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Heat and mass transfers are coupled processes, also in nucleation. In principle, a nucleating cluster
would have a different temperature compared to the surrounding supersaturated old phase because
of the heat release involved with attaching molecules to the cluster. In turn a difference in temper-
ature across the cluster surface is a driving force for the mass transfer to and from the cluster. This
coupling of forces in nonisothermal nucleation is described using mesoscopic nonequilibrium ther-
modynamics, emphasizing measurable heat effects. An expression was obtained for the nonisother-
mal nucleation rate in a one-component system, in the case where a temperature difference exists
between a cluster distribution and the condensed phase. The temperature is chosen as a function of
the cluster size only, while the temperature of the condensed phase is held constant by a bath. The
generally accepted expression for isothermal stationary nucleation is contained as a limiting case of
the nonisothermal stationary nucleation rate. The equations for heat and mass transport were solved
for stationary nucleation with the given cluster distribution and with the temperature controlled at
the boundaries. A factor was defined for these conditions, determined by the heat conductivity of the
surrounding phase and the phase transition enthalpy, to predict the deviation between isothermal and
nonisothermal nucleation. For the stationary state described, the factor appears to give small devia-
tions, even for primary nucleation of droplets in vapor, making the nonisothermal rate smaller than
the isothermal one. The set of equations may lead to larger and different thermal effects under differ-
ent boundary conditions, however. © 2011 American Institute of Physics. [doi:10.1063/1.3544689]

I. INTRODUCTION

Nucleation is the start of a phase transformation.1 Nuclei
of the new phase form from a supersaturated old phase. In
metallurgy, the evolution of microstructure during casting
strongly depends on the grain nucleation behavior.2 For
pharmaceuticals, different nucleation conditions can lead to
different and often unwanted solid states (polymorphism).3

In the earth’s atmosphere, clouds form by heterogeneous
nucleation of water droplets on tiny dust and aerosol
particles.4 The stability of these clouds toward dissolution is
a well-known natural problem. Nucleation is also associated
with technical issues, for instance, in the production of
magnesium metal.5

Nucleation is a highly nonlinear process with respect to
the chemical driving force or the difference in chemical poten-
tial between the phases. It takes place at the nanoscale where
molecules randomly attach to and detach from new phase
clusters. Classical nucleation theory is still the state-of-the-art
theory to describe nucleation processes.6 However, in many
cases nucleation rates from experiments and simulations are
orders of magnitude different from the predicted values.7 This
has spurred an interest in theoretical developments, taking
other variables than the cluster size into account8–13 but still
no comprehensive predictive theory exists for nucleation. It
is our aim to contribute to this development, paying special
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attention to the role of the coupling between heat and mass
transfers.

When clusters form from an old phase, a temperature dif-
ference between cluster and old phase is expected to develop
due to the accompanying enthalpy change. Such a difference
would result in a heat flux. The first theory that so took the
nucleus temperature and energy flux into account was given
in the now classical paper of Feder et al.12 These authors
derived a contribution to the nucleation rate from the rate of
energy transfer to the cluster, using a mesoscopic approach.
Typically, the nonisothermal nucleation rate would be about
20% of the isothermal nucleation rate using this theory. This
finding has been confirmed also in a stochastic simulation
model13 for nucleation on a lattice. A recent review was given
by Rybin.14 As variables, all these authors and others15 used
the energy flux rather than the measurable heat flux. The use
of the energy flux, however, does not give a direct link to the
measuring situation.

The temperature difference across the cluster boundary
may be significant. It was observed in molecular dynamics
simulations of nucleating clusters in a supersaturated old
phase that the cluster temperature was different from that
of the surrounding old phase and was distributed in a
non-Gaussian manner.16 Subcritically sized clusters were
colder and postcritically sized clusters were warmer than
the old phase.10 Holyst and Litniewski17 likewise demon-
strated, using computer simulations with Lennard-Jones
clusters, that a large temperature discontinuity existed at the
interface, as large as nearly 30% of the liquid temperature.
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Also, under transient conditions thermal effects may be
large.18

Clearly, there is a need for a theory that includes the
thermal driving force as an explicit force in nonisothermal
nucleation, in order to be able to model nucleation under
various boundary conditions. Our aim is, therefore, to develop
a description of nucleation,8, 9 which has the temperature
difference between the new phase clusters and the bulk old
phase as an explicit and additional driving force. Nonequilib-
rium thermodynamics19, 20 is the theory to describe processes
where more forces are acting. We, therefore, choose to
describe nonisothermal stationary nucleation with the aid of
nonequilibrium thermodynamics, building on the mesoscopic
procedure first presented by de Groot and Mazur19 and fur-
ther developed for nucleation by Reguera and co-workers.8, 9

Another feature of our approach is that we shall use a heat
flux that can be measured, facilitating the comparison with
experimental results. In mesoscopic nonequilibrium thermo-
dynamics one introduces internal variables, i.e., variables,
which are not originally included in the Gibbs equation.
Examples are molecular properties such as the velocity, ori-
entation, and dipole moment. We shall use the cluster size as
internal coordinate as was done before.9 The concentration of
clusters and their temperatures are the internal variables. The
resulting new description, made to emphasize measurable
heat effects, may be fruitful in describing temperature effects
in nucleation in experiments or simulations.

The system with the growing clusters obeys certain over-
all boundary conditions for conservation of mass and energy,
which are stated first in Sec. II A. The corresponding versions
of these conservation equations for the mesoscopic level are
given next in Sec. II B. From these equations and the Gibbs
equation, we next derive the expression for the (mesoscopic)
entropy production for cluster growth in Sec. II C. This

expression determines the rate equations (Sec. III A). The
coefficients of the rate equations are identified in Sec. III B,
while the driving force due to supersaturation is detailed in
Sec. III C. The general rate expressions can next be given
and compared to the classical nucleation theory, in Sec. III D.
Before concluding we show by an example in Sec. III E the
extent of the deviation from the classical nucleation theory
that can be expected.

II. BALANCE EQUATIONS

By nucleation, we mean the formation of clusters of a
new phase in a supersaturated old phase due to attachment
and detachment to and from these clusters of molecules or
atoms. The old phase thus contains clusters of the new phase
of size n = 1, 2, . . . It is common in the theory of nucleation
to distinguish new phase clusters with size 1 and separate old
phase molecules.6 A collection of concentrations c(n,t) (num-
ber per unit of volume) of new phase clusters of size n at time
t exists next to the old phase. The nucleation process can then
be considered as a diffusion process along the internal coor-
dinate n of the cluster concentration c(n,t) with a diffusion
flux J(n,t). The system, we consider in particular, is a collec-
tion of clusters of varying size n growing at stationary state
in a bath of old phase molecules at constant temperature. The
stationary state is maintained by exchange of heat and mass
through the container walls, as described below. We shall con-
sider growth as having a positive flux, J(n,t). Figure 1 shows
the mass and energy flows in the system in case of nonisother-
mal nucleation. The clusters of various sizes and temperatures
can exchange heat and mass with the old phase. A net attach-
ment of molecules to clusters causes a positive diffusion flux
along the internal coordinate n.

FIG. 1. In a supersaturated old phase, new phase clusters of various sizes grow and decay in size because of attachment and detachment of old phase molecules.
In case of nonisothermal nucleation, along with this process, an enthalpy flux JH (n) occurs, changing the cluster temperature T(n). Nucleation is a diffusion
process over the internal coordinate of the cluster size n. Clusters have various temperatures and thus can exchange heat with the old phase, causing a heat flux
J ′

q (n). The old phase is kept at a temperature Told by adding a net heat flux Q′(t) to the system. Overall an enthalpy flux is leaving the system with the removal
of clusters of size M. These clusters are replaced with a flux Jold of M molecules in the old phase at the temperature Told.
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The old phase is connected to a heat bath which keeps
the old phase at temperature Told due to a net measurable
heat flux Q′ from the old phase to the heat bath. When an
old phase molecule attaches to a cluster it carries along an
enthalpy Hold(Told), which is the enthalpy of the old phase
molecules in units of energy. The enthalpy difference of
molecules in the old and the new phases causes temperature
differences between the bulk old phase and the clusters of the
new phase. We assume that the internal thermal conductivity
of a new phase cluster is sufficiently large so that the clusters
can be considered to be isothermal with a temperature T(n,t).
The temperature differences between clusters and the old
phase cause a measurable heat flux J′

q(n,t), which is positive
from the old phase to the clusters. We assume that all clusters
of size n are at temperature T(n,t). Due to the statistical
nature of the detachments and attachments, a temperature
distribution for clusters of size n may exist in reality.

The old phase is also connected to a reservoir of old phase
molecules. It is assumed that macroscopically large clusters
with size n ≥ M have had a life time long enough to ther-
mally equilibrate with the old phase so that they reach T(M,t)
= Told at the boundary of the system, where they are leav-
ing the system. Such macroscopically sized clusters with size
n = M are removed from the system and replaced by M old
phase molecules from the reservoir in order to maintain the
supersaturation of the old phase at a constant level. There is
thus a cluster flux J(M,t) leaving the system and a flux Jold(t)
of old phase molecules entering the system. These fluxes are
accompanied with an enthalpy flux JH(M,t) = H(M,t)J(M,t)
leaving the system carried by the clusters, and an enthalpy
flux JH(0,t) = HoldJold(t) carried by the old phase molecules
entering the system. H(n,t) is the enthalpy of the clusters with
size n in units of energy.

A. Overall mass and energy balances

A total of J(M,t) clusters of size n = M and temperature
Told are removed from the system per unit of time and volume.
A total of Jold(t) old phase molecules enter the system per
unit time and volume. The accumulation of molecules in the
system is thus described as

∂csystem (t)

∂t
= Jold (t) − MJ (M , t) , (1)

where csystem is the total concentration counted as monomers
in the system per unit of volume.

The addition of Jold(t) old phase molecules of tempera-
ture Told to the system into the old phase, causes an enthalpy
flux JH(0,t) = HoldJold(t). Furthermore there is a net measur-
able heat flux Q′ added to the old phase via the wall in or-
der to retain its temperature Told. The cluster flux J(M) out
of the system is accompanied by an enthalpy flux JH(M,t)
= H(M,t)J(M,t) = MHnew(Told)J(M). We used that for large
clusters where the enthalpy per monomer becomes equal to
Hnew(Told) in the last identity. The accumulation of energy in
the system is thus

∂usystem (t)

∂t
= Jold (t) Hold − M J (M , t) Hnew + Q′ (t) . (2)

In stationary nonisothermal nucleation, there is no mass
and energy accumulation in the system. This means that the
total concentration csystem, the total energy usystem, cluster con-
centration c(n), cluster temperature T(n) and mass, enthalpy,
and heat fluxes in and out the system Jold, J(n), JH(n), Q′ are
all independent of the time. This gives the overall mass bal-
ance for stationary nucleation,

Jold = MJ (M) . (3)

In stationary state, one obtains for the net measurable
heat flux Q′,

Q′ = M [Hnew(Told) − Hold(Told)] J = MJ�H. (4)

The net measurable heat flux into the system is equal to
the enthalpy of the phase transformation at temperature Told.
The intermediate size clusters will still have a temperature dif-
ferent from Told.

B. Mesoscopic mass and energy balance

A close-up of the energy and mass balances in Fig. 1 is
given in Fig. 2. This figure shows the fluxes concerned with
clusters of size n. The flux J(n,t) along the cluster size coor-
dinate is the nucleation rate. When a size n cluster grows to
size n + 1 and takes up a molecule from the old phase, there
is a positive contribution to J(n,t). When a size n + 1 cluster
shrinks to size n by detaching a molecule to the old phase,
there is a negative contribution to J(n,t). The cluster concen-
tration c(n,t) increases because of a positive flux J(n−1,t) of
clusters of size n − 1 to clusters of size n. Similarly the clus-

FIG. 2. A close up of the enthalpy and mass balances in Fig. 1, showing
the heat and mass fluxes entering and leaving clusters of size n. The heat
fluxes J ′

q (n,t) and JH,old(n,t) are directed into the clusters and not along the
n-coordinate.
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ter concentration c(n,t) decreases because of a positive flux
J(n,t) of clusters of size n to clusters of size n + 1. The
rate of change of the cluster concentration can, therefore, be
written as

∂c(n, t)

∂t
= −J (n,t) + J (n − 1, t) ≡ −∂ J (n,t)

∂n
. (5)

In the analysis, we will often treat n as a continuous co-
ordinate, which varies between 0 and M. A summation over
cluster size n can then equivalently be replaced by an inte-
gral from 0 to M. It is in this manner, that the growth rate can
be pictured as a diffusion process along the n-coordinate. For
convenience, from this point we will no longer indicate the
time dependence of variables in places where it is not strictly
necessary.

Figure 2 shows also that the internal energy u(n,t) of clus-
ters of size n changes by a number of contributions. There is
an incoming enthalpy flux JH(n − 1,t) = J(n − 1,t)H(n − 1,t)
and an outgoing enthalpy flux JH(n,t) = J(n,t)H(n,t) caused
by clusters moving along the n-coordinate. There is also an in-
coming enthalpy flux JH,old(n) due to old phase molecules that
attach to the clusters of size n − 1 to give a cluster size of n.
This accompanying flux is JH,old(n,t) = J(n − 1,t)Hold, which
we conveniently approximate by JH,old(n,t) = J(n,t)Hold. The
old phase also transfers heat to the clusters of size n due to the
temperature difference between clusters and old phase. This
causes a flux J′

q(n,t) into the clusters of size n. The internal
energy change for the clusters of size n becomes

∂u (n, t)

∂t
= J (n − 1, t) H (n − 1, t) − J (n,t) H (n,t)

+ J (n,t) Hold + J ′
q (n,t) . (6)

This can be written as
∂u (n,t)

∂t
= J ′

q (n,t) − H (n,t)
∂ J (n,t)

∂n

− J (n,t)
∂ [H (n,t) − nHold]

∂n
. (7)

For a stationary state, J(n) = J, and the total energy con-
tent u(n) is independent of the time. Equation (7) then gives
a relation between the heat flux J′

q(n) into the cluster and the
nucleation rate J at stationary state,

J ′
q (n) = J

∂ [H (n) − nHold]

∂n
. (8)

This will be used later to obtain an equation for non-
isothermal stationary nucleation. The measurable heat ex-
changed by cluster and old phase depends on the change in
cluster energy with cluster size. Summing J′

q(n) over all clus-
ter sizes from n = 1 to M we obtain the measurable heat Q′

that must be transferred from the bath to the old phase to keep
Told constant in a stationary state,

Q′ =
M∑

n=1

J ′
q (n). (9)

With the aid of Eq. (6) for stationary state, an expression for
the measurable heat Q′ is obtained,

Q′ = JH (0) + JH (M) − MJH old = MJ�H, (10)

where H(0) = 0 (a nonexisting cluster of size n = 0 has zero
enthalpy) and H(M) = MHnew(Told) (a cluster of size M has
a temperature Told and is sufficiently large so that the surface
does not contribute to the enthalpy). This is identical to the
result of the overall balance in Eq. (4). In most cases (with
large clusters), the enthalpy of the new phase is smaller than
that of the old phase, making Q′ < 0. Net heat is moved from
the old phase to the bath to keep Told constant.

C. The entropy production

As a first step in deriving an equation for the nonisother-
mal stationary nucleation rate, we will find an expression for
the entropy production of the clusters in order to identify the
driving forces in the system. The entropy differential of all
clusters of size n is given by the Gibbs relation,19

∂s(n,t)

∂t
= 1

T (n,t)

∂u(n,t)

∂t
− μ(n,t)

T (n,t)

∂c(n,t)

∂t
, (11)

where μ(n,t) is the chemical potential of the n-sized clusters.
Filling in Eqs. (5) and (7) gives

∂s(n,t)

∂t
= 1

T (n,t)
J ′

q (n,t) − H (n,t)

T (n,t)

∂ J (n,t)

∂n

− J (n,t)

T (n,t)

∂ [H (n,t) − nHold]

∂n

+ μ(n,t)

T (n,t)

∂ J (n,t)

∂n
. (12)

We show in Appendix that this equation leads to the following
expression for the entropy production σ (n,t) in J/(s m3 K),

σ (n,t) = J ′
q (n,t) XT (n,t) − J (n,t)

∂ Xn (n,t)

∂n
, (13)

where the thermodynamic force XT is defined as

XT (n,t) = 1

T (n,t)
− 1

Told
. (14)

And the term Xn as

Xn (n,t) = μ (n, t ; Told) − nμold

Told
, (15)

where μ (n, t ; Told) ≡ μ (n,t) + s(n,t) [T (n,t) − Told] is the
chemical potential of the nth cluster evaluated at the tempera-
ture of the old phase. The entropy production σ (n,t) identifies
the thermodynamic driving forces −∂Xn/∂n and XT acting on
the conjugate fluxes J(n,t) and J′

q(n,t).
The entropy production in the case of isothermal nucle-

ation, when T(n) = Told, is

σiso(n,t) = −J (n,t)
∂ Xn(n,t)

∂n
. (16)

The local entropy production cannot be negative, so
σ (n,t) ≥ 0, similar to the entropy production of the whole
system.
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III. A MESOSCOPIC DESCRIPTION OF
NONISOTHERMAL NUCLEATION

A. The linear relation between the nucleation rate and
its driving forces

Now that the driving forces and fluxes are identified, we
can use the basic assumption of nonequilibrium thermody-
namics, which states that a flux is linearly related to all ex-
isting driving forces through the Onsager coefficients.19 The
resulting flux–force relations are

J (n,t) = −Lnn(n,t)
∂ Xn(n,t)

∂n
+ LnT (n,t)XT (n,t), (17)

J ′
q (n,t) = −LT n(n,t)

∂ Xn(n,t)

∂n
+ LT T (n,t)XT (n,t), (18)

where LnT = LTn (The Onsager reciprocity relation). The On-
sager coefficients do not depend on the forces or the fluxes. In
this sense, the flux–force relations are linear. However, they
may depend on, e.g., temperature and cluster concentration
so that the resulting description can be far from linear.

It follows from σ (n,t) ≥ 0 that the following relation
applies,19

Lnn LT T − LnT LT n ≥ 0. (19)

The Onsager coefficients Lnn and LTT on the Onsager
matrix diagonal are positive, while the coupling coefficients
can be positive or negative. The units for the Onsager coeffi-
cient LTT, Lnn, and LnT are, respectively, JK/m3s, K/Jm3s, and
K/m3s.

Equation (18) gives the following relation between the
forces:

XT (n,t) = J ′
q (n,t)

LT T (n,t)
+ LT n(n,t)

LT T (n,t)

∂ Xn(n,t)

∂n
. (20)

Using this relation, we can eliminate the driving force XT

from Eq. (17),

J (n,t) = −
(

Lnn − L2
nT

LT T

)
∂ Xn(n,t)

∂n
+ LnT

LT T
J ′

q (n,t) .

(21)

For ease of notation, we will further suppress the explicit
dependence of the Onsager coefficients on n and t. From Eq.
(19), it follows that the first term in the brackets in Eq. (21)
must be larger than 0.

The isothermal case is obtained by setting XT equal to
zero in Eq. (17), which gives

Jiso(n,t) = −Lnn
∂ Xn(n,t)

∂n
. (22)

By comparing Eqs. (21) and (22), we see that tempera-
ture effects the cluster flux J(n,t) and thus nucleation in two
ways. The linear coefficient between the force −∂Xn/∂n and
the flux J(n,t) reduces in size for nonisothermal nucleation.
Additionally, there is a coupling LnT/LTT between the cluster
flux J(n,t) and the measurable heat flux J′

q(n,t) which either

increases or decreases the nucleation rate depending on the
sign of the Onsager coefficient LnT.

B. Relating the Onsager coefficients to measurable
properties

In order to find an estimate for Lnn, we define the diffu-
sion coefficient D(n,t) in n-space,

D(n,t) ≡ kLnn(n,t)

c(n,t)
, (23)

where k is the Boltzmann constant. The diffusion coefficient
D(n,t) has the dimensionality s−1 and will be identified later
with the attachment frequency of old phase molecules to a
cluster of size n.

The coefficient LTn is best identified via its ratio to Lnn.
We define the measurable heat of transfer q*(n,t), as is normal
in macroscopic systems,20 as the ratio of measurable heat flux
(in the old phase) from the old phase into the clusters and the
cluster flux J(n,t) at zero temperature difference,

q∗(n,t) ≡
[

J ′
q (n,t)

J (n,t)

]
�T =0

= LT n(n,t)

Lnn(n,t)
. (24)

Similar to the old phase molecule flux, the heat flux into
the cluster is defined as positive (Fig. 2). It is known that the
measurable heat of transfer q*(n,t) is negative for a condens-
ing vapor at a planar liquid interface.9 This makes it likely
that q*(n,t) is negative for large clusters when curvature ef-
fects are negligible. For clusters below the critical size, we
expect the measurable heat of transfer to be positive, since
energy is needed to form the surface.

As relation between the Onsager coefficient LTT and the
thermal conductivity λ, we propose

λ(n,t) ≡ LT T (n,t)
d(n,t)

A(n)c(n,t)T 2
old

= LT T (n,t)
d(n,t)

a(n,t)T 2
old

, (25)

where A(n) is the surface area of a cluster of size n and a(n,t)
= A(n)c(n,t) is the total surface area of all clusters of size n
per unit of volume. The thickness d of the interfacial layer
in which the heat transfer takes place could be estimated by
the mean interparticle distance in a supersaturated vapor. A
decrease of the interface thermal conductivity with the in-
creasing cluster radius was found by Lervik et al.21 That is,
the smaller the cluster becomes, the better is heat conducted
across its surface.

The above three equations make it possible to rewrite
Eqs. (17) and (18),

J (n,t) = −c(n,t)D

k

(
∂ Xn(n,t)

∂n
− q∗ XT (n,t)

)
, (26)

J ′
q (n,t) = −c(n,t)Dq∗

k

∂ Xn(n,t)

∂n
+ Ac(n,t)T 2

oldλ

d
XT (n,t).

(27)
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Equation (21) can similarly be rewritten into

J (n,t) = −c (n,t) D

k
(1 − p)

∂ Xn (n,t)

∂n
+ p

q∗ J ′
q (n,t) ,

(28)

where the dimensionless nonisothermal nucleation number
p(n,t) is defined as a product of two dimensionless numbers,

p = q∗2 Dd

λAkT 2
old

= q∗

kTold
· q∗ Dd

λATold
. (29)

The first dimensionless number q*/kT is related to the
enthalpy release per attachment of a molecule to the cluster
and thus to the quantity of excess enthalpy of the cluster that
can be exchanged with the old phase. If attachments gener-
ate large excesses the value of the nonisothermal nucleation
number would be large. The second dimensionless number is
related to the resistance to heat transfer from the cluster. If the
resistance is high, for instance, due to a low heat conductivity,
then the nonisothermal nucleation number would be large.

Equations (26)–(28) give a thermodynamic basis for de-
scription of nonisothermal nucleation, since they are derived
from the entropy production for nucleation. The equations
obey Onsager symmetry, and we see that the coupling coeffi-
cient is essential. The growth in Eq. (26) is thus directly pro-
portional to the thermal driving force via the heat of transfer,
which is a large quantity for interfaces.20 We see that the sign
of the flux can change, if the thermal forces change sign. From
Eq. (27), we see that a large heat flux across the boundary,
promoted by changes in the surroundings, can lead to large
temperature differences, and initiate changes in the chemical
driving force through the heat of transfer. Earlier descriptions
of nonisothermal nucleation did not take these cross effects
into account.

The restriction on the Onsager coefficients in Eq. (19)
gives the restriction 0 ≤ p ≤ 1 for the nonisothermal nucle-
ation number p. The isothermal case is obtained by setting XT

equal to zero in Eq. (26), which gives

Jiso (n,t) = − c (n,t) D

k

∂ Xn (n,t)

∂n
. (30)

By comparing Eqs. (28) and (30) the effect of accounting
for temperature differences between clusters and old phase is
twofold. First, the linear dependency of the nucleation rate
J(n,t) on the driving force −∂Xn/∂n is decreased by the factor
(1 − p). This factor would decrease the nonisothermal cluster
flux J(n,t) compared to the isothermal cluster flux Jiso(n,t).
Second, the nonisothermal cluster flux J(n,t) is decreased, or
possibly increased if J′

q(n,t) < 0, compared to the isothermal
cluster flux Jiso by an amount linear in the measurable heat
flux J′

q(n,t).
Equation (18) can be rewritten to

J ′
q (n,t) = q∗ J (n,t) + aT 2

oldλ

d
(1 − p) XT (n,t) , (31)

which, when the measurable heat of transfer q* for n-sized
clusters is known, should lead to the cluster temperature
T(n,t).

C. The chemical driving force and classical
nucleation theory

In order to arrive at results, which can be compared to
experiments, it is necessary to integrate over the internal vari-
able n. We focus first on the chemical driving force −∂Xn/∂n.
The chemical potential μ(n,t) at temperature Told of a cluster
of size n for an ideal system, where clusters do not interact, is
given by6, 19

μ (n,t) = nμnew + γ (n)A (n) + kTold ln
c (n,t)

c0
. (32)

The cluster chemical potential μ(n,t) contains the chemi-
cal potential μnew of molecules in the bulk new phase at tem-
perature Told. These clusters have a surface area A(n) that con-
tributes to the chemical potential μ(n,t) through the surface
tension γ (n) of the interface between the new phase cluster
and the old phase. In the classical nucleation theory, the sur-
face tension is assumed to be equal to that of an infinitely
large, flat interface. We will assume that it only depends on n
and not on the time. The logarithmic term is an entropic con-
tribution originating from considering the system as a mixture
of differently sized clusters. The concentration c0 of nucle-
ation sites accounts for all positions in the volume where a
cluster can appear.

The term Xn from Eq. (15) can thus be written as

Xn (n,t) = k ln
c (n,t)

c0
+ −n�μ + γ (n) A(n)

Told

= k ln
c (n,t)

c0
+ φ (n)

Told
. (33)

The chemical potential difference between old and new
phases is defined as �μ = (μold − μnew) where we note that,
follow the convention used in nucleation research,6 this dif-
ference does not refer to the same states as in �H [Eq. (4)].
In this equation, we can recognize the work φ(n) to create a
cluster of size n and temperature Told in a supersaturated old
phase,

φ (n) = − n�μ + γ (n)A (n) = n�μ + αv2/3n2/3γ (n). (34)

The cluster surface area A(n) = αv2/3n2/3 is a function of
the shape factor α, the new phase molecular volume v, and
the cluster size n. For a small cluster size n, the work φ(n) is
positive and increases due to the contribution of the specific
surface energy. For larger n, the first contribution dominates
and the work becomes negative. In between, there is a cluster
n*, the nucleus, with the maximum work φ*, the nucleation
work, for its formation. The nucleus size n* and nucleation
work φ* = φ(n*) can be obtained by taking the derivative of
Eq. (34) toward the cluster size n and equal this to zero. This
gives for nucleus size n*,

n∗ = 8α3v2γ 3

27�μ3
. (35)

And for the nucleation work φ*,

φ∗ = 4α3v2γ 3

27�μ2
. (36)
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The nucleus size n* and the nucleation work φ* do not
differ from those defined in the classical nucleation theory for
isothermal stationary nucleation.6

At equilibrium between the supersaturated old phase and
a cluster concentration ceq(n), there is no overall exchange
of mass and internal energy between the old phase and the
clusters and the fluxes J(n,t) and J′

q(n,t) will be zero. In this
case there is no drive in the system to create larger or smaller
clusters. In equilibrium Xn = Xn,eq = 0, independent of the
cluster size. Together with Eq. (33), this gives

k ln
ceq(n)

c0
+ φ (n)

Told
= 0. (37)

It follows that the equilibrium cluster concentration
ceq(n) at the temperature Told is given by

ceq (n) = c0 exp

(
−φ (n)

kTold

)
, (38)

which is identical to the expression that describes equilibrium
in the classical nucleation theory.6 Combining Eqs. (33) and
(37), it follows that

Xn (n,t) = k ln
c (n,t)

ceq (n)
. (39)

The chemical driving force −∂Xn/∂n for nonisothermal
nucleation can, therefore, be rewritten as

− ∂ Xn (n,t)

∂n
= − ∂

∂n
k ln

c (n,t)

ceq(n)

= − k

c (n,t)
ceq(n)

∂

∂n

c (n,t)

ceq(n)
, (40)

which is the same as found in the isothermal case.

D. The general expression

Equation (40) for the driving force can be combined with
Eq. (28) to give the following expression for nonisothermal
nucleation:

J (n,t) = − D (1 − p) ceq(n)
∂

∂n

c (n,t)

ceq(n)
+ p

q∗ J ′
q (n,t) .

(41)

For isothermal nucleation, we find

Jiso (n,t) = − Dceq(n)
∂

∂n

c (n,t)

ceq(n)
. (42)

The general equation for nonisothermal nucleation be-
comes with the help of Eq. (5),

∂c (n,t)

∂t
= −∂ J (n,t)

∂n

= − ∂

∂n

[
−D (1 − p) ceq(n)

∂

∂n

c (n,t)

ceq(n)

]

− ∂

∂n

[
p

q∗ J ′
q (n,t)

]
. (43)

In principle, this is a general equation valid not only for
nucleation processes but for any process involved with clus-
ters moving along the size coordinate in which the surface
tension plays a key role, for instance, in droplet evaporation.

To the general description belongs the expression for the
heat flux given earlier, for instance, as written in the form of
Eq. (31). The set of equations can be solved for transient and
other conditions, if sufficient information is available. They
apply for the premise used in the derivation that the cluster
temperature is a unique function of its size. In order to obtain
equations, which can be compared with experimental results,
one has to integrate over n.

We proceed to do so in a simple manner, introducing fur-
ther restrictions, namely that the system is stationary and that
there is no accumulation of mass or energy in any part of the
system.

E. The stationary nonisothermal nucleation rate in a
boundary-controlled system

Now Eq. (41) can be integrated to relate to quantities of
interest. By assuming that the transport coefficients, D, p, and
q*, do not depend much on n, we obtain

MJ =
∫ M

0
J (n) dn

= − D (1 − p)
∫ M

0
ceq(n)

∂

∂n

c (n)

ceq(n)
dn

+ p

q∗

∫ M

0
J ′

q (n) dn, (44)

where we used that J(n) = J for stationary states, and the rate
can be determined at the boundary. From the classical nucle-
ation theory, we know that the most important part of the first
integral on the right-hand side is around n*. We can safely as-
sume that D is not a strong function of the cluster size n in this
area and use the value in n*. To evaluate the last term, we use
the relation between the nucleation rate J and the heat J′

q(n)
transferred by the n-sized clusters through the total measur-
able heat Q′ that the system exchanges with the heat bath,
given in Eqs. (9) and (10),∫ M

0
J ′

q (n) dn = Q′ = M�H J. (45)

Only the integral over the heat fluxes can be determined at the
boundary. Using this in Eq. (44), we obtain an expression for
the integral of J(n), using constant transport coefficients,

J = − D

M

1 − p

1 − p
�H

q∗

∫ M

n=0
ceq(n)

∂

∂n

c(n)

ceq(n)
dn. (46)

Integrating isothermal nucleation, Eq. (42), similarly re-
sults in

Jiso = − D

M

∫ M

n=0
ceq(n)

∂

∂n

c(n)

ceq(n)
dn. (47)

Both equations show that, in agreement with others,9 the
generally accepted expression for isothermal stationary nucle-
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ation from classical nucleation theory is contained as a limit-
ing case. For details of the integration, see Ref. 6. The isother-
mal rate is an exponential function of the supersaturation. To
obtain the general expression for the nucleation rate, the term
with the thermal driving force in Eq. (26) must be integrated,
or alternatively Eq. (28).

We need not carry out the integration here, as we can
compare nonisothermal nucleation, Eq. (46), and isothermal
nucleation, Eq. (47) directly. We can then define a correction
factor τ on the isothermal stationary nucleation rate to obtain
the nonisothermal stationary nucleation rate for this case,

τ = J

Jiso
= 1 − p

1 − p
�H

q∗

. (48)

Consider first the growth process. We know that �H
= Hnew−Hold < 0, while 0 < p < 1. When n < n* we may
speculate that q* < 0, while n > n* has q* > 0, in agree-
ment with the temperature variation observed by Wedekind
et al.10 for clusters smaller and larger than the critical size.
The heat of transfer is in any case comparable in size to
|�H |.20 A negative value for q* implies that the denomi-
nator can become small, while the numerator is finite. The
nonisothermal nucleation rate can then be much larger than
the isothermal nucleation rate. Conversely, when q* > 0, the
factor τ becomes small. Nothing is known about the heat of
transfer at a curved interface, so the above is a speculation. It
implies, however, that the formation of a critical-sized cluster
may be rate limited by heat transfer to the cluster.

Some numerical examples are now of interest.
The factor τ is the ratio of the stationary nonisothermal

nucleation rate and isothermal nucleation rate for the present
model, relating the observed rate J to the maximum rate Jiso.
In Eq. (48), a relation between the dimensionless nonisother-
mal nucleation number p and τ is given. The heat of transfer
q* for the nucleus can be written as a fraction of the enthalpy
change between new and old phases,20

q∗ = −ε|�H |, (49)

where the fraction 0 ≤ ε ≤ 1 and �H is the condensation
enthalpy. A value of 0.2, for instance, means that 20% of the
condensation enthalpy is involved in heating up the cluster.

This is used to construct Fig. 3 where the factor τ is plot-
ted as a function of the dimensionless nonisothermal nucle-
ation number p. Since nothing is known about the fraction ε

we used the values ε = 0.2, 0.5, and 0.8. It can be seen that the
factor τ decreases with increasing p. The higher the fraction
ε the higher the response on p because it becomes more diffi-
cult for the same cluster size to get rid of the higher amount of
latent heat at higher fractions of ε. Since the correction factor
0 ≤ τ ≤ 1 the nonisothermal nucleation rate is always smaller
than the isothermal one.

The nonisothermal nucleation dimensionless number p
defined in Eq. (29) was determined for the primary nucleation
of liquid droplets during the condensation of water and argon
vapor. To maximize temperature effects, we chose the case
of homogeneous nucleation from a single component vapor.

FIG. 3. The factor τ for the isothermal nucleation rate as a function of the
dimensionless nonisothermal nucleation number p for the values ε = 0.2, 0.5,
and 0.8. The inset shows the temperature effect in a typical condensation of
argon.

Single component nucleation in liquids, solids, or even mix-
tures of gases would facilitate a faster thermal equilibration
because of an increased number of (foreign) molecule colli-
sions without an attachment as a result. Further, in case of
heterogeneous nucleation, the heterogeneous particles onto
which the nucleation takes place can act as a heat sink, and
thus a faster thermal equilibration. For the model systems,
condensation of pure vapors probably leads to relatively large
cluster temperatures because of the low heat conductivity λ

of the gas phase and the high condensation enthalpy �H.
The condensation enthalpy determines the heat of transfer q*,
which is included in the dimensionless number p. All physical
properties are derived from literature data and are shown in
Table I.22

The factor p is further a function of among others the dif-
fusion coefficient D(n) along the n-coordinate. This diffusion
coefficient D can be estimated by the attachment frequency
of vapor molecules to a nucleus in equilibrium. The attach-
ment frequency D is often taken as the product of the Hertz-
Knudsen impingement rate I, the surface area A(n) of the nu-
cleus and a sticking coefficient.6 If the sticking coefficient is
set to 1 (all impingements result in attachment), the attach-
ment frequency per unit of cluster surface area becomes

D (n)

A (n)
= P

(2πm0kTold)1/2 . (50)

Here P is the saturation pressure of the pure vapor and
m0 is the mass of a molecule. At high supersaturation, the

TABLE I. Properties of water and argon relevant for condensation.

Symbol [units] Water Argon

Old phase temperature Told [K] 293 100
Equilibrium vapour pressure (Ref. 22) Pe [kPa] 323.8 2.34
Heat of condensation (Ref. 22) �H [kJ/mol] −44.2 −6.01
New phase density (Ref. 22) ρ [g/dm3] 998 1314
Old phase heat conductivity (Ref. 22) λ [mW/mK] 18.2 6.689
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pressure is leading to high specific attachment frequencies, or
D(n).

The boundary layer thickness d through which heat is
transferred is estimated on the basis of the liquid density ρ of
water or argon: d = ρ−1/3, where the density is expressed in
m−3. Typically thermal conductivity is much lower in vapors
than in condensed phases. From this, we would expect rela-
tively large p-values for nucleation in old phases with small
thermal conductivity, such as vapors.

Calculating the dimensionless p-values for the two sys-
tems for ε = 0.5 shows that, under the given conditions in Ta-
ble I, p = 4.3 × 10−3 and 1.6 × 10−3 for, respectively, argon
and water. However, even for these systems with relatively
large temperature effects compared to other systems, the fac-
tor p does not exceed 0.01. This means that the nonisothermal
correction factor for the isothermal nucleation rate is probably
small and does not exceed 2%. The points in the inset of Fig.
3 show p and τ for ε = 0.2, 0.5, and 0.8 in case of the argon
system. All in all, it can be concluded that for our nonisother-
mal model the nonisothermal effect is small with the present
choice of variables. The relatively large cluster surface area
of the clusters quickly evens out any large temperature dif-
ferences existing between new phase clusters and old phase
bulk, even when the heat transfer rate is small.

IV. DISCUSSION AND CONCLUSIONS

We have derived a thermodynamic description of non-
isothermal nucleation using mesoscopic nonequilibrium ther-
modynamics, emphasizing measurable heat effects. Doing
this, we have extended earlier descriptions8, 9, 12 of this phe-
nomenon. The general set of equations (26)–(28) show that
there is a significant coupling of heat and mass transfer across
the cluster surface. This may be expected to play a signifi-
cant role in the modeling of transient phenomena, and also
in cases where the system is exposed to external heat sinks
or sources altering the boundary temperatures. The full set of
equations can be used to analyze temperature effects observed
in molecular simulations or in experiments of this nature. In
order to determine whether the heat of transfer is a weak or
strong function of n, molecular simulation experiments sim-
ilar to the ones done before10 may be helpful. For instance,
once the distribution of nuclei temperature is known, Eq. (31)
can be used to find the (average) heat of transfer, using Eq. (9)
for the interaction with the boundaries.

The set of equations were solved here for a restricted
stationary case, with the temperature being constant at the
boundaries of the system. We then find that the nucleation
rate has the same form as in the isothermal case and deviates
from this rate by a certain factor. The factor is a function of
the heat of transfer associated with the process, the resistance
to heat transfer, and the attachment frequency, as combined
in a dimensionless number for nonisothermal nucleation. The
largest temperature effects on growth or dissolution of clus-
ters are to be expected when the enthalpy change of the phase
transition is large, while the thermal conductivity in the su-
persaturated old phase is small. The case study shows that the
temperature effect is minor for nucleation of liquid water and
argon droplets from their vapor. The set of equations may lead

to larger and different thermal effects under different bound-
ary conditions, however.

Some simplifications and assumptions were made in the
derivations and need to be discussed. There was no accumula-
tion of energy allowed in the system, and the temperatures at
the boundaries were held constant, i.e., Eq. (4) and its meso-
scopic equivalent (45) apply. When the latent heat is not re-
moved, one has to resort to the general set of transport equa-
tions (26)–(27). We further assumed that clusters of a certain
size n all have equal temperature T(n). Some justification for
this assumption can be found in the work of Wedekind et al.,10

but other investigators18 report deviations from this. Whether
the assumption is good or not, depends on the conditions that
the system is exposed to. From a statistical nature of nucle-
ation, one may expect that a distribution of temperatures of n-
sized clusters would develop under several circumstances. A
degeneration of n-sized cluster temperature might then lead to
nucleation routes through the size–temperature–space that re-
sult in increased nucleation rates (decreased nucleation work).
Nucleation statistics could be captured within the theory of
nonequilibrium thermodynamics by adding randomness to the
description of cluster temperature. In the present develop-
ment, we have shown that the thermal driving force plays a
direct role, also for mass transport. This altogether points to a
future direction of research.
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NOMENCLATURE

a(n,t) Total surface area of all clusters per unit of volume
with size n at time t [m−1]

A(n) Surface area per cluster [m2]
c(n,t) Cluster concentration [m−3]
d Boundary layer thickness [m]
D(n) Diffusion coefficient, attachment/detachment fre-

quency [s−1]
H(n,t) Cluster enthalpy [J]
Hold Enthalpy of the old phase [J]
�H Condensation enthalpy [J/particle]
Jiso Isothermal cluster flux (Isothermal nucleation rate)

[m−3 s−1]
J′

q(n) Measurable heatflux along the n coordinate
[J/m3 s]

JH Enthalpy flux due to mass flux [J/m3 s]
Js(n,t) Entropy flux along the n-coordinate [J/K m3 s]
Jn,s(n,t) Entropy flux out of the cluster to the old phase

[J/K m3 s]
J(n) Particle flux along the n-coordinate (nucleation

rate) [m−3 s−1]
k Boltzmann constant [J/K]
Lnn Onsager coefficient relating driving force

(−∂Xn/∂n) and particle flux J [K/J m3 s]
LnT Onsager coefficient relating driving force XT and

particle flux J [K/m3 s]
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LnT Onsager coefficient relating driving force
(−∂Xn/∂n) and heat flux (∂u/∂t−J∂Hn/∂n)
[K/m3 s]

LTT Onsager coefficient relating driving force XT and
heat flux (∂u/∂t−J∂Hn/∂n) [J K/m3 s]

M Maximum number of particles in cluster [–]
n Cluster size [–]
n* Nucleus size [–]
p Dimensionless number for nonisothermal nucle-

ation [–]
P Saturation pressure [Pa]
q* Measurable heat of transfer [J]
Q′ Heat taken from bath to the surroundings [J]
S(n,t) Total entropy for all clusters of size n [J/K m3]
t Time [s]
Told Old phase temperature [K]
T(n) Temperature of the clusters of size n [K]
u(n,t) Internal energy per unit of volume of all clusters of

size n [J/m3]
XT(n,t) Inverse temperature difference between cluster and

old phase [K−1]
Xn(n,t) Chemical potential difference between cluster and

old phase at old phase temperature [J/K]
γ Specific surface energy of a cluster [J/m2]
λ Interface thermal conductivity of the cluster

[J/K m s]
ϕ Activation energy potential [J]
μold Old phase chemical potential in units of energy per

particle [J]
μ(n) Chemical potential of n-sized cluster [J]
μeq(n) Chemical potential at equilibrium between cluster

and old phase [J]
σ (n,t) Entropy production [J/K m3 s]
τ Factor to describe ratio of nucleation rates at non-

isothermal and isothermal conditions [–]

APPENDIX: THE ENTROPY PRODUCTION

Adding and subtracting the reference old phase quantities
in Eq. (12) gives

∂sn

∂t
= J ′

q (n) XT − Hn XT
∂ Jn

∂n
+ μn

Tn

∂ Jn

∂n
+ J ′

q (n)

Told

− Hn

Told

∂ Jn

∂n
− Jn

Tn

∂ Hn − nHold

∂n
, (A1)

where XT is defined by Eq. (14). We can rewrite the term,

μn

Tn
= μn (Told)

Told
+

(
∂μn/T

∂1/T

)
Told

XT = μn (Told)

Told
+ Hn (Told) XT . (A2)

With this we can rewrite the entropy equation to

∂sn

∂t
= XT J ′

q (n) + μn (Told)

Told

∂ Jn

∂n
+ J ′

q (n)

Told

− Hn

Told

∂ Jn

∂n
− Jn

Tn

∂ Hn − nHold

∂n
. (A3)

Adding and subtracting the reference old phase quantities,

∂sn

∂t
= XT J ′

q (n) + Xn
∂ Jn

∂n
+ J ′

q (n)

Told

− Hn − nμold

Told

∂ Jn

∂n
− Jn

Tn

∂ Hn − nHold

∂n
, (A4)

where Xn is defined by Eq. (15). We can apply the rule for the
derivative of a product on the part containing Xn,

∂sn

∂t
= J ′

q (n) XT − Jn
∂ Xn

∂n
+ J ′

q (n)

Told
− Hn − nμold

Told

∂ Jn

∂n

− Jn

Tn

∂ Hn − nHold

∂n
+ ∂

∂n
Jn Xn. (A5)

In this expression we can distinguish three contributions to the
entropy differential: an entropy production σ (n,t), an entropy
flux Js(n,t) into the clusters from the old phase, and an entropy
flux Js,n(n,t) along the n-coordinate,

∂sn

∂t
= σ + Js − ∂

∂n
Js,n . (A6)

In our case the entropy flux in J/(s m3 K) into the clusters from
the old phase is

Js = J ′
q (n)

Told
− Hn − nμold

Told

∂ Jn

∂n
− Jn

Tn

∂ Hn − nHold

∂n
.

(A7)

The entropy flux in J/(s m3 K) along the n-coordinate is

Js,n = −Jn Xn . (A8)

The entropy production term σ (n,t) in J/(s m3 K) is given by

σ = J ′
q (n) XT − Jn

∂ Xn

∂n
. (A9)
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