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BACKGROUND

Scientists have long attempted to understand biological systems in terms of simple build-
ing blocks and their interactions. The molecular biology research program was started
in the 1930’s under the assumption that biological function emerged from interactions
between a few fundamental biological molecules. The research program quickly led to
the discovery of until-then-unknown fundamental molecules and interaction pathways.
But molecular biology was a reductionist science and was ill suited to study complex,
indirect molecular interactions - such systems require consideration of all pathways be-
tween all molecules. High-throughput techniques invented at the end of the 20th cen-
tury enabled measurement of many simultaneous interactions and revealed that many
phenotypic traits arise from indirect interactions.

To understand these indirect interactions, new analysis techniques focused on in-
teractions, instead of only molecules, were needed. Graph theory, the branch of math-
ematics that deals with the abstract analysis of networks, proved to be a good research
tool as interaction datasets were already generally represented as networks. Eventually,
researchers started considering molecular interaction networks as objects of study in
their own right. Given that the functions of systems can often be inferred from their
structure, it was natural to ask whether structures in molecular networks could be used
to predict biological properties of the underlying systems. Thus was born the field of
network biology.

This thesis is motivated by the observation that biological system function can of-
ten be predicted from the system structure. Networks are abstract representations of
system interactions; networks related to biological systems may therefore contain struc-
tural signatures that could aid in the prediction of biological function. An important
consequence would be that, since biological systems are known to be robust, certain
structural signatures in biological networks may be associated with robustness, a find-
ing that would aid in the design of more robust human-made networks.

The content of this thesis centers around molecular interaction networks, In the re-
mainder of this introduction, we briefly discuss the types of molecular interactions that
are considered. In order to analyze the molecular interaction networks we use tools from
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graph theory for which we also give a brief overview.

1.1. MOLECULAR INTERACTION NETWORKS
Here, we assume a basic familiarity with the field of molecular biology and refer the in-
terested reader to [1] for a thorough introduction to the field.

The fundamental molecules of interest in network biology are DNA, RNA, proteins
and any small molecules interacting with these molecules. A simplified overview of com-
mon interactions between these molecules is shown in Figure 2.1a. Whilst this depiction
includes only a few molecules, a typical cell contains between thousands and millions
of distinct molecules. As molecular biology does not cope well with the simultaneous
consideration of so many molecules, researchers in the field tend to focus on small sub-
systems of interacting molecules such as the MAPK-ERK pathway shown in Figure 2.1h.

In contrast to molecular biology, the aim of network biology is the analysis of net-
works of hundreds or thousands of molecular interactions and therefore it considers
much larger systems than that of Figure 2.1b. Neither Figure 2.1a nor Figure 2.1b is suit-
able as network model for use in network biology. Figure 2.1b models a sequence of
events and contains non-pairwise relations. Figure 2.1a could, in principle, be analyzed
using graph theory but its many node types and even greater number of interaction types
limit the applicability of such analyses. Network biology generally focuses on networks
containing one or two kinds of molecule and one or two kinds of interaction. The net-
work in Figure 2.1c is a simplification of Figure 2.1b that models only protein binding
relations; due to its homogeneity, larger versions containing thousands of protein bind-
ing relations are well suited for graph theoretic analyses.

Due to the variety of molecules and molecular interactions in the cell, many kinds of
molecular interaction network are studied. A number of commonly studied molecular
interaction network types are enumerated in the list below:

Association networks represent any kind of relation between molecules (e.g. binding,
co-expression and structural similarities). Examples of association networks are
gene co-expression networks and protein similarity networks; in fact the entire
network in Figure 2.1a could be seen as one large, if very imprecise, association
network.

Functional networks model functional relations between pairs of molecules (usually
genes or proteins). A link implies that both are involved in the same function,
process or phenotype. For example, Genetic interaction networks represent in-
teractions where a pair of genetic mutations leads to an epistatic effect, i.e., worse
or better than expected based on the single mutation.

Protein-protein interaction (PPI) networks are undirected networks that model pro-
tein binding (in Figure 2.1a, protein interactions are shown in the strip labeled
“Protein” as dashed lines without arrow heads). PPI networks are derived from
high-throughput experiments using techniques such as yeast two-hybrid screen-
ing, mass spectrometry and tandem affinity purification [2]. Signaling networks
are related to to PPI networks but represent signal transduction between proteins
(and other molecules) instead of binding. Since signal transduction is directional
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(that is, proceeds from a signal source and ends at a final signal sink), signaling
networks are directed.

Transcription-regulatory (TR) networks are bipartite networks with one set of nodes
representing genes and the other representing transcription factors (TFs). TFs are
products of genes (modeled by gene-TF links; in Figure 2.1a these links are indirect
and are a combination of Genome-RNA links — black, solid lines representing tran-
scription — and RNA-Protein links — dashed lines representing translation) whilst
genes are regulated by TFs (modeled by TG-gene links; in Figure 2.1a, the two black
links stretching from proteins to the genome). Data for such networks is derived
through the process of chromatin immunoprecipitation (ChIP) [3]. Gene regula-
tory (GR) networks are related to TR networks but contain only genes. Often, their
links represent indirect regulatory relationships.

Metabolic networks are bipartite networks that model the relationships between the
chemical reactions that occur in cells and the substrates involved in the reactions
(in Figure 2.1a, substrates are represented as diamonds, reactions as enzymes/
proteins and the chemical relationships as solid gray lines). Simplified, non-bi-
partite metabolic networks containing only metabolites or only reactions are also
often studied.

1.2. GRAPH THEORY

In graph theory, networks are studied as abstract representations of relationships be-
tween objects [4}. The objects are known as nodes, the full set of which is represented as
. Relationships are represented as links connecting pairs of nodes; the set of links is
denoted 2. When nodes « and v are linked (i.e. {u, v} € &), uissaid tobe a neighbor of
vand vice-versa. The number of neighbors of a node u is called its degree. In Figure 2.1c,
EGF is a neighbor of both EGFR and GRB2 and therefore has degree 2.

Networks in the above description do not model non-symmetric relationships and
are therefore also known as undirected networks. When non-symmetric relationships,
such as the flow directions of chemical reactions in the metabolic layer of Figure 2.1a are
to be modeled, directed networks are used.

Graph Theory allows one to discover structural similarities between superficially very
different networks. Examples of structural properties that one might compare include
link distribution, the number of tightly connected communities and the average shortest
path between arbitrary nodes. Typically, structural properties are represented by means
of metrics, simpler scalar or vector measures of the properties in question.

The most fundamental network metrics are number of nodes, denoted N, and the
number of links, denoted L. Network density is the ratio of the the link count L to the
maximum number of links possible in the network (N(N —1)/2). A number of network
metrics that are commonly used in network biology are 1) the distribution of node de-
grees, 2) the clustering coefficient, a measure of how densely connected the neighbors of
nodes are and 3) the average length of the shortest distances between all pairs of nodes.

The research in this thesis starts with an analysis of the degree assortativity of a
network, a metric that measures the tendency of nodes with similar degrees to be con-
nected.
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1.3. OUTLINE OF THESIS

We commence by reviewing the state of the art in network biology research in § 2. In
§ 2, we also show that the way in which researchers apply network biology has changed
significantly since the early days of the field.

Our own research starts with an investigation into degree assortativity as a measure
of network robustness. However, assortativity is a relatively new metric whose proper-
ties are not yet fully understood. In § 3, we study what it means for a network to have
high or low assortativity. The question of whether networks can reconfigure themselves
gradually to attain high or low assortativity values is considered in § 4.

Having established that assortativity can be well optimized through a series of small
changes in network structure, we were interested in whether it is a factor in network evo-
lution since evolution itself is a series of small changes. In § 5, we develop a framework
for measuring network robustness and proceed to test the effect of changes in assorta-
tivity on instances of random network and a metabolic network. The aim of this chapter
is to investigate whether molecular networks are structurally more robust than expected
by chance.

In § 6, we explore the extent to which structural properties of metabolic networks
are correlated with their biological function. The assumption underlying this work is
that molecular networks are robust and that metrics associated with robustness could
be used to assess robustness of other networks.

In § 6, structural properties of entire metabolic networks are correlated with meta-
bolic function. Here, the aim is to discover whether structural properties describing en-
tire metabolic networks are predicitive of biological function of the whole system. The
focus on the whole makes this a global approach.

In contrast, the penultimate chapter of this thesis, § 7, takes a local approach. Here,
we ask whether the topological characteristics of small regions of protein interaction
networks correlate with their having certain biological traits.

The thesis concludes with § 8 where we summarize the most important findings of
the thesis. We also outline what we consider to be interesting open problems in the field
of network biology.

REFERENCES
(1] B.Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology
of the Cell (Taylor & Francis, 2007).

[2] J. De Las Rivas and C. Fontanillo, Protein-protein interactions essentials: Key con-
cepts to building and analyzing interactome networks, PLoS Computional Biology 6,
1000807 (2010).

[3] O. Aparicio, J. V. Geisberg, E. Sekinger, A. Yang, Z. Moqgtaderi, and K. Struhl, Chro-
matin immunoprecipitation for determining the association of proteins with specific
genomic sequences in vivo, in Current Protocols in Molecular Biology (John Wiley &
Sons, Inc., 2005).

[4] D.B.West, Introduction to graph theory, Vol. 2 (Prentice hall Englewood Cliffs, 2001).



TOPOLOGY OF MOLECULAR
INTERACTION NETWORKS

Wynand WINTERBACH, Piet VAN MIEGHEM, Marcel
REINDERS, Huijuan WANG, Dick DE RIDDER

2.1. ABSTRACT

Molecular interactions are often represented as network models which have become the
common language of many areas of biology. Graphs serve as convenient mathematical
representations of network models and have themselves become objects of study. Their
topology has been intensively researched over the last decade after evidence was found
that they share underlying design principles with many other types of networks.

Initial studies suggested that molecular interaction network topology is related to bi-
ological function and evolution. However, further whole-network analyses did not lead
to a unified view on what this relation may look like, with conclusions highly dependent
on the type of molecular interactions considered and the metrics used to study them,
It is unclear whether global network topology drives function, as suggested by some re-
searchers, or whether it is simply a byproduct of evolution or even an artefact of repre-
senting complex molecular interaction networks as graphs.

Nevertheless, network biology has progressed significantly over the last years. We
review the literature, focusing on two major developments. First, realizing that molec-
ular interaction networks can be naturally decomposed into subsystems (such as mod-
ules and pathways), topology is increasingly studied locally rather than globally. Second,
there is a move from a descriptive approach to a predictive one: rather than correlating

This chapter was published in BMC Systems Biology 7, 90 (2013) [1].
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biological network topology to generic properties such as robustness, it is used to predict
specific functions or phenotypes.

Taken together, this change in focus from globally descriptive to locally predictive
points to new avenues of research. In particular, multi-scale approaches are develop-
ments promising to drive the study of molecular interaction networks further.

2.2. INTRODUCTION

Over the last half century, our understanding of life at the molecular level has advanced
tremendously. This is made possible by continuously improving technology for mea-
suring the presence or concentrations of molecules at a genome-wide level, such as the
microarray (transcriptomics), mass spectrometry (proteomics, metabolomics) and next-
generation sequencing (genomics). Perhaps more importantly from a systems biology
perspective, similar technology and protocols have been developed to measure inter-
actions among molecules, leading to so-called interactomics [2]. Protein-protein inter-
actions are measured using yeast-two-hybrid technology and tandem affinity purifica-
tion amongst others [3], and stored in a variety of databases [4]; interactions between
DNA and proteins, such as histones and transcription factors, are found using yeast-
one-hybrid and chromatin immunoprecipitation [5] and deposited in databases such
as JASPAR [6] and FactorBook [7]; enzyme-metabolite interactions are measured using
enzymatic assays and can be found in for example, BRENDA [8], KEGG [9] and Meta-
Cyc [10]. Besides physical interactions, many indirect interactions have been reported,
such as genetic interactions [11], general epistatic interactions [12] and predicted func-
tional interactions [13].

This molecular interaction data is the cornerstone of many computational approaches
aiming to analyze, model, interpret and predict biological phenomena, many at a genome-
wide scale [14]. Interactions are often thought of as constituting networks, a view already
proposed quite early [15] which recently came to full fruition [16]. Networks are now
used as vehicles for modeling, storing, reporting, transmitting and interpreting molecu-
lar interactions [17]. Often they are represented as graphs, although this is not straight-
forward for many molecular interactions. For example, metabolic networks, represent-
ing physical interactions between enzymes and metabolites as well as conversions be-
tween metabolites, are ideally represented by hypergraphs [18] but are often reduced to
simple graphs [19] for further analysis.

Although graphs are convenient representations of molecular interaction networks,
it was quickly realized that they could be treated similarly to large systems of interact-
ing particles: small sets of interactions might be difficult to understand, but statistical
properties relating to all interactions could contain valuable information [20]. This led
to network biology [21]: a combination of systems biology, graph theory and computa-
tional and statistical analyses in which the topology of the graphs representing molec-
ular interaction networks themselves became the subject of study. In subsequent work,
statistically maintained properties, such as scale-freeness, were found in molecular net-
works of different types. In similar analyses, graphs were mined for statistically over-
represented network motifs [22], small subgraphs, suggesting that certain interaction
patterns are common to many networks [23].

Despite their apparent universality, it proved difficult to derive biological conclu-
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sions from the patterns discovered in these initial global statistical analyses of molecular
interaction networks. They may therefore be labeled as descriptive, pointing at generic
underlying properties rather than leading to verifiable hypotheses. In time, molecular
interactions networks were studied more locally, leading to more tangible biological in-
sights. For example, clustering was used to discover significant biological modules and
their interconnection patterns, which shed some light on evolutionary constraints of or-
ganisms [24]. Ranking of nodes by topological features (such as degree) was shown to
relate to biological importance of a gene or protein and may for example be used to
prioritize targets for development of pharmaceuticals [25]. We label such approaches
suggestive. Finally, by studying networks even more locally, typically neighborhoods sur-
rounding a few nodes, it has become possible to derive predictive results from molecular
interaction networks. A typical approach is to compute a topological fingerprint of the
neighborhood around a node; nodes are found to be functionally similar when their fin-
gerprints are similar [26].

Over the past decade, network biology has thus transformed from being an initially
descriptive approach to a predictive tool that is routinely applied to discover biologically
relevant facts. In this survey, we chart this progression, showing that it corresponds well
to a focus change from global to local. Many reviews of developments in network bi-
ology have appeared over the last years; here we list those most closely related to ours.
Przulj [27] reviews the use of protein interaction networks in network biology, touching
on some of the techniques discussed throughout this review and calling for more inte-
gration of biological knowledge with network theory. A review of network theory from
the perspective of data mining may be found in Pavlopoulos et al. [28]. This review cov-
ers a variety of network metrics with an especially strong focus on clustering and node
centrality. Likewise, Cho er al. [14] review several data-mining approaches applicable to
molecular networks. A related topic is that of random molecular networks, which serve
as benchmarks against which data mining results are measured. Such networks are gen-
erally produced through processes mimicking evolution, several of which are reviewed
by Foster ef al. [29] and Sun & Kim [30]. Finally, many recent reviews focus on the use
of network biology in diagnosing disease [31-33], in particular network-based disease
markers.

Our review adds to the existing literature by taking a high-level view of network bi-
ology as moving from descriptive to predictive, and by maintaining a clear focus on re-
search exploiting the topology of molecular interaction graphs. The remainder of the
paper is organized as follows: in Section 2.3, a brief overview of relevant biological and
mathematical theory is presented. Sections 2.4-2.6 then give a chronological overview of
research on the graph topology of molecular interaction networks, moving from descrip-
tive to suggestive and predictive. We end with a conclusion and outlook in Section 2.7.

2.3. NETWORK B10LOGY

For the purposes of this review, we define network biology to be the study of the topol-
ogy of graph representations of molecular interaction networks, both to describe such
networks and as a tool to make biological predictions. We briefly review graph theory
and discuss graph representations of molecular interaction networks.
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2.3.1. GRAPH THEORY

Graph theory is the study of graphs: structures representing relationships between pairs
of objects. The set A of objects in a graph G are called nodes; the relationships between
the objects are captured by a set % of node pairs called links. When nodes « and v are
linked (i.e. {u, v} € &), u is said to be a neighbor of v and vice-versa. In directed graphs,
used for modeling non-symmetric relationships such as activation or repression, each
link is directed and has a source node (origin) and a target node (destination). The num-
ber of neighbors of a node u is called its degree. Figure 2.2 shows examples of directed
graphs. Weighted graphs model non-binary relations by associating scalars or weights
with links. An example is the affinity with which proteins bind to one another. Box 2.3.1
lists some metrics often used to study graphs. Many more metrics in the context of net-
work biology are covered in [28].

An induced subgraph G’ of G is a subset of the nodes of G, along with all links whose
endpoint nodes are both in G'. In a bipartite graph, the nodes can be split into two sets
such that no two vertices in the same set are adjacent. A complete bipartite graph in
which all nodes from the first set are connected to all nodes in the second is said to be
complete.

Degree Distribution The statistical distribution followed by the degrees of the nodes
in a network. Many real-world networks have degree distributions that depart
sharply from those of classical random network models (Box 2.4.1).

Path Metrics In an unweighted graph G, the shortest path between nodes 1 and v is the
minimum number of links one must traverse to move from u to v. If G is weighted,
the shortest path is that with the minimal sum of link weights. The average short-
est path or characteristic path length is the average length of all shortest paths
(between all node pairs) in a network

Centrality Metrics A centrality metric gives a ranking of nodes according to their “im-
portance”. The simplest measure is degree centrality — the degree of a node spec-
ifies its importance. Closeness centrality is the reciprocal of the sum of the short-
est paths to all other nodes (i.e.a node whose closeness centrality is high is close
to many nodes). Betweenness centrality is the fraction of shortest paths passing
through a node. Eigenvector centrality and Pagerank are measures of how fre-
quently one arrives at a node when performing a random walk on a network.

Box 2.3.1: Graph metrics reduce structural properties of network to (vectors of) real numbers, facilitating the
comparison of different networks.

2.3.2. MOLECULAR INTERACTION NETWORKS

Molecular biology is the study of all cellular processes involving DNA, RNA, proteins and
metabolites. A simplified overview of common interactions between these molecules
is shown in Figure 2.1 (a). Although simplified, models such as Figure 2.1 (a) are still
complex. Researchers generally study models with fewer molecules and interactions,
such as the signaling pathway model in Figure 2.1 (b).
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Association networks Association networks model any kind of relation between
molecules (e.g. binding, co-expression and structural similarities). Examples of
association networks are gene co-expression networks and protein similarity
networks.

Functional networks Functional networks model functional relations between pairs of
molecules (usually genes or proteins). A link implies that both are involved in the
same function, process or phenotype. Genetic interaction networks represent in-
teractions where a double mutation leads to an epistatic effect, i.e., worse or better
than expected based on the single mutation.

Protein-protein Interaction Networks (PPI Networks) Protein- protein interaction
networks are undirected networks that model protein binding. PPI networks
are derived from high-throughput experiments using techniques such as yeast
two-hybrid screening, mass spectrometry and tandem affinity purification [3].
Signaling networks are related to protein interaction networks, but their links are
directed according to the flow of molecular signals.

Transcription-regulatory Networks (TR Networks) Transcription-regulatory networks
are bipartite networks with one set of nodes representing genes and the other rep-
resenting transcription factors (TFs). TFs are products of genes (modeled by gene-
TF links) whilst genes are regulated by TFs (imodeled by TF-gene links). Data for
such networks is derived through the process of chromatin immunoprecipitation
(ChIP) [34]. Gene regulatory (GR) networks are related to TR networks but con-
tain only genes. Their links represent indirect regulatory relationships.

Metabolic Networks Metabolic Networks are bipartite networks that model the rela-
tionships between the chemical reactions that occur in cells and the substrates
involved in the reactions (the solid gray lines in Figure 2.1 (a)). Reduced, non-
bipartite metabolic networks containing only metabolites or only reactions are
also often studied.

Box 2.3.2: Commonly studied molecular interaction networks.
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Both Figures 2.1 (a) and (b) focus on interactions and can therefore be represented
as networks. But neither is a graph, since Figure 2.1 (b) contains non-pairwise relation-
ships and Figure 2.1 (a) contains multiple types of relationships while both contain mul-
tiple types of nodes. Complex interaction models that distinguish between node and
link types are useful when the focus of study is on a small molecular subsystem but a
hindrance when the aim is the discovery of inferaction patterns across large sets of inter-
actions. When pattern discovery is the aim, networks are reduced to graphs by including
only links and nodes modeling one or two concepts and by converting non-pairwise
links to pairwise links. The graph in Figure 2.1 (c) is one possible simplification of the
pathway in Figure 2.1 (b). While network and graph are thus two distinct concepts, we
will henceforth use the term network to refer to both concepts. Box 2.3.2 lists several
such networks commonly studied.
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(a) A four-node feed-back motif. (b) A four-node bi-fan motif. (c) A three-node feed-forward
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(d) Three-node motif signature for a network.

Figure 2.2: Some motifs thought to be overrepresented in molecular interaction networks. Arrowheads indicate
link directionality.

2.4. DESCRIPTIVE ANALYSIS

During the 1990’s, researchers in various scientific fields started studying macro-scale
systems in which individual entities locally interact in simple ways, leading to complex
behavior emerging at a global scale. Examples include telecommunications networks
[20, 43], social relationship structures [36] and biological interactions from the molecular
to the ecological scale [22].

The structure of the above networks departed significantly from the random network
models — the Erdés-Renyi model [35] and the Watts-Strogatz model [36] — commonly
used in that day to model large networks (see Box 2.4.1). Real-world networks had short
average path lengths and degree distributions approximating power laws[20]. The slopes
of the degree distributions, when plotted on log-log axes, tended to fall within a nar-
row range, regardless of the numbers of nodes in these networks. This independence of
scale or scale-freeness was thought be indicative of networks formed through gradual
growth processes based on preferential attachment: every time a node is added to a
network, it is linked to existing nodes with probabilities proportional to the degrees of
those nodes [20, 21].

In biology, initial studies on molecular interaction networks matched the topolo-
gies observed in other real-world networks. Gene co-expression networks [44], protein-
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Erd@s-Renyi (ER) [35] The oldest class of random networks. To construct a graph in-
stance, links are added between each pair of nodes with probability p (a parame-
ter).

Watts-Strogatz (WS) [36] Akind of generalization of ER networks in which links of a reg-
ular lattice are rewired. Characterized by high clustering coefficients and short
average path lengths.

Barabdsi-Albert (BA) [20] A class of random networks constructed one node at a time,
with new nodes preferentially attaching to existing high-degree nodes. These net-
works are scale-free (i.e.hub-like) and more closely resemble molecular interac-
tion network networks than ER or WS networks.

Duplication-divergence These networks, inspired by gene duplication and subsequent
divergence (in sequence, interaction and function) [37] are generated by dupli-
cating nodes and randomly removing/adding links. Architecturally, duplication-
divergence networks are similar to Barabdsi-Albert networks [38, 39]

Fixed node degrees Random networks characterized by their specific node degree se-
quences that are generated either by randomly rewiring the links of an existing
network [40] or through the configuration model [41, 42].

Box 2.4.1: In graph theory, (opological characteristics of a network are often compared to those of instances
of random network models. Listed are a few widely used random network models in which nodes represent a
single concept; these are generally unsuitable for generating networks in which nodes correspond to multiple
concepts (e.g.metabolites and reactions in metabolic networks) since additional structural constraints apply
to their connectivity.

protein interaction networks [45], metabolic networks [46] and transcription regulation
networks [21] all contain aspects of scale-free networks. Nevertheless, although various
random network models reproduce some salient properties of molecular networks, each
has been criticized for not being consistent with other important aspects of molecular
networks [47-50].

Molecular networks are often also highly clustered, implying modular design (see
Box 2.4.2) and supporting the idea that biological systems are modular at all levels [51].
An early study on the S.cerevisiae PPI network showed proteins with similar functional
annotations to be highly connected, strongly suggesting modularity [26]. Similarly, in
the yeast TR network, highly co-expressed genes were found to be clustered [52]. Evi-
dence for hierarchical modularity was found in a PPI network [53] and in the metabolic
networks of several organisms [54]. In general, molecular interaction networks were in-
creasingly thought to consist of modules, linked through connector or linker nodes [55].
In other words, molecular networks are networks of networks that can tolerate disrup-
tions to individual modules but whose functions are sensitive to disruptions module of
connectors.

Although early attempts at understanding molecular interaction networks took a
top-down approach, characterizing networks using global metrics such as their degree
distributions, it was soon suggested that global behavior of the cell could be the result
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Modules are induced subgraphs whose link density is high in comparison to the rest
of the graph. This definition is deliberately vague, as what constitutes a module
depends on the context and the algorithm used to discover modules.

Motifs are small subgraphs, usually of 3 or 4 nodes, whose over- or underrepresenta-
tion may indicate that their structures are important or detrimental to the sys-
tem [22]. Usually, all distinct motifs in a network are counted, yielding a motif
signature for the network that may then be compared to signatures obtained by
sampling from an appropriate random network null model (see Box 2.4.1) to deter-
mine over- or underrepresentation. A signature for all motifs on 3 nodes is shown
in Figure 2.2 (d). Motif signatures can be used to characterize networks.

Graphlets are similar to motifs but always fully connected. As with motifs, graphlets
are used to construct signatures that capture the local characteristics of a network
[56].

Box 2.4.2: Modules, motifs and graphlets. These concepts are used to decompose networks into smaller units
that are easier to study.

of local features [57], a bottom-up view. One view was that behavior of molecular in-
teraction networks emerges from the interactions of many small subgraphs or motifs
(see Box 2.4.2), in the same way that the behavior of a computer results from the inter-
actions of simple logic circuits [22]. Statistical overrepresentation of a motif is thought
to be evidence that the motif offers a functional advantage to its host organism. Such
motifs — feed-back loops, feed-forward loops and bi-fan motifs (see Figure 2.2) — all have
analogues in the electronic world [22]. This fitted well with the increasing popularity
of systems biology [58] that advocated an engineering-inspired approach to study biol-
ogy. Simple motifs may act as sign-sensitive delay mechanisms or as input response-
accelerators, depending on their mix of activators and repressors [23]. More complex
motifs may even act as logic circuits, switches and memory states, making them inter-
esting building blocks for synthetic biology [59].

Motifs can also be used to characterize networks more globally. Global motif sig-
natures were found to be unique for different types of networks [22] but conserved be-
tween organisms [60], providing further evidence that motifs embody underlying design
principles in different types of molecular interaction networks, that are preserved across
evolution [23].

The global, module and motif views led to the idea that molecular networks are orga-
nized at multiple levels of complexity [61]. At the local level, motifs act as small control
circuits or building blocks. Motifs aggregate into modules that, through the interactions
of their motifs, implement more complex biological processes. At the global level, mod-
ules are connected to each other — and may thus exchange information or molecules —
through a small number of linker nodes. The fact that certain topological features, such
as scale-free degree distributions, are common among molecular networks suggests that
the designs of these networks are shaped at all levels by evolutionary mechanisms.

The case for an architecture based on a hierarchy of motifs, modules and global
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properties was strong and it appeared to be universal, so that its presence came to be
assumed. At the local level, overrepresented motifs were used to filter spurious links
from noisy high-throughput networks by rejecting links that did not form part of mo-
tif structures [62]. At the global level, the assumption of power-law degree distributions
led researchers to propose the evolutionary processes of duplication and divergence as
leading to preferential attachment in the formation of molecular networks [37].

2.4.1. LIMITS TO THE DESCRIPTIVE APPROACH

Details of the multi-layered view were increasingly disputed as data quality improved
and as researchers revisited interpretations of older findings. At the global level, the
most contested trait was that of scale-freeness, a property found to arise under many
circumstances, challenging its significance [63]. Careful examination of molecular in-
teraction data showed that some non-scale-free distributions fit degree distributions of
molecular networks as well as scale-free distributions [64, 65]. More contentious was
the suggestion that some global features are modeling artifacts. The hub-like architec-
ture of protein interaction networks was questioned, since no protein can realistically
bind to the number of proteins suggested by hub nodes; hub nodes are more likely to
represent groups of proteins that only appear to be individuals owing to experimental
limitations [47]. Likewise, metabolic networks do not display short average path lengths
when metabolite paths are traced; shortest path algorithms on metabolic networks do
not take into account the requirement that all metabolites be present for a reaction to
occur and their direct application to these networks is meaningless [18].

At the module level, it was found that modules are less clearly delineated than pre-
viously assumed. There appeared to be many connections between modules, making
it difficult to distinguish linker nodes [66]. Without linker nodes, assignment of nodes
to modules is more difficult, leading to “fuzzy” modules. Motifs were also criticized.
The bi-fan motif, found to be overrepresented in molecular networks [22] and assumed
to be functionally important, was shown to have no characteristic behavior when con-
sidered as a dynamic system [67]. If motifs lack characteristic behavior, aggregates of
motifs, such as motif clusters, cannot be assumed to implement specialized biological
functions. Motif signatures (Box 2.4.2 and Figure 2.2 (d)) of networks were argued to
be by-products of simple evolutionary mechanisms (such as gene duplication and di-
vergence) [68]. Evolution may thus not be driven by motifs; rather, motifs may be the
inevitable result of the self-organizing effects of evolution.

Although there is less universal structure in molecular networks than once thought,
the original multi-layered model is still useful, albeit with some modifications. There is
much evidence that molecular networks are not scale-free, but they are generally heavy-
tailed [65], meaning that they have a few hubs and many low-degree nodes. Motifs may
not be simple biological circuits [22], but they established the idea that local structure
is important; one way in which this was later exploited was to compute node signatures
for use in function prediction in molecular networks [56] and alignment of molecular
networks [69]. Perhaps the most important contribution of the layered view was the idea
that molecular networks are organized at multiple levels; the molecular organization of
the cell cannot be understood at one scale only.



16 2. TOPOLOGY OF MOLECULAR INTERACTION NETWORKS

2.4.2. TOPOLOGICAL FEATURES AS TARGET OR BY-PRODUCT OF EVOLU-
TION

The global approach was not meant to be purely descriptive: its original goal was the
discovery of universal architectural features. Universality suggests that organisms are
selected because they posses such features and would provide clues about the topologi-
cal requirements that are essential to life.

One property thought to emerge from natural selection is robustness, the ability to
maintain function under perturbations [70]. Network biologists have sought to explain
robustness in terms of topological characteristics. In PPI networks, the number of in-
teraction partners of nodes initially appeared to correlate with their essentiality [57]: ro-
bustness may come from the fact that PPI networks have few hubs and many low-degree
nodes. In metabolic networks, almost the opposite is true, with networks being sus-
ceptible to disruption of low-degree linker nodes that connect metabolic modules [71].
However, in both cases the systems are resilient to most perturbations but susceptible to
targeted attacks, a property known as highly optimized tolerance [72].

After-the-fact attempts to match topology to properties such as robustness were even-

tually called into question. In silico evolution experiments with simple gene-regulatory
networks showed that many such structural features emerge from network dynamics
rather than selective pressure [73]. Other such network evolution experiments suggested
that the drivers could be simple processes such as reuse, genetic drift and mutation [G8,
74, 75]. Even higher-level organization such as modularity is thought to arise from such
simple processes [24]. A study comparing a metabolic network to a network of atmo-
spheric chemical reactions found large topological similarities and concluded that many
large-scale topological features have no functional nor evolutionary significance, the so-
called neutral theory of chemical reaction networks[76]. In bacteria, horizontal gene
transfer is thought to play an important role in module formation, as cells adopt clus-
ters of foreign genetic material wholesale in reaction to environmental variability [77].
Nevertheless, the extent of this influence was recently questioned, stressing possible in-
terplay between variability and gene transfer [78, 79].

Not all network features emerge through network dynamics. Selection pressure does
seem necessary for the fine-tuning of topological features and may in some cases be re-
sponsible for the difference between a robust and fragile network [80]. In simulations of
metabolic network evolution, hubs emerge when networks are selected for their ability
to grow [81]. In models of GR network evolution, sparsity (i.e.low link counts) emerges
when selectional stability (which models energy minimization of the mutation process)
is enforced [82]. Even modularity may rely on selection pressure, albeit in a more sub-
tle form. When networks are evolved and selected for their ability to prosper in varying
conditions, modularity is found to emerge and, crucially, to be maintained [83]. A sim-
ilar result was obtained by subjecting randomly generated metabolic networks (i.e., not
generated by a procedure mimicking evolution) to a range of environments and assess-
ing the amount of biomass they produced [84].
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2.5. SUGGESTIVE ANALYSIS

Since the early days of network biology, data mining was used to discover unexpected
(ir)regularities in molecular interaction networks. Some findings were already discussed
in Section 2.4 (the use of clustering to discover functional annotation, the existence of
hub proteins). While data mining techniques shed light on aspects of biological func-
tion, they do not necessarily lead to directly testable hypotheses. In this sense, we call
the methods in this section “suggestive”. We describe four strategies for extracting net-
work regularities: significant feature detection, clustering, central and hub node discov-
ery and network homology.

Significant Feature Detection The idea behind this strategy is that unlikely patterns
in molecular networks are indicative of underlying “design” processes (such as evolu-
tion). The likelihood of a feature is determined by considering its distribution in net-
work instances generated using a random network model (see Box 2.4.1). In early work,
PPI networks were rewired (link pairs were shuffled) to generate random networks [40].
The connections between high-degree nodes in the original protein interaction network
were found to be statistically unlikely in rewired networks, leading to the hypothesis that
interactions between high-degree proteins are suppressed in evolution, perhaps to con-
trol cross-talk in the cell. Modules and motifs [22] can also be considered as significant
features. Some of the clustering algorithms mentioned earlier in this section explicitly
assess cluster significance as a function of its likelihood [85].

Such significant features can sometimes be biologically interpreted. Statistical anal-
ysis of miRNA targets in a human signaling network found that miRNAs tend to target
proteins that are part of positive feedback motifs [86). Similarly, cancer genes tend to
be part of positive feedback motifs whilst genes that are highly methylated tend to be
part of negative feedback motifs [87]. In both of these cases, the motifs are interpreted
as amplification or dampening circuits, analogous to electronic circuits. An interesting
recentview is that individual motifs are not necessarily significant but that large clusters
of positive or negative feedback motifs act as stochastic amplifiers or dampers, respec-
tively [88].

The advantage of significant feature detection lies in its simplicity: existing tech-
niques are used to analyze and compare the input network and networks derived from
arandom model. But this is also its main drawback: choosing an incorrect random net-
work model can make features appear significant when they are not.

Clusters Modules in complex systems tend to be highly internally connected whilst
sharing only a few connections with the outside world. Graph clustering is an approach
to discover such modules by decomposing a network into a number of subnetworks or
clusters that are internally highly connected. The “big data” era has inspired develop-
ment of clustering algorithms that efficiently deal with large datasets.

In network biology, general clustering algorithms have been used to discover func-

tional modules in gene co-expression networks [89] and genomic cooccurence networks [90].

Since proteins in complexes highly interact with one another, graph clustering has also
been used to discover protein complexes in PPI networks [55]. Here we mention a few
of such general clustering algorithms; the interested reader is referred to [91] for a more
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thorough overview. Most modern clustering algorithms are based on physical models,
data mining techniques or spatial partitioning. Physics-inspired approaches include
spin models [92, 93], random walk models [94, 95] and synchronization models [96].
Data mining approaches treat cluster discovery as a problem of significant feature dis-
covery. A few clustering algorithms discussed below are (at least partially) based on this
idea. Spatial partitioning approaches associate distance metrics on pairs of nodes that
are then clustered using approaches such as k-means clustering. A number of such dis-
tance metrics are discussed later in the context of “neighborhood homology” later in this
review.

Whilst general algorithms can be applied to molecular networks, clustering algo-
rithms that exploit the specific structure of molecular networks may achieve better re-
sults. MCODE is a heuristic algorithm developed to detect complexes in protein inter-
action networks [97]. Other examples include Restricted Neighborhood Search Cluster-
ing [98] and CODENSE, an algorithm for finding dense subgraphs [99]. A number of
algorithms based on local neighborhood statistics were proposed as well, for example to
find subgraphs of PPI networks that are active according to high-throughput measure-
ments (ActiveModules [100] and MATISSE [101]). More generally, a likelihood score for
the density of a subgraph can be used in (greedy) optimization algorithms to mine dense
subgraphs, such as in CEZANNE, which finds functional modules in gene co-expression
networks [101].

Besides fully connected clusters, clusters that resemble bi-cliques (complete bi-partite
subgraphs, see Section 2.3.1) have been shown to be common and biologically relevant
in protein interaction networks [102]. Furthermore, clusters in bipartite networks such
as TR and metabolic networks are also manifested as bi-clique-like networks. Algorithms
have been proposed to mine such (bi-)clique clusters (103, 104]. Specialized algorithms
for bipartite networks have also been developed, such as SAMBA, that integrates addi-
tional biological data to discover modules [105].

Asstill-difficult problem is the discovery of overlapping clusters. Many molecules are
components of multiple modules (e.g. proteins are part of multiple protein complexes,
metabolites are inputs to multiple metabolic reactions) whilst most existing clustering
algorithms place each molecule in exactly one cluster. A relatively simple approach is
to group molecules in topics and to apply node-based clustering on the topics; a node
that belongs to topics in different clusters would be a member of (at least) two clusters.
Recent research uses the more restricted case of edge clustering (which is equivalent to
topic clustering on topics of two nodes each) with good success [106-108].

Clustering is a useful technique to gain understanding of the modular construction
of a molecular network, but caution is required. Recovered clusters may not reflect ac-
tual biological modules; inaccurate clustering can arise from badly chosen clustering
criteria (in particular from criteria unrelated to biological constraints) [109]. Algorithms
that produce overlapping clusters may assign nodes to too many or too few clusters and
rigorous techniques for handling such problems are still lacking.

Central Nodes and Hubs  Early findings in network biology suggested that some nodes
are more important or central [110] (see Box 2.3.1) in molecular interaction networks.
This manifestation of highly optimized tolerance entails that the survival of an organism
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depends more on the presence of a few central nodes than on most other, less central
nodes. First, it was found that disrupting the highly connected, “hub-like” p53 gene in
the human signaling leads to cancer [111]. It was subsequently shown that the num-
ber of interaction partners of a protein (i.e.,degree centrality) in the S.cerevisiae protein
interaction network is correlated with its lethality [57]). Research on protein interac-
tion networks [112], co-expression networks [113] and synthetic genetic interaction net-
works [114] showed similar correlations. Furthermore, the number of interaction part-
ners was shown to be negatively correlated with the rate of evolution in protein inter-
action networks [115], metabolic networks [116] and transcription-regulatory networks
[117], further supporting the idea that central nodes are important.

Closeness centrality was used to find central metabolites in metabolic networks [118].
Betweenness centrality was used to identify bottleneck nodes — nodes of low degree
whose removal is fatal to the organism [119]. Both of these metrics fit the interpreta-
tion of central nodes as being chemical flow routers. In signaling networks, disruption
of central nodes has been linked to cancer, suggesting that they act as information coor-
dinators/routers [120, 121]. However, not all centrality measures can be easily related to
routing, examples of which include subgraph centrality [122], coreness centrality [123],
bipartivity (the fraction of closed loops including the node that are of even length) [124]
and node hierarchy [125].

In spite of the initial positive findings, further experiments on S. cerevisiae showed
little correlation between protein degree and essentiality [126], a finding strengthened
by computer simulations of gene expression [127]. This cast doubt on the use of central-
ity measures alone to predict node functionality. Some researchers have sought to refine
the notion of centrality by considering interaction patterns of central nodes: those that
interact with many interaction partners simultaneously are called “party” hubs whilst
those that interact with a few of their partners at a time are called “date” hubs [128].
Party hubs are thought to be global coordinators that connect components within net-
work modules whilst date hubs may be local coordinators that connect network modules
[128]. However, this distinction has been challenged with the availability of new data that
does not show such clear distinctions between central nodes [129].

Evenifnode centrality is not as well correlated with node function as hoped, research
in this field has shown that hubs do tend to be more essential than non-hubs. Fur-
thermore, subversion of central nodes has been implicated in the formation of cancer
[120, 130], suggesting possibly useful drug targets.

It has been suggested that a simple explanation for the essentiality of high degree
nodes is that they are more likely to interact with essential complexes and their removal
breaks such complexes [126]. The implication is that local topology is a deciding factor
in essentiality. Indeed, versions of existing centrality measures modified to take more
local information into account are better at predicting which nodes are essential [131].
However, it is important not to conflate node essentiality, a concept tied to survivability,
with the influence that a node exerts on a network. The latter concept is discussed in the
next section in the guise of “controllability”.

Global Homology The principle of homology states that biological systems related by
evolution are structurally similar. Its converse — structural similarities imply common
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heritage — is often used to predict the function of unknown proteins and genes. In net-
works, topological similarity can likewise be used to infer functional similarity. Using
this approach, metabolic networks of 43 organisms were found to display hierarchical
modularity [54]; these modules were found to center around core metabolites [132]. In
the same vein, the connectivity of a protein in a PPI network was shown to be propor-
tional to its age. In a study on three species, common proteins are likely to be older than
those present in only a single species [133].

The approaches above focus on high-level similarities between networks without at-
tempting to match individual nodes in the networks. By performing such alignments,
clustering and significant feature detection applied across species can lead to more in-
sight. In an early example, the glycolytic pathways of 17 organisms were aligned [134]
and revealed many interesting differences between species in this essential part of metabolism.
Alignment of the E.coli metabolic network to those of other organisms identified en-
zymes whose genes were candidates for horizontal gene transfer [39]. The average de-
gree of these candidates is higher than that of other enzymes, implying that they are cen-
tral to metabolism. Thus, ancestors to E.coli replaced their central enzymes with better
functioning enzymes from other species.

Data Mining in Biological Networks Suggests Biological Findings Data mining tech-
niques have been successfully applied in network biology to suggest biological functions
for genes and proteins. The common theme is that instead of considering global proper-
ties of biological networks, they focus on subnetworks, from individual nodes to neigh-
borhoods and features shared between networks. This increased focus allows the deriva-
tion of more tangible biological results. However, when analyses are based on compar-
isons to random network models (Box 2.4.1), such as in significant feature detection, the
problem of telling these apart from evolutionary by-products remains.

2.6. PREDICTIVE ANALYSIS

The data mining approaches discussed in Section 2.5 reveal the large-scale organization
of molecular networks in some detail but do not, in general, yield testable biological
hypotheses. Approaches that do give such results tend to be based on network general-
izations of existing principles in molecular biology: guilt-by-association, homology and
differential analysis.

Guilt-by-association The principle of guilt-by-association is based on the observation
that if most of the interaction partners of a molecule are associated with some property
(such as a specific biological process or molecular function [135]), the molecule itself
is also likely to be associated with that property [136]. Guilt-by-association has been
used to assign functions to proteins with unknown roles based on the functions shared
by the majority of their direct neighbors (i.e.interaction partners) in protein interaction
networks [26]. The properties shared by the majority of a node’s neighbors do not nec-
essarily yield the best annotations [137] and more sophisticated approaches, such as
Markov random fields trained on node neighborhoods [138], have been developed as
alternatives.
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By only taking direct interactions into account, the above applications of guilt-by-
association ignore the impact of potentially informative indirect interactions. So-called
n-hop features have been used to predict disease associations of proteins in PPI net-
works [139]. Another technique for incorporating indirect neighbors is graph diffusion,
an idea derived from the study of diffusion in physical systems. Here, properties of nodes
are diffused across links in a network; properties that diffuse in high quantities to nodes
with unknown roles are used to annotate these nodes [140]. In both n-hop methods
and graph diffusion, interaction strength between nodes depends on the path structure
between the nodes.

Path structure need not be the only determinant of interaction strength. Nodes that
are members of the same biological module may have similar functions [26]. Thus, a
node whose role is unknown can be annotated with the functions appearing most fre-
quently in the module(s) to which it belongs. Whilst we do not know what the biological
modules are, we can compute approximate modules through clustering. Such an ap-
proach has been used to annotate unknown proteins in S.cerevisiae protein interaction
networks [103]. Guilt-by-association is a simple and effective technique that extends
naturally to networks. However, it is only effective when the roles of the majority of
molecules in a network are known, limiting the technique to well-studied organisms.

Neighborhood Homology  Since the use of homology is pervasive in biology, we expect
the principle to extend to networks. Indeed, in Section 2.5 it was already discussed how
networks found in different organisms have similar structural properties. Predictive ap-
proaches use topological and possibly biological similarity to match similar nodes across
different networks. Once nodes are aligned, the function of a protein or gene whose role
is unknown can be predicted, if the function of its matched node in the other network is
known.

The first network alignment algorithms operated at a local level, attempting to match
only small parts of entire networks to one another (69, 141]. Global alignment is more
difficult, because networks to be aligned generally differ in size. Moreover, homology is
not a one-to-one relation: many nodes may align to many nodes. There are two main
approaches for performing global alignment:

1. Cluster the nodes in each network and compute topological matching scores on
the clusters [142, 143] (“matching clusters”).

2. Selectgroups of nodes in different networks that are pairwise similar in local neigh-
borhoods and possibly biological labels [144, 145] (“clustering matches”).

The first type of algorithm has the disadvantage that the clustering step precedes
matching and thus ignores potentially useful information. Many algorithms of the sec-
ond type associate feature vectors of topological (and possibly biological) attributes with
nodes that are then used to compute node similarity. Various metrics have been used
[146]. The Jaccard coefficient, a measure of overlap between sets of binary attributes, has
been widely used, an example of which was the prediction of protein function in human
PPI networks [147]. The h-confidence metric [148] is a data-mining tool for discovering
associations and has been used in protein function prediction. Specialized metrics, such
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as the graphlet distance (tailored to graphlet signatures[56]) have been used to discover
genes implicated in cancer [149].

Variations of clustering algorithms, looking for dense subgraphs within one network,
have been proposed to mine subgraphs similar in two networks. For example, the Path-
Blast algorithm combined a statistical score for protein similarity and probability of a
reported protein interaction to mine pathways or complexes occurring in PPI networks
of different species [141]. Similar approaches were applied to assign functions to pro-
teins [150] and to align metabolic pathways [151].

Differential Analysis Diagnosis of many diseases (such as cancer) is based on the fact
they influence the regulation programs of cells. Traditionally, this involved finding changed
expression of marker genes, or specific gene mutations, i.e.focusing on the nodes in the
network. Network biology allows additional focus on node relations, making it possi-
ble to diagnose molecular diseases that cannot be well characterized by the traditional
techniques [152]. This so-called differential analysis, finding changes in network struc-
ture [32], is currently complicated by the fact that construction of high-quality molecu-
lar networks requires considerable time and resources. One common way around this
is to use an existing high-quality network, typically a PPI or TR network, as a scaffold
onto which noisy high-throughput patient data (typically gene expression or methyla-
tion data) is overlaid. If multiple measurements are available for each patient, gene co-
expression/comethylation values can be computed and overlaid as link weights on PPI
links.

Expression changes of genes/proteins linked to central nodes in molecular networks
have been proven to be reliable markers of disease. Differential expression around topo-
logically central nodes in protein interaction networks has been used to diagnose can-
cer [153, 154]. Disease central nodes (i.e., nodes implicated in disease) have been sim-
ilarly used in the diagnosis of breast cancer and leukemia [155]. More recently, co-
expression changes around biologically central nodes, such as signaling hubs, have shown
to be even more reliable disease markers [156, 157].

More elaborate differential approaches consider changes in expression patterns of
subnetworks, instead of only central nodes. Automatic extraction of such subnetworks
based on topology and measurements such as gene expression has revealed subnet-
works associated with cancer (in which differential gene/protein expression could be
used for diagnosis of the disease) [87, 158] as well as subnetworks that are implicated in
heart failure [159]. An alternative to automatic extraction is to use biological modules
based on theoretical knowledge; such an approach has been used in cancer progno-
sis [160].

Differential diagnosis, despite its relative newness has quickly grown to a large field.
Our discussion is necessarily limited by the scope of this review; the interested reader is
referred to recent reviews that consider the discipline in much more depth [32, 33, 161].

Relating Topology to Biological Properties Leads to Predictive Power The data min-
ing techniques discussed in Section 2.5 are mostly based on topological information. In
contrast, the predictive approaches discussed above depend on additional biological in-
formation. This approach to network biology clearly yields more testable hypotheses
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than the suggestive and descriptive approaches.

Since we do not, in general, have good models of biological function at large scales,
predictive approaches are most often applied to small groups of nodes or subnetworks.
There are exceptions with metabolic networks being the most prominent. Flux balance
analysis (FBA) [162, 163] is a framework for computing steady-state reaction rates in E
such networks based on reaction stoichiometry, assuming the cell attempts to achieve
some objective such as maximum growth. FBA is often used in a predictive way, but has
also been applied in a “suggestive” setting, e.g.to study robustness of metabolic networks
[71]. FBA allows one to take additional physical constraints into account, such as ther-
modynamic interactions [164] or responses to signaling [165]; for an extensive overview
see [166].

The biggest problem with incorporating additional biological knowledge into exist-
ing models is that, for any given biological attribute, we seldom have complete data. Two
recent ideas, “controllability” and “observability”, potentially allow to use partial (local)
knowledge to predict global state. Controllability refers to “driver” nodes that have a
large influence on the state of a system [167]; observability is almost complementary, fo-
cusing on a small set of appropriately chosen observation nodes whose properties allow
reconstruction of the global system state [168]. These techniques promise to allow asso-
ciating local information with driver/observation nodes and to predict global properties
from limited available data.

2.7. CONCLUSION AND OUTLOOK

In this review, we have summarized common research themes in the field of network
biology. We find a slow movement from global to local analysis, arguing that this trend
emerged from a need to draw more concrete biological knowledge from networks.

The survey findings seem to suggest that one must either choose between untestable
abstract hypotheses about large-scale topological patterns or small-scale results that ne-
glect large-scale topology. But the successes of local techniques lie not in their focus on
the local but because they tightly couple topological observations to biological knowl-
edge. From this starting point, we see two broad research directions for improving the
explanatory power of large-scale topology patterns. The first approach is theoretical and
is aimed at making descriptive and suggestive techniques more predictive, whilst the
second approach is practical and extends the predictive techniques to work at larger
topological scales.

The theoretical research direction entails the improvement of network evolution mod-
els in order that they reproduce as much of the topological aspects of real molecular
networks as possible. Better models of network evolution can better reveal the topo-
logical features that are by-products of evolution, permitting researchers to concentrate
on explaining topological results that cannot be explained by the models. An additional
benefit is that these models could themselves lead to biological insight.

In the practical direction, we propose the application of predictive techniques to
various “resolutions” of molecular networks, that is, multi-resolution analysis. Lower
resolution versions of a network are typically obtained by grouping subnetworks into
meta-nodes (by analogy, the entire street network of a city is represented by a single
city node in national road maps). How nodes are grouped depends on the topological
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properties that must be maintained in low-resolution network versions. Node clustering
techniques from Section 2.5 can be used to produce low-resolution networks by group-
ing node clusters into meta-nodes. Another promising technique that aims to maintain
random-walk properties is spectral coarse graining [169].

The two research directions outlined above are by no means the only possible paths
for developing network biology. Rather, they show this young field still has much poten-
tial for development; we expect that future researchers will bring us unexpected biolog-
ical insights with the help of network biology.
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ASSORTATIVITY OF
COMPLEMENTARY GRAPHS

Huijuan WANG, Wynand WINTERBACH, Piet VAN MIEGHEM,

3.1. ABSTRACT

Newman's measure for (dis)assortativity, the linear degree correlation pp, is widely stud-
ied although analytic insight into the assortativity of an arbitrary network remains far
from well understood. In this paper, we derive the general relation (3.3), (3.4) and The-
orem 1 between the assortativity pp(G) of a graph G and the assortativity pp(G°) of its
complement G¢ . Both pp(G) and pp(G©) are linearly related by the degree distribu-
tion in G. When the graph G(N, p) possesses a binomial degree distribution as in the
Erdés-Rényi random graphs Gp(N), its complementary graph G, (N) = G1_, (N) follows
a binomial degree distribution as in the Erdds-Rényi random graphs G,_ p(IN). We prove
that the maximum and minimum assortativity of a class of graphs with a binomial dis-
tribution are asymptotically antisymmetric: Pmax (N, p) = =pmin(NV, p) for N — co. The
general relation (3.4) nicely leads to (a) the relation (3.12) and (3.18) between the assor-
tativity range pinax(G) — pmin (G) of a graph with a given degree distribution and the range
Pmax(G) — piin (G°) of its complementary graph and (b) new bounds (3.8) and (3.17) of
the assortativity. These results together with our numerical experiments in over 30 real-
world complex networks illustrate that the assortativity range pmax — Pmin is generally
large in sparse networks, which underlines the importance of assortativity as a network
characterizer.

This chapter was published in The European Physical Journal B 83, 2 (2011) [1].
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3.2. INTRODUCTION

“Mixing” in complex networks [2, 3] refers to the tendency of network nodes to connect
preferentially to other nodes with either similar or opposite properties. Networks whose
nodes preferentially connect to nodes with (dis)similar properties, are called (dis)assorta-
tive. When the property of interest is the degree of a node, the linear degree correlation
coefficient pp measures the assortativity in node degree of a network, which is com-
puted in [4] as

Li-j(di-d;)’

- (3.1)
N 3 1. N 2
-2 )

pp=1-

where dj is the degree of node j and i ~ j denotes thatnode / and j are linked. Although
(3.1) is well suited to computation, it is difficult to interpret. Using derivations from [4],
(3.1) can be written as

E[D;Dj] - i3,

3.2
FTAET (3.2)

pp =

where D; and D; are the degrees of connected nodes. This expression is exactly the
correlation coefficient of the degrees of connected nodes. Networks in which nodes of
similar degrees tend to be connected have positive correlation coefficients and are said
to be are assortative, whereas networks in which nodes of different degrees tend to be
connected have negative correlation coefficient and are said to be disassortative.

Network assortativity was widely studied after it was realized that the degree distribu-
tion alone provides an insufficient characterization of complex networks. Networks with
the same degree distribution may still differ significantly in various topological features.
Consequently, many investigations have focused on (a) exploring the relation between
assortativity and other topological properties as well as spectra of networks [5][6][4] and
(b) understanding the effect of assortativity on dynamic network processes such as the
epidemic spreading [7] and percolation phenomena [8]. Relations between degree cor-
relation and other topological or dynamic features are mostly studied experimentally
[5] or in a specific network model [8][7]. Recently, we have verified spectral bounds
for the assortativity [4] and we have studied how the modularity changes under degree-
preserving rewiring [9], which alters the assortativity of the graph.

Analytic insight in degree correlations in an arbitrary network is still lacking. In this
work, we analytically explore the relation between the assortativity pp(G) of graph G
and pp(G°) of its complement G°. Let G be a graph or a network and let .4” denote the
set of N = |#| nodes and £ the set of L = |.%| links. An undirected graph G can be
represented by an N x N symmetric adjacency matrix A, consisting of elements a;; that
are either one or zero depending on whether there is a link between node i and j, or not.
The complement G of G is a graph containing all the nodes in G and all the links that are
not in G. Thus, the adjacency matrix of G® is A(G®) = J— I - A(G), where J is the all-one
matrix and I is the identity matrix.

Furthermore, the general relation (3.4) between pp(G) and pp(G©) that we derived
is further applied to the complementary classes of graphs with a binomial degree distri-
bution. The binomial degree distribution is a characteristic of an Erd8s-Rényi random
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graph G, (N), which has N nodes and any two nodes are connected independently with
a probability p. Such a random construction leads to a zero assortativity as proved in
[4]. However, the class of graphs G(N, p) with the same binomial degree distribution
Pr[Dg = kl = (N )p*( - p)N-1-* a5 Erdds-Rényi random graphs G,(N) and obtained,
forinstance, by degree-preserving rewiring features an assortativity that may vary within
a wide range between minpp and maxpp. The complementary class G(N,1 - p) pos-
sesses also a binomial degree distribution Pr[Dge = k] = (NATl)(l = p)kpN=1=k character-
ized by N and 1- p. We derive the relation between the assortativity of a graph with
a binomial degree distribution and that of its complementary graph. This relation en-
abled us to prove, interestingly, that the maximum and minimum achievable assorta-
tivity of a class of graphs with a binomial degree distribution is symmetric around 0,
maxpp(N, p)=-minpp(N, p), which is also numerically illustrated.

The general relation (3.4) between pp(G) and pp(G°) also allows us to derive new
bounds of the assortativity and to relate the assortativity ranges max pp(G) — min pp(G)
and max pp(G°) — min pp(G°) of two complementary classes of graphs, each with a given
degree vector or a degree distribution.

The importance of investigating the assortativity and assortativity range relation of
complementary graphs lies in the following aspects. A) Computational complexity of
assortative(disassortative) degree-preserving rewiring, which increases (decreases) the
assortativity of network whilst the degree of each node remains the same, is higher in
a dense network than that in a sparse network [10] [4]. Most real-world networks are
sparse. However, hierarchical networks at a higher aggregation level tend to be denser.
Moreover, most studied brain networks and biological networks are originally weighted
networks. These networks are usually transformed into an unweighted network by dif-
ferent link weight thresholds so that classical networking theories can be applied. For
each weighted network, unweighted networks usually have to be derived at different
link densities without losing the information of the weighted network. Thus, they can
be dense with link density ranging over 0.5 < P < 1 and they may even follow a bino-
mial degree distribution [11]. Hence, the assortativity relation between complementary
graphs allows the assortative (disassortative) degree-preserving rewiring in a dense net-
work to be derived from the disassortative (assortative) rewiring in its complement with
less computational complexity. B) The maximum max pp and minimum minpp assor-
tativity reveals to what extent a degree vector d may characterize a graph. A small range
maxpp —minpp emphasizes the determining role of the degree vector d, whereas the
opposite underlines the importance of the assortativity. Also, experiments suggest that
most complex networks (see the Table 3.1 in Appendix 3.11) can be degree-preservingly
rewired in two opposite ways so that pp < 0 and, alternatively, so that pp > 0. Given
this experimental observation, we can say that maxpp >0 and min pp < 0 for the degree
vector d of a complex network. Consequently, a small maxpp — min pp means that the
degree vector is “hard” to correlate, because pp needs to be close to zero. Apart from de-
gree vectors d = r.u of regular graphs of degree r, where u is the all-one vector and di=r
for each component/node j, it would be interesting to find examples of degree vectors of
complex networks for which minpp > 0. Such degree vectors would generate and char-
acterize a class of strict assortative graphs, where min Pp > 0. Anon-trivial example of a
strict disassortative class of (almost) regular graphs is analyzed in Appendix 3.10, while
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the Table 3.1 in Appendix 3.11 shows a couple of real-world complex networks that gen-
erale a strict disassortative class. The difference maxpp — minpp may be regarded as a
metric of a given degree vector d that reflects the adaptivity in (dis)assortativity under
degree-preserving rewiring. Moreover, the quantity

maxpp —Pp
maxpp—-minpp

determines the relative maximum assortativity deficiency of a graph, which measures
the remaining degree-preserving rewiring left to achieve the maximum assortative state.
If degree-preserving rewiring can be considered as an evolutionary process of a network,
then r¢; quantifies the life-time or the evolutionary state of the network. For example,
the functional human brain network of a newly born baby is approximately random-
ized, with pp = 0. The learning process rewires the brain and changes pp. Suppose that
learning during growth increases pp in that it structures the functional brain, then 1-r¢
measures the effect of learning. The maximum possible trained functional brain pos-
sesses an assortativity of max pp, which corresponds to learning efficiency 1 - rg equal
to 1.

3.3. ASSORTATIVITY OF COMPLEMENTARY GRAPHS

3.3.1. RELATED BY DEGREE SEQUENCE

A node i with degree d; in graph G has degree N — 1— d; in the corresponding comple-
mentary graph G°. All connected node pairs in G° are non-connected node pairs i « j
in G. Therefore, the assortativity of the complementary graph can be written from (3.1)

as 5
Tinj(di = dj)

GY=1-
pp(GY) ™

2
'ZI(N—l—[]j) m(zu\] 1—(]))
=

where d; refers to the degree of node i in the original graph G. The variance Var(D] =
o2 D] of the degree D of an arbitrary node! can be written as a function of the degree
differences between all node pairs

=L E ()

which is derived in [12]. Furthermore, since
N -
N?¢?[D] = N*(EID*] - E*[D]) =N )_ d? —4I?
i=1
(where E denotes expectation and L the number of links in the network) we have
N

Y (di—dj)*+ ¥ (di=dj)’ = N ) df —4r?

= it i=1

We use capital letters for random variables and small letters for specific realizations.
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Hence,

pp(G)=1-pp(G)

ot 3 1 N 22
EW*I_“’") ‘m(gwﬂ—dﬂ )

N N )\ N
zd?—ﬁ(z d,?) —(de,?—uz)
i=1 i=1 i=1

> (3.3)
4 3 1 X 2)”
1= 1=
where (3.1) has been introduced.
3.3.2. RELATED BY DEGREE DISTRIBUTION
We can rephrase expression (3.3) in terms of random variables. According to [4],
N 1 N 5 2
di——|Y d*| =2L0% (D) (G))
i=1 2L i3
& 3 1 4 ) 2
N1ty N-1-d)?| =(N(N-1)-2L)a?[D;+ (G
;( )~ NI Xt D7 =(N(N-1)-2L)0° [D}+(G9)]

N
NY d —41* = N?0? D]

i=1

where o? [D+ (G)] and o2 [D;+(G)] are the variances of the degrees at one side of an
arbitrary link in G and in G¢, respectively. Thus, (3.3) becomes

2Lo? D+ (G)] . N%02[D(G)] - 2Lo? [D)+ (G)]

(N(IN=1)-2L)o? [D;+(G9)] (N(N-1)-2L) 02 [D}+(G)]

pp(G)=~pp(G) (3.4)
which holds for any graph. Observe that, except for pp(G), all factors and terms in (3.3)
and (3.4) are constant for a given degree vector. This means that the assortativity pp(G9)
of the complement G of a graph linearly varies with the assortativity pp(G) of the graph
G, and vice versa.

Theorem 1 The assortativity relation betiveen complementary graphs (3.4) can be further
expressed as a function of the degree distribution Pr[D = k] in the original graph G where

2L0% D)+ (G)] B EID*] - ]
(N(N-1)-2L) 02 [D+(GO)] (N—1)351031—(N—1)2(52J?12([gl—)1)E[DZIE[D1~E’~’[1)2] — E[D3]
(3.5)
N?0%|D(G)] ~2Lo* D+ (G)] NE|D?| - NE?|D] - E[D*] + £{51
(N(N-1)-2L) a2 [D;+(GS)] (N—l)zElDzl~(N—llz(ﬁzl?lw};([ll\)lﬁl)ElDZJE[DI—l:'Z[D2| — E[D3)

(3.6)
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Proof. See Appendix 3.7. =m
Relations (3.3), (3.4) and Theorem 1 are equivalent and explicitly reflect how the as-
sortativity pp(G©) and pp(G) of complementary graphs are linearly related.

3.3.3. BOUNDS FOR THE ASSORTATIVITY
Given a degree distribution or degree sequence, the assortativity pp(G) of a graph may
range within

—l<minpp < pp(G) =maxpp =1

and, likewise, the assortativity of its complementary graph pp(G®) may vary within
-1 =minp{, < pp(G°) =maxpj, <1

where max pp and min pp (max pj, and min p})) are the maximum and minimum achiev-
able assortativity of the (complementary) class of graphs with a given degree vector d.
When pp(G) = -1, (3.4) shows, that

4L0% D+ (G)] = N?0? [D(G)] < 2N(N - 1)o* [ D+ (GY)]
and, when pp(G) =1, that
N?? [D(G)] < 2(N(N —1)-2L)0? [D+ (G9)]
Thus, if minpp = -1 and maxpp =1,
4Lo? D+ (G)] < N?0? [D(G)] < 2(N(N - 1) —2L) 0* [ D+ (G9)]
Alternatively, after inverting (3.4),

(N(N—-1)—2L)o? D+ (GY)]

pp(G) = - 2102 D ()] pp(GY)+1 (3.7
_N202[D(G)]—(N(N—l)—ZL)aZ[Dﬁ(G“)]
2L02 D+ (G))

we find the bounds for the assortativity and disassortativity of any graph G,

(N(N —1) —2L) 0 [D+ (G°)]

tmin < Pp(G) = tmin + LoZ Dy (O)] (3.8)
where
ey = 1 — N?0? [D(G)] L No?[D(G)] gl 1 0*[D(G)] (3.9)
2Lo? D+ (G)] pP(N=1)0? [D+(Q)] p 02[D;+(G)]
Thus, we conclude that
minpp = max(—1, tymin) (3.10)

2(1-p) o*Dr(G)]
p a2 [D+ (@)

maxpp <min| 1ty +



3.3. ASSORTATIVITY OF COM PLEMENTARY GRAPHS 43

where p = L/ (]3') is the link density. The assortativity range 0 < maxp, —minpp < 2 of
the class of graphs G and the assortativity range 0 < maxpjy, — min P}, < 2 of its comple-
mentary class can be related by (3.4) as

2La% D+ (G))

(maxpf, —minp¢) = (NN-D—20) 02D (G7] (maxpp—minpp) (3.11)
or, inverted
1 0% D+ (G)] :
cop ~minpg) =L — 1| PG £ _thin ol 3.12
(maxpp —minpp) (p )02[D1+(G)] (maxpf, - min p§)) (3.12)

where both 02 [D}+(G®)] and 02 [D;+(G)] have been expressed as a function of the de-
gree distribution of the original graph in Appendix 3.7. The assortativity range maxpp —
min pp is small if (a) the variance o2 [D+(G9)] is small, (b) o2 [D+(G)) is large and/or the
link density p is high (close to 1).
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Figure 3.1: The ratio A = ma“pf-’;m!“pé’ in graphs with N = 10000 nodes and with a power-law degree distri-
maxpj, —-minpj,

bution versus (a) the exponent « of the degree distribution and versus (b) the average degree E[D].

_—_ o? [D + (le)]
The ratio m
well as in graphs with a binomial or a power-law degree distribution. When a graph
0% D+ (G9)]

’ (12[D1+ (G)]
derived both in Section 3.4.1 (rigorously) and in Appendix 3.8 (asymptotically). When a
graph has a power-law degree distribution Pr(D = k] = ck~, where ¢ = LTk and
a?[Dy+ (G9)]
02 [DI+ (G)]
further quantitatively investigate the assortativity range ratio

has been extensively analyzed in Appendix 3.8, in general as

has a binomial degree distribution Pr[Dg = k] = (N pra - pN-1-k =1as

l=a<s3, — 0if the graph is large and sparse as proved in Appendix 3.8. We

A = Maxpp —minpp _ ( 1 l) a? D+ (GY)]

max p7, —min p$, P 02D+ (G))

in graphs with a power-law or binomial degree distribution. In binomial graphs, A =
Il)—l. In graphs with V = 10000 nodes and with a power-law degree distribution, the ratio
A, expressed as a function of the degree distribution, can be numerically computed. We
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consider power-law graphs with an exponent 2 < « < 3.5, since most real-world graphs
have 2 < a < 3. As shown in Fig. 3.1(a), the ratio of the assortativity range A increases as
the power exponent a, or the heterogeneity increases. The assortativity of the compli-
ment may still vary within a certain range upbounded by 2/A when 2 < a <3, whereas
2/A goes fast to zero when a > 3. The link density is smaller for a larger exponent a.
Hence, the ratio A decreases as the average degree/link density increases, as depicted in
Fig. 3.1(b).
In general, a sparse network, favors a large assortativity range. This effect of a (small)
link density is more evident in graphs with a binomial degree distribution than that in
[D,+ ((, ] .
o?[Dy+ (O]
3.3 and 3.4, a power-law graph mdeed has a smaller assortativity range compare to the
binomial graph with the same link density.

power-law graphs, since - is far smaller in power-law graphs. As shown in Fig.

When p is large, a non-trivial bound can be derived from (3.12)

2 c
)a [D+(G)] (3.13)

- e
maxpp-—minpp <2 ( p 721D ()]
Most real-world networks are sparse. However, hierarchical network at a higher aggrega-
tion level or the unweighted networks transformed from the original weighted e.g. brain
and biological networks, likely have a link density 0.5 < p <1, as discussed in Section
3.2. The assortativity of such a dense network can be derived from its complement with
less computational complexity by the assortativity relation (3.3), (3.4) or Theorem 1. A
non-trivial bound of the assortativity range tends to be achieved via the assortativity
range relation (3.12). When p — 1, the range of variability in the degrees of a graph with
a number of links L ~ O(N?) is narrow and the assortativity is close to zero as illustrated
in Fig. 3.6.

3.4. GRAPHS WITH A BINOMIAL DEGREE DISTRIBUTION

Consider the class of graphs G(N, p) with a binomial degree distribution Pr[D¢ = k] =
(M pFa-pNt- k characterized by N and p as in the Erd8s-Rényi (ER) random graphs
Gp(N). Its complementary class of graphs G(N,1— p) also possess a binomial degree
distribution Pr{Dge = k] = (V1) (1 = p)* pN~1F with parameter N and 1 - p as followed
by the ER random graphs Gi_, (N). The assortativity of connected ER random graphs is
zero [4]. However, the assortativity of graphs like G(IV, p) conditioned only by a degree
distribution can vary with in a large range. Besides its theoretical beauty, the binomial
distribution has been observed in e.g. peer-to-peer networks [13] and the unweighted
functional brain networks [11].

3.4.1. ASSORTATIVITY OF COMPLEMENTARY GRAPHS

We first explore the relation between the assortativity pp(G(N, p)) and pp(G“(N, p)) =
pp(G(N,1 - p)) of two complementary graphs each having a binomial degree distribu-
tion characterized by (N, p) and (N, 1 — p) respectively, based on Theorem 1.
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For a binomial degree distribution Pr[Dg = k] = ( Npk - p)N-1-k it follows that

E[D% = (N-1)p(1-6p+3Np+6p>—5Np?+ N*p?)
E[D?l=(N-1)p(1-2p+ Np)
E[D]=(N-1)p

Substituted into Theorem 1 and further into (3.4), we find

2 +(GE
o 1D+ (G _ o4
0% [D+(G)]
(G(N, p)) = pp(G(N,1- ))_—L (G(N ))——2— (3.15)
PD yP))=PD ’ p)) = l_pPD P (N_Z)(].—p) .

If a graph with a binomial degree distribution is assortative pp(G(N, p)) > O its comple-
mentary graph is definitely disassortative pp (G°(N, p)) < 0, because m > 0. The
reverse does not hold when N is small. However, the bound

pp(GIN,1-p)) < —%pD(G(N, p))

is attained asymptotically for N — oo,

: NP
Jim pp(G(N,1-p) = l_pj\l]gr;opD(G(N,p)) (3.16)

Moreover, from (3.16), we obtain the bounds
ax( 1,1 1)< lim (G(N p))<min(1 . 1) (3.17)
—Ll=—)=1 PD ) = y T T .
pJ N—oo p

demonstrating that limy—.c,p—1pp(G (N, p)) = 0. In other words, the linear degree cor-
relation coefficient of the complete graph is zero. Only for p > %, these bounds (3.17) are
non-trivial. When p is small, a large assortativity range can be expected.

3.4.2. MAXIMUM AND MINIMUM ASSORTATIVITY

Given a class of graphs with a binomial degree distribution Pr[Dg = k] = ( Hpha -
p)N~17% the maximal and minimal achievable assortativity is denoted by maxp(N p)
and min p(N p). The complementary class of graphs achieve the maximal and minimal
assortatmty maxp(N,1 - p) and minp(N,1— p) Relation (3.15) shows that maxp(N,1—
p) = ——mlnp(N p)and minp(N,1—p) = ——maxp(N p). Thus,

maxp(N,1-p)—-minp(N,1-p) = pp(maxp(N p)—minp(N, p)) (3.18)

which is a special case of (3.11) for graphs with a binomial degree distribution. When p is
small, the assortativity range is far larger than that in the complementary class of graphs.
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Figure 3.2: The average maximum max p(N = 100, p) and minimum minp(N =100, p) assortathlty of graphs
with a binomial degree distribution versus the link density p. Verification of (3.16): Lmaxp(N p) =
minp(N, p).

The complementary classes of graphs G(N, p) and G(N, 1 - p) both follow a binomial
degree distribution. They differ only in link density p. A small link density p contributes
to a wide range of assortativity as illustrated in Fig. 3.2.

Most real-world networks are mostly sparse. Thus, their assortativity ranges expected
to be larger than that of their corresponding complementary graphs according to (3.12)
and (3.18). Furthermore, we will prove the following theorem:

Theorem 2 For binomially distributed nodal degrees, the maximum pmax(N, p) and min-
imum assortativity pmin(N, p) tend to be symmetric around the pp = 0 axis for large N.
Specifically, it holds that

lim maxp(N,p)+minp(N,p)=0
N—oo
when the link density p € (0,1).

Proof. See Appendix 3.9. m
Numerical computations in Fig. 3.2, indeed, illustrate that, approximately for finite
N,
maxp(N, p) =—minp(N, p)

for any link density p. The values of max p(N, p) and min p(N, p) in Fig. 3.2 are computed
with the exact algorithm explained in [4].
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3.5. REAL-WORLD COMPLEX NETWORKS

This section illustrates how the assortativity of a graph and of its complement changes
under degree-preserving rewiring, during which the degree of each node in the graph
does not change. Fig. 3.3 shows that, for an ER random graph with N = 500 nodes,
L =1984 links and link density p = 0.016, the assortativity of the complement decreases
much slower than that the assortativity of the original graph increases under degree-
preserving rewiring. Relation (3.4), indeed, confirms that the assortativity of the com-
plement must decrease, when pp(G) increases. The slower observed speed is due to the
factor 1% in (3.15) which is small for a small p. In general, assortativity of the comple-

ment changes much slower than that the assortativity of the original graph changes un-

; (s 2L0%[Dy+ (G)] : o ;
der degree-preserving rewiring, if the factor (NN-D-20)07[D;: (GI] 1 relation (3.4), which

is a constant under degree-preserving rewiring, is small.
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Figure 3.3: The assortativity of the Erdds-Rényi random graph with N = 500 nodes and L = 1984 links and its
complement versus the number of rewiring steps in an assortative degree-preserving rewiring procedure.

The relation (3.18) and Fig. 3.2 demonstrate that a small link density (as in Fig. 3.3)
corresponds to a large assortativity range maxp —min p and that the corresponding link
density 1-p in the complement leads to a small pyax— Pmin. This also explains in Fig. 3.3
why the assortativity of the graph increases much faster than the corresponding decrease
in the complement during the degree-preserved rewiring process. Fig. 3.4 shows the
same tendency in a Barabdsi-Albert graph [14] of the same size (N and L).

Fig. 3.5 illustrates for over thirty real-world complex networks how the assortativ-
ity pp lies within the maximum possible range pmax — Pmin. As shown in the corre-
sponding table 3.1, the link density p = L/ (2] )= % in these complex networks is small,
ranging from 4-107* < p < 0.37, such that the bound (3.13) for the assortativity range
max p —minp is here not confined by p. We observe that there are 6 strict disassortative
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Figure 3.4: The assortativity of the Barabdsi-Albert random graph with N = 500 nodes and L = 1984 links and
its complement versus the number of rewiring steps in an assortative degree-preserving rewiring procedure.

networks, where pmax < 0. The assortativity range in those networks is small compared
to the majority of complex networks. Moreover, they seem to possess a few very large
degree nodes and many small degree nodes. So far, we have not found a strict assor-
tative network, where minp > 0. This observation supports the explanation in [4] why
most real-world networks favor disassortativity due to a stronger connectivity and higher
diversity than in assortative graphs. It would be interesting to know whether strict assor-
tative, connected complex networks actually do exist. Assortativity range of the comple-
ments of these real-world networks, as shown in Fig. 3.6, are mostly small and around
zero. This is due to the effect of a large link density p on the assortativity range rela-
tion between complementary graphs (3.12). However, the degree distribution plays an
important role in determining the assortativity range, which explains possible large as-
sortativity range even in dense networks (e.g. network 11-13).

3.6. CONCLUSION

The general relations (3.3), (3.4) and Theorem 1 between the assortativity p p(G) and
pp(G°) of two complementary graphs are considered important new findings. Based on
these relations, we further derive bounds for the assortativity (3.8) and the relation (3.11)
between assortativity range of two complementary graphs with a given degree distribu-
tion. The influence of link density and degree distribution on the assortativity and on
the assortativity range of two complementary graphs is explicitly revealed.

Properties of complementary graphs are widely studied in Erdds-Rényi (ER) random
graphs, because the complementary graph of an ER random graphs G, (N) is again an
Erdés-Rényi random graph Gi—p (N). Actually, the assortativity of an ER random graph
is proved in [4] to be zero due to the random construction. However, constrained only by
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Figure 3.5: The minimum (min p), original (pp) and maximum (maxp) assortativity for various complex net-
works, described in Section 3.11. The values are computed by a heuristic, greedy degree-preserving rewiring
algorithm.

a binomial degree distribution as in the ER random graphs Gy, (N), the assortativity of a
graph G(N, p) may vary within a wide range. The complementary graph G(N, 1 — p) also
possesses a binomial degree distribution, but characterized by N and link density 1 - p.
The relation between pp(G(N, p)) and pp(G(N, 1 — P)) in this case can be simplified into
(3.16). As a consequence, the maximum and minimum assortativity of a class of graphs
with a binomial distribution are proved to be symmetric, maxp(N, p) = —minp(N, p)
and the range maxp(N, p) — min p(N, p) is shown in (3.18) to be smaller for a large p.

A degree distribution is normally considered as a first order metric to characterize

a network, while the assortativity as a second order descriptor. A narrow assortativity
range max p —minp of graphs with a given degree distribution implies that the degree
distribution alone specifies the other properties well and is thus representative. Our
results, (3.12) and (3.18), illustrate that a high link density confines the possible assor-
tativity range more than a low link density. This, again, strengthens the importance of
assortativity as a network characterizer, since most real-world networks are sparse. Fi-
nally, in over 30 real-world complex networks, the assortativity range maxp — minp is
generally found to be large, except for a few strict disassortative graphs (maxp < 0). As
we did not encounter strict assortative graphs (min p > 0), it may be worthwhile to pon-
der whether they exist. Assortativity range relation 3.12 allows us to derive a non-trivial
bound in one of the two complementary graphs, mostly the dense one. Exploring a bet-
ter assortativity bound for sparse networks is deemed as an interesting future work. The
— U%,[D,JF(G“)]
o2[Dy+ (G)]

tions of degree moments. Further quantitative studies on this ratio in network models

as well as in real-world networks will provides more insights.

in the assortativity range relation has been explicitly expressed as func-
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Figure 3.6: The minimum (min p), original (pp) and maximum (maxp) assortativity for the complements of
various complex networks, described in Section 3.11. The values are derived from those of Fig. 3.5 by (3.3).
They can be equivalently computed by the heuristic, greedy degree-preserving rewiring algorithm.

3.7. PROOF OF THEOREM 1

Consider an arbitrary link [ in G with right endnode I*. The probability that this link / is
connected to a node j = I* with degree k equals

N
Pr(D;+(G) =kl =) Pr[node jis {*|D; = k] Pr[D; = k|
j=1

Each link [ consists of two half links connected to node I~ and node I*. With the basic
law of the degree is Zj.vzl Dj=2L, we have

k
Pr[node jis [T|D;=k] = —
r[node jis I*|D; = k| 5F

Since each nodal degree D; is distributed as the degree D of an arbitrary node in G,
Pr[D; = k] =Pr[D = k] and we end up with

NkPr[D=k| kPr(D=k]
2L ~ E[D]
kPr[D=N-1-k]
N-1-E[D]

Pr(D;+ (G) = k] =

PI'[D[+ (GL) = k] =
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3.8. THE RATIO

These expressions allow us to derive g2 [D+(G)] and 0? [D}+ (G°)] in (3.4) as a function
of the degree distribution Pr[D = kJ:

NI NE*PriD=k]  E[D?)
E[D+(G)] = - =
kgo 21, E[D]

. N NESPriD=k]  E[D?
FEh = ), oo

= 2L ~ E[D]
2 _ EID’|E(D] - E2(1?]
o° 1D+ (G)] = B

Similarly,

R a8 1 s
By 6y = Y KPID=N-1-k _ (N-1)+ED* ~2(N-DE[D)

iz N-1-E[D] N-1-E[D]
2 ey _ (N=1)°+3(N-1)E[D? —3(N - 1)2E(D] - E[D3]
E[D7, (G)] = N_1-ED]

0? D+ (G9] = ((N~1)2E[ D?] = (N-1)E[D* + (N - 1) E[D*|E[D]

1
(N-1-E[D])?
—(N-1)?E?|D] + EID’|E|D] - EZ[DQ])

They, together, lead to Theorem 1.

X 72D+ (6]
3.8. THE RATIO ° 2 [D) (O]

. o2[Dp (GY)]
The ratio m

original graph G

can be written as a function of the moments of the degree is the

o*[D (G EPD)
02D+ (G)]  (N-1-E[D])>
N-1)Var[D])-{E[D3 - E[D%E[D 2
+(N_1)( )Var [D] - {E[D*] - E[D* E[D}} E?|D]

(N—1—-E[D])2 EIDIEID] - E2(D?]

We express the variances 0% [D;+ (G°)] and o [Dy+(G)] in terms of the centered moments
Kk = E[(D—-E[D)* ‘| for k = 2. In particular, denoting the average degree by u = E|D],
we have that

E[D?] = pp + p? = /% + Var D)
EID’] = E[(D - p+w® = EI(D - p)® +3(D — 1?1 +3(D - ) + 1)
=3+ ;1,3 + 3t = ;1,3 +3uVar[D] + g
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y’;,‘g measures the lack of symmeiry of the degree distribution around
2

where the skewness

the mean. Then,

0 [D+(G)] 1 (N =1)po = {ps + p* + 2o 1} 1
2 - gt =4 2 ' DR
o= DG (N-1-p) (N-1-p) M3+ Ho = — [
- N-—1-2wpy — pz — p°
R A
== [l = 2 e ) = = 3 2
(N-1-p) (N-1-p) 74_“2(1_?)
2 .ul"',“:s
Mo H2 — N—H—Z;l

2 * 2
N-1- (-4 iy 1L}
( ) (N-1)(N-1-24) ((1 /12)“2+ Mj)

We consider large and sparse graphs such that

¢ A L3+
o2 DG 17N
a2 [D+(G)] B H2 13 (3.19)
(1 a H—“’) + HE2

When the degree distribution is symmetrical around the mean such that p3 =0,

o?[Dy+(GY)] 2
o?[Dp (G p2 -

Moreover, if the symmetrical degree distribution follows a binomial distribution where
p=Npand pp =pul-p),

0® D+ (G)

02 [Dy+(G)]

which is the same as (3.14), rigorously derived in Section 3.4.1.

For a power-law distribution Pr[D = k] = ¢k and ¢ = =g = [%a). we have that

Y ?7:—'1 a T

B = ey Bl e .((‘ft_;)” il BT = e Li B o %, where the
approximation sign is only valid provided a — m > 1. Then,

ps=E|(D-p)*| = B[D] -3uE[D?] -
N-1 ] _N-1 N-1 N-1 8
=c Z k—(a—d) —3CZ Z k—(a’~l) Z k*(ﬂ‘*Z) _63 ( Z k(a‘—]))
k=1 k=1 k=1 k=1
For large, but finite N, we approximate as
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N-1
Z ¢ :f — = =
=1 ] X% l1-a a—1




3.9. PROOF OF THEOREM 2 53

and
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For 1 < @ < 2 and large, but finite N, we have
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2 T
" [
Together with (3.19), we have
2 c 3—-a
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When 2 < @ < 3, we prove in a similar way that
2 c
0 [D+(G)] oo
————=0WlN"")—0
0% D+ (G)]
3.9. PROOF OF THEOREM 2
First, we note from (3.15) that
maxp(G(N, p)) = ——"— min p(GN, p)) - —— =
’ 1-p ’ (N-2)(1-p)

Let Ry(p) = maxp(N, p)+minp(N, p). From (3.15), it follows that, Ry (p) = —lﬁ—’pRN(l—

p)—m. By setting p = 3, one obtains Ry (3) = —Ry(3)- 25, showing that Ry(3) =
1

N-2"*
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The link density p = € Q is a rational number, which tends to a real number

(NJ
when N — co. Assume that maxp (N, p) is differentiable with respect to p, then so are
minp(N, p) and Ry (p). Thus,

d"Ry(p) d’ ( p )
- = R 1= T P
dp" dp"\ 1-p nil-=p) (N=-2)(1-p)

By applying Leibniz’ rule, we have for n > 1

n n , dn—j i
L(—LRNu—m):—Z " ( £ )i N(=p)
dp™\ 1-p i=o\JJdp" I \1=p) dp’

dam (_p |\ _ d" 1) _ i 1 - —m-1
For m > 0, we use apm (T) = dpm (1 - Tp) = —W (1—) (=D"m!(1-p) such
that

d" p \d"Ry(1-p) (-1)"n! "= 1 d/Ry(1-p) ~
LR T L s N Y T
P p p p (1-p)"" j=0 J p-
Hence,
d"Rn(p) __( p )d”RN(l—p)+ (~D"n! "=11 @Ry - p) (1-p)i+ (—1)"4(n)
dpm  \1-p dp" (1-p)"™t it dpl d V-2~ g+l
(3.20)
Setting n = 1 renders
dRn( ) dRn(1— ) 1 4
T SR 0 o O .
dp l—p dp (l—p) (N=-2)1-p)

y 1 y 1 dRn(p) AdRyn(1-p) ;
Evaluation at p = 3 (with Ry(3) = —55) yields {,‘p - ¢ y which
shows that di‘;;‘;)‘” ) , = 0. Since d’z‘;}(p ! ‘ , =0, it also follows from (3.20) that

pP=3
% . =0 and in fact, by iteration, that dll(f;;’,,(p) " = 0. The Taylor expansion

of Ry(p) around p = 3,

2 1 d"Ry(p) ( 1)” (l) 4
R = —_— == = R == —=——
ok ,,;J nl  dp" i il ¥lg N-2
demonstrates that Ry(p) = maxp(N, p) + minp(N, p) = —ﬁ. Hence, the maximum

and minimum assortativity are symmetric around pp = 0 when N — oo, in which case
the assumption of differentiability with respect to p also holds. This proves Theorem 2.

3.10. EXAMPLE OF A STRICT DISASSORTATIVE GRAPH CLASS
Consider the connected graphs in which N —2 nodes have degree r and the two remain-
ing nodes, 1 and 2, have degree d; and dp. Thus, the basic law of the degree tells us
that

=(N=-2)r+d,+d,
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3.10. EXAMPLE OF A STRICT DISASSORTATIVE GRAPH CLASS

There are only two configurations possible that lead to a different sum S = i (di— dj)2
in (3.1): (a) when node 1 and node 2 are not mutually connected and (b) when they are.
In the first case,

Si=di (r —d)* +dy (r — dy)?

and in the second case,
So = (di —do)* + (dy = 1) (r = dy)* + (dy = 1) (1 — d)?
=81+ (d1— d2)* = (r — dv)? = (r — ds)?
Now,
(dy —da)* = (r—=d)? = (r —ds)> = =2(r — dy) (r — dy)

such that
So=81-20r—d))(r—d>) (3.21)

The basic law of the degree 2L = N1+ (dy — r) + (d> — 1) allows us to eliminate dy,
So=8142(—d)) 2L—Nr)+2(r—d;)* (3.22)

If r > d,, then it follows from (3.22) that S, > $; and, further from (3.21), that then r < d».
Ifr=dy, thenS; =8;. f r<dyandr<dy,orr>d; and r > dy , then (3.21) shows that
Sz < Sl.

After choosing the S; configuration, we rewrite (3.1) as

V-5

PD v

The denominator V in (3.1) is, with

N
Y di=(N-2)r*+d?+d?
i=1
N

d

Ydi=wW-2r*+dd+al
=1
equal to
(N=-2)r?+d2 + d2)?
2L

i=1

1

2
v—iaﬁ—i Nd2 —(N—2)r3+a’3+d3—(
- i 2r. = i - 1 2

Hence,

(N =2)r®+d? + d2)?
2L

S1-V=di(r—d)’+dy(r—do)*~ (N-2)1° - d - d +
from which

2L(S1-V) = ((N-2) 1+ d? +d? —rL)* + rL(2d, (r — dy) + 2dy (r — dy) — 1 L)
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Using 2L = (N - 2)r + d; + d> yields, after some tedious manipulations,
2L(S) = V) ={d?+d2 - r (dy + dp)}

In conclusion, §; — V = 0 and only zero if d; = d» = r. Hence, since V = 0 (as shown in
[4, 12] and since pp = (V= 81)/V, we conclude that pp; <0. If Sp > Sy, then S, —V >0
such that we find a strict disassortative class. The analysis above shows that this happens
if[]l <Tr< dg.

3.11. TABLE OF ASSORTATIVITIES FOR COMPLEX NETWORKS

# Name N L _EID]  po  Pmin Pmax__ Ap J
| Proteins
1 1AOR 97 212 437 0412 -0.959 0.955 1.91
2 ladj 95 213 4.48 0.129 -0.959 0.992 1.95
3 latn 5015 5128 2.05 -0.453 -0.778 0.977 1.75
4 leaw 53 123 4.64 0.209 -0.952 0.965 1.92
5 3cro 1856 1966 2.12 -0.495 -0.842 0.979 1.82
[ Software call graphs
6 AbiWord 1093 1765 3.23 -0.0777 -0.33 0.309 0.639
7 Digital Material 187 269 2.88 -0.179 -0.516 0.235 (.751
8 MySql 1500 4202 5.60 -0.0825 -0.21 0.0521 0.262
9 VIK 786 1370 3.49 -0.191 -0.418 0.309 0.727
10 XMMS 1097 1894 3.45 -0.0809 -0.627 0.848 1.48
Food webs
11 Everglades 69 880 255 -0.298 -0.584 -0.0462 0.538
12 Florida 128 2075 324 -0.112 -0.565 0.196 0.761
13 St Marks 54 350 13.0 -0.232 -0.467 -0.0361 0.431
Telecommunications networks
14 ARPANET80 71 86 242 -0.261 -0.824 0.845 1.67
15 Surfnet 65 111 342 0.229 -0.916 0.950 1.87
Electronic circuits
16 5208 122189 3.10 -0.00201 -0.729 0.845 1.57
17 5420 252 399 3.17 -0.00591 -0.657 0.783 1.44
18 5838 512 819 3.20 -0.03 -0.483 0.567 1.05
[ Peer-to-peer networks
19 Gnutella 1 737 803 2.18 -0.193 -0.582 0.848 1.43
20 Gnutella 2 1568 1906 2.43 -0.0946 -0.122-0.0211 0.101
21 Gnutella 3 435 459 2.11 -0.33 -0.351 -0.141 0.210
22 Gnutella 4 653 738 226 -0.246 -0.259 -0.168 0.0913
Power grids
23 Western European power grid level 2 AL 3690 4206 2.28 0.0649 -0.259 0.958 1.22
24 Western European power grid level 3 AL 756 786 2.08 0.00648 -0.273 0.497 0.770
25 Western US power grid 4941 6594 2.67 0.00346 -0.695 0.975 1.67
Miscellaneous networks
26 American football contest network 115 613 10.7 0.162 -0.713 0.924 1.64
27 C. elegans neural network 297 2148 14.5 -0.163 -0.449 0.149 0.598
28 Dolphin social network 62 159 5.13 -0.0436 -0.979 0.895 1.87
29 Dutch football player co-appearance network 685 10310 30.1 -0.0634 -0.95 0.897 1.85
30 Les Miserable co-appearance network 77 254 6.60 -0.165 -0.746 0.202 0.949
31 Network science collaboration network 1461 2742 3.75 0.462 -0.638 0.935 1.57
32 Western European railway network level 2 AL 697 785 2.25 0.0954 -0.642 0.963 1.61
33 Word adjacency network — Japanese texts 2704 7998 5,92 -0.259 -0.321 -0.204 0.117
34 Word adjacency network — David Copperfield 112425 7.59 -0.129 -0.598 0.147 0.745

Table 3.1: Various real-world networks whose maximum and minimum assortativities were computed heuris-
tically by greedy degree-preserving rewiring. Although the heuristic algorithm cannot guarantee to find the
optimal assortativity results, it achieves results that are close to that of the exact algorithm.
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DO GREEDY ASSORTATIVITY
OPTIMIZATION ALGORITHMS
PRODUCE GOOD RESULTS?

Wynand WINTERBACH, Dick DE RIDDER, Huijuan WANG,
Marcel REINDERS, Piet VAN MIEGHEM,

4.1. ABSTRACT

We consider algorithms for generating networks that are extremal with respect to de-
gree assortativity. Networks with maximized and minimized assortativities have been
studied by other authors. In these cases, networks are rewired whilst maintaining their
degree vectors. Although rewiring can be used to create networks with high or low as-
sortativities, it is not known how close the results are to the true maximum or minimum
assortativities achievable by networks with the same degree vectors.

We introduce the first algorithm for computing a network with maximal or minimal as-
sortativity on a given vector of N valid node degrees. We compare the assortativity met-
rics of networks obtained by this algorithm to assortativity metrics of networks obtained
by a greedy assortativity-maximization algorithm. The algorithms are applied to Erdés-
Rényi networks, Barabdsi-Albert and a sample of real-world networks. For the Erdés-
Rényi and Barabdsi-Albert networks considered, we find that the mean difference of the
assortativity metrics produced by the two methods decreases faster than O(N~1"1). We
also find that the number of rewirings considered by the greedy approach must scale
with the number of links in order to ensure a good approximation.

This chapter was published in The European Physical Journal B 85, 5 (2012) [1].
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4.2, INTRODUCTION

Networks play an ever-larger role in the analysis of various systems. Examples are bio-
logical systems, social networks and computer networks. Comparison of such networks
is difficult since they vary in size (both in node and link counts) and link configurations.
Topological metrics provide one way of comparing different networks by encoding their
properties as scalars or vectors: two networks with similar metrics could be considered
equivalent, depending on the context.

Degree distributions of networks are an often-used metric for characterizing net-
works. Such first-order descriptions are not always enough to describe the topology of
networks. Thus, it may be necessary to consider second-order measures in addition to
degree distributions. One such measure is Newman's degree assortativity [2] (a special
case of assortative mixing [3]), a relatively new metric that measures the extent to which
nodes with similar degrees are connected by links. The limits of this metric are not yet
as well studied as those of other metrics. Extremal graph theory provides a framework
for studying these limits. A typical approach in extremal studies is the generation of
networks that are extremal with respect to the metric being studied. As an example, in
Wang er al. [4], the maximum and minimum assortativities achievable by networks with
binomial degree distributions are shown to vary greatly with the densities of the net-
works. This is a non-obvious result, illustrating that assortativity measures have to be
considered relative to a given network structure. We consider two methods for obtain-
ing networks with maximal degree assortativity subject to fixed degree vectors: a greedy
algorithm based on link rewiring and an exact algorithm based on weighted b-matching.

Watts and Strogatz [5] introduced link rewiring as a technique for generating ran-
dom networks. During rewiring, a link is chosen at random and one of its end-points is
replaced by a random node in the same network provided that no self-loops or duplicate
links are introduced (that is, the network must remain simple). Due to the way that re-
wiring works, the node and link counts are invariant. Evans [6] and Lindquist et al. (7]
exploited this property and studied rewiring as a mechanism for optimizing metrics sub-
ject to fixed node and link counts.

Degree-preserving rewiring is a restriction of link rewiring where a pair of links is
chosen at random and a random end-point from the first link is exchanged for a random
end-point from the second link. Maslov and Sneppen [8] introduced degree-preserving
rewiring as a technique for generating null models. Their aim was to determine the
likelihood of features observed in protein-protein interaction networks (relative to the
null models). By requiring that degrees are preserved, the rewiring procedure is able to
generate random networks that can be characterized by their degree sequences. The
utility of this is evident from the fact that two of the most well-known classes of ran-
dom networks are characterized by their degree distributions: Erdés-Rényi networks and
Barabdsi-Albert networks.

Degree-preserving rewiring forms the basis of a simple technique for optimizing the
degree-assortativity of a network (with a constant degree vector): a number of such re-
wiring steps are applied such that each rewiring increases/decreases the assortativity.
This is essentially the approach taken by our greedy algorithm. Menche et al. (9] imple-
mented a heuristic degree-preserving rewiring algorithm based on simulated annealing
that used to produce networks with maximized and minimized assortativities, focusing
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on the class of scale free networks. However, as they did not have an exact algorithm,
they could not compare the results of their heuristic algorithm to exact results.

In this paper, we consider the open question of how good a simple greedy assortativ-
ity maximization approach is. To this end, we present a novel exact algorithm for com-
puting the maximum degree-preserved assortativity of a network. Using ensembles of
Erd6s-Rényi and Barabdsi-Albert networks as well as a number of real-world networks,
we compare results from the greedy algorithm to those of the exact algorithm. We show
that while a greedy rewiring process does not, in general, attain optimum assortativity, it
achieves very good approximations.

4.3. ASSORTATIVITY MAXIMIZATION ALGORITHMS

4.3.1. EXACT ALGORITHM

Van Mieghem et al. [10] have shown that the assortativity p(G) of a network G(A4, %)
with N = |4/| nodes and L = |.%| links can be expressed as

_ Yiejldi—dp)?
Ll - (8, &)

1o Y di —2Xdid;

pG) = 1

5+
Zﬁld?_ﬁ(zﬁld?)

where d; is the degree of the i-thnode and i ~ j means that node i and node J arejoined
by alink. Under degree-preserving rewiring, ;. jdid; is the only variable part of the ex-
pression, attaining a maximum when the assortativity of G is maximized. Now consider
the weighted complete network K whose nodes have the same labels n1,M2,..., 10N as
G and in which the link {r;, nj} € £(Kg) has weight w(i, j) = d; dj. Thus, G is an un-
weighted subnetwork of K. Let G, be equal to G except that it has the same link weights
as K (thus, G, is simply a weighted subnetwork of K;). The sum of the link weights in
Guisexactly };.; d;id; = ):,-Nj w(i, j). Thus, Z,-Nj d;d; can be maximized by finding the
maximum weight subnetwork in K¢ whose degree vector matches that of G.

The degree-constrained weighted degree subnetwork problem is equivalent to the
weighted perfect b-matching problem [11] which can be efficiently computed: for ex-
ample, the algorithm of Miller and Pekny [12] has a worst-case time complexity of
max{O(N L log dyay), O(N?L)} where dmax; = maxd,;. Since the algorithm is always ap-
plied to the network Kg, L = O(N?) rendering the running time O(N%).

We were unable to find any usable implementations of Miller and Pekny’s algorithm.
The algorithm is difficult to implement correctly. Consequently, we took a simpler route,
due to Shiloach [13], wherein b-matching problems are converted to 1-matching prob-
lems. We then applied Kolmogorov's [14] very fast O(N®) Blossom V matcher. In spite
of the speed of Blossom V, the initial O(N?) transformation resulted in a running time
of O(N®), limiting the sizes of the instances that we could investigate. See Supplemental
Material at [URL will be inserted by publisher] for a description of Shiloach’s transforma-
tion.
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oo &0 &2

Figure 4.1: The only link configurations that permit link rewirings.

4.3.2. GREEDY ALGORITHM

Like the exact assortativity maximization algorithm, the greedy algorithm modifies the
topology of a given network in order to maximize the term }_; . ; d;d;j in (4.2). As opposed
to the exact algorithm which computes an entirely new link configuration, the greedy
algorithm increases the term }_; . d;d; by rewiring pairs of links in a sequence of steps.

In an optimistic rewiring strategy, a pair of links {u, v}, {w, x} € Z(G) is selected such
that u, v, w and x are distinct. If {u, x} ¢ £(G) and {w, v} € £ (G), {u, v} and {w, x} can be
rewired to (that is, replaced by) {u, x}, {w, v}. The four-node configurations in Figure 4.1
can all be rewired in this fashion. Let d,, d,, d,, and d, be the degrees of u, v, w, x in
G. If —dydy - dywdy + dydy + dyyd, > 0, the rewiring increases the term ) ;. d;d; and
therefore the change is made. Otherwise, the rewiring is rejected. There are eleven non-
isomorphic four-node configurations of which only three — those in Figure 4.1 — permit
pair-wise link rewiring. Inspection reveals that the symmetry of the first and last of these
configurations allow for two possible rewirings, whereas the middle configuration allows
only for one rewiring.

The greedy algorithm searches the input network for the configurations in Figure 4.1
whose links can be rewired to increase the assortativity. In each iteration of the algo-
rithm, a random assortativity-increasing configuration is selected to ensure that differ-
ent invocations of the greedy algorithm can sample different parts of the rewiring space.
A simple way to facilitate this selection is to maintain a set R of rewirable link pairs from
which selections can be made (R is in fact a network with links from the input network
as its nodes; the links in R correspond to rewirable link pairs in the input network). Af-
ter a pair of links {1, v}, {w, x} is rewired, all rewirable configurations containing at least
two nodes in {u, v, w, x} have to be re-evaluated for rewirability. Those that are no longer
rewirable are removed from R whilst those that become rewirable are added to R. The
nodes of a rewirable link pair in R induce one of the rewirable configurations in Fig-
ure 4.1. The reason for focusing on rewirable link pairs as opposed to rewirable config-
urations, is that the first and last of the rewirable configurations in Figure 4.1 may be
rewired in two ways and it is easier to consider each of the two rewirings as a separate
element in the set R.

Explicitly maintaining R is expensive, at least initially (before any rewirings) when it
may be that |R| = O(N?). However, when |R| is large, keeping track of R is unnecessary
as there is a good chance of finding rewirable link pairs when randomly sampling links
from the network. Since not every random sampling will yield a rewirable link pair, sam-
pling is repeated up to a pre-specified number of times s; if a valid rewiring is found, it
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Figure 4.2: State diagram for the greedy assortativity maximization algorithm.

is applied and the algorithm starts with a new iteration. As the greedy algorithm pro-
gresses, the number of rewirable link pairs |R| decreases, rendering it less and less likely
for a randomly sampled pair of links to be rewirable. Eventually, s random samplings
will fail to discover rewirable link pairs.

At this point, R can be constructed explicitly, since | R| should be small enough. From
this point onwards, all link pairs are sampled from R and the algorithm proceeds until
[R| = 0. The algorithm naturally decomposes into two states. In the first state, links are
sampled at random from the input network; in the second, the set R is constructed and
links are subsequently sampled from R. We refer to the first state as the random selection
state and the second as the exhaustive state (since it continues until no more assortativity
increasing configurations exist). Note that although |R| may be small, constructing R
requires O(L?) time, as all link pairs have to be enumerated.

The execution time on a large network is considerable and therefore such an exhaus-
tive state is impractical for real-world assortativity-maximization algorithms. Our moti-
vation for including it was to study whether algorithms without exhaustive states might
miss good, difficult to find solutions. The exhaustive step is optional in our greedy algo-
rithm, allowing exhaustive and non-exhaustive results to be compared.

Combining all of this leads to the state diagram in Figure 4.2. When the exhaus-
tive state is skipped, the greedy algorithm is a simple optimization algorithm whose re-
sults are unlikely to best those of more sophisticated algorithms, such as the algorithm
of Menche er al. [9]. When the exhaustive state is engaged, our algorithm has the op-
portunity to find rewirings that will be missed by algorithms based on random link pair
selection.

4.4. APPROACH SETUP

4.4.1. DATA SETS

We investigate ensembles of ErdGs-Rényi and Barabdsi-Albert networks, as well as a
number of real-world networks. Erdés-Rényi networks [15] are a 2-parameter family of
random networks denoted Gp(N). The parameter N is the number of nodes in the net-
work whilst the parameter p is the probability that a pair of nodes are connected by a
link. We considered networks of size N € {25,50, 80,100, 150,200} and p €10.05,0.95]. We
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also considered networks of size N € {250,300,350,400,450,500} for p = 0.05; we were
forced to limit p due to the excessive computation time required for larger p.

Barabdsi-Albert networks [16] are a 2-parameter family of random scale-free net-
works. As before, the parameter N denotes the number of nodes in the network. The pa-
rameter /m represents the degree of nodes added in the growth process (Barabdsi-Albert
networks are grown one node at a time). For these networks, we considered instances
with N € [25,1000] (including most values of N for which the Erdés-Rényi experiments
were computed) and m € {2,3,4}.

Random network ensembles were constructed for each pair of parameters: {N, P}
for Erd6s-Rényi networks and {N, m} for Barabdsi-Albert networks. With the exception
of a few cases, at least 10? ensemble instances were generated for each parameter pair.
Only 10® Erdés-Rényi networks with N = 200 and p > 0.1 were generated due to the long
running times required on these networks.

The real-world networks that we considered come from a number of different do-
mains and include protein-protein interaction networks, software call graphs, food webs,
telecommunications networks and electronic circuits.

4.4.2. ALGORITHM SETUP

The greedy algorithm was executed in both its exhaustive and non-exhaustive modes.
In the non-exhaustive mode, we considered various upper bounds to the number of
random samplings: s € {100, 1000, 10000, 100000}. In the exhaustive mode, s = 100000
random samplings were allowed before the algorithm switched to the exhaustive state.

4.4.3. MEASURED DATA

We considered the means and standard deviations of the differences between the assor-
tativities as computed by the exact and greedy algorithms for each network instance (in
a given ensemble of networks). A simple approach is to consider E[p - p'] and Var[p - p'].
Here, p is a random variable representing the maximum assortativity of an ensemble of
networks as computed by the exact algorithm. Similarly, p’ is a random variable rep-
resenting the maximum assortativity of the ensemble as computed by the greedy algo-
rithm. Wang et al. [4] show that the range of degree assortativities achievable by networks
with binomial degree distributions (which include Erdés-Rényi networks) vary greatly
with their density and can often be much smaller than the possible assortativity range of
[—1,1]. In particular, as the density increases, the range shrinks. This variation in ranges
skews the results, as the absolute differences may appear to be small whilst they are in
fact large relative to the attainable assortativity range. To account for this, we normalize
the mean and variance by dividing by E[p — pg] and Var[p — po] respectively. Here, pg is a
random variable representing the (original) assortativities of networks in the ensemble
under investigation.
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Figure 4.3: Means of relative differences in solutions obtained by the exact and greedy algorithms for various
values of N and p. These plots apply to Erdés-Rényi networks. Each plot corresponds to a fixed p.

4.5. RESULTS

4.5.1. ERDOS-RENYI NETWORKS

RESULTS AS FUNCTIONS OF N

First, we consider how the performance of the greedy algorithm changes as node counts
increase. The normalized mean differences between the exact and greedy algorithms are
shown in Figure 4.3 as functions of N for a few representative values of p. Likewise, the
normalized variance differences for the same values of p are shown in Figure 4.4.

These plots paint a favorable picture for the greedy approach, as it performs well
even when the number of random samplings s is small. The downward slopes corre-
sponding to some of the non-exhaustive results seem to suggest that they improve as N
increases. However, the Barabdsi-Albert (Section 4.5.2) and real-world (Section 4.5.3) re-
sults show opposing trends. It may be that the Erdds-Rényi networks we tested are either
too small or that the structure of Erdés-Rényi networks particularly favors the random
link selection scheme employed by the non-exhaustive phase of the greedy algorithm.

The variance plots in Figure 4.4 show more marked increases than the means plots
for the non-exhaustive greedy approach. The reason for this is simple: as the networks
become larger, the non-exhaustive greedy algorithm becomes less likely to find a good
sequence of rewirings (as there are many more such sequences). However, the plots also



66 4. GREEDY ASSORTATIVITY OPTIMIZATION

L L e e PR L) I O (L ) T T o S L B 1
1

' '
'

Var{tho - tho'}/Var[tho - tha0]
1
Var{tho - tho'}/Var[tho - tho0]
F
|

> 0.01 =
001 |-, st .

0.001 |- R el : i

'
oy
¥

T
1
Var{tho - tho')/Var{rho - tho0]

= 0001 |- ! 1= - -- -y
o s Sk i Ftosee

8 v 5.5 s

Tl =TSP IPIPIPN Wi s e e TSt el iesa ba s ial rrred PRI B IP I T S i e o e e s

100 200 300 400 500 50 100 150 200 50 100 150 200
N N N

(a) p=0.05 (b) p=0.1 () p=03

L L o B W B L = O R R L T G [ L i e e T R |

weE " < ' !

S
107 =

Yo -
)

Varfrho - thol/Var{rho - rho0]
Var(rho - rho'l/Var{tho - rho0]
4
Var(tho - tho'l/Var[tho - tho0]

5,

R Rk Aakale

= i e ?"limi,rl'* - e

PRI IV B SRPIT I U i | LU RPN U SN Wi et | pa b g e d s ety

50 100 150 200 50 100 150 200 50 100 150 200
N N N

(d) p=0.5 (e) p=0.7 ) p=0.9

Prge= B 7

T
1
Th

T

|

|

|

|
4

100 attempts --t--1000 attempts - + -10000 attempts —F- 100000 attempts —+—Exhaustive

Figure 4.4: Variances of relative differences in solutions obtained by the exact and greedy algorithms for various
values of N and p. These plots apply to Erdés-Rényi networks. Each plot corresponds to a fixed p.

suggest a remedy — the algorithm should simply consider more rewirings.

We fitted the power function y+ax~9 to each of the exhaustive results and found that
all of the functions decrease faster than O(N~%), a@ > 1.1. This cements the observation
that one is assured of good results if the greedy algorithim makes enough rewirings and
that these results get better for larger networks.

RESULTS AS FUNCTIONS OF p

In Section 4.5.1, we considered the performance of the greedy algorithm in terms of node
counts. Here, we consider the performance relative to network density. The normalized
differences between the exact and greedy algorithms are shown in Figure 4.5. Starting
with N = 50, there are peaks and dips around p = 0.5. When the number of random se-
lection trials s is small, the greedy results display peaks, whilst when s is large the results
display dips.

A partial explanation for why this happens lies in the number of rewirable configu-
rations available in networks with p = 0.5 and in the probability of finding a rewirable
link pair during random link selection. The number of rewirable configurations in an
Erdés-Rényi network is approximately:

30— p)?pt +40 - pPpP +30 - p)tp? (4.3)
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Figure 4.5: Means of relative differences in solutions obtained by the exact and greedy algorithms for various
values of N and p. These plots apply to Erdés-Rényi networks. Each plot corresponds to a fixed N.

(the coefficients count the number of isomorphic networks for each of the three con-
figurations). The expression attains a maximum at p = 0.5 in the range p € [0,1]. Thus,
an algorithm that is able to find all possible rewirings has ample opportunity for max-
imizing the assortativity and is less penalized for bad rewiring choices early in the re-
wiring process. As rewiring proceeds, the number of rewirable configurations decreases
(non-linearly) and the probability of finding such rewirable configurations decreases to
the point where the non-exhaustive greedy algorithm will fail to find them. Thus, while
there may be many rewirable configurations, they are greatly outnumbered by the total
number of link pairs.

Some caveats apply to expression (4.3). First, it is a mean-field approximation of
the number of rewirable configurations (see Figure 4.1). Second, the expression is not
valid for networks that have been rewired (since these networks are no longer Erdés-
Rényi network). However, numerical simulations show that when p = 0.5, the number of
rewirable configurations is indeed maximized (data not shown).

4.5.2. BARABASI-ALBERT NETWORKS
To ensure that the results observed for Erdds-Rényi networks are not merely accidental,
we also considered Barabdsi-Albert networks. The sparsity of Barabdsi-Albert networks
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allowed us to investigate networks with up to 1000 nodes. The means of the differences
between the exact and greedy algorithms for Barabdsi-Albert networks are shown in Fig-
ure 4.6 as functions of N (for each m). Most of what applies to the Erdds-Rényi results
also applies to the Barabdsi-Albert results: the greedy algorithm approximates the exact
algorithm well and the exhaustive greedy results tend towards the exact greedy results
as N increases. Here, we also fitted the power function y + ax™® to the exhaustive re-
sults, finding the results decrease faster than O(N~%), @ > —1.2. Possibly due to the use
of larger N or possibly due to the different structure of Barabési-Albert networks, these
results depart from the Erd6s-Rényi results in one key area: there are subtle but constant
increases in the non-exhaustive results as NV increases. The implication is that the num-
ber of samplings s performed by non-exhaustive assortativity-maximization algorithms
must be a function s(N, L) of the number of nodes and links in network.

4.5.3. REAL-WORLD NETWORKS

Finally, we applied our algorithms to some real-world networks (see Supplemental Ma-
terial at [URL will be inserted by publisher] for details). These networks are from diverse
areas, making them a good testbed for confirming the trends observed for Erdés-Rényi
and Barabdsi-Albert networks. The real-world network results are shown in Figure 4.7.
The networks were sorted in terms of their link counts. These counts span two orders
of magnitude, starting at 45 links at the left and ending with 5128 links on the right.
The real-world network results confirm our earlier observations (albeit in terms of link
counts). On the one hand, the exhaustive greedy algorithin fares progressively better as
link counts increase. On the other hand, non-exhaustive runs of the greedy algorithm
with fixed random sampling bounds s fare worse as N increases (although this is not so
clear when s = 100000; this is likely because the link counts are not sufficient to show the
same trends as for smaller s). Thus, for increasing link counts, the penalty incurred by
the greedy algorithm requires increases in s.
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of real-world networks.

4.6. CONCLUSION

In this paper, we performed the first comparative study between greedy and exact al-
gorithms for maximizing the assortativity of networks under the constraint that their
degree vectors remain unchanged. We have focussed only on the maximization of as-
sortativity but our results hold equally for the minimization of assortativity. A few sign
changes in our algorithms is all that is required to convert them to minimization algo-
rithms. We applied the algorithms to Erdés-Rényi, Barabasi-Albert and real-world net-
works of varying sizes and link configurations. The overall theme is clear: the greedy
assortativity-maximization algorithm approximates the exact algorithm well. We have
shown that for all the considered Erd8s-Rényi and Barabdsi-Albert networks, the aver-
age difference between the results decreases faster than O(N~!). The results support
heuristic approaches such as those of Menche et al. [9], provided that the number of
steps s is increased as the network size N increases. Our work raises some interesting
questions:

¢ How many steps s does the greedy algorithm require to obtains results within a
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given tolerance of the exact algorithm?
e How bad can the results of a single greedy algorithm run be?

¢ How much better are sophisticated heuristic algorithms than our simple greedy
algorithm?

Any approach to these questions would benefit from a faster exact assortativity-maxi-
mization implementation, such as the algorithm of Miller and Pekny [12]. Armed with
such an implementation, one could investigate (hopefully much) larger networks.
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ROBUSTNESS ENVELOPES OF
NETWORKS

Stojan TRAJANOVSKI, Javier MARTIN-HERNANDEZ,
Wynand WINTERBACH, Piet VAN MIEGHEM

5.1. ABSTRACT

We study the robustness of networks under node removal, considering random node
failure, as well as targeted node attacks based on network centrality measures. Whilst
both of these have been studied in the literature, existing approaches tend to study ran-
dom failure in terms of average-case behavior, giving no idea of how badly network per-
formance can degrade purely by chance. Instead of considering average network perfor-
mance under random failure, we compute approximate network performance probabil-
ity density functions as functions of the fraction of nodes removed. We find that targeted
attacks based on centrality measures give a good indication of the worst-case behavior
of a network. We show that many centrality measures produce similar targeted attacks
and that a combination of degree centrality and eigenvector centrality may be enough
to evaluate worst-case behavior of networks. Finally, we study the robustness envelope
and targeted attack responses of networks that are rewired to have high and low degree
assortativities, discovering that moderate assortativity increases confer more robustness
against targeted attacks whilst moderate decreases confer more robustness against ran-
dom uniform attacks.

This chapter was published without its appendix in the Journal of Complex Networks 1, 44 (2013) [1].
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5.2. INTRODUCTION

In a world where critical infrastructure is composed of and controlled by complex net-
works, techniques for determining network robustness are essential for the design of
reliable infrastructure. After an architecture-dependent number of failures, a network
can no longer perform its core function. For example, a telecommunications network
whose hubs are removed may be partitioned into many disconnected parts, effectively
rendering communication impossible. Appropriate performance metrics can quantify
the robustness of a network to such failures.

Network failure is caused by unintentional failures and intentional attacks. Unin-
tentional failures include human error, manufacturing defects and worn-out mechan-
ical parts. These kinds of failures appear randomly and are characterized as random
aftacks [2, 3]. Intentional attacks, on the other hand, are not random and are aimed at
maximizing damage. In the literature, they are known as rargeted attacks [4-6].

In this paper, we study the robustness of network topologies under various chal-
lenges. We apply our methodology to random network models and real networks. Our
contributions can be summarized as follows: (1) instead of only considering a network
average performance, we perform a more comprehensive and granular statistical analy-
sis which shows how all the realizations of random and worst-/best- case targeted re-
movals affect the network performance, but also how do the realizations differ from
one another; (2) by studying centrality rankings similarities, we show that some are re-
dundant and degree centrality and eigenvector centrality may be enough to evaluate
worst-case behavior of networks; (3) by changing a network by assortativity optimization
degree-preserving rewiring, we find that moderate assortativity increases confer more
robustness against targeted attacks whilst moderate decreases confer more robustness
against random uniform attacks.

The paper is organized as follows. In Section 5.3, we review existing robustness frame-
works. Our robustness envelope metrics are presented in Section 5.4. In Section 5.5
metric envelopes of random networks as well as real-world networks are studied. In
Section 5.6, we consider the extent to which different targeted attack strategies overlap.
Section 5.7 explores changes to the envelope of a network under degree-preserving re-
wiring. The paper concludes with Section 5.8.

5.3. RELATED WORK

Network robustness has been studied by a number of researchers but the lack of a com-
mon vocabulary has made cooperation difficult. Several terms related to robustness
have been proposed over the last fifty years, including reliability, resilience, safety, main-
tainability, dependability and degree-distribution entropy [7-10]. Meyer [11] studied ro-
bustness in the context of his performability framework [12], whilst Cholda er al. [13]
surveyed various robustness frameworks. In previous research [14-16], maintenance of
connectivity under failure has typically been used to characterize network robustness.
Connectivity has been studied from a probabilistic point of view in the context of graph
percolation [17, 18] and reliability polynomials [19]. Most probabilistic studies assume
thatlink failures are independent and that failures occur with the same, fixed probability.

Since the behaviors of topological metrics depend on the characteristics of the net-
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works to which they are applied, robustness profiles based on these metrics also depend
on these characteristics. Therefore, researchers have studied robustness in the context
of various network types. Callaway er al. [20] and Holme et al. [4] have studied the ro-
bustness of random networks and power-law graphs. In particular, Cohen et al. have ex-
amined the robustness of the Internet and other power-law r.etworks under random [2]
and targeted [6] failures. Recently, the robustness of time-evolving networks or tempo-
ral graphs (21, 22] has been researched in [3, 23]. A method based on the cumulative
change of the giant component under targeted attacks has been proposed by Schneider
et al. [24]. Getinkaya et al. [25] developed a framework for analyzing packet loss relative
to node and link failure. They consider packet loss under global targeted and random
failure, as well as attacks contained within geographic regions. Our approach is similar
to their approach, although we consider not only average network performance under
random attacks but the density function given the probability that a metric will assume
a given value after a given fraction of node removals.

5.4. ENVELOPE COMPUTATION AND COMPARISON

In this section, we propose a framework to quantify network robustness. We assume
that a network can be expressed as a graph G, defined by a set .4 of N nodes intercon-
nected by a set £ of L links. With this formalism, various aspects of the network can
be described by means of graph metrics which are typically real-valued functions of the
network.

5.4.1. ROBUSTNESS AND THE R-VALUE

We define robustness as the maintenance of function under node or link removal. In
this context, function is measured by one or more graph metrics. As in [9], we express
robustness as a real-valued function R of graph metrics, normalized to the range (0,1].
A value of R = 0 means that the network is completely non-functional, whereas R = 1
means that the network is fully functional.

Here, we consider two different R-values, computed using the 1) size of the giant
component and 2) efficiency. The choice of these metrics is arbitrary and it depends on
the network function. The method presented translates easily to other sets of metrics.

1) Size of the giant component. The number of nodes in the largest connected com-
ponent of a network. This metric is a measure of the global connectivity of the network.

2) Efficiency. The efficiency [26] of a given network G is the mean of the reciprocals
of all the hopcounts in a network

Yisi<jen 1D
(%)

The hopcount h; ; is the number of links in the shortest path from node i to node J.If
there is no path from i to j, h; ; = co and 1/h; ; = 0. This metric gives an indication of
how quickly information spreads through a network. When E[1/H] = 0, the network is
completely disconnected and when E[1/H] = 1, it is fully connected.

E[1/H] =



76 5. ROBUSTNESS ENVELOPES OF NETWORKS

5.4.2. NETWORK PERTURBATIONS OR CHALLENGES

A perturbation or challenge P is defined as a set of elementary changes [9]. Elementary
changes include: (1) addition of a node, (2) removal of a node, (3) addition of a link,
(4) removal of a link and, (5) in weighted networks, a change in the weight of a link (or
node). We consider only node removals, but our analysis can be extended to all five
perturbation types. A realizationis a vector [Py, P, ..., Py] of perturbations, where P; is a
subset of i nodes. In addition, a realization is called successiveiff Py c P, ... < Py. Since
every perturbation has an associated R-value, any realization can also be expressed as a
sequence of R-values denoted {R[k]}o<r<1, Where k is the fraction of removed nodes.

5.4.3. RANDOM ATTACKS AND TARGETED ATTACKS
Network perturbations are classified either as random (un-intentional) failures [2] or as
targeted attacks [4, 5].

RANDOM ATTACKS

Assuming that the nature of the attacks is unknown and attacks occur independently,
R[k] is a random variable. We employ probability density function (PDF), which is the
probability of a random variable to fall within a particular region. The PDF of this R[k]
is computed using all subsets of [kN] (i.e., the integer part of kIN) nodes of the set 2, of
all possible perturbations. The envelope for a graph G is constructed using all R[k] for

ke{,%...,1}, where boundaries are given by the extreme R-values

()
min

RM (k] = Imin(RI&), min(RIZ)),..., min(R(1])]

and i
Rf;(;/;’,\)—[k] = [ma.\'(R[ﬁ]).nm.r(Rl%]),....max(R[lJ)].

Such boundaries can be seen in FI1G. 5.1. Although extreme R-values give the best- and
worst-case metrics for a network after a given number of perturbations, we are just as
often interested in the expected R-value resulting from k perturbations

R 1K) = [EIRIF 1L, EIRIZ N, .., ERILID].
Finally, since R[k| defines a PDE we are also interested in the percentile lines of R[k],
since they enable one to calculate contours that describe the robustness for a given per-
centage of perturbations

B2k = (R,

m% mY%

WA R[5 Ry (1]
where R . [k] are the points at which the cumulative distribution of R[k] crosses 172/100,

namely

m%

m
Rm%[kJ =tePrRk]l<st]= s

We refer to B (k] as an m-percentile. By definition Rier [k] = R .. [k], and Rioou, k] =
R axlk]l. The dark-gray areas in FIG. 5.1a are bounded by low-percentile lines whereas
the lighter-gray areas correspond to higher-percentile lines.

In the case where [kN] nodes in the network are attacked, (“\{X,J) R-values need to be
computed. It has been shown that the problem of finding a set of nodes minimizing R(k]
is NP-complete [27]. For this reason, we perform random sampling to approximate the
PDF of R[k] and targeted attacks to approximate the maxima and minima of the PDFs.
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Figure 5.1: Depictions of the robustness envelopes defined in Section 5.4. The x-axis represents the fraction of
attacked nodes.

TARGETED ATTACKS
Targeted attacks are perturbations involving vulnerable nodes. In order to determine
node vulnerability, the attacker must have some knowledge of the topology of the net-
work under attack. For simplicity, we assume that the nodes are ranked once by the
attacker in order from most vulnerable (most important) to least vulnerable (least im-
portant) and are attacked in that order.

Centrality measures may provide a set of such rankings. We consider five different

measures: (a) node degree; (b) betweenness [28]; (c) closeness [29] and (d) eigenvector

centrality [30]. In Section 5.6 we study the extent to which these rankings overlap.

For each of the five centrality measures and for each graph G, we may obtain two
successive realizations: a top realization {R(G'@”"’) [Kl}o<k<1 resulting from a perturbation
P10p targeting the highest ranking k nodes of centrality ordered list, and a bottom re-
alization {Régl’”’) [kl}o<k<1 resulting from a perturbation &7, targeting the lowest |kN]

ranked nodes.

5.4.4. COMPARISON OF NETWORKS VIA ENVELOPES

Suppose that the same perturbation sequence 27 is applied to two graphs G, and G, and
that the impact of a single perturbation is measured via the metric R. The R-values at
step k are denoted R‘G?) [k] and Rg) [k] respectively. In the simple case where G, and G,
have the same number of nodes and Rgf’) [k] > Rg) [k] for all k, it is clear that G, is more
robust than G, with respect to 2. But such cases are rare and we propose two simple
metrics for comparing the robustness of different sized networks: the energy &, and the
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sensitivity &.
The energy & of a graph is the normalized sum of the average R-values over all ran-
dom perturbations or in the case of targeted attacks, the normalized sum of the R-values

L&
g@) =— Z R(-)”)[k] (5.1)
K5

where K = |2?|. Energy expresses how robust, on average, a graph is against a given type
. . H G . .

of attack. For instance, if £((”’”) > 88}) G1 has higher energy than G, with respect to the

perturbation 22. Other examples of energy include those computed from the maximal

% P g P s 5 (7 i 5 > (7 .
realization 5’,(;?:,).\., minimal realization & '(HJ; 31, expected realization é’((? ,},2,, and m-percentile

realization éff}f’;{, as illustrated in F1Gs. 5.1b-5.1c.
The sensitivity . is defined as the energy increment between the 80-percentile and
20-percentile realizations

(2) _ () (2)
A = g8 - g, (5.2)

The sensitivity & indicates how likely the R-value is to shift upon random removals,
as illustrated in F1G. 5.1d. The smaller the sensitivity, the narrower the uncertainty of the
R-value, thus the better the robustness. The sensitivity together with the percentiles of
R-values express the variability of different random attacks in a given network.

5.5. ROBUSTNESS OF RANDOM AND REAL NETWORKS

In this section, we study the properties of a variety of random network models and real-
world networks under random and targeted attacks. We expect different behaviors for
different types of networks, leading to a classification of networks based on their energy
and sensitivity characteristics.

We consider four network models with different structural properties: Erdds-Rényi
networks, Watts-Strogatz networks, Barabdsi-Albert networks, and lattices. Erdés-Rényi
networks [31, 32] are a 2-parameter family of random networks denoted Gp(N). The
parameter NN is the number of nodes in the network whilst the parameter p is the prob-
ability that two nodes are connected by a link. Watts-Strogatz W (N, g, p) networks [33]
are a family of networks with small-world properties, whose main features are small av-
erage shortest paths and high clustering coefficients. Initially, a Watts-Strogatz instance
is a regular ring lattice in which each node is connected to ¢ neighbors. The topology is
then randomized by replacing, with a probability p, an incident node of each link with
a random node, provided that no self-loops or multiple links between nodes are intro-
duced. Barabdsi-Albert networks [34] are a family of scale-free networks whose architec-
tures emerge from preferential attachment. Initially a Barabdsi-Albert network instance
has mg nodes. The remaining N — 11 nodes are added one at a time, each one con-
nected by m links to already-placed nodes with probabilities proportional to the degrees
of those nodes. We also consider rectangular lattice networks. A lattice Ly has NM
nodes; the central (N—2)(M —2) nodes have degree 4; the 2(IN+ M —2) non-corner nodes
have degree 3 and the 4 corner nodes have degree 2.

The instances of the network models considered in this paperall have N = 100 nodes,
except for the lattices. We consider (sparse) networks with L = 500 links, as well as (rela-
tively dense) networks with L = 3200 links. The parameter choices of our network models
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are therefore chosen to generate networks with (approximately) these link counts. The
rewiring probability for the Watts-Strogatz instances is chosen to be p = 0.1, leading to
networks with high clustering coefficients and low average hop-counts (this is called the
small-world regime). The lattice network does not accept any input parameters, hence
we displayed two arbitrarily chosen lattices: a square-like with 20 by 20 nodes, and a
stretched lattice with 100 by 10 nodes.

Table 5.1: Real networks used in this paper, ordered by size.

Network N L Description
USp 4941 6594 Western US power grid network [33]
CA 5242 14484 Co-authorship network [35)
EUr 8730 11350  Western Europe railway network
EUp 9168 10417  Western Europe power grid network

In addition to instances of random network models, we consider four real-world net-
works. First, are the high-voltage power grids of the Western United States [33] and of
Western Europe [36]. In the remainder of the paper, we refer to these two networks as
USp and EUp respectively. Nodes represent power stations, transformers and generators
and links represent high-voltage connections between nodes. Second, we study a social
collaboration network from ArXiv that covers papers joining authors in the field of Rela-
tivity and Quantum Cosmology [35] in the period January 1993 to April 2003. We refer to
this network as CA. Here, two nodes are joined if the two authors appear as co-authors
in at least one paper. Finally, we consider the Western European Railway network, re-
ferred to as EUr. The nodes in the network represent railway stations and links represent
railway tracks between stations. The size of each real network is given in Table 5.1.

5.5.1. THEORETICAL PRELIMINARIES

Let us denote by G(N; k) a network with N nodes which has had a fraction k of its nodes
attacked. Before any attacks, the network is thus denoted by G(IV; 0). We are interested in
calculating the change of the network metric R = R(/ Nk 8 afunction of the percentage
of attacked nodes k. Denote by J the set of nodes that have been attacked and denote
by A4\J" the nodes that have not been attacked. Here, .4 is the set of all nodes in the
network. The number of attacked nodes in G(N, k) is m = |F | = LkN] and therefore the
number of nodes that have not been attacked is N — 7 = [ A\NT | = N-|kN].

A metric, such as efficiency, whose value is the average over all node pairs is dealt
with in a similar fashion. Denote by R;j the contribution of a pair of nodes i and JU#7j
to the R-value. If either node i or j has been removed (that i is,ieJ orjed), R;j=0.
Thus,

N
N(N 1)22 N(N 1 Z Hige =

i=1j=1 b JeNM\T jit]

5.5.2. ANALYTICAL RESULTS FOR ERDOS-RENYI NETWORKS
Here, we provide analytical results for the robustness of Erdés-Rényi random networks
relative to the efficiency and size of the giant component. In the case of random re-
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moval, where k% of the nodes are discarded, the resulting network has N’ nodes of de-
gree 0. The remaining nodes form an Erdgs-Rényi random network Gp (N —m) with the
same link density p because the link between two nodes from A \J™ appears with a fixed
probability p. Targeted attacks afford no such easy analysis, making them much less an-
alytically tractable.

Efficiency. The average efficiency is the reciprocal of the mean hopcount, which is

approximately /1;; = hl]’Ef\’)Q) for an arbitrary pair of nodes i and j in a connected Erdés-

Rényi network [37, 38]. Consequently, the efficiency e;; for the pair i, j is e;; = ,% ~
ij

J
hl]rfz\l\g) . Consider the independent, random removal of k% of the nodes. The resulting

network is an Erdds-Rényi network Gp (N = [kN]) with N' = |kN] isolated nodes. Thus,
the efficiency e;; of an arbitrary pair of nodes / and j is approximately

In((N-LAND)p) o . . ’
ej=4 —m-lENY 0T JENNA (5.4)
0, otherwise.
Substituting (5.4) into (5.3), yields
S . In((N-IKN]))p)  In(1-K)Np)
E[1/H] = LijemarizjCij Li,je AN, i#] “In(N-[KNT) _ In(0=0ON) Lijenva izl
N(N-1) N(N-1) - N(N-1)
In(A-K)NpP) rpr o npt In((1-k)Np) AT 2
_ Tz NNV gy VEENT O In(a -k Np) B8
N(N-1) N2 In(1-k)N) '

The shape of (5.5) is validated by F1GS. 5.3a and 5.3b.
The size of the giant component. The size of the giant component decreases when the
network is attacked, as attacked nodes are removed from the giant component. Thus,

S=1-k (5.6)

where equality holds if and only if all nodes in A\ form a giant component. An Erdés-

Rényi network G, (N) is almost certainly connected if p > p. = h’TN, therefore:

3 ) In(N — LkN])
S=1-k,ifp> NN (5.7)

The function % increases with the percentage of attacked nodes k. Thus,

for fixed values of p and N and large enough values of k, p < % As this is the

connectivity threshold for Erdés-Rényi networks, we find that S < 1— k. The “dips” in the
lines R = 1— k for large k in FIGS. 5.2a and 5.2b are manifestations of disconnected giant
components. As can be seen in FIG. 5.2a, when p is small, disconnection happens for
smaller values of k. The size of the giant component is approximately [37]

§=1— e PIN-LENDS

which explains the “dip” in the linear line R = (1 — k). In the analysis for the size of the
giant component, we consider R = S, however a slightly similar approach is comparing
the absolute values by taking R = §/S[0], where S[0] is the size of the giant component in
the original network. Clearly, both approaches are identical if the original network does
not have disconnected parts.
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5.5.3. ROBUSTNESS OF RANDOM NETWORK MODEL INSTANCES

In this section, we interpret simulation results of the random network model instances.
The properties of the network models considered in the analysis are stated at the be-
ginning of this section (Section 5.5). The simulations have been repeated 1000 times to
obtain the energy, the sensitivity and R values.

SIZE OF THE GIANT COMPONENT.

Energy analysis: The maximum energies for all strategies and networks exceed 0.460 (0.5
is the maximum energy attainable for the giant component, as the slope of R-value can-
not exceed (1 — k). The R-values for the giant component are shown in FIG. 5.2 and
Table 1 in the online supplement of the paper. For almost all networks, there are se-
quences of node removals that render large giant components. In addition, lattice net-
works show interesting behavior: there seems to be a phase transition around 50% as
seen in FIG. 5.2g. After randomly removing more than 50% of the nodes, all the topolo-
gies lose energy at an increased rate, due to the loss of connectivity. This result is in ac-
cordance with percolation theory [39], where the critical probability of bond percolation E
equals 0.5N.

Sensitivity analysis: Lattice networks display the highest sensitivity, followed by Watts-
Strogatz networks Gws, Barabdsi-Albert networks Gga, and finally Erdés-Rényi networks
Ger (see Table 1 in the online supplement of the paper). Erdés-Rényi networks are the
least sensitive to node removals, suggesting that this topology is the most robust in terms
the giant component’s sensitivity. However, when the link density is sufficiently high,
sensitivity values are small for all topologies.

Targeted versus random attacks: Amongst the random network models, the ratio
EminlEqug attains the highest value for Barabdsi-Albert networks (an unfavorable con-
dition), followed by Erd6s-Rényi networks and finally Watts-Strogatz networks. As with
efficiency, the lattice network has the highest ratio &,,;,/&, g for all targeted strategies,
peaking at 1.42 for node-degree targeted attacks. Again, this means that, for grid net-
works, the targeted strategies perform worse (on average) than a random strategy. The
ratio (Epax — Emin) ! is the highest for Barabdsi-Albert networks, followed by Erdés-
Rényi networks, Watts-Strogatz networks and lattices. Targeted attacks have the largest
impact on Barabdsi-Albert networks, whilst Erdés-Rényi networks are the least affected.
Table 5.2 shows that the most destructive perturbations are those based on degree and
betweenness centrality.

EFFICIENCY

As can be seen from FIG. 5.3, amongst the sparse networks, the lattice has the lowest
average efficiency energy, followed by Gws (with ¢ = 10). Both of these networks are
fairly regular (Gws has a low rewiring probability in our paper) leading us to conclude
that regularity does not confer robustness in terms of efficiency. Gga networks are the
most robust to random attacks as well as being the most sensitive, making them the
most vulnerable to targeted attacks. Again, Ggg networks win in terms of energy and
sensitivity, making them robust both to random and targeted attacks.
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Table 5.2: Summary of the most and least destructive targeted attack strategies on random networks relative to
the sizes of their giant components. Larger giant components are deemed more desirable. The symbol - means
“most destructive” whilst + means “least destructive”. All considered attacks had approximately the same least
effect on all networks. As we already mentioned, every attack’s maximum R-value is above 0.46.

GERr Gws Gpa Lattice
Betweenness - RU0P) Rrlop) R(7op)
Closeness RUop)
Degree - Rttap)
Eigenvector

Table 5.3 reveals the effect of particular attack strategies on the network models.
Again, node degree and betweenness attack strategies perturb non-lattice networks the
most, in contrast to lattices where the eigenvector attack strategy is the most disruptive.

Table 5.3: Summary of the most and least destructive targeted attack strategies on random networks relative to
efficiency. Higher efficiency values are deemed more desirable. The symbol - means “most destructive” whilst
+ means “least destructive”.

GER Gws Gpa Lattice
Betweenness - RUOP) R(op) )
Closeness 4+ plbon) ; R(lup)‘ 4+ RWoty —  phony , plborn)
Degree - pUep) - Rltop)
Eigenvector + Rtbon) + gbot) 4 RWon) pliop)

5.5.4. ROBUSTNESS OF REAL NETWORKS

In this section, we compare the robustness profiles of real-world networks to the robust-
ness profiles of the network models presented in the previous section. Many numerical
details regarding the energy and the sensitivity are given in Table 3 of the online supple-
ment of the paper.

THE SIZE OF THE GIANT COMPONENT
Some of the real-world networks are composed of several disconnected components,
leading to initial R-values that are smaller than 1.0.

The ratio (Enax — Emin) < is the largest for the CA network (27.0), followed by EUr
network (14.0), the EUp network (11.7) and finally the USp network (11.4). Targeted at-
tacks have the biggest impact on the Western United States power grid and the smallest
impact on the co-authorship network. In addition, the ratio (&,,qx — &min)/-# is in all
cases higher than for model network ratios (which fall in the range [2.4,9.6]). Real-world
networks are more easily disconnected than the instances of the random models.

As before in Section 5.5.2, the most effective attack strategies are the node degree
and node betweenness attacks. The least effective attack strategy is the node closeness
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attack (e.g. FI1G. 5.4¢), which leaves the size of the giant component nearly untouched
for all real networks.

EFFICIENCY

The network with the highest absolute efficiency value is the co-authorship network. As
before, this is due to the high link density and the presence of many cliques. Remarkably,
all four real-world networks show rapid decreases in efficiency after only = 10% of their
nodes are removed. This behavior is similar to that observed for the Barabasi-Albert
model: in this case, the removal of = 20% of the nodes causes a large drop in efficiency.
But more importantly, the dramatic drop in the R-value occurs for both random and
(most) targeted strategies. F1G. 5.4 illustrates this effect, also seen in the EminlEaqvg
ratios in the online supplement of the paper (Table 3 there). In conclusion, sparse real-
world networks are easily disconnected, regardless of the type of attack. As with the
results in Section 5.5.2, the attack with the lowest min R-value is the node betweenness
attack.

5.6. SIMILARITY OF NODE-CENTRALITY MEASURES
Centrality measures express the relative importance of nodes within a graph. Different
centrality measures rank nodes differently. To quantify the similarity of centrality rank-
ings, we define a centrality similarity metric.

For two node rankings A = [aq), @), ..., agv) and B = [b), be), ..., by ), Map(k) is
the percentage of nodes in {a), aw), ..., agny)} that also appear in {b(), b, ..., Dy}

The measure My, 5 (k) is different from the scalar correlation of topological metrics [40].
When we compare all the nodes (k = 100%), we have a full overlap and M4 5(100%) = 1.
In other words, My,5(k) gives the percentage of overlapping nodes from the top k% of
nodes in the rankings A and B. For instance, it reveals whether the nodes with the high-
est betweenness values are also those with the highest degrees.

The results of M g (k) for real-world networks are given in F1G. 5.5. From the figure,
we observe that
Meloseness, eigenvector (K) generally has the highest value and that it is closely followed by
Mgegree, betweenness (K). On the other hand, Mpepweenness, cigenvector (k) shows that there is
little overlap between the node rankings derived from the betweenness and eigenvector
centrality measures. In both the US and the European power grid networks (FIGs. 5.5¢
and 5.5d), Mgegree, betweenness (k) attains large values. On the other hand, in the citation
and railway networks (FIGS. 5.5a and 5.5b), Mcjoseness, eigenvector (k) attains large values.

The measure My p(k) is small when the rankings A and B differ in the nodes that
are deemed central. In such cases, both centrality measures should be used as attack
strategies, since each strategy could have a different effect in a network.

5.7. ROBUSTNESS OPTIMIZATION BY DEGREE-PRESERVING RE-
WIRING

We demonstrate the use of our robustness framework by studying changes in the metric
envelope of a network as it is rewired (through degree-preserving transformations) in
order to increase or decrease its degree assortativity [41, 42].
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5.7.1. DEGREE ASSORTATIVITY
Degree assortativity measures the tendency of links to connect nodes with similar de-
grees. Formally, it is defined [41] as

op=1 Yi-j(di—dj)?
=1
S - R

where i ~ j denotes a link between nodes n; and nj, d; the degree of node n; and D =
ldy,dy,...,dy] the degree-sequence of the network. The degree assortativity has been
shown [43] to be an important indicator for the epidemic spread such that assortative
networks spread are more prone to the propagation of epidemics. Moreover, the close
relation between the degree assortativity and the modularity, which is an indicator for
network clusterness, has been studied in [44].

5.7.2. DEGREE-PRESERVING REWIRING

Degree-preserving rewiring [42] allows for the modification of the link architecture of a
network without changing its degree sequence. In a rewiring step, a pair of links {u, v},
{w, x} in anetwork G is selected such that u, v, w and x are distinct nodes. If {1, x} ¢ £(G)
and {w, v} ¢ £(G), {i, v} and {w, x} can be rewired to (that is, replaced by) {u, x}, {w, v}.

5.7.3. REWIRING ALGORITHM FOR ASSORTATIVITY OPTIMIZATION

We used the greedy degree-preserving rewiring algorithm of [45] to optimize degree as-
sortativity. In each iteration, the algorithm samples up to s pairs of links. If a sampled
pair of links is rewirable and if the rewiring leads to a desired change in the degree as-
sortativity (see Lemma 1 in [42]) of the network, the change is made. If, after s sampling
attempts, no such pair of links is found, the algorithm terminates.

5.7.4. EXPERIMENT SETUP

Using our simple algorithm, we maximized and minimized the degree assortativity of an
Erdés-Rényi graph as well as a Barabdsi-Albert graph. The number of rewirings needed
to achieve high or low degree assortativity can number in the hundreds or even thou-
sands. Therefore, it is impractical to study the robustness profiles of the networks asso-
ciated with each rewiring step. For each network, we study five snapshots: (1) a rewired
network whose assortativity is fully maximized; (2) a rewired network whose assortativ-
ity is halfway between the fully maximized value and that of the original network; (3)
the original network; (4) a rewired network whose assortativity is halfway between the
fully minimized assortativity value and that of the original network; and (5) a rewired
network whose assortativity is fully minimized. Snapshots of the Ggg, along with cor-
responding energy and sensitivity changes for the giant component and efficiency are
shown in F1G. 5.6. The analogues for Gpa are shown in FIG. 5.7.

5.7.5. INTERPRETATION
As assortativity is maximized, the &4, of both the giant component and efficiency de-
crease (the black lines in F1GS. 5.6 and 5.7). In the intermediate assortativity-maximized
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cases, the decrease is mild, and what these networks lose in &, vg they gain by lower-
ing the (&4y — Emin)! S ratio. In other words, intermediate assortativity-maximized
networks become less robust against random attacks, but relatively stronger against tar-
geted attacks. Finally, the assortativity-maximized networks display the lowest average
energy &,,¢ for both metrics. However, these maximized networks are relatively strong
to targeted attacks, as depicted by low (&), — &in) /. ratios.

The situation is almost reversed when assortativity is minimized, where Eaqng TE-
mains high while (&4 — &min)/.Y ratios dramatically increase: targeted attacks are
more devastating for assortativity-minimized networks than random attacks are. In ad-
dition, these intermediate disassortative networks have slightly higher &,,, than the
original networks. Finally, Ggg, whose assortativity is fully minimized is fragile against
targeted attacks and its average energy is not particularly good. In contrast, Gpa with
fully minimized assortativity is still more competitive than its less-rewired sibling.

Our observations suggest that networks whose assortativities are moderately maxi-
mized (through degree-preserving transformations) are more tolerant to targeted attacks
whilst having worse average-case robustness. On the other hand, networks whose assor-
tativities are moderately minimized are more tolerant to random attacks (and less toler-
ant to targeted attacks). These observations match those of Friedel and Zimmer [46],
who researched the role of assortativity in protein interaction networks.

5.8. CONCLUSIONS

Within the topological robustness framework [9, 10], we have extended and detailed
the concept of robustness envelopes. We studied the robustness envelopes of sparse
and dense instances of well-known random classes of networks, as well as four real-
world networks. Our envelope approach shows that although networks may have similar
average-case performance under attack, they may differ significantly in their sensitivi-
ties to certain attack sequences. We also contrasted robustness envelopes of the studied
networks to their responses when subjected to targeted attacks. The targeted attacks are
all based on node centrality measures.

We found that targeted attack strategies often lead to performance degradation be-
yond the limits of the robustness envelopes that we computed, leading us to conclude
that centrality-based targeted attacks are sufficient for studying the worst-case behavior
of real-world networks. In this regard, our analysis suggests that real-world networks are
susceptible to rapid degradation under targeted attacks. The overlap between centrality
rankings reveals that attack strategies based on different centrality measures may have
very similar results. We argue that degree centrality and eigenvector centrality strike a
good balance between differences in attack sequences and in computational power re-
quired.

Finally, we investigated envelopes and targeted attack patterns of networks whose
structures were modified, through degree-preserving rewiring, to optimize their assor-
tativity. We found that by slightly increasing degree assortativity, our networks became
more resilient against targeted attacks, if somewhat less resilient againstrandom attacks.
The converse was true when decreasing degree assortativity.

An interesting question for future research is whether it is possible to design an effi-
cient method for increasing the worst-case robustness of a network (through rewiring)
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without adversely affecting its mean robustness.
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Figure 5.2: The R-values for the giant component size. The network model considered and its property (the
link density p for Erdés-Rényi, the number of neighbors ¢ per node and the rewiring probability p in Watts-
Strogatz and m the number of links of a newly added node in Barabési-Albert model) is given in sub-captions
(a) - (h). The x-axis is the percentage of removed nodes either at random ore according to a centrality measure

as it is shown in the legend.
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Figure 5.3: The R-values for the efficiency. The network model considered and its property (the link density
p for Erdés-Rényi, the number of neighbors ¢ per node and the rewiring probability p in Watts-Strogatz and
m the number of links of a newly added node in Barabasi-Albert model) is given in sub-captions (a) - (h). The
x-axis is the percentage of removed nodes either at random ore according to a centrality measure as it is shown

in the legend.
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Figure 5.4: R-values for the real-world networks. The network considered and the metric reflecting R-value are
given in sub-captions (a) - (h). The x-axis is the percentage of removed nodes either at random ore according
to a centrality measure as it is shown in the legend.
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Figure 5.6: The influence of degree-preserving assortativity-optimization on the robustness of an Erdés-Rényi
network. Robustness is measured relative to the giant component size (left) and the efficiency (right). In the
first (top) row, a rewired network whose assortativity is fully maximized; in the second row, a rewired network
whose assortativity is halfway between the fully maximized value and that of the original network; in the third
(middle) row, the original network; in the fourth row, a rewired network whose assortativity is halfway between
the fully minimized assortativity value and that of the original network; and in the fifth (bottom) row, a rewired
network whose assortativity is fully minimized. The legend is the same as the ones in FIGS. 5.2, 5.3 and 5.4.
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Figure 5.7: The influence of degree-preserving assortativity-optimization on the robustness of a Barabasi-
Albert graph. Robustness is measured relative to the giant componentsize (left hand) and the efficiency (right).
In the first (top) row, a rewired network whose assortativity is fully maximized; in the second row, a rewired net-
work whose assortativity is halfway between the fully maximized value and that of the original network; in the
third (middle) row, the original network; in the fourth row, a rewired network whose assortativity is halfway
between the fully minimized assortativity value and that of the original network; and in the fifth (bottom) row,
a rewired network whose assortativity is fully minimized. The legend is the same as the ones in FIGs. 5.2, 5.3

and 5.4.
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5.9. APPENDIX: ROBUSTNESS ENVELOPES OF BIOLOGICAL NET-
WORKS

In addition to the published material in this chapter, we performed additional experi-
ments to bridge the purely topological approach to robustness discussed in this chapter
and the biologically oriented approach discussed in the next chapter. To this end, ro-
bustness envelopes based on efficiency and giant component size were constructed for
a number of metabolic networks considered in Chapter 6. The depth of the technical
matter in this section is limited as all relevant concepts are thoroughly dealt with in § 6.3.

5.9.1. DATASET AND NETWORK CONSTRUCTION

The dataset used to construct networks is the genome-wide yeast metabolic model, de-
scribed in § 6.3.4. A minimal metabolic model represents metabolites and reactions act-
ing on metabolites. Ideally, a network representation models both metabolites and reac-
tions. Since an arbitrary metabolite may be involved in many reactions and an arbitrary
reaction may act on many metabolites, neither can be represented as a link; instead,
both metabolites and reactions are modeled as nodes. A network containing both is
called a metabolite-reaction network and is denoted Gp. Since networks containing mul-
tiple types of nodes are difficult to analyze, simplified networks containing only metabo-
lites (so-called metabolite networks, denoted Gyps) or only reactions (so-called reaction
networks, denoted Gg) are also studied. In a metabolite network, metabolites that are
connected by a reaction are linked whilst in a reaction network, reactions that are con-
nected by a metabolite are linked. This simplification comes at the cost of detail. In
particular, reaction networks are very dense (since a few highly connected metabolites
lead to a high number of connections between reactions), rendering them less useful in
the analysis of robustness of metabolic systems (since dense networks are robust). In
this appendix, only metabolite-reaction and metabolite networks are considered.

Many metabolic reactions require the input of energy-carrying metabolites. A small
set of commonly-occuring metabolites, known as currency metabolites, serve this role. A
direct network rendering of a metabolic system includes such currency metabolites but
since their main role is in energy provision rather than chemical transformation, we did
not include them in our metabolic networks.

Metabolic systems are directional (that is, they have inputs and outputs), implying
that their network representations ought also to be directed. However, the analyses ear-
lier in this chapter used only undirected networks. To bridge the gap, both undirected
and directed versions of metabolic networks were analyzed. This leads to a total of four
networks that were analyzed; the networks, along with their basic topological properties
are listed in Table 5.4. The discrepancy between the number of nodes in the directed
and undirected versions of the metabolite-reaction network results from the fact that
bidirectional reactions are represented by two nodes in the directed version whilst each
reaction is represented by exactly one node in the undirected version. This aspect of
modeling is more thorougly covered in § 6.3.2..
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Network N L

Metabolite-reaction (directed) 2914 4347
Metabolite-reaction (undirected) 2368 3154
Metabolite (directed) 1102 2494
Metabolite (undirected) 1102 1789

Table 5.4: Metabolic networks derived from the iND750 dataset [47] and analyzed in this appendix.

5.9.2. ROBUSTNESS-ENVELOPE ANALYSIS

As with all the other networks in this chapter, robustness envelopes based on efficiency
and giant component size were computed on the four metabolic networks from Ta-
ble 5.4. There are however two additional aspects to consider:

Metric calculation on directed networks Efficiency generalizes naturally to directed net-
works, as the metric on which it is based, hopcount, generalizes to directed net-
works. Giant component size can be defined in various ways in directed networks.
Here, we are interested in the number of nodes reachable from any given starting
node, as a crude proxy of the number of metabolites that a metabolic system can
produce from a given input.

Nodes to remove from the metabolite-reaction network The metabolite-reaction net-
works are different from the other networks considered in this chapter in that they
contain two types of nodes, metabolites and reactions. In other words, metabolite-
reaction networks are bipartite and no two metabolites are connected, nor are any
two reactions. Therefore, if all metabolites are removed, the network is completely
disconnected; likewise for reactions. As in the next chapter, we consider removal
of only metabolites and removal of only reactions but never removal of both types
at the same time.

5.9.3. RESULTS AND DISCUSSION

Robustness envelopes for the directed metabolic networks are shown in Figure 5.8 whilst
envelopes for the undirected metabolite-reaction network are shown in Figure 5.9. In all
cases, the giant component envelopes were normalized by dividing with the number
of nodes in the network whilst the efficiency envelopes reflect the real efficiency values
(since this metric falls in the range [0,1], we opted to forgo normalization to facilitate
comparison between the networks).

Figure 5.10 contains robustness envelopes of undirected metabolite network along
with robustness envelopes of four rewired versions of the network (§ 5.7.4), analogous to
Figure 5.6 and Figure 5.7.

The original metabolic networks (Figure 5.8, Figure 5.9 and the third row in Fig-
ure 5.10) are similar to (most of the) real-world networks (Figure 5.4) and Barabdsi-Albert
networks (Figure 5.2 and Figure 5.3) in that they are robust against random failure but
fragile against targeted attacks. This is demonstrated by fact that the solid colored lines
representing targeted attacks fall below the black line and shaded gray regions repre-
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Figure 5.8: R-values for the directed metabolic networks. The network considered and the metric reflecting
R-value are given in sub-captions (a)-(f). The x-axis is the percentage of removed nodes either at random ore
according to a centrality measure as it is shown in the legend.
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Figure 5.9: R-values for the undirected version of the metabolite-reaction network, Gp. The network con-
sidered and the metric reflecting R-value are given in sub-captions (a)-(d). The x-axis is the percentage of
removed nodes either at random ore according to a centrality measure as it is shown in the legend.
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senting the effects of random removal. Robustness envelopes for efficiency of metabo-
lite networks (Figure 5.8, Figure 5.9 and Figure 5.10) have larger starting values than all
real-world networks except the co-authorship network, CA, (Figure 5.4) whilst they have
lower starting values than Barabdsi-Albert networks (Figure 5.7). The differences in net-
work efficiency are explained by the fact that metabolic networks are more dense than
the real-world networks (except for the co-authorship network) whilst they are less dense
than the Barabasi-Albert networks. On the whole, the robustness envelopes of the meta-
bolic networks do not indicate that they are obviously more robust networks than the
networks considered earlier in the chapter.

An interesting difference between the assortativity-optimized metabolite networks
of Figure 5.10 have larger starting values than all real-world networks except the co-
authorship network, CA, (Figure 5.4) whilst they have lower starting values than Barabasi-
Albert networks (Figure 5.7). The differences in network efficiency are explained by the
fact that metabolic networks are more dense than the real-world networks (except for the
co-authorship network) whilst they are less dense than the Barabasi-Albert networks. On
the whole, the robustness envelopes of the metabolic networks do not indicate that they
are obviously more robust networks than the networks considered earlier in the chapter.

An interesting difference between the assortativity-optimized metabolite networks
of Figure 5.10 and the assortativity-optimized networks of Figure 5.6 and Figure 5.7, is
that, at least in terms of the two envelope metrics, the original network (that is, the net-
work corresponding to the third row) is inferior to the rewired network with slightly de-
creased assortativity (fourth row). This suggests that metabolic systems are not neces-
sarily optimized for shortest path lengths (something that was also shown in simulations
by Arita [48]) nor for connectivity, suggesting that one needs to consider robustness rel-
ative to metrics that matter for biological function.

Although this robustness envelope study is limited in scope, there are no clear re-
sults suggesting that metabolite networks are topologically special. Of course, molecu-
lar networks evolved in contexts where their architectures contributed to the biological
Junction of their host organisms and not in contexts where simple topological proper-
ties were selected for. This does not mean that topology does not play an important role,
rather, it means that biological function should be tied to topology in order to discover
the structures that influence biological function. This is the approach considered in the
next chapter.
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Figure 5.10: The influence of degree-preserving assortativity-optimization on the robustness of a metabolite
network. Robustness is measured relative to the giant component size (left) and the efficiency (right). In the
first (top) row is a rewired copy whose assortativity is fully maximized; in the second row, a rewired network
whose assortativity is halfway between the fully maximized value and that of the original network; in the third
(middle) row, the original network; in the fourth row, a rewired network whose assortativity is halfway between
the fully minimized assortativity value and that of the original network; and in the fifth (bottom) row, a rewired
network whose assortativity is fully minimized. The legend is the same as the ones in FIGS. 5.2, 5.3 and 5.4.
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METABOLIC NETWORK
DESTRUCTION:
RELATING TOPOLOGY TO
ROBUSTNESS

Wynand WINTERBACH, Huijuan WANG, Marcel REINDERS,
Piet VAN MIEGHEM, Dick DE RIDDER

6.1. ABSTRACT

Biological networks exhibit intriguing topological properties such as small-worldness. In
this paper, we investigate whether the topology of a particular type of biological network,
a metabolic network, is related to its robustness. We do so by perturbing a metabolic
system in silico, one reaction at a time and studying the correlations between growth, as
predicted by flux balance analysis, and a number of topological metrics, as computed
from three network representations of the metabolic system.

We find that a small number of metrics correlate with growth and that only one of
the network representations stands out in terms of correlated metrics. The most corre-
lated metrics point to the importance of hub nodes in this network, so-called “currency
metabolites”. Since they are responsible for interconnecting distant functional modules
in the network, they are important points in the network for predicting if reaction re-
moval affects growth. A second set of correlations in contrast is related to “loner” nodes

This chapter was published in Nano Communications Networks 2, 2-3 (2011) [1].
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that uniquely connect important pathways and thus correspond to essential steps in
metabolism.
Source code and data are available upon request.

6.2. INTRODUCTION

In the last decade, advances in high-throughput biological measurement systems have
made it possible to extract large-scale networks from biological systems. Jeong et al. [2]
were among the first to study the topologies of metabolic networks, networks of inter-
conversions of small compounds. The metabolic networks of the 43 organisms that they
studied gave evidence of a scale-free structure. Characteristic properties of these so-
called “small-world” networks are their power-law distributed node degrees and their
small average shortest path lengths.

Subsequently, researchers studied the topologies of a number of other types of bio-
logical networks [3-5]. Much of this work confirmed the Jeong et al. results: scale-free
behavior was everywhere. Even the Internet and some power grids are thought to dis-
play scale-free behavior [6]. These latter networks have expanded in a seemingly organic
fashion through a process of preferential attachinent — new nodes are more likely to at-
tach to existing high-degree nodes than to low-degree nodes. This expansion process
forms the basis of Barabasi and Albert’s [6] random network model. They show that it
leads to the characteristic power-law node-degree distribution and small-world proper-
ties. Although Kim et al. [7] and Lima-Mendez et al. [8] argue that biological networks do
not develop through simple processes of preferential attachment, the presence of simi-
lar topological elements, such as hub nodes, begs the question whether these topolog-
ical properties confer some benefit or whether certain topologies are inherently suited
for particular functionality.

In an effort to understand the relationship between the function of a network and
its topological properties, Milo et al. [9] introduced the concept of motifs. A motif is a
small sub-network (3-5 nodes) whose over-representation may be indicative of its role
in maintaining function at a local level. They found that certain motifs occur more often
in biological networks than expected by chance and that they may correspond to certain
desired behavior such as response acceleration, signal delay and stability. Prill et al. [10]
took this idea further and claimed that certain motifs were inherently more prone to dis-
play stable behavior than others. By abstracting away from the underlying functionality,
they demonstrated that such relations held to some extent over a variety of biological
networks. However, Ingram et al. [11] considered gene networks and compared the re-
sults of a differential equation model of gene expression to specific motif counts in the
gene network but found no correlation. Lima-Mendez et al. [8] argue that global topo-
logical properties cannot explain the function of networks. While they claim that the sig-
nificance of motif frequencies may have been overestimated (since the frequencies only
capture global properties), they do consider a localized approach to be more promising
as the key to understanding biological networks lies in understanding local details.

In our work, we take a global approach and investigate to what extent network topol-
ogy can be related to more systems-level network properties shared by the various net-
work types studied by Barabdsi ef al. An interesting property in this respect is that of
robustness. Stelling et al. [12] and Kitano [13] define robustness as the ability of a system
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to maintain its function in the face of perturbations or uncertainty. Biological systems
are known to be robust [14] to many forms of perturbation while being highly sensitive to
other forms, so-called “highly optimized tolerance” [12]. The question is whether there
is something in the topology of these networks that confers robustness to the overall
system.

In this paper, we study the relationship between the robustness of a micro-organism
(baker’s yeast, Saccharomyces cerevisiae) and the topologies of network representations
of its metabolic system. Microbial metabolic systems provide a good test bed, since
an often assumed functional objective — growth — is easily expressed in terms of fluxes
through these systems. Furthermore, good quality metabolic datasets are readily avail-
able and resulting flux models can be studied computationally with high efficacy.

To study the link between network topology and robustness, we propose an in sil-
ico metabolic system perturbation experiment. We define robustness as the ability of
the yeast cell to maintain growth under reaction removals. First, we show how its meta-
bolic system can be represented by three different networks. Then, through a number
of trials, reactions are removed from the metabolic system until growth ceases. This
provides a number of snapshots of partially “destructed” metabolic systems. For each
snapshot, growth and a number of network-wide topological metrics can be computed.
By calculating correlations between growth and these metrics, we find that most of the
topological metrics are not related to function. The strongest correlations point to the
importance of both “hub” nodes (so-called “currency metabolites”) and “loner” nodes.

6.3. METHOD

6.3.1. COMPUTING FUNCTION

In this work, we define robustness as the maintenance of cell growth under perturba-
tions to the organism’s metabolic system when reactions are removed from the meta-
bolic network. A metabolic system with r reactions and m metabolites is modeled by a
set of m differential equations:

dX;
dr

that specify how the concentration X; of a metabolite i changes in time. vyy,, is the rate
of metabolite synthesis, Vdeg is the degradation rate, v, is the rate of consumption (by
other reactions) and v, is the rate of transport across the cell boundary (into the cell).
Usyn» Vdeg and vy, are generally non-linear functions whose behavior is governed by the
kinetic parameters of the enzymes catalyzing the reactions in which they take part and
by concentrations of other metabolites. Because the kinetic parameters are not generally
known and must be estimated, it is difficult to solve the differential equations directly.
Ssyn» Sdeg» Suse and S¢pqps are stoichiometric coefficients' (reaction rates are measured in
pmolgDW~!h, i.e., micromoles per gram of dry weight per hour).

We assume that $;rqnsVirans is a constant value b;, allowing (6.1) to be written in
vector form as dX/dt =S-v+b, with S the m x r stoichiometric matrix, van r x 1 vector of

= SsynVUsyn = SdegVdeg = SuseVuse + StransVirans (6.1)

These are derived from the chemical mass balance coefficients: e.g. 2Hy + Oy — 2H, O corresponds to the
stoichiometric coefficient vector [-2 —1 2].
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Ra Rh R(‘ R:{ R; Rb Rv
m (-1 0 0 my (-1 1 0 0
mo | -1 0 0 me | -1 1 0 0
M3 1 -3 -1 ms 1 -1 -3 -1
Iy 1 0o -1 , Ny 1 -1 0 =1
“ms | 0 -1 0 “ms | 0 0 -1 0
ng 0 1 0 meg 0 0 1 0
msz 0 2 1 my; 0 0 2
mg 0 0 1 Mg 0 0 0 1
(a) The stoichiometric matrix from (6.4). (b) The stoichiometric matrix from (6.6).

Figure 6.1: Stoichiometric matrices of the toy problem in Section 6.3.1.

reaction rates (fluxes) and b the vector of boundary transport reaction rates. We will use
a small example to make the form of S clear (and later to show how networks are derived
from S). Consider the metabolic system:

my+my Rg mz+ny

—

3ms+ms  Rp  mg+2my (6.2)

mg+my R, my+mg
The corresponding S matrix is shown in Figure 6.1a. Since each column is labeled by
areaction R;, we refer to the corresponding flux value in v as v;. At steady-state dX/dz =
0, rendering the linear system:

S:v+b=0. (6.3)

Since S and b are constant, v can be determined without any knowledge of enzyme
kinetics (in flux balance analysis, the unknowns are reaction rates rather than metabolite
concentrations). Due to the small size of the example, S is overdetermined (i.e., there are
fewer reactions than metabolites; opposite of much of systems biology, in flux balance
analysis reaction rates are unknown rather than metabolite concentations). In real bio-
logical networks however, stoichiometric matrices are under-determined. Such systems
generally have infinitely many solutions but biologists are only interested in biologically
significant ones. A common (biological) assumption is that microbial cells attempt to
maximize the rate of their biomass production or in other words, growth. Growth can
be expressed as a linear combination ¢! - v of certain key reaction rates in the metabolic
system. The reaction rates can then be computed by a linear program:

Maximize = clv (6.4)
subject to S-v+b=0

Positive components of v correspond to forward-acting reactions, whilst negative
components correspond to reactions running in reverse. In (6.4), the components of



6.3. METHOD 107

v may assume negative and positive values meaning that any reaction can, in principle,
occur in either direction. Due to thermodynamics, some reactions are very unlikely to
occur in reverse (in the example, only reaction R, is reversible). These constraints are
modeled by restricting rates of non-reversible reactions to be non-negative. Thus for
each non-reversible reaction R, the constraint v = 0 is added, rendering the linear sys-
tem:

Maximize — p=cl.v (6.5)

subject to S-v+b=0

vg; = 0 for each non-reversible reaction R;

In addition, biological constraints limit the rates of some reactions. These inequal-
ities are simply added to the list of constraints of the linear program. This steady-state
framework for computing metabolic fluxes by optimizing some criterion is known as flux
balance analysis. Orth et al. [15] give a good overview of the framework.

TESTING ROBUSTNESS

We test robustness by iteratively removing reactions and recalculating (6.5) until growth
ft drops below a low threshold value (1 x 107 umolgDW~! h). This produces a sequence
T ={s1,81,%,...,8n} which is referred to as the trial T. A step is a reaction label index:
step s; corresponds to the removal of reaction Rg,. Removal of a reaction is modeled
by removing its corresponding column from S. The steps in a trial are associated with a
sequence oflinear programs Py, Py, P, ..., P,,, where Py is the unmodified linear program
(from which no reaction has been removed) and P; is the linear program resulting from
the removal of the reactions Ry, Ry, ..., Ry, fori=1.

Pseudo-code for the algorithm is shown in Algorithm 1. This algorithm computes
the results for one trial. The input is a description of the metabolic system ¢ and a net-
work metric (that takes a network as input and produces an output of type @). The i-th
iteration of the loop corresponds to step s;.

The function “random-reaction” in Algorithm 1 chooses a random enzyme-catalyzed
reaction with uniform probability. Reactions that are not mediated by enzymes but oc-
cur due to chemical processes such as diffusion are never removed.

6.3.2. TOPOLOGY

To be able to calculate topological properties of the metabolic system, the stoichiomet-
ric matrix § should be represented as a network. However, S cannot be directly repre-
sented as a network since a reaction may interact with more than two metabolites and a
metabolite may interact with more than two reactions. A natural representation of such
a system is a hiyper-network in which a link may connect more than two nodes. The stoi-
chiometric matrix represents a hyper-network where the columns are links and the rows
are nodes. The links are directed: negative values in a column represent source nodes
and positive values represent target nodes. Let u be anode, and let L be a set of links that
have u as their source nodes, then the target nodes of L are the out-neighbors of «. The
in-neighbors are defined analogously, with u as the target node.
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Algorithm 1 destruction-trial(o : metabolic system, metric : network — ©)

X — empty-list() {List of growth values}
M — empty-list() {List of metric values}
P — to-linear-program(o) {Compute P,}
1 — growth-rate(P)
while > 1 x 1079 do {One step s; in the current trial}
R — random-reaction(o) {Pick Ry}
o — remove-reaction(o, R)
P — to-linear-program(o) {Compute P;}
{1 — growth-rate(P)
g — network(o)
m — metric(g)
X «— append-to-list(X, p)
M — append-to-list(M, in)
end while
return X, M

Note that the stoichiometric matrix derived from the linear programming formula-
tion does not capture the reversibility of reactions (such as R, in the example) because
a reaction R; is considered to act in reverse when its rate v; in the linear program so-
lution is negative. We therefore reformulate the linear program such that v= 0 (i.e., all
fluxes are positive). A reversible reaction R; is converted to a pair of reactions R} and
R7; then if ¢; is the column vector in S corresponding to R;, ¢; is replaced by two col-
umn vectors ¢/ and ¢; (corresponding to R} and R; respectively) such that ¢/ = ¢; (the
forward reaction) and C; =—¢j (the reverse reaction); for example, column R, in Fig-
ure 6.1a is replaced by the columns R} and R, in Figure 6.1a. Converting S leads to the
stoichiometric matrix §' in Figure 6.1b. The hyper-network is shown in Figure 6.2a.

The linear program (G6.5) is modified with the new stoichiometric matrix 8’ and non-
negative flux constraints, giving:

Maximize = v (6.6)
subject to S v+b=0
v=0

Network theory provides many tools for studying the topological properties of nor-
mal networks, whilst there are very few metrics that can be computed on hyper-networks.
Thus we considered three possible network representations of the hyper-networks spec-
ified by the stoichiometric matrix S'. First, a hyper-network H(.#, %) can be modeled as
a bipartite network Gp (4 UZ, %). The nodes in the set .# represent the metabolites in
H, whilst the nodes in the set % represent reaction links in H. Conversion of the hyper-
network H in Figure 6.2a produces the biparitite network Gp in Figure 6.2b. We refer to
this network as the metabolite-reaction network” as it contains both metabolite nodes

27This representation is the Petri-net representation [16, 17] of the metabolic system.
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(¢) Gpg: the one-mode reduction of the metabolite  (d) Gp: the one-mode reduction of the reaction nodes
nodes in Gg. in Gg.

Figure 6.2: The hyper-network and networks derivable from $' in (5.6).

 and reaction nodes %.

Although standard network theory techniques can be applied to Gy, its bipartite na-
ture makes some metrics difficult or impossible to compute. For example, the clustering
coefficient for any node in a bipartite network is 0. For this reason, we also considered
one-mode reductions of Gg. An .#-node (%-node) one-mode reduction G'(&, %) of
Gp( M U R, £) is a network that contains only nodes from the set .# (the set %) such
that for each directed link [ = (17, 1) € %' there is a node ng € X (ng € .#) such that
(m,n3) € £ and (n3,n2) € £ (note that there may be many nodes 3 that satisfy this
condition). We call the .# -node one-mode reduction simply the metabolite network Gy
(shown in Figure 6.2¢) and likewise the Z-node one-mode reduction simply the reaction
network Gy (illustrated in Figure 6.2d).

Note that it is possible to represent the link weights of the hyper-network H in its bi-
partite representation Gg: such a mapping can be seen in Figure 6.2b. However, there is
no obvious way to map these weights to Gy or Gg. For this paper, we opted to consider
only unweighted networks. Furthermore, note that when a reaction is removed from
the metabolic system, the corresponding networks Gg, G and Gy may become discon-
nected. For a given network, all metrics are applied to the largest component whilst the
small components are ignored.

TOPOLOGICAL METRICS
For every step of each trial, a number of topological metrics were computed for each
of the three network representations (where possible). Since Gp = Gp(MUR, L) con-
tains two types of nodes, the metrics are applied separately to its reaction nodes % and
metabolite nodes .#, giving two sets of results.

The metrics employed are listed in Table 6.1. These metrics divide into two groups:

those that associate a value ¢(G) with a network G and those that associate values {e(my), c(ny),
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Newman's assortativity coefficient [13] scalar
How likely is it for nodes with similar degrees to be connected to each other. Calculated
for the out-degrees, in-degrees and undirected degrees of nodes, it is computed as r =
2ijdid;(bjj ~a,'nj)/zf§',, where a; is the distribution of the degree of node n; without the
link {7, j}, bjj is the joint probability distribution of the degrees between n; and nj without

0%

the link {7, j} and 0?, is the variance of degrees.
Transitivity scalar
The number of triangles in the network divided by the maximum possible number of triangles
in the network. This is computed on undirected versions of the networks.

e

Clustering coefficient node
For a node n, the number of links spanning n’s neighbors divided by the maximum possible
number of links that can span n's neighbors.

The mean clustering coefficient is equal to the transitivity.

7

Reciprocity scalar
The ratio of reciprocal pairs to all possible reciprocal pairs. A pair of nodes i1y and ny is recip-
rocal if there are bi-directed links (1), 112) and (112, ny).

Betweenness centrality

In a network G, the betweenness centrality Cp (1) of a node n is computed as the fraction of
shortest paths in G that include n: Cg(n) = ¥ 52276 4 05,1 (M) /0,1, where A is the node-set
of G, 0,1(n) is the number of shortest paths that include n and o is the total number of
shortest paths between the nodes s and t.

Eigenvector centrality & Largest eigenvalute of the adjacency matrix

For a graph G, the largest eigenvalue is that of the corresponding adjacency matrix A. The
eigenvector centrality of a node 1; is defined as the i-th component of the eigenvector corre-
sponding to that eigenvalue.

25050 %

Table 6.1: A list of the various network metrics that were calculated on the networks Gg, Gy and Gg. Metrics
that are calculated for a network as a whole are marked “scalar” whilst those that are calculated for every node
are marked “node”.

...,c(ny)} with the nodes A" = {ny, ny,..., ny} of G. In order to compare this latter group
of metrics to growth values, the node values (for a given metric ¢) have to be reduced to
asingle value ¢* (G) = f(c(my),c(n2), ..., c(ny)) (where f is function of N arguments that
produces a single real value ¢*(G) € R). A simple choice is to let f compute the mini-
mum, mean or maximum values of {c(11), c(1),...,c(ny)} (thereby yielding three met-
rics). This is the approach that we took. Some metrics associate vectors of values with
each node; thus, if the metric c associates a vector with a node, the result will be a set of
vectors {¢(111),¢€(n2),...,c(ny)}). The hop-count is such a metric, since it associates a vec-
tor of hop-count values ¢(n) with a node n containing the hop-counts to all other nodes
in the network. We took the approach of first reducing the vectors to scalars — thus we
converted {c(1)),¢(n2),...,c(ny)} to {c'(m), ¢’ (n2),...,c' (nn)} where ¢’ is a function that
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In- and out-degrees node

The out-degree d;"” of a node is the number of links leaving a node, i.e., n’,‘.’“l =
Z(,,’._”]_)E[‘(G) 1. Likewise, the in-degree rll'.” is the number of links entering a node, i.e., }%E

4" =XnjnpeLc 1

Average in- and out-degrees of incoming and outgoing neighbors node

For a network G, the average out-degree of out-going neighbors of a node n;
is Z(,,i,,,i,EL(G)rl‘,?”‘/{lf whilst the average in-degree of in-coming neighbors is ; E

i out ; . s in ;. :
Z(,,/.,,,i)eL(G, d}“/d,- where dP" is the out-degree of 1; and d" is the in-degree of 1;.

Coreness node
A k-core is a subset of nodes in which each node has a degree of at least k. A node has a
coreness value of ¢ if itis in a ¢-core but not in a ¢+ 1-core.

Dice similarity

If the neighbors of two nodes are the sets X and Y, the Dice similarity of the nodes is 2| X n
Y[/(IX|+]Y]),i.e., ameasure of how similar their neighbor sets are. Since this metric is defined
for pairs of nodes, a vector of metrics is associated with each node, We compute the Dice
similarity for all outgoing neighbors, all incoming neighbors and also for the combination of
these.

Reciprocal node hop-count

The hop-count between a pair of nodes is equal to the number of links on a shortest path
between them. For each node there is a vector of hop-counts to all other nodes, reduced to
a single value by taking the mean. Because the networks are directed, there are nodes which
are unreachable from other nodes and are thus at an infinite distance. We therefore used
reciprocal hop-count values, converting infinite distances to zero distances,

Table 6.1: (continued) A list of the various network metrics that were applied to the networks G, Gy and Gy
Metrics that are calculated for a network as a whole are marked “scalar” whilst those that are calculated for
every node are marked “node”,

reduces vectors to real values. As above, we performed the reductions by computing the
minima, maxima and means of the vectors. Once this initial reduction is performed, we
can proceed as before (by reducing the sets of node values to single values). Note that
this double reduction scheme can lead to confusing metric names. To take the example
of the hop-count again, we could proceed by first computing the means of the hop-count
vectors associated with each node and then we could compute the minimum over these
mean values. In this case, we would refer to the minimum of the mean hop-count, or in
the naming convention used in the results section, “mean hop-count 7", Likewise, we
refer to the mean of the mean hop-count as “mean hop-count 0” and the maximum of
the mean hop-count as “mean hop-count A”.

In our experiments, many reactions have zero reaction rates (as predicted by the
flux balance linear program) in all trials. These reactions contribute links and nodes
to the network representations whilst their removal cannot influence growth. We ex-
cluded these reactions when constructing G = Gy(# U R, L) by letting 2 be the set
of all reactions that have non-zero reaction rates in at least one step of one trial and .4
the metabolites that interact with the reactions in %. Note that this is only a global pre-
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Figure 6.3: An example ol binning for two steps of two trials.

processing step; in each individual trial, reactions are randomly chosen without regard
to whether they are active at that time or not.

6.3.3. RELATING GROWTH AND TOPOLOGY

For each trial (i.e., sequence of reaction removals) we compute a sequence of growth val-
ues (computed from the linear program discussed in Section 6.3.1) and three sequences
of networks, one for each representation. For each network, a set of topological metrics
is calculated. This allows us to relate growth to topology.

An obvious first choice for calculating the relationship is, for each individual trial,
to compute correlation coefficients p between the growth sequence and each of the se-
quences of topological metrics. However, apparent correlations found by this method
may simply be side-effects of the network size decreasing as we remove reactions. We
can reduce the impact of this incidental correlation by binning the steps from all of the
trials: trial-step pairs whose corresponding networks have similar numbers of nodes and
links are placed into the same bin. This process is illustrated in Figure 6.3: here one
sees network sequences from two trials placed into bins (the bin width here is 1 for both
nodes and links). In our experiments, we used a bin width of 2 nodes x 4 links —i.e., in a
bin, node counts can differ by 1 and link counts by 3.

Since a bin contains numerous steps, it is possible to correlate growth with any of
the topological metrics. We used the Pearson correlation coefficient to compute, for a
given topological metric, a correlation value p; for every bin i. An example of bin cor-
relations is shown in Table 6.2 (here binning is only performed using link counts, with a
bin width of 4 links). The per-bin results for each metric were then averaged, weighted
by the number n; of items in each bin: p = (¥; nip;)/(X; ni) = 0.27 in our example.
For each topological metric, this yields one value p indicating the strength of its binned
correlation with growth.

For all of the metrics that we studied, there were one or more bins for which corre-
lations could not be computed, since the growth and/or metric values in the bin were
constant. In this case, the Pearson correlation coefficient is not defined. These bins were
excluded from the calculation of p. We also required correlations to be:

e reliable, i.e., calculated on a sufficient number of data-points, by demanding that
at least 90% of all steps fall in bins on which correlations are defined; and

e consistent, by requiring that at least 90% of all steps fall in bins whose correlations
have the same sign.

Metrics that did not pass this test were not considered.
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Bin number 1 2 3 4 5

#links 2685-2688 2689-2692 2693-2696 2697-2700 2701-2704
Correlation p; 0.342 0.286 0.322 0.236 0.172

# items in bin n; 889 935 907 959 936

Table 6.2: Bins showing Pearson correlations p between growth and an unspecified network metric.

6.3.4. EXPERIMENTAL SETUP

We used the genome-scale metabolic data set which is available from the UCSD Systems
Biology Research Group website [19]. The website provides a minimal aerobic growth
environment which was used for our experiments. In this experiment,

¢ the rate of the ATP maintenance reaction (ATPM) is 1 pmolgDW ™1 h whilst the
acetyl-CoA hydrolase (ACOAH) and the glutamate synthase for NADH (GLUSX) re-
actions are disabled;

¢ the reaction rates of reactions that transport Oy, NH;’, SO,ZI‘, P;, H,0, K, Na and
CO; are unconstrained.

6.4. RESULTS AND DISCUSSION

6.4.1. METRICS CORRELATE WITH NETWORK SIZE

We initially performed one thousand in silico reaction removal trials and for each trial
computed the Pearson correlation p between the growth values of the trial and the met-
rics in Table 6.1 as computed on Gg, Gjs and Gy (where applicable). The average metric
correlations over 200 random trials for G,; are shown in Figure 6.4 (here, we have only
aggregated node-wise metrics using the mean, as described in Section 6.3.2). Many met-
rics stand out as strongly correlated.

We found that most of these correlations are due to the reduction of the number of
nodes and/or links in Gg, Gy and Gy associated with each step in a destruction trial
of a metabolic system. This growth-size relationship confounds the search for metrics
that correlate with growth, since any apparent correlation p may be due solely to the
correlation between the metric and the number of nodes/links in the network.

Removal of this effect by metric normalization is non-trivial, since the relationship
between a given metric and the number of nodes/links in a network is, in general, non-
linear. Furthermore, any technique that reduces this effect, must use topological infor-
mation; but then this information itself is affected by the changing topology. We there-
fore devised a “binning” procedure to calculate alternative correlation measures p in
which this effect is reduced (as described in Section 6.3.3). In the remainder, all results
reported employ this binned correlation measure.

6.4.2. TOPOLOGY IS WEAKLY CORRELATED WITH FUNCTION

Next, we calculated correlations f (using the binning procedure) between growth and
each metric. The results for Gy = Gg(.# UR, %) are shown in Figure 6.5 (recall that
there are two sets of results for Gz: one for the metabolite nodes .# and one for the
reaction nodes 2) whilst the correlations for G are shown in Figure 6.6. There are no
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Figure 6.4: Network metrics are correlated with network size. This gives the appearance of strong correlations
between growth and metrics. These metrics were all calculated for Gp;. The symbol O indicates that node
values were reduced to single values by computing their means as discussed in Section 6.3.2.

correlations for Gp that satisfy the reliability and consistency requirements described in
Section 6.3.3. First we discuss these results from a purely topological perspective and
then we interpret the biological aspects.

The results show that most metrics do not correlate well with growth. An obvious first
explanation for this lack of correlation is that it is possible to remove a reaction without
affecting growth (since the reaction may be part of a bypass that is not used when the
cell is functioning normally). However, at a deeper level, the low correlations may be ex-
plained by the indirect relationship between the flux balance analysis framework (which
measures function) and the network (on which topological metrics are measured). In
flux balance analysis, growth is the objective function of a linear program in terms of
metabolic fluxes, whilst the topologies of the metabolic networks are only functions of
the stoichiometric matrix. While the objective function may be changed (perhaps to
study a scenario other than growth maximization) the topology remains unchanged.
Thus, correlations between the objective function and topological metrics depend to
some extent on the objective function.

6.4.3. THE METABOLITE-REACTION NETWORK Gp IS THE BEST REPRESEN-
TATION

Here we investigate some of the p correlations observed in Figure 6.5 and Figure 6.6. We

generally limit our discussion to metrics for which |p| = 0.2.

Metabolite-reaction network Gg As discussed in Section 6.3.2, correlations for the
metabolite nodes .4 and the reaction nodes % were computed separately. First, the
results for the metabolite nodes are considered, followed by the reaction node results.

Metabolite nodes .4 : there are a number of relatively strong correlations for nodes in
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A, mostly falling into two groups:

¢ For both the metabolite nodes, so-called “hub” nodes provide shortcuts through
which shortest paths are routed. Removal of a reaction node that interacts with
a hub node may therefore remove a shortcut through which some shortest paths
are routed. Thus, the mean reciprocal hop-count is decreased (and the mean hop-
count is increased). In the remainder of the paper, all correlations associated with
hub nodes are colored light gray.

¢ So-called “loner” nodes are nodes with low in-coming and/or out-going degrees.
Some of these nodes are on important pathways and can cause growth to decrease
when they are no longer produced (i.e., when their incoming links are removed) or
consumed (i.e., when their outgoing links are removed) by any reactions. As a re-
sult, they are often implicated in correlations using the minimum function (those
indicated by 7). Correlations associated with loner nodes are colored dark gray.

Reaction nodes Z: only a few reliable, consistent correlations were found for the re-
actionnodes £ in Gg. Of these, the mean reciprocal hop-count is the only reaction node
metric that stands out, owing its presence to the metabolite hubs which provide short-
cuts between a large number of reaction nodes.

Metabolite network Gy; The correlation results for Gar are shown in Figure 6.6. Gy,
has more high-degree nodes than Gz and these are at least partially responsible for the
strongest correlations. As with its progenitor G, the hub nodes in Gy provide short-
cuts and thus provide the basis for the strong mean reciprocal node mean hop-count
correlations.

The out-degree of out-neighbors correlations are due either to hub nodes themselves
or nodes attached to the hub nodes (in particular hydrogen). The Dice similarity correla-
tions are also the result of hub nodes - for example, the maximum mean Dice similarity
is the result of a certain node (Asparagine) which is connected to a number of hub nodes;
therefore it shares neighbors with many other nodes.

There are no apparent loner-node related correlations amongst the top correlations
(1Al = 0.2). However, the three correlations immediately following the top correlations
(the minimum in-degree, hop-count and out-degree) are due to loner nodes.

Reaction network Gz The reaction network Gy, yvielded apparently no reliable, consis-
tent correlations. As Gy is much denser than either Gp or Gyy, each reaction removal
forces a node to be removed from Gp. This leads to larger changes in G, relative to the
other networks; a property that may in part explain the difficulty of finding a connection
between topology and growth in this representation.

Metabolite relationships hold the key to understanding the topology of metabolic sys-
tems The most interesting results are associated with the metabolite nodes. As men-
tioned in Section 6.3.1, there are more reactions than metabolites in metabolic systems,
A reaction ties together a small number of metabolites while there are metabolites that
are involved in many reactions. In other words, metabolites bind the network at a high
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Figure 6.5: p measures between growth and topological metrics for Gg. The symbols w7, O and A indicate that
node values were reduced to single values by computing their minima, means and maxima respectively, as
discussed in Section 6.3.2. As the legend shows, the light gray bars correspond to hub nodes, the dark gray bars
correspond to loner nodes and the medium gray bars correspond to metrics that were either not interpreted
or that do not fit the hub/loner distinction.

level and are responsible for global connectivity. This leads us to conclude that the
metabolite-reaction network G and the metabolite network G, are the most useful rep-
resentations for our purposes. The reaction network Gy, is less interesting, as no reliable,
consistent correlations were found. Reactions are, of course, essential to the metabolic
system, but metabolites tell the most interesting story.

Because Gg is the most accurate representation of the metabolic system and because
of its strong correlations, we consider the metabolite nodes of Gp to be the most promis-
ing entities for studying metabolism.

6.4.4. THE STRONGEST CORRELATIONS POINT TO CURRENCY METABOLITES
Many of the hub metabolite nodes implicated in the previous section correspond to so-
called currency metabolites. We know from biology that currency metabolites play a cru-
cial role in metabolism: they are energy carriers or co-factors that are used by many
reactions. Holme et al. [20] found the currency metabolites of S. cerevisiae to be H, H» 0O,
ATP. ADP, AMP, NAD, NADH, NADP, NADPH, CoA, CO3, Oy, P;, PP; and NHj (for this set
they used the undirected version of Gy; with information taken from the BiGG database).

To validate the role of these metabolites, we repeated our experiments with currency
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Figure 6.6: p measures between growth and topological metrics for G;. The labels and colors are explained in
Figure 6.5.

metabolites removed from Gg, Gy; and Gp. Note that the metabolites were not removed
from the flux balance linear program, as this would lead to incorrect chemical equations
and it would change the computed growth. The five most significant p correlations for
each of Gg, Gjy and Gp are shown in Figure 6.7 (note that the reaction nodes in Gp were
omitted, as all p correlations for these nodes fell below 0.2). Correlations that are neither
the direct result of hub nodes nor loner nodes are shown as medium gray bars in the
figure.

There are a number of interesting differences in the correlations brought about by
currency metabolite removal:

* Most of the strong correlations due to hub nodes have been strongly reduced. The
exception is the mean reciprocal mean hop-count correlation in G; which re-
mains approximately the same, in contrast with the correlation of the same metric
in Gp. This hints at second-order network structure (as opposed to first-order hub
structure) that is important in routing shortest paths.

* Removal of hub nodes removes shortcuts that route many shortest paths. The
shortest paths are therefore more “spread out” through the metabolite network.
This leads to a relative increase in node betweenness values and a concomitant
increasing influence of arbitrary nodes on the average betweenness. Although this
effect is most pronounced for Gy, it is also present for the metabolite nodes of Gg.
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e As Gy is less dense due to currency metabolite removal, a number of reliable, con-
sistently correlated metrics could now be found. The majority of reaction nodes
have degrees below the mean degree, so that a reaction removal is likely to increase
the mean in- and out-degrees. Likewise the minimum and mean Dice similarities
are likely to be increased, since the low-degree nodes have low Dice similarities.
The correlations are not obviously due to hub nodes or loner nodes.

6.5. CONCLUSIONS

The goal of this study was to determine whether topology and robustness of biological
systems are related. To this end, we generated a number of reaction removal sequences
or trials, each of which resulted in the cessation of growth of our metabolic system. Each
step in a trial provided a snapshot of the metabolic system from which growth could
be computed as well as topological metrics of the metabolite-reaction network Gg, the
metabolite network Gp; and the reaction network Gg. This allowed us to calculate a
measure of correlation between growth and each of the metrics. In this section, we will
sumimarize some of our findings.

Unambiguously linking robustness to topology is difficult The term “robustness” is
meaningless without context. Since the context of an organism constitutes all its inter-
actions with its environment, a precise definition may forever elude us. However, every
organism engages in a (small) number of vital functions that dominate its struggle for
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survival. By studying only these functions and their degradation in the face of perturba-
tions, we may discover some of the principles that help organisms to achieve their re-
silience. However, an unambiguous connection between such functions/ perturbations
and the topology of the underlying biochemical network is usually hard to define.

As we studied microbial metabolism, we focused on the one function at which the
cell must be successful before all else: biomass production, or growth. While this is a
simple representation of cellular activity, it has the advantage of being based on a well-
studied theoretical model of metabolism, flux balance analysis, that can easily be modi-
fied to work with a perturbation model of reaction removal. Still, although we were able
to directly link metabolic networks, functions and perturbations, finding correlations
between robustness and topology proved not to be trivial.

There is no obvious way to reduce a metabolic system to a network This is a conse-
quence of the correspondence between metabolic systems and hyper-networks. Ana-
lyzing hyper-networks directly is the ideal approach but these general structures have
resisted the theoretical analysis that has produced the useful tools of (classical) network
theory. Therefore, conversion is an analytical necessity. We described three ways of con-
verting a hyper-network to a network: the metabolite-reaction network Gg, the metabo-
lite network Gy and the reaction network Gg. The multiplicity of representations is a
well-known problem that Holme et al. [20] investigated by matching graph theoretical
properties of the three network representations to biological data in order to discover the
network representation that “best” captures biological knowledge. We found the corre-
lations were strongest for the metabolite nodes in Gg and for Gy;. These findings suggest
that metabolite nodes are most important for studying the structure of a metabolic Sys-
tem. In line with this, Holme et al. found Gy, to be the most favorable representation,
although we favor Gg since it maintains most of the original metabolic information.

Topology correlates weakly with growth Many of the topological metrics we calcu-
lated did not correlate with growth. We classified those that did correlate into two groups:
those caused by hub metabolite nodes and those caused by loner metabolite nodes.
They point to the importance of (a) global connectivity (by hub nodes that tie the net-
work together by connecting many reaction nodes); and (b) local connectivity (by metabo
lites that are produced and/or consumed by few reactions). The role of hub nodes was
verified in an experiment where we removed currency metabolites, which led to a large
shift in metrics correlated to growth.

6.6. OUTLOOK

In this work, we studied the relationship between topology and growth. Using our frame-
work as a starting point, one can investigate whether other functions of the metabolic
network are related to topology or whether topology plays a role in other biological net-
works (e.g., gene regulation or protein interaction networks).

Our approach can be refined in a number of ways. On the one hand, flux balance
analysis can be done with more sophisticated methods, such as MOMA [21] Minimiza-
tion Of Metabolic Adjustment) and ROOM [22] (Regulatory On/Off Minimization), both
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of which were designed to better approximate the metabolic behavior of systems from
which reactions have been removed. With sufficient enzyme kinetic parameters, one
could even attempt to solve the non-linear differential equations (6.1). On the other
hand, we could remove genes rather than reactions, more in line with the biological per-
turbations we intend to model. In this case, removing a gene may lead to the removal
of multiple reactions, or alternatively a reaction may only be removed if all genes coding
for isoenzymes are lost. However, such refinements to the model are unlikely to paint a
very different picture since, if there were an effect, a first-order approach (such as ours)
would pick up some correlation if it were there.

This work was an exploration of how topology is related to robustness. Although
whether topology confers robustness or vice versa remains an open question, a change
of perspective points to a number of paths for future investigation.

In a more local approach, one could isolate a small, fixed sub-network such as the
citric acid cycle (a central part of metabolism in many organisms). Then our framework
could be applied almost unchanged. Metrics would still be computed for entire networks
but only the values corresponding to the sub-network under consideration would be
compared with growth.

On a more global level, one could consider a number of species related by evolution.
The species cannot necessarily be directly compared to each other, since they are spe-
cialized for different environments (and thus different contexts). But these differences
in specialization enable us to study the connection between robustness and topology,
since differences in metabolism are the results of specialization and these differences
will be reflected in metabolic networks.

Aninteresting related approach is the study of the metabolic networks of gene knock-
out mutants of a given organism. This is essentially our approach with in silico knock-
outs replaced by in vivo knockouts, giving actual flux measurements which are more
reliable than fluxes computed by flux balance analysis approaches.
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LOCAL TOPOLOGICAL SIGNATURES
FOR NETWORK-BASED PREDICTION
OF BIOLOGICAL FUNCTION

Wynand WINTERBACH, Piet VAN MIEGHEM, Marcel
REINDERS, Huijuan WANG, Dick DE RIDDER

7.1. ABSTRACT

In biology, similarity in structure or sequence between molecules is often used as evi-
dence of functional similarity. In protein interaction networks, structural similarity of
nodes (i.e., proteins) is often captured by comparing node signatures (vectors of topo-
logical properties of neighborhoods surrounding the nodes).

In this paper, we ask how well such topological signatures predict protein function,
using protein interaction networks of the organism Saccharomyces cerevisiae. To this
end, we compare two node signatures from the literature — the graphlet degree vector
and a signature based on the graph spectrum - and our own simple node signature based
on basic topological properties.

We find the connection between topology and protein function to be weak but sta-
tistically significant. Surprisingly, our node signature, despite its simplicity, performs on
par with the other more sophisticated node signatures. In fact, we show that just two
metrics, the link count and transitivity, are enough to classify protein function at a level
on par with the other signatures suggesting that detailed topological characteristics are
unlikely to aid in protein function prediction based on protein interaction networks.

This chapter was published in Pattern Recognition in Bioinformatics, Lecture Notes in Computer Science,
Springer Berlin Heidelberg (2013) [1].
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7.2. INTRODUCTION

To what extent does structure determine function in biology? Evolutionary principles
have shown function and structure to be well correlated in genes with common evolu-
tionary ancestors, allowing biologists to infer functions of proteins or genes based on
their sequence homology (i.e., similarity) with other proteins or genes. With the arrival
of network biology [2], homology was extended to take not only sequence similarity into
account but also similarity of molecular interactions. These interactions can be either di-
rect (physical) or indirect (functional). In other words, the manner in which a protein (or
gene) is connected to other proteins in interaction networks matters. These other con-
necting proteins can be chosen in many ways, although the most common approach
is to consider a network neighborhood centered around a protein in question, includ-
ing all proteins and links within a fixed number of hops. Structural similarity of network
neighborhoods is determined by comparing their topological properties. Typically, these
properties are represented as a vector, known as a topological signature.

Topological signature similarity has been used as a measure of functional similar-
ity between proteins in several algorithms aimed at the discovery of homology relations
between proteins [3-5]. Although topological similarity and amino acid sequence sim-
ilarity are typically both used to determine homology [3, 5], some of these algorithms
perform well using only topological similarity [4, 5]. Researchers have also used topo-
logical similarity to predict relations other than homology, in effect assuming that struc-
tural similarity implies similarity of biological traits in proteins not necessarily related by
evolution. Involvement in cancer (a phenotype) was found to be encoded in topological
similarity [6] and even general protein function appears to be encoded in topology [7].
Given this predictive quality, the key question is thus: how exactly does local topology
reflect function, and what signatures best capture local topology?

In this paper, we set out to answer these questions in a specific context, i.e.the pre-
diction of protein function by means of node signatures in various protein interaction
networks of the organism Saccharomyces cerevisiae. Topological signatures in the liter-
ature capture a lot of topological detail; in this paper we investigate the extent to which
this detail improves protein function prediction (if at all). To this end, we study two such
signatures — the graphlet signature of Milenkovi¢ and Przulj [7] and a signature based
on the normalized Laplacian spectrum of a network [5] - as well as a simple node sig-
nature of our design. Predictive power of the signatures is determined by how well they
discriminate between proteins with a given biological function and those without the
function. To this end we use support vector machines, treating topological signatures as
feature vectors and biological labels as classifier labels. Note that our aim is not the con-
struction of an optimal protein function classifier, as for that purpose one would include
many other types of data; rather, we use prediction accuracy as a measure to explore the
relation between local topology and function.

7.3. METHODS

7.3.1. TOPOLOGICAL SIGNATURES
In the remainder of the text, G refers to a network (usually an interaction network), n
to an arbitrary node of G and N the number of nodes in G. A k-neighborhood G¥ of a
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(a)

Figure 7.1: Two neighborhoods of n: (a) G,l, and (b) G,Z,.

node 7 is an induced subnetwork of G on the set of nodes encompassing 7 and all nodes
within k hops of n (a subnetwork is induced when two nodes in the subnetwork are con-
nected by a link if, and only if they are connected in G). The subnetwork G}, spanned by
the gray nodes and bold links in Figure 7.1a is a 1-neighborhood of n, whilst the subnet-
work G2 spanned by the gray nodes and bold lines in Figure 7.1b is a 2-neighborhood of
n.

GRAPHLET SIGNATURE:

Graphlets are small, connected, induced subnetworks, as illustrated in Figure 7.2 (la-
beled X1, X3,..., X30). The graphlet degree of a node 7 for a given subnetwork X; can be
regarded as a generalization of its degree: the number of X; graphlets that contains n. In
the special case where X; (i.e. two nodes connected by a link) is considered, the num-
ber of of X; subgraphs containing r is just the degree of n. A graphlet signature (also
graphlet degree sequence [7]) generalizes the graphlet degree by including counts for all
of the subnetworks in Figure 7.2.

To simplify exposition, we first construct a graphlet signature containing only the
numbers of subnetworks X;, X, and X3 (Figure 7.2) that contain 7. Such a signature can
be represented as a vector of three integers. However, X is not symmetrical, as the white
node is structurally different from the two black nodes (which are interchangeable). We
distinguish cases in which n takes the role of the white node from cases in which 7 takes
the role of the black nodes. Thus, two counts for X, are maintained (one for each kind of
node), leading to a signature vector of four integer components: one for X, two for X
and one for X3 (vector indices are shown next to one node of each color).

The full graphlet signature is constructed by extending the construction above to the
rest of the subnetworks in Figure 7.2. In total, the signature vector has 73 components
(vector indices appear next to nodes). The largest subnetworks in Figure 7.2 have five
nodes and therefore the graphlet signature is computed on 4-neighborhoods. The larger
subnetworks in Figure 7.2 contain induced copies of smaller subnetworks (e. g., X3¢ con-
tains Xy, X3 and X)), so that the components of the graphlet signature are not indepen-
dent. Milenkovi¢ and Przulj [7] devised a weighting scheme to reduce this effect. We
reweigh graphlets according to their method. Graphlet signatures were computed using
code adapted from the original version of GraphCrunch [8].
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Figure 7.2: All non-isomorphic undirected networks (graphlets) with up to five nodes. For a given node n in a
network G, Milenkovi¢ & Przulj (7] count how many times each of these networks includes 7 and appears as
an induced subnetwork in G in order to construct a graphlet signature for n.

SPECTRAL SIGNATURE:

We assume that the nodes in G are labeled with numbers 1 through N. The adjacency
matrix A of G is an N x N matrix in which a; ; = 1 if the nodes i and j are connected by
alink and a;,j = 0 otherwise. The degree matrix A of G is a matrix in which a;; equals
the degree of node i and a; ; = 0if i # j. The normalized Laplacian is defined as Q,orm =
I—-AY2AATY2 The spectrum of Quomn s its set of N eigenvalues. All eigenvalues of
Qnorm fall within the range of [0, 2].

In general, two different neighborhoods have different numbers of nodes and there-
fore spectra of different sizes, making spectra unsuitable as feature vectors. We derive
feature vectors by computing histograms of the spectra [5]. Histograms with 20 bins are
computed on the range [0,2], showing why the normalized Laplacian spectrum is pre-
ferred over the non-normalized version.

SIMPLE METRIC SIGNATURE:

Our own simple metric signature serves as a baseline. It contains four very simple topo-
logical properties of neighborhoods: 1) number of nodes, 2) number of links, 3) link
density and 4) transitivity (the ratio of triangles to connected node triplets).

MULTI-RESOLUTION SIGNATURES:

One way to compute the spectral and simple metric signatures is to choose a fixed k
and to compute the signatures on all k-neighborhoods. By focusing on fixed k, one may
miss topologically distinguishing features at other “resolutions”, i.e., other values of k.
We construct “multi-resolution” versions of the spectral and simple metric signatures
respectively by concatenating signatures of G}, G5 and G3 for a given node 1; henceforth

we shall only consider these “multi-resolution” versions of the signatures. The graphlet
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signature is already “multi-resolution” in the sense that its component graphlets span
Gy, G4, G3 and GJ.

A COMBINED SIGNATURE:

Finally, we consider a signature that combines the previous signatures by simply con-
catenating the 1) graphlet signature, 2) the multi-resolution spectral signature and 3) the
multi-resolution simple metric signature.

7.3.2. DATASETS

MOLECULAR NETWORKS:

All of the networks considered in this paper are protein interaction networks for the or-
ganism Saccharomyces cerevisiae. We have collected seven such networks, derived from
four primary sources. Kim & Marcotte [9] provide two protein interaction networks, the
first a high-quality literature-curated network and the second a high-throughput net-
work. Yeastnet [10] provides several datasets with yeast protein interactions of which
we downloaded the literature-curated dataset (denoted “LC” on the website) and the
yeast 2-hybrid high-throughput dataset (“HC”). These two pairs of networks were se-
lected because each pair contains a literature curated network and a high-throughput
network, thereby providing insight into the impact of network quality on classification
performance.

Our remaining two datasets are due to Krogan [11] and von Mering [12]. Both of these
were used by Milenkovi¢ & Przulj [7] to test how well their graphlet signature approach
fared in predicting protein function. We used the same two subsets of the von Mering
dataset: “von Mering” contains the first 11000 protein interactions (of high-, medium-
and low-confidence), whilst “von Mering core” contains all high-confidence interactions
of the original dataset.

BIOLOGICAL LABELS:

Like Milenkovi¢ and Przulj [7], we used the MIPS protein annotations [13] as biological
labels. MIPS annotations are hierarchical and have the form “xx.yy.zz...” where the let-
ters denote two-digit biological categories. A protein may be annotated with multiple
such annotations. The left-most category (“xx”) gives the general protein function; each
following two-digit category is a refinement (“yy” and “zz”). In this paper, we consider
only general protein functions, of which there are 27 in the MIPS database.

7.3.3. CLASSIFICATION
Classification is performed using support vector machines (SVMs). There are numerous
biological categories in the MIPS database and a protein may be annotated with any
number of these categories. Since SVMs are binary classifiers, we use a one-versus-all
strategy whereby we train a classifier for each biological category. Classifier performance
is measured using the area under the curve (AUC) of the receiver operator curve (ROC)
of a classifier. All classifier-related work was performed using Scikit-learn [14].

The radial basis function (RBF) kernel was used to train all SVMs. To reduce the im-
pact of experimental omissions and noise, we only compute signatures on nodes whose
degrees are at least 3 and that have at least one MIPS annotation. Furthermore, to ensure
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the presence of enough positive instances in both testing and training sets, biological la-
bels that appear in less than 20 nodes are not considered for classification training.

TRAINING REGIME:

For each topological signature type, for each network, for each biological function, a
double cross validation training loop is performed [15]. The “outer” loop is a four-fold
loop in which the training set contains 75% of the dataset whilst the testing set con-
tains 25% of the dataset. For a given network and biological function, the folds are fixed,
meaning that classifiers are trained on the same training samples for all topological sig-
natures. Classifier performance is expressed as a combination of the mean and standard
deviation of the four AUC values associated with the four outer folds.

The “inner” loop is responsible for finding the classifier with the best classification
performance on the training set received from the “outer” loop. SVM classifiers using
the RBF kernel require two parameters: a cost C (for penalizing incorrectly classified in-
stances) and the RBF radius y. These are optimized by walking along a grid of parameter
pairs and training a classifier for each pair. Each grid point (i.e., parameter pair) is eval-
uated using the average AUC of a five-fold cross-validation loop. The parameters with
the best AUC score are thus considered optimal. At the start of the “inner” loop, both
the training and testing sets are centered and scaled using the center and variance of
the training set. The graphlet signature is reweighed after this point using the weighting
scheme of Milenkovi¢ and Przulj [7] as mentioned earlier in the paper (if reweighing is
applied beforehand, it would be removed by the scaling step).

As grid searches are expensive, we first perform a parameter search on a coarse grid,
followed by a second search on a fine grid around the optimal parameters found in
the first search. The coarse grid is given by the Cartesian product € x I of costs € =
275,273,271, ..,21) and RBF radii I' = {2715, 2713 2-11 93} The optimal param-
eter pair (C,7y) discovered on 6 x I is then used to specify a fine grid 6’ x I where
€' = {2l 22 i (0,1,...8}} and I" = {21087-2+12| j ¢ (0,1,...8}}.

7.4. RESULTS AND DISCUSSION

Using the training regime described in the Methods section, we have computed, for each
topological signature, for each network, for each biological function, the average classi-
fier performance as well as its standard deviation. As this is a large amount of data, we
have condensed the results into Figure 7.3a which shows, for a given topological signa-
ture and biological function, classification performance averaged over all networks, ex-
cept for the high-throughput Yeastnet network. This dataset proved to be too small and
gave poor, noisy classification results for all topological signatures. Figure 7.3a contains
only those biological functions that appear in all the datasets. We also plotted the clas-
sification results for one high-quality dataset, the literature-curated Yeastnet dataset, in
Figure 7.3b. The trends in Figure 7.3a are broadly similar in all of the networks although
classification performance is generally lower than in Figure 7.3b.

What stands out most from both Figure 7.3a and Figure 7.3b, is that topology is, in
general, a weak predictor of biological function. However, the mean AUC values are all
above 0.5, showing that topology does encode a certain amount of information about
biological function (the statistical significance of the mean AUC values being larger than
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Table 7.1: The number of positive instances for various combinations of network and biological function (i.e.,
proteins having given biological functions).

0.5 was tested using the f-test; in the majority of cases — and in all cases involving the bi-
ological categories “metabolism”, “transcription”, “protein synthesis” and “protein fate” -
the associated p-values are below 0.05). The overall differences between Figure 7.3a and
Figure 7.3b can be explained by differences in network quality and network size: qual-
ity affects classifier performance whilst network size affects its variance (network sizes
are given in Table 7.1). The high-throughput networks contain the most noise and are
therefore associated with worse classification performance.

At the level of biological categories both Figure 7.3a and Figure 7.3b show big differ-
ences in classification performance. The number of positive instances associated with a
biological category (see Table 7.1) is weakly correlated with classifier performance, partly
explaining the differences. Biology offers a possible explanation for the high AUC val-
ues associated with the labels “Transcription” and “Protein Synthesis”: transcription and
synthesis are both processes driven by permanent protein complexes rather than tem-
porary groups of proteins (as found in many other processes). Thus, nodes with these
functions tend to find themselves in densely connected clusters more often than other
nodes.

Both overall classification performance, as well as performance associated with indi-
vidual biological categories are dependent on the way in which biological categories are
defined. Some categories are more general than others (for example, “Development” in-
cludes proteins engaged in diverse functions, whereas “Transcription” is a more specific
function), contributing to differences in classification performance between categories.
When the categories are too general, overall classification performance suffers as clas-
sifier inputs become difficult to distinguish. We have performed experiments (data not
shown) in which we used two levels of the MIPS labels (Iabels of the form “xx.yy” rather
than just “xx”, i.e.,, more specific categories). Two-level categories led to better classi-
fication performance in some cases (notably those associated with transcription) and
worse performance in other cases. The culprit is likely a paucity of positive instances
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Table 7.2: p-values of one-way ANOVA tests applied to the AUC values of the three topological signatures
(graphlet, spectral and simple) for each network and biological function combination. We consider p-values
of 0.05 and below to be significant (shown in bold text).

associated with many of the two-level labels.

Another salient aspect of Figure 7.3a and Figure 7.3b is that the three topological
signatures perform very similarly. We tested whether the AUC values of the individual
signatures (i.e., not the combined signature) for each biological category were different,
using a one-way ANOVA (Table 7.2). We consider p-values of 0.05 and below to be statis-
tically significant and find only 10 dataset/function combinations that pass this thresh-
old.

Although the three topological signatures lead to similar classification results, it may
be possible that they nevertheless measure different (discriminative) topological charac-
teristics. If this is true, combining the signatures should lead to improved classification
performance. However, Figure 7.3a and Figure 7.3b do not support such a conclusion.
Thus, in the context of our datasets and classifier, the topological signatures are not com-
plementary.

Given that the simple metric signature is competitive with the graphlet and spectral
signatures, it is natural to ask whether it cannot be further simplified. We investigated
all possible combinations of the four metrics (number of nodes, number of links, den-
sity and transitivity) that make up the simple metric signature, constructing 14 simpler
signatures: 4 signatures using only one metric each, 6 signatures using pairs of met-
rics and 4 signatures using triplets of metrics. The mean classification performance of
these metrics, taken over all datasets and all biological categories, is shown in Figure 7.4.
The link count L and transitivity T are sufficient for obtaining good classification perfor-
mance. The implication is that what matters in function prediction in protein interac-
tion networks, is the number of nodes and the “clusteredness” (transitivity). Since pro-
teins of similar function tend to form clusters, their neighborhoods overlap and therefore
they share topological characteristics. Apparently, “clusteredness” signatures are unique
enough to distinguish similar proteins from other proteins.
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Figure 7.3: Classification performance of the three topological signatures, as well as a signature that combines
the three signatures. (a) Performance of our SVM classifiers averaged MIPS categories present in all datasets
(excluding the high-throughput Yeastnet dataset; see text for explanation). Error bars show the standard de-
viation. (b) Classification performance of the three topological signatures on the literature-curated Yeastnet
network [10].
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Figure 7.4: Classification performance of various combinations of the features used in the simple metric sig-
nature averaged over all datasets and all functions. Here, N is the number of nodes (in a neighborhood), L is
the number of links, D is the density and T is the transitivity.

7.5. CONCLUSION

At the start of this paper, we asked to what extent structure —i.e., topology — determines
function in biology. We focused on the use of signatures to express topological proper-
ties of neighborhoods surrounding nodes in molecular interaction networks. Our study
is motivated by the use of topological signatures as a tool for discovering similar genes
or proteins (under the assumption that topological similarity implies functional similar-
ity). We specifically studied the use of such signatures to discriminate between proteins
with a given biological function and those without it, using protein interaction networks
derived from Saccharomyces cerevisiae and support vector machines.

Current node signatures, such as the graphlet signature [7] and signatures based on
spectra [5] capture very detailed topological profiles. We compared these with our own
topological signature, based on very simple network metrics. For all signatures, classi-
fier performance tended to be weak, implying that topology is, atleast for Saccharomyces
cerevisiae protein interaction networks, a weak predictor of function. However, with the
exception of one noisy protein interaction network classifiers performed better than ran-
dom, showing that topology and function are linked. How much better depends on the
functional category considered, with performance particularly strong for transcription
and protein synthesis.

Our simple metric signature performed on par with the graphlet and spectral signa-
tures. We also established that the signatures are not complementary for protein func-
tion prediction, as a combined signature incorporating all three signatures does not yield
better accuracy. Since our simple metric signature captures less topological informa-
tion than the other signatures, we conclude that fine topological detail is not very useful
in the prediction of protein function. Strikingly, performance when using only the link
count and transitivity, measures of “clusteredness”, is as good as when using the more
complex signatures. This is not simply a side-effect of dataset noise, as our simple met-
ric signature performs equally well in the high quality networks.

Our work opens a number of paths for future research. For our conclusions to hold
generally, the techniques used in this paper should be applied to other types of inter-
action networks (for example, co-expression networks and synthetic sick-or-lethal net-



REFERENCES 133

works) and to networks derived from other organisms. It would be particularly interest-
ing if link count and transitivity are found to be equally determinative in other interac-
tion network types. Finally, it is not yet known how different “resolutions” contribute to
signature performance and whether a particular resolution (i.e., k-neighborhoods of a
particular k) dominates classification performance.
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CONCLUSION

8.1. THESIS SUMMARY

The central question of this thesis is whether the topologies of molecular networks re-
flect the functions of the cellular systems they model. Since biological organisms are ro-
bustin that they continue functioning when damaged, we first asked whether molecular
networks might provide clues about topological structures associated with robustness.
Such structures would be useful in evaluating network robustness and could inform the
design of more robust human-made networks such as communications and transport
networks. In the context of human-made networks, robustness means resilience against
network disconnection and resilience against drastic increases in path length between ar-
bitrary end-points. Thus, if molecular network topology is to guide the design of com-
munications or transport networks, it is implicitly assumed that transport (of signals or
metabolites) are central to their biological roles. This is not true of all molecular net-
works but is partially true of protein interaction networks and metabolic networks, two
classes of networks investigated in this thesis.

Degree assortativity is a relatively new and simple metric that we investigated as a
measure of robustness. The metric is a correlation coefficient representing the tendency
of nodes to connect to nodes of similar degree. We found that for dense networks, the
range of values achievable by the metric is dependent on the density of the network and
that this relationship is non-linear, limiting its use as a tool for comparing dense net-
works. On the other hand, for sparse networks such as molecular networks, the range
of achievable degree assortativity values is larger and, crucially, not very dependent on
network density. Thus, degree assortativities of sparse networks can be meaningfully
compared.

Degree assortativity also lends itself well to greedy optimization: a network can be
re-architected through a number of small, degree-preserving rewiring steps to have in-
creased or decreased degree assortativity. Empirical studies suggest that this simple
greedy approach can be used to achieve assortativity values close to the maximum or
minimum values achievable through degree-preserving rewiring transformations. Cou-
pled with our robustness envelope framework, we were able compare the robustness
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of large networks with the same degree sequences but (arbitrarily) different assortativity
values. Moderate increases in assortativity led to slightly increased resilience against tar-
geted node attacks coupled with decreased resilience against random attacks; for mod-
erate decreases in assortativity, the opposite was true. Greater changes in assortativity
lead to network fragility. We find that although there is some connection between degree
assortativity and robustness, the connection too weak to be practically useful.

We investigated the assortativity of metabolic networks, finding them to be neither
assortative nor disassorative, a finding also corroborated for protein interaction net-
works. Perhaps degree assortativity is simply the wrong metric for studying molecular
networks. In order to test this possibility, we studied robustness envelopes of unmodified
molecular networks and compared them to robustness envelopes of other real-world
networks. This showed that molecular networks are not distinguished by their robust-
ness envelopes. In all of the previously-mentioned analyses, robustness meant resilience
against changes in general topological properties such as path length. However, in the
context of biological organisms, robustness normally means the ability of an organism
to continue functioning when part of the organism is damaged. Therefore, a better way to
discover the link between topology and biological robustness is to search for topological
metrics that are correlated with biological function.

Accurately defining biological function is difficult, as we do not yet have many good
models of molecular interaction (indeed, network biology came about as a tool to help
analyze and understand molecular interactions). One of the best models of biological
function of large networks available today is flux balance analysis, a model for com-
puting metabolic reaction rates during metabolic steady state. From the flux rates, one
can compute the rate of biomass production, a commonly used metric of cellular health
for cells not subjected to stressors. In addition, high quality metabolic networks for a
number of organisms are available. With these tools and data, we intentionally dam-
aged a yeast metabolic network, correlating changes in the rate of biomass production
to changes in a number of topological metrics in the metabolic network.

In general, correlations between biomass production and topological metrics are
weak, providing further evidence that general topological metrics are unlikely to teach
us much about biological robustness. We conclude that metrics summarizing network
structure are insensitive to small changes in network structure whilst such changes may
be decisive in organismal health. One way around this problem is to develop biologically-
relevant topological metrics that would be sensitive to biologically significant changes.
Developing biologically-relevant metrics for molecular networks will be difficult if one
insists on whole-network analysis. But network biology need not focus only on whole-
network analysis: at smaller scales (that is, smaller collections of interacting molecules),
molecular interactions are better understood and at these scales, topological metrics are
more sensitive to changes in network structure (since they are summarizing smaller net-
works).

Using a local approach, we correlated functions of proteins with topological charac-
teristics of network regions surrounding these proteins. The correlations show a stronger
connection between topology and biology than in the previous work. A number of topo-
logical metrics were correlated with protein function but no great differences in corre-
lation were found between the metrics. This is surprising, given that one of the metrics
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took only simple topological aspects into account suggesting that topological metrics
need not be complex in order to be effective (at least given the current state of our un-
derstanding of biological networks).

8.2. FUTURE WORK

Network biology is still a young field and has the potential to develop in a number of
directions. Here we identify a number of themes that we believe will advance the state
of the art.

Our work started with a whole-network analysis and ended with with a local topo-
logical approach for the prediction of protein function. The global-to-local movement
is a trend in the field of network biology but that does not mean that global and local
approaches exclude one another. Surprisingly little attention is given to hierarchical
analysis, a global-local technique that is commonly used in molecular biology. For ex-
ample, interacting proteins are grouped into protein complexes which themselves are
studied as units of interaction. One need not stop here since protein complexes can also
be grouped into larger units that interact with one another. Network biology augments
such analysis by studying interactions of complexes as networks. Hierarchical analysis
ofa system leads to multiple network descriptions at varying levels of detail. Networks at
the highest level are small, capturing interactions between complex, large subsystems.
Nodes of any network in the hierarchy (except those at the lowest level) represent sub-
networks of the network one step lower in the hierarchy. Any given molecular interaction
system has numerous hierarchical descriptions that reveal different aspects of the sys-
tem.

Whilst existing topological metrics might be correlated with biological function at a
local scale, our success rate at tying topology to biological function will improve if we
focus on measuring biologically meaningful topological aspects. An example is a pro-
posed topological metric for measuring biomass production in metabolic networks that
counts the number of metabolites a metabolic network can produce, given a set of in-
puts. In a sense, the metric is a discrete approximation of the chemical process and, not
surprisingly, correlates well with biomass production. On the other hand, it shows that
cellular growth is somewhat insensitive to the exact distribution of flux rates in the net-
work. Such biologically-inspired topological metrics could be designed for the various
types of molecular network.

With the design of biologically-relevant network metrics, we no longer need to con-
sider only highly homogeneous networks (in which nodes all represent the same object
and in which links all represent the same kind of relation). Network theory has tradi-
tionally mainly dealt with homogeneous networks, partly due to the fact that transport
networks and communications networks are relatively homogeneous (at least in com-
parison to molecular networks) and partly to ease mathematical analysis. Breaking ho-
mogeneity by considering molecular networks with multiple types of nodes and links
will complicate mathematical analysis but it is a price worth paying for the additional bi-
ological detail captured in such networks. Decreased mathematical tractability can also
be partly offset by software simulations: molecular networks are generally small enough
for millions of instances to be tested against a given metric.

Related to the study of heterogeneous networks and hierarchical analysis is the study
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ofinterlinked networks (that is, networks of networks). For example, consider metabolic
networks and protein interaction networks: faulty interactions in the protein interac-
tion network may lead to failure of membrane transporters necessary for transporting
metabolites needed by the metabolic network; if the failure of the metabolic network
is such that it can no longer produce amino acids, the protein interaction network will
quickly disintegrate. These kinds of interactions cannot be understood by studying the
metabolic network or protein interaction network in isolation. The strength of inter-
linked network analysis is that it leverages analytic techniques applicable to isolated
networks (for example, flux balance analysis of metabolic networks) whilst putting in-
teractions between networks on an equal footing with other interactions.

8.3. CLOSING REMARKS

This thesis has investigated the connection between molecular network structure and
function. Network biology sparked a considerable amount of interest because it seemed
to promise a new paradigm within which to study complex systems. Its impact has not
been as radical — complex systems remain complex — but it is a relatively simple analytic
tool which has broadened our understanding of cellular interaction systems. That alone
is a good reason to continue developing this young field.



SUMMARY

During the second half of the 20th century, the field of molecular biology greatly im-
proved our understanding of the cell. Molecular biology is a reductionist science — mole-
cules and interactions are studied in isolation from the rest of the cell. However, as our
understanding of the cell increased, it became apparent that cellular interactions are
often decisive in biological function and that more holistic analysis techniques were re-
quired to understand certain biological phenomena.

The field of network biology emerged from the need to analyze cellular interactions
at a scale beyond what was possible using a reductionist approach. Network biology, a
synthesis of molecular biology and graph theory, treats sets of molecular interactions as
molecular networks that can be analyzed using graph-theoretical techniques.

This thesis deal with three themes in network biology: 1) the correlation of structural
properties of molecular networks with the robustness of the organisms they model, 2)
the correlation of structural properties of molecular networks with biological properties,
3) the scale at which structural properties of molecular networks should be considered
in order to make biologically meaningful inferences (that is, should entire networks or
small regions of networks be considered).

The first theme was motivated by the hypothesis that, because biological organisms
are robust (that is, they maintain function in the face of damage), molecular networks
might contain structural features that are associated with robustness. Such knowledge
could both be used to analyze networks for robustness and in the design of more robust
networks (such as communications networks). The connection between robustness and
structure was first studied from a purely structural perspective: various networks were
compared to one another based on whether they maintained certain structural prop-
erties when damaged. The purely structural perspective showed no discernible differ-
ences between the structural robustness of molecular networks and other real-world
networks. If the connection between biological robustness and network structure were
to be understood, changes in biological function had to be tied to changes in molecular
network structure. This was investigated by damaging metabolic networks and correlat-
ing changes in their structures to changes in their predicted ability to produce biomass.
Although correlations were found, they proved to be weak, suggesting that structural
properties computed using entire networks are too insensitive to capture biologically
significant changes.

The second theme, correlations between structural properties of molecular networks
and biological properties, at first glance appears to be similar to the first theme. But
whereas the connection between structure and robustness focused on relating system-
wide structural properties to system-wide biological behavior, this work focused on the
relation between structural properties of individual molecules and their biological prop-
erties. Stated otherwise, the first theme deals with global analysis techniques whereas
the second theme with (relatively) local analysis techniques. This shift towards the local
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yielded stronger correlations between structure and biological function than achievable
by more global approaches.

The original research in this thesis suggests that local analysis techniques have bet-
ter predictive power than global analysis techniques. This observation forms the basis of
the third theme: at which scale are molecular networks best analyzed in order to make
biologically meaningful predictions? This theme was thoroughly examined in a litera-
ture survey of the field of network biology. The literature survey shows a slow shift from
global approaches to more local approaches, mirroring the findings of this thesis. The
success of local approaches over global approaches is explained by the fact that 1) it is
simpler to associate biological interpretations with structural properties of small sets of
molecules (rather than large networks of molecules) and 2) structural properties pertain-
ing to entire networks tend to be insensitive to small changes in structure that may be
biologically significant.

Besides the network biology-focused research, this thesis also examines the effect of
changes in degree assortativity on the robustness of molecular networks and other real-
world networks. The metric itself was also studied to better understand its limits and
applicability to molecular networks.



SAMENVATTING

Gedurende de 2e helft van de 20e eeuw heeft moleculaire biologie ons begrip van de
cel vergroot. Moleculaire biologie is een reductionistische wetenschap — moleculen en
interacties worden geisoleerd van de rest van de cel bestudeerd. Echter, sinds ons begrip
van de cel toe is genomen, is het gebleken dat cellulaire interacties vaak bepalend zijn
voor de biologische functies en dat er meer holistische analysetechnieken nodig zijn om
bepaalde biologische verschijnselen te begrijpen.

Netwerkbiologie is ontstaan uit de noodzaak om cellulaire interacties te analyseren
op een schaal groter dan wat er mogelijk was met een reductionistische benadering.
Netwerkbiologie, een synthese van moleculaire biologie en graaftheorie, benadert verza-
melingen van moleculaire interacties als moleculaire netwerken die geanalyseerd kun-
nen worden met graaf-theoretische technieken.

Dit proefschrift behandelt drie thema’s binnen netwerkbiologie: 1) De correlatie van
structuureigenschappen van moleculaire netwerken met de robuustheid van de organis-
men die gemodelleerd worden, 2) de correlatie van structuureigenschappen van molec-
ulaire netwerken met biologische eigenschappen, 3) de schaal waarmee structuureigen-
schappen van moleculaire netwerken moeten worden beschouwd om biologisch zin-
volle gevolgtrekkingen te maken (dat wil zeggen, moet het hele netwerk of kleine ge-
bieden van netwerken worden beschouwd).

Het eerste thema werd ingegeven door de veronderstelling dat, omdat de biologische
organismen robuust zijn (dit wil zeggen dat zij hun functie behouden bij schade), molec-
ulaire netwerken mogelijk structuureigenschappen zullen bevatten die geassocieerd zijn
met robuustheid. Dergelijke kennis kan zowel worden gebruikt voor het analyseren van
netwerken op robuustheid en in het ontwerp van meer robuuste netwerken (bijvoor-
beeld communicatienetwerken). De connectie tussen robuustheid en structuur wer-
den eerst bestudeerd vanuit een structuurperspectief: verschillende netwerken werden
met elkaar vergeleken gebaseerd op de vraag of ze bepaalde structurele eigenschappen
zouden behouden bij schade. Dit structuurperspectief liet zien dat er geen onderscheid-
baar verschil is tussen de structurele robuustheid van moleculaire netwerken en andere
real-world netwerken. Als de verbinding tussen biologische robuustheid en netwerk-
structuur zou worden begrepen, dan zouden veranderingen in biologische functie ver-
bonden moeten zijn met de moleculaire netwerkstructuur. Dit werd onderzocht door
schade toe te brengen aan metabolische netwerken en het correleren van de veranderin-
gen in structuur met veranderingen in voorspelde mogelijkheid om biomassa te pro-
duceren. Hoewel er correlaties werden gevonden, bleken deze zwak, wat suggereert dat
structuureigenschappen die berekend zijn met netwerken in hun geheel te ongevoelig
zijn om biologisch significante veranderingen op te vangen.

Het tweede thema, correlaties tussen structuureigenschappen van moleculaire netwerken
en biologische eigenschappen, lijkt op het eerste gezicht vergelijkbaar te zijn met het
eerste thema. Maar waar de verbinding tussen structuur en robuustheid is gericht op
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systeem brede structuureigenschappen te relateren aan systeem brede biologische eigen-
schappen, focussen we hier op de relatie tussen structurele eigenschappen van indi-
viduele moleculen en hun biologische eigenschappen. Anders gezegd, het eerste thema
betreft de globale analysetechnieken, terwijl het tweede thema (relatief) lokale analy-
setechnieken betreft. Deze verschuiving naar het lokale leidde in vergelijking tot sterkere
correlaties tussen structuur en biologisch gedrag dan bij de globale aanpak.

Het oorspronkelijke onderzoek in dit proefschrift suggereert dat lokale analysetech-
nieken een grotere voorspellende waarde hebben dan globale analysctechnieken. Deze
observatie vormt de basis voor het derde thema: op welke schaal dien je moleculaire
netwerken te analyseren om voorspellingen te doen die biologisch van betekenis zijn?
Dit thema werd grondig bestudeerd in een literatuurstudie met betrekking tot het veld
netwerkbiologie. Deze literatuurstudie laat een langzame verschuiving zien van glob-
ale benaderingen naar meer lokale benaderingen, een weerspiegeling van de resultaten
van dit proefschrift. Het succes van lokale benaderingen in vergelijking tot globale be-
naderingen laat zich het beste verklaren doordat het 1) eenvoudiger is om biologische
interpretaties met structuureigenschappen van kleine verzamelingen moleculen te as-
sociéren (in plaats van met grote verzamelingen van moleculen) en 2) structuureigen-
schappen die betrekking hebben op een heel netwerk kunnen ongevoelig zijn voor kleine
biologisch significante veranderingen in de structuur.

Naast het onderzoek gericht op netwerkbiologie, beschrijft dit proefschrift ook het
effect van veranderingen in de graad van assortativiteit op robuustheid van moleculaire
netwerken en andere real-world netwerken. Deze metriek werd bestudeerd om beter te
begrijpen hoe toepasbaarheid deze is op moleculaire netwerken en wat zijn beperkingen
zijn.
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