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1 
B A C K G R O U N D 

Scientists iiave long attempted to understand biological systems in terms of simple buUd­
ing blocks and their interactions. The molecular biology research program was started 
in the 1930's under the assumption that biological hmction emerged from interactions 
between a few hmdamental biological molecules. The research program quickly led to 
the discovery of until-then-unknown fundamental molecules and mteraction patirways. 
But molecular biology was a reductionist science and was iU suited to study complex, 
indirect molecular interactions - such systems require consideration of aU pathways be­
tween aU molecules. High-throughput techniques invented at the end of the 20th cen­
tury enabled measurement of many simultaneous interactions and revealed that many 
phenotj'pic traits arise from indirect interactions. 

To understand these indirect interactions, new analysis techniques focused on in­
teractions, instead of only molecules, were needed. Graph theory the branch of math­
ematics that deals with the abstract analysis of networks, proved to be a good research 
tool as interaction datasets were already generally represented as networks. Eventually 
researchers started considering molecular iiiteractioji networks as objects of study in 
their own right. Given that the functions of systems can often be inferred from their 
structme, it was natmal to ask whether structures in molecular networks could be used 
to predict biological properties of the underlying systems. Thus was born the field of 
network biology. 

This thesis is motivated by the observation that biological system ftmction can of­
ten be predicted from the system structure. Networks are abstract representations of 
system interactions; networks related to biological systems may therefore contain struc­
tural signatures that could aid hi the prediction of biological ftmction. An importam 
consequence would be that, since biological systems are known to be robust, certain 
structural signatures in biological networks may be associated with robustness, a find­
ing that would aid in the design of more robust human-made networks. 

The content of this thesis centers around molecular interaction networks. In the re­
mainder ofthis introduction, we briefly discuss the types of molecular interactions that 
are considered. In order to analyze the molecular interaction networks we use tools from 
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2 1. BACKGROUND 

gj aph theory for which we also give a brief overview. 

1.1. MOLECULAR INTERACTION NETWORKS 
Here, we assume a basic familitiritj ' with the field of molecular biology and refer the in­
terested reader to |1] for a thorough introduction to the field. 

The fundamental molecules of interest in network biology are DNA, RNA, proteins 
and any smaU molectües interacting with these molecules. A simplified overview of com­
mon interactions between these molecules is shown in Figure 2. la. Whilst this depiction 
includes oihy a few molecules, a typical cell contains between Üiousands and nhllions 
of distinct molecules. As molecidar biology does not cope weh with the simidtaneous 
consideration of so many molecules, researchers in the field tend to focus on small sub­
systems of interacting molecules such as the MAPK-ERK patiiway shown in Figure 2.1b. 

In contrast to molecular biology, the aim of network biolog)' is the analysis of net­
works of hundreds or thousands of molecular interactions and therefore it considers 
much larger systems than that of Figure 2.1b. Neither Figure 2.1a nor Figure 2.1b is suit­
able as network model for use in network biology. Figure 2.1b models a sequence of 
events and coirtains non-pairwise relations. Figure 2.1a could, in principle, be analyzed 
using graph theoiy but its meiny node types and even greater number of interaction tj'pes 
limit the applicability of such analyses. Network biology generahy focuses on networks 
containing one or two kinds of molecule and one or two kinds of interaction. The net­
work in Figure 2.1c is a simplification of Figure 2.1b that models only protein binding 
relations; due to its homogeneity larger versions containing thousands of protein bind­
ing relations are well suited for graph theoretic analyses. 

Due to the variety of molecules and molecular interactions in the cell, many kinds of 
molecular interaction network are studied. A number of commonly studied molecular 
interacdon network types are enumerated in the list below; 

Association networks represent any kind of relation between molecules (e.g. binding, 
co-expression and structural similarities). Examples of association networks are 
gene co-expression networks and protein similarity networks; in fact the entire 
network in Figure 2.1a could be seen as one large, if very imprecise, association 
network. 

Functional networks model functional relations between pairs of molecules (usually 
genes or proteins). A link implies that both are involved in the same function, 
process or phenotype. For example, Genetic interaction networks represent in­
teractions where a pair of genetic mutations leads to an epistatic effect, i.e., worse 
or better than expected based on the single mutation. 

Protein-protein interaction (PPI) networks are undirected networks that model pro­
tein binding (in Figure 2.1a, protein interactions are shown in the strip labeled 
"Protein" as dashed lines without arrow heads). PPl networks are derived from 
high-throughput experiments tising techniques such as yeast two-hybrid screen­
ing, mass spectrometry and tandem affinity' purification [2]. Signaling networks 
are related to to PPl networks but represent signal transduction between proteins 
(and other molecules) instead of binding. Since signal transduction is directional 
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(that is, proceeds from a signal source and ends at a final signal sink), signaling 
networks are directed. 

Transcription-regulatory (TR) networks are bipartite networks with one set of nodes 
representing genes and the other representing transcription factors (TFs). TFs are 
products of genes (modeled by gene-TF links; in Figure 2.1 a these hnks are indirect 
and are a combination of Genome-RNA hides - black, solid Imes representing tran­
scription - and RNA-Protein links - dashed lines representing translation) whilst 
genes are regulated by TFs (modeled by TG-gene links; in Figure 2.1a, the two black 
links stretching from proteins to the genome). Data for such networks is derived 
through the process of chromatin immunoprecipitation (ChlP) [3]. Gene regula­
tory (GR) networks are related to TR networks but contain only genes. Often, theh 
links represent indirect regulatory relationships. 

Metabolic networks are bipartite networks that model the relationships between the 
chemical reactions that occur in cells and the substrates involved in the reactions 
(in Figure 2.1a, substrates are represented as diamonds, reactions as enzymes/ 
proteins and the chemical relationships as sohd gray Unes). Simplified, non-bi-
parthe metabolic networks containing only metaboUtes or only reacdons are also 
often studied. 

1.2. GRAPH THEORY 

In graph theory neUvorks are sttidied as abstract representations of relationships be­
tween objects [4}. 'Hie objects are known as nodes, the fuU set of which is represented as 
^ . Relationships are represented as links connecdng pairs of nodes; the set of hnks is 
denoted i f . Wlien nodes u and u are hnked (i.e. {;/, v] e u is said to be a neighbor of 

and vice-versa. The number ofiieighbors of a node i< is called its degree. In Figure 2.1 c, 
EGF is a neighbor of both EGFR and GRB2 and therefore has degree 2. 

Networks in the above description do not model non-symmeUic relationships and 
are therefore also known as undirected networks. When non-symmetric relationships, 
such as the flow directions of chemical reactions in the metabolic layer of Figure 2.1 a are 
to be modeled, directed networks are used. 

Graph Theoiy ahows one to discover structural simUarities between superficially very 
difterent networks. Examples of structural properdes that one might compare include 
link disUibution, the number of tightly connected communities and the average shortest 
path between arbitrary nodes. Typically sUuctural properties are represented by means 
of metrics, simpler scalar or vector measures ofthe propeities in quesdon. 

The most fimdamental network metrics are number of nodes, denoted TV, and the 
number of links, denoted L. Network density is the ratio ofthe the hnk count L to the 
maximum number of links possible in the neUvork [N{N~1)I2). A nuniber of network 
metrics that are commonly used in network biologj' are 1) the distribudon of node de­
grees, 2) the clustering coeflicient, a measure of how densely connected the neighbors of 
nodes are and 3) flie average length of the shortest distances between all pairs of nodes. 

The research in this thesis starts with an analysis of the degree assortativity of a 
network, a metric that measures the tendency of nodes with simUar degrees to be con­
nected. 
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1.3. O U T L I N E OF THESIS 
We commence by reviewng the state of the art in networlc biology research in § 2. In 
§ 2, we also show that the way in which researchers apply network biology' has changed 
signihcantly since the early days ofthe field. 

Our owir research starts with an investigation into degree assortativity as a measure 
of neUvork robustness. However, assortativity is a relatively new metric whose proper­
ties are not yet fully understood. In § 3, we study what it means for a network to have 
high or low assortativity. The question of whether neUvorks can reconfigure diemselves 
gradually to attain high or low assortativity values is considered in § 4. 

Having established that assortativity can be well optimized through a series of small 
changes in network structure, we were interested in whether it is a factor in network evo­
lution since evolution itself is a series of small changes. In § 5, we develop a framework 
for measuring network robustness aird proceed to test the effect of changes in assorta­
tivity on instances of random network and a metabolic network. The aim ofthis chapter 
is to investigate whether luolecular networks are structurally more robust than expected 
by chance. 

In § 6, we explore the extent to which structural properties of metabolic neUvorks 
are correlated with their biological function. The assumption underlying this work is 
that molecular networks are robust and that metrics associated with robustness could 
be used to assess robustness of other networks. 

In § 6, structural properties of entire metabolic networks are correlated with nreta-
bolic fiinction. Here, the aim is to discover whether structm-al properties describiirg en­
tire metabolic networks are predicitive of biological function of the whole systenr. The 
focus on the whole makes this a global approach. 

In coirtrast, the penultimate chapter of this thesis, § 7, takes a local approach. Here, 
we ask whether the topological characteristics of small regions of protein interaction 
networks correlate with their having certam biological traits. 

The thesis concludes with § 8 where we summarize the most important findings of 
the thesis. We also outiine what we consider to be interesting open problems in the fleld 
of neUvork biology. 

REFERENCES 
[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and R Walter, Molecular Biology 
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el000807 (2010). 

[3] 0. Apancio, J. V Geisberg, E. Sekinger, A. Yang, Z. Moqtaderi, and K. Strtihl, Chro­
matin immunoprecipitation for determining the association of proteins with specific 
genomic sequences in vivo, in Current Protocols in Molecular Biolog)' Qohn WUey & 
Sons, Inc., 200,5). 

(4] D. B. West, Introduction to graph theory, Vol. 2 (Prentice haU Englewood Cliffs, 2001). 
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T O P O L O G Y O F M O L E C U L A R 

I N T E R A C T I O N N E T W O R K S 

Wynand WINTERBACH, Piet VAN M I E G H E M , Marcel 
REINDERS, Huijuan WANG, Dick DE RIDDER 

2 .1. ABSTRACT 

Molecular interactions are often represented as networlc models which have become the 
common language of many areas of biology. Graphs serve as convenient mathemadcal 
representations of neUvork models and have themselves become objects of study Theh 
topology has been intensively researched over the last decade after evidence was found 
that they share underlying desigu principles with many other types of networks. 

Initial studies suggested that molectdar interaction network topology is related to bi­
ological function and evoludon. However, further whole-network analyses did not lead 
to a unified view on what this relation may look hke, with conclusions highly dependem 
on die type of molecular interactions considered and the metrics used to study them. 
It is unclear whether global network topology drives function, as suggested by some re­
searchers, or whether it is simply a byproduct of evolution or even an artefact of repre­
senting complex molecular interaction networks as graphs. 

Nevertheless, network biology has progressed significantly over the last years. We 
review the hterature, focusing on two major developments. First, realizing that molec-
ulai- interaction networks can be naturally decomposed into subsystems (such as mod­
ules and pathways), topologj. is increasingly studied locally rather than globally Second, 
there is a move from a descriptive approach to a predictive one: rather than correladng 

This chapter was published in BMC Systems Biologj'7, 90 (2013) (11. 
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(i 2. TOPOLOGY OF MOLECULAR INTERACTION NETWORKS 

biological network topology to generic properties stich as robustness, it is used to predict 
specihc funcdons or phenotypes. 

Taken together, this change in focus from globally descriptive to locally predictive 
points to new avenues of research. In particidar, midti-scale approaches are develop­
ments promising to drive the study of molecular interaction networks further. 

2 . 2 . INTRODUCTION 
Over the last half century, our understanding of life at the molecular level has advanced 
tremendously. This is made possible by continuously improving technolog)' for mea­
suring the presence or conceimations of molecules at a genome-wide level, such as the 
microarray (transcriptomics), mass spectrometry (proteomics, metabolomics) and next-
generadon sequencing (genonhcs). Perhaps more importantly from a systems biolog}' 
perspective, similar technology and protocols have been developed to measure inter­
actions among molecules, leading to so-cahed interactomics [2]. Protein-protein inter­
actions are measured using yeast-two-hybrid technology and tandem afhnity purifica­
tion amongst others [3], and stored in a variety of databases |41; interactions between 
DNA and proteins, such as histones and transcription factors, are found using yeast-
one-hybrid and chromatin immunoprecipitation [5] and deposited in databases such 
as JASPAR [6] and FactorBook [7]; enzyme-metaboUte interactions are measured using 
enzymatic assays and can be found in for example, BRENDA 18], KEGG [9] and Meta-
Cyc [10]. Besides physical interactions, many indirect interactions have been reported, 
such as genetic interactions ]11], general epistatic Interactions ]12] and predicted fiinc­
tional interactions [13]. 

This molecular interaction data is the cornerstone of many computational approaches 
aiming to analyze, model, interpret and predict biological phenomena, many at a genome-
wide scale ] 14]. Interactions are often thought of as constituting networks, a view already 
proposed quite early 115] which recently came to fuh fruition ]1(3]. Networks are now 
used as vehicles for modeling, storing, reporting, transmitting and interpreting molecu­
lar interactions [17]. Often they are represented as graphs, although this is not straight­
forward for many molecular interactions. For example, metabohc networks, represent­
ing physical interactions between enzymes and metabohtes as weh as conversions be­
tween metabolites, are ideally represented by hypergraphs [18] but are often reduced to 
simple graphs |19] for further analysis. 

Althotigh graphs are convenient representations of molecular interaction networks, 
it was quickly realized that they coidd be treated simUarly to large systems of interact-
iirg particles: small sets of interactions might be difficult to understand, but statistical 
properties relating to all interactions could contain valuable information [20]. This led 
to network biology [21]: a combination of systems biology, graph theory and computa­
tional and statistical analyses in which the topologj' of the graphs representing molec­
ular interaction networks themselves became the subject of study. In subsequent work, 
statistically maintained properties, such as scale-freeness, were found in molecular net­
works of different types. In simUar analyses, graphs were mined for statistically over-
represented network motifs [22], smaU subgraphs, suggesting that certain interaction 
patterns are common to many networks [23]. 

Despite their apparent universality, it proved difficult to derive biological conclu-
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sions from tlie patterns discovered in these initial global statistical analyses of molecular 
interacdon neUvorks. They may therefore be labeled as descriptive, pointing at generic 
underlying properties rather than leading to verifiable hypotheses. In time, molecular 
interactions net^vorks were studied more locally leading to more tangible biological in­
sights. For example, clustering was used to discover sigihficant biological modules and 
theh interconnection patterns, which shed some hght on evolutionary constraints of or­
ganisms [24]. Ranking of nodes by topological features (such as degree) was shown to 
relate to biological importance of a gene or protein and may for example be used to 
prioritize targets for development of pharmaceuticals [2.5]. We label such approaches 
suggestive. Finally by studying neUvorks even more locally typically neighborhoods sur­
rounding a few nodes, it has become possible to derive predictive results from molecular 
Interacrion networks. A typical approach is to compute a topological fingerprint of the 
neighborhood around a node; nodes are found to be funcdonally simUar when their fin­
gerprints are similar [261. 

Over the past decade, network biology has thus transformed from being an inidally 
descriptive approach to a predictive tool that is routinely apphed to discover biologically 
relevant facts. In this survey we chart this progression, showing that it corresponds weU 
to a focus change from global to local. Many reviews of developments in network bi­
ology have appeared over the last years; here we list those most closely related to ours. 
Przulj [27] reviews the use of protein interaction neUvorks in neUvork biologj', touching 
on some of the techniques discussed throughout this review and calling for more inte­
gration of biological knowledge with neU^'ork theory A review of network theory from 
the perspecdve of data mining may be found in Pavlopoulos etcd. [28] . This review cov­
ers a variety of network metrics with an especially strong focus on clustering and node 
centrality. Likewise, Cho etal. [14] review several data-mining approaches applicable to 
molecular neUvorks. A related topic is that of random molecular neUvorks, which serve 
as benchmarks against which data mining results are measured. Such networks are gen­
erally produced through processes mimicking evolution, several of which are re\dewed 
by Foster et al. [29] and Sun & Kim ]30] . Finally many recent reviews focus on the use 
of neUvork biology in diagnosing disease [31 -33 ] , in particular neUvork-based disease 
markers. 

Our review adds to the existing literature by taking a high-level wew of network bi­
ology as moving from descriptive to predictive, and by maintaining a clear focus on re­
search exploiting the topology of molecular interaction graphs. The remainder of the 
paper is organized as foUows; in Section 2.3, a brief overview of relevant biological and 
mathemadcal theory is presented. Secdons 2.4-2.6 then give a chronological overview of 
research on the graph topology of molecular interacrion networks, moving ftom descrip­
tive to suggestive and predicrive. We end witii a conclusion and outiook in Section 2.7. 

2 . 3 . NETWORK BIOLOGY 

For the purposes ofthis review, we define network biology to be the study ofthe topol­
ogy of graph representations of molecular interaction networks, both to describe such 
networks and as a tool to make biological predictions. We briefly review graph theory 
and discuss graph representations of molecular interaction neUvorks. 
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2 . 3 . 1 . GRAPH THEORY 

Gi aph theory is the study of graphs: structures representing relationships between paii s 
of objects. The set •Ji'' of objects in a graph G are called nodes; the relationships between 
the objects are captured by a set i£ of node pairs caUed linlcs. VMien nodes u and v are 
linked (i.e. [u, v\ e u is said to be a neighbor of v and vice-versa. In directed graphs, 
used for modeling non-symmetric relationships such as activation or repression, each 
link is directed and has a source node (origin) and a target node (destination). The num­
ber of neighbors of a node u is called its degree. Figure 2.2 shows examples of directed 
graphs. Weighted graphs model non-binary relations by associating scalars or weights 
with links. An example is the affinity with which proteins bind to one another. Box 2.3.1 
lists some metrics often used to study graphs. Many more metrics in the context of net­
work biology are covered in [20]. 

An induced subgraph G' of G is a subset ofthe nodes of G, along with all links whose 
endpoim nodes are both in G'. In a bipartite graph, the nodes can be split into two sets 
such that no two vertices in the same set are adjacent. A complete bipartite graph in 
which all nodes from the first set are connected to all nodes in the second is said to be 
compiete. 

Degree Distribution The statistical distribution followed by the degrees of the nodes 
in a neUvork. Many real-world networks have degree distributions that depart 
sharply from those of classical random network models (Box 2.4.1). 

Path Metrics In an unweighted graph G, the shortest padi between nodes u and v is the 
minimum number of links one must traverse to move ft'om u to IA If G is weighted, 
the shortest path is that whh the minimal sum of link weights. The average short­
est path or characteristic path length is the average length of ah shortest paths 
(between aU node pairs) in a network 

Centrality Metrics A centrality nretric gives a ranking of nodes according to their "im­
portance". The simplest measure is degree centrality - the degree of a node spec­
ifies its importance. Closeness centrality is the reciprocal of the sum of the short­
est paths to all other nodes (i.e.a node whose closeness centrality is high is close 
to many nodes). Betweenness centrality is the fraction of shortest paths passing 
through a node. Eigenvector centrality and Pagerank are measures of how fre­
quently one arrives at a node when performing a random walk on a network. 

Bux 2.3.1: Graph metrics reduce slruclural properties of network to (vectors of) real numbers, facilitating the 
comparison of different nenvorks. 

2 . 3 . 2 . MOLECULAR INTERACTION NETWORKS 

Molecular biology is the study of all ceUular processes involving DNA, RNA, proteins and 
metabolites. A simplified overview of coimnon interactions between these molecules 
is shown in Figure 2.1 (a). Although simplified, models such as Figure 2.1 (a) are still 
complex. Researchers generally study models with fewer molecules and interactions, 
such as the signaling pathway model in Figure 2.1 (b). 
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Association networks Association neUvorlcs model any kind of reladon between 
molecules (e.g. binding, co-expression and structmal similarities). Examples of 
association networks are gene co-expression networks and protein similar-ity 
networks. 

Functional networks Functional networks model functional relations between pairs of 
molecules (usually genes or proteins). A link implies that both are involved in the 
same ftincdon, process or phenotype. Genetic interaction networks represent in­
teractions where a double mutation leads to an epistatic effect, i.e., worse or better 
than expected based on die single mutation. 

Protein-protein Interaction Networks (PPI Networks) Protein-protein interaction 
networks are undirected networks that model protein binding. PPl networks 
are derived from high-throughput experiments using techniques such as yeast 
two-hybrid screening, mass spectrometry and tandem affinity purification |3| . 
Signaling networks are related to protein interaction neUvorks, but their links are 
directed according to the flow of molecular signals. 

Transcription-regulatory Networks (TR Networks) Transcription-regulatoiy networks 
are bipartite networks whh one set of nodes represendng genes and die other rep­
resenting transcription factors (TPs). TPs are products ofgenes (modeled by gene-
TF links) whUst genes are regulated by TPs (modeled by TF-gene links). Data for 
such networks is derived through the process of chromatin immunoprecipitation 
(ChlP) [34] . Gene regulatoiy (GR) networks are related to TR networks but con­
tain only genes. Their links represent indirect regulatory relationships. 

Metabolic Networks Metabolic Networks are biparfite networks that model the rela­
tionships between the chemical reacdons that occur in cehs and the substrates 
involved in the reactions (the solid gray lines in Figure 2.1 (a)). Reduced, non-
biparthe metabolic networks containing only metabolites or only reactions are 
also often studied. 

Box 2.3.2: Commonly sludied molecular inteiaclion networks. 
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Both Figtires 2.1 (a) and (b) focus on interactions and can therefore be represented 
as networks. But neither is a graph, since Figure 2.1 (b) contains non-pairwise relation­
ships and Figure 2.1 (a) contains multiple types of relationships wlhle both contain mul­
tiple types of nodes. Complex interaction models that distinguish beUveen node and 
link tj'pes are useful when the focus of smdy is on a smah molecular subsystem but a 
hindrance when the aim is the discovery of interaction patterns across large sets of inter­
actions. When pattern discovery is the aim, networks are reduced to graphs by including 
only links and nodes modeling one or two concepts and by converting non-pairwise 
links to pairwise Unks. The graph in Figure 2.1 (c) is one possible simplification of the 
pathway in Figure 2.1 (b). While network and graph are thus two distinct concepts, we 
wUl henceforth use the term network to refer to both concepts. Box 2.3.2 lists several 
such networks commonly studied. 



2.3. NHIVVOUK BIOLOGY 

Figure 2.1; From biological models to networks. 
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(d) Three-node motif signature for a network. 

Figure 2.2: Some motifs thought to be overrepresented in molecular interaction networks. Arrowheads indicate 

link directionahty. 

2 . 4 . DESCRIPTIVE ANALYSIS 
During the 1990's, researchers in various scientific fields started studying macro-scale 
systems in which individual entities locaUy interact in simple ways, leading to complex 
behavior emerging at a global scale. Examples include telecommunications networks 
[20,43], social relahonship structures [36] and biological interactions from the molecular 
to the ecological scale [22]. 

The structure of the above networks departed significandy from the random network 
models - Üre Erdós-Renyi model 135] and the Watts-Strogatz model [36] - commonly 
used In that day to model large networks (see Box 2.4.1). Real-world networks had short 
average path lengths and degree distribudons approximating power lawsl20]. The slopes 
of the degree distributions, when plotted on log-log axes, tended to fall within a nar­
row range, regardless of the numbers of nodes in these networks. This independence of 
scale or scale-freeness was thought be indicative of networks formed through gradual 
growdr processes based on preferential attachment: every time a node Is added to a 
network, h is linked to existing nodes widr probabhhies proportional to the degrees of 
drose nodes 120, 21]. 

In biology, initial studies on molecular interaction networks matched the topolo­
gies observed in other real-world networks. Gene co-expression networks [44], protein-
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Erdös-Renyf (ER) [35] The oldest class of random networks. To construct a graph in­
stance, links are added between each pair of nodes with probability' p (a parame­
ter). 

Watts-Strogatz (WS) [36] A kind of generalization of ER networks in which links of a reg­
ular lattice are rewired. Characterized by high clustering coefficients and short 
average path lengths. 

Barabdsi-Albert (BA) ]20] A class of random networks constructed one node at a time, 
with new nodes prefereirtially attaching to existing high-degree nodes. These net­
works are scale-ftee (i.e.hub-like) and more closely resemble molecular interac­
tion network networks than ER or WS networks. 

Duplication-divergence These networks, inspired by gene duplication and subsequent 
divergence (in sequence, interaction and function) |37] are generated by dupli­
cating nodes and randomly removing/adding hnks. Architecturally duplication-
divergence neUvorks are similar to Barabasi-Albert neUvorks 138, 39] 

Fixed node degrees Random networks characterized by their specific node degree se­
quences that are generated either by randomly rewiring the links of an existing 
network 140] or through the configuration model [41, 42]. 

Box 2.4.1: In graph theory, topological characteristics of a network are often compared to those of instances 
of random netvvork models. Listed are a few vridely used random network models in which nodes represent a 
single concept; these are generally unsuitable for generating neUvorks in which nodes correspond to multiple 
concepts (c.g.metabolitcs and reactions in metabolic neUvorks) since additional structural constraints apply 
to their connectivity. 

protein interaction networks [4.5], metabolic networks [46] and transcription regulation 
networks 121] all contain aspects of scale-fi-ee networks. Nevertheless, although various 
random network models reproduce some salient properties of molecular networks, each 
has been criticized for not being consistent witir other important aspects of molecular 
networks [47-50]. 

Molecular networks are often also highly clustered, implying modular design (see 
Box 2.4.2) and supporting the idea that biological systems are modular at aO levels [51]. 
An eariy study on the S.cerevisiaePPl network showed proteins with simUar functional 
annotations to be highly connected, strongly suggesting modularity [26]. Similarly in 
the yeast TR network, highly co-expressed genes were found to be clustered [52|. Evi­
dence for hierarchical modularity'was found in a PPI network [53] and in the metabolic 
networks of several organisms [54]. In general, molecular Interaction networks were in­
creasingly thought to consist of modules, linked through connector or linker nodes [55]. 
In other words, molectdar networks are networks of networks that can tolerate disrup­
tions to individual modules but whose ftmctions are sensitive to disruptions module of 
connectors. 

Although early attempts at understanding molecular interaction networks took a 
top-down approach, characterizing networks using global metrics such as their degree 
distributions, it was soon suggested that global behavior of the ceh could be the result 
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Modules are induced subgraphs whose link density is high in comparison to the rest 
of the graph. This definition is deliberately vague, as what constitutes a modihe 
depends on the context and the algorithm used to discover modules. 

Motifs are small subgraphs, usually of 3 or 4 nodes, whose over- or underrepresenta-
tion may indicate that their structures are important or detrimental to the sys­
tem [22]. UsuaUy, aU distinct motifs in a network are counted, yielding a motif 
signature for the network that may then be compared to signatures obtained by 
sampling from an appropriate random network nuU model (see Box 2.4.1) to deter­
mine over- or underrepiesentation. A signature for all motifs on 3 nodes is shown 
in Figure 2.2 (d). Motif signatures can be used to characterize networks. 

Graphlets are shnUar to motifs but always ftUly connected. As with motifs, graphlets 
are used to construct signatures that capture the local characteristics of a network 
156]. 

Box 2.4.2: Modules, motil's and graphlets. These concepts are used to decompose networks into smaller units 
that are easier to study. 

of local features [57], a bottom-up view. One view was that behavior of molecular in­
teraction networks emerges from the interactions of many small subgraphs or motifs 
(see Box 2.4.2), in the same way that the behavior of a computer results from the inter­
actions of simple logic circuits [22]. Statistical overrepresentation of a motif is thought 
to be evidence that the motif offers a functional advantage to its host orgairism. Such 
tnotifs - feed-back loops, feed-forward loops and bi-fan motifs (see Figure 2.2) - all have 
analogues in the electronic wotid [22]. This fitted weU with the increasing popularity 
of systems biology [58] that advocated an engineering-inspired approach to study biol­
ogy. Simple motifs may act as sign-sensitive delay mechanisms or as input response-
accelerators, depending on their mix of activators and repressors [23]. More complex 
motifs may even act as logic circuits, switches and memory states, making them inter­
esting building blocks for synthetic biology [59]. 

Motifs can also be used to characterize networks more globally Global motif sig­
natures were found to be unique for different types of networks 122] but conserved be­
tween orgaihsms 160], providing further evidence that motifs embody underlying design 
principles in different tynpes of molecular interaction networks, that are preserved across 
evolution [23]. 

The global, nrodule and motif \'iews led to the idea that molecrUar neUvorks are orga-
ihzed at multiple levels of complexity 161]. At the local level, motifs act as smaU control 
clrcuhs or buUding blocks. Motifs aggregate into modules that, through the interactions 
of their motifs, implement more conrplex biological processes. At the global level, mod­
ules are connected to each other - and may thus exchange information or molecules -
through a small number of linker nodes. The fact that certain topological features, such 
as scale-free degree distributions, are common among molecular networks suggests that 
the designs of these neUvorks are shaped at all levels by evolutionary mechanisms. 

The case for an architecture based on a hierarchy of motifs, modules and global 
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properties was strong and it appeared to be universal, so that its presence came to be 
assumed. At the local level, overrepresented motifs were used to filter spurious hnlcs 
from noisy high-throughput networks by rejecting links that did not form part of mo­
tif structures [62]. At the global level, the assumption of power-law degree distributions 
led researchers to propose the evolutionaiy processes of duphcation and divergence as 
leading to preferential attachment in tire formation of molectdar neUvorks [37]. 

2 . 4 . 1 . L I M I T S T O T H E D E S C R I P T I V E A P P R O A C H 

Details of the multi-layered view were increasingly disputed as data quality improved 
and as researchers revisited interpretations of older findings. At the global level, the 
most contested trah was that of scale-freeness, a property found to arise under many 
circumstances, chahenging its significance [63]. Careful examination of molecular m-
teraction data showed that some non-scale-free distnbutions fit degree distnbutions of 
molecular networks as weh as scale-free distributions ]64, 65]. More contentious was 
the suggestion that some global features are modeliirg artifacts. The hub-like architec­
ture of protein interaction networks was questioned, since no protein can realistically 
bind to the nmnber of proteins suggested by hub nodes; hub nodes are more likely to 
represent groups of proteins that only appear to be individuals owing to expenmental 
limitations [47|. Likewise, metabolic networks do not display short average path lengths 
when metabohte paths are traced; shortest path algorithms on metabolic neUvorks do 
not take into account the requirement that all metabolites be present for a reaction to 
occur and their direct application to these networks is meaningless [18]. 

At the module level, it was fotmd that modules are less cleatiy delineated than pre­
viously assumed. There appeared to be many connections between modules, making 
it difficult to distinguish linker nodes [66]. Without linker nodes, assignment of nodes 
to modules is more difficult, leading to "fuzzy" modules. Motifs were also criticized. 
The bi-fan motif, found to be overrepresented in molecular neUvorks [22] and assumed 
to be functionally important, was shown to have no characteristic behavior when con­
sidered as a dynamic system ]67]. If motifs lack charactenstic beha\4or, aggregates of 
motifs, such as motif clusters, cannot be assumed to implement specialized biological 
ftmctions. Motif signatures (Box 2.4.2 and Figure 2.2 (d)) of neUvorks were argued to 
be by-products of simple evolutionary mechaihsms (such as gene duphcation and di­
vergence) [68]. Evolution may thus not be driven by motifs; rather, motifs may be the 
inevitable result of the self-organizing effects of evolution. 

Although there is less universal stmcture hi molectdar networks than once thought, 
the original multi-layered model is still usefijl, albeit with some modifications. There is 
much ewdence that molecular networks are not scale-free, but they are generally heavy-
taOed [65], meaning that they have a few hubs and many low-degree nodes. Motifs may 
not be simple biological circuits ]22], but they estabhshed the idea that local structure 
is important; one way in which this was later exjiloited was to compute node signatures 
fbr use in function prediction in molecular neUvorks )56] and alignment of molecular 
networks 169]. Perhaps the most important contribution ofthe layered \dew was the idea 
that molecular networks are organized at multiple levels; the molecular organization of 
the cell cannot be understood at one scale orhy. 
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2 . 4 . 2 . T O P O L O G I C A L F E A T U R E S AS T A R G E T O R B Y - P R O D U C T O F E V O L U ­

T I O N 

The global approach was not meant to be purely descriptive: its origiiral goal was the 
discoveiy of universal architectural features. Universahty suggests that organisms are 
selected because they posses such features and would provide clues about the topologi­
cal requirements that are essential to life. 

One property thought to emerge from natural selecdon is robustness, the ability to 
maintain function under perturbations [70] . NeUvork biologists have sought to explain 
robustness in terms of topological characteristics. In PPI networks, the immber of in­
teraction partners of nodes initially appeared to correlate with their essentiality [57]: ro­
bustness may come from the fact that PPI networks have few hubs and many low-degree 
nodes. In metabolic networks, almost the opposite is true, with networks being sus­
ceptible to disruprion of low-degree linker nodes that connect metabolic modules [71] . 
However, in both cases the systems are resilient to most perturbations but susceptible to 
targeted attacks, a property known as highly optimized tolerance ]72] . 

After-the-fact attempts to match topology to properties such as robustness were even­
tually called into question. In silico evolution experiments with simple gene-regulatory 
networks showed that many such structural features emerge from network dynamics 
rather than selective pressure 173], Other such neUvork evolution experiments suggested 
that the drivers could be simple processes such as reuse, genetic drift and mutation [68, 
74, 75] . Even higher-level organization such as modularity is thought to arise from such 
simple processes ]24] . A study comparing a metabolic neUvork to a network of atmo­
spheric chemical reactions found large topological similarities and concluded that many 
large-scale topological feattires have no hinctional nor evolutionary significance, the so-
called neutral theory of chemical reaction networks [76] . In bacteria, horizontal gene 
transfer is thought to play an important role in module formation, as cells adopt clus­
ters of foreign genetic material wholesale in reaction to environmental variability ]771. 
Nevertheless, the extent of this influence was recently questioned, stressing possible in­
terplay between variabUity and gene transfer [78, 79| . 

Not all network features emerge through neUvork dynamics. Selection pressure does 
seem necessai y fbr the fine-tuning of topological features and may in some cases be re­
sponsible for the difference beUveen a robust and fragUe network [80] . In simulations of 
metabolic network evolution, hubs emerge when networks are selected for their abihty 
to grow 181]. In models of GR network evolution, sparsity (i.e.low link counts) emerges 
when selectional stability (which models energy minimization of the mutation process) 
is enforced [82] . Even modularity may rely on selection pressure, albeit in a more sub­
tle form. When networks are evolved and selected for their ability to prosper in varying 
conditions, modularity is found to emerge and, crucially, to be maintained [83] . A sim­
Uar result was obtained by subjecting randomly generated metabohc networks (i.e., not 
generated by a procedure mimicking evolution) to a range of environments and assess­
ing the amount of biomass they produced [84]. 
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2 . 5 . SUGGESTIVE ANALYSIS 
Since tlie early days of network biology, data mining was used to discover unexpected 
(ir)regularities in molecular Interaction networks. Some findings were already discussed 
in Section 2.4 (the use of clustering to discover functional annotation, the existence of 
hub proteins). While data mining techniques shed light on aspects of biological func­
tion, they do not necessarUy lead to directly testable hypotheses. In this sense, we call 
the methods in this section "suggestive". We describe four strategies for extracting net­
work regtUarhies: significant feature detecdon, clustering, central and hub node discov­
ery and network homology. 

Signiflcant Feature Detection The idea behind this strategy is that unlikely patterns 
in molecular networks are indicative of underlying "design" processes (such as evolu­
tion). The likelUiood of a feature is determined by considering its distribution in net­
work instances generated using a random network model (see Box 2.4.1). In early work, 
PPl networks were rewired (link pairs were shuffled) to generate random neUvorks [40]. 
The connecdons beUveen high-degree nodes in the original protein interaction network 
were found to be statisticaUy unlikely in rewired networks, leading to die hypothesis that 
interactions between high-degree proteins are suppressed in evolution, perhaps to con­
trol cross-talk in tiie ceU. Modules and motifs |22] can afso be considered as significant 
features. Some of the clustenng algorithms nientioned eatiier in this section explicitly 
assess cluster significance as a function of hs likelihood [85|. 

Such significant features can sometimes be biologically interpreted. Statistical anal­
ysis of miRNA targets in a human signaling network found that miRNAs tend to target 
proteins that are part of positive feedback motifs [861. Similarly cancer genes tend to 
be part of positive feedback motifs whUst genes tiiat are highly methylated tend to be 
part of negative feedback motifs [87]. f n both of these cases, the motifs are interpreted 
as amplification or dampening circtuts, analogous to electronic circuits. An interesting 
recent view is that individual motifs are not necessarily significant but tiiat large clusters 
of positive or negative feedback motifs act as stochastic amplifiers or dampers, respec­
tively 188]. 

The advantage of significant feature detection fies in hs simplicity: existing tech­
niques are used to analyze and compare the input network and networks derived ft om 
a random model. But this is also its main drawback: choosing an incorrect random net­
work model can make features appear significant when they are not. 

Clusters Modifies in complex systems tend to be highly internally connected whUst 
sharing only a few connections with the outside wotid. Graph clustering is an approach 
to discover such modules by decomposing a network into a number of subnetworks or 
clusters that are internally highly connected. The "big data" era has inspired develop­
ment of clustering algorithms that efficiently deal with large datasets. 

In network biology, general clustering algorithms have been used to discover func­
tional modules in gene co-expression networks ]89] and genomic cooccurence networks ]90]. 
Since proteins in complexes highly interact with one another, graph clustering has also 
been used to discover protein complexes in PPl neUvorks ]55]. Here ŵ e mention a few 
of such general clustering algorithms; the interested reader is referred to [91] for a more 
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thorough overview. Most modern clustering algorithms are based on physical models, 
data mining techniques or spatial partitioning. Physics-inspired approaches include 
spin models [92, 93], random walk models (94, 95] and synchronization models [9G]. 
Data mining approaches treat cluster discovery as a problem of significant feature dis­
coveiy. A few clustering algorithms discussed below are (at least partially) based on this 
idea. Spatial partitioning approaches associate distance metrics on pairs of nodes that 
are then clustered using approaches such as ^'-means clustering. A number of such dis­
tance metrics are discussed later in the context of "neighborhood homology" later in this 
review. 

Wliilst general algorithms can be applied to molecular networks, clustering algo­
rithms that exploit the specific structure of molecular networks may achieve better re­
sults. MCODE is a heuristic algorithm developed to detect complexes in protein inter­
action networks [97]. Other examples hiclude Restricted Neighborhood Search Cluster­
ing [98] and CODENSE, an algorithm for finding dense subgraphs [99]. A number of 
algorithms based on local neighborhood statistics were proposed as well, for example to 
find subgraphs of PPl networks that are active according to high-throughput measure­
ments (ActiveModules [100] and MATISSE [101]). More generally a hkelihood score for 
the density of a subgraph can be used in (greedy) optimization algorithms to mine dense 
subgraphs, such as in CEZANNE, which finds functional modules in gene co-expression 
networks [101]. 

Besides fully connected clusters, clusters that resemble bi-cliques (complete bi-partite 
subgraphs, see Section 2.3.1) have been shown to be common and biologically relevant 
in protein interaction networks [102]. Furthermore, clusters in bipartite networks such 
as TR and metabolic networks are also manifested as bi-clique-like networks. Algorithms 
have been proposed to mine such (bi-)clique clusters [103, 104]. Specialized algorithms 
for bipartite networks have also been developed, such as SAMBA, that integrates addi­
tional biological data to discover modules [105]. 

A stUl-difficult problem is the discovery of overlapping clusters. Many molecules are 
components of multiple modules (e.g. proteins are part of multiple protein complexes, 
metabolites are inputs to multiple metaboUc reactions) whilst most existing clustering 
algorithms place each molecule in exactiy one cluster. A relatively simple approach is 
to group molecules in topics and to apply node-based clustering on the topics; a node 
that belongs to topics in different clusters would be a member of (at least) two clusters. 
Recent research uses the more restricted case of edge clustering (which is equivalent to 
topic clustering on topics of Uvo nodes each) wdth good success ] 106-108]. 

Clustering is a useful technique to gain understanding of the modular construction 
of a molecular network, btU caution is required. Recovered clusters may not reflect ac­
tual biological modules; inaccurate clustering can arise from badly chosen clustering 
criteria (in particular from criteria unrelated to biological constraints) 1109]. Algorithms 
that produce overiapping clusters may assign nodes to too many or too few clusters and 
rigorous techniques for handling such problems are stih lacking. 

Central Nodes and Hubs Early findings in network biology suggested that some nodes 
are more important or central (110] (see Box 2.3.1) in molecular interaction neUvorks. 
This manifestation of highly optimized tolerance entaUs that the survival of an organism 
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depends more on the presence of a few central nodes than on most other, less central 
nodes. First, it was found that disrupting the highty connected, "hub-like" p53 gene in 
the human signaling leads to cancer [111]. It was subsequendy shown that the num­
ber of interaction partners of a protein {\.e.,clegree centrality) in the S.cereî /s/fle protein 
interaction network is correlated with its lethality 157]. Research on protein interac­
tion networks [112], co-expression networks [113] and synthetic genetic interaction net­
works [114] showed sinhlar correlations. Furthermore, the number of interaction part­
ners was shown to be negatively correlated with the rate of evolution in protein inter­
action networks [115], metabolic networks [116] and transcription-regulatory neUvorks 
[1171, furtiier supporting the idea that central nodes are important. 

Closeness centrality was used to find central metabolites in metabolic networks [118]. 
Betweenness centrahty was used to identify bottleneck nodes - nodes of low degree 
whose removal is fatal to the organism [119|. Botii of these metrics fit the interpreta­
tion of central nodes as being chemical flow routers. In signaling networks, disruption 
of central nodes has been linked to cancer, suggesting that tiiey act as information coor­
dinators/routers [120,121]. However, not ah centrality measures can be easily related to 
routing, examples of which include subgraph centrahty 1122], coreness centrahty 1123], 
bipartivity (the fraction of closed loops including the node that are of even length) [124] 
and node hierarchy [125], 

In spite of the initial positive findings, fiirther experiments on S. cerevisiae showed 
litfle correlation between protein degree and essentiafity 1126], a finding strengthened 
by computer simulations of gene expression 1127]. This cast doubt on the use of central­
ity measures alone to predict node functionality. Some researchers have sought to refine 
the notion of centrality by considering interaction patterns of central nodes: those that 
interact with many interaction partners simultaneously are called "party" hubs whilst 
those that interact with a few of their partners at a time are called "date" hubs 1128]. 
Party hubs are thought to be global coordinators that connect components within net­
work modules whhst date hubs may be local coordinators that connect network modules 
1128]. However, this distinction has been challenged with the availability of new data that 
does not show such clear distinctions between central nodes [129]. 

Even if node centralit)' is not as well correlated with node fijnction as hoped, research 
in this fleld has shown that hubs do tend to be more essential than non-hubs. Fur­
thermore, subversion of central nodes has been implicated in the formation of cancer 
[120,130], suggesting possibly usefiil drug targets. 

It has been suggested that a simple explanation for the essentiality of high degree 
nodes is that they are more likely to interact with essential complexes and their removal 
breaks such complexes [ 126]. The implication is that local topology' is a deciding factor 
in essentiality Indeed, versions of existing centrality measures modified to take more 
local information into account are better at predicting which nodes are essential [131]. 
However, it is important not to conflate node essentiality, a concept tied to survivability, 
v âth the influence that a node exerts on a network. The latter concept is discussed in the 
next section in the guise of "controUability". 

Global Homology The principle of homology states that biological systems related by 
evolution are structurally similar. Its converse - structural similarities imply common 
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heritage - is often used to predict the function of unlmown proteins and genes. In net­
works, topological simUarit)' can hkewise be used to infer functional similarity. Using 
this approach, metabolic networks of 43 organisms were found to display hierarchical 
modularity [54]; these modules were found to center around core metabolites [132] . In 
the same vein, the connectivity of a protein in a PPI network was shown to be propor­
tional to its age. In a study on three species, common proteins are likely to be older than 
those present in orhy a single species [133] . 

The approaches above focus on high-level similarities between networks without at­
tempting to match individual nodes in the networks. By performing such alignments, 
clustering and significant feature detection applied across species can lead to more in­
sight. In an early example, the glycolytic pathways of 17 organisms were aligned [134] 
and revealed many interesting differences between species in this essential part of metabolism. 
Ahgnment of the E.coli metabolic network to those of other organisms identified en­
zymes whose genes were candidates for horizontal gene transfer [39] . The average de­
gree of these candidates is higher than that of other enzymes, implying that they are cen­
tral to metabohsm. Thus, ancestors to E.coli replaced their central enzymes with better 
ftmctioning enzymes from other species. 

Data Mining in Biological Networks Suggests Biological Findings Data mining tech­
niques have been successfully applied in network biology to suggest biological functions 
for genes and proteins. The common theme is that instead of considering global proper­
ties of biological networks, they focus on stibnetwforks, ft om individual nodes to neigh­
borhoods and features shared between networks. This increased focus allows the deriva­
tion of more tairgible biological results. However, when analyses are based on compar­
isons to random network models (Box 2.4.1), such as in significant feature detection, the 
problem of telling these apart fi om evolutionary by-products remains. 

2 . 6 . PREDICTIVE ANALYSIS 
The data mining approaches discussed in Section 2.5 reveal the large-scale organization 
of molecular networks in some detah but do not, in general, yield testable biological 
hypotheses. Approaches that do give such results tend to be based on network general­
izations of existing principles in molecular biology: guih-by-association, homology and 
differential analysis. 

Guilt-by-association The piinciple of guUt-by-association is based on the observation 
that if most ofthe interaction partners of a molecule are associated with some property 
(such as a specific biological process or molecular function [135]) , the molecule itself 
is also likely to be associated with that property [136] . Guilt-by-association has been 
used to assign functions to proteins with unknown roles based on the ftmctions shared 
by the majority of their direct neighbors (i.e.interaction partners) in protein interaction 
networks [26| . The properties shared by the majority of a node's neighbors do not nec­
essarily yield the best annotations [L37[ and more sophisticated approaches, such as 
Markov random fields trained on node neighborhoods [138], have been developed as 
alternatives. 
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By only taking direct interactions into account, the above applications of guilt-by-
assoclation ignore the impact of potentially informative indirect interactions. So-called 
n-hop features have been used to predict disease associations of proteins in PPI net­
works [139]. Another technicjue for incorporating indirect neighbors is graph diffusion, 
an idea derived from the study of diffusion in physical systems. Here, properties of nodes 
are diffused across links in a network; properties that diffuse in high quantities to nodes 
with unknown roles are used to annotate these nodes [140]. In both n-hop methods 
and graph difffision, interaction strength between nodes depends on the path structure 
between the nodes. 

Path structure need not be the only determinant of Interaction strength. Nodes that 
are members of the same biological module may have simhar functions [26]. Thus, a 
node whose role is unknown can be airnotated with the functions appearing most fre­
quently in the module(s) to which h belongs. Wlhlst we do not know what the biological 
modules are, we can compute approximate modules through clustering. Such an ap­
proach has been used to annotate unknovm proteins in S.cereuisiae protein interaction 
networks [103]. Guih-by-association is a simple and effective techihque that extends 
naturally to networks. However, it is only effective when the roles of the majority of 
molecules in a network are known, limiting the techihque to well-studied organisms. 

Neighborhood Homology Since the use of homology is pervasive in biolog)', we expect 
the pnnciple to extend to networks. Indeed, in Section 2.5 h was already discussed how 
networks found in different organisms have simUar structural properties. Predictive ap­
proaches use topological and possibly biological simUanty to match similar nodes across 
different networks. Once nodes are aligned, the function of a protein or gene whose role 
is unknown can be predicted, i f the hmction of its matched node in the other network is 
known. 

The flrst neUvork alignment algorithms operated at a local level, attempting to match 
only small parts of entire networks to one another [69, 141]. Global alignment is more 
difflcult, because networks to be aligned generally differ in size. Moreover, homology is 
not a one-to-one relation; many nodes may align to many nodes. There are two main 
approaches for performing global alignment; 

1. Cluster the nodes in each network and compute topological matching scores on 
the clusters [142, 143] ("matching clusters"). 

2. Select groups of nodes in different networks that are pairwise simUar in local neigh­
borhoods and possibly biological labels [144, 145] ("clusteringmatches"). 

The first type of algorithm has the disadvantage that the clustering step precedes 
matching and thus ignores potentially useful information. Many algonthms ofthe sec­
ond type associate feature vectors of topological (and possibly biological) attnbutes with 
nodes that are then used to compute node simUarit)'. Various metrics have been used 
]146]. TheJaccardcoefficient, a measure ofovetiap between sets of binary attributes, has 
been widely used, an example of which was the prediction of protein ftmction in human 
PPl neUvorks ]147]. The /i-confidence metric [148] is a data-mining tool for discovering 
associations and has been used in protein function prediction. Specialized metrics, such 
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as the graphlet distance (tailored to graphlet signatures[56]) have been used to discover 
genes implicated in cancer [149]. 

Variations of clustering algorithms, looking for dense subgraphs within one network, 
have been proposed to mine subgraphs similar in two networks. For example, the Path-
Blast algorithm combined a stcitistical score for protein similarity and probabiUty of a 
reported protein interaction to mine pathways or complexes occurring in PPl networks 
of different species [f41]. Similar approaches were apphed to assign ftmctions to pro­
teins 1150] and to ahgn metabolic pathways 1151]. 

Differential Analysis Diagnosis of mairy diseases (such as cancer) is based on the fact 
they influeirce the regulation programs of ceUs. Traditionally, this involved finding changed 
expression of marker genes, or specific gene mutations, i.e.focusing on the nodes in the 
network. Network biology allows additional focus on node relations, making it possi­
ble to diagnose molecular diseases that cannot be weh characterized by the traditional 
techniques 1152]. This so-caUed differential analysis, finding changes in network struc­
ture 132], is currently complicated by the fact that construction of high-quality molecu­
lar networks requires considerable time and resources. One common way around this 
is to use an existing high-quality network, typically a PPI or TR network, as a scaffold 
onto which noisy high-throughput patient data (typically gene expression or methyla-
tion data) is overlaid. If multiple measurements are available fbr each patient, gene co-
expressioii/comethylation values can be computed and overlaid as link weights on PPl 
links. 

Expression changes of genes/proteins linked to central nodes in molecular neUvorks 
have been proven to be reliable markers of disease. Differential expression around topo-
logically central nodes in protein interaction networks has been used to diagnose can­
cer [153, 154]. Disease central nodes (i.e., nodes implicated in disease) have been sim­
Uarly used in the diagnosis of breast cancer and leukemia [155]. More recentiy, co-
expression changes around biologically central nodes, such as signaling hubs, have shown 
to be even more reliable disease markers 1156, 157]. 

More elaborate differential approaches consider changes in expression patterns of 
subnetworks, instead of only central nodes. Automatic extraction of such subnetworks 
based on topology and measurements such as gene expression has revealed subnet­
works associated with cancer (in which differential gene/protein expression coiUd be 
used for diagnosis of the disease) [87,158] as weU as subnetworks that are imphcated in 
heart failure [159]. An alternative to automatic extraction is to use biological modules 
based on theoretical knowledge; such an approach has been used in cancer progno­
sis 1160]. 

Differential diagnosis, despite its relative newness has quickly grown to a large field. 
Our discussion is necessarily limited by the scope of this review; the interested reader is 
referred to recent reviews that consider the discipline in much more depth 132, 33, 161]. 

Relating Topology to Biological Properties Leads to Predictive Power The data min­
ing techniques discussed in Section 2.5 are mostly based on topological information. In 
contrast, the predictive approaches discussed above depend on additional biological in­
formation. This approach to network biology clearly yields more testable hypotheses 
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than the suggestive and descriptive approaches. 

Since we do not, in general, have good models of biological function at large scales, 
predictive approaches are most often applied to smah groups of nodes or subnetworks. 
There are exceptions with metabolic networks being the most prominent. Flux balance 
analysis (FBA) [162, 163] is a framework for compudng steady-state reacdon rates in 
such networks based on reaction stoichiometry assuming the cell attempts to achieve 
some objective such as maximum growth. FBA is often used in a predictive way but has 
also been applied in a "suggestive" setting, e.g.to study robustness of metabolic networks 
[71]. FBA allows one to take additional physical constraints into account, such as ther-
modymamic interactions [164] or responses to signaling [16.5|; for an extensive overview 
see [166] . 

The biggest problem with incorporating additional biological knowledge into exist­
ing models is that, for any given biological attribute, we seldom have complete data. Two 
recent ideas, "controUability" and "observability", potentially allow to use partial (local) 
knowledge to predict global state. Controllability refers to "driver" nodes that have a 
large influence on the state of a system [167]; observabUity is almost complementary, fo­
cusing on a smaU set of appropriately chosen observation nodes whose properties aUow 
reconstruction ofthe global system state [168] . These techniques promise to allow asso­
ciating local information with driver/observation nodes and to predict global properties 
from limited avaUable data. 

2 . 7 . CONCLUSION AND OUTLOOK 
In this review, we have summarized common research themes in the field of network 
biology. We find a slow movement from global to local analysis, arguing that this trend 
emerged from a need to draw more concrete biological knowledge from networks. 

The survey findings seem to suggest that one must either choose between untestable 
abstract hypotheses about large-scale topological patterns or smaU-scale results that ne­
glect large-scale topolog}'. But tire successes of local techniques lie not in their focus on 
the local but because they tightly couple topological obseivations to biological knowl­
edge. From this starting point, we see two broad research directions for improving the 
explanatory power of large-scale topology patterns. The first approach is theoretical and 
is aimed at making descnptive and suggestive techihques more predictive, whilst the 
second approach is practical and extends the predictive techniques to work at larger 
topological scales. 

The theoretical research direction entails the improvement of network evolution mod­
els in order that they reproduce as much of the topological aspects of real molecular 
networks as possible. Better models of network evolution can better reveal the topo­
logical features that are by-products of evolmion, permitting researchers to concentrate 
on explaining topological results that cannot be explained by the models. An additional 
benefit is that these models could themselves lead to biological insight. 

In the practical direction, we propose the application of predictive techniques to 
various "resolutions" of molecular networks, that is, multi-resolution analysis. Lower 
resolution versions of a network are typically obtained by grouping subneUvorks into 
meta-nodes (by analogy, the entire stieet network of a city is represented by a single 
city node in national road maps). How nodes are grouped depends on the topological 
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properties tliat must be maintained in low-resolution network versions. Node clustering 
techniques from Section 2.5 can be used to produce low-resolution networks by group­
ing node clusters into meta-nodes. Another promising technique that aims to maintain 
random-walk properties is spectral coarse graining [169]. 

The two research directions otUhned above are by no means the only possible paths 
for developing network biology. Rather, they show this young held still has much poten­
tial for development; we expect that future researchers will bring us unexpected biolog­
ical insights with the help of network biology. 
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A S S O R T A T I V I T Y O F 

C O M P L E M E N T A R Y G R A P H S 

Huijuan WANG, Wynand WINTERBACH, Piet VAN M I E G H E M , 

3 .1. ABSTRACT 

Newman's measure for (dis)assortativity, tlie linear degree correlation po.is widely stud­
ied although analytic insight imo the assortativity of an arbitrary network remains far 
from well understood. In this paper, we derive the general relation (3.3), (3.4) and The­
orem 1 between the assortativity poiG) of a graph G and the assortativity po(G' ) of its 
complement G' . Both polG) and po(GO are linearly related by the degree distnbu­
tion in G. When the graph G{N,p) possesses a binomial degree distribution as in the 
Erdos-Rényi random graphs G^(AO, its complementary graph G'iN) = G ] _ ^ (TV) follows 
a binomial degree distnbution as in the Erdös-Rényi random graphs G^^piN]. We prove 
that the maximum and minimtun assortativity of a class of graphs with a binomial dis­
tribution are asymptotically antisymmetric: Pn,^(N,p) = -p,„i„(Af,p) for TV oo. The 
general relation (3.4) nicely leads to (a) the relation (3.12) and (3.18) between the assor­
tativity range Pmax(G) - Pmin (G) of a graph with a given degree distribution and the range 
PmaxiGl-pminiG") of its Complementary graph and (b) new bounds (3.8) and (3.17) of 
the assortativity These results together with our numerical experiments in over 30 real-
worid complex neUvorks dlustrate that the assortativity range p,„ax -Pmin is generally 
large in sparse networks, which underiines the importance of assortativity as a neUvork 
characterizer. 

Ttiis chapter was published in The European Physica] Journal B 83, 2 (2011) | ] ] 
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:-!B 3. ASSORT/VnVI TY OF COMPFEMFNÏARY GRAPHS 

3 . 2 . INTRODUCTION 
"Mixing" in complex networlcs [2, 3] refers to the tendency of network nodes to connect 
preferemially to other nodes with either simUar or opposite properties. Networks whose 
nodes preferentiaUy connect to nodes with (dis)similar properties, are caUed (dis)assorta-
tive. When the property of interest is the degree of a node, the linear degree correlation 
coefficient po measures the assortativity in node degree of a network, which is com­
puted in [4] as 

( = 1 u = l 

where dj is the degree of node / and / ~ ; denotes Üiat node / and ) are linked. Although 
(3.1) is wefi suited to computation, it is difficult to interpret. Using derivations from [4], 
(3.1) can be written as 

EiPiPj^-l^l, . . . . 
Pd- r, T,— (--i-Z) 

E [ D f l - p ^ , 

where D,- and Dj are the degrees of connected nodes. This expression is exactly the 
correlation coefficient of the degrees of connected nodes. Networks in which nodes of 
similar degrees tend to be connected have positive correlation coefficients and are said 
to be are assortative, whereas networks in which nodes of different degrees tend to be 
connected have negative correlation coefficient and are said to be disassortative. 

Network assortativity was widely studied after h was realized that the degree distribu­
tion alone provides an insufficient characterization of complex neUvorks. Networks wdth 
the same degree distribtUion may still differ significantly in vanous topological features. 
Consequentiy many investigations have focused on (a) exploring the relation between 
assortativity and other topological properties as well as spectra of networks [5] [6] [4] and 
(b) understanding the effect of assortativity on dynamic network processes such as the 
epidemic spreading [7] and percolation phenomena [8]. Relations between degree cor­
relation and other topological or dynamic features are mostly studied experimeutally 
[.5| or in a specific network model [8] 17]. Recently, we have venfied spectral bounds 
for the assortativity [4] and we have studied how the modularity changes under degree-
preserving rewiring [9], which alters the assortativity of the graph. 

Analytic hisight in degree correlations in an arbitrary network is still lacking. In this 
work, we analytically explore the relation between the assortativity po(G) of graph G 
and paiG") of its complement G". Let G be a graph or a network and let denote the 
set of TV = M^l nodes aird ^ the set of L = \^\ links. An undirected graph G can be 
represented by an Af x TV symmetric adjacency matrix A, consisting of elements rt/j that 
are either one or zero depending on whether there is a link between node / and j , or not. 
The complement C of G is a graph containing all the nodes in G and aU the links that are 
not in G. Thus, the adjacency matrix of G" is A ( G ' ) ^ J - I - A{G), where ƒ is the aU-one 
matrix and / is the identity matrix. 

Furthermore, the general relation (3.4) beUveen PD(G) and poiC^) that we derived 
is further applied to the complementary classes of graphs with a binomial degree distri­
bution. The binomial degree distribution is a characteristic of an Erdös-Rényi random 
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graph Gp{N), which lias TV nodes and any two nodes are connected independently widi 
a probabUity p. Such a random construction leads to a zero assortativity as proved in 
141, liowever, ^he class of graphs G[N,p) with the same binomial degree distribution 
Vx[DG = k] = [ 1^ )p ( l - p ) ' v ' '̂as Erdös-Rényi random graphs G^(TV) and obtained, 
fbr instance, by degree-preserving rewiring features an assortativity that may vary within 
a wide range beUveen minpo and maxp^. The complementary class G(TV, f ~ p) pos­
sesses also a binomial degree distnbution Pi[Dc,-: = k] = ( " : ' ] ( 1 - p j^p '^ - i -^ ' character­
ized by TV and 1 - p. We derive the relation between the assortativity of a graph with 
a binomial degree distnbution and that of its complementary graph. This relation en­
abled us to prove, interestingly that the maximum and minimum achievable assorta­
tivity of a class of graphs with a binomial degree distribution is symmetric around 0, 
maxpn(N,p) = - min poiN, p), which is also numerically Ulustrated. 

The general relation (3.4) between pu(G) and poiG') also allows us to derive new 
bounds ofthe assortativity and to relate the assortativity ranges maxpö(G) - min po(G) 
and maxpD(G'') - minpD(G^) of two complementary classes of graphs, each with a given 
degree vector or a degree distribution. 

The importance of investigating the assortativity and assortativity range relation of 
complementary graphs lies in the following aspects. A) Computational complexity of 
assortauve(disassortative) degree-preserving rewiring, which increases (decreases) the 
assortativity of neUvork whUst the degree of each node remains the same, is higher in 
a dense neUvork than that in a sparse network [10][4]. Most real-worid neUvorks are 
sparse. However, hierarchical networks at a higher aggregation level tend to be denser. 
Moreover, most studied brain networks and biological neUvorks are originally weighted 
networks. These neUvorks are usuaUy transformed into an unweighted neUvork by dif­
ferent link weight thresholds so that classical neuvoiking theories can be applied'. Eor 
each weighted network, unweighted networks usually have to be derived at different 
link densities without losing the information of the weighted network. Thus, they can 
be dense with link density ranging over 0.5 <p«l and they may even follow a bino­
mial degree distribution [ I l [ . Hence, the assortativity relation beUveen complementary 
graphs aUows the assortative (disassortative) degree-preserving rewiring in a dense net­
work to be derived from the disassortative (assortative) rewiring in its complement with 
less computational complexity B) The maximum maxp^ and minimum minpo assor­
tativity reveals to what extent a degree vector d may characterize a graph. A small range 
maxpo - min po emphasizes die determining role of the degree vector d, whereas the 
opposhe underiines the importance of the assortativity. Also, experiments suggest that 
most complex neUvorks (see the Table 3.1 in Appendk 3.11) can be degree-preservingly 
rewired in two opposite ways so tiiat po < 0 and, alternatively so that po > 0. Given 
this experimental observation, we can say that mtixpo > 0 and minpo < 0 fbr the degree 
vector d of a conrplex neUvork. Consequentiy a small maxp^ - minp;j means that the 
degree vector is "hard" to correlate, because po needs to be close to zero. Apart from de­
gree vectors d = r. u of regular graphs of degree r, where u is the aU-one vector and d: = r 
for each component/node j , it would be interesting to find examples of degree vectors of 
complex networks ioY which minpo > 0. Such degree vectors would generate and char­
acterize a class of SUict assortative graphs, where minpo > 0. A non-trivial example of a 
stnct disassortative class of (almost) regular graphs is analyzed in Appendix 3.10, whUe 
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the Table 3.1 in Appendix 3.11 shows a couple of real-world complex networks that gen­
erate a strict disassortative class. The difference maxp^ ~ ni inp/ j may be regarded as a 
metric of a given degree vector d that reflects the adaptivity In (dis) assortativity tmder 
degree-preserving rewdring. Moreover, the quantity 

maxpD - p D 
'G = : 

maxpo - mmpo 

determines the relative maximum assortativity deficiency of a graph, which measures 
the remaining degree-preserving rewiring left to achieve the maximum assortative state. 
If degree-preser\dng rewiring can be considered as an evolutionary process of a network, 
then i G quantifies the life-time or the evolutionary state of the network. For example, 
the functional human braiir network of a newly born baby is approximately random­
ized, with pu~0. The learning process rewires the brain and changes p / j . Suppose that 
learning during growth increases po in that it structures the functional braiir, then 1 - rc; 
measures the effect of learning. The maximum possible trained functional brain pos­
sesses an assortati\'ity of maxpo, which corresponds to learning efficiency i - equal 
to 1. 

3 . 3 . ASSORTATIVITY O I COMPLEMENTARY GRAPHS 

3 . 3 . 1 . R E L A T E D B Y D E G R E E S E Q U E N C E 

A node / with degree d, in graph G has degree N-\~ d; in the corresponding comple­

mentary graph C". All connected node pairs in are non-connected node pairs / j 

in G. Therefore, the assortativity of the complementary graph can be written from (3.1) 

as 2 

„ Li^A'^i-'h) 
P D ( G ) - 1 T: 

I (AT - 1 - ,/,)3 - ^ ^ ^ ^ ^ [ l ( N - l - chf 

where dj refers to the degree of node / in the original graph G. The variance Var|D] = 
(7^ [D\ of the degree D of an arbitrary node' can be written as a function of the degree 
differences between afi node pairs 

j=2k=\ 

which is derived in [12]. Furthermore, since 

N 

2 

N 
2 N^a^ ID\ = {E[D^] - [D]) = N d'f ~ 4L 

(where E denotes expectation and L the number of links in the network) we have 

j : [ d j - d j f + j : { d , - d j f = N Z d ' f - 4 L ' 
i~J iooj i=l 

'We use capital letters fur random variables and small letters for specific realizations. 
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Hence, 

1=1 \i=i 

1 
NiN-D-ZI. 

N 

1=1 i=l 

L {N-\-dif 

where (3.1) has been introduced. 

I 
W ( A f - l ) 

N 

\ / = l 

(3.3) 

3 . 3 . 2 . R E L A T E D B Y D E G R E E D I S T R I B U T I O N 

We can rephrase expression (3.3) in terms of random variables. According to [4|, 

A' 

1 
Y i N - l - d i f - - -
S i V ( A ' - l ) - 2 L 

/ N 

3 _ J _ 
2L 

I N \ 

Ldf 
\i=\ j 

ZiN-l-diV 
i=\ 

•2Lo^ [D,+ (G)] 

(N(N~l)-2L]cj- [D,.(G')\ 

N 

N]2d'f-AL^^N'^a^[D] 
1=1 

where cr'̂  [D/+ (G)] and [D/+(GO] are the variances of the degrees at one side of an 
arbitrary link in G and in C , respectively Thus, (3.3) becomes 

PD{G')^-PD{G] 
2La'^ [D/+(G)] 

+ 1 -
N'^a^ [ 0 ( G ) ] - 2 I a 2 [D,+ (G)] 

iN{N-l]-2L)o-[D,,[Gn] {N{N-l)-2L)a^lD,.iGn] 
(3.4) 

whieh holds for any graph. Observe that, except for PD(G), all factors and terms in (3.3) 
and (3.4) are constant for a given degree vector. This means that die assortativity poCG'') 
ofthe complement G^ of a graph linearly varies with the assortativity poiG) ofthe graph 
G, and vice versa. 

Theorem 1 The assortativity relation betiveen coniplementaiy graphs (3.4) can be further 
expressed as a function of the degree distribution PvlD - fc] in the original graph G where 

2La^ [D,+ (G)] 
EID] 

(Ar (N- l ) -2L)c r2 [D,+ (G'-')] (N-\]^-FAD-]~{N^iy^E2lD\ + iN-\)BlD-^]f-iD\~E'-^Ufi] 
IN-1-E\D\) -E\D'^ 

(3.5) 

NE[D'^] - NE^ID] - E[D^] + {̂ĝ  N^a^ lDm-2La^lDl. (G)] 

(N(N-l)-2L)o''^\DH(Gn\ " (N~lfi;\D-\~(N-l)2E^D\ + (N-l)E\Ly]ElDi~i;--l\D-^\ 

{N-\~E[D]) EID^] 

(3.6) 



'12 3. ASSORTATIVITY OF COMPLEMFNTARY GRAPHS 

Proof. See Appendix 3.7. • 
Relations (3.3), (3.4) and Theorem 1 are equivalent and exphcitly reflect how the as­

sortativity PD(G'̂ ^) and PD(G) of complementary graphs are linearly related. 

3 . 3 . 3 . B O U N D S F O R T H E A S S O R T A T I V I T Y 

Given a degree distribution or degree sequence, the assortativity poiG) of a graph may 
range within 

- f < m i n p / j < PL)(G) <maxpD < 1 

and, likewise, the assortativity of its complementary graph pD (G"-') may vary within 

- 1 < minpo £ PoiG' ) < maxp^ < 1 

where maxpo and min po (maxp^ and minp^) are the maximum and minimum achiev­
able assortativity of the (complementary) class of graphs with a given degree vector d. 

When PoiG) = - 1 , (3.4) shows, that 

41(7^ [D,+ (G)] < TV^CT^ [D{G)] < 2Af ( /V- DCT^ (G' ' )] 

and, when P D ( G ) = 1, Üiat 

N^a^ [D(G)] < 2 iN{N- 1 ) ̂  21) [D,. [&-')] 

Thus, if mi l l PD = - 1 andmaxpo = I , 

4La^ |D ,+ (G)] < Af^f j" [D(G)| < 2 (N[N- 1 ) - 2L)cr [ D , + ( G ' ) ] 

Alternatively, after inverting (3.4), 

{N{N-l)-2L)a^\DiAG')\ 

^ ^ f ^ ^ = 2LaHD,.iG)] ^'^'^'^^ ^'-'^ 

N^a^ |D(G)] - (N(N - 1) - 2L) |D,+ (GQl 

2Lc72[D,+ (G)] 

we flnd the bounds for the assortativity and disassortativity of any graph G, 

{N{N-l)~2L)a'lDi. jG')] 
vniin ^ PDiG) S t„,n + LaHD,AG)] '-'-'^ 

where 

_ jV^g^ |g(G)] ^ ^ _ A^g' [D(G)] ^ j _ 1 . 1^(^)1 

2L(72[D,+ (G)] p( /V-I)a2(Li ,+ (G)] ~ p'aHD,AG)] 

Thus, we conclude that 

mlnpn > max(-I,rmin) (3.10) 

2 ( l - p ) a'[Di.{G')r 

'J ' ( T 2 [ £ ) , , ( G ) ] 
maxpD < min 1, rmi„ + 
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where p = L/(^') is the Unk density. The assortativity range 0 < maxpo - minpo < 2 of 
the class of graphs G and the assortativity range 0 < maxp^ -minp^ , < 2 of its comple­
mentary class can be related by (3.4) as 

(max p ^ - m i n p,^,] 
2La2 [ D , . . ( G ) ] 

mN - 1) - 2L) a2 ID,. (G -̂)l ^""^P^ " " " " ^ " ^ '^.11) 

or, inverted 

(maxpD - m i n p o ) = - l ) (maxp^ - minp^) (3.12) (T2 [ D / + ( G ) ] 

where both C72 [D,. (G^)] and ^ 2 p , , (g)] have been expressed as a ftmction of the de­
gree distribution ofthe original graph in Appends 3.7. The assortativity range maxpo -
mmpD is small if (a) the variance [D,. (G ' ) j is small, (b) [D,. (G)] is large and/or the 
hnk density p is high (close to 1). 

J . 1 i — 1 I f l ! ...^ 

- 0 

- 0 

J ) 0 fIJ 0 fp 0 

0 

0 

1 1 1 

. Ü 2 . 2 24 K 3 . 1 1 3 , 2 3 4 

a 
(a) 

E[D] 
(b) 

Figure 3.1: The ratio A - Zllp^Znp'i ^^''^t*'' "'"'^ " = 1""™ ''"^^'^ a"d with a power-law degree distri­

bution versus (a) the exponent a ot"the degree distribution and versus (b) the average degree £[D]. 

"JliCiG)] ^^'"^^ ^^'^^ extensively analyzed in Appendix 3.8, in general as 

well as in graphs with a binomial or a power-law degree distribution. Wlien a graph 

has a binomial degree distribution Pi[Dc, = k\ = {'^'J)p''[l - p)^"'^^', "^''d ^ ^ 

derived both in Section 3.4.1 (rigorously) and in Appendix 3.8 (asymptoSal'lyr When a 

graph has a power-law degree disUibution Pr[ D = k] = ck^" , where c = 1 / I ^ j / k'" and 

J\DI%)] 0 if *e graph is large and sparse as proved in Appendk 3.8. We 
ftirther quantitatively investigate the assortativity range ratio 

maxpo - minp/5 

maxp^ -minp^ , 
[Di.jG')] 

\D,.{G)] 

in graphs with a power-law or binomial degree distribution. In binomial graphs, A = 
- - 1 . In graphs with Af= 10000 nodes and with a power-law degree distribution, the ratio 
A, expressed as a function of the degree distribution, can be numerically computed. We 
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consider power-law graphs with an exponent 2 < a < 3.5, since most real-world graphs 
have 2 < a < 3. As shown in Fig. 3.1 (a), the ratio of the assortativity range A increases as 
the power exponent a, or the heterogeneity increases. The assortativity of the compli-
inent may still vary within a certain range upbounded by 2/A when 2 < o- < 3, whereas 
2/A goes fast to zero when a > 3. The Unk density is smaUer for a larger exponent a. 

Hence, the ratio A decreases as the average degree/link density increases, as depicted in 
Fig. 3.1(b). 

In general, a sparse network, favors a large assortativity range. This effect of a (small) 

link density' is more evident in graphs with a binomial degree distribution than that in 

power-law graphs, since "^)yo,Acr)] smaher in power-law graphs. As shown in Fig. 

3.3 and 3.4, a power-law graph, indeed, has a smaller assortadvity range compare to the 

binomial graph with the same link density. 

When p is large, a non-trivial bound can be derived from (3.12) 

(1 ^\a^ [D,AG')\ 

Most real-world networks are sparse. However, hierarchical network at a higher aggrega­
tion level or the unweighted networks transformed from the original weighted e.g. brain 
and biological networks, likely have a hnk density 0.5 < p « 1, as discussed in Section 
3.2. The assortativity of such a dense network can be derived from its complement with 
less computadonal complexity by the assortativity relation (3.3), (3.4) or Theorem 1. A 
non-trivial bound of the assortativity range tends to be achieved via the assortativity 
rairge relation (3.12). When p — 1, the range of variabUity in the degrees of a graph with 
a number of links L ~ 0(A/2) is narrow and the assortativity is close to zero as iUustrated 
in Fig. 3.6. 

3 . 4 . GRAPHS W I T H A BINOMIAL DEGREE DISTRIBUTION 

Consider the class of graphs G(7V, p) with a binomial degree distribution PrlDc = fc] = 

\^N-i^pk^^_ p ) N - i - t characterized by N and p as in the Erdös-Réiryi (ER) random graphs 

GpiN). Its complementaiy class of graphs G(N,1 - p) also possess a binomial degree 

distribution PrlDc = fcl = ("^T^jd - p)^ p''^'"'"'' with parameter N and 1 - p as followed 

by the ER random graphs Gi-p iN). The assortativity of connected ER random graphs is 

zero 14]. However, the assortativity of graphs like G(/V,p) conditioned only by a degree 

distribution can vary whh in a large range. Besides its theoretical beauty, the binomial 

distribrttion has been observed in e.g. peer-to-peer networks 113] and the unweighted 

functional brain neUvorks 111]. 

3 . 4 , 1 . A S S O R T A T I V I T Y O E C O M P L E M E N T A R Y G R A P H S 

We first explore the relation between the assortativity poiGiN.p)) and po(G''{N,p)) = 

po(G{N, 1 - p)) of two complenrentary graphs each having a binomial degree distribu­

tion characterized by (N, p) and (N, 1 - p) respectively based on Theorem 1. 
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For a binomial degree distribution PrfDc = k] = [ j. )p^"(l - p)'^"'"'-', it follows that 

E[D^\ = {N-l)pa-&p + 3Np + 6p^-5Np^ + N^p^) 

ElD^] = {N-l)p{l-2p + Np) 

ElD] = {N-l)p 

Subsdtuted into Theorem 1 and further into (3.4), we find 

(T2 [Z),+ (G)] 
= 1 (3.14) 

PD{G'{N,P)] = poiGiN, l-p)) = -J^po{G[N,p)) - 7 — ^ - (3.15) 
1 -p {N-2){l-p) 

If a graph with a binomial degree distribudon is assortative PD(G{N, p)) > 0, its comple­

mentary graph is definitely disassortative po [C^iN, p)) < 0, because (jv^zKi-p) ^ ^- "^^^ 

reverse does not hold when N is small. However, the bound 

PD(G(Ar, 1 - p)) < -j^pDiG {N, p)) 

is attained asymptoücally for N ^ OD, 

lim P D ( G ( A ^ , 1 - P ) ) = - - ^ l im poiGiN.p)) (3.16) 

N^oo 1 -p N^oo 

Moreover, from (3.16), we obtain the bounds 

j 1\ ( 1 \ 

max -1,1 < hm PB(G(AT,») ) < min 1, 1 (3.17) 
i pj \ p j 

demonstrating that l imAr -oo ,p^ i PD{G[N, p)) = 0. In other words, the linear degree cor­
relation coefficient of the complete graph is zero. Only for p > i , these bounds (3.17) are 
non-trivial. When p is small, a large assortativity range can be expected. 

3 . 4 . 2 . M A X I M U M A N D M I N I M U M A S S O R T A T I V I T Y 

Given a class of graphs with a binomial degree distribudon Pr[DG = k] = ('^j^^jp^^d -

p^N-i-k^ the maximal and minimal achievable assortativity is denoted by maxp{N,p) 

and vainpiN, p). The complementary class of graphs achieve the maximal and minimal 

assortativity m a x p [ N , l - p ] and m i n p [ N , \ - p ) . Relation (3.15) shows that m a x p ( N , \ -

p) = - y ^ minp(Ar, p) and minp[N, I - p) = - m a x p ( ] V , p). Thus, 

maxp(iV, 1-p) - m i n p ( A f , I - p ) = (maxp(Ar,p) -minp( iV,p) ) (3.18) 

which is a special case of (3.11) for graphs with a binomial degree distribution. When p is 
small, the assortativity range is far larger than that in the complementary class of graphs. 
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0.2 0.4 0.6 

link density /) 

0.8 

Figure 3.2: The average maximum maxp(iV= 100, p) and minimum minp(JV= lOO.p) assortativity of graphs 

with a binomial degree distribution versus the link density /i. Verification of (3.IB): ^maxpiN.p) = 

minp(W,p). 

The complementary classes of graphs G{N, p) and G{N, I - p) both follow a binomial 
degree distribution. They differ orhy in link density p. A small link density p contributes 
to a wide range of assortativity as Ulustrated in Fig. 3.2. 

Most real-world networks are mosdy sparse. Thus, their assortativity ranges expected 
to be larger than that of tiieh corresponding complementary graphs according to (3.12) 
and (3.18). Furthermore, we wih prove the following theorem: 

Theorem 2 For binomially distributed nodal degrees, the maximum PmaxiN: P) and min­
imum assortativity pminiN, p) teitd to be symmetric aroimd the po = 0 axis for large N. 
Specifically, it holds that 

l im maxp(N,p)-Fminp(A/^,p) = 0 
Af—oo 

when the link density p e (0 ,1) . 

Proof. See Appendix 3.9. • 

Numerical computations in Fig. 3.2, indeed, illustrate that, approximately for finite 

N, 

maxp{N,p) = -minp(A/, p) 

for any link density p. The values of maxp (iV, p) and min p (Af, p) in Fig. 3.2 are computed 
with the exact algorithm explained in [4]. 
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3 . 5 . REAL-WORLD COMPLEX NETWORKS 
This section illustrates how the assortativity of a graph and of its complement changes 
under degree-preserving rewiring, during which the degree of each node in the graph 
does not change. Fig. 3.3 shows that, for an ER random graph witi i N = 500 nodes, 
I = 1984 links and link density p = 0.016, the assortativity of the complement decreases 
much slower than that tiie assortativity of the original graph increases under degree-
preserving rewiring. Relation (3.4), indeed, confirms that the assortativity of the com­
plement must decrease, when poiG] increases. The slower observed speed is due to the 
factor in (3.15) which is smah for a small p. In general, assortativity of the comple­
ment changes much slower than tiiat the assortativity of the original graph changes un­
der degree-preserving rewiring, if the factor (̂ (̂ .̂ ^̂ "̂̂ '̂̂ ẑ'jp̂ ^̂ tGC)] in relation (3.4), which 
is a constant under degree-preserving rewiring, is small. 
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Figure 3.3: Ttie assortativity of tfie Erdös-Rényi random grapti with N = 500 nodes and L = 1984 links and its 
complement versus the numbet of rewiring steps in an assortative degree-preserving rewiring procedure. 

The relation (3.18) and Fig. 3.2 demonstrate tiiat a small link density (as in Fig. 3.3) 
corresponds to a large assortativity range maxp - minp and that the corresponding link 
density 1 - p in tiie complement leads to a small Pmax-Pmin- This also explains in Fig. 3.3 
why the assortativity of tire graph increases much faster than the corresponding decrease 
in the complement during the degree-preserved rewiring process. Fig. 3.4 shows the 
same tendency in a Barabasi-Albert graph [14] of the same size {N and L). 

Fig. 3.5 ihustrates for over thirty real-world complex networks how tiie assortativ­
ity PD lies within the maximum possible range p^ax - Pmin- As shown in the corre­
sponding table 3.1, the link density p = L/ (^) = ^ in these complex networks is small, 
ranging from 4 • 10"* < p < 0.37, such tiiat the bound (3.13) for the assortativity range 
maxp - minp is here not confined by p. We observe that there are 6 strict disassortative 
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Rewiring steps 

Figure 3.4: The assortativity of the Barabasi-Albert random graph with W = 500 nodes and L = 1984 links and 
its complement versus the number of rewiring steps in an assortative degree-preserving rewiring procedure. 

networks, where pmax < 0. The assortativity range in those networks is small compared 
to the majority of complex networks. Moreover, they seem to possess a few very large 
degree nodes and many small degree nodes. So far, we have not found a strict assor­
tative network, where minp > 0. This observation supports the explanadon in [4] why 
most real-world networks favor disassortativity due to a stronger connectivity and higher 
diversity than in assortative graphs. It would be interesting to know whether strict assor­
tative, connected complex networks actually do exist. Assortativity range ofthe comple­
ments of these real-world networks, as shown in Fig. 3.6, are mostly small and around 
zero. This is due to the effect of a large link density p on the assortativity range rela­
tion between complementary graphs (3.12). However, the degree distribution plays an 
important role in determining the assortativity range, which explains possible large as­
sortativity range even in dense networks (e.g. network 11-13). 

3 . 6 . CONCLUSION 
The general relations (3.3), (3.4) and Theorem 1 between Üre assortativity PD(G) and 
PD (G* )̂ of two complementary graphs are considered important new findings. Based on 
these reladons, we furürer derive bounds for the assortativity (3.8) and Üie relation (3.11) 
between assortativity range of two complementary graphs with a given degree distribu­
don. The influence of link density and degree distribudon on the assortativity and on 
the assortativity range of two complementary graphs is explicitly revealed. 

Properties of complementary graphs are widely studied in Erdös-Rényi (ER) random 
graphs, because the complementary graph of an ER random graphs Gp [N] is again an 
Erdös-Rényi random graph Gi_p {N). Actually Üre assortativity of an ER random graph 
is proved in [4] to be zero due to Üre random construcdon. However, constrained only by 
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Figure 3 5: The minimum (minp), orignial (po) and maximum (maxp) assortalivitv for various complex net­
works, described in Section 3.t 1. The values are com)iuted by a heurishc, greedy degr, 
algoritlmi. legree-preservmg rewiring 

a binomial degree distribudon as in the ER random graphs G> [N], the assortativity of a 
graph G{N,p] may vaiy within a wide range. The complementary graph G(yV, 1 - p) also 
possesses a binomial degree distribution, but characterized by N and hnk density 1 - p 
The relation between PD{G{N, p)) and PD(G(A?, 1 - p)) in this case can be simplified into 
(3.16). As a consequence, the maximum and minimum assortati\dty of a class of graphs 
with a binomial distribution are proved to be symmetric, maxp(Af,p) = -mhip(Ar,p) 
and the range maxp(N, p) - mmp(N, p) is shown iu (3.18) to be smaUer for a large p.' 

A degree distribution is normally considered as a first order metric to characterize 
a neUvork, whUe the assortativitj' as a second order descriptor. A narrow assortativity' 
range maxp - minp of graphs with a given degree distribuhon implies that Üre degree 
distribudon alone specifies the other properdes weU and is thus representative Our 
results, (3.12) and (3.18), illustrate that a high link density confines the possible assor­
tativity range more than a low link density This, again, strengthens the importance of 
assortativity as a neUvork characterizer, shice most real-worid neUvorks are sparse. Ei­
nally in over 30 real-worid complex networks, the assortativity range maxp - minp is 
generally found to be large, except for a few sUict disassortarive graphs (maxp < 0). As 
we did not encounter strict assortative graphs (minp > 0), it may be worthwhile to pon­
der whether they exist. Assortativity range reladon 3.12 allows us to derive a non-trivial 
bound in one ofthe Uvo complementary graphs, mosdy the dense one. Exploring a bet­
ter assortativity bound for sparse networks is deemed as an interesting future work. The 
'̂̂ ^^^ (7-[/V(G)] assortativity range relation has been explicitly expressed as func­

tions of degree moments. Eurther quantitative studies on this ratio in neUvork models 
as weU as m real-worid networks wUl provides more insights. 
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NetWork nuniber 

Figure 3.6: Tlie rniuimum (minp), original (p/j) and maximum (raaxp) assortativity for the complements of 
various complex networks, described in Section .3.11. The values are derived from those of Fig. 3.5 by (3.3). 
They can be equivalently computed by the hemistic, greedy degree-preserving rewiring algorithm. 

3 . 7 . PROOF OF THEOREM 1 
Consider an arbitrary linlc / in G with right endnode t . The probability that this link / is 
connected to a node j = with degree k equals 

N 

Pi[D,* (G) = fc] = ^ Pr [node j is t\Dj = fc] Pr [D,- = fc] 

Each link / consists of two half links connected to node /" and node I'''. With the basic 
law of the degree is T.^^i Dj = 2L, we have 

Prfnode j is I^\Dj = fc] = ^ 

Since each nodal degree Dj is distributed as the degree D of an arbitrary node in G, 
Pr [Dj = fc] = Pr [D = fc] and we end up with 

u<r^ rn^ n NkPxlD=k] fcPr[D = fc] 
Pr[D,+ (G) = k] = 

PY[Di.{G') = k]-

2L E[D\ 

fcPr[D = A f - f - f c - ] 

N-\-E[D] 



These expressions aUowus to derive a' \D,.(G)\ and [D,.[G')\ in (3.4) as a hinction 
of die degree distribution Pr[Z) = k]: 

i ? [ D M G ) ] = I - ^ ' " P ^ - ' ^ - ^ ' - g i g ! l 
2L E[D] 

to 2L - EID] 

a ^ [ / 5 M G ) | . ^ f ^ ' ' ^ ' ' ^ ' - ^ ' ' ^ ^ J 
E-lD] 

Similarly, 

EID,. (G'-)l = Y ^ ' P ' " ' - D " ^ - l - f c l ^ i N - l f + EID^] -2(N- \)E\D] 
tn N - l - EID] N-l-ElD] 

E[D\ [G')] = l f + 3(N-l)ElD^]-3{N-lfElD] -EID^] 

N~l-E[D] 

\D,. (G')] = -—--^-^^^N^ifE^o2^ _ ^N_i^ElD'] + [N - 1)E]D'']E[D] 

- (A? - i ) 2 £ 2 j ^ , ^ E]D'-^]E[D] -E^ID'] 

They together, lead to Theorem 1. 

3 . 8 . T H E RATIO < £ f ? p ^ 
[DJ,- (G) ] 

^'^^ -7^(D,+ (G)] f^'''" be written as a hinction of the moments of the degree is the 
original graph G 

CT'(D,+ ( G ' ) ] £ 2 f ^ | 

o-2[D,.(G)] {N-l-ElD]f 

( A f - 1 - £ [ D ] ) 2 £ [ D 3 ] £ [ D ] - £ 2 | ^ 2 j 

We express the variances [D,. (GOl and [D,. (G)] in terms ofthe centered moments 
Pk - E[iD-E[D\) ] for fc > 2. In particidar, denoting the average degree by u = E[D], 
we have that 

£ [ D 2 l = p 2 + p ^ = p^+Var[D] 

i? |7j3] = EiiD - p + p)3] = E]{D - i j f + 3(D - p f p + 3(D - pl/v^ + ^,3, 

= p.3 + p.-'' + 3p2/; = p.'̂  + 3p\/ar ]D] + p,3 
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t'3 

the mean. Then, 

where the skewness ^ measures the lackof symmetry of the degree distribution around 

C72|D,+ (G'-)1 _ r ( / V - l ) p 2 - { p 3 + / i ' + 2m2m} ^2 

p2 _ ^ j ^ _ ^ ^ ( N - l - 2 p ) p 2 - p 3 - p - ' 1 

( N - l - p f ( i V - l - p f i ^ + ^ 2 ( l - p ) 

2 

^ ^ ' (/v-i)(w-i-2,,) [[^ j/^2+ IJ j 

We consider large and sparse graphs such that 

(3.19) 

\ 1 in'2 

When the degree distribution is synrmetrical around the mean such that fiz = 0, 

a^\D,.{G')\ ^ p2 

CT2[D,.(G)] p2-p2 

Moreover, if the symmetrical degree distribution follows a binomial distributioir where 

p = N/:)and|U2 = A/ ( l -p ) , 

a^[D,.{G')] 

CT2[D,.(G)] 

which is the same as (3.14), rigorously derived in Section 3.4.1. 

For a power-law distribudon Pr [D-k]- ck^" and c - ^^_\ = ^ , we have that 

E[D] = p = c l ^ - i f c - f " - " - and = c Z f - / A ; ^ ' ' - % f , where the 
approximation sign is only valid provided a - in> 1. Then, 

Ps = E\[D-pf\=E[D^]- 3pE [D']- p^ 

W - l A f - ] N - 1 C N - I 

A;=l i - l 

For large, but finite Af, we approximate as 

N - 1 

i—1 Jl -1 

" c/.v A f ' - " - l 1-Af '^" 

j . ^ ] 1 - a Q - 1 
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and 

\~N'-" I [ a-2 j fi-4 ^ i - A f l - i r ,1-2 (r-3 

a-3 l-N^-" [ a-2 

For 1 < (T < 2 and large, but finite N, we have 

Simhardy, 

and 

P3 ^ 4-Q •3(2-.a)(:-i-Q)^V (2-»)--'̂ ^ 

i/o _ la-1) /v4-2a 
3-(f (2-(r)-

_1 o (n-1) / \Tl-a (ti-1)^ AT2fl-n'l 

^^2-n)(3-n)^ - j ^ A / . , 3 - a : 
_ ^ _ i £ ^ i V > - o " 4 - a : 3-a (2-0)''^ 

Ps + p^ _ 3-i:r 

iVp.2 4 - a 

_ p ^ ^ ( 3 - « ) ( 2 - a ) ^ „ _ , 

p.p2 (4 -a ) (a -1 ) 

2 Cn:-n2 

Together with (3.19), we have 

("51)2 j ^ ( 4 - n ) ( n - l ) ^ ^ 

When 2 < a < 3, we prove in a similar way that 

0{N~') ^ Ü 
CT2[D,+ (G0] 

f j 2 | D , + (G)] 

3 . 9 . PROOF OF THEOREM 2 
First, we note from (3.15) that 

maxp(G'-(7V, p)) = ^ min p(G(N, p)) • 
1 -p ( N - 2 ) ( l - p ) 

Let7f,v(p) =maxp(7V,p)+minp(iV,p). From (3.15), h follows that, RN{P) = - j z j , R N i l -

P'^'~{N-2]{\~p)- By setting p = | , one obtains iïivlj) = - f l A , ( i ) - ^ , showing that i?Ar(i) = 
4 

V-2' 
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The link density p = e Q is a rational number, which tends to a real number 
l2J 

when TV oo. Assume that maxp(AT,p) is differentiable with respect to p, then so are 
minp(N, p) and i?/v(p). Thus, 

d"RNip) d'- P 

dp" dp"\ 1 -p 

By applying Leibniz' rule, we have for n>l 

d" 

RNH - P) • 
( N - 2 ) ( 1 - p ) 

dp 
/ = () 

/? d"-i I p \ d' 
- — R N { \ - P ) 

[jjdp"-J \ l - p j dpi 

For m > 0, we use ^ ( ^ ) = [i - A.)^ = - ^ [A^) = ( - i ) ' " „ , ( i _ p)-"-^ such 

that 

rf" 

d~p" \ 1 -p 

Hence, 

d"RN[p) 

dp" 

RNH-P) 
p ]d"RN{l-p) ( -1)"»! 1 dJRNil-p) ,i 

1-p dp" Ml 7! dpi 

1-p 

d"RN(l-p] ^ ( - l ) " / d "y^ 1 djRNil-p) j ^ (-1)"4(»!) 

( l - p ) " ^ ' ; è o ; ! dpj ^ ^ ( A r - 2 ) ( l - p ) " + i dp" 

(3.20) 
Setting n = 1 renders 

dRN(p] ^ p dRpjil-p) 1_ 

dp 1-p dp 

Evaluadon at p = g (with i?Af(i) = 

shows that 0. Since 

[ 1 - p r 

- r) yields 

dliwip} I 

:RNil-p)-

'Ip 

( A r - 2 ) ( l - p ) 2 

P=^. 
dp , which 

\p=i 
dp 0, h also foUows from (3.20) that 

d-RN(p) 
dp^ 

d"RN{p)\ 1 = 0 and in fact, by iteration, that 0. The Taylor expansion 

of /fjv(p) around p= \, 

RNip) = £ 
1 d"RN{p] 

to nl dp" 

1\" 
P- RN 

N-2 

demonstrates that R^ip) = maxp(A/,p) + minp(7V,p) = - j ^ . Hence, the maximum 
and minimum assortativity are symmetric around po = 0 when N ^ oo, in which case 
the assumption of differentiabhity with respect to p also holds. This proves Theorem 2. 

3.10. EXAMPLE OF A STRICT DISASSORTATIVE GRAPH CLASS 
Consider the connected graphs in which N-2 nodes have degree /• and the two remain­
ing nodes, 1 and 2, have degree di and dz. Thus, the basic law of the degree tells us 
that 

2L= (Af-2)r-Erfi +r/2 
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There are only two configurations possible that lead to a different sum S = Y.i~j (di ~djf 
in (3.1): (a) when node 1 and node 2 are not mutually connected and (b) when they are. 
In the first case, 

Sx = d]{r~dif + d2{r-d2f 

and in the second case, 

S2 - [dl - dzf + {dl - 1) ()• - dif + [dz - 1) (;• - dzf 

= Si + { d i - d 2 f ~ 0 - d i f - i r - d 2 f 

Now, 

[dl - dzf - [r - dif - [r -d2f = -2 [r - di)[r - da) 

such that 

S, = S , - 2 ( r - r f i ) ( r - c / 2 ) (3.21) 

The basic law ofthe degree 2L =Nr + [di - r) + [dz - r) allows us to eliminate dz, 

Sz = Si+2[r-di) [2L - Nr) +2{r-dif (3.22) 

If r > dl, then it foUows from (3.22) that Sz > Si and, fiirther from (3.21), that then r < ̂ 2-
If r = du then S2 = Sj. If r < di and /• < d2 or /• > di and r > 2̂ , then (3.21) shows that 
S2<Si. 

After choosing the Si configuration, we rewrite (3.1) as 

Po = ^ 

The denominator V in (3.1) is, with 

N 

Yd'f = [N-2)r^ + d^ + d'i 
/•=i 
N 

Yd^ = [N~2)r' + d\ + d^ 
i=l 

equal to 

N _ T ( N 2̂ I, AT _ ,-2 AZ , ^2^2 

Hence, 

Si-V = di[r-dif + d2[r-dzf-[N-Z)r^-d^-di+^^''~^'"^'"-"'^^ 
' ^ 2L 

ft om which 

2L (Sl - 1/) = ((TV - 2) r^ + df + rf| - rlf + rL {2di [r -di] + 2d2 [r - dz) - rL] 
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Using 2L = [N-~2)v + di + dz yields, after some tedious manipulations, 

2L(S^-V) = {dl + dl-r[d,+d2)t 

In conclusion, Si - V > 0 and only zero if di = dz = i: flence, since y > 0 (as shown in 
[4, 12] and since po = {V-Si)/V, we conclude that poi < 0. If Sz > Si, then Sz-V >0 
such that we find a strict disassortative class. The analysis above shows that diis happens 
if c/l < r < dz-

3.11. TABLE OFASSORTATIVITIES FOR COMPLEX NETWORKS 

// Name « L i-:in\ Po Pmin Pmax Ap 

Proteins 
1 lAOR 97 212 4.37 0.412 -0.959 0.955 1.91 
2 la4j 95 213 4.48 0.129 -0.959 0.992 1.95 
3 latn .SOLS 5128 2.05 -0.4.53 -0.778 0.977 1.75 
4 leaw 53 123 4.61 0.209 -0.952 0.965 1.92 
5 3CIO 1056 1966 2 12 -0.495 -0.842 0.979 1.82 

Software call graphs 
6 AbiWord 1093 1765 3.23 -0.0777 -0.33 0..309 0.639 
7 Digital Material 187 269 2.88 -0.179 -0.516 0.235 0.751 
8 MySql 1500 4202 5.60 -0.0825 -0.21 0.0521 0.262 
9 VTK 786 1370 3.49 -0.191 -0.418 0.309 0.727 
10 XMM S 1097 1894 3.45 -0.0809 -0.627 0.848 1.48 

Food webs 
11 Everglades 69 880 25.5 -0.298 -0.584 -0.0462 0.538 
12 Floi idu 128 2075 32.4 -0.112 -0.565 0.19B 0.761 
13 St Marks 54 350 13.0 -0.232 -0.467 -0.0361 0..I3I 

Telecommunications networks 
14Afil'ANET80 71 86 2.42 -0.201 -0.824 0.845 1.67 
15 Sitrfiiet 65 111 3.42 0.229 -0.916 0.950 1.87 

lilecd-otiir circuits 
16s20B 122 189 3.10 -0.00201 -0.729 O.B45 1.57 
17 s420 252 399 3.17 -0.00591 -0.657 0.783 1.44 
18s038 512 819 3.20 -0.03 -0.483 0.507 1.05 

Peer-to-peer networks 
19 Gnutella 1 737 803 2.18 -0.193 -0.582 0.848 1.43 
20 Gnutella 2 1568 1906 2.43 -0.0946 -0.122 0.0211 Ü.101 
21 Gnutella 3 435 459 2.11 -0.33 -0.351 -0.141 0.210 
22 Gnutella 4 653 738 2.26 -0.246 -0.259 -0.168 0.0913 

Power grids 
23 Western Europetm power grid level 2 AL 3690 4206 2.28 0.0649 -0.2.S9 0.958 1.22 
24 Westei ii Hiii opean power grid level 3 AL 756 78C 2.0Ö 0.00648 -0.273 0.497 0.770 

25 Western US ])0wcr grid 4941 6594 2.67 0.00340 -0.695 0.975 1.67 

Miscellaneous networks 
20 American football contest network 115 613 10.7 0.162 -0.713 0.924 L64 
27 C. elegans neural network 297 2148 14.5 -0.163 -0.449 0.149 0.598 
28 Dolpbiii social iretwork 62 159 5.13 -0.0436 -0.979 0.895 1.87 
29 Dutcb football player co-appearance netivork 685 10310 30.1 -0.0634 -0.95 0.897 1.85 
30 Les Miserable co-appearance network 77 254 6.60 -0.165 -0.746 0.202 0.949 
31 Network science collaboration network 1461 2742 3.75 0.462 -0.638 0.935 1.57 
32 Western Em opean r ailway network level 2 AL 697 785 2.25 0.0954 -0.642 0.963 1.01 
33 Word adjacency network -Ia])anese texts 2704 7998 5.92 -0.259 -0.321 -0.204 0.117 
34 Word adjacency rretwork - Ilavid Gopperfreld 112 425 7.59 -0.129 -0.598 0.147 0.745 

Table 3.1: Various real-world networks whose inaxitrium and minimum assortativities were computed heuris-

lically by greedy degree-preserwng rewiring. Although the heuristic algorithm cannot guarantee to find the 

optimal assortatixdty results, it achieves results that ate close to that of the e.xact algorithin. 
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O P T I M I Z A T I O N A L G O R I T H M S 

P R O D U C E G O O D R E S U L T S ? 

Wynand WINTERBACH, Dick DE RIDDER, Huijuan WANG, 
Marcel REINDERS, Piet VAN M I E G H E M , 

4 .1. ABSTRACT 
We consider algorithms for generating networks that are extremal with respect to de­
gree assortativity. Networks with maximized and minimized assortatixdties have been 
studied by other authors. In these cases, neUvorks are revdred whilst maintaining their 
degree vectors. Althotigh rewiring can be used to create networks with high or low as­
sortativities, it is not known how close the results are to the true maximum or minimum 
assortativities achievable by networks with the same degree vectors. 
We introduce the first algorithm for computing a netw^ork with maximal or minimal as­
sortativity on a given vector of N valid node degrees. We compare the assortativity met­
rics of networks obtained by this algorithm to assortativity metrics of networks obtained 
by a greedy assortativity-maximization algorithm. The algorithms are applied to Erdös-
Rényi iretworks, Barabasi-Albert and a sample of real-world networks. For the Erdös-
Rényi and Barabasi-Albert networks considered, we flnd that the mean difference ofthe 
assortativity metrics produced by the two methods decreases faster than 0(Af- ' ' ) . We 
also find that the number of rewhings considered by the greedy approach must scale 
with the number of liihcs in order to ensure a good approximation. 

This chapter was published in The European Physical Journal B 85, 5 (2012) U j . 

5^] 



6 0 4. G R E E - D Y ASSORTATIVEt Y OPTIMIZATION 

4 . 2 . INTRODUCTION 

Networks play an ever4arger role in the analysis of various systems. Examples are bio­
logical systems, social networks and computer networks. Conrparison of such networks 
is difficult since they vary in size (both in node and link counts) and link configurations. 
Topological metrics provide one way of comparing different networks by encoding tlieh 
properties as scalars or vectors: nvo networks with simhar metrics could be considered 
equivalent, depending on the context. 

Degree distributions of networks are an often-used metric for characterizing net­
works. Such first-order descriptions are not always enough to describe the topology of 
networks. Thus, it may be necessary to consider second-order measures in addition to 
degree distributions. One such measure is Newman's degree assortativity |2] (a special 
case of assortative mixing [3]), a relatively new metric that measures the extent to which 
nodes with shnUar degrees are connected by links. The limits of this metric are not yet 
as well studied as those of other metrics. Extremal graph theory provides a framework 
for studying these limits. A typical approach in extremal studies is the generafion of 
networks that are extremal with respect to the metric being studied. As an example, in 
Wang et al. [4], the mfcdmum and minimum assortativities achievable by networks with 
binomial degree distributions are shown to vary greatly with the densities of the net­
works. This is a non-obvious resrUt, Ulustrating that assortativity measures have to be 
considered relative to a given network structure. We consider two methods for obtain­
ing networks with maximal degree assortativity subject to fixed degree vectors: a greedy 
algorithm based on link rewiring and an exact algorithm based on weighted /;-matching. 

Watts and Strogatz [5| introduced link rewiring as a technique fbr generating ran­
dom networks. During rewiring, a link is chosen at random and one of its end-points is 
replaced by a random node in the same network provided that no self-loops or dtiphcate 
links are introduced (that is, the network must remain simple). Due to the way that re­
wiring works, the node and link couirts are invariant. Evans [6] and Lindquist etal. |7] 
exploited this property and studied rewiring as a mechanism for optimizing metrics sub­
ject to fixed node and link counts. 

Degree-preserving rewiring is a restricdon of link rewiring where a pair of links is 
chosen at random and a random end-point from the first link is exchanged for a randoiu 
end-point fronr the second link. Maslov and Sneppen [8] introduced degree-preserving 
rewiring as a technique for generating null models. Their aim was to determine the 
likelihood of features observed in protein-protein interaction networks (relative to the 
null models). By reqtUring that degrees are preserved, the rewiring procedure is able to 
generate random networks that can be characterized by their degree sequences. The 
utihty of this is evident from the fact that two of the most weU-known classes of ran­
dom networks are characterized by their degree distributions: Erdös-Rényi networks and 
Barabasi-Albert networks. 

Degree-preserving rewiring forms the basis of a simple technique for optimizing the 
degree-assortativity of a network (wth a constant degree vector): a number of such re­
wiring steps are applied such that each rewiring increases/decreases the assortativity. 
This is essentially the approach taken by our greedy algorhhm. Menche et al. |9] imple­
mented a heuristic degree-preserving rewiring algorithm based on simulated annealing 
that used to produce networks with maximized and minimized assortativities, focusing 
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on the class of scale free networks. However, as they did not have an exact algorithm, 
they could not compare the results of their heuristic algorithm to exact results. 

In dus paper, we consider the open question of how good a simple greedy assortativ­
ity' maximization approach is. To this end, we present a novel exact algorithm for com­
puting the maximum degree-preserved assortativity of a neUvork. Using ensembles of 
Erdös-Rényi and Barabasi-Albert networks as well as a number of real-world neUvorks, 
we compare results from the greedy algoritiim to diose of the exact algorithm. We show 
that whüe a greedy rewiring process does not, in general, attain optimum assortativity, h 
achieves very good approximations. 

4 . 3 . ASSORTATIVITY MAXIMIZATION ALGORITHMS 

4 . 3 . 1 . EXACT ALGORITHM 

Van Mieghem etal [10] have shown that the assortativity p(G) of a network G(,yK,if') 
with N = \ J/\ nodes and L = \i£\ links can be expressed as 

p(G) - 1 • 

= 1 

Y . i - i { d i - d j f 

^ ! I i ^ ? - 2 ^ & r f f f 
(4.1) 

(4.2) 

where dj is the degree ofthe /-th node and / ~ j means that node i and node j are joined 
by a link. Under degree-preserving rewiring, rf/rf/ is the on/y variable part ofthe ex­
pression, attaining a maximum when the assortativity of G is maximized. Now consider 
the weighted complete netwoik KQ whose nodes have the same labels m.n-z,..., IIN as 
G and in which the hnk e .^{KG) has weight wii, j} = didj. Thus, G is an un­

weighted stibneUvork of KG- Let G„, be equal to G except that h has the same link weights 
as KG (thus, G,„ is simply a weighted subnetwork of KG). The sum ofthe link weights in 
G„, is exactly Ei-j djdj = Zi-j w[i,}). Thus, djdj can be maximized by finding the 
maximum weight subnetwork in KG whose degree vector matches that of G. 

The degree-constrained weighted degree subnetwork problem is equivalent to the 
weighted perfect Z?-matching problem [11] which can be efficiendy computed: for ex­
ample, the algorithm of Mfiler and Pekny [12| has a worst-case time complexity of 
max{0(/VLlogrf,„ax),0(AT2L)} where ri,„iix, = luaxrf,-. Since the algorithm is always ap­
plied to the network KG, L = 0(7V2) rendering the running time 0{N'^). 

We were unable to find any usable implementations of Miller and Pekiiy's algorithm. 
The algorithm is difficult to implement correctly. Consequently we took a simpler route, 
due to Shiloach [13], wherein Z;-matcliing problems are converted to 1-matching prob­
lems. We then apphed Kolmogorov's [14] very fast O(N^) Blossom V matcher. In spite 
of the speed of Blossom V the initial OiN^) transformation resulted in a running time 
of 0(W''), limhing the sizes of the instances that we could investigate. See Supplemental 
Material at ]URL wifi be inserted by publisher] for a description of Shfioacli's transforma­
tion. 
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EigLire 4.1: The only link configurations that permit Ihik rewirings. 

4 . 3 . 2 . GREEDY ALGORITHM 

Like tlie exact assortativity maximization algorithm, the greedy algoritlrm tTiodifies the 
topology of a given network in order to maximize the term X/-; didj in (4.2). As opposed 
to the exact algorithm which computes an eirtirely new link configuration, the greedy 
algorithm increases the term di dj by rewiring pairs of links in a sequence of steps. 

In an optimisfic rewiring strategy, a pair of hnks [u, v\, | w, x\ e i f (G) is selected such 
that (/, ï', w and x are distinct. If g'.Sf(G) aird [w, v] g.I£{G), [ii, u} and {ui,x\ can be 
rewired to (that is, replaced by) [u, x\, [w, v). The four-node configurations in Figure 4.f 
can ah be rewired in tlris fashion. Let dy, rf,„ and d.v be the degrees of ii, v, w, x in 
G. i f -d,id„ - du'dx + dudx + d„,d„ > 0, the rewiring increases the term djdj and 
therefore dre change is made. Otherwise, the rewiring is rejected. There are eleven non-
isomorphic four-node configurations of which only three - those in Figure 4.1 - permit 
pair-vdse link rewiring. Inspection reveals that the symmetry ofthe flrst and last of these 
configurations allow for two possible rewirings, whereas the middle configuration aUows 
only for one rewiring. 

The greedy algorhhm searches the input neUvork for the configurations in Figure 4.1 
whose links can be rewired to increase the assortativity. In each iteration of the algo­
rithm, a random assortativity-increasing configuration is selected to ensure that differ­
ent invocations ofthe greedy algorithm can sample different parts of the rewiring space. 
A simple way to facilitate this selection is to maintain a set R of rewiiable link pairs from 
which selections can be made [R is in fact a network with links from the input network 
as its nodes; the hnks in R correspond to rewiiable link pairs in the input network). Af­
ter a pair of links {ii, v], {w,x] is rewired, all rewirable configurations containing at least 
two nodes in i ii, v, w, x] have to be re-evaluated for rewirabUity. Those that are no longer 
rewirable are removed fi'om R whilst those that become rewirable are added to R. The 
nodes of a rewirable link pair in R induce one of the rewirable configurations in Fig­
ure 4.1. The reason for focusing on rewirable link pairs as opposed to rewirable config­
urations, is that the first and last of the rewirable configurations in Figure 4.1 may be 
rewired in two ways and it is easier to consider each of the two rewirings as a separate 
element in the set R. 

Explicitly maintaining R is expensive, at least initially (before any rewirings) when it 
may be that \R\ = 0{N'^). However, when \R\ is large, keeping track of R is unnecessary 
as there is a good chance of finding rewirable link pairs when randomly sampling links 
from the neUvork. Since not every random sampling will yield a rewirable link pair, sam­
pling is repeated up to a pre-specified number of times s; if a valid rewiring is found, it 
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Figure 4.2: State diagram for the greedy assortativitj' maximization algoritlnn. 

is applied and the algorithm starts with a new iteration. As the greedy algorithm pro­
gresses, the number of rewirable link pairs \R\ decreases, rendering h less and less likely 
for a randomly sampled pair of links to be rewirable. Eventually s random saiuplings 
will fall to discover rewirable link pairs. 

At this point, R can be constructed explicidy since \R\ should be smah enough. From 
this point onwards, aU link pairs are sampled from R and the algorithm proceeds until 
\R\ - 0. The algorithm naturally decomposes into two states. In the first state, links are 
sampled at random fiom the input network; in the second, the set R is constructed and 
links are subsequently sampled from 7?. We refer to the first state as the random selection 
state and the second as the exhaustive state (since it confinues unth no more assortati\aty 
increasing configurations exist). Note that althottgh \R\ may be smah, constructing R 
requires 0(1^) time, as all link pairs have to be enumerated. 

The execution time on a large network is considerable and therefore such an exhaus­
tive state is impracdcal for real-world assortativity-maximization algorithms. Our moti­
vation for including it was to study whether algorithms without exhaustive states might 
miss good, difficuh to find solutions. The exiiaustive step is optional in our greedy algo­
rithm, allowing exhaustive and non-exhaustive results to be compared. 

Combining all of this leads to the state diagram in Figure 4.2. When the exiiaus­
tive state is skipped, the greedy algorithm is a simple optimization algorithm whose re­
sults are unlikely to best those of more sophisticated algorithms, such as the algorithm 
of Menche et al. [9]. Wlien the exhaustive state is engaged, our algorithm has the op­
portunity to find rewirings that will be missed by algorithms based on random hnk pair 
selection. 

4 . 4 . APPROACH SETUP 

4 . 4 . 1 . DATA SETS 

We investigate ensembles of Erdös-Rényi and Barabasi-Aibert networks, as well as a 
number of real-world networks. Erdös-Rényi networks [fS] are a 2-parameter family of 
random neUvorks denoted Gp[N). The parameter N is the number of nodes in the net­
work whUst the parameter p is the probability tiiat a pair of nodes are connected by a 
link. We considered networks of size We {25,50,80,100,150,200} and p e [0.05,0.95]. We 



4. GREEDY ASSORTATIVI TY O I ' T I M I Z A T I O N 

also considered networks of size TV e {250,300,350,400,450,5001 for p = 0.05; we were 
forced to Umit p due to the excessive computadon time required for larger p. 

Barabasi-Albert networks |!GJ are a 2-parameter fanhly of random scale-free net­
works. As before, the parameter TV denotes the number of nodes in the neUvork. The pa­
rameter in represents the degree of nodes added in the growth process (Barabasi-Albert 
networks are grown one node at a time). For these networks, we considered instances 
with TV e [25,1000] (including most values of TV for which the Erdös-Rényi experiments 
were computed) and ni e {2,3,4}. 

Random neUvork ensembles were constructed for each pair of paratrieters: {TV,p) 
for Erdös-Rényi neUvorks and {TV, /??} for Barabasi-Albert neUvorks. With the exception 
of a few cases, at least 10'' ensemble instances were generated for each parameter pair. 
Only 10̂  Erdös-Rényi neUvorks with TV = 200 and p > 0.1 were generated due to the long 
running times required on these networks. 

The real-world networks that we considered come from a number of different do­
mains and include protein-protein interacdon networks, software call graphs, food webs, 
telecommunications neUvorks and electronic circuits. 

4 . 4 . 2 . ALGORITHM SETUP 

The greedy algorithm was executed in both its exliatistive and non-exhaustive modes. 
In the non-exliaustive mode, we considered various upper bounds to the number of 
random samplings: i- e [100,1000,10000,100000}. In the exhaustive mode, s = 100000 
random samplings were allowed before the algorithm switched to the exhaustive state. 

4 . 4 . 3 . MEASURED DATA 

We considered the means and standard deviations of the differences between the assor­
tativities as computed by the exact and greedy algorithms for each network instance (in 
a given ensemble of networks). A simple approach is to consider E]p - p'\ and Var(p -p']. 
Here, p is a random variable representing the maximum assortativity of an ensemble of 
networks as computed by the exact algorithm. SimUarly, p' is a random variable rep­
resenting the maximum assortativity of the ensemble as computed by the greedy algo­
rhhm. Wang etal. [4| show that the range of degree assortativities achievable by networks 
with binonhal degree distributions (which include Erdös-Rényd networks) vary greatly 
with their density and can often be much smaUer thair the possible assortativity range of 
[ - f , I ] . In particular, as the density increases, the range shrinks. This variation in ranges 
skews the restUts, as the absolute differences may appear to be smaU whilst they are in 
fact large relative to the attainable assortativity range. To account for this, we normalize 
the mean and variance by dividing by Elp - po] and Var[p - pnl respectively Here, po is a 
random variable representing the (original) assortativities of networks in the ensemble 
under investigation. 
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Figure 4.3: Means of relative differences in solutions obtained by the exact and greedy algorithms for various 
values of N and p. These plots apply to Erdös-Rénjn networks. Each plot corresponds to a fixed p. 

4 . 5 . RESULTS 

4 . 5 . 1 . ERDÖS-RÉNYI NETWORKS 

RESULTS AS FUNCTIONS OF N 

First, we consider how the performance ofthe greedy algorithm changes as node counts 
increase. The normalized mean differences between the exact and greedy algorithms are 
shown in Figure 4.3 as funcdons of TV for a few representative values of p. Likewise, the 
normalized variance differences for the same values of p are shown in Figure 4.4. 

These plots paint a favorable picture for the greedy approach, as it performs weh 
even when the number of random samplings s is small. The downward slopes corre­
sponding to some of the non-exliaustive results seem to suggest that they improve as TV 
increases. However, the Barabasi-Albert (Sechon 4.5.2) and real-world (Section 4.5.3) re­
sults show opposing trends. It may be Üiat the Erdös-Rényi networks we tested are either 
too small or that the structure of Erdös-Rényi networks particularly favors the random 
link selection scheme employed by the non-exliaustive phase of the greedy algorithm. 

The variance plots in Figure 4.4 show more marked increases than the means plots 
for the non-exliaustive greedy approach. The reason for this is simple: as the networks 
become latger, the non-exhaustive greedy algorithm becomes less likely to find a good 
sequence of rewhings (as there are many more such sequences). However, the plots also 
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suggest a remedy - the algorithm should simply consider more rewirings. 
We fitted the power function y+axr" to each of the exiiaustive restüts and found that 

ah ofthe functions decrease faster than 0{N^"), a > 1.1. This cements the observation 
that one is assured of good resuhs i f the greedy algorithm makes enough rewirings and 
that these results get better for larger networks. 

RESULTS AS FUNCTIONS OF p 

In Section 4.5.1, we considered the perfoimance of the greedy algorithm in terms of node 
counts. Here, we consider the performance relative to network density. The normalized 
differences between the exact and greedy algorithms are shown in Figure 4.5. Starting 
with N > 50, there are peaks and dips around p = 0.5. When the number of random se­
lection trials s is small, the greedy results display peaks, whilst when s is large the results 
display dips. 

A partial explanation for why this happens lies in the nuniber of rewirable configu­
rations available in networks with p = 0.5 and in the probability of finding a rewirable 
hnk pair during random link selection. The number of rewirable configurations in an 
Erdös-Rényi network is approximately: 

3(1 - pfp* + 4(1 - pfp^ -f 3(1 - pfp^ (4.3) 
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Figure 4.5: Means of relative differences in solutions obtained by the exact and greedy algorithms for various 
values of N and /;. These plots apply to Erdós-Rénjd networks. Each plot corresponds to a fixed N. 

[the coefficients count the number of isomorphic networlcs for each of the three con­
figurations). The expression attains a maximum at /; = 0.5 in the range p e [0, l j . Thus, 
an algorithm that is able to find all possible rewirings has ample opportunity fbr max­
imizing the assortatiidty and is less penahzed for bad rewiring choices early in the re-
wdring process. As rewiring proceeds, the number of rewirable configurations decreases 
(non-linearly) and the probability of finding such rewirable configurations decreases to 
the point where the non-exhaustive greedy algorithm whl fail to find them. Thus, while 
there may be many rewirable configurations, they are greatiy outnumbered by tiie total 
number of link pairs. 

Some caveats apply to expression (4.3). First, it is a mean-field approximation of 
the number of rewirable configurations (see Figure 4.1). Second, the expression is not 
valid for networks that have been rewired (since these networks are no longer Erdös-
Rényi network). However, numerical simulations show that when p = 0.5, the number of 
rewirable configurations is indeed maximized (data not sliowm). 

4 . 5 . 2 . B A R A B A S I - A L B E R T N E T W O R K S 

To ensure that the results observed for Erdös-Rényi networks are not merely accidental, 
we also consideied Barabasi-Albert networks. The sparsity of Barabasi-Albert networks 
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alloweti its to investigate nenvorlcs with np to 1000 nodes. The means of the differences 
between the exact and greedy algorithms for Barabasi-Albert networks are shown in Fig­
ure 4.6 as functions of N (for each ni). Most of what applies to the Erdös-Rényi results 
also applies to die Barabasi-Albert results: the greedy algorithm approximates the exact 
algorithm weU and the exiiaustive greedy results tend towards the exact greedy results 
as A' increases. Here, we also fitted the power function y + axr" to the exiiaustive re­
sults, finding the results decrease faster than 0[N~"), a > -1.2. Possibly due to the use 
of larger N or possibly due to the different structure of Barabasi-Albert networks, these 
results depart from the Erdös-Rényi results in one key area: there are subtle but constant 
increases in the non-exliaustive results as N Increases. The implication is that the num­
ber of samplings x performed by non-exhaustive assortativity-maximization algorithms 
must be a function s{N, L) of the number of nodes and links in network. 

4 . 5 . 3 . REAL-WORLD NETWORKS 

Finally, we applied our algorithms to some real-world networks (see Supplemental Ma­
terial at [URL wfil be inserted by pubhsher] for details). These networks are from diverse 
areas, making them a good testbed for confirming the trends observed for Erdös-Rényi 
and Barabasi-Albert networks. The real-world network resuhs are shown in Figure 4.7. 
The networks were sorted in terms of their hnk counts. These counts span two orders 
of magnitude, starting at 45 links at the left and ending with 5128 links on the right. 
The real-world neUvork results confirm our earher observations (albeit in terms of link 
counts). On the one hand, the exhaustive greedy algorithm fares progressively better as 
link counts increase. On the other hand, non-exhaustive runs of the greedy algorithm 
with fixed random sampling bounds .9 fare worse as Af increases (although this is not so 
clear when s = 100000; this is likely because the hnk counts are not sufficient to show the 
same trends as for smaller s). Thus, for increasing link counts, the penalty incurred by 
the greedy algorithm requires increases in s. 
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Figure 4.7: Means of relative differences in solutions obtained by the exact and greedy algorithms for a number 
of real-world networks. 

4.6. CONCLUSION 

In this paper, we performed the first comparative study between greedy and exact al­
gorithms for maximizing the assortativity of networks under the constraint that their 
degree vectors remain unchanged. We have focussed only on the maxiiuizadon of as­
sortativity but our results hold equally for the minimization of assortativity'. A few sign 
changes in our algorithms is all that is required to convert tireiu to miniiihzarton algo­
rithms. We applied fire algorhhms to Erdös-Rényi, Barabasi-Albert and real-world net­
works of vaiying sizes and link configurations. The overall theme is clear: the greedy 
assortativity-maximization algorithm approximates the exact algorithm well. We have 
shown that for all the considered Erdös-Rényi and Barabasi-Albert networks, the aver­
age difference between the results decreases faster than O(N-i ' ) . The results support 
heuristic approaches such as those of Menche et al. [ 9 ] , provided that the number of 
steps 5 is increased as the network size TV increases. Our work raises some interesting 
questions: 

o How many steps ^ does the greedy algorithm require to obtains resuhs within a 
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given tolerance of the exact algorithm? 

« ffow bad can the results of a single greedy algorithm run be? 

» How much better are sophisticated heuristic algoridims than our simple greedy 
algorithm? 

Any approach to these questions would benefit from a faster exact assortativitymtaxi-
mization implementadon, such as the algorithm of MiUer and Pekny [12], Armed with 
such an implementation, one could investigate (hopefifily much) larger neUvorks. 
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5 .1. ABSTRACT 

We study the robustness of networks under node removal, considering random node 
faUure, as weh as targeted node attacks based on network centrality measures. Wlhlst 
both of these have been studied in the hterature, existing approaches tend to study ran­
dom faUure in terms of average-case behavior, giving no idea of how badly network per­
formance can degrade purely by chance. Instead of considering average network perfor­
mance under random failure, we compute approximate network performance probabil­
ity density funcdons as hmcdons of the fraction of nodes removed. We find that targeted 
attacks based on centrality measures give a good indication of the worst-case behavior 
of a network. We show that many centrality measures produce siiuUar targeted attacks 
and that a combination of degree centrality and eigenvector centrality may be enough 
to evaluate worst-case behavior of neUvorks. Finally, we study the robustness envelope 
and targeted attack responses of networks that are rewired to have high and low degree 
assortativifies, discovering that moderate assortadvity increases confer more robustness 
against targeted attacks wlhlst moderate decreases confer more robustness against ran­
dom uniform attacks. 

Tliis chapter was published without its appendk in the lournal of Complex Networks 1, 44 (2013) 11 ]. 
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5 . 2 . INTRODUCTION 

In a world where critical infrastructure is composed of and controUed by complex net­
works, techniques fbr determining network robustness are essential for the design of 
reliable infrastructure. After an architecture-dependent number of failures, a network 
can no longer perform its core function. For example, a telecommunications network 
whose hubs are removed may be partitioned into many disconnected parts, effectively 
rendering communication impossible. Appropriate performance metrics can quantify 
the robustness of a network to such failures. 

Network failure is caused by unintentional failures and intentional attacks. Unin­
tentional failures include human error, manufacturing defects and worn-out mechan­
ical parts. These kinds of faUures appear randomly and are characterized as random 
attacks [2, 3]. Intentional attacks, on the other hatrd, are not random and are aimed at 
maximizing dainage. In the literature, they are known as targeted attacks [4-6]. 

In this paper, we study the robustness of network topologies under various chal­
lenges. We apply our methodology to random network models and real networks. Our 
contributions can be summarized as foUows: (f) instead of only considering a network 
average performance, we perform a more comprehensive and granular statistical analy­
sis which shows how all the realizations of random and worst-/best- case targeted re­
movals affect the network performance, but also how do the realizations differ from 
one another; (2) by studying centrality rankings similarides, we show that some are re­
dundant and degree centralit)' and eigenvector centrality may be enough to evaluate 
worst-case behavior of networks; (3) by changing a network by assortativity optimization 
degree-preserving rewiring, we find that moderate assortativity increases coiffer more 
robustness against targeted attacks whilst moderate decreases confer more robustness 
agaiirst random uniform attacks. 

The paper is organized as foUows. In Secfion 3.3, we review exisdng robustness frame­
works. Our robustiress envelope nretrics are presented in Section 5.4. In Section 5.5 
metric envelopes of random networks as weh as real-world networks are studied. In 
Section 5.6, we consider the extent to which different targeted attack strategies overlap. 
Section 5.7 explores changes to the envelope of a neUvork under degree-preser\dng re­
wiring. The paper concludes with Section 5.8. 

5 . 3 . RELATED WORK 

Network robustness has been studied by a number of researchers but the lack of a com­
mon vocabulary has made cooperation difficult. Several tenus related to robustness 
have been proposed over the last fifty years, including reliabUity, resilience, safety, main­
tainability, dependability and degree-distribution entropy [7-10]. Meyer [11] studied ro­
bustness in the context of his perfoimability framework [12], whUst Cholda et al. ]13] 
surveyed various robustness frameworks. In previous research [14-16|, maintenance of 
connectlvit)' under faUure has typically been used to characterize network robustiress. 
Connectivity has been studied from a probabUistic point of view in the context of graph 
percolation [17, 18] and reliability polynomials [19]. Most probabUisdc studies assume 
that link failures are independent and that faUures occur with the same, fixed probability 

Since the behaviors of topological metrics depend on the characteristics of the net-
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works to which they are apphed, robustness profiles based on these metrics also depend 
on these characteristics. Therefore, researchers have studied robustness in the context 
of various network types. Callaway et al. [20] and Holme et al. [4] have studied the ro­
bustness of random networks and power-law graphs. In parficular, Cohen etal have ex­
amined the robustness of the Internet and other power-law networks under random |2] 
and targeted [6] faUures. Recently the robustness of time-evolving neUvorks or tempo­
ral graphs (21, 22] has been researched in ]3, 23]. A method based on the cumulative 
change ofthe giant component under targeted attacks has been proposed by Schneider 
etal [ZA]. Cefinkaya efrt/. |25] developed a framework for analyzing packet loss relative 
to node and link failure. They consider packet loss under global targeted and random 
failure, as weU as attacks contained within geographic regions. Our approach is similar 
to their approach, although we consider not only average neUvork performance under 
random attacks but the density fimction given the probability that a metric wih assume 
a given value after a giveti fraction of node removals. 

5 . 4 . ENVELOPE COMPUTATION AND COMPARISON 

In this section, we propose a framework to quantify' neUvork robustness. We assume 
that a nem'ork can be expressed as a graph G, defined by a set ..A^ of N nodes intercon­
nected by a set ^ of L links. With this formalism, various aspects of the network can 
be described by means of graph metrics which tire typically real-valued functions of the 
network. 

5 . 4 . 1 . ROBUSTNESS AND THE i?-VALUE 

We define robustness as the maintenance of function under node or link reinoval. In 
this context, ftincdon is measured by one or more graph metrics. As in ]9], we express 
robustness as a real-valued function R of graph metrics, normalized to the range (0,1]. 
A value of R = Q means that the network is completely non-functionaf, whereas R-1 
means that the network is fully functional. 

Here, we consider two different /?-values, computed using the 1) size of the giant 
component and 2) efficiency. The choice of these metrics is arbitrary and it depends on 
the network ftmction. The method presented translates easily to other sets of meUics. 

f ) Size ofthe giant component. The number of nodes in the largest connected com­
ponent of a netwoik. This metric is a measure of the global connectivity ofthe network. 

2) Efficiency. The efficiency (26( of a given network G is the mean ofthe reciprocals 
of aU the hopcounts in a network 

The hopcount hjj is the number of links in the shortest path from node /' to node f f 
there is no path from / to hjj = oo and 1//?,•,,• = 0. This metric gives an indicadon of 
how quickly information spreads through a network. When E[11H] = 0, the network is 
completely disconnected and when E[11H] = 1, it is fuUy connected. 
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5 . 4 . 2 . NETWORK PERTURBATIONS OR CHALLENGES 
A perturbation or challenge P is defined as a set of elementary changes [9]. Elementary 
changes include: (1) addition of a node, (2) removal of a node, (3) addition of a link, 
(4) removal of a link and, (5) in weighted networks, a change in the weight of a link (or 
node). We consider only node removals, but our analysis can be extended to all five 
perturbation types. A realization is a vector [Pi, P2, • • •, f wl of perturbations, where is a 
subset of ;• nodes. In addition, a realization is called successive iff Pi c P2 ^ ••• c Pj^. Since 
every perturbation has an associated /J-value, any realization can also be expressed as a 
sequence of i?-values denoted {fl[A;]los;jis:i, where k is the fraction of removed nodes. 

5 . 4 . 3 . RANDOM ATTACKS AND TARGETED ATTACKS 
Network perturbations are classified either as random (un-intentional) fahures [2] or as 
targeted attacks [4, 5]. 

RANDOM ATTACKS 

Assuming that the nature of the attacks is unknowir and attacks occur independently 
R[k] is a random variable. We employ probabilit)' densit}'function [PDF), which is the 
probability of a random variable to fall within a particular region. The PDF ofthis R[k\ 
is computed using afi subsets of [kN\ (i.e., the integer part of kN) nodes of the set Ŝ ,- of 
ah possible perturbations. The envelope for a graph G is constructed using all /?[fc] for 
Are [ i , 1), where boundaries ctre given by the extreme R-values 

Rj;^;,'|fc] = [minmj^\).vnumj^]) /"/;?(fl|l])] 

and 
«»f«.J[fc] = \max{R\j^]),max(R\j^]) max\R[l\]\. 

Such boundaries can be seen in F I G . 5.1. Although extreme 7?-values give the best- and 
worst-case inetrics for a network after a given nmnber of perturbations, we are just as 
often interested hi the expected 7?-value resulting from k perturbatioirs 

4 f g \k\ = mR[}j\\,E[R\^\\ £|R|1|])]. 

Finally since R\k\ defines a PDF we are also interested in the percentile hnes of R\k\, 
since they enable one to calculate contours that describe the robustness for a given per­
centage of perturbations 

where R,„%[k\ are the points at which the cumulative distribution oiR[k] crosses mlIQQ, 
namely 

R,„̂ „|A-] = r<.P.[R|A-]<r] = ^ . 

We refer to R,„%[fc] as an 77?-percentUe. By definhion R(,%[fcl = i?„,^,j[/c], and fljQgyJfc] = 
7?,„„j.[fc]. The dark-gray areas in FiG. 5.Ia are bounded by low-percentfie lines whereas 
the lighter-gray areas correspond to higher-percenthe hnes. 

In the case where L^AJ nodes in the network are attacked, (̂ j!)̂ rj) /?-values need to be 
computed. It has been showTi that the problem of finding a set of nodes minimizing R\k] 
is NP-complete [27]. For this reason, we perform random sampling to approximate the 
PDF of 7?[A-] and targeted attacks to approximate the maxima and minima of the PDFs. 
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Figure 5.1: Depictions of tlie robustness envelopes defined in Section 5.4. The x-axis represents the fraction of 
attacked nodes. 

TARGETED ATTACKS 

Targeted attacks are perturbations involving vulnerable nodes. In order to determine 
node \ailnerability, the attacker must have some knowledge of the topology of the net­
work under attack. Eor simplicity, we assume that the nodes are ranked once by the 
attacker in order from most vulnerable (most important) to least vulnerable (least im­
portant) and are attacked in that order. 

Centrality measures may provide a set of such rankings. We consider hve different 
measures: (a) node degree; (b) betweenness [28]; (c) closeness [29] and (d) eigenvector 
centrality |30] . In Section 5.6 we study the extent to which these rankings overlap. 

For each of the five centrality measmes and for each graph G, we may obtain two 

successive reahzations: a top realization 1^^'^'"'''[fclliKi-gi resulting hom a perturbation 

.9«,„,, targeting the highest ranking k nodes of centrality ordered list, and a bottom re­

alization {R\fi""^ [Pilosis:] resulting from a perturbation targeting the lowest ikN\ 

ranked nodes. 

5 . 4 . 4 . COMPARISON OF NETWORKS VIA ENVELOPES 

Suppose that the same perturbation sequence is applied to two graphs G\ and G2 and 

that the impact of a single perturbation is measured via the metric R. The 7?-values at 

step k are denoted / f [ f * [k] and RJ^ [k] respectively In the simple case where Gi and G2 

have the same number of nodes and i?[f ^ [A;] > i ; [ f ' [A:] Ibr afi fc, it is clear that Gi is more 

robust than G2 with respect to S?. But such cases are rare and we propose Uvo simple 

metrics for comparing the robustness of different sized networks: the energy' and the 
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sensitivity .S .̂ 
Tiie energy S of a grapfi is tfie normalized sum of ttie average i?-values over all ran­

dom perturbations or in the case of targeted attacks, the normalized sum ofthe 7?-values 

^ A = l 

where K = \0^\. Energy expresses how robust, on average, a graph is against a given type 

of attack. For instance, if S^f''' > S^f^K Gi has higher energy than Gz with respect to the 

permrbation P?. Other examples of energy include those computed from the maximal 

reahzation <sj^„\-, minimal realization (S'','*','̂ , expected realization ê'jf^g, and »;-percentile 

realization as illustrated in FiGS. 5.1b-5.1c. 

The sensitivity 5f is defined as the energy increment between the 80-percentile and 
20-percentile realizations 

^ - ® 8 0 % " < ^ 2 0 % - ^^-^f 

The sensitivity indicates how likely the if-value is to shift upon random removals, 
as iUustrated in FiG. .5.1d. The smaller the sensitivity, the narrower the uncertainty of the 
i?-value, thus the better die robustness. The sensitivity together with the percentUes of 
/f-values express the variability of different random attacks in a given network. 

5 . 5 . ROBUSTNESS OF RANDOM AND REAL NETWORKS 
In this section, we study the properties of a variety of random network models and real-
world networks under random and targeted attacks. We expect different behaviors fbr 
different types of networks, leading to a classification of neUvorks based on their energy 
and sensitivity charactenstics. 

We consider four network models with different structural properties: Erdös-Rényi 
networks, Watts-Strogatz networks, Barabasi-Albert networks, and lattices. Erdös-Rényi 
networks |31, 32] are a 2-parameter famUy of random networks denoted Gp(N). The 
parameter N is the number of nodes in the network whUst the parameter p is the prob-
abilit)' that two nodes are connected by a link. Watts-Strogatz W(N, q, p) networks ]33] 
are a family of networks with small-world properties, whose main features are smafl av­
erage shortest paths and high clustering coefficients. Initially a Watts-Strogatz instance 
is a regular ring lattice in which each node is connected to q neighbors. The topology is 
then randomized by replacing, with a probabUity p, an incident node of each link with 
a random node, provided that no self-loops or muhiple links beUveen nodes are intro­
duced. Barabasi-Albert networks ]34] are a family of scale-free networks whose architec­
tures emerge from preferential attachment. Initially a Barabasi-Albert network instance 
has ma nodes. The remaining N - mo nodes are added one at a time, each one con­
nected by m links to already-placed nodes with probabilities proportional to the degrees 
of those nodes. We also consider rectangular lattice networks. A lattice LNXA-/ has NM 
nodes; the central ( 7 V - 2 ) ( M - 2 ) nodes have degree 4; the 2 (AT-EM-2) non-corner nodes 
have degree 3 and the 4 corner nodes have degree 2. 

The instances ofthe neUvork models considered in this paper all have N = 100 nodes, 
except for the lattices. We consider (sparse) networks with L a 500 Unks, as well as (rela­
tively dense) networks with L » 3200 hnks. The parameter choices of our network models 
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are therefore chosen to generate networks with (approximately) these link counts. The 
rewiring probabUity fbr the Watts-Strogatz instances is chosen to be p = 0.1, leading to 
networks with high clustering coefficients and low average hop-counts (this is called the 
small-world regime). The lattice network does not accept any input parameters, hence 
we displayed two arbitrarUy chosen lattices: a square-like with 20 by 20 nodes, and a 
stretched lattice with 100 by 10 nodes. 

Taille 5. ]: Real neUvorks irsed in this paper, ordered by size. 

Network N L Description 

USp 4941 6594 Western US power grid neUvork [33] 

CA 5242 14484 Co-authoiship neUvork [35] 

EUr 8730 11350 Western Europe rai lway network 
EUp 9168 10417 Western Europe power gr id network 

In addition to instances of random network models, we consider four real-world net­
works. First, are die high-vohage power grids of the Western Unhed States |33] and of 
Western Europe [36]. In the remainder of the paper, we refer to these two networks as 
USp and EUp respectively Nodes represent power stations, transformers and generators 
and hnks represent high-voltage connecrioiis between nodes. Second, we study a social 
collaboration netwoik from ArXiv Üiat covers papers joining authors in the field of Rela­
tivity and Quantum Cosmology 135] in the period January 1993 to April 2003. We refer to 
this network as CA. Here, two nodes are joined if the two authors appear as co-authors 
in at least one paper. Finally we consider the Western European Railway neUvork, re­
ferred to as EUr. The nodes in the neUvork represent railway stations and liiUcs represent 
railway tracks between stations. The size of each real network is given in Table 5.1. 

5 . 5 . 1 . THEORETICAL PRELIMINARIES 

Let us denote by G(A'; fc) a network with TV nodes which has had a fraction k of its nodes 
attacked. Before any attacks, the neUvork is thus denoted by G(TV; 0). We are interested in 
calculating the change of the neUvork metric R = as a hinction ofthe percentage 
of attacked nodes fc. Denote by .T the set of nodes that have been attacked and denote 
by the nodes that have not been attacked. Here, Ji^ is the set of all nodes in the 
network. The nuniber of attacked nodes in G(A', fc) is m = IT\ = [fcTVJ and therefore the 
number of nodes that have not been attacked is N-m = \.A''\3'\ -N-\lcN\. 

A metric, such as efficiency whose value is the average over all node pairs is dealt 
with in a similar fashion. Denote by R^j the contribution of a pair of nodes / and ) (?V ] ) 
to the T^-value. If either node / or ; has been removed (that is, / e ST or y e 3'), R/j = 0. 
Thus, 

'^^4iP" ^ ^ 
5 . 5 . 2 . ANALYTICAL RESULTS FOR E R D Ö S - R É N Y I NETWORKS 

Here, we pro\fide analytical results for the robustness of Erdtïs-Rényi random neUvorks 
relative to the efficiency and size of the giant component. In the case of random re-
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moval, where k% of the nodes are discarded, the resulting network has N' nodes of de­
gree 0. The remaining nodes form an Erdös-Rényi random network Gp (N - m] with the 
same link density p because the link between two nodes from .//VT appears with a fixed 
probability p. Targeted attacks afford no such easy analysis, making them much less an­
alytically tractable. 

Efficiency. The average efficiency is the reciprocal of the mean hopcount, which is 

approximately iuj ~ -^^^ for an arbhrary pair of nodes / and in a connected Erdös-

Rényi network [:!7, 38]. Consequently, the efficiency eij for the pair / , ) is e/y = ~ 

' " j i f f . Consider the independent, random removal of k% of the nodes. The resuhing 
network is an Erdös-Rényi neUvork Gp [N - [kND with N' - [kN\ isolated nodes. Thus, 
the efficiency e,y of an arbitrary pair of nodes / and ) is approximately 

HiN-im}p) . . . x/\ 4/' 
lii(W-Lfcwj) .mi i , j E^yy \./Y ^^.^^^ 

0, otherwdse. 
Substituting (5.4) into (5.3), yields 

„ T ln({N-lkN\)p) \na\-k)Np) ^ 
p n / f j ] = ^ ' ' . je> 'V\ ,^ '" ' , 'Vj ' -0 ' ^ ^',./e./V \,.¥',i^j InjN-lkNj) ^ ln((l-<.-)W) ^i.Ja.yVVy'.i^j 1 

iV(iV-l) Af(;v~l) ~ N{N-1) 

hm-k)Np) , , lnai-k)Np) 2 . , 

iV(iV-l) ~ iV2 In(d-A:) AT) ' '^'^^ 

The shape of (5.5) is validated by FiGS. 5.3a and 5.3b. 
The size of the giant component. The size ofthe giant component decreases when the 

network is attacked, as attacked nodes are removed from the giant component. Thus, 

S < 1 - k (5.6) 

where equality holds if and only if all nodes in ..A^\3r form a giant component. An Erdös-
\nN Rényi neUvork Gp (AT) is almost certainly connected if p > pc = ~ , therefore: 

„ , , In(Af-LfcAfJ) 

The function increases with the percentage of attacked nodes k. Thus, 

for fixed values of p and N and large enough values of k, p < '"j^^'^l-^y • As this is the 
connectivity threshold for Erdös-Rényi neUvorks, we find that S < 1 - k. The "dips" in the 
lines R=l-k for large fc in FiGS. 5.2a and 5.2b are manifestations of disconnected giant 
components. As can be seen in FiG. 5.2a, when p is small, discoimection happens for 
smaUer values of fc. The size of the giant component is approximately [37] 

g^l_g-piN-lkNi]S 

which explains the "dip" in the Unear line if = (1 - fc). In the analysis for the size of the 
giant component, we consider R = S, however a slightiy siinilar approach is comparing 
the absolute values by taking 7? = S/S[0], where S]0[ is the size ofthe giant component in 
the original neUvork. Clearly, both approaches are identical i f the original neUvork does 
not have disconnected parts. 
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5 . 5 . 3 . ROBUSTNESS OF RANDOM NETWORK MODEL INSTANCES 

In this section, we inteipret simulation results ofthe random network model instances. 
The properties of the neUvork models considered in the analysis are stated at the be­
ginning ofthis section (Section 5.5). The sinudations have been repeated 1000 times to 
obtain the energy the sensitivity and 7? values. 

SIZE OF T H E GIANT COMPONENT. 

Energ)'analysis: The maximum energies for ah strategies and neUvorks exceed 0.460 (0.5 
is the maximum energy aUainable fbr the giant component, as the slope of fl-value can­
not exceed (1 ~ /c). The 7?-values for the giant component are shown in FiG. 5.2 and 
Table 1 in the online supplement of the paper. For almost all networks, there are se­
quences of node removals that render large giant components. In addidon, lattice net­
works show interesting behavior: there seems to be a phase transition around 50% as 
seen in F I G . 5.2g. After randomly removing more than 50% ofthe nodes, ah the topolo­
gies lose energy at an increased rate, due to the loss of connectivity. This restdt is in ac­
cordance with percolation theory |39], where the critical probabUity of bond percolation 
equals 0.5N. 

Sensitivit)' analysis: Lattice networks display the highest sensitivity, foUowed by Watts-
Strogatz networks Gw/s, Barabasi-Albert networks GBA, and finally Erdös-Rényi networks 
GER (see Table 1 in the online supplement ofthe paper). Erdös-Rényi networks are the 
least sensitive to node removals, suggesting that this topology is the most robust in terms 
the giant component's sensitivity. However, when the hnk density is sufficiently high, 
sensitivity values are siuall for all topologies. 

Targeted versus random attacks: Amongst the random network models, the ratio 
Sininl^iivg attains the highest value for Barabasi-Albert networks (an unfavorable con­
dition), foUowed by Erdös-Rényi networks and finally Watts-Strogatz networks. As with 
effrciency the lattice network has the highest ratio SmiulSuvg for all targeted strategies, 
peaking at 1.42 for node-degree targeted aUacks. Again, this means that, for grid net­
works, the targeted strategies perform worse (on average) than a random strategy. The 
ratio [Sfuax- S,„in)l.!J' is the highest for Barabasi-Albert networks, foUowed by Erdös-
Rényi networks, Watts-Sttogatz networks and lattices. Targeted attacks have the largest 
impact on Barabasi-Albert networks, whilst Erdös-Rényi networks are the least affected. 
Table 5.2 shows that the most destructive perturbations are those based on degree and 
beUveenness centrality. 

EFFICIENCY 

As can be seen from FiG. 5.3, amongst the sparse neUvorks, the lattice has the lowest 
average efficiency energ)', followed by Gws (with = 10). Both of these networks are 
fairly regular (Gws has a low rewiring probability in our paper) leading us to conclude 
that regularity does not confer robustness in terms of efficiency GRA neUvorks are the 
most robust to random attacks as well as being the most sensitive, making them the 
most vulnerable to targeted attacks. Again, GRR networks win in terms of energy and 
sensitivity, making them robust both to random and targeted attacks. 
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Table 5,2: Sinnmary ot the most and least destructive targeted attack strategies on random networks relative to 

the sizes of their giant components. Earger giant components are deemed more desirable. '1'he symbol - means 

"most destructive" whilst + means "least destructive". All considered attacks had approximately the same least 

effect on all networks. As we already mentioned, every attack's maximum /ï-value is above 0.4ti. 

GER Gws GBA Lattice 

Betweenness 

Closeness 

Degtee 

Eigetivector 

Table 5.3 reveals the effect of particular attack strategies on the network inodels. 
Again, node degree and betweenness attack strategies perturb non-lattice networks the 
most, in contrast to lattices where the eigenvector attack strategy is the most disruptive. 

Table 5.3: Summarj' of the most and least destructive targeted attack strategies on random networks relative to 

efficiency. Higher efficiency values are deemed more desirable. The sjTObol - means "most destructive" whilst 

+ means "least destructive". 

GER Gws GBA Lattice 

Betweenness Ritop] RitOp) . R^rop) 

Closeness + RU'OI) + ROJOI] + R^bol) 

Degree - R(">P) R{(Op] 

Eigenvector + RÜ'Ot) + RÜJOt] R(tOp] 

5 . 5 . 4 . ROBUSTNESS OF REAL NETWORKS 
In this section, we compare the robustness profiles of real-world networks to the robust­
ness profiles ofthe network models presented in the previous section. Mairy immerical 
details regarding the energy and the sensitivity are given in Table 3 of the online supple­
ment of the paper. 

T H E SIZE OF THE GIANT COMPONENT 

Some of the real-world networks are composed of several disconnected components, 
leading to initial fl-values that are smaller than 1.0. 

The ratio (Smax - S,,,,-,,)/-^ is the largest for the CA network (27.0), fohowed by EUr 
network (14.0), the EUp network (11.7) and finally the USp network (11.4). Targeted at­
tacks have the biggest impact on the Western Uihted States power grid and the smallest 
impact on the co-authorship network. In addition, the ratio iS',„„x - is in all 
cases higher than for model network ratios (which fah in the range [2.4,9.6]). Real-world 
networks are more easily disconnected than the instances of the random models. 

As before in Section 5.5.2, the most effective attack strategies are the node degree 
and node betweenness attacks. The least effective attack strategy is the node closeness 
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attack (e.g. F I G . 5.4C), which leaves the size of the giant component nearly untouched 
for aU real networks. 

EFFICIENCY 

The network with the highest absolute efficiency value is the co-authorship network. As 
before, this is due to the high link density and the presence of many cliques. Remarkably 
all four real-world networks show rapid decreases in efficiency after only 10% of their 
nodes are removed. This behavior is simhar to that observed for the Barabasi-yUbert 
model: in this case, the removal of = 20% of the nodes causes a large drop in efficiency 
But more importantly the dramatic drop in the 7?-value occurs for both random and 
(most) targeted strategies. F I G . 5.4f illustrates this effect, also seen in the S,ninlSavg 
ratios in the online supplement of the paper (Table 3 there). In conclusion, sparse real-
world networks are easily disconnected, regardless of the type of attack. As with the 
results in Section 5.5.2, the attack w t h the lowest min R-value is the node betweenness 
attack. 

5 . 6 . SIMILARITY OF NODE-CENTRALITY MEASURES 
Centrality measures express the relative importance of nodes within a graph. Different 
centrality measures rank nodes differendy To quantify the simharity of centrality rank­
ings, we define a centrality similarity metric. 

For two node rairkings A = fl(2),..., fl(W)l and B = &(2 ) , . . . , ZJ(N)], MA,Bik) is 
the percentage of nodes in jfl(i), fl(2),..., «(HA'J)! that also appear in {b^l^,b^2],. ..Ji^^tNi)]-

The measure MA,B{k) is different from the scalar correlation of topological metrics [40]. 
When we compare ah the nodes (/c= 100%), we have a fufi overlap and Myi,ij(100%) = 1. 
In other words, M, , ,B(A: ) gives the percentage of overlapping nodes ft'om the top k% of 
nodes in the rankings A and B. For instance, it reveals whether the nodes with the high­
est beUveenness values are also those with the highest degrees. 

The results of M^,ij(fc) for real-world networks are given in F I G . 5.5. From the figure, 
we observe that 

•^closeness, eigenvector (fc) generally has the highest value and that h is closely followed by 

^'^degree,betweermess(fc)- On the Other hand, Mbetvveennes.s, eigenvector (fc) shoWS that there is 
httie overlap between the node rankings derived from the betweenness and eigenvector 
centrality meastires. In both the US and tiie European power grid networks (FiGS. 5.5c 
and 5.5d), Mdegrec , betweenness 

ik) attains large values. On the other hand, in the chation 
and railway networks (FIGS. 5.5a and 5.5b), Mdoseness, eigenvector(fc) attains large values. 

The measure M^.sik) is small when the rankings A and B differ in the nodes that 
are deemed central. In such cases, both centrality measures should be used as attack 
strategies, since each strategy cotüd have a different effect in a network. 

5 . 7 . ROBUSTNESS OPTIMIZATION BY DEGREE-PRESERVING RE­

WIRING 
We demonstrate the use of our robustness ft amework by studying changes in the metric 
envelope of a neUvork as it is rewired (through degree-preserving transformations) in 
order to increase or decrease its degree assortativity [41, 42]. 
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5 . 7 . 1 . DEGREE ASSORTATIVITY 

Degree assortativity measures the tendency of hnks to connect nodes with similar de­
grees. Formally, it is defined [41] as 

yi = N ,3_±,yN J2,2 

where / ~ j denotes a hnk between nodes and nj, rf,- the degree of node and D = 
[ r f i , r f2 , . . . , r f jv l the degree-sequence of the network. The degree assortativity has been 
shown [43] to be an important indicator for the epidemic spread such that assortative 
networks spread are more prone to the propagation of epidemics. Moreover, the close 
relation betweeir the degree assortativity and the modtdarity, which is an indicator for 
network clusterness, has been studied in [44]. 

5 . 7 . 2 . DEGREE-PRESERVING REWIRING 

Degree-preserving rewdring ]42] allows for the modification of the link archhecture of a 
network without changing its degree sequence. In a rewiring step, a pair of links [u, v], 
{w,x] in a network Gis selected such that w, u, w and x are distinct nodes. If («, x] ^5£{G) 
and [w, v] ̂ S£{G), [u, u} and (w, x] ctm be rewired to (thatis, replaced by) {u,x}, [w, v}. 

5 . 7 . 3 . REWIRING ALGORITHM FOR ASSORTATIVITY OPTIMIZATION 

We used the greedy degree-preserving rewiring algorithm of [45] to optimize degree as­
sortativity. In each iteradon, the algorithm samples up to s pairs of links. If a sampled 
pair of links is rewirable and if the rewiring leads to a desired change in the degree as­
sortativity (see Lemma I in [42]) of the network, the change is made. If, after 5 sainpling 
attempts, no such pair of links is found, the algorithm terminates. 

5 . 7 . 4 . EXPERIMENT SETUP 

Using our simple algorithm, we maximized and minimized the degree assortativity of an 
Erdös-Rényi graph as weh as a Barabasi-Albert graph. The number of rewirings needed 
to achieve high or low degree assortativity can number in the hundreds or even thou­
sands. Therefore, it is impractical to study the robustness profiles ofthe networks asso­
ciated with each rewdring step. For each network, we study five snapshots: (1) a rewired 
network whose assortativit)' is ftilly maximized; (2) a rewired network whose assortativ­
ity is halfway between the fully maximized vaiue and that of the original network; (3) 
the original network; (4) a rewired network whose assortativity is halfway between the 
fuUy minimized assortativity value and that of the original network; and (5) a rewired 
network whose assortativity is ftilly minimized. Snapshots of the GER, along with cor­
responding energy and sensitivity changes for the giant component and efficiency are 
shown in FiG. 5.6. The analogues for GRA are shown in F I G . 5.7. 

5 . 7 . 5 . INTERPRETATION 

As assortativit)' is maximized, the Savg of both the giant component and efficiency de­
crease (the black lines in FIGS. 5.(i and 5.7). f n the intermediate assortativity-maximized 
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cases, the decrease is müd, and what these networlcs lose in Savg they gain by lower­
ing the [Smax^Siiui,)l.9' ratio. In other words, intermediate assortativity-maximized 
networks become less robust against random attacks, but relatively stronger against tar­
geted attacks. Finally the assortativity-maximized networks display the lowest average 
energy Saug for both metrics. However, these maximized networks are relatively strong 
to targeted attacks, as depicted by low [Si,,ax ~ S^inXS/' ratios. 

The situation is almost reversed when assortativity is minimized, where Savg re­
mains high while {S,nax - <S„,i„)/.9' ratios dramatically increase: targeted attacks are 
more devastating for assortativity-mmimized networks than random attacks are. In ad­
dition, these intermediate disassortative networks have slightly higher than the 
original networks. Finally GER, whose assortativity is fully minimized is fragile against 
targeted attacks and hs average energy is not particularly good. In contrast, GRA with 
frilly minimized assortativit)'is stih more competitive than its less-rewdred sibling. 

Our observations suggest that networks whose assortativities are moderately maxi­
mized (through degree-preserving transformations) are more tolerant to targeted attacks 
whilst having worse average-case robustness. On the other hand, networks whose assor­
tativities are moderately minimized are more tolerant to random attacks (and less toler­
ant to targeted attacks). These observations match those of Friedel and Zimmer |4(i], 
who researched the role of assortativity in protein interaction networks. 

5 . 8 . CONCLUSIONS 
Within the topological robustness framework [9, 10], we have extended and detaUed 
the concept of robustness envelopes. We studied the robustness envelopes of sparse 
and dense instances of well-known random classes of networks, as well as four real-
world networks. Our envelope approach shows that although networks may have simhar 
average-case performance under attack, they may differ significantly in theh senshivi-
ties to certain attack sequences. We also contrasted robustness envelopes of the studied 
networks to their responses when subjected to targeted attacks. The targeted attacks are 
aU based on node centrality measures. 

We found that targeted attack strategies often lead to performance degradation be­
yond the limits of the robustness envelopes that we computed, leading us to conclude 
that centrality-based targeted attacks are sufficient for studying the worst-case behavior 
of real-world networks. In this regard, our analysis suggests that real-world networks are 
susceptible to rapid degradation under targeted attacks. The overlap between centrahty 
rankings reveals that attack strategies based on different centrality measures may have 
ver)' similar results. We argue that degree centrality and eigenvector centrality strike a 
good balance beUveen differences in attack sequences and in computational power re­
quired. 

Finally we investigated envelopes and targeted attack patterns of networks whose 
structures were modified, tiirough degree-preserving rewhing, to optimize their assor­
tativity. We found that by slightiy increasing degree assortativit)', our networks became 
more resilient against targeted attacks, if somewhat less resUient against random attacks. 
The converse was true when decreasing degree assortativity 

An interesting question for future research is whether it is possible to design an effi­
cient method for increasing die worst-case robustness of a network (through rewhing) 
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without adversely affecting its mean robustness. 
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Eigure 5.2: The iJ-values for the giant component size. The network model considered and its property (tlie 
Unk density p for Erdös-Rényi, the number of neighbors q per node and the rewiring probability p in Watts-
Strogatz and in the number of links of a newly added node in Barabasi-Albert model) is given in sub-captions 
(a) - (h). The .r-axis is the percentage of removed nodes either at random ore according to a centrality measure 
as it is shown in the legend. 



8 0 5. RonusTNBSs ENVBLOPKS OF NHFVVORKS 

Area ki-a 
(g) Lattice 20 X 20 (ii) Lattice 100 x 10 

- • Betweeness Closeness R"""' - Degree R"""' Eigenvector R"''"' 

— Betweeness R"'«' — Closeness R""-' - Degree R"""' Eigenvector R"""' 

"sva "os to "10% Rio% '0 f 20% "20% to R3o% R3o% to R4o% R4o% to Rsoy. 

Figure 5.3: The fl-values for the efficiency. The network model considered and its property (the link density 

p for Erdös-Rényi, the number of neighbors q per node and the rewiring probability p in Watts-Strogatz and 

in the number ot links of a newly added node in Barabasi-Albert model) is given in sub-captions (a) - (h). The 

.v-axis is the percentage of removed nodes either at random ore according to a centrality measure as it is shown 

in the legend. 
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Eigure 5.4: fl-values for the real-world networks. The network considered and the metric reflecting R-value are 
given in sub-captions (a) - (h). The .r-axis is the percentage of removed nodes either at random ore according 
to a centrality measure as it is shown in the legend. 
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(a) Collaboration network (b) European railway network 

(c) US power grid (d) West. European power grid 

Figure 5.5: Similarities of centrality rankings MA,B for real networks. Each plot shows the overlap of nodes 

(y-axis in %) from the first fc% nodes (x-axis) ranked according to centrality ranking A and the first k% nodes 

ranked according to centrality ranking B for a given network. 
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Figure 5.6: The influence of degree-preserving assortativity-optimization on the robustness of an Erdös-Rényi 
network. Robustness is measured relative to the giant component size (lefO and the efficiency (righO. In the 
first (top) row, a rewired network whose assortativity is fully maximized; in the second row, a rewired network 
whose assortativity is halfway between the fully maximized value and that ofthe original network; in the third 
(middle) row, the original network; in the fourth row, a rewired network whose assortativity is halfway between 
the fully minimized assortativity value and that of the original network; and in the fifth (bottom) row, a rewired 
network whose assortativity is fully minimized. The legend is the same as the ones in FIGS. 5.2, 5.;i and 5.4. 
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Eigure 5.7: The influence of degree-preserving assortati-vity-optimization on the robustness of a Barabasi-

Albert graph. Robustness is measured relative to the giant component size (left hand) and the efficiency (right). 

In the first (top) tow, a rewired network whose assortativity is fully maximized; in the second row, a rewired net­

work whose assortativity is halfway between the fully maximized value and that of the original network; in the 

third (middle) row, the original network; in the fourth row, a rewired network whose assortativity is halfway 

between the fully minimized assortativity value and that of the original network; and in the fifth (bottom) row, 

a rewired network whose assortativity is fully minimized. The legend is the same as the ones in FiGS. 5.2, 5.:! 

and 5.4. 
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5 . 9 . APPENDIX: ROBUSTNESS ENVELOPES OF BIOLOGICAL NET­

WORKS 

In addition to the published material in this chapter, we performed additional experi­
ments to bridge the purely topological approach to robustness discussed in this chapter 
and the biologically oriented approach discussed in the next chapter. To this end, ro­
bustness envelopes based on efficiency and giant component size were constructed for 
a number of metabohc networks considered in Chapter 6. The depdi of the technical 
matter in this section is limited as all relevant concepts are thoroughly dealt with in § 6,3. 

5 . 9 . 1 . DATASET AND NETWORK CONSTRUCTION 

The dataset used to construct networks is the genome-wide yeast metabohc model, de­
scribed in § 6.3.4. A minimal metabolic model represents metabolites and reactions act­
ing on metabohtes. Ideally a network representadon models botii metabohtes and reac­
tions. Since an arbitrary metabolite may be involved in many reactions and an arbitrary 
reaction may act on many metabohtes, neither can be represented as a link; instead, 
both metabohtes and reactions are modeled as nodes. A network containing both is 
called a metabolite-reaction network and is denoted GB. Since networks containing mul­
tiple types of nodes are difficult to analyze, simplified networks containing only metabo­
lites (so-called metabolite networks, denoted G M ) or only reactions (so-called reaction 
netivorks, denoted GR) are also studied. In a metabolite network, metabolites that are 
connected by a reaction are linked whilst in a reaction network, reactions that are con­
nected by a metabolite are linked. This simplification comes at the cost of detaU. In 
particular, reaction networks are very dense (since a few highly connected metabolites 
lead to a high number of connections between reactions), rendering them less useful in 
the analysis of robustness of metabolic systems (since dense networks are robust). In 
this appendix, only metabolite-reaction and metabolite networks are considered. 

Many metabolic reactions require the input of energy-carrying metabolites. A small 
set of commonly-occuring metabolites, known as currency metabolites, serve this role. A 
direct network rendering of a metabohc system includes such currency metabolites but 
since tiieir main role is in energy provision ratiier than chemical transformation, we did 
not include them in our metabohc networks. 

Metabolic systems are directional (that is, they have inputs and outputs), implying 
that tiieh network representations ought also to be directed. However, the analyses ear­
lier in this chapter used only undhected networks. To bridge tiie gap, both undirected 
and directed versions of metabolic networks were analyzed. This leads to a total of four 
networks that were analyzed; the networks, along with their basic topological properties 
are listed in Table 5.4. The discrepancy between the number of nodes in the directed 
and undirected versions of the metabolite-reaction network results from the fact that 
bidirectional reactions are represented by two nodes in the directed version whhst each 
reaction is represented by exactly one node in the undirected version. This aspect of 
modeling is more thorougly covered in § 6.3.2.. 
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Network N L 

Metabolite-reaction (directed) 2914 4347 

Metabolite-reaction (undirected) 2368 3154 

Metabolite (directed) 1102 2494 

Metabolite (undirected) 1102 1789 

Table 5.4: Metabolic networks derived from the iND750 dataset |47] and analyzed in this appendix. 

5 . 9 . 2 . ROBUSTNESS-ENVELOPE ANALYSIS 
As with all the other networks in this chapter, robustness envelopes based on efficiency 
and giant component size were computed on the four metabolic networks from Ta­
ble 5.4. There are however two additional aspects to consider: 

Metric calculation on directed networks Efficiency generalizes naturally to directed net­
works, as fire metric on which it is based, hopcount, generalizes to directed net­
works. Giant component size can be defined in various ways in directed networks. 
Here, we are interested in the number of nodes reachable from any given starting 
node, as a crude proxy of the number of metabolites that a metabolic system can 
produce from a given input. 

Nodes to remove from the metabolite-reaction network The metabolite-reaction net­
works are different from the other networks considered in this chapter in that tiiey 
contain two types of nodes, metabolites and reactions. In other words, metabolite-
reaction networks are biparthe and no two metabohtes are connected, nor are any 
two reactions. Therefore, if all metabolites are removed, the network is completely 
disconnected; likewise for reactions. As in the next chapter, we consider removal 
of only metabolites and removal of only reactions but never removal of botii types 
at the same time. 

5 . 9 . 3 . RESULTS AND DISCUSSION 
Robustness envelopes for the directed metabolic networks are shown in Figure 5.8 whilst 
envelopes for the undirected metabolite-reaction network are shown in Figure 5.9. In all 
cases, the giant component envelopes were normalized by dividing with the number 
of nodes in the network whilst the efficiency envelopes reflect tiie real efficiency values 
(since this metric faUs in tiie range [0,1], we opted to forgo normalization to facfiitate 
comparison between the networks). 

Figure 5.10 contains robustness envelopes of undirected metabohte network along 
with robustness envelopes of four rewired versions of tiie network (§ 5.7.4), analogous to 
Figure 5.6 and Figure 5.7. 

The original metabolic networks (Figure 5.8, Figure 5.9 and the third row in Fig-
ure5.10) are similar to (most of tire) real-world networks (Figure5.4) and Barabasi-Albert 
networks (Figure 5.2 and Figure 5.3) in that tiiey are robust against random failure but 
fragUe against targeted attacks. This is demonstrated by fact tiiat the sohd colored lines 
representing targeted attacks faU below the black line and shaded gray regions repre-
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Figure 5.8: fl-values for ffie directed metabolic networks. The network considered and the metric reflecting 
if-value are given in sub-captions (a)-(f). The .v-axis is ffie percentage of removed nodes eiffier at random ore 
according to a centrality measure as it is shown in the legend. 
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senting the effects of random removal. Robustness envelopes for efficiency of metabo­
lite networks (Figure 5.8, Figure 5.9 and Figure 5.10) have larger starting values Üian all 
real-world networks except the co-authorship network, CA, (Figure 5.4) whilst they have 
lower starfing values than Barabasi-Albert networks (Figure 5.7). The differences in net­
work efficiency are explained by die fact that metabolic networks are more dense than 
file real-world networks (except for fiie co-authorship network) whUst they are less dense 
fiian the Barabasi-Albert networks. On the whole, fiie robustness envelopes ofthe meta­
bohc networks do not indicate that fiiey are obviously more robust networks fiian the 
networks considered earlier in the chapter. 

An interesdng difference between the assortativity-optimized metabolite networks 
of Figure 5.10 have larger starting values than all real-world networks except the co-
authorship network, CA, (Figure 5.4) whhst they have lower starfing values fiian Barabasi-
Albert networks (Figure 5.7). The differences in network efficiency are explained by the 
fact Üiat metabohc networks are more dense tiian the real-world networks (except for the 
co-authorship network) whilst they are less dense than the Barabasi-Albert networks. On 
tiie whole, the robustness envelopes of the metabohc networks do not indicate that they 
are obviously more robust networks tiian the networks considered earher in the chapter. 

An interesting difference between the assortativity-optimized metabolite networks 
of Figure 5.10 and the assortativity-optimized networks of Figure 5.6 and Figure 5.7, is 
tiiat, at least in terms ofthe two envelope metrics, the original network (that is, the net­
work corresponding to tiie third row) is inferior to the rewired network with slightiy de­
creased assortativity (fourth row). This suggests tiiat metabolic systems are not neces­
sarily optimized for shortest path lengths (something tiiat was also shown in simulations 
by Arita [48]) nor for connectivity, suggesting tiiat one needs to consider robustness rel­
ative to metrics that matter for biological function. 

Although this robustness envelope study is limited in scope, there are no clear re­
sults suggesting tiiat metabolite networks are topologically special. Of course, molecu­
lar networks evolved in contexts where their architectures contributed to the biological 
function of their host organisms and not in contexts where simple topological proper­
ties were selected for. This does not mean tiiat topology does not play an important role, 
rather, it means that biological function should be tied to topology in order to discover 
the structures that influence biological fimction. This is the approach considered in the 
next chapter. 
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6 . 1 . ABSTRACT 

Biological networks exhibit intriguing topological properties such as small-worldness. In 
this paper, we investigate whether the topologj' of a particular type of biological nettvork, 
a metabolic network, is related to its robustness. We do so by perturbing a metabolic 
system in silico, one reaction at a time and studying the correlations between growth, as 
predicted by fltrx balance analysis, and a number of topological metrics, as computed 
horn three network representations of the metabolic system. 

We find that a small number of metrics correlate wdth growth and that only one of 
the network representations stands out in terms of correlated metrics. The most corre­
lated metrics point to the importance of hub nodes in this network, so-caUed "currency 
metabolites". Since they are responsible for mterconnecting distant fijnctional modules 
in the network, they are important points in the network for predicting i f reaction re­
moval affects growth. A second set of correlations in contrast is related to "loner" nodes 

This chapter was published in N;uio Communications Networks 2, 2-3 (2011) 111. 
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that uniquely connect important pathways and thus correspond to essential steps in 
metabolism. 

Source code and data are avahable upon request. 

6 . 2 . INTRODUCTION 
In the last decade, advances in high-throughput biological measurement systems have 
made it possible to extract large-scale networks from biological systems. Jeong etal. [2] 
were among the hrst to study the topologies of metabolic networks, netwrorks of inter-
conversions of smah compounds. The metabohc networks of the 43 organisms that they 
studied gave evidence of a scale-free structure. Characteristic properdes of these so-
called "smaU-world" networks are their power-law distributed node degrees and their 
small average shortest path lengths. 

Subsequendy, researchers studied the topologies of a number of other types of bio­
logical networks [3-5]. Much ofthis work confirmed the Jeong et al. results: scale-free 
behavior was eveiywhere. Even the Internet and some power grids are diought to dis­
play scale-free behavior [6|. These latter networks have expanded in a seemingly organic 
fashion through a process of preferential attachment - new nodes are more likely to at­
tach to existing high-degree nodes than to low-degree nodes. This expansion process 
forms the basis of f^arabasi and Albert's [6] random network model. They show that it 
leads to the characteristic power-law node-degree distribution and smaU-world proper­
ties. Although Kim etal. 17] and Lima-Mendez etal [8] argue that biological networks do 
not develop through simple processes of preferential attachment, the presence of simi­
lar topological elements, such as hub nodes, begs the question whether these topolog­
ical properties confer some benefit or whether certain topologies are inherently suited 
for particular functionality. 

In an effort to understand the reladonship between the function of a neUvork and 
its topological properties, MUo et al [9] introduced the concept of motifs. A motif is a 
small sub-network (3-5 nodes) whose over-representation may be indicative of its role 
in maintaining ftmction at a local level. They found that certain motifs occur more often 
in biological networks than expected by chance and that they may correspond to certain 
desired behavior such as response acceleration, signal delay and stabUity. PriU etal [10] 
took this idea further and claimed that certain motifs were inherently more prone to dis­
play stable behavior than others. By abstracting away from the underlying functionality, 
they demonstrated Üiat such relations held to some extent over a variety of biological 
networks, fiowever, Ingram etal. [11[ considered gene networks and compared the re­
sults of a differential equation model of gene expression to specific motif counts in the 
gene neUvork but found no correlation. Lima-Mendez et al. [8] argue that global topo­
logical properties cannot explain the function of networks. WhUe they claim that the sig­
nificance of motif frequencies may have been overestimated (since the frequencies only 
capture global properties), they do consider a localized approach to be more promising 
as the key to understanding biological networks lies in understanding local details. 

In our work, we take a global approach and investigate to what extent network topol­
og}' can be related to more systems-level neUvork properties shared by tire various net­
work types studied by Baiabasi et al An interesting property in this respect is that of 
robustness. Stelling etal. [12] and Kitano [13] define robustness as the ability of a system 
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to maintain its function in tfie face of perturbations or uncertainty. Biological systems 
are known to be robust [14] to many forms of perturbation while being highly sensitive to 
other forms, so-called "highly optimized tolerance" [12]. The question is whether there 
is something hi the topology' of these networks that confers robustness to the overall 
system. 

In this paper, we study the relaüonship between the robustness of a micro-organism 
(baker's yeast, Saccharomyces cerevisiae] and the topologies of network representations 
of its metabohc system. Microbial metabolic systems provide a good test bed, since 
an often assumed functional objective - growth - is eashy expressed in ternis of fltrxes 
through these systems. Furthermore, good quality metabolic datasets are readily avah­
able and resulting flux models can be studied computationahy witii high efficacy 

To study the link between network topology and robustness, we propose an sil­
ico metabolic system perturbation experiment. We define robustness as the ability of 
the yeast cell to maintain growth under reaction removals. First, we show how its meta­
bolic system can be represented by tiiree difterent neUvorks. Then, through a number 
of trials, reactions are removed from the metabohc system until growth ceases. This 
provides a number of snapshots of partiafiy "desUucted" metabolic systems. For each 
snapshot, growth and a number of neUvork-wide topological metrics can be computed. 
By calculating correlations between growth and these metrics, we flnd that most of the 
topological metrics are not related to function. The strongest correlations point to the 
importance of both "hub" nodes (so-called "currency metabolites") and "loner" nodes. 

6 . 3 . M E T H O D 

6 . 3 . 1 . COMPUTING FUNCTION 

In this work, we define robustness as the maintenance of cell growth under perturba­
tions to the organism's metabolic system when reactions are removed ft-om the meta­
bohc netwoik. A metabohc system with r reactions and m metabolites is modeled by a 
set of m differential equations: 

dA',- _ 
- ^syiiVsyn - SfiegViii,g~ S,isel^iisc + SfiaiisVirniis (6.1) 

that specify how the concentration A',- of a metabolite / changes in time. Vsyn is the rate 
of metabohte synthesis, v^,g is the degradation rate, y,,,,,, is the rate of consumption (by 
other reactions) and Vfrans is the rate of transport across the cefi boundary (into the cell). 
I'syn, I'ficg and v,ise are generaUy non-linear functions whose behavior is governed by the 
kinetic parameters of the enzymes catalyzing the reactions in which they take part and 
by concentrations of other metabolites. Because the kinetic parameters are not generally 
known aud must be estimated, it is difficult to solve the differential equations directiy 
^'^syiiy -Sf/Bg, Siise and Sirans are stoiciiiometric coefficients^ (reaction rates are measured in 
pinol gDW"' h, i.e., miciomoles per gram of dry weight per hour). 

We assume that s,ra„sV,,nus is a constant value fo,-, aUowing (6.1) to be written in 
vector form as dX/df = S-v-Eb, with S the m x r stoichiometric matrix, v an r x i vector of 

'Tliese are derived from die chemical mass balance coefficients: e.g. 2H2 + O2 - 2H2O corresponds to the 
stoichiometric coefficient vector 1-2 - 1 2|. 
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s = 

Ra Rl. Rc R:, Ra Rl, Rc 

nil '-1 0 0 ^ iih 1 0 0 

-1 0 0 ;?72 -1 1 0 0 
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(a) Tlie sloicliiometric malrix from (6.4). (b) The sloichiomelric matrix from (6.6). 

Flgure 6.1: Stoichiometric matrices ofthe toy problem in Section 6.3.1. 

reaction rates (fluxes) anii b the vector of botinttary transport reaction rates. We will use 
a small example to make the form of S clear (and later to show how networks are derived 
from S). Consider the metabolic system: 

lllx + VIZ Ra 1113 +m4 

31113 +ms Rh ' " 6 + 2/Ï77 (6.2) 

7»3 + 1114 Rc 1117 + IllQ 

The corresponding S matrix is shown in Figure 6.1a. Since each column is labeled by 
a reaction i?,-, we refer to the corresponding flux value in v as i',. At steady-state dX/df = 
0, rendering the hnear system: 

S ' V + b = 0. (6.3) 

Since S and b are constant, v can be determined without any knowledge of enzyme 
kinetics (in flux balance analysis, the unknowns are reaction rates rather than metabolite 
concentrations). Due to the small size of the example, S is overdetermined (i.e., there are 
fewer reactions than metabohtes; opposite of much of systems biology, in fltrx balance 
analysis reacdon rates are unknown rather than metabohte concentations). In real bio­
logical networks however, stoichiometric matrices are under-determined. Such systems 
generally have infinitely many solutions but biologists are only interested in biologically 
significant ones. A common (biological) assumption is that microbial cells attempt to 
maximize the rate of their biomass production or in other words, grov\rth. Growth can 
be expressed as a linear combination c^ • v of certain key reaction rates in the metabolic 
system. The reaction rates can then be computed by a linear program: 

Maximize jj-c^-v (6.4) 

subject to S-v-Fb = 0 

Positive components of v correspond to forward-acting reactions, whilst negative 
components correspond to reactions running in reverse. In (6.4), the components of 
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V may assume negative and positive values meaning that any reaction can, in principle, 
occur in either direction. Due to thermodynamics, some reactions are very unlilsely to 
occur in reverse (in the example, only reaction R,, is reversible). These constraints are 
modeled by restricting rates of non-reversible reactions to be non-negative. Thus for 
each non-reversible reaction R, the constraint VR > 0 is added, rendering the linear sys­
tem: 

In addition, biological constraints l imh the rates of some reactions. These inequal­
ities are simply added to the list of constraints of the linear program. This steady-state 
framev^fork for computing metabolic fluxes by optimizing some criterion is known as flux 
balance analysis. Orth etal. [15] give a good overview ofthe framework. 

TESTING ROBUSTNESS 

We test robustness by iteratively removing reactions and recalculating (6.5) unth growth 
p drops below a low threshold value (1 x 10"^ pmolgDW^^ h). This produces a sequence 
T = {si, S], 52,. •., s,,} which is referred to as the trial T. A step is a reaction label index: 
step Si corresponds to tiie removal of reaction i?,,.. Removal of a reaction is modeled 
by remowng its corresponding column from S. The steps in a trial are associated with a 
sequence of linear programs Po.Pi.Pz,....?!,. where Py is the unmodified linear program 
(from which no reaction has been removed) and P/ is the linear program resulting from 
the removal of the reactions i?s, ,Rs.,,..., /?s, for / > 1. 

Pseudo-code fbr the algorithin is shown in Algorhhm 1. This algorithm computes 
the residts for one trial. The input is a description of the metabolic system a and a net­
work metric (that takes a network as input and produces an output of type ©). The /-th 
iteration of the loop corresponds to step s,. 

The function "random-reaction" in Algorithm 1 chooses a random enzyme-catalyzed 
reaction with uniform probability Reactions that are not mediated by enzymes but oc­
cur due to chemical processes such as diffiision are never removed. 

6 . 3 . 2 . TOPOLOGY 

To be able to calculate topological properties of the metabolic system, the stoichiomet­
ric matrk S should be represented as a network. However, S cannot be directly repre­
sented as a network since a reaction may interact wdth more than two metabolites aud a 
metabolite may interact witii more than two reactions. A natural representation of such 
a system is a hyper-network in which a link may connect more than Uvo nodes. The stoi-
chiomeUic matrhc represents a hyper-network where the columns are links and the rows 
are nodes. The links are directed: negative values in a column represent source nodes 
and positive values represent target nodes. Let u be a node, and let L be a set of links that 
have u as their source nodes, then the target nodes of L are the out-neighbors of u. The 
in-neighbors are defined analogously, with u as the target node. 

Maximize p = c v 

S v + b = 0 

VR- > 0 for each non-reversible reaction R, 

(6.5) 

subject to 
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Algorithm 1 destruction-trial(o-: metabolic system, metric : network 0) 

X <- empty-hstO IList of growth values! 
M ^ empty-listO IList of metric values) 
P to-linear-program(cr) {Compute Pg] 
f j growth-rate(P) 

while /J > 1 X 10" do [One step s, in the current trial} 
R ^ randoin-reaction(o-) (Pick fi.,,.) 
(7 ^ remove-reaction(a,7?) 
P ^ to-hnear-program(o-) [Compute P,) 
p ^ growth-rate (P) 
g network((T) 

in ^ metric(g) 
X ^ append-to-list(X,p) 
M ^ append-to-list(M, 77?) 

end while 
return X, M 

Note that the stoichiometric matrix derived from the Unear programming formula­
tion does not capture the reversibility of reacdoirs (such as i?„ in the example) because 
a reactioir Rj is considered to act in reverse when its rate Vj in the linear program so­
lution is negative. We therefore reformiUate the linear program such that v > 0 (i.e., all 
fluxes are positive). A reversible reaction Rj is converted to a pair of reactions fit and 
RT; then if c,- is the column vector in S corresponding to fi/, c,- is replaced by two col­
umn vectors ct and cT (corresponding to R'j' and fir respectively) such that ct = c, (the 
forward reaction) and c7 - -c,- (the reverse reaction); for example, column fi„ in Fig­
ure 6.1a is replaced by the columns fij and fi~ in Figure 6.1a. Converting S leads to the 
stoichiometric matrix S' in Figure 6.1 b. The hyper-network is shown in Figtire 6.2a. 

The linear program (6.5) is modified with the new stoichiometric matrix S' aird non-
negafive flux constraints, giving: 

Maximize p = c^ • v (6.6) 

subject to S'-v-Eb = 0 

v>0 

NeUvork theory provides many tools for studying the topological properties of nor­
mal networks, whUst there are very few metrics that can be computed on hyper-networks. 
Thus we considered three possible network representations ofthe hyper-networks spec­
ified by the stoichiometric matrix S'. First, a hyper-network H(M,Si,) can be modeled as 
a bipartite neUvork GB{M^S&, i£). The nodes in the set M represent the metabolites in 
H, whUst the nodes in the set M represent reaction links in H. Conversion of the hyper-
network H in Figure 6.2a produces the biparitite network GB in Figure 6.2b. We refer to 
this network as the metabolite-reaction networlc as it contains both metabolite nodes 

This repiesentcUion is the Petri-net representation [ 16, 1 /] of the metabolic systenr. 
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(a) The hyjier-network H specified hy S'. (h) Gg: the i)ipartite representation of H. 

(c) GM: the one-mode reduction of the metabolite (d) Gn: the one-mode reduction of the reaction nodes 
nodes in Gg. i u G / j . 

Figure 6.2: The hyper-network and nenvorks derivable from S' in (6.6). 

and reaction nodes dè. 

Although standard network theory techniques can be applied to Gg, its bipartite na­
ttire makes some metrics difficult or impossible to compute. For example, the clustering 
coefficient fbr any node in a bipartite network is 0. For this reason, we also considered 
one-mode reductions of Gg. An ..//-node (Sg-node) o«e-;?zof/e reduction G'(.yi^,.S?') of 
GB{.^^ U S?, Sé!) is a network that contains oihy nodes from the set J{ (the set ^ ) such 
that for each directed fink / = Un.n-i) e ^ ' there is a node /?3 £ {173 e .M) such that 
( ;7i , / ;3) e ^ and {n^.ni) e ^ (note that there may be many nodes /;.3 that satisfy this 
condhion). We call the. //-node one-mode reduction simply the metabolite netiuork GM 
(shown in Figure 6.2c) and likewise the £J?-node one-mode reduction simply tiie reaction 
netivork GR (hlustrated in Figure 6.2d). 

Note that it is possible to represent the liih< weights of the hyper-network H in its bi­
partite representation GR: such a mapping can be seen in Figure 6.2b. fiowever, there is 
no obvious way to map these weights to GM or GR. For this paper, we opted to consider 
only unweighted networks. Furthermore, note that when a reaction is removed from 
the metabolic system, the corresponding networks GR, GM and GR may become discon­
nected. For a given network, all metrics are apphed to the largest component whfist the 
small components are ignored. 

TOPOEOGICAL METRICS 

For every step of each trial, a number of topological metrics were computed for each 
of the three network representations (where possible). Since GR = (..//u i f ) con­
tains two tj'pes of nodes, the metrics are applied separately to hs reaction nodes and 
metabofite nodes,.//, giving two sets of results. 

The metrics employed are listed in Table 6.1. These metrics divide into two gioups: 
those that associate a value c(G) with a neUvork G and those that associate values {c(« 1), c(;7 
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Neu'iiinii's nssorlaliuily coefficieni 118| scalar 
EIow likely is it lor nodes wilh similar degrees to be comiected to each other. Calculated 

tor die out-degrees, in-degrees and undirected degrees of nodes, it is computed as r = 

'Lijdjdjibjj - n , r ï j ) / c j ^ , , where n,- is the distribution o f the degree of node ;(,• without the 

link | ; , ; | , hjj is the joint probability distribution of the degrees between H/ and nj without 

the link {i.j] and CT^ is the variance of degrees. 

O O 

'iranshivity scalar 
The nuniber of triangles in the network dhided by die maximum possible nmnber of triangles 
in die network. This is computed on undirected versions of the networks. 

Clustering coefficient node 
For a node /(, the number of links .spanning n's neighbors divided by tbe maximum possible r \ /-\ 
number of links that can span it's neighbors. i V V - / ^ 
The mean clustering coefficient is equal to the transitixnbi'. 1 

Reciprocit\' scalar 
The ratio of reciprocal pairs to all possible recipr ocal pairs. A pair of nodes ;(i and n-z is recip­
rocal if tbere are bi-directed links {ni.nz) and {}i2,n\). 

o o 

Betweenness centralit}' node 
In a network G, the betweenness centrality Cgl/O of a node n is computed as the fraction of •^^J^~\^ 
shortest paths in G that include n: Cuiu) = Hs^^nj^re.-V crs.i(i>)l'r s.t, where is the node-set - C ) \ J Q 
of G, asj(n) is the number of shortest paths that include and CTJ,, is the total number of Q ( ) 
shortest paths between the nodes s and f. r / r i 

Eigenvector centrality & Lea gest eigenvalue oftlie arljacenc)' inatrix node 
For a graph G, the largest eigenvalue is that of the corresponding adjacency matrix A. The ^ _ ^ V ~ V ' 
eigenvector centralitj' of a node is defined as the i - t l i component of the eigenvector corre- X f ^ y J Q 
sponding to that eigenvalue. r f 

Table 6.1: A list of the various nehvork metrics that were calculated on the nehvorks Gg, G^ and Gg. Metrics 
that are calculaled for a network as a whole are marked "scalar" whilst those that are calculated for every node 
are marked "node". 

. . . , C ( ; ; A / ) | with the nodes Ji^ = {n\,nz,...,/?AT) of G. h i order to compare tills latter group 
of metrics to growth values, the node values {for a given metric c) have to be reduced to 
a single value c* (G) = f(c[n\), diiz), COIN)) (where ƒ is function of N arguments that 
produces a single real value c*(G) e K). A simple choice is to let ƒ compute the mim­
mum, mean or n u D d m u m values of tc(;;i), c(/;2),..., c(;?jv)l (thereby yielding three met­
rics). This is the approach that we took. Some metrics associate vectors of values with 
each node; thus, if the metric c associates a vector with a node, the result wih be a set of 
vectors {c(/i] ),c(n2),..., COIN)])-The hop-count is such a metric, since it associates a vec­
tor of hop-count values c(/7) with a node /; containing the hop-counts to ah other nodes 
in the neUvork. We took the approach of first reducing the vectors to scalars - thus we 
converted {c( ; ; i) ,c(n2) , . . . ,c(«A,)j to {c ' ( / ; i ) ,c ' («2) , . . . ,c ' ( / ;A/) j where c' is a function that 
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111- anil out-degrees 

The out-degree rf™' of a node is the numbcv of links leaving a node, i.e., d?"^ = 

J^(»,,Hy)eLiG) 1- Likewise, the in-degree rfl" is the number of links entering a node, i.e., 

rf;" = I(„^.,„,)eL(r;)l. 

Auerage in-and out-degrees of incoming and outgoing neighbors 
l i -1 o 0 " - " ö ' • ^ • f a " . . " ' . . 

For a network G, the average out-degree of out-going neighbors of a node 

I(H,.,/,,)E/,(G)f'°"'/f'/ whilst the average in-degree of in-coming neighbors is 

I^(/iy,«,)El(G) d'pdi where rfj'"' is the om-degree of and d'." is the in-degree of 

Coreness 

A t-core is a subset of nodes in which each node has a degree of at least k. A node has a 
coreness value of c i f i t is in a c-core but not in a c + 1 -core. 

node 

node 

node 

Dice similaritj' 

I f the neighbors of Uvo nodes are the sets A' and Y, the Dice sinrilaritj' o i the nodes is 2 | X n 
F j / (I A'l +11' I), i.e., a measure of how similar their neighbor sets are. Since this metric is defined 
for pairs of nodes, a vector of metrics is associated with each node. We compute the Dice 
similarity for all outgoing neighbors, all incoming neighbors and also for the combinadon of 
these. 

Reciprocal node hop-count 

The hop-count betiveen a pair of nodes is equal to the number of links on a sliortest path 
between them. For each node ther e is a vector of hop-counts to aU other nodes, reduced to 
a single value by taking the mean. Because the nehvorks are directed, there are nodes which 
are unreachable from olher nodes and are thus at an infinite distance. We therefore used 
reciprocal hop-count values, converting infinite distances to zero distances. 

node 

node 

Table ( i 1: (continued) A list of the various neUvork metrics Üiat were applied to the networks G/j, and G, 
Metrics that are calculaled for a network as a whole arc marked "scalar" whilst those that are calculated f. 
every node are marked "node". 

retduces vectors to real values. As above, we performed the reductions by computing the 
minima, maxima and means ofthe vectors. Once this initial reduction is performed, we 
can proceed as before (by reducing the sets of node values to single values). Note that 
this double reduction scheiue can lead to conftising metric names. To take the example 
of the hop-count again, we could proceed by first computing the means ofthe hop-count 
vectors associated with each node and then we could compute the minimum over these 
mean values. In this case, we would refer to the minimum ofthe mean hop-count, or in 
the nanhng convention used in the results section, "mean hop-count y " . Likewise, we 
refer to the mean of the mean hop-count as "mean hop-count • " and the maximum of 
the mean hop-count as "mean hop-count A". 

In our experiments, many reactions have zero reaction rates (as predicted by the 
fliDc balance linear program) in all trials. These reactions contribute links and nodes 
to the network representations whilst theh removal cannot influence growth. We ex­
cluded these reactions when constructing G/j = GB{J'lyjS&,S£) by letting Sf. be the set 
of all reactions that have non-zero reaction rates in at least one step of one trial and M 
the metabolites that interact with the reactions in Sg. Note that this is only a global pre-
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processing step; in each indi\idual trial, reactions are randomly chosen without regard 
to whether they are active at that time or not. 

6 . 3 . 3 . RELATING GROWTH AND TOPOLOGY 
For each trial (i.e., sequence of reaction removals) we compute a sequence of growth val­
ues (computed from the linear program discussed in Section 6.3.1) and three sequences 
of networks, one for each represeirtation. For each network, a set of topological metrics 
is calculated. This allows us to relate growth to topology. 

An obvious first choice for calcidating the relationship is, for each individual trial, 
to compute correlation coefficients p beUveen the growth sequence and each of the se­
quences of topological metrics. However, apparent correlations found by this method 
may simply be side-effects of the network size decreasing as we remove reactions. We 
can reduce the impact of this incidental correlation by binning the steps from afi of the 
trials: trial-step pairs whose corresponding networks fiave simUar numbers of nodes aird 
links are placed into the same bin. This process is illustrated in Figtire 6.3: here one 
sees network sequences from two trials placed into bins (the bin width here is 1 for both 
nodes and links). In our experimeirts, we used a bin width of 2 nodes x 4 links-i.e., in a 
bin, node counts can differ by f and link counts by 3. 

Since a bin contains numerous steps, it is possible to correlate growth with any of 
the topological metrics. We used the Pearson correladon coefficient to compute, for a 
given topological metric, a correlation value p,- for every bin /. An example of bin cor­
reladons is shown in Table 6.2 (here binning is only performed using link counts, with a 
bin width of 4 links). The per-bin results for each metric were then averaged, weighted 
by the number /?/ of items in each bin: p = iiiPi) I {J^j iij] = 0.27 in our example. 
For each topological metric, this yields one value p indicating the strength of its binned 
correlation with growth. 

For aU of the metrics that we studied, there were one or more bins for which corre­
lations coiUd not be computed, since the growth and/or metric values in the bin were 
constant. In this case, the Pearson correlation coefficient is not defined. These bins were 
excluded from the calculation of p. We also required correlations to be: 

• reliable, i.e., calculated on a sufficient number of data-points, by demanding that 
at least 90% of aU steps faU in bins on which correlations are defined; and 

• consistent, by requiring that at least 90% of afi steps fall in bins whose correlations 
have the same sign. 

Metrics that did not pass this test were not considered. 
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Bin number 1 2 3 4 5 
# links 2685-2688 2689-2692 2693-2696 2697-2700 2701-2704 
Correlation pj 0.342 0.286 0.322 0.236 0.172 
# items in bin nj 889 935 907 959 936 

Table 6.2: Bins shovwng Pearson correlations p between growth and an unspecified network metric. 

6 . 3 . 4 . EXPERIMENTAL SETUP 

We used the genome-scale metabolic data set which is available from the UCSD Systems 
Biolog)' Research Group website [19|. The website provides a minimal aerobic growth 
environment which was used for our experiments. In this experiment, 

«• the rate of the ATP maintenance reaction (ATPM) is l /miolgDW^'h whilst the 
acetyl-CoA hydrolase (ACOAH) and the glutamate synthase for NADH (GLUSx) re­
actions are disabled; 

• the reacdon rates of reactions that transport O2, N H j , SO^^, P,-, H2O, K, Na and 
CO2 are unconstrained. 

6 . 4 . RESULTS AND DISCUSSION 

6 . 4 . 1 . METRICS CORRELATE WITH NETWORK SIZE 

We initially performed one tiiousand //; .s;7/co reaction removal trials and for each trial 
computed the Pearson correlation p between the growth values ofthe ttial and tire met­
rics in Table 6.1 as computed on GB, GM aird GR (where applicable). The average metric 
correlations over 200 random trials for GM are showir in Figure 6.4 (here, we have only 
aggregated node-wise metrics using the mean, as described in Section 6.3.2). Many met­
rics stand out as strongly correlated. 

We found that most of these correlations are due to the reduction of the number of 
nodes and/or links in GB, GM and GR associated whh each step in a destruction trial 
of a metabohc systeni. This growth-size relationship confounds the search for metrics 
that correlate with growth, since any apparent correlation p may be due solely to the 
correlation between the metric and the number of nodes/links in the network. 

Removal of this effect by mettle normalization is non-trivial, since the relationship 
between a given metric and the number of nodes/links in a network is, in general, non­
linear. Furthermore, any technique that reduces this effect, must use topological infor­
mation; but then this information itself is affected by the changing topology We there­
fore devised a "binning" procedure to calculate alternative coirekition measures p in 
which this effect is reduced (as described in Section 6.3.3). In the remainder, all residts 
reported employ this binned correlation measure. 

6 . 4 . 2 . TOPOLOGY IS WEAKLY CORRELATED WITH FUNCTION 
Next, we calculated correlations p (using the binning procedure) beUveen growth and 
each metric. The results for GB = GBU/U S?„5i') are shown in Figure Cx5 (recall that 
there are Uvo sets of results for GR: one for the metabolite nodes and one for the 
reaction nodes <%) whilst the correlations for GM are shown in Figure 6.6. There are no 
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Eigure 6.4; Network metrics are correlated with nehvork size. This gives the appearance of strong correlations 
beUveen growth and metrics. These metrics were all calculated for G^- The .symbol • indicates that node 
values were reduced lo single values by computing their means as discussed in Section 6.3.2. 

correlations for GR tfiat satisfy' the reliabUity and consistency requirements described in 
Section 6.3.3. First we discuss these results from a purely topological perspective and 
then we interpret the biological aspects. 

The results show that most metrics do not correlate weU vrith growth. An obWous first 
explanation for this lack of correlation is that it is possible to remove a reaction without 
affecting growth (since the reaction may be part of a bypass that is not used when the 
cell is functioning normally), fiowever, at a deeper level, the low correlations may be ex­
plained by the indirect relationship between the fiux balance analysis framework (which 
measures function) and the neUvork (ou which topological metrics are measured). In 
flux balance analysis, growth is the objective function of a linear program in terms of 
metabolic fluxes, whhst the topologies of the metabolic networks are only functions of 
the stoichiometric matrix. While the objective function may be changed (perhaps to 
study a scenario other than growth maximization) the topology remains unchanged. 
Thus, correlations between the objective function and topological metrics depend to 
some extent on the objective function. 

6 . 4 . 3 . T H E METABOLITE-REACTION NETWORK GB IS THE BEST REPRESEN­

TATION 
Here we investigate some of the p correlations obser\'ed in Figure 6.5 and Figure 6.6. We 
generally limit our discussion to metrics for which |p| > 0.2. 

Metabolite-reaction network GR AS discussed in Section 6.3.2, correlations for the 
metabolite nodes and the reaction nodes Si were computed separately. First, the 
results for the metabolite nodes are considered, followed by the reaction node results. 

Metabolite nodes there are a number of relatively strong correlations for nodes in 
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M, mostly falling into Uvo grotips: 

• For both the metabolite nodes, so-called "hub" nodes provide shortcuts through 
which shortest paths are routed. Removal of a reaction node that interacts with 
a hub node may therefore remove a shortcut through which some shortest paths 
are routed. Thus, the mean reciprocal hop-count is decreased (and the mean hop-
count is increased), f n the remainder ofthe paper, ah correlations associated with 
hub nodes are colored light gray. 

• So-called "loner" nodes are nodes w t h low in-coming and/or out-gohig degrees. 
Some of these nodes are on important pathways and can cause growth to decrease 
when they are no longer produced (i.e., when their incoming links are removed) or 
consumed (i.e., when their outgoing links are removed) by any reactions. As a re­
sult, they are often implicated in correlations using the minimum function (those 
indicated by v ) . Correlations associated with loner nodes are colored dark gray 

Reaction nodes Si: only a few reliable, consistent correlations were found for the re­
action nodes ̂  in GB. Of these, the mean reciprocal hop-count is the only reaction node 
meuic that stands out, owing its presence to the metabolite hubs which provide short­
cuts between a large number of reaction nodes. 

Metabolite network GM The correlation results for GM are shown in Figure 6.6. GM 
has more high-degree nodes than GB and these are at least pattially responsible for the 
strongest correlations. As with its progenitor GB, the hub nodes in GM provide short­
cuts and thus provide the basis for the strong mean reciprocal node mean hop-count 
correlations. 

The out-degree of out-neighbors correlations are due either to hub nodes themselves 
or nodes attached to the hub nodes (in particular hydrogen). The Dice similarity correla­
tions are also the residt of hub nodes - for example, the maximimi mean Dice similarity 
IS the result of a certain node (Asparagine) which is coimected to a nmnber of hub nodes; 
therefore it shares neighbors with many other nodes. 

There are no apparent loner-node related correlations amongst the top correlations 
dpi > 0.2). However, the three correlations immediately fohowing the top correladons 
(the minimum in-degree, hop-count and out-degree) are due to loner nodes. 

Reaction network G „ The reacdon neUvork GR yielded apparently no reliable, consis­
tent correlations. As GR is much denser than either GR or GM, each reaction removal 
forces a node to be removed from GR. This leads to larger changes in GR relative to the 
other networks; a property that may in part explain the difficulty of finding a connection 
beUveen topology and growth in diis representation. 

Metabolite relationships hold the key to understanding the topology of metabolic sys­
tems The most interesting results are associated with the metabolite nodes. As men­
tioned in Section 6.3.1, there are more reactions than metabolites in metabolic systems. 
A reacdon des together a small number of metabolites while there are metabolites that 
are involved in many reacdons. In other words, metabohtes bind die neUvork at a high 
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Figure 6.5: p measures beUveen growth and topological metrics for Gg. The sjnibols v . • and A indicate that 

node values were reduced to single values by computing their minima, means and maxima respectively, as 

discussed in Section 6.:i.2. As the legend shows, the light gray bars correspond to hub nodes, the dark gray bars 

correspond to loner nodes and the medium gray bars correspond to mettles that were either not interpreted 

or that do not Kt the hub/loner distinction. 

level and are responsible for global connectivity. This leads us to conclude that the 
metabolite-reaction network GB and the metabohte network GM are the most useful rep­
resentations for our purposes. The reaction network GR IS less interesting, as iro reliable, 
consistent correladons were found. Reactions are, of course, essential to the metabolic 
system, but metabolites tell the most interesting story 

Because GR is the most accurate representation ofthe metabolic system aird becarrse 
of its sti ong correlations, we consider the metabohte nodes of GB to be the most promis­
ing entities for studying metabolism. 

6 . 4 . 4 . T H E STRONGEST CORRELATIONS POINT TO CURRENCY METABOLITES 

Many ofthe hub metabolite nodes imphcated in the previous section correspond to so-
called currency metabolites. We know fronr biology that currency metabolites play a cru­
cial role in metabolism: they are energy carriers or co-factors that are used by many 
reacdoirs. Holme et al [20] found the currency metabolites of S. cerevisiae to be H, H2O, 
ATR ADR AMR NAD, NADH, NADR NADPH, CoA, CO2, O2, P,-, PP,- and NH+ (for this set 
they used the undirected version of GM with information taken from the BIGG database). 

To validate the role of these metabolites, we repeated our experimeirts with currency 
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Figure B.B: p measures beUveen growdi and topological metrics for GM. The labels and colors are explained in 
Figure 6.b. 

metabolites removed from GB, GM and 0^. Note that die metabolites were not removed 
from the flux balance linear program, as this would lead to incorrect chemical equadons 
and it would change the computed growth. The five most significant p correlations for 
each of Gs, GM and GR are shown in Figure 6.7 (note that the reaction nodes in GB were 
omitted, as afi p correladons for these nodes fefi below 0.2). Correladons that are neither 
the direct result of hub nodes nor foner nodes are shown as medium gray bars in the 
figure. 

There are a number of interesting differences in the correladons brought about by 
currency metabolite removal: 

• Most ofthe strong correlations due to hub nodes have been strongly reduced. The 
exception is the mean reciprocal mean hop-count correlation in GM which re­
mains approximately the same, in contrast with the correlation ofthe same metric 
in GR . This hints at second-order network structure (as opposed to first-order hub 
structure) that is ünportant in routing shortest paths. 

• Removaf of hub nodes removes shortcuts that route many shortest paths. The 
shortest paths are therefore more "spread out" through the metabolite network. 
This leads to a relative increase in node betweenness values and a concomitant 
increasing influence of arbitrary nodes on the average bem'eenness. Although this 
effect is most pronounced for GM, it is also present for the metabolite nodes of GR. 
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Figure 6.7: The most significant p correlations between growth and topological metrics for networks lacking 
currency metabolites. The labels and colors are explained in Figure 6.5. 

• As GR is less dense due to currency metabolite removal, a number of reliable, con­
sistently correlated metrics could now be found. The majority of reaction nodes 
have degrees below the mean degree, so that a reaction removal is likely to increase 
the mean in- and out-degrees. Likewise the minimum and mean Dice similarities 
are likely to be increased, since the low-degree nodes have low Dice simharities. 
The correlations are not obviously due to hub nodes or loner nodes. 

6 . 5 . CONCLUSIONS 
The goal of this study was to determine whether topology and robustness of biological 
systems are related. To this end, we generated a number of reaction removal sequences 
or trials, each of which resulted iir the cessation of growth of our metabolic system. Each 
step iir a trial provided a snapshot of the metabolic system from which growth could 
be computed as weh as topological irietrics of the nretabolite-reaction network Gg, the 
metabolite neUvork GM and the reaction network GR. This aUowed us to calculate a 
measure of correlation between growth and each of the metrics. In this section, we wUl 
summarize some of our findings. 

Unambiguously linking robustness to topology is difficiüt The term "robustness" is 
meaningless witirout context. Siirce the context of an organism constitutes all its iirter-
actions with its environment, a precise definition may forever elude us. However, every 
organism engages in a (small) number of vital functions that dominate its struggle for 
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survival. By studying only these functions and their degradation in the face of perturba­
tions, we may discover some of the principles that help organisms to aclueve theh re-
sUience. However, an unambiguous connection between such functions/perturbations 
and the topolog)' of the underlying biocheirhcal network is usually hard to define. 

As we studied microbial metabolism, we focused on the one hmction at which the 
cell must be successful before all else: biomass production, or growth. While this is a 
simple representadon of cellular activity, it has the advantage of being based on a weU-
studied theoretical model of metabohsm, flux balance analysis, that can easily be modi­
fied to work with a perturbation model of reaction removal. Stül, although we were able 
to directly link metabolic networks, functions and perturbations, finding correladons 
between robustness and topolog)' proved not to be trivial. 

There is no obvious way to reduce a metabolic system to a network This is a conse­
quence of the correspondence beUveen metabolic systems and hyper-networks. Ana­
lyzing hyper-neuvorks directly is the ideal approach but these general structures have 
resisted the theoretical analysis that has produced the usefijl tools of (classical) network 
theoiy. Therefore, conversion is an analytical necessity. We described three ways of con­
verting a hyper-network to a neUvork: the metabolhe-reaction network GB, the metabo­
hte network GM and the reaction network GR. The multiplicity of representations is a 
well-known problem that Holme et al. |20] investigated by matching graph theoretical 
properties of the three network representations to biological data in order to discover the 
network representation that "best" captures biological knowledge. We found the corre­
lations were strongest for the metabolite nodes in GB and for GM- These findings suggest 
that metabolite nodes are most important for studying the stiucture of a metabohc sys­
tem, fn line wiüi this, Holme et al found GA,; to be the most favorable representation, 
although we favor GB since it maintains most of the original metabolic information. 

Topology correlates weakly with growth Many of the topological metrics we calcu­
lated did not correlate with growth. We classified those that did correlate into two groups: 
those caused by hub metabolite nodes and those caused by loner metabolite nodes. 
They point to the importance of (a) global connectivit)' (by hub nodes that tie the net­
work together by connecting many reaction nodes); and (b) local connectivity (by metabo­
htes that are produced and/or consumed by few reactions). The role of hub nodes was 
verified in an experiment where we removed currency metabolites, which led to a large 
shift in metrics correlated to giowth. 

6 . 6 . OUTLOOK 

In this work, we studied the relationship between topology and growth. Using our frame­
work as a starting point, one can investigate whether other functions of the metabohc 
network are related to topology or whether topolog)' plays a role in other biological net­
works (e.g., gene regulation or protein interaction networks). 

Our approach can be refined in a number of ways. On the one hand, flux balance 
analysis can be done with more sophisticated methods, such as MOMA [21] (Minimiza­
tion Of Metabolic Adjustment) and ROOM [22] (Regulator)' On/Off Minimization), both 
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of which were designed to better approximate the metabolic behavior of systems from 
which reactions have been removed. With sufficient enzyme kinetic parameters, one 
could even attempt to solve the non-linear differentiaf equafions (6.1). On the other 
hand, we could remove genes rather than reactions, more in line with the biological per­
turbations we intend to model. In tlris case, removiirg a gene may lead to the removal 
of multiple reactions, or alternatively a reacfion may only be removed if ah genes coding 
for isoenzymes are lost. However, such refinenrents to the model are unlikely to paint a 
very different picture since, if there were an effect, a first-order approach (such as ours) 
would pick up some correlation if it were there. 

This work was an exploration of how topology is related to robustness. Although 
whether topolog)' confers robustness or vice versa remains an open question, a change 
of perspective points to a immber of paths for future investigation. 

In a more local approach, one could isolate a small, fixed sub-network such as the 
chric acid cycle (a central part of metabolism in many organisms). Then our framework 
could be applied almost unchanged. Metrics would still be computed for entire networks 
but only the values corresponding to the sub-network under consideration would be 
compared with growth. 

On a more global level, one coidd consider a number of species related by evolution. 
The species cannot necessarhy be directly compared to each other, since they are spe­
cialized for different environments (and thus different contexts). But these differences 
in specialization enable us to study the connection between robustness and topolog)', 
since differences in metabolism are the results of speciafizadon and these differences 
will be reflected in metabolic networks. 

An interesting related approach is the study of the metabolic networks of gene knock­
out mutants of a given organism. This is essentially our approach with in silico knock­
outs replaced by in vivo knockouts, giving actual flux measurements which are more 
reliable than fluxes computed by flux balance analysis approaches. 
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7 . 1 . ABSTRACT 
In biology, similarity in structure or sequence between molecules is often used as evi­
dence of functional similarity In protein interaction networks, structural similarity of 
nodes (i.e., proteins) is often captured by comparing node signatures (vectors of topo­
logical properties of neighborhoods surrounding the nodes). 

In this paper, we ask how well such topological signatures predict protein hmction, 
using protein interaction networks of the organism Saccharomyces cerevisiae. To this 
end, we compare two node signatures from the literatme - the graphlet degree vector 
and a signaUire based on the graph spectrum- and our own simple node signature based 
on basic topological properties. 

We find the connection between topology and protein funcfion to be weak but sta-
tisfically significant. Surprisingly our node signature, desphe its simplicity, performs on 
par with the other more sophisticated node signatures, in fact, we show that just two 
metrics, the link count and transitixdty, are enough to classify protein fiinction at a level 
on par with the odier signatures suggesting that detahed topological characteristics are 
unlikely to aid in protein function prediction based on protein interaction networks. 

This ciiapter was published in Pattern Recognition in Bioinlorinatics, Lecture Notes in Computer Science, 
Springer Berlin Heidelberg (201.3) [1 | . 
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7 . 2 . INTRODUCTION 

To what extent does structure determine function in biology? Evolutionary principles 
have shown function and structure to be well correlated in genes with common evolu-
tionai-y ancestors, allowing biologists to infer functions of proteins or genes based on 
their sequence Iwniology (i.e., similarity) with other proteins or genes. With the arrival 
of network biology |2], homology was extended to take not only sequence similarity into 
account but also simUarit)' of molecular interactions. These interactions can be either di­
rect (physical) or indirect (functional). In other words, the manner in which a protein (or 
gene) is connected to other proteins in interaction neUvorks matters. These other con­
necting proteins can be chosen in many ways, although the most common approach 
is to consider a network neighborhood centered around a protein in question, includ­
ing aU proteins and links wdthin a fixed number of hops. Structural simUarity of network 
neighborhoods is determined by comparing their fopo/og/cr//properties. Typically, these 
properties are represented as a vector, known as a topological signature. 

Topological signature simUarity has been used as a measure of functional simUar­
ity between proteins in several algorithms aimed at the discovery of homolog)' relations 
between proteins |3-5]. Although topological similarit)' and amino acid sequence sim­
ilarity are t)'pically both used to determine homology [3, 3], some of these algorithms 
perform well using only topological similarity [4, 5]. Researchers have also used topo­
logical similarit)' to predict relafions other than homology, in eft'ect assuming that struc­
tural similarity implies similarity of biological traits in proteins not necessarily related by 
evoludon. Involvement in cancer (a phenotype) was found to be encoded in topological 
similarit)' |6] and even general protein function appears to be encoded in topology [7]. 
Given this predictive qualit)', the key question is thus: how exacfiy does local topolog)' 
refiect function, and what signatures best capture local topology? 

In this paper, we set out to answer these questions in a specific context, i.e.the pre­
diction of protein funcfion by means of node signatures in various protein interaction 
networks of the organism Saccharomyces cerevisiae. Topological signatures in the liter­
ature capture a lot of topological detail; in this paper we investigate the extent to which 
this detaU improves protein function prediction (if at all). To this end, we study two such 
signatures - the graphlet signature of Milenkovic and Przulj [7] and a signature based 
on the normtUized Laplacian spectrum of a network [5] - as well as a simple node sig­
nature of our design. Predictive power of the signatures is determined by how well they 
discriminate between proteins with a given biological funcfion and those without the 
function. To this end we use support vector machines, treafing topological signatures as 
featme vectors and biological labels as classifier labels. Note that our aim is not the con­
strucdon of an optimal protein function classifier, as for that purpose one would include 
many other types of data; rather, we use prediction accuracy as a measure to explore the 
relation between local topology and fimcfion. 

7 . 3 . METHODS 

7 . 3 . 1 . TOPOLOGICAL SIGNATURES 

In the remainder of the text, G refers to a network (usually an interaction neUvork), /; 
to an arbitraiy node of G and N the number of nodes in G. A /c-neighborhood G^, of a 
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Figure 7.1: Two neighborlioods of;;: (a) Gj, and (b) G^. 

node /; Is an induced subneUvork of G on the set of nodes encompassing n and ah nodes 
within k hops of n (a subnetwork is induced when two nodes in the subnetwork are con­
nected by a link if, and only if they are connected in G). The subneUvork Gj, spanned by 
the gray nodes and bold hnks in Figure 7.1a is a 1-neighborhood of n, whhst the subnet­
work Gl spanned by the gray nodes and bold lines in Figure 7.1 b is a 2-neighborhood of 
n. 

GRAPUEEE SIRNATUKE: 

Graphlets are smah, connected, induced subnetworks, as hlustrated m Figure 7.2 (la­
beled Xi,X2,..., X30]. The graphlet degree of a node n for a given subnetwork X, can be 
regarded as a generalization of hs degree: the number of X,- graphlets that contains n. f n 
the special case where Xi (i.e. two nodes connected by a link) is considered, the num­
ber of of Xl subgraphs containing n is just the degree of n. A graphlet signature (also 
graphlet degree sequence [7]) generalizes the graphlet degree by including counts for all 
of the subnetworks in Figure 7.2. 

To simplify exposition, we first construct a graphlet signature containing only the 
numbers of subnetworks Xi, X2 and X3 (Figure 7.2) that contain n. Such a signature can 
be represented as a vector of three integers. However, X2 is not symmetrical, as the white 
node is structuraUy different from the two black nodes (which are interchangeable). We 
distinguish cases in which n takes the role of the whhe node from cases in which n takes 
the role ofthe black nodes. Thus, two counts for X2 are maintained (one for each kind of 
node), leading to a signature vector of four integer components: one for Xi, two for X2 
and one for X3 (vector indices are shown next to one node of each color). 

The full graphlet signature is constructed by extending the construction above to the 
rest of the subnetworks in Figure 7.2. f n total, the signature vector has 73 components 
(vector indices appear next to nodes). The largest subneUvorks in Figure 7.2 have five 
nodes and therefore the graphlet signature is computed on 4-neighborhoods. The larger 
subnetworks in Figure 7.2 contain induced copies of smaller subnetworks (e.g., X30 con-
tarns Xg, Xs and Xi ) , so that the components ofthe graphlet signature are not indepen­
dent. Mhenkovic and Przulj [7] devised a weighting scheme to reduce this effect. We 
reweigh graphlets according to their method. Graphlet signatures were computed using 
code adapted from the original version of GraphCrunch [8]. 
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Figure 7.2: All non-isomorphic undirected networks (graphlets) with up to five nodes. For a given node n in a 
network G, Milenkovic & Przulj |71 count how many times each of these networks includes and appears as 
an induced subnetwork in G in order to construct a graphlet signature Ibr 

SPECTRAL SIGNATURE: 

We assume that the nodes in G are labeled with numbers 1 through N. The adjacency 
matrix Tl of G is an TV x TV matrfx in which rt,_y = 1 if the nodes / and j are connected by 
a linlc and fl,^- = 0 otherwise. The degree matrix A of G is a matrix in which A,,, equals 
the degree of node / and <7/,y = 0 if / / /. The normalized Laplacian is dehned as Q,iorm = 
ƒ - A ~ ' ' 2 y i A ^ > ' 2 -pĵ g spectrum of Qno„u is its set of N eigenvalues. All eigenvalues of 
Qnorni fall within the range of [0,2]. 

f n general, Uvo different neighborhoods have different numbers of nodes and there­
fore spectra of different sizes, making spectra unsuitable as feature vectors. We derive 
feature vectors by compudng histograms ofthe spectra 1.5]. Histograms with 20 bins are 
computed on the range 10,2], showing why the normahzed Laplacian spectrum is pre­
ferred over the non-normahzed version. 

SIMPLE METRIC SIGNATURE: 

Our own simple metric signature serves as a baseline. It contains four very simple topo­
logical properties of neighborhoods: f ) number of nodes, 2) number of links, 3) link 
density and 4) transitivity (the ratio of triangles to connected node triplets). 

MULTI-RESOLUTION SIGNATURES: 

One way to compute the spectral and simple metric signatures is to choose a hxed k 
and to compute the signatures on all A--neighborhoods. By focusing on hxed k, one may 
miss topologically distinguishing features at other "resolutions", i.e., other values of k. 
We construct "muhi-resolution" versions of the spectral and simple metric signatures 
respectively by concatenating signatures of Gj,, Gf, and Gf, for a given node henceforth 
we shall only consider these "muhi-resolution" versions of the signatures. The graphlet 
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signature is already "multi-resolution" in the sense that its component graphlets span 
GlGlG'f, and G'l, 

A COMBINED SIGNATURE: 

Finally we consider a signature that combines the previous signatures by simply con­
catenating the 1) graphlet signature, 2) the muhi-resolution spectral signature and 3) the 
muhi-resolution simple metric signature. 

7 . 3 . 2 . DATASETS 

MOLECULAR NETWORKS: 

All ofthe networks considered in this paper are protein interaction networks for the or­
ganism Saccharomyces cerevisiae. We have collected seven such neUvorks, derived from 
four primary sources. Kim & Marcotte [9] provide two protein interaction networks, the 
first a high-quafity literature-curated neUvork and the second a high-throughput net­
work. Yeastnet [10] provides several datasets with yeast protein interacfions of which 
we downloaded the literature-curated dataset (denoted "LC" on the website) and the 
yeast 2-hybrid high-throughput dataset ("HC"). These Uvo pairs of neUvorks were se­
lected because each pair contains a literature curated network and a high-throughput 
network, thereby pro\'iding insight into the impact of network quality on classification 
performance. 

Our remaining two datasets are due to Krogan [ I I ] and von Mering [12]. Both of these 
were used by Milenkovic & Przulj [7] to test how weh their graphlet signature approach 
fared in predicting protein funcfion. We used the same two subsets of the von Mering 
dataset; "von Mering" contains the first 11000 protein interactions (of high-, medium­
and low-confidence), whfist "von Mering core" contains aU high-confidence interactions 
of the original dataset. 

BIOLOGICAL LABELS: 

LUce Mhenkovic and Przulj [7], we used the MIPS protein annotations 113] as biological 
labels. MIPS annotations are hierarchical and have the form "xx.yj'.zz..." where the let­
ters denote two-digit biological categories. A protein may be airnotated with multiple 
such annotations. The left-most category ("xx") gives the general protein ftmction; each 
foUowing Uvo-digit category is a refinement ("n" and "zz"). fn this paper, we consider 
only general protein functions, of which there are 27 in the MfPS database. 

7 . 3 . 3 . CLASSIFICATION 

Classification is performed usfiig support vector machines (SVMs). There are numerous 
biological categories in the MIPS database and a protein may be annotated with any 
number of these categories. Since SVMs are binary classifiers, we use a one-versus-all 
strategy whereby we train a classifier for each biological category Classifier performance 
is measured using the area under the curve (AUG) of the receiver operator curve (ROC) 
of a classifier. All classifier-related work was performed using ScUdt-learn 114]. 

The radial basis fimction (RBF) kernel was used to train all SVMs. To reduce the im­
pact of experimental omissions and noise, we only compute signatures on nodes whose 
degrees are at least 3 and that have at least one MIPS annotation. Furthermore, to ensure 
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the presence of enough positive instances in both testing and training sets, biological la­
bels that appear in less than 20 nodes are not considered for classification training. 

TRAINING REGIME: 

For each topological signature t>'pe, for each network, for each biological funcfion, a 
double cross validadon training loop is performed [15]. The "outer" loop is a four-fold 
loop in which the training set contains 75% of the dataset whilst the tesdng set con­
tains 25% of the dataset. For a given neUvork and biological function, the folds are fixed, 
meaning that classifiers are trained on the same training samples for afi topological sig­
natures. Classifier performance is expressed as a combination ofthe mean and standard 
deviation of the four AUC vahies associated with the four outer folds. 

The "inner" loop is responsible for finding the classifier with the best classificafion 
performance on tfie training set received from the "outer" loop. SVM classifiers using 
the RBF kernel require two parameters: a cost C (for penaUzing incorrecfiy classified in­
stances) and the RBF radius y. These are optimized by walking along a grid of parameter 
pairs and training a classifier for each pair. Each grid point fi.e., parameter pair) is eval­
uated using the average AUC of a five-fold cross-validation loop. The parameters with 
the best AUC score are thus considered optinral. At the start of the "inner" loop, both 
the training and testing sets are centered and scaled using the center and variance of 
the training set. The graphlet signature is reweighed after this point using the weighting 
scheme of Milenkovic and Przulj [7] as mentioned earlier in the paper (if reweighing is 
applied beforehand, it would be removed by the scaling step). 

As grid searches are expensive, we first perform a parameter search on a coarse grid, 
followed by a second search on a fine grid around the opfimal parameters found in 
the first search. The coarse grid is given by the Cartesian p r o d u c t x F of costs ^ = 
!2 -^2~^2- l 2i-'} and RBF radfi F = [2-^^ 2-1^2"", . . . ,23). The optimal param­
eter pair (Cy) discovered on x F is then used to specify a fine grid ''é" x F' where 

= {2'°&^^-2+<72 I / e 10,1,...81} and F' = {2^'>g.,r-2^ii2 | / e {0,' 1,...81}. 

7 . 4 . RESULTS AND DISCUSSION 
Using the training regime described in the Methods section, we have computed, for each 
topological signature, for each network, for each biological function, the average classi­
fier performance as well as its standard deviation. As this is a large amount of data, we 
fiave condensed the results into Figure 7.3a which shows, for a given topological signa­
ture and biological ftmction, classification peiformance averaged over all networks, ex­
cept for the high-throughput Yeastnet network. This dataset proved to be too smah and 
gave poor, noisy classification results for aO topological signatures. Figure 7.3a contains 
only those biological functions that appear in ah the datasets. We also plotted the clas­
sification results for one high-quality dataset, the literature-curated Yeastnet dataset, in 
Figure 7.3b. The trends in Figure 7.3a are broadly similar in all ofthe networks although 
classification peiformance is generally lower than in Figure 7.3b. 

Wliat stairds out most ftom both Figure 7.3a and Figure 7.3b, is that topology is, in 
general, a weak predictor of biological ftmction. However, the mean AUC values are all 
above 0.5, showing that topology does encode a certain amount of information about 
biological function (the statisticaf significance of the mean AUC values being larger than 
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Table 7.1: The number of positive instances for various combinations of networlt and biological hmction (i.e., 
proteins haidng given biological functions). 

0.5 was tested using the t-test; in the majority of cases - and in aU cases involving the bi­
ological categories "metabolism", "transcription", "protein synthesis" and "protein fate" -
the associated p-vahies are below 0.05). The overall differences between Figure 7.3a and 
Figure 7.3b can be explained by differences in netwoik quahty and network size: qual­
ity affects classiher performance whhst network size affects its variance (network sizes 
are given in Table 7.1). The high-throughput networks contain the most noise and are 
therefore associated vtdth worse classificadon performance. 

At the level of biological categories both Figure 7.3a and Figure 7.3b show big differ­
ences in classification performance. Tfie number of positive instances associated with a 
biological category (see Table 7.1) is weakly correlated with classifier performance, partiy 
explaining the difierences. Biology ofiers a possible explanation for the high AUC val­
ues associated with the labels "Transcription" and "Protein Syntiiesis": transcription and 
synthesis are both processes driven by permanent protein complexes rather than tem­
porary groups of proteins (as found in many other processes). Thus, nodes whh these 
functions tend to find themselves in densely connected clusters more often than other 
nodes. 

Both overafi classification performance, as weh as performance associated with indi­
vidual biological categories are dependent on the way in which biological categories are 
defined. Some categories are more general than others (for example, "Development" in­
cludes proteins engaged in diverse functions, whereas "Transcription" is a more specific 
function), contributing to differences in classification performance beUveen categories. 
When the categories are too general, overall classification performance suffers as clas­
sifier inputs become difficult to distinguish. We have performed experiments (data not 
shown) in which we used Uvo levels ofthe MIPS labels (labels ofthe form "xx.yj'" rather 
than just "xx", i.e., more specific categories). Two-level categories led to better classi­
fication perfoimance in some cases (notably those associated w t h Uanscription) and 
worse performance in other cases. The culprit is likely a paucity of positive instances 
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Table 7.2; p-values of one-way ANOVA tests applieti to the AUC values of the three topological signatures 

(graphlet, spectral and simple) for each network and biologicttl hmction combination. We consider p-values 

of 0.05 and below to be significant (shown in hold text). 

associated with many of the two-level labels. 

Another safient aspect of Figure 7.3a and Figure 7.3b is that the three topological 
signatures perform very simUarly. We tested whether the AUC values of the individual 
signatures (i.e., not the combined signature) fbr each biological categoiy were different, 
using a one-way ANOVA (Table 7.2). We consider p-values of 0.05 and below to be statis­
tically significant and find only f 0 dataset/function combinations that pass this thresh­
old. 

Although the three topological signatures lead to similar classification resuhs, h may 
be possible that they neverfiieless measure different (discriminative) topological charac­
teristics. If this is true, combining the signatures should lead to improved classification 
perfoimance. Fiowever, Figure 7.3a and Figure 7.3b do not support such a conclusion. 
Thus, in the context of our datasets and classifier, the topological signatures are not com­
plementary. 

Given that the simple metric signature is competitive with the graphlet and spectral 
signatures, it is natural to ask whether it cannot be fiirther simplified. We investigated 
all possible combinations of the four metrics (number of nodes, number of hnks, den­
sity and transitivity) that make up the simple metric signature, constructing 14 simpler 
signatures: 4 signatures using only one metric each, 6 signatures using pairs of met­
rics and 4 signatures using triplets of metrics. The mean classification perforinance of 
these metrics, taken over all datasets and all biological categories, is shown in Figure 7.4. 
The link count L and transitivity' T are sufficient for obtaining good classificafion perfor­
mance. The impUcation is that what matters in function predicfion in protein interac­
tion networks, is the number of nodes and the "clusteredness" (transitivity). Siirce pro­
teins of similar function tend to form clusters, their neighborhoods overlap and therefore 
they share topological characteristics. Apparentiy, "clusteredness" signatures are unique 
enough to distinguish similar proteins from other proteins. 
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Eiguie 7.3: Classification performance of t l ie three topological signatures, as well as a signature that combines 
the three signatures, (a) Performance of our SVM classifiers averaged MIPS categories present in all datasets 
(excludmg the high-throughput Yeastnet dataset; see text for explanation). Error bars show the standard de-
vralion. (b) Uassihcatron performance of the three topological signatures on the literature-curated Yeastnet 
nenvorkflO). 
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0.5(1 

s^,: \): 

Figure 7.4: Classificalion performance of various combinalions of the features used in the simple metric sig­

nature averaged over all datasets and all hmctions. Here, N is the mmiber of nodes (in a neighborhood), L is 

the number of links, D is the density and T is the transitivity. 

7 . 5 . CONCLUSION 
At the start of this paper, we askecJ to what extent structure - i.e., topology - determines 
function in biology. We focused on the use of signatures to express topological proper­
ties of neighborhoods surrounding nodes in molecular interaction networks. Our study 
is motivated fry the use of topological signatures as a tool for discovering simUar genes 
or proteins (under the assumption that topological similarity impUes hinctional simUar­
ity)- We specifically studied the use of such signatures to discriminate between proteins 
with a given biological function and those without it, using protein interacdon networks 
derived fronr Saccharomyces cerevisiae and support vector machines. 

Current node signatures, such as the graphlet signature [7] and signatures based on 
spectra [5] capture very detaUed topological profiles. We coiupared these with our own 
topological signature, based on very simple network metrics. For aU signatures, classi­
fier performance tended to be weak, implying that topology is, at least for Saccharomyces 
cerevisiae protein interaction networks, a weak predictor of function. However, with the 
exception of one noisy protein interacdon network classifiers performed better than ran­
dom, showing that topology and funcdon are linked. How much better depends on the 
functional category considered, with performance particularly strong for transcription 
and protein synthesis. 

Our simple metric signature performed on par with the graphlet and spectral signa­
tures. We also established that the signatures are not complementary for protein func­
tion prediction, as a combined signature incorporafing all three signatures does not yield 
better accuracy Since our simple metric signature captures less topological informa­
tion than the other signatures, we conclude that fine topological detail is not very usehU 
in the prediction of protein funcfion. Strikingly performance when using only the link 
count and transitivity, measures of "clusteredness", is as good as when using the more 
complex signatures. This is not simply a side-effect of dataset noise, as our simple met­
ric signature performs equally well in the high quality networks. 

Our work opens a number of paths for fiiture research. For our conclusions to hold 
generally, the techniques used iu this paper should be applied to other types of inter­
acdon networks (for example, co-expression networks and synthetic sick-or-lethal net-
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works) and to networks derived from other organisms. It woidd be particularly interest­
ing if link count and transitivity are found to be equally determinative in other interac­
tion network types. Finally it is not yet known how different "resofutions" contribute to 
signature performance and whether a particular resolution (i.e., ^-neighborhoods of a 
pardcular k) dominates classificadon performance. 
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8 
C O N C L U S I O N 

8 . 1 . THESIS SUMMARY 

The central question of this thesis is whether the topologies of molecular networks re­
flect tire functions ofthe cellular systems they model. Since biological organisms are ro­
bust in that they continue hmctioning when damaged, we first asked whether molecular 
networks might provide clues about topological structures associated with robustness. 
Such structures would be useful in evaluafing neUvork robustness and could inform the 
design of more robust human-made netwrorks such as communicadons and transport 
networks. In the context of human-made networks, robustness means resilience againsr 
networlc disconnection and resilience against drastic increases in path length between ar­
bitraiy end-points. Thus, if molecular neUvork topology is to guide the design of com­
munications or transport networks, it is implicifiy assumed that transport (of signals or 
metabohtes) are central to their biological roles. This is not Uue of all molecular net­
works but is partially ttue of protein interaction networks and metabolic networks, Uvo 
classes of networks investigated in this thesis. 

Degree assortativity is a relatively new and simple metric that we investigated as a 
measure of robustness. The metric is a correlation coefficient representing the tendency 
of nodes to connect to nodes of similar degree. We found that for dense networks, the 
range of values achievable by the metric is dependent on the density ofthe neUvork'and 
that this relahonship is non-linear, hmiting its use as a tool for comparing dense net­
works. On the other hand, for sparse networks such as molecular neUvorks, the range 
of achievable degree assortati\dty values is larger and, cruciaUy not very dependent on 
neUvork density Thus, degree assortativittes of sparse networks can be meaningfidly 
compared. 

Degree assortativity also lends itself well to greedy opdmization: a neUvork can be 
re-architected through a number of smaU, degree-preserving rewiring steps to have in­
creased or decreased degree assortativity Empirical studies suggest that this simple 
greedy approach can be used to achieve assortativity values close to the maximum or 
minimum values achievable through degree-preserving rewiring transformations. Cou­
pled with our robustness envelope fiamework, we were able compare the robustness 
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of large networks with the same degree sequences but (arbitrarily) different assortativity 
values. Moderate increases in assortativity led to shghtly increased resilience against tar­
geted node attacks coupled with decreased resihence against random attacks; for mod­
erate decreases in assortativity, the opposite was true. Greater changes in assortativity 
lead to network fragUity. We find that ahhough there is some connection between degree 
assortativity and robustness, the connection too weak to be pracfically useful. 

We investigated the assortativity of metabolic networks, finding them to be neither 
assortative nor disassorative, a finding also corroborated for protein interaction net­
works. Perhaps degree assortativity is simply the wrong metric for studying molectdar 
networks. In order to test this possibfiity, we studied robustness envelopes of unmodified 
molecular networks and compared them to robustness envelopes of other real-world 
networks. This showed that molecular networks are irot distinguished by theh robust­
ness envelopes. In all ofthe previously-mentioned analyses, robustness meant resilience 
against changes in general topological properties such as path length. However, in the 
context of biological organisms, robustness normally means the ability of an organism 
to continue fimctioning when part ofthe organism is damaged. Therefore, a better way to 
discover the link between topology and biological robustness is to search for topological 
metrics that are correlated with biological ftmction. 

Accurately defining biological fimcfion is difficult, as we do not yet have many good 
models of molecular interaction (indeed, network biology came about as a tool to help 
analyze and mrderstand molecular interactions). One of the best models of biological 
function of large networks avahable today is fiux balance analysis, a model for com­
puting metabolic reaction rates during metabohc steady state. From the flux rates, one 
can compute the rate of biomass production, a commonly used metric of cellifiar health 
for ceUs not subjected to stressors. In addhion, high quality metabolic networks for a 
immber of organisms are available. With these tools and data, we intentionally dam­
aged a yeast metabohc network, correlating changes in the rate of biomass production 
to changes in a number of topological metrics in the metabolic network. 

In general, correlations between biomass producdon and topological metrics are 
weak, providing further evidence that general topological metrics are unlikely to teach 
us much about biological robustness. We conclude that metrics summarizing network 
structure are insensitive to small changes in network structure whilst such changes may 
be decisive in organisiual health. One way around this problem is to develop biologically-
relevant topological metrics that would be senshive to biologicaUy significant changes. 
Developing biologically-relevant metrics for molecular networks wfil be difficult if one 
insists on whole-network analysis. But network biology need not focus only on whole-
network analysis: at smaller scales (that is, smaller coUections of interacting molecules), 
molecular interactions are better understood and at these scales, topological metrics are 
more sensitive to changes in neUvork structure (since they are summarizing smaUer net­
works). 

Using a local approach, we correlated functions of proteins with topological char-ac-
teristics of network regions surrounding these proteins. The correlations show a stronger 
connection between topology and biology than in the previous work. A number of topo­
logical metrics were correlated with protein function but no great difterences in corre­
lation were found between the metrics. This is surprising, given that one ofthe metrics 
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took only simple topological aspects into account suggesting that topological metrics 
need not be complex in order to be effective (at least given the current state of our tm-
derstanding of biological networks). 

8 . 2 . FUTURE WORK 

Nettvork biology is still a young field and has the potential to develop in a mimber of 
directions. Here we identify a number of themes that we believe will advance the state 
of the art. 

Our work started with a whole-network analysis and ended with with a local topo­
logical approach for the prediction of protein ftmction. The global-to-local movement 
is a trend m the field of network biology but that does not mean that global and local 
approaches exclude one anotiier. Surprisingly littie attention is given to hierarchical 
analysis, a global-local technique that is commonly used in molecular biology For ex­
ample, interacting proteins are grouped into protein complexes which themselves are 
studied as units of interaction. One need not stop here since protein complexes can also 
be grouped into larger units that interact with one another. NeUvork biology^ augments 
such analysis by studying imeractions of complexes as networks. Hierarchical analysis 
of a system leads to multiple neUvork descriptions at varying levels of detaU. NeUvorks at 
the highest level are small, capturing interactions between complex, large subsystems 
Nodes of any neUvork in tiie hierarchy (except those at the lowest level) represent sub­
neUvorks ofthe network one step lower in the hierarchy Any given molecular interaction 
system has numerous hierarchical descriptions that reveal different aspects of the svs­
tem. 

Wiilst exisfing topological metrics might be correlated with biological ftmction at a 
local scale, our success rate at tying topology to biological function wifi improve i f we 
focus on measuring biologically meaningftil topological aspects. An example is a pro­
posed topological metric for measuring biomass production in metabohc networks that 
counts the number of metabolites a metabolic neUvork can produce, given a set of in­
puts. In a sense, the metric is a discrete approximation ofthe chemical process and not 
surprisingly correlates well with biomass production. On the other hand, it shows that 
ceUular growth is somewhat insensitive to the exact distribution of fiux rates in the net­
work. Such biologically-inspired topological meUics could be designed for the various 
types of molecular neUvork. 

With the design of biologicaUy-relevant network metrics, we no longer need to con­
sider only highly homogeneous networks (in which nodes all represent the same object 
and in which links aU represent the same kind of relafion). NeUvork theory has tradi­
tionally mainly dealt with homogeneous neUvorks, partly due to the fact that transport 
networks and commtmications IleU^'orks are relatively homogeneous (at least in com­
parison to molecular networks) and partiy to ease mathematical analysis. Breaking ho­
mogeneity' by considering molecular neUvorks with multiple types of nodes and links 
wUl complicate mathematical analysis but it is a price worth paying for the additional bi­
ological detail captured in such neUvorks. Decreased mathematical tractability. can also 
be partiy offset by software simulations: molecular networks are generaUy small enough 
for miUions of instances to be tested against a given metric. 

Related to the study of lieterogeneotis networks and hierarchical analysis is the study 
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of interlinked networks (that is, networks of networks]. For example, consider metabolic 
networks and protein interaction networks: faulty interactions in the proteiir interac­
tion network may lead to failure of membrane trairsporters necessary for transportiirg 
metabolites needed by the metabolic network; if the failure of the metabolic network 
is such that it can no longer produce amino acids, the protein interaction network whl 
quickly disintegrate. These kinds of interactions cannot be understood by studying the 
metabolic network or protein interaction network in isolation. The streirgth of inter­
linked network airalysis is that it leverages analytic techiriques applicable to isolated 
networks (for example, ffux balance analysis of metabohc networks) whilst putting in­
teractions between neUvorks on an equal footing with other interactioirs. 

8 . 3 . CLOSING REMARKS 
This diesis has investigated the connection between molecular network structure and 
ftmction. Network biology sparked a considerable amount of interest because it seemed 
to promise a new paradigm within which to study complex systems. Its impact has not 
been as radical - complex systems remain complex - but it is a relatively simple analytic 
tool which has broadened our understanding of cellular interaction systems. That alone 
is a good reason to continue developing this young field. 



S U M M A R Y 

During the second half of the 20th century, the field of molecular biology greatiy im­
proved our understanding of the cefi. Molecular biology is a reductionist science - mole­
cules and interactions are studied in isolation from the rest ofthe cell. However, as our 
understanding of the cefi increased, it became apparent that ceUular interactions are 
often decisive in biological fiinction and that more hohstic analysis techniques were re­
quired to understand certain biological phenomena. 

The field of neUvork biology emerged fi-om the need to analyze cellular interactions 
at a scale beyond what was possible using a reductionist approach. Network biology a 
synthesis of molecular biology and graph theory, treats sets of molecular interactions as 
molecular neUvorks that can be analyzed using graph-theoretical techniques. 

This thesis deal with three themes in network biology: 1) the correlation of structural 
properties of molecular neUvorks with the robustness of the organisms they model, 2) 
the correlation of structural properties of molecular neUvorks with biological properties, 
3) the scale at which structural properties of molecular neUvorks shoiUd be considered 
in order to make biologicaUy meaningful mferences (that is, shoiUd enthe neUvorks or 
smaU regions of networks be considered). 

The first theme was motivated by the hypothesis that, because biological organisms 
are robust (that is, they maintain ftmction in the face of damage), molecular neUvorks 
might contain strucmral features that are associated with robustness. Such knowledge 
could both be used to analyze networks for robustness and in the design of more robust 
networks (such as communications neUvorks). The connecfion between robustness and 
structure was first studied from a purely structural perspective: various networks were 
compared to one another based on whether they maintained certain sUucmral prop­
erties when damaged. The purely structural perspective showed no discernible differ­
ences between the structural robustness of molecular networks and other real-world 
networks. If the connection beUveen biological robustness and network sUucture were 
to be understood, changes in biological ftmction had to be tied to changes in molecular 
neUvork structure. This was investigated by damaging metaboUc neUvorks and correlat­
ing changes in their structures to changes in theh predicted abUity to produce biomass 
Although correlations were found, they proved to be weak, suggesting that structural 
properties computed using entire networks are too insensitive to capture biologically 
significant changes. 

The second theme, correlations beUveen strucmral properties of molecular neUvorks 
and biological properties, at first glance appears to be sfinUar to the first theme. But 
whereas the connection between stiucture and robustness focused on relating system-
wide structural properties to system-wide biological behavior, this work focused on the 
relation between structural properties of individual molecules and tiieir biological prop­
erties. Stated otherwdse, the first theme deals with global analysis techniques whereas 
the second theme with (relatively) local analysis techniques. This shift towards the local 
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yielded stronger correlations between structure and biological function than achievable 
by more global approaches. 

The original research in this thesis suggests Üiat local analysis techniques have bet­
ter predictive power than global analysis techniques. This observation forms the basis of 
the third theme: at which scale are molecular networks best analyzed in order to make 
biologically meaninghd predictions? This theme was thoroughly examined in a litera­
ture survey of the field of network biology. The literature survey shows a slow shift from 
global approaches to more local approaches, mirroring the findings of this thesis. The 
success of local approaches over global approaches is explained by the fact that 1) it is 
simpler to associate biological interpretafioirs with strucmral properties of small sets of 
molecules (rather than large networks of molecules) and 2) structural properties pertain­
ing to entire networks tend to be insensitive to smah chairges in structure that may be 
biologically significant. 

Besides the network biology-focused research, this thesis also examines the effect of 
changes in degree assortativity on the robustness of nrolecular networks and other real-
world networks. The metric itself was also studied to better understand hs limits and 
applicability to molecular networks. 



S A M E N V A T T I N G 

Gedurende de 2e helft van de 20e eeuw heeft moleculaire biologie ons begrip van de 
cel vergroot. Moleculaire biologie is een reductionistische wetenschap - moleculen en 
mteracues worden geïsoleerd van de rest van de cel bestudeerd. Echter, sinds ons begrip 
van de cel toe is genomen, is het gebleken dat cellulaire interacties vaak bepalend zijn 
voor de biologische funcftes en dat er meer hohsftsche analysetechnieken nodig zijn om 
bepaalde biologische verschijnselen te begrijpen. 

Netwerkbiologie is ontstaan uit de noodzaak om cellulaire iiitemcdes te analyseren 
op een sxhaal groter dan wat er mogelijk was met een reducdonistische benadering 
Neuverkbiologie, een synthese van moleculaire biologie en graaftheorie, benadert verza 
melmgen van moleculaire interacties als moleculaire neUverken die geanalyseerd kun­
nen worden met graaf-theoretlsche technieken. 

Dh proefschrift behandelt drie thema's binnen netwerkbiologie: 1) De correlatie van 
structuureigenschappen van moleculaire neUverken met de robuustheid van de organis­
men die gemodelleerd worden, 2) de correlatie van stmcmureigenschappen van molec-
tdaire netwerken met biologische eigenschappen, 3) de schaal waarmee structuureigen­
schappen van moleculaire neUverken moeten worden beschouwd om biologisch zin­
volle gevolgtrekkingen te maken (dat wil zeggen, moet het hele netwerk of kleine ge­
bieden van neUverken worden beschouwd). 

Het eerste thema werd ingegeven door de veronderstdling dat, omdat de biologische 
organismen robuust zijn (dh wil zeggen dat zij hun funcde behouden bij schade) molec­
ulaire netwerken mogelijk strucmureigenschappen zullen bevatten die geassocieerd zijn 
met robuustheid. Dergelijke kennis kan zowel worden gebruikt voor het analyseren van 
netwerken op robuustheid en in het onUverp van meer robuuste neUverken (bijvoor­
beeld commtmicatienetwerken). De connectie tussen robuustheid en stmctuur wer­
den eerst besmdeerd vanuit een strucmurperspectief: verschiUende neUverken werden 
met elkaar vergeleken gebaseerd op de â-aag of ze bepaalde sUucturele eigenschappen 
zouden behouden bij schade. Dit sUuctuurperspectief liet zien dat er geen onderscheid­
baar verschil IS tussen de stmcmrele robuustheid van moleculaire neUverken en andere 
real-world neUverken. Als de verbhiding tussen biologische robuustheid en neUverk-
structutir zou worden begrepen, dan zouden veranderingen in biologische functie ver­
bonden moeten zijn met de moleculaire netwerkstructuur. Dit werd onderzocht door 
schade toe te brengen aan metabolische neUverken en het correleren van de veranderin­
gen m stmcmur met veranderingen in voorspelde mogelijkheid om biomassa te pro­
duceren. Hoewel er correlaties werden gevonden, bleken deze zwak, wat suggereert dat 
suuctuureigenschappen die berekend zijn met netwerken in htm geheel te ongevoelig 
zijn om biologisch significante veranderingen op te vangen. 

Het Uveede thema, correlaries tussen stmctuureigenschappen van moleculaire netwerken 
en biologische eigenschappen, lijkt op het eerste gezicht vergelijkbaar te zijn met het 
eerste thema. Maar waar de verbinding tussen structuur en robuustheid is gericht op 
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systeem brede structuiireigenschappen te relatereir aan systeem brede biologische eigen­
schappen, focussen we hier op de relaüe tussen structurele eigenschappen van indi­
viduele moleculen en him biologische eigenschappen. Anders gezegd, het eerste thema 
betreft de globale analysetechnieken, terwijl het tweede diema (reladef) lokale analy­
setechnieken betreft. Deze verschuiving naar het lokale leidde in vergelijking tot sterkere 
correlaties tussen structuur en biologisch gedrag dan bij de globale aanpak. 

Het oorspronkelijke onderzoek in dit proefschrift suggereert dat lokale analysetech­
nieken een grotere voorspellende waarde hebben dan globale analysetechnieken. Deze 
observade vormt de basis voor het derde thema: op welke schaal dien je moleculaire 
netwerken te analyseren om voorspellingen te doen die biologisch van betekenis zijn? 
Dh thema werd grondig bestudeerd in een hteratuurstudie met betrekking tot het veld 
netwerkbiologie. Deze literatuurstudie laat een langzame verschuiving zien van glob­
ale benaderingen naar meer lokale benaderingen, een weerspiegeling van de resultaten 
van dh proefschrift. Het succes van lokale benaderingen in vergelijking tot globale be­
naderingen laat zich het beste verklaren doordat het 1) eenvoudiger is om biologische 
interpretaties met structuureigenschappen van kleine verzamelingen moleculen te as­
sociëren (in plaats van met grote verzamelingen van moleculen) en 2) structuureigen­
schappen die betrekking hebben op een heel netwerk kunnen ongevoelig zijn voor kleine 
biologisch significante veranderingen in de structuur. 

Naast het onderzoek gericht op neuverkbiologie, beschrijft dit proefschrift ook het 
effect van veranderingen in de graad van assortativiteit op robuustheid van molecrfiaire 
neUverken en andere reaf-world netwerken. Deze metriek werd bestudeerd om beter te 
begrijpen hoe toepasbaarheid deze is op moleculaire netwerken en wat zijn beperkiugeir 
zijn. 
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