blossom algorithm [76–78], the Markov Chain Monte Carlo (MCMC) [79, 80]
and the Renormalization Group (RG) algorithm [81, 82].

The maximum-likelihood algorithm investigates the most probable error that
has occurred that produces the observed error syndrome. This process can reach
high decoding accuracy but is extremely time consuming especially as the code
distance increases. The execution time scales as O(nχ3), with χ being an approxi-
mation parameter, as given in [75].

The Blossom algorithm is a graph matching algorithm that is searching for the
least number of errors that can produce the observed error syndrome. It creates
a graph containing the detection events that were observed and performs a Mini-
mum Weight Perfect Matching (MWPM), in order to find the minimum set of cor-
rections [83]. Blossom can reach slightly lower decoding performance than the
maximum-likelihood decoder, but still good enough to be used in experiments.
The execution time scales linearly with the number of qubits [84], but still might not
meet the small execution time requirements of contemporary experiments. How-
ever, there exist an optimized version of the Blossom algorithm that claims a con-
stant average processing time per detection round, which requires dedicated hard-
ware [78].

2.2. FAULT TOLERANT COMPUTATION AND QUANTUM ERROR CORRECTION

2

23

The Markov Chain Monte Carlo method is based on the selective application of
a stabilizer in the lattice, that will correct an error with a certain probability. It is
based on the approximation of the Metropolis algorithm [85]. MCMC starts from
a certain initial minimum weight error configuration by selecting a random stabi-
lizer and observing the hypothetical changes in the code as if the selected stabilizer
was hypothetically applied. Based on some probability, this stabilizer will be selec-
tively applied [79]. The MCMC decoder achieves high decoding performance, by
ensuring that all errors appearing in such a Markov chain belong to the same class
of errors and are compatible with the same error pattern. However, this decoding
approach leads to a super-polynomial running time complexity [79].

Renormalization Group decoding provides a good solution for the decoding of
large quantum systems, because decoding is performed in a local manner through
distributed regions throughout the lattice. The RG algorithm can be highly paral-
lelized and the scaling is reported to be log(l), for an lxl code [82]. Nevertheless,
the decoding performance reported so far is not as high as the one of other classical
algorithms.

Summarizing, some decoders can achieve high decoding performance but are
not scalable, while others can not reach equally good decoding performance but
are fast. Then, the main challenge is to have a decoder that can reach high de-
coding performance while requiring small execution time. A comparison in terms
of the decoding performance and the running time complexity is summarized in
Table 2.1. We should mention that the decoding performance is quantified as the
threshold value achieved for toric or surface code for the depolarizing error model
with noiseless error syndrome measurements and the running time complexity is
the one reported in the initial implementation of these decoders. Note that approx-
imate implementations exist that report improvements compared to the reported
numbers of Table 2.1.

Table 2.1: Comparison between decoders

Decoder Decoding performance (Threshold) Running time complexity
MLD 0.18 [75] O(nχ3)

Blossom 0.148 [83] O(n)
MCMC 0.17 [79] O(L4)

RG 0.164 [81] O(log n)

where χ is an approximation parameter, n is the number of qubits and L is the
code distance.

In most current quantum technologies, the time budget for error correction and
decoding is small, due to the erroneous nature of the qubits and the imperfect
application of quantum operations. Therefore, a high speed version of an efficient
decoder is required. In an attempt to develop such kind of a decoder, researchers
came up with neural network based decoders. It was quickly proven that such
kind of decoders that incorporate neural networks, have a constant execution time
after being trained and that can reach equivalent decoding performance to most
classical decoders.

2

24 2. BACKGROUND

A large variety of neural network based decoders has been recently proposed
[86–96], making them a potential candidate for decoding. The main challenge of
these decoders is the ability to scale to large code distances, without significant
loss in the decoding performance. This issue arises from the fact that as the code
distance increases, the dataset required to train the algorithm is increasing expo-
nentially. This issue is going to be tackled in Chapter 6.

2.3. QUANTUM ERRORS
Due to the decoherence, the imperfect application of quantum operations and other
sources of errors, the quantum state is altered, which we describe as errors being
inserted in the quantum system. As we mentioned in Section 1.2, in order to iden-
tify these continuous errors we perform a discretization process that deduces every
error into Pauli errors. We model these errors by using error models that assign an
error probability to each quantum operation. In that way, the classical computer
that performs the error detection can identify such Pauli errors. When errors are
identified, a set of corrections is proposed by the decoder to erase them. This type
of error correction is known as active, because we are taking action against the
errors that were observed in the quantum system.

However, there is another form of error correction known as error mitigation,
which as the name suggests attempts to minimize or even completely suppress
these error mechanisms, so that no errors are generated. Techniques such as de-
coherence free subspaces [97], composite pulse sequences [98], error extrapolation
[99], quasi-probability decomposition [100] and many more are used to avoid many
of the error inducing mechanisms.

2.3.1. ERROR PROPAGATION AND TRANSFORMATION
It is important to study how the propagation of Pauli errors occurs after the appli-
cation of relevant gates. In this thesis, we only consider quantum memories with
logical qubits encoded with the surface code. Therefore, the only operations re-
quired are the ones in the ESM circuit (see Figure 2.9) and the Pauli gates used
as correction gates to the Pauli errors. All gates included in the ESM circuit map
Pauli errors to Pauli errors, which means that the propagation of errors through
the gates is deterministic. Also, the transformation of an error into a different type
of error, while going through a gate, is completely deterministic, therefore we can
keep track and predict the propagation and transformation of errors throughout
the surface code cycles.

The only gates in the ESM circuit are the Hadamard (H) and the CNOT gate.
We present the propagation relations, while skipping i) the Ŷ errors, since Ŷ = iX̂Ẑ,
and ii) the rest of the combinations for the CNOT, since they are easily computed
from these four.

(i) HX = ZH

(ii) HZ = XH

(v) CNOT(I⊗X) = (I⊗X)CNOT

2.3. QUANTUM ERRORS

2

25

(vi) CNOT(X⊗I) = (X⊗X)CNOT

(vii) CNOT(I⊗Z) = (Z⊗Z)CNOT

(viii) CNOT(Z⊗I) = (Z⊗I)CNOT

2.3.2. SIMULATED ERROR MODELS
In order to define how errors are introduced, different error models are described
that model quantum noise in different ways. In our research we used three dif-
ferent error models, in order to obtain a more complete picture of the decoding
performance of the decoder. Note that as already mentioned, the decoding perfor-
mance depends on the error model.

In this section, we will analyze the three main error models that we used,
namely: the independent X and Z, the depolarizing and the circuit noise model.

INDEPENDENT X AND Z ERROR MODEL

The independent X and Z model inserts independently bit-flip (X̂) and phase-flip
(Ẑ) errors on qubits, with the same error probability p = pX = pZ. Therefore, the
probability for simultaneous bit- and phase-flip (Ŷ) error is the product of these
probabilities pY = p2

X = p2
Z.

Due to the errors occurring independently, we can keep track of each type of er-
rors separately. Furthermore, since the error probabilities for bit-flip and phase-flip
are equal, the expected decoding performance, one can take into consideration only
one of them and assume to have similar distribution of errors for the other. Since
bit-flips and phase-flips occur independently, the decoder can create two separate
cases for each type of error, making the decoding problem simpler. In this case, the
decoding performance is expected to be almost identical for bit-flips and phase-
flips.

The independent X̂ and Ẑ model cannot be considered a realistic error model,
however, it is used due to its simple structure and limited assumptions. As an
example, we refer to the Surface code, for which the correction of phase-flips can
be considered equivalent to correcting bit-flips after rotating the lattice π

2 from its
initial position [75]. We do not expect that the errors in the real quantum sys-
tem will be independent with equal probabilities for bit-flip and phase-flip errors,
rather have highly correlated errors occurring with some bias based on the quan-
tum technology.

DEPOLARIZING ERROR MODEL
The depolarizing model is one of the most frequently used error models mainly
due to its simple construction. There are two variants of this model, known as the
symmetric and asymmetric depolarizing error model. The symmetric depolarizing
error model inserts bit-flip (X̂), phase-flip (Ẑ) and both bit- and phase-flip (Ŷ) errors
with equal probability p = pX/3 = pZ/3 = pY/3. The asymmetric depolarizing error
model inserts errors with different probabilities for each type of Pauli error pX/3 6=
pZ/3 6= pY/3 [42]. This error model provides some correlation between bit-flip and
phase-flip errors, but still cannot be considered a realistic error model.

2

26 2. BACKGROUND

CIRCUIT ERROR MODEL
The circuit error model is still a theoretical model, but is considered the most real-
istic one compared to the other two. It assumes that all operations that occur are
faulty. Therefore, based on the type of quantum operation, noise is modelled in a
different way. In our work, we focused on quantum memories with qubits encoded
based on the surface code. The circuit that performs the error syndrome measure-
ments in the surface code consists of state preparation, measurement, Hadamard
and CNOT gates.

The state preparation fails with probability p and results in the wrong prepared
state. Measurement fails also with probability p and results in the wrong report of
the parity-check. Errors on qubits are usually modelled based on the symmetric
depolarizing error model, therefore each type of Pauli error (pX , pZ, pY) fails with
the same probability p/3. The Hadamard gate inserts errors in the same way as
they are inserted on the qubits. The CNOT gate fails for each of the fifteen potential
erroneous cases (IX, ZZ, XY, etc) with probability p/15.

In all three error models, noise is simulated by application of a perfect quantum
operation, followed by an error channel that inserts errors based on the described
error probabilities.

In all of the aforementioned error models, the process of error syndrome mea-
surement might be considered perfect or imperfect. During perfect error syndrome
measurement only a single error correction cycle is required, whereas during im-
perfect error syndrome measurement multiple error correction cycle are required.
In this thesis, we assume that the probability of a data qubit error is equal to the
probability of a measurement error, therefore d cycles of error correction are suffi-
cient to identify all types of errors.

2.4. NEURAL NETWORKS
Since we developed a neural network based decoder, we present some background
information on neural networks in this section.

Artificial neural networks have been shown to reach high application perfor-
mance and constant execution time after being trained on a set of data generated
by the application. An artificial neural network is a collection of weighted intercon-
nected nodes that can transmit signals to each other. The receiving node processes
the incoming signal and sends the processed result to its connected node(s). The
processing at each node is different based on the different neural network parame-
ters being used. A common representation of neural network is presented in Figure
2.14.

There are 3 types of layers in a neural network, namely the input layer, the
hidden layer and the output layer. The input and output layer can only be one
layer, whereas all the in-between layers are assumed as hidden layers. The nodes
of each layer are connected to the nodes of the next layer and every node performs
a computation of a non-linear function that will define the contribution of the node
to the output of the neural network. All connections between nodes are weighted
connections that define the amount of contribution of each node to each connected
node at the following layer. The input of every node (inp) is calculated by the

2.4. NEURAL NETWORKS

2

27

X0

Xn

h10

h1k

y0

yp

bh1 bo

..

...

.

.

.

.

.

.

..
.

bh2

h20

h2m

.

.

.

.

.

.

..
.

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Figure 2.14: Representation of an artificial neural network with 4 layers

following equation:

inp = σ(∑wi ∗ vj + bk) (2.17)

where wi are the weights at each connection, vj is the output value of the in-
coming connection out of a node and bk is the bias of the layer. σ is the non-linear
activation function, which is necessary in order to be able to map (non)-linear in-
puts to non-linear outputs. σ denotes the activation function that is selected, with
popular options being the sigmoid, the hyperbolic tangent (tanh) and the rectified
linear unit (ReLU).

In this work, we focus on two types of neural networks known as Feed-forward
neural networks (FFNN) and Recurrent neural networks (RNN). Feed-forward neu-
ral networks are considered to be the simplest type of neural network, allowing
information to move strictly from input to output, whereas recurrent neural net-
works are considered to be more sophisticated, including feedback loops. The sim-
ple construction of FFNNs makes them extremely fast in applications, however,
RNNs are able to produce better results for more complex problems.

In Feed-forward neural networks, input signals xi are passed to the nodes of
the hidden layer hi and the output of each node in the hidden layer acts as an
input to the nodes of the following hidden layer, until the output of the nodes of
the last hidden layer is passed to the nodes of the output layer yi. The weighted
connections between nodes of different layers are denoted as Wi and b is the bias
of each layer.

In recurrent neural networks there is feedback that takes into account output
from previous time steps yt−1, ht−1 (see Figure 2.15). RNNs have a feedback loop at
every node, which allows information to move in both directions. Due to the feed-

2

28 2. BACKGROUND

back nature, recurrent neural networks can identify temporal patterns of widely
separated events in noisy input streams.

h

y

x

Unrolled
In time

ht-1

Yt-1

xt-1

ht

yt

xt

ht+1

yt+1

xt+1

Figure 2.15: A conceptual visualization of the recurrent nature of an RNN.

In this work, Long Short-Term Memory (LSTM) cells are used as the nodes of
recurrent neural networks (see Figure 2.16). In an LSTM cell there are extra gates,
namely the input, forget and output gate that are used in order to decide which
signals are going to be forwarded to another node. W is the recurrent connection
between the previous hidden layer and current hidden layer. U is the weight ma-
trix that connects the inputs to the hidden layer. C̃ is a candidate hidden state that
is computed based on the current input and the previous hidden state. C is the
internal memory of the unit, which is a combination of the previous memory, mul-
tiplied by the forget gate, and the newly computed hidden state, multiplied by the
input gate [101].

The equations that describe the behaviour of all gates in the LSTM cell are de-
scribed in Figure 2.16.

x +

σ σ

x

tanh

x

σ

tanh

LSTM cell

Ct-1

ht-1

xt

ft it

Ct
~

ot

ht

Ct

ht

it=σ(xtU
i+ht-1W

i)

ft=σ(xtU
f+ht-1W

f)

ot=σ(xtU
o+ht-1W

o)

Ct=tanh(xtU
g+ht-1W

g)~

Ct=σ(ft. Ct-1+it Ct)~.
ht=tanh(Ct) . ot

Figure 2.16: Structure of the LSTM cell and equations that describe the gates of an LSTM cell.

The way that neural networks solve problems is not by explicit programming,
rather “learning” the solution based on given examples. There exist many ways to
“teach” the neural network how to provide the right answer, however in this work
we are focusing on supervised learning. Learning is a procedure which involves the
creation of a map between an input and a corresponding output and in supervised

2.4. NEURAL NETWORKS

2

29

learning the (input, output) pair is provided to the neural network. During train-
ing, the neural network adjusts its weights in order to provide the correct output
based on the given input. Theoretically, at the end of training, the neural network
should be able to infer the right output even for inputs that were not provided
during training, which is known as generalization.

Training is stopped when the neural network can sufficiently predict the right
output to each training input. However, a definition of the closeness between the
desired value and the predicted value needs to be defined. This metric is known
as cost/loss function and guides the neural network towards the desired outcome
by estimating the closeness between the predicted and the desired value. The cost
function is calculated at the end of every training iteration after the weights have
been updated. The cost function that we used is known as mean squared error,
which tries to minimize the average squared error between the desired output and
the predicted output, given by

cost =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (2.18)

where n is the number of data, Yi is the target value and Ŷi is the predicted
value.

The procedure in which the weights are updated during training in order to
minimize the cost function is known as backpropagation. Backpropagation is a
method that calculates the gradient of the cost function with respect to the weights,
through the process of stochastic gradient descent. In order to be able to use neural
networks to find solutions to a variety of applications (linear and non-linear), it is
required to have an non-linear activation function at the processing step of every
node. This function defines the contribution of this node to the subsequent nodes
that it is connected to.

In the following Chapters we will present the implementation of different neu-
ral network based decoders. The first implementation shown in Chapter 4 is based
on a Feed-Forward neural network with only one hidden layer. More decoder de-
signs based on different types of neural networks such as Feed-Forward and Re-
current are described and compared in Chapter 5.

3
PAULI FRAMES FOR QUANTUM

COMPUTER ARCHITECTURES

The Pauli frame mechanism allows Pauli gates to be tracked in classical electronics and can
relax the timing constraints for error syndrome measurement and error decoding. When
building a quantum computer, such a mechanism may be beneficial, and the goal of this
chapter is not only to study the working principles of a Pauli frame but also to quantify its
potential effect on the logical error rate. To this purpose, we implemented and simulated
the Pauli frame module which, in principle, can be directly mapped into a hardware imple-
mentation. Simulation of a surface code 17 logical qubit has shown that a Pauli frame can
reduce the error rate of a logical qubit up to 70% compared to the same logical qubit with-
out Pauli frame when the decoding time equals the error correction time, and maximum
parallelism can be obtained.

3.1. INTRODUCTION
Quantum computing is an emerging technology that promises to solve problems
which are intractable by classical computers. Quantum computers exploit quan-
tum phenomena for computational purposes using qubits. Various implementa-
tions of qubits and small quantum systems already exist, and they share one prop-
erty: qubit states are fragile. Qubits interact with the environment and information
stored in the qubits tends to get corrupted, which is known as decoherence. As a
result, qubits cannot reliably store information for a long time, and quantum oper-
ations are error prone.

To enable quantum computing using quantum systems with high error rates,
Quantum Error Correction (QEC) was introduced [11]. QEC allows quantum states
to be encoded in logical qubits and errors to be detected based on error syndromes
that are obtained by executing Error Syndrome Measurement (ESM) circuits. The
error syndromes are decoded using classical algorithms which identify the most
likely errors in the system. By using QEC, we can satisfy the demands of quan-

31

3

32 3. PAULI FRAMES FOR QUANTUM COMPUTER ARCHITECTURES

tum algorithms to have qubits with low error rates. Besides from the benefits, QEC
introduces overhead which creates new challenges. ESM and decoding should be
performed in as short time as possible to reduce the overhead of QEC. The require-
ment of fast error decoding introduces high demands on classical algorithms and
computational devices.

The concept of Pauli frames was proposed in [46] to loosen the timing con-
straints on ESM and decoding. A Pauli frame allows detected errors to be tracked
in classical electronics, making it unnecessary to apply corrections on qubits. When
using a Pauli frame fewer gates need to be applied, and the execution of ESM and
decoding can be performed in parallel instead of sequential. Hence, the timing
constraints on ESM and decoding are relaxed, making it easier to implement fully
functional QEC. As the overhead of QEC is reduced, the error rate of logical qubits
can in principle also be reduced.

The contributions of the chapter are as follows: (i) we implement and simulate
the working principles of a Pauli frame for a Surface Code 17 (SC17) logical qubit
and (ii) quantify under what conditions the Pauli Frame Unit (PFU) reduces, up to
70%, the logical error rate.

This chapter is organized as follows: Section 3.2 provides a background and
introduces the relevant quantum concepts used throughout this chapter. Section
3.3 presents the working principles and applications of Pauli frames. Section 3.4
introduces the heterogeneous Quantum Computer Architecture as proposed by
[102]. Our simulation software and setup is explained in Section 3.5 while the
simulation results are presented in Section 3.6. We conclude the chapter in Section
3.7.

3.2. BACKGROUND
While classic bits can only be in a 0 or 1 state at a certain point in time, qubits
can be in a superposition of both. Qubits can be in a linear combination of the two
basis states, |0〉 and |1〉, and are therefore represented as: |ψ〉= α |0〉+ β |1〉, where
α, β ∈ C are complex probability amplitudes. The sum of all probabilities within a
system is 1, therefore: |α|2 + |β|2 = 1. By defining |0〉= [1 0]T and |1〉= [0 1]T as
a computational basis, we can represent a qubit as a vector |ψ〉= [α β]

T . When a
qubit is measured in the computational basis, it is projected into the |0〉 or |1〉 state
with probabilities |α|2 or |β|2, respectively.

The second feature of qubits that extends the capabilities of classical bits is en-
tanglement. Qubits can be entangled with each other, which means that the super-
position state of the entangled qubits cannot be represented as a tensor product of
individual qubit states.

To manipulate a qubit state, we use quantum gates which can be expressed
as unitary matrices. Quantum gates are represented as a 2n × 2n unitary matrix
where n equals the number of qubits the gate acts on. A few common single qubit
gates with their corresponding matrices are shown in Equation (3.1). Examples of
common two-qubit gates are the CNOT and the CZ gate. Quantum gates together
with initialization and measurement operations can be combined into a quantum

3.2. BACKGROUND

3

33

circuit to perform quantum computations.

X≡
[

0 1
1 0

]
, Z≡

[
1 0
0 −1

]
, H ≡ 1√

2

[
1 1
1 −1

]
. (3.1)

We list three groups of quantum gates [73] which are in our interest: Pauli gates,
Clifford gates, and Non-Clifford gates. The Pauli gates are a basic group of single
qubit gates which includes gates such as the X and Z gate. The Clifford group is
finite and is defined as the normalizer of the Pauli group which means that for
every Clifford gate C and Pauli gate P there exists a Pauli gate P′ such that CP =
P′C. Examples of Clifford gates are the H and CNOT gate. All quantum gates
that are not in the Clifford and Pauli group are known as non-Clifford gates, such as
the T and T† gate. Both Clifford and Non-Clifford gates are required for universal
quantum computing, as explained in [42].

3.2.1. QUANTUM ERROR CORRECTION

There are different ways to implement qubits physically, and all of them have one
factor in common: physical qubits suffer from decoherence. A qubit loses its state
in a short period which makes it hard to maintain a quantum state for a long time.
Also, the execution of operations on physical qubits are not perfect and can intro-
duce errors. To enable meaningful quantum computation with high fidelity, QEC
was introduced [11]. In QEC a quantum state can be encoded redundantly by en-
tangling multiple physical qubits which form a logical qubit. This logical qubit
may have lower error rates than their underlying physical qubits. These error rates
are also referred to as the Logical Error Rate and Physical Error Rate. A popular
QEC code is the surface code [63] which is derived from Kitaev’s toric code [60].

In this section, we will focus on the surface code with 17 qubits encoding a
single logical qubit which we will refer to as the SC17.

Figure 3.1 shows a schematic overview of a SC17 logical qubit consisting of 9
data qubits (blue) and 8 ancilla qubits (X/Z ancilla qubits in red/green) while the
lines between qubits indicate the allowed two-qubit interactions. The nine data
qubits encode the logical qubit state, and the eight ancilla qubits are used to detect
possible errors. As described in [3, 63], we can use the eight ancilla qubits to mea-
sure the parities among the data qubits, resulting in 8-bit of parity data where X/Z
ancilla qubits yield information about Z/X errors. This process, which exclusively
contains Clifford gates and initialization/measurement operations, is referred to
as an ESM and the resulting 8-bit data after measuring the ancilla qubits is known
as an 8-bit error syndrome. Error syndromes can be processed by a decoder which
performs a classical graph algorithm and returns the most likely error happened
on the data qubits. The identified errors, which are always a combination of X and
Z errors, can be corrected by performing Pauli gates on the data qubits.

3

34 3. PAULI FRAMES FOR QUANTUM COMPUTER ARCHITECTURES

D0 D1 D2

D3 D4 D5

D6 D7 D8

Figure 3.1: Schematic of a SC17 logical qubit.

Figure 3.2 presents the different steps of the QEC process for a SC17 logical
qubit of which the variable descriptions are shown in Table 3.1. In the presented
schedule, we first perform a logical operation which is followed by r rounds of
ESM. The obtained error syndromes are given to a decoder that outputs a set of
errors most likely happened. The errors are corrected, and the cycle is repeated.

The presented schedule performs decoding at run-time enabling the execution
of logical non-Clifford gates, which is required by universal quantum computing.
Based on Figure 3.2, we have tcycle = tlop + tec + td + tc. For current superconduct-
ing qubits, tec and td will dominate tcycle [103]. To maximize efficiency, tec and td
should be as short as possible which puts major time constraints on error correc-
tion and decoding. In the next section, we will discuss Pauli frames, which is a
technique that can ease the time constraints on error correction and decoding.

Variable Description

tESM Time to perform the ESM circuit.
r Rounds of ESM per cycle.
tec Total time for error correction: r · tESM.
td Time required for decoding.
tc Time to perform corrections on data qubits.
tlop Time reserved for logical operations.
tcycle Total time for a single cycle of the system.

Table 3.1: Variables used in the execution schedules.

t
ec

t
lop

t
c ······

t
d

t
cycle

time

Figure 3.2: Execution schedule of a SC17.

3.3. PAULI FRAMES

3

35

3.3. PAULI FRAMES
The basic idea of Pauli frames is to track Pauli gates in classical electronics instead
of applying them on qubits. For every qubit in the system, there exists a Pauli
record that tracks its corresponding Pauli gates. The Pauli records of all qubits in a
quantum system together form a Pauli frame. This idea was first proposed in [46]
but has also been discussed in [73, 104–107]. Previous research on Pauli frames
mainly discusses the theoretical working principles, but do not take into account
their implementation. In this section, we present the basic mechanism of a Pauli
frame and study the impact of a Pauli frame in the context of a heterogeneous QCA
as proposed by [102].

A single Pauli record Rq tracks all the Pauli gates that are applied on qubit q.
Due to the mathematical properties of Pauli gates, every set of tracked Pauli gates
can be reduced to one of the elements in the set {I, X, Z, XZ}. Hence, every Pauli
record R ∈ {I, X, Z, XZ} and requires a two-bit memory. As a result, a system with
n qubits requires 2n bits of memory for the Pauli frame.

To be able to update Pauli records at run-time, the Pauli frame needs to be aware
of all operations applied on the qubits. Therefore the Pauli frame can be seen as a
quantum operation filter.

All qubit operations and returned measurement results pass through the filter
and can be modified by the Pauli frame. To make the Pauli frame system suitable
for universal quantum computing it should be able to handle five types of quantum
operations.

(i)Initialization of a qubit q will result in clearing the Pauli record of the corre-
sponding qubit, Rq = I. (ii)A measurement operation on qubit q passes the Pauli
frame system, but the returned measurement result mq can be corrected based on
the current state of its Pauli record. For instance, if mq =+1 and Rq = X then −mq
is returned. (iii)Pauli gates are directly stored in the Pauli frame and do not require
to be physically applied on the qubits. (iv)As mentioned in Section 3.2, the group
of Clifford gates is defined as the normalizers of the Pauli group which means that
Clifford gates map Pauli records to new valid Pauli records. After mapping the
Pauli records, the Clifford gate is still applied on its target qubits. (v)The execution
of non-Clifford gates requires the Pauli records of the target qubits to be flushed (i.e.
physically apply the Pauli gates stored in Rq on qubit q and clear the Pauli record
Rq = I) before the non-Clifford gate can be executed. The execution steps for the
different qubit operations are summarized in Table 3.2.

3.4. A QUANTUM COMPUTER ARCHITECTURE WITH PAULI

FRAME
Multiple papers [46, 73, 104–107] have covered the topic of Pauli frames, and [108–
111] have discussed various architectures for quantum computer software and
hardware, but no practical implementations of a Pauli frame for future quantum
computers have been presented so far. In this section, we provide a high-level de-
scription of how a Pauli frame can be implemented as part of a QCA and we will
discuss the expected benefits which directly relate to the logical error rate.

3

36 3. PAULI FRAMES FOR QUANTUM COMPUTER ARCHITECTURES

Operations Execution steps

Initialization to |0〉 1. Set Pauli record of target qubit to I.
2. Initialize target qubit to |0〉.

Measurement 1. Measure target qubit.
2. Correct measurement result based on Pauli record.

Pauli gates 1. Map Pauli record of target qubit.

Clifford gates 1. Map Pauli record(s) of target qubit(s).
2. Apply Clifford gate on target qubit(s).

Non-Clifford gates 1. Flush Pauli record(s) of target qubit(s).
2. Apply non-Clifford gate on target qubit(s).

Table 3.2: Execution steps for different operations when using a Pauli frame.

3.4.1. BENEFITS

The most interesting application of a Pauli frame is to use it for physical qubits in
combination with QEC. In such a structure, correction gates, which are all Pauli
gates, can be directly stored in the Pauli frame, reducing the number of gates be-
ing applied on the qubits. Also, logical Pauli gates can be directly stored in the
Pauli frame and do not need to be applied on the physical qubits. To quantify
the potential impact such a mechanism can have, we analyzed some benchmarks
provided with the ScaffCC compiler [112] and found that the resulting quantum
circuits contain up to 6% Pauli gates.

We found that compiled quantum programs contain 20 to 50% non-Clifford
T and T† gates which require flushing of the involved Pauli records. Flushing
can be prevented by applying T and T† gates using particular ancilla states and
Clifford circuits as discussed in [42, 63]. So the first benefit is that Pauli gates can
be processed faster and with a fidelity of 100% which can potentially reduce the
error rate of a logical qubit.

The second benefit is directly related to the first but taps in QEC as correction
gates for detected errors are always Pauli gates, and ESM circuits only contain
Clifford gates. Hence, we can track correction gates without the need to flush while
performing ESM.

As a result, the QEC system does not have to wait for the decoder to generate
corrections and apply them before execution can continue. By eliminating this de-
pendency, we can create a new execution schedule which is shown in Figure 3.3.
The new schedule effectively removes the time reserved for applying corrections
and allows parallel execution of error correction and decoding. For the new sched-
ule with Pauli frame tcycle|PF = max

(
tec + tlop , td

)
. As a consequence of the more

efficient schedule, we can perform the same number of cycles in less time com-
pared to the system without Pauli frame, potentially reducing the LER. On top of
that, the new schedule also eases the timing constraints on tec and td.

3.4. A QUANTUM COMPUTER ARCHITECTURE WITH PAULI FRAME

3

37

t
ec

t
lop ······

t
d

t
cycle

t
ec

t
lop

time
Figure 3.3: Execution schedule with Pauli frame.

3.4.2. IMPLEMENTATION
A heterogeneous QCA is proposed in [102] which supports the execution of QEC
and logical operations for a single SC17 logical qubit implemented with transmon
qubits. Figure 3.4 shows a simplified version of the proposed architecture which
focuses on the QCU part of the QCA. The QCU decodes the instructions belonging
to the QISA, inserts QEC routines, and manages feedback control. The QCU can
communicate with the host CPU where classical computations are executed. The
QCU outputs a sequence of timed quantum operations which are forwarded to the
PEL.

Main Memory (instructions & data)

Instruction

Fetch

Arbiter

eXchange

register file

Data Load/Store

HOST CPU

Quantum Control Unit

QEX Unit

Quantum

Instruction

cache

Logical Msmt Unit

PF data

PF logic

QED Unit

QEC Cycle

Generator

Msmt Logic

Execution

ControllerQ-address

translation Pauli Arbiter

Q Symbol

Table

Pauli Frame

Unit

QED

logic

Q
u

a
n

tu
m

-C
la

s
s
ic

a
l In

te
rfa

c
e

Q
u

a
n

tu
m

 C
h

ip

P
h

y
s
ic

a
l E

x
e
c
u

tio
n

 L
a
y
e
r

Figure 3.4: Simplified architecture of a QCA targeting a SC17 logical qubit.

The PFU consists of a Pauli frame (PF data) and mapping logic (PF logic) and
works closely together with the Pauli arbiter. Figure 3.5 shows a detailed schematic
of the PFU. All quantum operations will pass the Pauli arbiter which will decide if
the operation is forwarded to the PFU, the PEL, or both. We distinguish the follow-
ing different situations. (i) Pauli gates are only forwarded to the PFU where the PF
logic module will store it in the Pauli record of the target qubit. (ii) Clifford gates
are forwarded to both the PFU and the PEL. The PF logic module will map the

3

38 3. PAULI FRAMES FOR QUANTUM COMPUTER ARCHITECTURES

Pauli records of the target qubits to new valid records based on the type of Clifford
gate. (iii) Initialization operations are also forwarded to both the PFU and the PEL
where the PF logic module will reset the Pauli record of the target qubit. (iv) Non-
Clifford gates are directly forwarded to the PFU which flushes the Pauli records
of the target qubits and forwards the pending Pauli gates to the Pauli arbiter. The
Pauli arbiter again forwards the received Pauli gates and the non-Clifford gate to
the PEL. (v) Measurement operations received by the Pauli arbiter are only for-
warded to the PEL. After the PEL has performed the measurement, the outcome
is forwarded to the PF logic block which will read the Pauli record of the corre-
sponding qubit and correct the measurement outcome if required. The corrected
measurement result is forwarded to other parts of the QCU.

Pauli Frame Unit

PF data

Pauli record n-1
···

Pauli record 0

PF logic

Pauli arbiter

P
hysica l E

xecu tion La yer

Operations

Measurement
results

Figure 3.5: High level architectural view of the PFU.

3.5. SIMULATION SETUP
To quantify the impact of the Pauli frame mechanism, we developed the QPDO
which allows us to simulate a SC17 logical qubit with and without a Pauli frame.
QPDO is a software package that can simulate quantum execution platforms and
has a layered structure where each layer can implement different functionality.
Layers can be combined to create various control stacks allowing simulation of dif-
ferent platforms. Simulations are performed by supplying a stream of operations
to a control stack.

Quantum simulations are not conducted by QPDO, but by external tools which
are connected to QPDO as a back-end simulation layer. QPDO connects to the uni-
versal QX Simulator [113] which allows simulation of arbitrary quantum circuits.
The second simulation back-end is the CHP stabilizer simulator [114] which allows
efficient simulation of Clifford circuits based on the Gottesman-Knill theorem [21].

QPDO represents a quantum circuit as a set of qubit operations divided into
discrete time slots where we assume that every operation takes a single time slot to
execute.

Operations in a single time slot are executed in parallel and qubits can only be

3.5. SIMULATION SETUP

3

39

assigned to one operation per time slot. During our simulations, the ESM circuits
for X and Z ancilla qubits are performed in parallel as shown in [3]. The result
is an ESM circuit containing a total of 48 operations divided over eight time slots.
Hence, tESM = 8 time slots. Table 3.3 summarizes which time slot contains what
operations.

Time slot Description

1 Initialize X ancilla qubits.
2 Initialize Z ancilla qubits and

apply H gates on X ancilla qubits.
3-6 CNOT gates data and ancilla qubits.
7 Apply H gates on X ancilla qubits.
8 Measure all ancilla qubits.

Table 3.3: The ESM circuit used in our test setup.

To introduce errors in our quantum system, we developed a QPDO layer that
implements the symmetric depolarizing error model as presented in [3, 42]. In this
model, the PER p is the probability of an error occurring while executing a single
operation on a physical qubit where idling is also considered to be an operation.
The depolarizing model assumes that errors are independent and that the error
probability is the same for each quantum operation.

Decoding of the error syndromes is done using a RBLUT decoder as presented
in [3]. The RBLUT decoder is specifically designed for the SC17 and uses a sliding
window of three ESM rounds to detect errors. Every window uses one ESM result
from the previous window as shown in Figure 3.6 which means that every cycle
contains two rounds of ESM. Hence, r = 2 and tec = 16 time slots. All corrections
can always be applied in a single time slot, therefore tc = 1 time slot.

E
S
M

···

E
S
M

C
or

re
ct

io
ns

E
S
M

E
S
M

C
or

re
ct

io
ns

···

Window

time

Figure 3.6: ESM results used for successive decoding windows.

The Pauli frame is implemented as a layer which allows us to add a Pauli frame
to any platform easily. The control stack used for our simulations consists of a CHP
simulation back-end with an error layer on top. The simulations that use a Pauli
frame also add a Pauli frame layer on top of the error layer. The full control stack
used for our simulations is shown in Figure 3.7.

3

40 3. PAULI FRAMES FOR QUANTUM COMPUTER ARCHITECTURES

Pauli frame layer

CHP

CHP back-end

Experiment with
Pauli frame

Error layer

Experiment without
Pauli frame

Figure 3.7: The QPDO control stack used for the simulations.

3.5.1. LOGICAL ERROR RATE CALCULATION
By simulation, we can find the LER PL of a SC17 logical qubit for different values
of PER p. In [3], PL is defined as the probability of a logical error happening within
a single cycle where no logical operations are performed, tlop = 0 time slots. Dur-
ing a simulation, a SC17 logical qubit is initialized to an error-free state before we
repeatedly execute cycles. After every cycle, we check if a logical error occurred.
This procedure is repeated while counting the number of cycles executed C and the
total number of logical errors detected m until m reaches a predefined maximum
value. PL corresponding to a given p can be written as:

PL|p =
m
C

. (3.2)

3.6. RESULTS
We performed separate LER simulations for XL/ZL errors, with a maximum of 20
logical errors per simulation, using the test setup shown in Figure 3.7. Simulations
were performed for a PER ranging from 1.0× 10−4 to 1.0× 10−2 with a step size of
1.0× 10−4. For every PER we take 50 samples with and without Pauli frame, and
the average of the resulting LER per sample yields our final result. We found that
the combination of 50 samples and a maximum of 20 logical errors per simulation
yields good precision in reasonable simulation time.

We performed simulations with decode time td = {0,8,16,24} time slots, equiv-
alent to {0,0.5,1,1.5} · tec, and the resulting graph for XL errors is shown in Figure
3.8.

The graph for ZL errors is not shown since it is equivalent to the graph for
XL errors, which is expected when using a symmetric depolarizing error model.
Results for the test setup without Pauli frame are plotted with squares while the
results with Pauli frame are plotted with circles. The results for the test setup with
Pauli frame and td = {0,8,16} time slots are equivalent and therefore only one of
them is plotted. We also added a black dashed line indicating the points where

3.6. RESULTS

3

41

the physical error rate is equal to the logical error rate (x = y) and vertical dashed
lines which indicate the intersection between the linear interpolated results and the
line x = y, also known as the pseudo-threshold. For a PER lower than the pseudo-
threshold, the LER is lower than the PER which means that we benefit from using
QEC.

10-4 10-3

Physical error rate

10-5

10-4

10-3

10-2

Lo
g
ic

a
l
e
rr

o
r

ra
te

t_d 0

t_d 8

t_d 16

t_d 24

t_d 0/8/16 pf

t_d 24 pf

Figure 3.8: Calculated LER for XL errors for d=3 rotated surface code under circuit noise error model.
The points denoted with circles are assuming the use of a Pauli frame and the points with squares do
not. Each curve depicted with a different color, assumes a different td as described in the legend.

From Figure 3.8, we can see that for every value of td the system with Pauli
frame has a lower LER than the system without Pauli frame. For the system with-
out Pauli frame, the LER increases directly when td increases while for the system
with Pauli frame the LER only increases when td > tec where in our simulations
tec = 16 time slots. The Pauli frame effectively reduces the cycle time tcycle by al-
lowing ESM and decoding to be performed in parallel which results in a reduced
LER.

To see if the reduction in tcycle by using a Pauli frame is proportional to the
observed reduction in LER PL, we plotted the relative reduction by using a Pauli
frame RPF() for both over the range td = [0,40] time slots where the relative reduc-

3

42 3. PAULI FRAMES FOR QUANTUM COMPUTER ARCHITECTURES

tions are defined as:

RPF
(
tcycle

)
= 1−

tcycle|PF
tcycle|without PF

, (3.3)

RPF (PL) = 1− PL|PF
PL|without PF

. (3.4)

Figure 3.9 shows the resulting graphs where for the relative reduction in LER
(red squares) only data for td = {0,8,16,24} time slots is available.

0 5 10 15 20 25 30 35 40
Decode time t_d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e
la

ti
v
e
 r

e
d
u
ct

io
n

LER X_L / Z_L

t_cycle

t_cycle * 1.4

Figure 3.9: Relative reduction in tcycle and LER by using a Pauli frame for different td.

From Figure 3.9, we can see that the reduction in LER appears to be proportional
to the reduction in tcycle with a proportionality constant ≈ 1.4. The maximum rel-
ative reduction by using a Pauli frame can be found at td = 16 time slots which is
the point where td = tec and maximum parallelism can be obtained.

3.7. CONCLUSIONS
We presented an implementation of a PFU and quantified through simulation what
the potential benefits are of using it. Based on our analysis of the application of a
Pauli frame for systems using QEC, we can conclude that a Pauli frame enables us

3.8. ACKNOWLEDGMENTS

3

43

to perform ESM and decoding in parallel. Hence we can create a more efficient ex-
ecution schedule for a SC17 logical qubit that reduces the cycle time tcycle. Besides
that, the new execution schedule also relaxes the timing constraints on the ESM
and decoder. Simulation has shown that as a result of the reduced tcycle, the LER of
a SC17 logical qubit can be reduced up to 70% when the time required for error cor-
rection equals the decoding time tec = td. On the basis of these results, including a
PFU in e.g. a QCA such as proposed in [102] pays off in terms of reduction in the
LER. This payoff is maximal when the decoder time is equal to the time needed for
error correction as there is no idle time induced by either operation. The effect goes
down if those times are no longer equal. Future work will involve verifying if the
observations also hold for SC49 and to embed a Pauli frame in a larger architectural
simulation platform.

3.8. ACKNOWLEDGMENTS
We would like to express our gratitude to Dan Iorga and Nader Khammassi for
their contribution to the simulation platform and simulation back-ends. We also
would like to thank Ben Criger for the relevant feedback. Besides from that, we
would like to thank all our colleagues for their support and input.

The contents of this chapter are based on the following paper:
L. Riesebos, X. Fu, S. Varsamopoulos, C. G. Almudever, and K. Bertels. Pauli Frames for
Quantum Computer Architectures, Proceedings of the 54th Annual Design Automation Confer-
ence (DAC’17), ACM, 2017, p. 76.

4
DECODING SMALL SURFACE
CODES WITH FEEDFORWARD

NEURAL NETWORKS

Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time
will likely exceed the available time budget, especially for near-term implementations. To decrease
the decoding time, we reduce the decoding problem to a classification problem that a feedforward
neural network can solve. We investigate quantum error correction and fault tolerance at small code
distances using neural network-based decoders, demonstrating that the neural network can generalize
to inputs that were not provided during training and that they can reach similar or better decoding
performance compared to previous algorithms. We conclude by discussing the time required by a
feedforward neural network decoder in hardware.

4.1. INTRODUCTION
Quantum computing has emerged as a solution to accelerate various calculations using sys-
tems governed by quantum mechanics. Such calculations are believed to take exponential
time to perform using classical computers. Initial applications where quantum computing
will be useful are simulation of quantum physics [115], cryptanalysis [8, 116] and unstruc-
tured search [10], and there is a growing set of other quantum algorithms [117].

Simple quantum algorithms have been shown to scale better than classical algorithms
[118–120] for small test cases, though larger computers are required to solve real-world
problems. The main obstacle to scalability is that the required quantum operations (state
preparations, single- and two-qubit unitary gates, and measurements) are subject to noise,
therefore quantum algorithms cannot run with perfect fidelity. This requires quantum com-
puters to use active error correction [11, 121] to achieve scalability, which in turn requires
a classical co-processor to infer which corrections to make, given a stream of measurement
results as input. If this co-processor is slow, performance of the quantum computer may be
degraded (though recent results [122] suggest that this may be mitigated).

The remainder of this chapter is organized as follows. In Section 4.2, we discuss the
need for a fast classical co-processor. In Section 4.3, we give a brief summary of existing

45

4

46
4. DECODING SMALL SURFACE CODES WITH FEEDFORWARD NEURAL

NETWORKS

techniques to perform decoding quickly, and follow this in Section 4.4 with the introduction
of a new technique based on feedforward neural networks. We examine the accuracy of
the proposed decoder in Section 4.5, and conclude by discussing its speed in Section 4.6.
Information regarding quantum error correction, the surface code and neural networks are
summarized in chapter 2.

4.2. NEED FOR FAST DECODING
Projective measurement of the logical qubits and classical feedforward of the measurement
values are key ingredients in universal fault-tolerant quantum computing. To calculate the
bit which we feed forward, we need to decode. Thus, it is necessary to correct errors fre-
quently during a computation.

While the decoding takes place at the classical co-processor, we could either continue
running rounds of syndrome measurement or stop and wait for the decoding to be con-
cluded. If we stop the computation, errors will build up until they become uncorrectable.
This takes an amount of time which depends on the implementation in question (∼ 10µs in
current superconducting circuits, for example [123]). On the other hand, if we continue mea-
suring syndromes, we will build a backlog of data that produces a more difficult decoding
problem in the future. The ideal case would be a decoder that decodes d rounds of syndrome
measurement in less time than the time needed to perform the measurements themselves.
In superconducting circuits, the time for a single round of syndrome measurement is 800 ns
[71].

There are many techniques that provide high performance decoding. In the following
section, we summarize some of them.

4.3. RELATED WORK
To decrease decoding time when correcting time-dependent errors, the “overlapping re-
covery” method was introduced in [1]. This method divides the measurement record into
windows, defined as a set of ∼ d consecutive error correction cycles. In the overlapping re-
covery technique, syndrome changes are matched either to each other (pairwise) or to a time
boundary placed immediately after the last round of syndrome measurement. At the next
window, the syndrome changes matched to the time boundary are forwarded to the follow-
ing window, in order to identify chains of errors which cross the boundary. This reduces the
backlog problem mentioned earlier, by allowing the decoding problem to be solved incre-
mentally.

To further reduce the backlog, Fowler [78] has parallelized the Blossom algorithm, using
message-passing between local processors to replace slow subroutines. This technique pro-
duces accurate corrections, resulting in a high threshold error rate, and is scalable to large
code distances. However, in the near future, only small code distances will be experimen-
tally viable, so it is likely that a heuristic approach will perform well.

One such approach is taken in [3]. In this paper, the authors have designed a heuristic-
based decoder that resembles the parallelized MWPM decoding for a distance-3 Surface
Code with a window of 3 error correction cycles. The simple structure of this heuristic
algorithm makes it easily programmable to hardware, decreasing the decoding time. The
main drawback of this algorithm is that it cannot easily be extended to higher code distances,
so an alternate method is required.

Currently, machine learning techniques are being explored as possible alternate decod-
ing techniques for both classical LDPC codes [124, 125] and quantum codes, independently
of the need for high-speed decoding. One such technique is being used in [86]. The authors

4.4. NEURAL NETWORK DECODER

4

47

of this paper use a stochastic neural network (or Boltzmann machine) to decode stabilizer
codes. They optimize the neural network to fit a dataset that includes the errors and their
respective syndromes. The network then models the probability distribution of the errors
in the dataset and generates prospective recovery error chains when a syndrome is input.
Many networks are produced for a variety of physical error probabilities p, so when an error
syndrome is obtained, a random recovery chain of errors is sampled from the distribution
corresponding to the known value of p. While this method was as accurate as MWPM de-
coding for simple error models, repeated sampling is required in order to produce an error
that conforms with the syndrome, which takes unknown time.

To achieve high accuracy in bounded time, we use a simpler machine learning technique,
the feed-forward neural network, which we introduce and apply to the decoding problem
in the next section.

4.4. NEURAL NETWORK DECODER
To apply machine learning techniques to surface code decoding, we first reduce the decod-
ing problem to a well-studied problem in machine learning; classification. Classification
problems consist of a set of (generally high-dimensional) inputs, each of which is associ-
ated with a (generally low-dimensional) label. The goal is to optimize the assignment of
known labels to known inputs (a process called training) so that unknown inputs can also
be correctly labeled.

To reduce the decoding problem to a classification problem, we decompose an error E
into three multi-qubit Pauli operators:

E = S · C · L, (4.1)

where S is a stabilizer, C is any fixed Pauli which produces the syndrome~s (also known as a
pure error [126]), and L is a logical Pauli operator of the surface code, see Figure 4.1.

X

X

X

X

= X

X X

X · X·

X

X

X

Figure 4.1: A surface code error E decomposed into three components; a stabilizer S, a fixed Pauli C
which produces the same syndrome as E, and a logical operator L.

Any decoder which provides a correction E′ = S′ · C · L, in which the stabilizer in the
correction is different from that in the actual error, does not lead to a logical error. This
implies that S can be assigned arbitrarily with no impact on decoder accuracy. Also, it is
possible to produce a pure error by parallel table look-up, since each bit of the syndrome
can be assigned a unique pure error, independently of the other bits. We call the apparatus
that produces this error the simple decoder. Since pure errors can be determined quickly in
this fashion, the neural network only has to identify L, which can take one of four values; I,
X̄, Ȳ, or Z̄. These four values can be used as labels in a classification problem.

To solve this problem, we use feed-forward neural networks, which are widely regarded
as the simplest machine learning technique [127]. A feed-forward neural net can be de-
scribed graphically or functionally, see Figure 4.2. The artificial neurons which comprise

4

48
4. DECODING SMALL SURFACE CODES WITH FEEDFORWARD NEURAL

NETWORKS

the network are devices which store a length-m internal array of weights ~w, as well as a bias
b. Upon receiving a length-m input ~x, they calculate (1 + exp(−(~w · ~x + b)))−1 and either
broadcast the result to a subsequent layer of neurons, or output the result directly if the
neuron in question is part of the output layer. Such output is typically denoted ~y, and its
accuracy is measured using an appropriate cost function.

A typical cost function, which we use in this work, is the average cross-entropy:

〈H(p,y)〉 ∝− ∑
(~p,~x)∈T

~p · ln(~y(~x)), (4.2)

where T is the training set, consisting of desired (‘target’) distributions ~p and input values
~x. The cross-entropy is a measure of the divergence between two probability (or frequency)
distributions, differing from the Kullback-Leibler divergence [128] only in terms that de-
pend solely on ~p. To minimize the cross-entropy, we use stochastic gradient descent, as
implemented in the Tensorflow library [129]. To produce a training set, we use direct sam-
pling at a single physical error probability, where the Blossom algorithm produces a logical
error rate of ∼ 25%. This physical error probability is chosen so that a large variety of error
syndromes can be produced while still ensuring that correction is possible. For small surface
codes, it is possible to sample the entire set of possible syndromes, we limit the size of the
training set to at most 106 samples for larger codes. This training set size provides relatively
fast training and high accuracy, as seen in Section 4.5.

x2

x1

x0

i h o

y1

y0

~y = σ
(

Ŵoσ
(

Ŵh~x +~bh

)
+~bo

)

Figure 4.2: The graphical and functional descriptions of a feed-forward neural network. In the graphical
description (left), inputs xj are passed to neurons in a hidden layer, and each of these neurons outputs
σ (~w ·~x + b), where ~w and b are a local set of weights and a bias, and σ(x) is a non-linear activation
function (we use σ(x) = (1 + exp(−x))−1 for all neurons considered in this work). The final outputs
yk can be rounded to {0, 1}, and interpreted as a class label. In the functional picture, the weights and
biases are assembled into matrices and vectors, respectively, allowing the output vector to be expressed
as a composition of functions acting on the input vector.

In the following section, we compare the performance of our decoder to the performance
of Blossom and the performance of the partial lookup table (PLUT), which contains the error
syndromes and corrections from the training set. In the event that the input syndrome is not
in the training set, the PLUT decoder multiplies the correction from the simple decoder by
the most frequent logical operator, I. The comparison in terms of performance is based on
the logical error rate of each decoder for specific code distances and error models.

4.5. RESULTS

4

49

4.5. RESULTS
In the proposed decoder, we provide the error syndrome to both the simple decoder and
the neural network. As presented in Table 4.1, the size of the input for the neural network
is equal to the number of required syndrome bits, depending on the error model, and only
one hidden layer was used for all networks. The number of nodes in the hidden layer was
decided based on the performance of the neural network during training and testing.

QEC Error Models
Code Capacity Noise

Code distance Input nodes Hidden nodes Output nodes
3 4 10 2
5 12 90 2
7 24 512 2

Depolarizing Noise
3 8 128 4
5 24 660 4
7 48 256 4

FT Error Models
Phenomenological Noise

Code distance Input nodes Hidden nodes Output nodes
3 16 768 4

Depolarizing & Measurement Noise
3 32 768 4

Circuit Noise
3 32 704 4

Table 4.1: Layer sizes for the neural networks used throughout this work. The number of input nodes
is determined by the number of syndromes in the quantum error correction scenario, using only X
(or Z) syndrome bits for independent X/Z errors, and all syndrome bits for depolarizing errors. For
fault tolerance error models, d rounds of measurement are followed by readout of the data qubits, and
calculated stabilizer eigenvalues are included in the input. The output layer is restricted to two nodes
for independent X/Z errors, since logical X/Z errors are also independent. In all other scenarios, four
nodes are used to discriminate between I, X̄, Ȳ, and Z̄. The number of nodes in the hidden layer is
determined by analyzing the performance of the resulting decoder empirically.

We test the proposed decoder against Blossom and the PLUT decoder for two classes of
error models, called quantum error correction (QEC) and fault tolerance (FT). Quantum er-
ror correction (QEC) error models approximate noise only on data qubits and fault tolerance
(FT) error models approximate noise on all qubits, gates and operations, therefore requiring
multiple rounds of measurement to find all errors. The code capacity model inserts only
X or only Z errors with probability p in the data qubits. The depolarizing model places
X/Y/Z errors with equal probability, p/3, on the data qubits. For these error models only
one cycle of error correction is required to find all errors.

For fault tolerance error models, the probability of an error occurring on a qubit and the
probability of a measurement error is the same, therefore the minimum number of rounds of
measurement is taken to be d. Instead of data qubit and measurement errors, the circuit noise
model assumes that all operations and gates are noisy. Each single-qubit gate is followed
by depolarizing noise with probability p/3 and each two-qubit gate is followed by a two-

4

50
4. DECODING SMALL SURFACE CODES WITH FEEDFORWARD NEURAL

NETWORKS

bit depolarizing map where each non-I⊗ I two-bit Pauli has probability p/15. Preparation
and measurement locations fail with probability p, resulting in a prepared −1-eigenstate or
measurement error, respectively.

In our simulations, more than 106 error correction cycles were run per point, and each
point has a confidence interval of 99.9%. The percentage of the most frequent error syn-
dromes that were used as training cases for the code capacity error model were 100% (d = 3),
72.46% (d = 5), 2.75% (d = 7), see Figures 4.3, 4.4, and 4.5, respectively. The percentage of the
most frequent error syndromes that were used as training cases for the depolarizing error
model were 100% (d = 3), 0.98% (d = 5), 3 × 10−7% (d = 7), see Figures 4.6, 4.7, and 4.8,
respectively. The percentage of the most frequent error syndromes that were used as train-
ing cases for the fault tolerance error models were 30.09%, 0.022% and 0.01% for the code
capacity (see Figure 4.9), the depolarizing (see Figure 4.10), and the circuit model (see Figure
4.11), respectively. The performance of our decoder was compared to the Blossom algorithm
and the PLUT decoder.

0.05 0.06 0.07 0.08 0.09 0.1 0.11

0.05

0.1

physical error rate

lo
gi

ca
lX

er
ro

r
ra

te

d = 3

Figure 4.3: Code capacity error model without measurement errors for Surface Code with distance 3.
Performance comparison of the neural network decoder (blue) to the MWPM algorithm (orange) partial
look-up table (green). The black dashed line represents the points that the physical error rate is equal to
the logical error rate x = y. All points of all three curves are lying on top of each other.

4.5. RESULTS

4

51

0.05 0.06 0.07 0.08 0.09 0.1 0.11

0.05

0.1

0.15

physical error rate

lo
gi

ca
lX

er
ro

r
ra

te
d = 5

Figure 4.4: Code capacity error model without measurement errors for Surface Code with distance 5.
Performance comparison of the neural network decoder (blue) to the MWPM algorithm (orange) partial
look-up table (green). The black dashed line represents the points that the physical error rate is equal to
the logical error rate x = y.

0.05 0.06 0.07 0.08 0.09 0.1 0.11
0

0.1

0.2

physical error rate

lo
gi

ca
lX

er
ro

r
ra

te

d = 7

Figure 4.5: Code capacity error model without measurement errors for Surface Code with distance 7.
Performance comparison of the neural network decoder (blue) to the MWPM algorithm (orange) partial
look-up table (green). The black dashed line represents the points that the physical error rate is equal to
the logical error rate x = y.

4

52
4. DECODING SMALL SURFACE CODES WITH FEEDFORWARD NEURAL

NETWORKS

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

0.05

0.1

0.15

0.2

physical error rate

lo
gi

ca
le

rr
or

ra
te

d = 3

Figure 4.6: Depolarizing error model without measurement errors for Surface Code with distance 3.
Performance comparison of the neural network decoder (blue) to the MWPM algorithm (orange) partial
look-up table (green). The black dashed line represents the points that the physical error rate is equal to
the logical error rate x = y.

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
0

0.1

0.2

0.3

physical error rate

lo
gi

ca
le

rr
or

ra
te

d = 5

Figure 4.7: Depolarizing error model without measurement errors for Surface Code with distance 5.
Performance comparison of the neural network decoder (blue) to the MWPM algorithm (orange) partial
look-up table (green). The black dashed line represents the points that the physical error rate is equal to
the logical error rate x = y.

4.5. RESULTS

4

53

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
0

0.2

0.4

0.6

physical error rate

lo
gi

ca
le

rr
or

ra
te

d = 7

Figure 4.8: Depolarizing error model without measurement errors for Surface Code with distance 7.
Performance comparison of the neural network decoder (blue) to the MWPM algorithm (orange) partial
look-up table (green). The black dashed line represents the points that the physical error rate is equal to
the logical error rate x = y.

In the QEC error models, see Figures 4.3 to 4.8, we observe a clear trend. In both error
models, as the distance increases the performance of our decoder remains similar to Blos-
som, and becomes much better than the PLUT-based decoder. This demonstrates that the
neural networks of our decoder can successfully correct error syndromes that were not in-
cluded in training. At small code distances, almost all possible error syndromes were used
in training, resulting in identical performance from both the PLUT and our decoder. How-
ever, going to larger distances while using a small set of error syndromes for training, leads
to sub-optimal decoding by the PLUT decoder.

It is known that, for the code capacity error model, Blossom can reach near-optimal accu-
racy, therefore it is sufficient for our decoder to reach similar accuracy. There are correctable
errors (with weight ≤ 3) in distance 7 that are not included in the training set and the neu-
ral network is not generalizing correctly. Therefore, the performance is ∼ 1% worse than
Blossom’s. However, for the depolarizing error model, Blossom is known to misidentify Y
errors, since it performs the decoding for X and Z errors separately, treating a Y error as two
distinct errors. Thus, if we train our decoder to take Y errors into account as weight-1 errors,
the performance will be better than Blossom’s. In the depolarizing model, there are still a
few weight 3 errors that are being mis-identified, however the existence of higher weight
errors in the training set, that are being corrected properly, account for the slightly better
performance compared to the Blossom decoder.

4

54
4. DECODING SMALL SURFACE CODES WITH FEEDFORWARD NEURAL

NETWORKS

10−3 10−2 10−1
10−5

10−4

10−3

10−2

10−1

100

physical error rate

lo
gi

ca
lX

er
ro

r
ra

te

d = 3

Figure 4.9: Code capacity error model with measurement errors for Surface Code with distance 3. Per-
formance comparison of the neural network decoder (blue) to the MWPM algorithm (orange) partial
look-up table (green). The black dashed line represents the points that the physical error rate is equal to
the logical error rate x = y.

10−3 10−2 10−1
10−5

10−4

10−3

10−2

10−1

100

physical error rate

lo
gi

ca
le

rr
or

ra
te

d = 3

Figure 4.10: Depolarizing error model with measurement errors for Surface Code with distance 3. Per-
formance comparison of the neural network decoder (blue) to the MWPM algorithm (orange) partial
look-up table (green). The black dashed line represents the points that the physical error rate is equal to
the logical error rate x = y.

4.6. DISCUSSION AND CONCLUSION

4

55

10−4 10−3 10−2

10−5

10−3

10−1

physical error rate

lo
gi

ca
le

rr
or

ra
te

d = 3

Figure 4.11: Circuit error model for Surface Code with distance 3. Performance comparison of the
neural network decoder (blue) to the MWPM algorithm (orange) partial look-up table (green). The
black dashed line represents the points that the physical error rate is equal to the logical error rate x = y.

In the fault tolerance scenario, see Figure 4.9, 4.10 and 4.11 due to the small code distance,
all decoders reach a similar level of performance. Specifically, for the code capacity and the
depolarizing error model, only a small amount of error syndromes was necessary to reach
Blossom’s performance. The circuit metric required more syndromes, however slightly bet-
ter performance was achieved in this case as well.

It is encouraging that the neural network based decoder can achieve similar performance
to Blossom. However, the main reason that such a design is proposed is to accelerate the
decoding time. In the following section, we provide an estimation of the speed of the neural
network based decoder in hardware, and discuss the implications for future research.

4.6. DISCUSSION AND CONCLUSION
To estimate runtime scaling of a neural network decoder of the type introduced above, we
first note that the runtime is dictated by the sizes of the input, hidden and output layers.
The input layer grows quadratically with the distance of the surface code in question, and
the size of the output layer is constant. The size of the hidden layer, however, is selected
through trial and error, so it cannot be predicted a priori.

Given a hidden layer size, we can estimate the required runtime, using the graphical
description of neural networks (see Figure 4.2). Firstly, the output of each neuron can be
evaluated independently, so the runtime is dominated by the time needed to take an inner
product between the weight vector and an intermediate state in the network. Each multipli-
cation can be performed independently, and summation requires a logarithmic-depth circuit
composed of adders, arranged in a tree-like structure. This implies that any sub-exponential
growth in the size of the hidden layer will result in sub-linear growth in the required decod-
ing time.

4

56
4. DECODING SMALL SURFACE CODES WITH FEEDFORWARD NEURAL

NETWORKS

To get a better idea of how these scaling arguments function in practice, we can bound
the performance of a neural network decoder, and compare with similar bounds using the
Blossom algorithm, running on a CPU. We consider an average instance of the decoding
problem for the d = 3 rotated surface code correcting circuit noise, in which three syndrome
differences occur during repeated measurement, leading to a graph with 6 vertices and 9
edges. We also neglect the runtime of the simple decoder, since, for the distance-3 code, it
can be reduced to a simple look-up table.

To lower-bound the time required for the Blossom algorithm, we hard-code the relevant
graph data into a C program and calculate the matching. This requires ∼ 500 ns, indicat-
ing that the Blossom algorithm can compute a correction on the timescale required for the
distance-3 code. However, this neglects the time required to translate syndrome data from
experimental hardware into the data structure required by the algorithm. To upper-bound
this time, we write a second program which reads the graph data from a file, resulting in a
runtime of∼ 6µs, slightly too slow to be compatible with an 800 ns syndrome measurement
time.

To lower-bound the runtime of the neural network, we make the assumption that each
arithmetic operation will require one clock cycle of the appropriate FPGA, typically 1–5
ns [130]. The network which corrects errors from the circuit model requires two multiplica-
tions (one for the hidden layer, and one for the output layer), 15 addition steps (dlog2(32)e+
dlog2(704)e), and two evaluations of the sigmoid function, for a total of 19 serial steps, re-
quiring 19–95 ns. To obtain an upper bound, we estimate the number of clock cycles re-
quired using a high-level synthesis tool [49], which permits hardware-synthesizable code to
be generated from C, but does not ensure that the resulting code is optimized for speed. This
results in an estimate of∼ 3600 clock cycles, requiring∼ 3.6–18µs, again slightly too slow to
be compatible with an 800 ns syndrome measurement time. Either decoder would require
only minor optimization to attain compatibility at distance 3, an ideal topic for immediate
future work.

In concert with this, we can extend the proposed decoder to the case where syndromes
from a finite window are fed forward, as in [1]. In addition, we can begin testing the ap-
plicability of feedforward neural networks to surface codes with larger distance, as well as
to alternate topological codes for which existing decoders do not attain high accuracy and
speed simultaneously [57, 131, 132].

If feedforward neural networks can efficiently decode a large range of topological codes,
it will also be interesting to determine the scope of their applicability. There are known
families of sparse and/or high-rate stabilizer codes [55, 133, 134] for which fast and accurate
decoders are not known. Aside from concatenated codes, which can be optimally decoded
by fast message passing [126], neural networks provide an interesting avenue to quickly test
the performance of small codes, with ∼ 50 stabilizer measurements.

In conclusion, feedforward neural networks provide a fast and accurate method to de-
code small surface codes, both for performing quantum error correction, as well as fault-
tolerant operations. Given that the hardware requirements and anticipated runtime are rel-
atively low, we expect feedforward neural network decoders to be usable in the near term.

4.7. ACKNOWLEDGMENTS

4

57

4.7. ACKNOWLEDGMENTS
We thank Tom O’Brien, Paul Baireuther and Brian Tarasinski for useful discussions, and
Imran Ashraf for his timely and invaluable assistance with high-level synthesis tools for
FPGA programming. We acknowledge financial support from Intel in the context of the
QuTech-Intel collaboration.

The contents of this chapter are based on the following paper:

S. Varsamopoulos, B. Criger, K. Bertels, Decoding small surface codes with feedforward
neural networks, Quantum Science and Technology, vol. 3, num. 1, pp. 015004, IOP Publishing,
2018.

5
DESIGNING NEURAL NETWORK

BASED DECODERS FOR
SURFACE CODES

Recent works have shown that small distance quantum error correction codes can be efficiently de-
coded by employing machine learning techniques like neural networks. Various techniques employing
neural networks have been used to increase the decoding performance, however, there is no framework
that analyses a procedure in designing such a neural network based decoder. The objective of this
work is to present a detailed framework that investigates how neural network parameters affect the
decoding performance, the training and execution time of a neural network based decoder. We fo-
cus on parameters such as the size of the training dataset, the structure, and the type of the neural
network, the batch size and the learning rate used during training. We compare various decoding
strategies and showcase how these influence the objectives for different error models. For the noiseless
syndrome measurements, we reach up to 50% improvement against the benchmark algorithm (Blos-
som) and for the noisy syndrome measurements, we show efficient decoding performance up to 97
qubits for the rotated Surface code. Furthermore, we show that the scaling of the execution time is
linear with the number of qubits, which is a significant improvement compared to existing classical
decoding algorithms.

5.1. INTRODUCTION
Quantum computers are a promising solution to a class of complex problems that classical
supercomputers cannot currently solve or require an immensely large amount of time to
solve. However, since quantum computing is still in its early stages, classical computers
are still the driving force, using the prototypes of quantum computers as accelerators for
specific applications.

In the recent past, there is an increasing dominance of heterogeneous, multi-core archi-
tectures with multiple processors. In such architectures, a classical core processor interacts
with different co-processors such as Graphics Processing Units (GPUs), Field Programmable
Gate Arrays (FPGAs), Tensor Processing Units (TPUs) and in this case a quantum processor.
Quantum computers require both classical and quantum computing components, because

59

5

60 5. DESIGNING NEURAL NETWORK BASED DECODERS FOR SURFACE CODES

it needs a lot of monitoring and control from the classical part and all quantum applications
consist of classical and quantum logic. Typically, when developing such an architecture, one
has to develop a full stack going from algorithms up to the chip implementation.

Figure 5.1: Overview of the quantum computer system stack

Figure 5.1 provides an overview of the quantum system stack consisting of the following
layers [102]:

• The top layers involve the quantum algorithms alongside the language constructs
and compilers that are required to generate a series of instructions that belong to the
Quantum Instruction Set Architecture (QISA).

• The micro-architecture layer translates these instructions into pulses to operate in the
quantum chip. These pulses are sent through the quantum to classical interface.

• As can be seen by the 3rd dimension of Figure 5.1, quantum error correction (QEC) is
a key part when building a fault-tolerant quantum accelerator and it affects several
layers such as the micro-architecture.

5.1. INTRODUCTION

5

61

Figure 5.2: Overview of the quantum micro-architecture [4]

5

62 5. DESIGNING NEURAL NETWORK BASED DECODERS FOR SURFACE CODES

As can be seen in Figure 5.2, different micro-architectural blocks are required to keep
track of the errors and identify the location and type of these errors such as the Decoding
block and the Pauli frame unit. In this work, we are focused on the Decoder logic block of
Figure 5.2 that is part of the QEC process, as we will explain in the next paragraphs.

Constant active quantum error correction (QEC) is regarded as necessary in order to
perform reliable quantum computation and storage due to the unreliable nature of current
quantum technology. Qubits inadvertently interact with their environment even when no
operation is applied, forcing their state to change (decohere). Moreover, application of im-
perfect quantum gates results in the introduction of errors in the quantum system. Quantum
error correction is the mechanism that reverses these errors and restores the state to the de-
sired one.

Quantum error correction involves an encoding and a decoding process. Encoding is
used to enhance protection against errors by employing more resources (qubits). In this
chapter, we limit ourselves to surface code encoding [135]. Decoding is the process that is
used to identify the location and type of error that occurred. As part of quantum error cor-
rection, decoding has a limited time budget that is determined by the time of a single round
of error correction. In the case that the decoding time exceeds the time of quantum error
correction, either the quantum operations are stalled or a backlog of inputs to the decoding
algorithm is created [123]. Many classical decoding algorithms have been proposed with the
most widely used being the Blossom algorithm [76]. Blossom algorithm has been shown to
reach high decoding accuracy, but its decoding time scales polynomially with the number
of qubits [1], which can be problematic for large quantum systems needed to solve complex
problems. However, there are optimized versions of Blossom for topological codes, that re-
port linear scaling with the number of qubits [84] and even a parallel version stating that the
average processing time per detection round is constant independent of the size of the sys-
tem [78]). We propose the employment of neural networks, since they exhibit constant exe-
cution time after being trained without any parallelization required and have been proven to
provide better decoding performance than many classical decoding algorithms[86–90, 94].

In this work, we investigate various designs of neural network based decoders and com-
pare them in terms of the decoding accuracy, training time and execution time. We analyze
how different neural network parameters like the size of the training dataset, the structure
and type of the neural network, the batch size and the learning rate used during training,
affect the accuracy, the training and execution time of such a decoder.

The rest of the chapter is organized as follows: in section 5.2, we explain how the differ-
ent designs of neural network decoders work, as found in literature. Section 5.3, presents
the guidelines of utilization of the neural network parameters. In section 5.4, we provide
the results with the best neural network decoder for the different error models. Finally, in
section 5.5, we draw our conclusions about this research. Information regarding quantum
error correction, the surface code and neural networks are summarized in chapter 2.

5.2. DESIGNING NEURAL NETWORK BASED DECODERS
Neural network based decoders for quantum error correcting codes have been recently pro-
posed [86–90, 94]. There are two categories in which they can be divided: i) decoders that
search for exact corrections at the physical level and ii) decoders that search for corrections
that restore the logical state. We are going to refer to the former ones as low level decoders
[86, 87] and the latter ones as high level decoders [88–90, 94].

Since there are multiple techniques in designing a neural network based decoder, there is
merit in figuring out which is the best design strategy. To achieve that, we implemented both

5.2. DESIGNING NEURAL NETWORK BASED DECODERS

5

63

designs as found in the literature and investigated their differences and similarities. Further-
more, we evaluate the decoding performance achieved with both decoders and investigate
their training and execution time. We provide an analysis for various design parameters.

5.2.1. INPUTS/OUTPUTS
Low level decoders take as input the error syndrome and produce as output an error proba-
bility distribution for each data qubit based on the observed syndrome. Therefore, a predic-
tion is made that attempts to correct exactly all physical errors that have occurred.

High level decoders take as input the error syndrome and produce as output an error
probability for the logical state of the logical qubit. Based on this scheme, the neural network
does not have to predict corrections for all data qubits, rather just for the state of the logical
qubit, which makes the prediction simpler. This is due to the fact that there are only 4 options
as potential logical errors, Ī, X̄, Z̄, Ȳ, compared to the case of the low level decoder where the
output is equivalent to the number of data qubits. Moreover, trying to correctly predict each
physical error requires a level of high granularity which is not necessary for error correcting
codes like the surface code.

5.2.2. SAMPLING AND TRAINING PROCESS
During the sampling process, multiple error correction cycles are run and the corresponding
inputs and outputs for each decoder are stored. Due to the degenerate nature of the surface
code, the same error syndrome might be produced by different sets of errors. Therefore, we
need to keep track of the frequency of occurrence of each set of errors that provide the same
error syndrome.

For the low level decoder, based on these frequencies, we create an error probability
distribution for each data qubit based on the observed error syndrome. For the high level
decoder, based on these frequencies, we create an error probability distribution for each
logical state based on the observed error syndrome.

When sampling is terminated, we train the neural network to map all stored inputs to
their corresponding outputs. Training is terminated when the neural network is able to
correctly predict at least 99% of the training inputs. Further information about the training
process are provided in section 5.3.

5.2.3. EVALUATING PERFORMANCE
Designs for low level decoders typically include a single neural network. To obtain the
predicted corrections for the low level decoder, we sample from the probability distribution
that corresponds to the observed error syndrome for each data qubit, and predict whether
a correction should be applied at each data qubit. However, this prediction needs to be
verified before being used as a correction, because the proposed corrections must generate
the same error syndrome as the one that was observed. Otherwise, the corrections are not
valid (see Figure 5.3a-b). Only when the two error syndromes match, the predictions are
used as corrections on the data qubits (see Figure 5.3a-c). If the observed syndrome does
not match the syndrome obtained from the predicted corrections, then the predictions must
be re-evaluated by re-sampling from the probability distribution. This re-evaluation step
makes the decoding time non-constant, which can be a big disadvantage. There are ways
to minimize the average amount of re-evaluations, however this is highly influenced by the
physical error rate, the code distance and the strategy of re-sampling.

In Figure 5.3, the decoding procedure of the low level decoder is described with an
example. On 5.3a, we present an observed error syndrome shown in red dots and the bit-flip

5

64 5. DESIGNING NEURAL NETWORK BASED DECODERS FOR SURFACE CODES

errors on physical data qubits (shown with X on top of them) that created that syndrome. On
5.3b, the decoder predicts a set of corrections on physical data qubits and the error syndrome
resulting from these corrections is compared against the observed error syndrome. As can
be seen from 5.3a and 5.3b, the two error syndromes do not match therefore the predicted
corrections are deemed invalid. On 5.3c, the decoder predicts a different set of corrections
and the corresponding error syndrome to these corrections is compared against the observed
error syndrome. In the case of 5.3a and 5.3c, the predicted error syndrome matches the
observed one, therefore the corrections are deemed valid.

X

X

X

X

X

X

X

X

X

XX

a) b) c)

Figure 5.3: Description of the decoding process of the low level decoder for a d=5 rotated surface code.
(a) Observed error syndrome shown in red dots and bit-flip errors on physical data qubits shown with
X on top of them. (b) Invalid data qubits corrections and the corresponding error syndrome. (c) Valid
data qubits corrections and the corresponding error syndrome.

Designs for high level decoders typically involve two decoding modules that work to-
gether to achieve high speed and high level of decoding performance. Either both decoding
modules can be neural networks [89] or one can be a classical module and the other can
be a neural network [88, 90], as described in the previous chapter. The classical module of
the latter design will only receive the error syndrome out of the last error correction cycle
and predict a set of corrections. In our previous experimentation [88], which is described
in the previous chapter, this classical module was called simple decoder. The corrections
proposed by the simple decoder do not need to exactly match the errors that occurred, as
long as the corrections correspond to the observed error syndrome (valid corrections). The
other module which in both cases is a neural network, should be trained to receive the er-
ror syndromes out of all error correction cycles and predict whether the corrections that are
going to be proposed by the simple decoder are going to lead to a logical error or not. In
that case, the neural network outputs extra corrections, which are the appropriate logical
operator that erases the logical error. The output of both modules is combined and any log-
ical error created by the corrections of the simple decoder will be canceled due to the added
corrections of the neural network (see Figure 5.4).

Furthermore, the simple decoder is purposely designed in the simplest way in order to
remain fast, regardless of the quality of proposed corrections. By adding the simple decoder
alongside the neural network, the corrections can be given at one step and the execution
time of the decoder remains small, since both modules are fast and operate in parallel.

In Figure 5.4, the decoding procedure of the high level decoder is described with an ex-
ample. On 5.4a, we present an observed error syndrome shown in red dots and the bit-flip
errors on physical data qubits (shown with X on top of them) that created that syndrome. On
5.4b, we present the decoding of the classical module known as simple decoder. The simple

5.3. IMPLEMENTATION PARAMETERS

5

65

decoder receives the last error syndrome of the decoding procedure and proposes correc-
tions on physical qubits by creating chains between each detection event and the nearest
boundary of the same type as the parity-check type of the detection event. In Figure 5.4b,
the corrections on the physical qubits are shown with X on top of them, indicating the way
that the simple decoder functions. The simple decoder corrections are always deemed valid,
due to the fact that the predicted and observed error syndrome always match based on the
construction of the simple decoder. In the case of Figure 5.4a-b, the proposed corrections of
the simple decoder are going to lead to an X̄ logical error, therefore we use the neural net-
work to identify this case and propose the application of the X̄ logical operator as additional
corrections to the simple decoder corrections, as presented in 5.4c.

X

X

X

X

X

X

X

X

a) b) c)

Figure 5.4: Description of the decoding process of the high level decoder for a d=5 rotated surface code.
(a) Observed error syndrome shown in red dots and bit-flip errors on physical data qubits shown with
X on top of them. (b) Corrections proposed by the simple decoder for the observed error syndrome. (c)
Additional corrections in the form of the X̄ logical operator to cancel the logical error generated from
the proposed corrections of the simple decoder.

5.3. IMPLEMENTATION PARAMETERS
In this section, we implement and compare both types of neural network based decoders
as discussed in the previous section and argue about the better strategy to create such a
decoder. The chosen strategy will be determined by investigation of how different imple-
mentation parameters affect the i) decoding performance, ii) training time and iii) execution
time.

• The decoding performance indicates the accuracy of the algorithm during the de-
coding process. The typical way that decoding performance is evaluated is through
lifetime simulations. In lifetime simulations, multiple error correction cycles are run
and decoding is applied in frequent windows. Depending on the error model, a single
error correction cycle might be enough to successfully decode, as in the case of per-
fect error syndrome measurements (window = 1 cycle), or multiple error correction
cycles might be required, as in the case of imperfect error syndrome measurements
(window 1 cycle). When the lifetime simulations are stopped, the decoding perfor-
mance is evaluated as the ratio of the number of logical errors found over the number
of windows run until the simulations are stopped.

• The training time is the time required by the neural network to adjust its weights in
a way that the training inputs provide the corresponding outputs as provided by the

5

66 5. DESIGNING NEURAL NETWORK BASED DECODERS FOR SURFACE CODES

training dataset and adequate generalization can be achieved.

• The execution time is the time that the decoder needs to perform the decoding after
being trained. It is calculated as the difference between the time when the decoder re-
ceives the first error syndrome of the decoding window and the time when it provides
the output.

5.3.1. ERROR MODEL
These decoders were tested for two error models, the depolarizing error model and the
circuit noise model.

The depolarizing model assigns X,Z,Y errors with equal probability p/3, known as de-
polarizing noise, only on the data qubits. No errors are inserted on the ancilla qubits and
perfect parity-check measurements are used. Therefore, only a single cycle of error correc-
tion is required to find all errors.

The circuit noise model assigns depolarizing noise on the data qubits and the ancilla
qubits. Furthermore, each single-qubit gate is assumed perfect but is followed by depolariz-
ing noise with probability p/3 and each two-qubit gate is assumed perfect but is followed by
a two-bit depolarizing map where each two-bit Pauli has probability p/15, except the error-
free case, which has a probability of 1− p. Depolarizing noise is also used at the preparation
of a state and the measurement operation with probability p, resulting in the wrong pre-
pared state or a measurement error, respectively. An important assumption is that the error
probability of a data qubit error is equal to the probability of a measurement error, therefore
d cycles of error correction are deemed enough to decode properly.

5.3.2. CHOOSING THE BEST DATASET
The best dataset for a neural network based decoder is the dataset that produces the best
decoding performance. Naively, one could suggest that including all possible error syn-
dromes, would lead to the best decoding performance, however, as the size of the quantum
system increases, including all error syndrome becomes impossible. Therefore, we need to
include as little but as diverse as possible error syndromes, which will provide the maxi-
mum amount of generalization, thus the best decoding performance, after training.

In our previous experimentation[88], we showed that sampling at a single physical er-
ror rate that always produces the fewest amount of corrections, is enough to decode small
distance rotated surface codes with a decent level of decoding performance. This concept of
always choosing the fewer amount of corrections is similar to the Minimum Weight Perfect
Matching that Blossom algorithm uses.

After sampling and training the neural network at a single physical probability, the de-
coder is tested against a large variety of physical error rates and its decoding performance
is observed. We call this approach, the single probability dataset approach, because we
create only one dataset based on a single physical error rate and test it against many. Us-
ing the single probability dataset approach to decode various physical error probabilities is
not optimal, because when sampling at low physical error rates, less diverse samples are
collected, therefore the dataset is not diverse enough to correctly generalize to unknown
training inputs.

The single probability approach is valid for a real experiment, since in an experiment
there is a single physical error probability that the quantum system operates and at that
probability the sampling, training and testing of the decoder will occur. However, this is
not a good strategy for testing the decoding performance over a wide range of error prob-
abilities. This is attributed to the degenerate nature of the surface code, since different sets

5.3. IMPLEMENTATION PARAMETERS

5

67

of errors generate the same error syndrome. One set of errors is more probable when the
physical error rate is small and another when it is high. Based on the design principles of
the decoder, only one of these sets of errors, and always the same, are going to be selected
when a given syndrome is observed regardless of the physical error rate. Therefore, training
a neural network based decoder in one physical error rate and testing its decoding perfor-
mance in a widely different physical error rate is not beneficial. The main benefit of this
approach lies in the fact that only a single neural network has to be trained and used to eval-
uate the decoding performance for all the physical error rates that were tested. In the single
probability dataset approach, the set with the fewer errors was always selected, because this
set is more probable for the range of physical error rates that we are interested in.

To avoid such violations, we created different datasets that were obtained by sampling
at various physical error rates and trained a different neural network at each physical error
rate taken into account. We call this approach, the multiple probabilities datasets approach.
Each dedicated training dataset that was created by a specific physical error probability
is used to test the decoding performance at that same physical error probability and the
probabilities close to that, but not all physical probabilities tested. Moreover, by sampling,
training and testing the performance for the same physical error rate, the decoder has the
most relevant information to perform the task of decoding.

The first step when designing a neural network based decoder is gathering data that
will be used as the training dataset. However, as the code distance increases, the size of the
space including all potential error syndromes gets exponentially large. Therefore, we need
to decide at which point the sampling process is going to be terminated.

Based on the sampling probability (physical error rate), different error syndromes will
be more frequent than others. We chose to include the most frequent error syndromes in the
training dataset. In order to find the best possible dataset, we increase the dataset size until
it stops yielding better results in terms of decoding performance. For each training dataset
size, we train a neural network and evaluate the decoding performance.

It is not straightforward to claim that the optimal size of a training dataset is found,
because there is no way to ensure that we found the minimum number of training samples
that provide the best weights for the neural network, therefore generalization, after being
perfectly trained. Thus, we rely heavily on the decoding performance that each training
dataset achieves and typically use more training samples than the least amount required.

5.3.3. STRUCTURE OF THE NEURAL NETWORK
While investigating the optimal size of a dataset, some preliminary investigation of the
structure has been done, however only after the dataset is defined, the structure in terms
of layers and nodes is explored in depth (see Figure 5.5).

A variety of different configurations of layers and nodes needs to be tested, so that the
configuration with the highest accuracy of training in the least amount of training time can
be adopted. The main factors that affect the structure of the neural network are the size
of the training dataset, the similarity between the training samples and the type of neural
network.

We found in our investigation that the number of layers selected for training are affected
more by the samples, e.g. the similarity of the input samples, and less by the size of the
training dataset. The number of nodes of the last hidden layer is selected to be equal to
the number of output nodes. The rest of the hidden layers were selected to have decreas-
ing number of nodes going from the first to the last layer, but we do not claim that this is
necessarily the optimal strategy.

We implemented both decoder designs with feed-forward and recurrent neural net-

5

68 5. DESIGNING NEURAL NETWORK BASED DECODERS FOR SURFACE CODES

94

95

96

97

98

99

100

100 200 300 400 500

Tr
ai

ni
ng

 a
cc

ur
ac

y
(%

)

Training epochs

128,4

256,4

512,4

128,128,4

256,128,4

512,256,4

128,128,128,128,4

256,256,256,256,4

512,384,256,128,4

Figure 5.5: Different configurations of layers and nodes for the d=5 rotated surface code for the depo-
larizing error model. The nodes of the tested hidden layers are presented in the legend. Training stops
at 500 training epochs for all configurations, since a good indication of the training accuracy achieved is
evident by that point. Then, the one that reached the highest training accuracy continues training until
the training accuracy cannot increase any more.

works. The more sophisticated recurrent neural network seems to outperform the feed-
forward neural network in both the depolarizing and the circuit noise model. In Figure 5.6,
it is evident that even for the small decoding problem of d=3 rotated surface code for the de-
polarizing error model, the RNN outperforms the FFNN in decoding performance. This is
even more obvious at larger code distances and for the circuit noise model, where the recur-
rent neural network naturally fits better due to its nature. Moreover, training of the FFNN
becomes much harder compared to the RNN as the size of the dataset increases, making the
experimentation with FFNN even more difficult.

The metric that we use to compare the different designs is the pseudo-threshold. The
pseudo-threshold is defined as the highest physical error rate that the quantum device
should operate in order for error correction to be beneficial. Operating at higher than the
pseudo-threshold probabilities will cause worse decoding performance compared to an un-
encoded qubit. The protection provided by error correction is increasing as the physical
error rate becomes smaller than the pseudo-threshold value, therefore a higher pseudo-
threshold for a code distance signifies higher decoding performance.

The pseudo-threshold metric is used when a single code distance is being tested. When
a variety of code distances are investigated, then we use the threshold metric. The thresh-
old is a metric that represents the protection against noise for a family of error correcting
codes, like the surface code. For the surface code, each code distance has a different pseudo-
threshold value, but the threshold value of the code is only one.

The pseudo-threshold values for all decoders investigated in Figure 5.6 can be found as
the points of intersection between the decoder curve and the black dashed line, which repre-
sents the points where the physical error probability is equal to the logical error probability

5.3. IMPLEMENTATION PARAMETERS

5

69

(y = x). The pseudo-thresholds acquired from Figure 5.6 are presented in Table 5.1.

Table 5.1: Pseudo-threshold values for the tested decoders (d=3) under depolarizing error model

Decoder Pseudo-threshold
FFNN lld 0.0911
RNN lld 0.0949

FFNN hld 0.0970
RNN hld 0.0969
Blossom 0.0825

Figure 5.6: Left: Comparison of decoding performance between Blossom algorithm, low level decoder
and high level decoder for the d=3 rotated surface code for the depolarizing error model. Right: Zoomed
in at the region defined by the square.

The threshold value is defined as the point of intersection of all the curves of multi-
ple code distances, therefore cannot be seen from Figure 5.6, since all curves involve d=3
decoders, but can be found in Figures 5.9 and 5.10 for the depolarizing and circuit noise
model, respectively.

Another observation from Figure 5.6 and Table 5.1 is that the high level decoder is out-
performing the low level decoder. Although there are ways to increase the decoding perfor-
mance of the latter, mainly by re-designing the repetition step to find the valid corrections in
less repetitions, we found no merit in doing so, since the decoding performance would still
be similar to the high level decoder's and the repetition step would still not be eliminated.

Based on these observations, the results presented in Figures 5.9 and 5.10 in the Results
section were obtained with the high level decoder with recurrent neural networks.

5

70 5. DESIGNING NEURAL NETWORK BASED DECODERS FOR SURFACE CODES

5.3.4. TRAINING PROCESS
BATCH SIZE

Training in batches instead of the whole dataset at once, can be beneficial for the training
accuracy and training time. By training in batches, the weights of the neural network are
updated multiple times per training iteration, which typically leads to faster convergence.
We used batches of 1000 or 10000 samples, based on the size of the training dataset.

LEARNING RATE

Another important parameter of training that can directly affect the training accuracy and
training time is the learning rate. The learning rate is the parameter that defines how big the
updating steps will be for each weight at every training iteration. Larger learning rates in
the beginning of training can lead the training process to a minimum faster during gradient
descent, whereas smaller learning rates near the end of training can increase the training ac-
curacy. Therefore, we devise a strategy of a step-wise decrease of the learning rate through-
out the training process. If the training accuracy has not increased after a specified number
of training iterations (e.g. 50), then the learning rate is decreased. The learning rates used
range from 0.01 to 0.0001.

GENERALIZATION

The training process should not only be focused on the correct prediction of known in-
puts, but also the correct prediction of inputs unknown to training, known as generaliza-
tion. Without generalization, the neural network acts as a Look-Up Table (LUT), which will
lead to sub-optimal behavior as the code distance increases. In order to achieve high level of
generalization, we continue training until the closeness between the desired and predicted
value up to the 3rd decimal digit is higher than 95% over all training samples.

TRAINING AND EXECUTION TIME

Timing is a crucial aspect of decoding and in the case of neural network decoders we need
to minimize both the execution time and the training time as much as possible.

The training time is proportional to the size of the training dataset and the number of
qubits. The number of qubits is increasing in a quadratic fashion, 2d2 − 1, and the selected
size of the training dataset in our experimentation is increasing in an exponential way, 2d2−1.
Therefore, training time should increase exponentially while scaling up.

However, the platform that the training occurs, affects the training time immensely, since
training in one/multiple CPU(s) or one/multiple GPU(s) or a dedicated chip in hardware
will result in widely different training times. The neural networks that were used to obtain
the results in this work, required between half a day to 3 days, depending on the number
of weights and the inputs/outputs of the neural network, on a CPU with 28 hyper thread
cores at 2GHz with 384GB of memory.

In our simulations in a CPU, we observed the constant time behavior that was antici-
pated for the execution time, however a realistic estimation taking into account all the details
of a hardware implementation that such a decoder might run, has not been performed by
this or any other group yet. The time budget for decoding is different for different qubit tech-
nologies, however due to the inadequate fidelity of the quantum operations, it is extremely
small for the time being, for example ~700nsec for a surface code cycle with superconducting
qubits [71].

In Figure 5.7, we present the constant and non-constant execution time for the d=3 ro-
tated surface code for the depolarizing noise model with perfect error syndrome measure-
ments for the high level decoder and the low level decoder, respectively.

5.3. IMPLEMENTATION PARAMETERS

5

71

Figure 5.7: Execution time for the high level decoder (hld) and the low level decoder (lld) for Feed-
forward (FFNN) and Recurrent neural networks (RNN) for d=3 rotated surface code for the depolariz-
ing error model.

The low level decoder has to repeat its predictions before it predicts a valid set of cor-
rections which makes the execution time non-constant. With careful design of the repetition
step, the average number of predictions can decrease, however the execution time will re-
main non-constant. Based on the non-constant execution time and the inferior decoding
performance compared to the high level decoder, the low level decoder was rejected.

Moreover, the recurrent neural network typically uses more weights compared to the
feed-forward neural network, which translates to higher execution time. However, the
decoding performance and the training accuracy achieved with recurrent neural networks
leads to better decoding performance. Thus, we decided to create high level decoders based
on recurrent neural networks while taking into account all the parameters mentioned above.

The execution time for high level decoders appears to increase linearly with the number
of qubits. This is justified by the fact that as the code distance increases, the operation of the
simple decoder does not require more time, since all detection events are matched in parallel
and independently to each other, and the size of the neural network increases in such a way
that only a linear increase in the execution time is calculated. In Table 5.2, we provide the
calculated average time of decoding a surface code cycle under depolarizing noise for all
distances tested with the high level decoder with recurrent neural networks.

We are focusing on the scaling of the execution time, instead of the actual value, since
these simulations were run as a Python code in a CPU, completely unoptimized. We are
confident that a hardware implementation will perform fast enough in a realistic case.

There are factors such as the number of qubits, the type of neural network being used
and the number of inputs/outputs of the neural network that influence the execution time.
The main advantage against classical algorithms is that the execution time of such neural
network based decoders is independent of the physical error probability.

5

72 5. DESIGNING NEURAL NETWORK BASED DECODERS FOR SURFACE CODES

Table 5.2: Average time for surface code cycle under depolarizing error model

Code distance Avg. time / cycle
d=3 4.14msec
d=5 11.19msec
d=7 28.53msec
d=9 31.34msec

In the following section we are presenting the results in terms of the decoding perfor-
mance for different code distances.

5.4. RESULTS
As we previously mentioned, the way that decoding performance is tested is by running
simulations that sweep a large amount of physical error rates and calculate the correspond-
ing logical error rate for each of them. This type of simulations are frequently referred to
as lifetime simulations and the logical error is calculated as the ratio of logical errors found
over the error correction cycles performed to accumulate these logical errors.

The design of the neural network based decoder that was used to obtain the results is
described in Figure 5.8 for the depolarizing and the circuit error model. For the case of the
depolarizing error model, neural network 1 is not used, so the input is forwarded directly
to the simple decoder since perfect syndrome measurements are assumed. The decoding
process is similar to the one presented in Figure 5.4.

The decoding algorithm for the circuit noise model consists of a simple decoder and 2
neural networks. Both neural networks receive the error syndrome as input. Neural net-
work 1 predicts which detection events at the error syndrome belong to data qubit errors
and which belong to measurement errors. Then, it outputs the error syndrome relieved of
the detection events that belong to measurement errors to the simple decoder. The simple
decoder provides a set of corrections based on the received error syndrome. Neural network
2 receives the initial error syndrome and predicts whether the simple decoder will make a
logical error and outputs a set of corrections which combine with the simple decoder correc-
tions at the output.

Error
Syndrome

Neural
Network1

Neural
Network2

Simple
Decoder

Corrections

Figure 5.8: The design for the high level decoder that was used for the depolarizing and the circuit noise
model.

5.4. RESULTS

5

73

5.4.1. DEPOLARIZING ERROR MODEL
For the depolarizing error model, we used 5 training datasets that were sampled at these
physical error rates : 0.2, 0.15, 0.1, 0.08, 0.05. Perfect error syndrome measurements are
assumed, so the logical error rate can be calculated per error correction cycle.

In Table 5.3, we present the pseudo-thresholds achieved from the investigated decoders
for the depolarizing error model with perfect error syndrome measurements for different
distances. As expected, when the distance increases, the pseudo-threshold also increases.
Furthermore, the neural network based decoder with the multiple probabilities datasets ex-
hibits higher pseudo-threshold values, which is expected since it has more relevant infor-
mation in its dataset.

Table 5.3: Pseudo-threshold values for the depolarizing error model

Decoder d=3 d=5 d=7 d=9
Blossom 0.08234 0.10343 0.11366 0.11932

Single prob. dataset 0.09708 0.10963 0.12447 N/A
Multiple prob. dataset 0.09815 0.12191 0.12721 0.12447

Figure 5.9: Decoding performance comparison between the high level decoder trained on a single prob-
ability dataset, the high level decoder trained on multiple probabilities datasets and Blossom algorithm
for the depolarizing error model with perfect error syndrome measurements. Each point has a confi-
dence interval of 99.9%.

As can be seen from Figure 5.9, the multiple probabilities datasets approach is providing
better decoding performance for all code distances simulated. The fact that the high level
decoder is trained to identify the most frequently encountered error syndromes based on a
given physical error rate, results in more accurate decoding information. Another reason for

5

74 5. DESIGNING NEURAL NETWORK BASED DECODERS FOR SURFACE CODES

the improvement against the Blossom algorithm, is the ability of identifying correlated er-
rors (-iY=XZ). For the depolarizing noise model with perfect error syndrome measurements,
the Blossom algorithm is proven to be near-optimal, so we are not able to observe a large
improvement in the decoding performance. Furthermore, the comparison is against the un-
optimized version of Blossom algorithm [77], therefore it is mainly performed to get a frame
of reference rather than an explicit numerical comparison.

We observe that for the range of physical error rates that we are interested in, which are
below the pseudo-threshold, the improvement against Blossom algorithm is reaching up to
18.7%, 58.8% and 53.9% for code distance 3, 5 and 7, respectively for the smallest physical
error probabilities tested.

The threshold of the rotated surface code for the depolarizing model has improved
from 0.14 for the single probability dataset approach to 0.146 for the multiple probabilities
datasets approach. The threshold of Blossom is calculated to be 0.142.

5.4.2. CIRCUIT NOISE MODEL
For the circuit noise model, we used 5 training datasets that were sampled at these physical
error rates : 4.5x10−3, 1.5x10−3, 8.0x10−3, 4.5x10−4, 2.5x10−4. Since, imperfect error syn-
drome measurements are assumed the logical error rate is calculated per window of d error
correction cycles.

In Table 5.4, we present the pseudo-thresholds achieved for the circuit noise model with
imperfect error syndrome measurements. Again, the neural network based decoder with
multiple probabilities datasets is performing better than the single probability dataset. We
were not able to use the Blossom algorithm with imperfect measurements for code distances
higher than 3, therefore we decided not to include it. However, we note that the results that
were obtained are similar to the results in the literature corresponding to the circuit noise
model [2, 83].

Table 5.4: Pseudo-threshold values for the circuit noise model

Decoder d=3 d=5 d=7
Single prob. dataset 3.99x10−4 9.23x10−4 N/A

Multiple prob. dataset 4.44x10−4 1.12x10−3 1.66x10−3

We observe from Figure 5.10 that the results with the multiple probabilities datasets for
the circuit noise model are significantly better, especially as the code distance is increased.
The case of the d=3 is small and simple enough to be solved equally well by both approaches.
The increased decoding performance achieved with the multiple probabilities datasets ap-
proach is based on the more accurate information for the physical error probability that is
being tested.

The threshold of the rotated surface code for the circuit noise model has improved from
1.77x10−3 for the single probability dataset approach to 3.2x10−3 for the multiple probabil-
ities datasets approach, that signifies that the use of dedicated datasets when decoding a
given physical error rate is highly advantageous.

As mentioned, the single probability dataset is collected at a low physical error rate, for
example around the pseudo-threshold value. Therefore, the size of the training dataset is
similar for both the single and the multiple probabilities datasets for the low physical error
rates. For higher physical error rates, we gather larger training datasets for the multiple
probabilities datasets approach, which are also more relevant.

5.4. RESULTS

5

75

Figure 5.10: Decoding performance comparison between the high level decoder trained on a single
probability dataset and the high level decoder trained on multiple probabilities datasets for the circuit
noise model with imperfect error syndrome measurements. Each point has a confidence interval of
99.9%.

The space that needs to be sampled is getting exponentially larger to a point that is in-
feasible to gather enough samples to perform good decoding beyond d=7. The reason for
this exponential growth is due to the way that we provide the data to the neural network.
Currently, we gather all error syndromes out of all the error correction cycles and create
lists out of them. Then, we provide these lists to the recurrent neural network all-together.
Since the recurrent neural network can identify patterns both in space and time, we also pro-
vide the error correction cycle that provided that error syndrome (time stamp of each error
syndrome). Then, the recurrent neural network is able to differentiate between consecutive
error correction cycles and find patterns of errors in them.

In order to obtain efficient decoding regardless of the exponentially large state space, we
restrict the space that we sample to the one containing the most frequent error syndromes
occurring at the specified sampling (physical) error probability. However, even by employ-
ing such a technique, it seems impossible to continue beyond d=7 for the circuit noise model
with the decoding approach that we used in this work. At the circuit noise model for d=7
for example, we gather error syndromes out of 10 error correction cycles and each error syn-
drome contains 48 ancilla qubits. Therefore, the full space that needs to be explored is 210∗48,
which is infeasible.

A different approach that minimizes the space that the neural network needs to search
would be extremely valuable. A promising idea would be to provide the error syndromes
of each error correction cycle one at a time, instead of giving them all-together, and keep an
intermediate state of the logical qubit.

5

76 5. DESIGNING NEURAL NETWORK BASED DECODERS FOR SURFACE CODES

5.5. CONCLUSIONS
This work focused on researching various design strategies for neural network based de-
coders. Such kind of decoders are currently being investigated due to their good decoding
performance and constant execution time. They seem to have an upper limit at around 160
qubits, however by designing smarter approaches in the future, we can have neural network
based decoders for larger quantum systems.

We emphasized mainly on the design aspects and the parameters that affect the per-
formance of the neural networks and devised a detailed plan on how to approach them.
We showed that we can have high decoding performance for quantum systems of about
100 qubits for both the depolarizing and the circuit noise model. We showed that a neural
network based decoder that uses the neural network as an auxiliary module to a classical
decoder leads to higher decoding performance.

Furthermore, we presented the constant execution time of such a decoder and showed
that it increases linearly with the code distance in our simulations. We compared different
types of neural networks, in terms of decoding performance and execution time, concluding
that recurrent neural networks can be more powerful than feed-forward neural networks for
such applications.

Finally, we showed that having a dedicated dataset for the physical error rate that the
quantum system operates can increase the decoding performance.

The contents of this chapter are based on the following paper:

S. Varsamopoulos, K. Bertels, C. G. Almudever, Designing neural network based decoders
for surface codes, arXiv:1811.12456, 2018.

6
DECODING SURFACE CODE

WITH A DISTRIBUTED NEURAL
NETWORK BASED DECODER

There has been a rise in decoding quantum error correction codes with neural network based decoders,
due to the good decoding performance achieved and adaptability to any noise model. However, the
main challenge is scalability to larger code distances due to an exponential increase of the error syn-
drome space. Note that, successfully decoding the surface code under realistic noise assumptions will
limit the size of the code to less than 100 qubits with current neural network based decoders.
Such a problem can be tackled by a distributed way of decoding, similar to the Renormalization Group
(RG) decoders. In this chapter, we introduce a decoding algorithm that combines the concept of RG
decoding and neural network based decoders. We tested the decoding performance under depolarizing
noise with noiseless error syndrome measurements for the rotated surface code and compared against
the Blossom algorithm and a neural network based decoder. We show that similar level of decoding
performance can be achieved between all tested decoders while providing a solution to the scalability
issues of neural network based decoders.

6.1. INTRODUCTION
Quantum error correction (QEC) is for now considered to be the most time and resource con-
suming procedure in quantum computation. However, the way that quantum computing is
currently envisioned, QEC is necessary for reliable quantum computation and storage. The
need for QEC arises from the unavoidable coupling of the quantum system with the envi-
ronment, which causes the qubit state to be altered (decohere). Altering the quantum state
is perceived as errors generated in the quantum system. Through active error correction
and fault-tolerant mechanisms, that control error propagation and keep the error rates low,
we can have the error-free desired state. Note that, in fault-tolerant techniques, errors can
occur in the quantum system, but do not affect the quantum state in a catastrophic manner
[42].

A critical sub-routine of QEC is decoding. Decoding involves the process of identify-
ing the errors that occur in the quantum system and proposing corrections that keep the

77

6

78
6. DECODING SURFACE CODE WITH A DISTRIBUTED NEURAL NETWORK BASED

DECODER

quantum state error-free. The importance of high speed and accurate decoding lies in the
fact that the time budget allowed for error correction is small, since qubits lose their state
rapidly. Therefore, if the process of decoding exceeds the error correction time budget, errors
will accumulate to the point that the error-free state cannot be retrieved.

Various classical decoding algorithms have been proposed over the years with a few
examples of classical decoding algorithms being the Blossom algorithm [76–78, 84], the
maximum-likelihood algorithm [75] and the Renormalization Group (RG) algorithm [81, 82].
Recently, there is an increase in the development of neural network based decoders that ei-
ther consist exclusively of neural networks [86, 87] or a classical module working together
with neural networks [88–91, 93]. Neural network based decoders exist with different de-
signs in the way the decoding is performed and a variety of types of neural networks has
been explored, like Feed-forward, Recurrent and Convolutional neural networks.

CA

RG
NNbD

Blossom

MLD

MCMC

Low

High

Low HighAccuracy

Wall
Clock
time

Figure 6.1: Abstract comparison between decoding performance and execution time of various decod-
ing algorithms

In Figure 6.1 we present an abstract comparison between various decoding algorithms
based on their decoding performance (Accuracy) and their execution time (Wall clock time),
namely the Markov Chain Monte Carlo (MCMC) [79], the Maximum Likelihood Decoder
(MLD) [75], the Minimum Weight Perfect Matching (MWPM) [76, 77] that Blossom algo-
rithm is based on, the Neural Network based Decoder (NNbD) [92], the Renormalization
Group (RG) [82] and the Cellular Automaton (CA) [136]. Decoding performance is typically
calculated as the ratio of the number of logical errors created out of the decoder corrections
over the number of error correction cycles run to accumulate these errors. Execution time
is defined as the time spent from the moment that the input data arrive at the decoder until
the time that the decoder proposes the corrections. As can be seen from Figure 6.1, neu-
ral network based decoders can reach equivalent decoding performance as classical algo-
rithms while requiring smaller execution time. This is the main reason that neural network
based decoders are explored and various designs have been proposed recently. However,

6.2. RG DECODING

6

79

the main issue with such decoders is that scaling to larger quantum systems will be signif-
icantly harder compared to classical decoders, due to the required training process of the
neural network. As the size of the system increases, more training samples need to be col-
lected and then the neural network has to be trained based on them. The main challenge of
NNbDs is that in order to reach similar decoding performance to classical algorithms as the
quantum system is increasing, the amount of samples required to be collected increases in
an exponential way, which makes the training harder and slower.

In this work, we will present a neural network based decoder that performs decod-
ing in a distributed fashion, therefore providing a solution for the issue of decoding large
codes. We should mention that there exist classical algorithms that perform decoding in a
distributed way, as can be found in [82] and [78], but in this chapter we will provide a differ-
ent approach of the distributed decoding concept. In [82], the original idea of RG decoding
approach is described and tested. RG decoding is based on the division of the code into
small tiles, in which a given number of physical qubits are included and error probabilities
about the physical qubits inside all tiles are calculated. Then, these tiles are grouped into
larger tiles and the error probabilities about the qubits are updated. This procedure is con-
tinued until only a single tile has remained containing all the physical qubits of the system.
Based on the updated error probabilities of the largest tile, the decoder can propose a set of
corrections. In [78], a distributed decoding approach is described, where the code is divided
into small tiles. However, in this case Blossom algorithm is used to decode each tile and
based on the result of it and the neighboring information between the tiles, the decoder can
propose corrections for the whole code. Each tile is monitored by an Application-Specific
Integrated Circuit (ASIC), which is dedicated for the tile.

In our strategy, the code is divided into small overlapping regions, referred to as over-
lapping tiles, where local information about errors on physical qubits is obtained. Then, this
local information is combined and a decoding for the whole code is obtained. We compare
our algorithm to the unoptimized version of Blossom algorithm [76, 77] and argue about the
decoding performance achieved. Furthermore, we will provide reasoning for the potential
high level of parallelization of our algorithm that will be suitable for a high speed hardware
implementation without loss of decoding performance. Also, the problem of the exponen-
tial increase of the error syndrome space is mitigated, since it is controlled by the selection of
the size of the decoded regions. This allows neural network based decoders to successfully
decode larger codes.

The rest of the chapter is organized in the following way: in section 6.2 we give a short
introduction in the concept of RG decoding. In section 6.3, we present the design of the
distributed neural network based decoder and in section 6.4, we provide the results in
terms of decoding performance. Finally, in section 6.5, we draw our conclusions about the
distributed decoding approach. Information regarding quantum error correction and the
surface code are summarized in chapter 2.

6.2. RG DECODING
Our previous efforts were mainly focused on developing neural network based decoders
that can achieve better decoding performance than classical decoding algorithms and report
a constant execution time for each code distance for all range of physical error probabilities,
which scales linearly with the code distance [92]. However, good decoding performance
was harder to achieve as the code distance increased. The main problem was the exponential
increase of the error syndrome space, which required an immensely large number of training
samples in order for the decoder to achieve similar performance to the classical decoding

6

80
6. DECODING SURFACE CODE WITH A DISTRIBUTED NEURAL NETWORK BASED

DECODER

algorithms for d9. We provide the size of the training datasets used for the code distances
investigated in [92] for the depolarizing error model in Table 6.1.

Table 6.1: Size of training datasets

code distance selected dataset size full dataset size
d=3 256 28

d=5 6 ∗ 105 224

d=7 5 ∗ 106 248

d=9 2 ∗ 107 280

A way that the error space can be limited, is through a distributed way of decoding
similar to the RG algorithm. By dividing the code in small regions which are going to pro-
vide individual information about decoding every region of the code, the decoder can have
enough information about decoding the whole code. Limiting the region that we want to
locally decode, the error syndrome space is also limited, allowing us to increase the distance
of the code without changing the decoding of each region.

RG decoding is similar to decoding concatenated codes, which have various levels of
encoding, as can be seen at Figure 6.2.

Level 0

Level 1

Level 2

Figure 6.2: Encoding levels of a concatenated code. At level 0 there are nine qubits, that are encoded in
three qubits at level 1 and these qubits are encoded in one qubit at level 2. Arrows show the information
flow.

In these codes, decoding is achieved by passing the error information concerning the
qubits from the lower level to the higher level. The information about errors is updated
throughout the encoding levels. The decoding occurs at the last encoding level and a final
decision about the logical state is made.

The strategy of RG decoding can be described according to Figure 6.3. At first, the lattice
is cut in small (green) tiles and the probability of an error occurring in all qubits included in
that tile is evaluated. After gathering the updated error probabilities in the green tiles, the
lattice is cut into bigger (red) tiles and the error probability of all qubits included in that tile
is evaluated. This process is continued until there is only one tile left that includes all qubits
in the code.

The same approach can be applied to surface code. However, the challenge here is that
the parity-checks cannot be broken down into constant size tiles in a way that every parity-
check corresponds to a single tile. Therefore, we need to use overlapping tiles, which will
always include whole parity-checks of the code in a single tile. The boundary qubits that
belong to neighboring tiles are treated as independent variables on each tile and the error
probability for the same qubit is different depending on the tile. The way that the error
probabilities are usually calculated is by belief propagation [81, 82] in the RG approach.

We decided to use the idea of overlapping tiles, but follow a different approach than the
RG algorithm as we will explain in the following section.

6.3. DISTRIBUTED DECODING WITH OVERLAPPING TILES

6

81

Figure 6.3: Tile segmentation that represents the levels of concatenation in a concatenated code. The
smallest level of concatenation is represented by the green tiles, the next level of concatenation is repre-
sented by the red tiles, the following level of concatenation is represented by the blue tiles, etc.

6.3. DISTRIBUTED DECODING WITH OVERLAPPING TILES
We developed a neural network based decoder that performs distributed decoding based
on the concept of RG decoders. As mentioned, the main idea behind this algorithm is to
make neural network based decoders able to successfully decode large code distances. By
restricting the decoding in small regions (tiles) of the lattice, the decoder does not have to
explore a large error syndrome space, rather just decode every small tile and then combine
the information out of all tiles.

The main difference between a distributed neural network based decoder and the RG
decoder is that the former only has one level of concatenation. Instead of moving from
smaller tile to bigger tile until the whole lattice is a single tile, we segment the lattice into
small equally sized tiles that are overlapping with each other, so that each tile includes whole
parity-checks of the code. Then, we obtain error information from each individual tile and
combine the information out of all tiles to get the error information for the whole lattice. In
this case, there is no need to calculate the error probability of all qubits and forward it to the
next level of concatenation, rather find a way to combine the information arising from the
each tile.

In order to decode based on the distributed decoding approach, we will use the same
two-module decoder as was presented in [92]. Our decoding algorithm consists of two
modules, a classical decoding module that we call simple decoder and a neural network. The
simple decoder provides a naive decoding for the whole lattice, in which a chain is created
between each detection event and its closest boundary of the same type. The corrections
arising from the simple decoder occur in the data qubits underneath the chain. An example
is provided in Figure 6.4, where AZ5 and ancilla AX4 have indicated the presence of an error
in their proximity. The proposed corrections of the simple decoder will be Z5, Z11 arising
from ancilla AX4 and X3, X7 arising from ancilla AZ5.

The simple decoder receives the error syndrome for the whole lattice and provides a
set of corrections for the whole lattice. This is a fast process since the corrections arising
from each detection event are independent from the corrections arising from other detec-
tion events, therefore can be parallelized. However, the simple decoder cannot yield high

6

82
6. DECODING SURFACE CODE WITH A DISTRIBUTED NEURAL NETWORK BASED

DECODER

AX0

AX1

AX2

AX3

AX5

AX6

AX7

AX8

AX9

AX10

AX11

AZ0

AZ1

AZ2

AZ3

AZ4

AZ6

AZ7

AZ8

AZ9

AZ10

AZ11

AZ5

AX4

Figure 6.4: Description of the simple decoder operation for the rotated surface code with distance 5.
Detection events are presented with the red dots. Red lines indicate which data qubits are going to be
corrected.

decoding accuracy on its own, due to its simplistic design.
That is why we also include the neural network that will work as a supervisor to the

simple decoder. More accurately, the neural network will be trained to identify for which
error syndromes the simple decoder will lead to a logical error. In the case where a logical
error will be created out of the simple decoder corrections, the neural network will output
the appropriate logical operator that will cancel the logical error out. As we showed in [92],
the combination of these two modules will provide high decoding performance.

In order to train the neural network, we create a training dataset by running surface
code cycles and storing the error syndrome and the corresponding logical state of the logical
qubit after the corrections of the simple decoder are applied. The size of the training dataset
varies based on the code distance and the error model. For more information about all the
parameters that affect the dataset, we refer the reader to our previous work [92].

In Figure 6.5, we provide an example of the segmentation of a d=5 rotated surface code
into four overlapping tiles of d=3 rotated surface codes.

As can be seen from Figure 6.5, each parity-check is included in at most two tiles. The
error syndrome obtained for the whole lattice (d=5) is broken down into parts of the error
syndrome that correspond to each small tile (d=3). The error syndrome out of one surface
code cycle consists of 24 bits, due to the 24 parity-checks of the d=5 code. The error syn-
drome will be cut into smaller parts of the initial error syndrome that fit the d=3 tiles. Due
to inclusion of the shared parity-checks, the bits that are available out of the four d=3 tiles
are now 32. Each error syndrome of the d=3 tile corresponds to a part of the complete error
syndrome. The error probabilities of the logical state, Prob(I), Prob(X), Prob(Z), Prob(Y),
that are associated with the given tile are averaged and the probabilities for the logical state
of each tile is provided. Then, the 4 probabilities concerning the logical state of each d=3 tile

6.4. RESULTS

6

83

2 3 4

7 8 9

12 13 14

13 14

17 18 19

22 23 24

12
10 11

15 16 17

20 21 22

12

0 1 2

5 6 7

10 11 12

10 1 2 3

9765

10 11 12 13 14

15 17 19

21 22 23

8

4

20

16

24

18

Figure 6.5: Segmentation of a d=5 rotated surface code into four overlapping tiles of d=3 rotated surface
codes.

are used as the inputs of the neural network, which will provide at the output the probabili-
ties of the logical state for the whole lattice. Based on the output of the neural network, extra
corrections are going to be applied in the form of the appropriate logical operator to cancel
any potential logical error created by the simple decoder. The information contained in the
32 bits of the d=3 tiles is now compressed to 16 bits that constitute the inputs of the neural
network and represent the probabilities of contribution to the logical state out of every d=3
tile.

6.4. RESULTS
In order to check whether the distributed decoding algorithm can reach similar decoding
performance as the other popular decoding algorithms, we tested it against an unoptimized
version of the Blossom algorithm [76, 77] and our previous implementation of neural net-
work based decoder [92] for the depolarizing error model with noiseless error syndrome
measurements.

The depolarizing error model assumes errors only on the data qubits and perfect error
syndrome measurements. Bit-flip (X) errors, phase-flip (Z) errors and both bit- and phase-
flip (Y) errors are assumed to be generated with equal probability of p/3. Such a simplistic
error model is enough to prove that the distributed decoding algorithm that we propose can

6

84
6. DECODING SURFACE CODE WITH A DISTRIBUTED NEURAL NETWORK BASED

DECODER

reach similar decoding performance to other decoding algorithms and that the scalability
issues of neural network based decoder are addressed.

The critical aspect of our decoder is the choice of the size of the overlapping tiles. Since,
there is only one level of concatenation, contrary to RG decoding, the size of the overlapping
tiles plays a significant role in the algorithm. Having a large tile size might provide better
decoding, for example decoding a d=9 surface code with d=7 tiles might be more beneficial
than decoding with d=3 tiles, since there will be less shared parity-checks and long error
chains will be included in a single tile. However, the bottleneck that will make such a case
decode poorly in our design, is the inability of the decoder to handle properly the error syn-
dromes unknown to the training dataset. Since it becomes exponentially harder to gather
all the possible error syndromes as the code distance increases, the training dataset will be
an incomplete set of all potential cases. In the case of an unknown to the training error syn-
drome, the neural network will not have any meaningful data to make a prediction making
the behavior of the neural network inconsistent. Such a case occurs because there is an in-
termediate step between the cutting of the error syndrome into parts and the averaging of
the probabilities of each part.

Based on that, we opted to always divide the lattice into d=3 overlapping tiles, since the
d=3 case only consists of 256 different error syndromes. This is an easily obtained complete
training dataset, to which any part of error syndrome of any large distance can deconstruct
to. All possible error syndromes of the large lattice (d>3) are represented through the d=3
overlapping tiles, without having to explicitly sample all possible error syndromes for the
large lattice.

The only downside of using d=3 tiles is that there exist some error syndromes that are
highly ambiguous to what logical state they lead. Fortunately, these ambiguous error syn-
dromes are not extremely frequent making the errors arising from this shortcoming rare.

Another benefit of the distributed decoding approach is that the number of inputs re-
quired by the neural network is decreased compared to decoding the whole lattice approach.
The reduction of inputs of the neural network for the code distances tested are shown in Ta-
ble 6.2.

Table 6.2: Reduction in required inputs of the neural network

Code distance Old inputs New inputs
d=5 24 16
d=7 48 36
d=9 80 64

The comparison of the decoding performance between the distributed decoding, the
neural network based decoder from [92] and unoptimized version of the Blossom algorithm
for a distance 5, 7 and 9 rotated surface code are presented in Figure 6.6, 6.7 and 6.8, respec-
tively. Each point in these graphs has a confidence interval of 99.9%.

6.4. RESULTS

6

85

Figure 6.6: Comparison of decoding performance between the distributed decoder with four overlap-
ping tiles of d=3 rotated surface codes inside a d=5 rotated surface code (blue), the unoptimized version
of the Blossom algorithm (red) and the neural network based decoder (green).

Figure 6.7: Comparison of decoding performance between the distributed decoder with nine overlap-
ping tiles of d=3 rotated surface codes inside a d=7 rotated surface code (blue), the unoptimized version
of the Blossom algorithm (red) and the neural network based decoder (green).

6

86
6. DECODING SURFACE CODE WITH A DISTRIBUTED NEURAL NETWORK BASED

DECODER

Figure 6.8: Comparison of decoding performance between the distributed decoder with sixteen over-
lapping tiles of d=3 rotated surface codes inside a d=9 rotated surface code (blue), the unoptimized
version of the Blossom algorithm (red) and the neural network based decoder (green).

As can be seen from Figures 6.6, 6.7 and 6.8, the distributed decoder can reach similar
decoding performance to the compared decoders for d=5, 7 and 9, respectively. In order to
have a fair comparison between the two neural network based decoders, we used the same
dataset to train both decoders, therefore the decoding performance should be comparable.
These comparisons were used as a proof-of-concept to verify that a distributed decoding
approach is feasible and what limitations are observed.

6.4.1. OPTIMIZING FOR THE SIZE OF TRAINING DATASET
The scalability problem that all neural network based decoders face is based on the expo-
nential increase of the training samples required to efficiently decode. As an extension to
our work on neural network based decoders, we propose an alteration to our decoding al-
gorithm in order to increase the important training samples included in the training dataset,
without increasing the size of the dataset.

As mentioned, our decoding strategy is based on a two module (simple decoder and
neural network) approach, where the neural network exists to increase the decoding per-
formance of the simple decoder. However, the simple decoder can be designed in different
ways, which will lead to different decoding performance for different designs. Therefore, an
investigation of the performance of the simple decoder is crucial before the training of the
neural network.

We observed that for all code distances investigated for the depolarizing error model, the
simple decoder provided corrections that would lead to an error free logical state (I) ~42%
of the time. In those cases, the neural network would be unnecessary, since it would output
the identity operator. Therefore, if we removed the error syndromes that the simple decoder
corrects properly from the training dataset, then the dataset could be increased even further,

6.4. RESULTS

6

87

with more relevant error syndromes. The only caveat is that another module, named binary
neural network in Figure 6.9, should be included to the decoder which will predict whether
the obtained error syndrome will be properly corrected by the simple decoder or not. The
binary logic neural network might be implemented in a simpler way, which will make the
binary classification task faster, instead of using a recurrent neural network as was chosen
for this design.

A flowchart of the optimized algorithm with the inclusion of the extra neural network
is presented in Figure 6.9. We divide the operation of the neural network from the original
design of distributed decoding, to two neural networks, namely a binary neural network
and a neural network for distributed decoding.

Simple
decoder

Binary
NN

Final
corrections

Data qubit
corrections

Decode with
overlapping tiles

Predicted logical
operator

Identity
operator

Error
syndrome

Logical
error

yes no

Figure 6.9: Description of the design flow of the optimized version of the distributed decoder.

The binary neural network will predict whether the obtained error syndrome will lead
to a logical error or not. The input of the binary neural network is the obtained error syn-
drome for the whole lattice and the output will be a binary value indicating whether extra
corrections need to be applied or not. These extra corrections will arise from the neural net-
work for distributed decoding. This neural network will work similarly to the one in the
original unoptimized strategy described in section 6.3, but the training samples will be re-
stricted to the error syndromes that lead to a logical error. The inputs and outputs of this

6

88
6. DECODING SURFACE CODE WITH A DISTRIBUTED NEURAL NETWORK BASED

DECODER

neural network are previously explained. Note that, we need to include all 4 logical states
for this neural network, because there is still a probability of an unknown to training input
to produce an error free logical state.

The comparison of the decoding performance of this optimized version of the algorithm
with the unoptimized one and the benchmarks that were used in this work for the largest
code tested (d=9) is presented in Figure 6.10.

Figure 6.10: Comparison between the optimized version of the distributed decoding (blue) to the unop-
timized version (red), the unoptimized version of the Blossom algorithm (pink) and the neural network
based decoder (green).

As expected, the optimized version with the two neural networks cannot achieve bet-
ter decoding performance than the unoptimized version, since we kept the same training
dataset for both designs in order to have a fair comparison. The binary neural network has
the same dataset as the unoptimized version, but the neural network for distributed decod-
ing only includes the ~58% of error syndromes that lead to a logical error.

An important clarification is that the optimization is mentioned in the context of the
potential increase of the training dataset and not in terms of better decoding performance.
However, the fact that we reached the same level of decoding performance with both de-
signs, suggests that we can make these optimizations without any loss of decoding perfor-
mance.

6.5. CONCLUSIONS
We presented a decoding algorithm that performs decoding in a distributed manner that
can achieve similar decoding performance to existing decoders, like the Blossom decoder
and the neural network based decoder for d=5,7 and 9. Furthermore, due to the distributed
way of decoding and the deduction in the neural network inputs, larger codes can be poten-
tially decoded. The problem of the exponential increase of the training dataset is mitigated

6.5. CONCLUSIONS

6

89

through the distributed decoding strategy, where any error syndrome can be decomposed
to smaller d=3 tiles. However, large quantum systems will still require large amounts of
training samples. Moreover, in terms of execution time, we assume that a highly paral-
lel implementation for both the simple decoder and the neural network, can potentially
achieve a high speed implementation of the algorithm. Finally, we provide an alternative
version of the distributed decoding strategy that can reach the same level of decoding per-
formance as the original algorithm. The advantage of this alternative is the capability of
using larger training datasets compared to other neural network based decoders, making it
easier to achieve better decoding performance for higher code distances.

The contents of this chapter are based on the following paper:

S. Varsamopoulos, K. Bertels, C. G. Almudever, Decoding surface code with a distributed
neural network based decoder, arXiv:1901.10847, 2019.

7
CONCLUSIONS AND FUTURE

OUTLOOK

In this chapter the overall conclusions for this thesis are summarized and future research directions
are suggested.

7.1. CONCLUSIONS
Due to the fragile nature of current qubit technology, constant and active quantum error
correction is required to achieve reliable quantum computation and storage. The goal of this
research was focused on the development of high decoding performance and high speed
decoders that can be used for the surface code, as well as other similar quantum error cor-
recting codes. Emphasis was put on both requirements, since most of the classical decoders
only focus on one of them. Furthermore, since the quantum systems that are going to be
used in the near-future only consist of a small number of qubits with limited lifetime, ded-
icated decoders that can reach high decoding performance while obeying the limited time
budget for quantum error correction is key for demonstrating fault tolerance. Currently, in
the case of the superconducting qubits, the surface code cycle is reported to take ~700 nsec
for a quantum chip containing 17 qubits. Therefore, the target for the execution time of the
decoder is at most 700 nsec in this scenario.

We began our investigation with a dedicated rule-based decoder for the surface code
with 17 qubits, the smallest logical qubit composed with the rotated surface code, that was
incorporated in a platform called Quantum Platform Development Framework (QPDO).
The goal of this platform was to study the working principles of a Pauli frame and to quan-
tify its potential effect on the decoding performance. QPDO offers the capability of varying
the execution time of the decoder and the execution time of the quantum operations. Also,
in QPDO error syndrome measurements and decoding can be performed in parallel, thus
creating a more efficient execution schedule for the surface code that reduces the cycle time
tcycle. The corrections proposed by the decoder do not need to be applied, since we can keep
track of both the Pauli errors and Pauli corrections in a Pauli frame in the classical computer
where the decoder exists. The proposed execution schedule relaxes the timing constraints
on the error syndrome measurements and the decoder. As shown from our simulations, the
highest decoding performance is reached when the time required for error correction equals

91

7

92 7. CONCLUSIONS AND FUTURE OUTLOOK

the decoding time tec = td, based on the reduced tcycle. However, this kind of decoder is
restricted to the number of qubits that can be successfully decoded due to its rule-based
approach. It should be noted that this rule-based approach resembles the decoding of the
Blossom decoder for the 17 qubit surface code.

In order to go to higher code distances while keeping the execution time of the decoder
less than the time budget provided, we decided to create decoders that incorporate neural
networks. Neural networks have been shown to have constant execution time after being
trained and to be able to adapt in complex problems. We designed a two-module decoder,
which included a classical module and a neural network. We named this configuration neu-
ral network based decoder. We proved that such a decoder can achieve similar or even
better decoding performance compared to classical decoders for a variety of error models.
colorredWe showed that the neural network based decoder can outperform Blossom up to
~40% for a variety of error models and code distances. Also, to show evidence of gener-
alization by the neural network, we presented in our graphs the decoding performance of
a partial Look-Up Table that included the training samples used by the neural network.
We observe that the neural network based decoder significantly outperforms the PLUT as
the code distance increases reaching even 99% at one case. Furthermore, we calculated the
execution time of a neural network based decoder and argued about the speed that can
be achieved in a hardware chip like an FPGA or an ASIC. Both the classical module and
the neural network are highly parallelizable and fast modules by construction. colorredWe
naively implemented the neural network based decoder in hardware and shown that we
can reach the same order of magnitude in terms of execution time (~3.6 musec) based on the
required time budget for various quantum technologies at the moment. colorredMoreover,
we presented in our simulations the constant execution time of a neural network based de-
coder for a given distance. The execution time was increasing linearly as the code distance
increased, which was mainly due to the increase of the size of the neural network.

We proved that neural network based decoders can adapt to any noise model, since the
neural network functionality is based on creating a map between the input and output data,
requiring no knowledge about the underlying error model. This is extremely useful at the
moment, since certain sources of noise like leakage are not fully modelled in current error
models. The only requirement in decoding any encoding scheme with a neural network
based decoder is to know how the error syndrome is obtained (what is the error syndrome
measurement process) making it a viable solution for any encoding scheme and error model.
A comparison was then performed between the two main neural network based decoder de-
sign approaches. One approach involves a classical decoder working in parallel with a neu-
ral network, which acts as a supervisor to the classical decoder. The other approach involves
only neural networks to perform the decoding. We argued that it is advantageous to start
with a classical decoding module and improve on its decoding performance with a neural
network rather than having a decoding algorithm that allows the neural network to perform
the decoding on its own. In that way there is no ambiguity provided by the probabilistic pre-
diction of the neural network and no complex rules need to be introduced in the design of
the algorithm, since the prediction of the neural network concerns the proposed corrections
of the classical module. In the case of a decoder consisting only of a neural network, the
probabilistic prediction occurs for all physical qubits, which will lead to multiple prediction
rounds until a valid prediction is obtained, making the execution time non-constant and on
average larger than the decoder containing a classical module and a neural network. The
non-constant time will be affected by the design of the repetition step of the prediction pro-
cess and the physical error rate. In our simulations the prediction step had to be repeated
between 6 and 16 times for d=3 surface code under depolarizing error model, however we

7.2. FUTURE RESEARCH DIRECTION

7

93

note that the repetition step was not optimized to minimize the repetitions.
Although both type of neural network based decoders discussed can reach equivalent

decoding performance to optimal decoders like the Maximum Likelihood Decoder as has
been demonstrated in literature, we decided to choose the decoder with the classical module
working together with the neural network due to the constant execution time achieved for
a given code distance. With this decoder we presented improvement against Blossom that
reached up to ~40% for different error models.

Neural network based decoders require sampling and training based on data obtained
from the problem, unlike classical decoders. As the quantum system increases, the amount
of data required to be gathered and trained are exponentially increasing, imposing a limit to
the size of the quantum system that can be efficiently decoded. As presented in Chapter 5,
the size of the training dataset is increasing exponentially with the linear increase of the code
distance. Therefore, a limit is imposed to the size of the training dataset that can lead us to at
least equivalent decoding performance as Blossom or other classical decoders. We argue that
the limit for the depolarizing error model with noiseless error syndromes is d=9 with a state
space of 3.1 ∗ 10144 and for the circuit noise model with noisy error syndrome measurements
is d=7 with a state space of 2 ∗ 10480. To counteract this problem, we proposed a distributed
decoding approach that divides the code into small regions and then decoding occurs locally
in each region. We propose that by using such a distributed decoding approach, we can
potentially decode large code distances without significant loss in decoding performance.
We have shown that when the training dataset is the same, the original version of the neural
network based decoder and the version that performs distributed decoding can reach almost
identical performance. We argue that distributed decoding is the way that the scalability
challenge of neural network based decoders can be solved.

The main challenge of neural network based decoders is that every time that some aspect
of the problem changes (quantum error correction code, code distance, error model), sam-
pling, training and evaluating the decoder needs to be repeated. Moreover, there is a large
amount of neural network parameters that need to be specifically tuned when the problem
changes. A careful study of the design choices is required to maximize the performance of
the decoder. However, if we perform sampling and training in hardware, the time required
for these processes will be decreased compared to the time required in software. Finally, if
the hardware resources allow us to include multiple neural networks, then this can poten-
tially increase the decoding performance. As we presented, dividing the task of decoding to
smaller tasks that are distributed to many neural networks can be beneficial.

7.2. FUTURE RESEARCH DIRECTION
We have developed a design of a neural network based decoder that reaches good decoding
performance and has constant execution time. There are many different designs of neural
network based decoders being developed at the moment by many research groups, which
provide new insight on the challenges of such decoders.

As mentioned, an implementation in hardware should be attempted since it will i) show-
case bottlenecks such as the data movement, the implementation of the linear function, etc,
ii) quantify the execution time in real hardware and iii) showcase limitations on the size of
the neural network(s) that can be implemented. Furthermore, we have been testing our de-
coder with theoretical error models, therefore a more exhaustive testing with more realistic
error models is required. The next step would be to obtain data directly from the quantum
chip instead of relying to a simulation based on realistic error models, which will determine
the decoding performance in the real hardware. Also, the scalability of neural network

94 REFERENCES

based decoders is still an important challenge, although a hardware implementation might
mitigate that issue due to the fast sampling and training rate.

Quantum error correction requires many qubits in order to increase protection, but at
the moment only chips with an extremely small number of qubits are available. Thus, for
such kind of quantum systems, error correction might be detrimental. For that reason, new
schemes that require little or no error correction are proposed for Noisy Intermediate-Scale
Quantum (NISQ) systems. In the case that error correction is included, neural network
based decoders seem to be well suited for such systems. In a NISQ system, the relevant
information for evaluating the decoder will be the encoding of the quantum system, the
definition of the error model and definition of the error syndrome measurement process.
Then, the decoder has all the information required to perform the decoding process.

As quantum technology advances and error rates become smaller, the limitations that
current decoders are faced with nowadays will be mitigated. Therefore, we need to start
thinking about decoding with error rates many orders of magnitude smaller than current
ones (~10−3) and envision how decoders will be designed for that scenario.

In the future, we will have quantum chips with many qubits, allowing us to run quan-
tum algorithms with error correction. In the quantum algorithms, we will be using logi-
cal qubits and perform logical operations. Decoding such operations, for example logical
CNOT via lattice surgery, might have to change the way decoding is assumed for the quan-
tum memory, which is the case of our research so far.

Finally, hardware implemented decoders of any type need to be pursued, in order to
get a realistic estimation of the execution time of the decoder. There is a lot of speculation
about the execution time of each decoder and the available time budget for decoding pro-
vided by various quantum technologies, however a calculation in hardware has not yet been
performed.

REFERENCES
[1] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological quantum memory, Journal of Mathe-

matical Physics 43, 4452 (2002), http://dx.doi.org/10.1063/1.1499754 .

[2] A. G. Fowler, A. M. Stephens, and P. Groszkowski, High-threshold universal quantum computation
on the surface code, Physical Review A 80, 052312 (2009).

[3] Y. Tomita and K. M. Svore, Low-distance surface codes under realistic quantum noise, Phys. Rev. A 90,
062320 (2014).

[4] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen,
J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels,
An experimental microarchitecture for a superconducting quantum processor, in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50) (IEEE/ACM, 2017)
pp. 813–825.

[5] R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics 21,
467 (1982).

[6] P. Benioff, Quantum mechanical models of turing machines that dissipate no energy, Phys. Rev. Lett. 48,
1581 (1982).

[7] D. Deutsch and R. Penrose, Quantum theory, the church–turing principle and the universal quantum
computer, Proceedings of the Royal Society of London. A. Mathematical and Physical and Engi-
neering Sciences (1985), http://doi.org/10.1098/rspa.1985.0070.

http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://arxiv.org/abs/http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/ 10.1103/PhysRevA.90.062320
http://dx.doi.org/ 10.1103/PhysRevA.90.062320
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1103/PhysRevLett.48.1581
http://dx.doi.org/10.1103/PhysRevLett.48.1581
http://dx.doi.org/http://doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/http://doi.org/10.1098/rspa.1985.0070

REFERENCES 95

[8] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM Journal on Computing 26, 1484 (1997),
http://dx.doi.org/10.1137/S0097539795293172 .

[9] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, Efficient networks for quantum factoring,
Phys. Rev. A 54, 1034 (1996).

[10] L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79, 325
(1997).

[11] P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Physical review A 52,
R2493 (1995).

[12] A. Steane, Multiple-particle interference and quantum error correction, Proceedings of the Royal
Society of London. Series A: Mathematical, Physical and Engineering Sciences 452 (1996),
10.1098/rspa.1996.0136.

[13] A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 (1996).

[14] A. M. Steane, Simple quantum error-correcting codes, Phys. Rev. A 54, 4741 (1996).

[15] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Demonstration of a
fundamental quantum logic gate, Phys. Rev. Lett. 75, 4714 (1995).

[16] D. P. DiVincenzo, The physical implementation of quantum computation, arXiv:quant-ph/0002077
(2000).

[17] J. A. Jones and M. Mosca, Implementation of a quantum algorithm to solve deutsch’s problem on a
nuclear magnetic resonance quantum computer, J. Chem. Phys. 109 (1998), 10.1063/1.476739.

[18] I. L. Chuang, N. Gershenfeld, and M. Kubinec, Experimental implementation of fast quantum search-
ing, Phys. Rev. Lett. 80, 3408 (1998).

[19] N. A. Gershenfeld and I. L. Chuang, Bulk spin-resonance quantum computation, Science 275, 350
(1997).

[20] D. G. Cory, A. F. Fahmy, and T. F. Havel, Ensemble quantum computing by NMR spectroscopy, Pro-
ceedings of the National Academy of Sciences 94, 1634 (1997).

[21] D. Gottesman, The heisenberg representation of quantum computers, arXiv preprint quant-
ph/9807006 (1998).

[22] I. Kassal, J. D. Whitfield, A. Perdomo-Ortiz, M.-H. Yung, and A. Aspuru-Guzik, Simulating chem-
istry using quantum computers, Annual Review of Physical Chemistry 62, 185 (2011).

[23] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and
J. L. O’brien, A variational eigenvalue solver on a photonic quantum processor, Nature Communications
5, 4213 (2014).

[24] L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the 28th Annual
ACM Symposium on Theory of Computing (STOC) (ACM, 1996) pp. 212–219.

[25] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine
learning, Nature 549, 195 (2017).

[26] K. Lu, Y. Zhang, K. Xu, Y. Gao, and R. C. Wilson, Approximate maximum common sub-graph iso-
morphism based on discrete-time quantum walk, in Proceedings of the 22nd International Conference on
Pattern Recognition (ICPR) (IEEE, 2014) pp. 1413–1418.

[27] K. K. H. Cheung and M. Mosca, Decomposing finite abelian groups, Quantum Information & Com-
putation 1, 26 (2001).

http://dx.doi.org/10.1137/S0097539795293172
http://arxiv.org/abs/http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1103/PhysRevA.54.1034
http://dx.doi.org/ 10.1103/PhysRevLett.79.325
http://dx.doi.org/ 10.1103/PhysRevLett.79.325
http://dx.doi.org/ 10.1098/rspa.1996.0136
http://dx.doi.org/ 10.1098/rspa.1996.0136
http://dx.doi.org/ 10.1098/rspa.1996.0136
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1103/PhysRevA.54.4741
http://dx.doi.org/10.1103/PhysRevLett.75.4714
http://dx.doi.org/10.1063/1.476739
http://dx.doi.org/10.1103/PhysRevLett.80.3408

96 REFERENCES

[28] C. Monroe, D. Meekhof, B. King, W. M. Itano, and D. J. Wineland, Demonstration of a fundamental
quantum logic gate, Physical Review Letters 75, 4714 (1995).

[29] S. Debnath, N. Linke, C. Figgatt, K. Landsman, K. Wright, and C. Monroe, Demonstration of a
small programmable quantum computer with atomic qubits, Nature 536, 63 (2016).

[30] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Camp-
bell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana,
P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, State preservation by
repetitive error detection in a superconducting quantum circuit, Nature 519, 66 (2015).

[31] D. Ristè, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, and L. DiCarlo, Detecting
bit-flip errors in a logical qubit using stabilizer measurements, Nature Communications 6, 6983 (2015).

[32] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, J. M. Chow, and J. M. Gambetta, Hardware-
efficient quantum optimizer for small molecules and quantum magnets, arXiv:1704.05018 (2017).

[33] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Spins in few-
electron quantum dots, Reviews of Modern Physics 79, 1217 (2007).

[34] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. Hollenberg, G. Klimeck,
S. Rogge, S. N. Coppersmith, and M. A. Eriksson, Silicon quantum electronics, Reviews of Modern
Physics 85, 961 (2013).

[35] T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward, P. Scarlino, M. Veldhorst, D. E. Savage,
M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, A
programmable two-qubit quantum processor in silicon, Nature 555, 633 (2018).

[36] G. De Lange, Z. Wang, D. Riste, V. Dobrovitski, and R. Hanson, Universal dynamical decoupling of
a single solid-state spin from a spin bath, Science 330, 60 (2010).

[37] J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M. Markham, D. J. Twitchen, R. Hanson,
and T. H. Taminiau, Repeated quantum error correction on a continuously encoded qubit by real-time
feedback, Nature Communications 7 (2016).

[38] X.-C. Yao, T.-X. Wang, H.-Z. Chen, W.-B. Gao, A. G. Fowler, R. Raussendorf, Z.-B. Chen, N.-L.
Liu, C.-Y. Lu, Y.-J. Deng, Y.-A. Chen, and J.-W. Pan, Experimental demonstration of topological error
correction, Nature 482, 489 (2012).

[39] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven,
Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336,
1003 (2012), http://science.sciencemag.org/content/336/6084/1003.full.pdf .

[40] A. D. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross, M. Steffen, J. M. Gambetta, and J. M.
Chow, Demonstration of a quantum error detection code using a square lattice of four superconducting
qubits, Nature Communications 6, 6979 (2015).

[41] R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen, M. Steudtner, N. K. Thomas, Z. R. Yoscov-
its, K. J. Singh, S. Wehner, L. M. K. Vandersypen, J. S. Clarke, and M. Veldhorst, A cross-
bar network for silicon quantum dot qubits, Science Advances 4 (2018), 10.1126/sciadv.aar3960,
http://advances.sciencemag.org/content/4/7/eaar3960.full.pdf .

[42] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge Uni-
versity Press, 2000).

[43] V. Bužek and M. Hillery, Quantum copying: Beyond the no-cloning theorem, Phys. Rev. A 54, 1844
(1996).

[44] S. J. Devitt, W. J. Munro, and K. Nemoto, Quantum error correction for beginners, Reports on
Progress in Physics 76, 076001 (2013).

http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/ 10.1126/science.1222360
http://dx.doi.org/ 10.1126/science.1222360
http://arxiv.org/abs/http://science.sciencemag.org/content/336/6084/1003.full.pdf
http://dx.doi.org/ 10.1126/sciadv.aar3960
http://arxiv.org/abs/http://advances.sciencemag.org/content/4/7/eaar3960.full.pdf
http://dx.doi.org/10.1103/PhysRevA.54.1844
http://dx.doi.org/10.1103/PhysRevA.54.1844

REFERENCES 97

[45] D. A. Lidar and T. A. Brun, Quantum Error Correction (Cambridge University Press, 2013).

[46] E. Knill, Quantum computing with realistically noisy devices, Nature 434, 39 (2005).

[47] J. Ghosh, A. G. Fowler, and M. R. Geller, Surface code with decoherence: An analysis of three super-
conducting architectures, Phys. Rev. A 86, 062318 (2012).

[48] J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compil-
ing, Phys. Rev. A 94, 052325 (2016).

[49] Y. Liang, K. Rupnow, Y. Li, D. Min, M. N. Do, and D. Chen, High-level synthesis: productivity, per-
formance, and software constraints, Journal of Electrical and Computer Engineering 2012, 1 (2012).

[50] D. Bacon, Lecture notes in quantum computing, cse599d, (2018), [Online; accessed 11-02-2019].

[51] Wikipedia, Adiabatic quantum computation — Wikipedia, the free encyclopedia, (2018), [Online; ac-
cessed 11-02-2019].

[52] Wikipedia, Topological quantum computer — Wikipedia, the free encyclopedia, (2018), [Online; ac-
cessed 11-02-2019].

[53] A. Paetznick, Resource optimization for fault-tolerant quantum computing, arXiv:1410.5124 (2014).

[54] A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54, 1098
(1996).

[55] J.-P. Tillich and G. Zémor, Quantum LDPC codes with positive rate and minimum distance proportional
to the square root of the blocklength, IEEE Transactions on Information Theory 60, 1193 (2014).

[56] D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories, Phys.
Rev. A 73, 012340 (2006).

[57] H. Bombin and M. A. Martin-Delgado, Topological quantum distillation, Physical review letters 97,
180501 (2006).

[58] H. Bombin and M. A. Martin-Delgado, Topological computation without braiding, Phys. Rev. Lett.
98, 160502 (2007).

[59] A. Yu. Kitaev, Quantum error correction with imperfect gates, Quantum Communication, Computing,
and Measurement (1997).

[60] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).

[61] S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara, Subsystem surface codes with three-qubit
check operators, Quantum Info. Comput. 13, 963 (2013).

[62] C. Jones, P. Brooks, and J. Harrington, Gauge color codes in two dimensions, Phys. Rev. A 93, 052332
(2016).

[63] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: Towards practical
large-scale quantum computation, Physical Review A 86, 032324 (2012).

[64] R. Raussendorf and J. Harrington, Fault-tolerant quantum computation with high threshold in two
dimensions, Phys. Rev. Lett. 98, 190504 (2007).

[65] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Surface code quantum computing with error rates
over 1%, Phys. Rev. A 83, 020302 (2011).

[66] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, Towards practical classical processing for the
surface code, Phys. Rev. Lett. 108, 180501 (2012).

http://dx.doi.org/10.1103/PhysRevA.86.062318
http://dx.doi.org/10.1103/PhysRevA.94.052325
https://en.wikipedia.org/wiki/Adiabatic_quantum_computation
https://en.wikipedia.org/wiki/Topological_quantum_computer
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dx.doi.org/ 10.1103/PhysRevLett.98.160502
http://dx.doi.org/ 10.1103/PhysRevLett.98.160502
http://dl.acm.org/citation.cfm?id=2535639.2535643
http://dx.doi.org/10.1103/PhysRevA.93.052332
http://dx.doi.org/10.1103/PhysRevA.93.052332
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/ 10.1103/PhysRevA.83.020302
http://dx.doi.org/10.1103/PhysRevLett.108.180501

98 REFERENCES

[67] H. Bombin and M. A. Martin-Delgado, Quantum measurements and gates by code deformation, Jour-
nal of Physics A: Mathematical and Theoretical 42, 095302 (2009).

[68] H. Bombin, Clifford gates by code deformation, New Journal of Physics 13, 043005 (2011).

[69] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary, arXiv preprint quant-
ph/9811052 (1998).

[70] M. H. Freedman and D. A. Meyer, Projective plane and planar quantum codes, Foundations of Com-
putational Mathematics 1, 325 (2001).

[71] R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider, D. J. Michalak, A. Bruno, K. Ber-
tels, and L. DiCarlo, Scalable quantum circuit and control for a superconducting surface code, Phys.
Rev. Applied 8, 034021 (2017).

[72] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, Surface code quantum computing by lattice
surgery, New Journal of Physics 14, 123011 (2012).

[73] B. M. Terhal, Quantum error correction for quantum memories, Reviews of Modern Physics 87, 307
(2015).

[74] R. Raussendorf, J. Harrington, and K. Goyal, Topological fault-tolerance in cluster state quantum
computation, New Journal of Physics 9, 199 (2007).

[75] S. Bravyi, M. Suchara, and A. Vargo, Efficient algorithms for maximum likelihood decoding in the
surface code, Phys. Rev. A 90, 032326 (2014).

[76] J. Edmonds, Paths, trees, and flowers, Canadian Journal of Mathematics 17, 449 (1965).

[77] V. Kolmogorov, Blossom V: a new implementation of a minimum cost perfect matching algorithm, Math-
ematical Programming Computation 1, 43 (2009).

[78] A. G. Fowler, Minimum weight perfect matching of fault-tolerant topological quantum error correction
in average o(1) parallel time, Quantum Information & Computation 15, 145 (2015).

[79] A. Hutter, J. R. Wootton, and D. Loss, Efficient markov chain monte carlo algorithm for the surface
code, Phys. Rev. A 89, 022326 (2014).

[80] J. R. Wootton and D. Loss, High threshold error correction for the surface code, Phys. Rev. Lett. 109,
160503 (2012).

[81] G. Duclos-Cianci and D. Poulin, A renormalization group decoding algorithm for topological quantum
codes, Information Theory Workshop (ITW), IEEE , 1 (2010).

[82] G. Duclos-Cianci and D. Poulin, Fast decoders for topological quantum codes, Phys. Rev. Lett. 104,
050504 (2010).

[83] A. G. Fowler, A. C. Whiteside, A. L. McInnes, and A. Rabbani, Topological code autotune, PHYSI-
CAL REVIEW X 2, 041003 (2012).

[84] A. G. Fowler, Optimal complexity correction of correlated errors in the surface code, arXiv:1310.0863
(2013).

[85] G. Kuczera and E. Parent, Monte carlo assessment of parameter uncertainty in conceptual catchment
models: the metropolis algorithm, Journal of Hydrology 211, 69 (1998).

[86] G. Torlai and R. G. Melko, Neural decoder for topological codes, Phys. Rev. Lett. 119, 030501 (2017).

[87] S. Krastanov and L. Jiang, Deep neural network probabilistic decoder for stabilizer codes, Scientific
Reports 7 (2017), 10.1038/s41598-017-11266-1.

http://dx.doi.org/ 10.1088/1751-8113/42/9/095302
http://dx.doi.org/ 10.1088/1751-8113/42/9/095302
http://dx.doi.org/10.1088/1367-2630/13/4/043005
http://dx.doi.org/10.1103/PhysRevApplied.8.034021
http://dx.doi.org/10.1103/PhysRevApplied.8.034021
http://dx.doi.org/ 10.1103/RevModPhys.87.307
http://dx.doi.org/ 10.1103/RevModPhys.87.307
http://dx.doi.org/ 10.1088/1367-2630/9/6/199
http://dx.doi.org/ 10.1103/PhysRevA.90.032326
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1007/s12532-009-0002-8
http://dx.doi.org/10.1007/s12532-009-0002-8
http://dx.doi.org/ 10.1103/PhysRevA.89.022326
http://dx.doi.org/ 10.1103/PhysRevLett.109.160503
http://dx.doi.org/ 10.1103/PhysRevLett.109.160503
http://dx.doi.org/ 10.1109/CIG.2010.5592866
http://dx.doi.org/ 10.1103/PhysRevLett.104.050504
http://dx.doi.org/ 10.1103/PhysRevLett.104.050504
http://dx.doi.org/10.1103/PhysRevX.2.041003
http://dx.doi.org/10.1103/PhysRevX.2.041003
http://dx.doi.org/ https://doi.org/10.1016/S0022-1694(98)00198-X
http://dx.doi.org/10.1103/PhysRevLett.119.030501
http://dx.doi.org/ 10.1038/s41598-017-11266-1
http://dx.doi.org/ 10.1038/s41598-017-11266-1

REFERENCES 99

[88] S. Varsamopoulos, B. Criger, and K. Bertels, Decoding small surface codes with feedforward neural
networks, Quantum Science and Technology 3, 015004 (2018).

[89] P. Baireuther, T. E. O’Brien, B. Tarasinski, and C. W. J. Beenakker, Machine-learning-assisted correc-
tion of correlated qubit errors in a topological code, Quantum 2, 48 (2018).

[90] C. Chamberland and P. Ronagh, Deep neural decoders for near term fault-tolerant experiments, Quan-
tum Science and Technology 3, 044002 (2018).

[91] X. Ni, Neural network decoders for large-distance 2d toric codes, arXiv:1809.06640 (2018).

[92] S. Varsamopoulos, K. Bertels, and C. G. Almudever, Designing neural network based decoders for
surface codes, arXiv:1811.12456 (2018).

[93] A. Davaasuren, Y. Suzuki, K. Fujii, and M. Koashi, General framework for constructing fast and
near-optimal machine-learning-based, arXiv:1801.04377 (2018).

[94] M. Maskara, A. Kubica, and T. Jochym-O’Connor, Advantages of versatile neural-network decoding
for topological codes, arXiv:1802.08680 (2018).

[95] A. S. Darmawan and D. Poulin, Linear-time general decoding algorithm for the surface code, Phys. Rev.
E 97, 051302 (2018).

[96] R. Sweke, M. S. Kesselring, E. P. L. van Nieuwenburg, and J. Eisert, Reinforcement learning decoders
for fault-tolerant quantum computation, arXiv:1810.07207 (2018).

[97] D. A. Lidar, Review of decoherence-free subspaces, noiseless subsystems, and dynamical decoupling,
arXiv:1208.5791 (2014).

[98] G. H. Low, T. J. Yoder, and I. L. Chuang, Optimal arbitrarily accurate composite pulse sequences, Phys.
Rev. A 89, 022341 (2014).

[99] Y. Li and S. C. Benjamin, Efficient variational quantum simulator incorporating active error minimiza-
tion, Phys. Rev. X 7, 021050 (2017).

[100] K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys.
Rev. Lett. 119, 180509 (2017).

[101] I. Changhau, Lstm and gru – formula summary, (2017).

[102] X. Fu, L. Riesebos, L. Lao, C. Almudever, F. Sebastiano, R. Versluis, E. Charbon, and K. Bertels, A
heterogeneous quantum computer architecture, in CF (ACM, 2016) pp. 323–330.

[103] M. Takita, A. Córcoles, E. Magesan, B. Abdo, M. Brink, A. Cross, J. M. Chow, and J. M. Gam-
betta, Demonstration of weight-four parity measurements in the surface code architecture, arXiv preprint
arXiv:1605.01351 (2016).

[104] E. Knill, Scalable quantum computing in the presence of large detected-error rates, Physical Review A
71, 042322 (2005).

[105] D. P. DiVincenzo and P. Aliferis, Effective fault-tolerant quantum computation with slow measurements,
Physical review letters 98, 020501 (2007).

[106] P. Aliferis and J. Preskill, Fault-tolerant quantum computation against biased noise, Physical Review
A 78, 052331 (2008).

[107] N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, and Y. Yamamoto,
Layered architecture for quantum computing, Physical Review X 2, 031007 (2012).

http://stacks.iop.org/2058-9565/3/i=1/a=015004
http://dx.doi.org/10.22331/q-2018-01-29-48
http://stacks.iop.org/2058-9565/3/i=4/a=044002
http://stacks.iop.org/2058-9565/3/i=4/a=044002
http://dx.doi.org/ 10.1103/PhysRevE.97.051302
http://dx.doi.org/ 10.1103/PhysRevE.97.051302
http://dx.doi.org/10.1103/PhysRevA.89.022341
http://dx.doi.org/10.1103/PhysRevA.89.022341
http://dx.doi.org/10.1103/PhysRevX.7.021050
http://dx.doi.org/ 10.1103/PhysRevLett.119.180509
http://dx.doi.org/ 10.1103/PhysRevLett.119.180509
https://isaacchanghau.github.io/post/lstm-gru-formula/

100 REFERENCES

[108] S. Balensiefer, L. Kregor-Stickles, and M. Oskin, An evaluation framework and instruction set ar-
chitecture for ion-trap based quantum micro-architectures, in ACM SIGARCH Computer Architecture
News, Vol. 33 (IEEE Computer Society, 2005) pp. 186–196.

[109] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov, A layered software architecture for
quantum computing design tools, IEEE Computer 39, 74 (2006).

[110] D. Wecker and K. M. Svore, Liqui|>: A software design architecture and domain-specific language for
quantum computing, arXiv preprint arXiv:1402.4467 (2014).

[111] K. Svore, A. Cross, A. Aho, I. Chuang, and I. Markov, Toward a software architecture for quantum
computing design tools, in QPL (2004) pp. 145–162.

[112] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi, Scaffcc:
A framework for compilation and analysis of quantum computing programs, in CF (ACM, 2014) p. 1.

[113] N. Khammassi, I. Ashraf, X. Fu, C. G. Almudever, and K. Bertels, QX: A high-performance quantum
computer simulation platform, in Proceedings of the Conference on Design, Automation & Test in Europe
(DATE) (IEEE, 2017) pp. 464–469.

[114] S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical Review A 70,
052328 (2004).

[115] I. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Reviews of Modern Physics 86, 153
(2014).

[116] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang,
and R. Blatt, Realization of a scalable Shor algorithm, Science 351, 1068 (2016).

[117] S. Jordan, Quantum algorithms, (2016).

[118] Z. Wu, J. Li, W. Zheng, J. Luo, M. Feng, and X. Peng, Experimental demonstration of the Deutsch-Jozsa
algorithm in homonuclear multispin systems, Phys. Rev. A 84, 042312 (2011).

[119] Y. Liu and F. Zhang, First experimental demonstration of an exact quantum search algorithm in nuclear
magnetic resonance system, Science China Physics, Mechanics & Astronomy 58, 1 (2015).

[120] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and
J. L. O’Brien, A variational eigenvalue solver on a photonic quantum processor, Nature Communica-
tions 5 (2014), 10.1038/ncomms5213, http://dx.doi.org/10.1038/ncomms5213 .

[121] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais,
L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Demonstration of two-qubit algorithms with a super-
conducting quantum processor, Nature 460, 240 (2009), http://dx.doi.org/10.1038/nature08121 .

[122] C. Chamberland, P. Iyer, and D. Poulin, Fault-Tolerant Quantum Computing in the Pauli or Clifford
Frame with Slow Error Diagnostics, ArXiv e-prints (2017), arXiv:1704.06662 [quant-ph] .

[123] T. O’Brien, B. Tarasinski, and L. DiCarlo, Density-matrix simulation of small surface codes under
current and projected experimental noise, arXiv preprint arXiv:1703.04136 (2017).

[124] E. Nachmani, Y. Be’ery, and D. Burshtein, Learning to decode linear codes using deep learning, in 2016
54th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (IEEE, 2016)
pp. 341–346.

[125] E. Nachmani, E. Marciano, D. Burshtein, and Y. Be’ery, RNN Decoding of Linear Block Codes, arXiv
preprint arXiv:1702.07560 (2017).

[126] D. Poulin, Optimal and efficient decoding of concatenated quantum block codes, Phys. Rev. A 74, 052333
(2006).

http://dx.doi.org/ 10.1126/science.aad9480
http://math.nist.gov/quantum/zoo/
http://dx.doi.org/10.1103/PhysRevA.84.042312
http://dx.doi.org/10.1007/s11433-015-5661-z
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/ncomms5213
http://arxiv.org/abs/http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/nature08121
http://arxiv.org/abs/http://dx.doi.org/10.1038/nature08121
http://arxiv.org/abs/1704.06662
http://dx.doi.org/ 10.1103/PhysRevA.74.052333
http://dx.doi.org/ 10.1103/PhysRevA.74.052333

REFERENCES 101

[127] D. J. MacKay, Information theory, inference and learning algorithms (Cambridge university press,
2003).

[128] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statist. 22, 79 (1951).

[129] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schus-
ter, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale
machine learning on heterogeneous systems, (2015), software available from tensorflow.org.

[130] Virtex UltraScale FPGAs Datasheet : DC and AC switching characteristics (2017).

[131] A. J. Landahl, J. T. Anderson, and P. R. Rice, Fault-tolerant quantum computing with color codes,
arXiv:1108.5738 (2011).

[132] H. Bombin, G. Duclos-Cianci, and D. Poulin, Universal topological phase of two-dimensional stabilizer
codes, New Journal of Physics 14, 073048 (2012).

[133] A. Couvreur, N. Delfosse, and G. Zémor, A construction of quantum LDPC codes from Cayley graphs,
IEEE Transactions on Information Theory 59, 6087 (2013).

[134] D. Bacon, S. T. Flammia, A. W. Harrow, and J. Shi, Sparse quantum codes from quantum circuits,
IEEE Transactions on Information Theory 63, 2464 (2017).

[135] D. Gottesman, Stabilizer Codes and Quantum Error Correction (Caltech Ph.D. Thesis, 1997).

[136] M. Herold, E. T. Campbell, J. Eisert, and M. J. Kastoryano, Cellular-automaton decoders for topolog-
ical quantum memories, Npj Quantum Information 1 (2015), 10.1038/npjqi.2015.10.

http://dx.doi.org/10.1214/aoms/1177729694
http://tensorflow.org/
http://tensorflow.org/
http://dx.doi.org/10.1038/npjqi.2015.10

SUMMARY

Quantum error correction (QEC) is key to have reliable quantum computation and storage,
due to the fragility of qubits in current quantum technology and the imperfect application
of quantum operations. In order to have efficient quantum computation and storage, active
QEC is required. QEC consists of an encoding and a decoding process. The way that en-
coding protects quantum information is through grouping many unreliable physical qubits
into one more reliable logical qubit. Then, computation occurs based on the logical qubits,
however, errors still occur on the physical qubits. Decoding is the process of identifying the
location and type of errors occurring on the physical qubits. The decoder proposes correc-
tions against the errors that have been identified. In this thesis, we are exploring novel ways
to design decoders for QEC codes, focusing on the surface code.

We began our investigation by implementing a rule-based decoder for the smallest sur-
face code, which consists of 17 qubits. We incorporated this decoder to a platform that we
created, called Quantum Platform Development Framework (QPDO), in order to study the
working principles of a Pauli frame and to quantify its potential effect on the decoding per-
formance. The Pauli frame unit keeps track of errors on physical qubits without the need
to apply corrections constantly. We quantified through simulation the benefits in terms of
the decoding performance and the execution schedule of QEC, minimizing the idle time.
Minimizing the execution time is critical, due to the limited time budget of quantum error
correction, thus requiring a high speed decoder capable of still reaching high decoding per-
formance. We show that when the decoding time is equal to the time required to run a sur-
face code cycle, the decoder reaches its maximum performance. However, such a rule-based
decoder cannot easily scale to larger quantum systems, therefore other decoding approaches
should be considered.

Most of the classical decoders that have been developed so far, do not have a good bal-
ance between short execution time and high decoding performance. Therefore, we pro-
posed decoders that incorporate neural networks to keep the execution time small, while
keeping the decoding performance high. We designed a two-module decoder, which in-
cluded a classical module and a neural network. We named this configuration neural net-
work based decoder (NNbD). We compare different designs of NNbDs with classical de-
coders and prove that NNbDs can reach similar or better decoding performance compared
to classical decoders while having constant execution time. Furthermore, we quantified the
execution time of a NNbD and argued about the speed that can be achieved in a hardware
chip like a Field Programmable Gate Array (FPGA) or an Application-Specific Integrated
Circuit (ASIC). Both the classical module and the neural network are highly parallelizable
and fast modules by construction, leading to constant execution time for a given code dis-
tance. We proved that neural network based decoders can adapt to any noise model, since
the neural network functionality is based on creating a map between the input and output
data, requiring no knowledge about the underlying error model.

Following that, a comparison between different NNbD design approaches was per-
formed. We show that it is advantageous to start with a classical decoding module and
improve on its decoding performance with a neural network rather than having a neural
network perform the decoding on its own. Also, in the latter case, the execution time of

103

104 SUMMARY

such a decoder is non-constant and on average larger than the decoder containing a clas-
sical module and a neural network. Moreover, we show that for the design containing a
classical module and a neural network, the execution time is increasing linearly as the code
distance increased, which was mainly attributed to the increase of the size of the neural
network.

However, there is a fundamental difference between NNbDs and classical decoders in
that NNbDs require sampling and training based on data obtained from the problem, un-
like classical decoders. As the code distance increases, the amount of data required to be
gathered and trained are exponentially increasing, imposing a limit to the size of the quan-
tum system that can be efficiently decoded. We proposed as a solution to have a distributed
decoding approach that divides the code into small regions and then decodes each region
locally. We show that using such a distributed decoding approach for small code distances
does not lead to significant loss in decoding performance, while simultaneously providing
a way to decode large code distances.

Thus, we were able to create a decoder that can achieve high decoding performance with
constant execution time. However, there are still some issues to keep in mind with such kind
of decoders. The main challenge of NNbDs is that they are a dedicated decoder for a given
problem. Every time that some aspect of the problem changes (quantum error correcting
code, code distance, error model), sampling, training and evaluating the decoder needs to
be repeated. Moreover, there is a large number of neural network parameters that need to
be specifically tuned when the problem changes. A careful study of the design choices is
required to maximize the performance of the decoder.

We envision that when sampling and training are performed in hardware, the time re-
quired for these processes will be decreased compared to the time required in software.
Finally, if the hardware resources allow us to include multiple neural networks, then this
can potentially increase the decoding performance. As we presented, dividing the task of
decoding to smaller tasks that are distributed to many neural networks can be beneficial.

SAMENVATTING

Quantumfoutcorrectie (QEC) is essentieel voor betrouwbare quantumberekeningen en -opslag
vanwege de fragiliteit van qubits en de imperfecte toepassing van quantumoperaties in de
huidige quantumtechnologie. Voor efficiënte quantumberekeningen en -opslag is actieve
QEC vereist. QEC bestaat uit een coderings- en een decoderingsproces. Codering beschermt
quantuminformatie door veel onbetrouwbare, fysieke qubits te groeperen tot een meer be-
trouwbare, logische qubit. De berekening vindt vervolgens plaats op basis van de logische
qubits maar er treden nog steeds fouten op in de fysieke qubits. Decoderen is het identifi-
catieproces van de plek en soort van de optredende fouten in de fysieke qubits. De decoder
stelt correcties voor op de gevonden fouten. In dit proefschrift onderzoeken we nieuwe
manieren om decoders te ontwerpen voor QEC-codes, in het bijzonder voor surface-code.

We zijn ons onderzoek begonnen met de implementatie van een op regels gebaseerde
decoder voor de kleinste surface-code die uit 17 qubits bestaat. We hebben deze decoder ge-
ïntegreerd in een platform, Quantum Platform Development Framework (QPDO) genaamd,
dat we hebben gecreëerd om de werkingsprincipes van een Pauli-frame te bestuderen en om
het mogelijke effect ervan op de decodeerkwaliteit te kwantificeren. Een Pauli-frame houdt
bij welk soort fouten in fysieke qubits optraden zonder dat voortdurend correcties nodig
zijn. We hebben door middel van simulatie de voordelen voor de decodeerkwaliteit van
QEC en hoe vaak QEC moet draaien gekwantificeerd, en daarmee de leeglooptijd gemini-
maliseerd. Het minimaliseren van de uitvoeringstijd is van cruciaal belang vanwege het
beperkte tijdsbudget voor quantumfoutcorrectie waardoor een snelle decoder nodig is die
nog steeds tot hoge decoderingsprestaties in staat is. We laten zien dat wanneer de deco-
deringstijd gelijk is aan de tijd die nodig is om een surface-code cyclus uit te voeren, de
decoder het meest optimaal werkt. Een dergelijke op regels gebaseerde decoder kan ech-
ter niet eenvoudig worden opgeschaald naar grotere quantumsystemen en daarom moeten
andere manieren van decoderen worden overwogen.

De meeste klassieke decoders die tot nu toe zijn ontwikkeld, hebben geen goede ba-
lans tussen korte uitvoeringstijd en hoge decodeerkwaliteit. Daarom hebben we decoders
voorgesteld die neurale netwerken bevatten om de uitvoeringstijd klein te houden, ter-
wijl de decodeerkwaliteit hoog blijven. We hebben een tweecomponentdecoder ontwor-
pen met een klassieke deel en een neuraal netwerk. We noemden deze combinatie neurale-
netwerkgebaseerde decoders (NNbD). We vergelijken verschillende NNbD-ontwerpen met
klassieke decoders en bewijzen dat NNbD’s vergelijkbaar of beter kunnen presteren met de-
coderen in vergelijking tot klassieke decoders met constant uitvoeringstijd. Verder hebben
we de uitvoeringstijd van een NNbD gekwantificeerd en beargumenteerd over de snelheid
die kan worden bereikt in een hardware-chip zoals een Field Programmable Gate Array
(FPGA) of een applicatie-specifieke geïntegreerde schakeling (ASIC). Zowel de klassieke
module als het neurale netwerk zijn zeer parallelliseerbaar en snelle modules door con-
structie, wat leidt tot een constante uitvoeringstijd voor een gegeven codeafstand. We heb-
ben bewezen dat neurale-netwerkgebaseerde decoders kunnen worden aangepast aan elk
ruismodel, omdat de neurale-netwerkfunctionaliteit is gebaseerd op het maken van een af-
beelding tussen de invoer- en uitvoergegevens, waardoor er geen kennis nodig is van het
onderliggende foutmodel.

105

106 SAMENVATTING

Daarna werd een vergelijking tussen verschillende NNbD ontwerpbenaderingen uitge-
voerd. We laten zien dat het voordelig is om te beginnen met een klassieke decoderingsmo-
dule en de decodeerkwaliteit met een neuraal netwerk te verbeteren in plaats van dat een
neuraal netwerk het decoderen alleen uitvoert. Ook is in het laatste geval de uitvoerings-
tijd van een dergelijke decoder niet constant en gemiddeld groter dan die van een decoder
die een klassieke module en een neuraal netwerk bevat. Bovendien laten we zien dat in
het ontwerp met een klassieke module en een neuraal netwerk, de uitvoeringstijd lineair
toeneemt naarmate de codeafstand toeneemt, wat voornamelijk kan worden toegeschreven
aan de toename van de grootte van het neurale netwerk.

Er is echter een fundamenteel verschil tussen NNbD’s en klassieke decoders omdat
NNbD’s vergaring van informatie en training vereisen op basis van gegevens die uit het
probleem zijn verkregen, in tegenstelling tot klassieke decoders. Naarmate de codeafstand
toeneemt, neemt de hoeveelheid gegevens die moet worden verzameld en waarmee moet
worden getraind exponentieel toe, waardoor een limiet wordt gesteld aan de omvang van
het quantumsysteem dat efficiënt kan worden gedecodeerd. We hebben een oplossing voor-
gesteld voor een gedistribueerde decodeermethode die de code verdeelt in kleine regio’s
en vervolgens elke regio lokaal decodeert. We laten zien dat het gebruik van een derge-
lijke gedistribueerde decodeermethode voor kleine codeafstanden niet leidt tot aanzienlijk
verlies van de decodeerkwaliteit, terwijl tegelijkertijd een manier wordt geboden om grote
codeafstanden te decoderen.

We waren dus in staat om een decoder te creëren die hoge decodeerkwaliteit met een
constante uitvoeringstijd kan halen. Er zijn echter nog steeds enkele problemen waarmee
men rekening moet houden bij dergelijke decoders. De grootste uitdaging van NNbD’s is
dat ze specifiek decoderen voor een gegeven probleem. Telkens wanneer een bepaald as-
pect van het probleem verandert (quantumfoutcorrectiecodering, codeafstand, foutmodel),
moet het vergaren van informatie, het trainen en het evalueren van de decoder herhaald
worden. Bovendien is er een grote hoeveelheid neurale-netwerkparameters die specifiek
moeten worden ingeregeld wanneer het probleem verandert. Een zorgvuldige afweging
van de ontwerpkeuzes is vereist om de prestaties van de decoder te maximaliseren.

We voorzien dat wanneer vergaring van informatie en training worden uitgevoerd in
hardware, de tijd die nodig is voor deze processen wordt verminderd in vergelijking met de
tijd die nodig is in de software. Tenslotte, als de hoeveelheid ons ter beschikking staande
hardware ons in staat stelt meerdere neurale netwerken op te nemen, kan dit de decodeer-
kwaliteit mogelijk verhogen. Zoals we hebben uiteengezet, kan het van voordeel zijn om de
decoderingstaak op te splitsen en te verdelen over meerdere neurale netwerken.

CURRICULUM VITÆ

Savvas VARSAMOPOULOS

Savvas Varsamopoulos was born on October 27th, 1988 in Thessaloniki, Greece. In 2006,
he started his undergraduate studies at Aristotle University of Thessaloniki, Greece. As an
undergraduate student in the Physics department, he spent the first three years studying
various topics in the field of Physics. The final year of his undergraduate studies, he took
specialization courses in Electronics and Telecommunications. He obtained his Bachelor
degree in Physics in 2011.

During the same year (2011), he enrolled in the Master program of the same university to
continue his studies in Electronics and Telecommunications. The Master program consisted
of courses about microelectronics, digital system design and programming. His Master the-
sis involved the implementation of the Simplex algorithm into a Field Programmable Gate
Array (FPGA). He received his Master of Science degree in 2014.

A couple of months after finishing the Master of Science program in 2014, he accepted a
position as a Ph.D. Candidate in the Quantum and Computer Engineering lab of Delft Uni-
versity of Technology, to work on quantum error correction under the guidance of Prof. dr.
Koen Bertels. He was part of the initial group that began investigating quantum computing
in the faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS/EWI)
of Delft University of Technology.

His Ph.D. studies focus on developing high decoding performance and high speed de-
coders for the surface code and other quantum error correcting codes. The results of his
work are presented in the current dissertation.

107

LIST OF PUBLICATIONS

Conference Proceedings

1. L. Riesebos, X. Fu, S. Varsamopoulos, C.G. Almudever, K. Bertels, Pauli frames for
quantum computer architectures, Proceedings of the 54th Annual Design Automation
Conference (DAC), ACM, 76, (2017).

2. C.G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S. Varsamopoulos,
C. Eichler, A. Wallraff, L. Geck, A. Kruth, J. Knoch, H. Bluhm, K. Bertels, The engineer-
ing challenges in quantum computing, Proceedings of the 2017 Design, Automation &
Test in Europe Conference & Exhibition (DATE), IEEE, pp.836-846, (2017).

3. L. Riesebos, X. Fu, A. A. Moueddenne, L. Lao, S. Varsamopoulos, I. Ashraf, J. van
Someren, N. Khammassi, C.G. Almudever, K. Bertels, Quantum Accelerated Computer
Architectures, International Symposium on Circuits and Systems, IEEE, (2019) (Ac-
cepted).

Journal Papers

1. S. Varsamopoulos, B. Criger, K. Bertels, Decoding small surface codes with feedforward neural net-
works, Quantum Science and Technology, vol. 3, IOP Publishing, (2017).

arXiv

1. S. Varsamopoulos, K. Bertels, C.G. Almudever, Designing neural network based decoders
for surface codes, arXiv:1811.12456, 2018. (Submitted to IEEE Transactions on Comput-
ers)

2. S. Varsamopoulos, K. Bertels, C.G. Almudever, Decoding surface code with a distributed
neural network based decoder, arXiv:1901.10847, 2019. (Submitted to New Journal of
Physics)

109

doi:10.1145/3061639.3062300
doi:10.1145/3061639.3062300
doi:10.23919/DATE.2017.7927104
doi:10.23919/DATE.2017.7927104
http://stacks.iop.org/2058-9565/3/i=1/a=015004

	Acknowledgements
	List of Tables
	List of Figures
	Table of Acronyms
	Introduction
	Building a fault tolerant quantum computer
	Quantum error correction
	Research challenges
	Dissertation contributions and organization

	Background
	The power of quantum computing
	Fault tolerant computation and quantum error correction
	Quantum error correcting codes
	Surface code
	Decoding the surface code
	Quantum error decoders

	Quantum errors
	Error propagation and transformation
	Simulated error models

	Neural networks

	Pauli Frames for Quantum Computer Architectures
	Introduction
	Background
	Quantum error correction

	Pauli frames
	A quantum computer architecture with Pauli frame
	Benefits
	Implementation

	Simulation setup
	Logical error rate calculation

	Results
	Conclusions
	Acknowledgments

	Decoding Small Surface Codes with Feedforward Neural Networks
	Introduction
	Need for fast decoding
	Related work
	Neural network decoder
	Results
	Discussion and conclusion
	Acknowledgments

	Designing neural network based decoders for surface codes
	Introduction
	Designing neural network based decoders
	Inputs/Outputs
	Sampling and training process
	Evaluating performance

	Implementation parameters
	Error model
	Choosing the best dataset
	Structure of the neural network
	Training process

	Results
	Depolarizing error model
	Circuit noise model

	Conclusions

	Decoding surface code with a distributed neural network based decoder
	Introduction
	RG decoding
	Distributed decoding with overlapping tiles
	Results
	Optimizing for the size of training dataset

	Conclusions

	Conclusions and future outlook
	Conclusions
	Future research direction
	Bibliography
	titleReferences

	Summary
	Samenvatting
	Curriculum Vitæ
	List of Publications

