
Building a scalable development cluster
at Adyen

Building a scalable development cluster
at Adyen

Thesis

Submitted in partial ful�llment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

GijsWETERINGS

Student number: 4272587

born in Dorst, the Netherlands

Thesis committee:

Prof. dr. A.E. Zaidman, Technische Universiteit Delft
Dr. M. Aniche, Technische Universiteit Delft
Dr. P. Pawełczak, Technische Universiteit Delft
B. Wolters, Adyen

Keywords: Software engineering, developer tools, scalability, containerization, or-
chestration

Style: TU Delft House Style, with modi�cations by Moritz Beller

The author set this thesis in LATEX using the Libertinus and Inconsolata fonts.

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

I have been impressed with the urgency of doing. Knowing is not enough; we must apply.
Being willing is not enough; we must do.

Leonardo da Vinci

vii

Contents

Summary ix

Preface xi

1 Introduction 1
1.1 Issues for large-scale software systems 2
1.2 Our industry partner: Adyen . 2

1.2.1 Development challenges at Adyen 2
1.3 Towards a scalable development environment 3
1.4 Thesis outline . 5

2 Background And Related Work 7
2.1 Developer productivity, interruptions and task switches 7
2.2 Feedback-Driven Development . 7
2.3 DevOps . 8
2.4 Industry solutions to software development at scale 9

2.4.1 Google . 9
2.4.2 Facebook . 9
2.4.3 Amazon . 10
2.4.4 Lessons learned . 11

3 Virtualization 13
3.1 Hypervisor-based virtualization . 13
3.2 Container Virtualization . 14

3.2.1 System versus Application containers 16
3.2.2 Enabling the Immutable Infrastructure paradigm. 16

3.3 Orchestration . 16
3.4 Introduction to external tools used . 17

3.4.1 Kubernetes . 17
3.4.2 Operator SDK . 20
3.4.3 Kaniko . 21

4 Developer work�ow 23
4.1 Example: Alice �xes a bug . 23
4.2 Identifying bottlenecks in the software development process 24

5 Building a scalable developer work�ow 25
5.1 A scalable developer platform . 26
5.2 Gatekeeper service . 27

5.2.1 Bene�ts of ephemeral, on-demand workspaces 27

viii Contents

5.3 Developer source synchronisation . 28
5.4 Build containers on-cluster . 29

5.4.1 Loading source �les in the working directory 30
5.4.2 Perform build steps. 31
5.4.3 Reporting build result . 31

5.5 Managing the full Application pipeline 32
5.5.1 Routing service communications 32
5.5.2 Routing external users to an application 32

5.6 Adding a new service . 33
5.7 Example: The new development work�ow 35

6 Evaluation 37
6.1 Challenge I: Local build time . 38
6.2 Challenge II: Running a local environment 41
6.3 Challenge IV: Resource exhaustion test. 42
6.4 Challenge IV: Cluster scalability for resource-intensive workloads 43
6.5 Challenge V: Deploying pre-commit work 46
6.6 Challenge VI: Network tra�c evaluation 49

6.6.1 Datacenter tra�c. 50

7 Discussion 53
7.1 Challenge III: Decreasing build avoidance 53
7.2 Contribution to Kaniko. 54
7.3 Application architecture . 54
7.4 Development Cluster, Build tools and compiler-level caching. 55
7.5 Designing container build recipes . 55
7.6 Debuggers, test runners and other IDE tools 56

8 Conclusion and future work 57
8.1 Future work in Software Engineering research 58
8.2 Future engineering work for the development cluster 58

A Evaluation con�gurations 61

Bibliography 73

ix

Summary

Software systems today are growing to incredible proportions. Software impacts everything
in our society today, and its impact on the world keeps growing every day. However,
developing large software systems is becoming an increasingly complex task, due to the
immense complexity and size. For a software engineer to stay productive, it is vital they
can work e�ectively on a system, being able to focus on the problem at hand. However,
large software systems throw up a lot of roadblocks on the way, with complex and slow
build processes impacting the developer’s productivity to higher and higher degrees as the
software system grows. To help developers stay productive, we need new, more powerful
ways of assisting them during their activities.

In this thesis, we present our development cluster as a part of the solution to developing
software at scale. The cluster provides a high-performance infrastructure that can be used
by developers to build and deploy their applications during development. By moving these
build and deploy processes to a cluster during development, we can bene�t from more
powerful computing resources which help developers work more e�ectively. We evaluate
our development cluster in a number of di�erent categories, comparing build speed, system
startup and general developer work�ows. Additionally, we evaluate how well our solution
scales and what the impact on network load is for a company integrating with this system.

This move to cloud-based development brings along new challenges, but also many
new possibilities in terms of tooling, developer collaboration and software engineering
research. We are convinced our cluster can help scale software development e�orts in
industry, as well as bring new ways of doing research on software engineering.

xi

Preface

Before you lies the result of 9 months of hard work as part of the degree of Master of
Science in Computer Science at the Delft University of Technology. This thesis has been
a huge challenge, one I de�nitely underestimated back in October. I set a personal goal
for this thesis, to work on a problem that has both scienti�c and industry relevance. This
has resulted in a thesis full of new experiences. I have discovered a fascinating �eld of
Computer Science that balances both intense technical challenges and the human aspect
of having to interact with these technical systems. In fact, I have gained a lot of respect
for developer tools, and especially the engineers that work on them. I have managed to
deliver a product to Adyen that has sparked discussions and future plans. Along the way,
we have ran into some challenges and tackled them as best as we could

There are a couple of people I would like to thank, without whom this thesis wouldn’t
be possible. First of all, I want to thank Maurício Aniche for his supervision during this
thesis. Thank you for trusting me in starting such an ambitious project, giving me the
space to explore where the thesis needed to go, and o�ering your advice that helped lift
this thesis to the next level. Also thank you to Andy Zaidman and Przemysław Pawełczak
for being part of my thesis committee and helping me defend the work. Next, a big thank
you to Bert Wolters, for taking the gamble on me and take on such an ambitious project.
I’m con�dent Adyen can build on this work and hopefully roll it out to all her developers
soon. I hope you are happy with the end result, and thank you for the enthusiasm you
brought every time I could show you a new piece of the puzzle that fell into place. Next, a
big thank you for everyone in the Development and Testing Tools stream at Adyen. Every
last one of you has been a major help in my thesis, by discussing the work itself, but also
by bringing such positive energy every day! A special thanks to Daan for pushing me back
on track a few times when I got distracted by other problems, and to Adriaan for taking on
the �ght to grow support for this work inside Adyen.

In general, I’d also like to extend my gratitude to everybody at TU Delft. This university
has been an amazing place to go from a high school student interested in making websites
to an engineer ready for the big leagues. Not just the education, but the sta�, everyone at
the study association W.I.S.V. ‘Christiaan Huygens’ and all other students have all been a
delight to be around and to learn together.

Last but not least, a major thank you to my family and friends for their support. Being
able to discuss problems in the thesis, but also being able to step away from it and relax for
a bit really kept me motivated to deliver the best thesis I could. Thank you for providing
that balance and for all the wise words that helped me on the way. I really couldn’t have
done this without you, thank you for being there and pushing me forward!

Gijs
Delft, July 2019

1

1

1
Introduction

The processes for software development and deployment are fast-changing landscapes
of best practices, standards and ideologies. Di�erent methods have gained popularity
over time, mostly conforming themselves to the technological abilities and the business
requirements at a company.

In the early days of software development, the development process was constrained
by computing time availability. Big, shared mainframes were the only machines powerful
enough to do the hard work of building software for developers[1]. Because re-engineering
was a costly practice, methodologies such as the Waterfall model[2] rose to popularity.
The Waterfall model consists of a number of sequential phases. The idea behind this is to
�nish a phase before moving on, in order to prevent re-engineering costs due to oversight
and rushed decisions afterwards. However, this had the disadvantages of a longer time to
market and the inability to adapt during the process.

Following Moore’s Law[3], computation power has become signi�cantly more available
over time, and has become cheaper. This additional budget of computing power has allowed
the formation of new software methodologies. Many of these new methodologies fall under
the umbrella of Agile software development[4]. Agile methodologies focus on getting
smaller feedback loops while continuously re-evaluating requirements to deal with initial
oversights or changing requirements.

This shift to small, feedback-driven loops can also be seen during software development
work itself. This process is called Feedback-Driven Development (FDD)[5]. FDD relies
from all sorts of tools, from compiler output to peer reviews, from static analysis to
production monitoring[6] and from Continuous Integration (CI)[7][8] to manual debugging.
Developers have built all these tools around themselves to get feedback on their work as
quickly as possible. Some engineering methodologies even set feedback budgets, such as
eXtreme Programming[9]. These methodologies focus in particular the "inner-loop" of
software development, which is described by one of Microsoft’s DevOps engineers Mitch
Denny[10] as "the iterative process that a developer performs when they write, build and
debug code".

1

2 1 Introduction

1.1 Issues for large-scale software systems
Because developers rely so heavily on feedback from their environment, a developer’s
productivity is strongly coupled with the time needed for the developer to receive feedback.
However, as software systems grow, getting timely feedback can become a bigger and bigger
challenge. Major software companies struggle with this loss of productivity, particularly in
their build process:

A recent internal study showed that our largest source of wasted engineering time comes from
builds that take 2-10 minutes

Dan Lorenc, DevOps engineer at Google[11]

With su�ciently large software systems consisting of many di�erent services, it can
even be infeasible to get a full version of their platform running locally. This means
developers need to either run mocked services, or accept that parts of the system failing
to connect with some of their communication targets. This can cause big discrepancies
between a developer’s development environment and production, risking unforeseen
runtime issues.

1.2 Our industry partner: Adyen
Adyen is a Payment Service Provider (PSP) that was founded in 2006 in the Netherlands,
and has since taken the worldwide payments industry by storm. In 2018, Adyen passed
€159 billion in processed volume across the platform. Adyen identi�es itself by acting as a
"uni�ed commerce" platform, meaning many di�erent forms of processing payments are
all consolidated to a single platform. For example, Adyen o�ers over 250 types of local
payment methods, such as iDeal and Boleto. With employees spread over 20 o�ces, Adyen
is a worldwide 24/7 operation, and development on the platform does not stop.

1.2.1 Development challenges at Adyen
Adyen has a Service-Oriented Architecture (SOA) written primarily in Java (for the backend)
and Javascript (for the frontend). With more than 60 unique services, such as risk engines,
accounting services and banking applications.

This system has grown in size quickly over the past few years, with Adyen o�ering
more services to their merchants. Graphs on how backend and frontend code have grown
over the years are shown in Figure 1.1 and Figure 1.2 respectively.

To illustrate how Adyen developers work on the platform, we’ve collected build data
from a subset of Adyen developers. We did this using Gradle Enterprise’s build scans over
the course of 1 month (06-05-2019 until 06-06-2019, containing 23 working days of 8 hours).
An overview of the most time-consuming tasks is displayed in Table 1.1. Note here, that
the tasks named are the entry points to task execution graphs, and the execution time
includes any downstream work that needs to be done. We quickly highlight Adyen-speci�c
tasks in the next paragraph.

The resetAll task is the container task that builds and deploys a full development
environment to the developer’s local machine. This system is built from scratch. This
means compiling all modules, and packaging it into wars that are deployed to a TomCat

1.3 Towards a scalable development environment

1

3

Figure 1.1: Lines of backend code in the Adyen
system over time

Figure 1.2: Lines of frontend code in the Adyen
system over time

Task name invocations ∑ tinvocation mean t median t
resetAll 1310 29 days, 4 hours 32.06 min 23.34 min
deployWar 5490 9 days, 20 hours 2.57 min 0.76 min
updateModel 911 4 days, 6 hours 6.70 min 1.29 min
deployAllWars 656 3 days, 16 hours 8.01 min 5.31 min
reloadWar 3190 3 days, 8 hours 1.50 min 1.02 min
compileJava 1610 2 days, 3 hours 1.88 min 2.34 min
dbChanges 1070 2 days, 9 hours 3.20 min 1.79 min
test 717 1 day, 13 hours 3.07 min 0.53 min
ensureStaticData 910 1 day, 9 hours 2.16 min 1.26 min
createAllDbs 43 8 hours 11.27 min 9.96 min
Total gradle commands 22600 61 days, 22 hours 3.93 min 0.71 min

Table 1.1: An overview of the most used gradle tasks during local development at Adyen (between 06-05-2019
and 06-06-2019)

instance, as well as building all databases including minimal (dummy) data. Together, this
gets the developer up and running with a local system.

The deployWar and reloadWar tasks both build and deploy a single war for a single
service, usually the one the developer is working on at the time (deployAllWars does the
same but for all services at once). ensureStaticData and updateModel are tasks that check
and update the database for various values, such as enum mappings and business logic
rule con�guration. Finally dbChanges attempts to do an in-place migration of the local
databases to the latest schema, where createAllDbs builds all databases from scratch.

1.3 Towards a scalable development environment
Building and running local development environments for all developers can be a time-
consuming activity. In this thesis, we explore how we can make the e�ort of local devel-
opment more scalable, in order to increase the productivity of developers. We focus on
DevOps principles and industry best-practices to design a development work�ow that’s
scalable both for a growing number of users, and for a growing system.

1

4 1 Introduction

To achieve such a developer experience, we de�ne our main problem statement as:

How can we create a scalable development platform for large-scale
software systems?

To support this problem statement, we de�ne a number of challenges we need to solve:

Challenge I: Local build time As depicted in Table 1.1, developers spent almost 62 days
of wall time on local build tasks in a single month. Considering the number of
developers in this dataset and the amount of working hours, that is a mean of about
36 minutes per day waiting for build tools on the local machine. According to the
research by Meyer et al, these moments are a common cause of context switching,
which is detrimental to the productivity of developers [12]. Note that this time does
not include any continuous integration jobs, those spent another 101 days and 12
hours (on considerably faster hardware) running various builds, test suites and other
quality control checks.

Challenge II: Running a local environment A second issue arises after a developer
is done building. Due to the size of the system and the limitations of developers’
machines, it is currently not feasible for a developer to run a full instance of the
Adyen platform on their laptop. By analysing shared team con�gurations, we see
that most developers only run about a third of the services in the Adyen platform
locally, before getting in trouble with the runtime environment.

Challenge III: Decreasing build avoidance Whilst build times are already a problem
for Adyen developers, developers also seem to avoid rebuilding their local system
quite a bit. In the same time frame of Table 1.1, a total of 4295 commits have been
merged into master. Assuming an even spread of resetAll invocations this would
mean an average of roughly 354 changesets have been applied to the platform as a
whole before a developer rebuilds his full local setup using the resetAll command.

Push early, pull o�en.

—Adyen way of developing #4

Ideally, developers would be exposed earlier and more frequently to the changes in
the platform, both in the services they actively work on and other services. This
early exposure helps with early product feedback, and catching issues that were
not covered by continuous integration builds. Therefore, it’s important that our
solution helps with any steps needed to upgrade an existing session to a newer
version, particularly for the services the developer is not actively working on.

Challenge IV: Design for growth As a software system scales up, the previous chal-
lenges will become larger, both due to an increased number of services, as well as an
increase in developers working on these systems. Therefore, we see many software
companies experiencing quadratic growth[13] in size of their system. Any system
supporting that growth should be designed to grow with the same pace.

1.4 Thesis outline

1

5

We design for 20x

—Adyen way of developing #2

During the project, some additional challenges were de�ned based on our early experi-
ences and decisions:

Challenge V: Pre-commit work As we formulated the strategy of moving build and
run work from the developer’s machine, we de�ned the explicit challenge of being
able to work with dirty worktrees. This means that the system needs to be able to
work with uncommitted changes to the developer’s version of the codebase. While
an obvious requirement for active development, this did pose an additional challenge
we’ll cover in Section 5.3.

Challenge VI: Network load As a result of Challenge V, we de�ned an explicit chal-
lenge of keeping the network load between the developer machine and the workspace
as low as possible, to prevent building both a solution and a new scalability problem.
We will give an overview of the impact on network load in Section 6.6.

All these challenges are based in scalability problems, where a larger system, or more
developers working with this system can quickly worsen the problem.

In this thesis, we propose a solution that helps developers in their work on large software
systems. We show how software systems with a service-based architectures bene�t from
our solution during software development. The solution helps developers by providing a
framework for source-to-url deployments on horizontally scalable hardware clusters. We
show how an existing software system can use this framework to their advantage with
minimal modi�cations.

We demonstrate the usefulness of the system during inner-loop development through
a series of experiments. Using historical change sets from Adyen’s codebase, we show that
our tool provides a scalable work�ow. We show scalability for 1) growth in the codebase
and 2) growth in the amount of developers. Additionally, we show how this framework
adds new opportunities for tools to aid developers even further.

1.4 Thesis outline
In Chapter 2, we will discuss some related concepts, and look how other companies are
tackling this problem in industry. In Chapter 3 we will go more in depth on classic virtual-
ization, containerization and orchestration concepts, to give some in-depth background
information to help understand the contribution. In Chapter 4 we analyse a classic de-
veloper work�ow, and identify bottlenecks at scale for this work�ow that our platform
can focus on. Then, in Chapter 5 we will go over the components of our development
platform in detail, describe their purpose and how they will help solve our developer issues
at scale. We also present a few added bene�ts of this type of infrastructure. Next, in
Chapter 6 we evaluate how well our platform performs with respect to the challenges we
have de�ned earlier in this chapter. In Chapter 7 we go through some additional learnings
on the way, and see how our system integrates with other tools. We summarize our �ndings
in Chapter 8 and discuss future work, both in research and engineering.

2

7

2
Background And Related

Work

In this chapter, we discuss some topics related to our problem statement, in order to set
this thesis in the correct context.

2.1 Developerproductivity, interruptions andtask
switches

Software development is an inherently human-based, intellectual activity[14]. Therefore, a
developer’s productivity is inherently tied to how positive of an experience the developer
has during development.

A big impact to developer productivity is the frequency of interruptions and context
switches. Margaret-Anne Storey and Alexey Zagalsky analyzed the e�ect of chatbots on
developers, and noted that chatbots frequently interrupt a developer’s work[15]. In a study
on developer work habits by LaToza et al[16], 62% of developers mention that switching
tasks due to interruptions is a major problem for their productivity.

Interruptions and task switching is not only frequent, it is also very time consuming.
Recovering from a major interruption can take an average of 23 minutes[17].

Apart from external interruptions such as emails, messages or co-workers, there are
also more intrinsic interruptions. One of these interruptions is a developer having to wait
on the build process. If a build process takes too long, a developer will switch tasks and
will lose the mental model of the problem he was originally working on. So, as part of
constructing a productive environment for developers, we want to minimize the time
developers have to wait before the developer gets feedback from his build tooling.

2.2 Feedback-Driven Development
A common theme throughout the evolution of software development methodologies is the
forming and tightening of feedback loops. These feedback loops have become prevalent
throughout the entire software development process, and continue to grow as the driving

2

8 2 Background And Related Work

force of developer’s behaviour. This process of developing software based on feedback
from many di�erent sources is called Feedback-Driven Development (FDD)[5].

FDD tools are often split in two classes, predictive and analytic FDD[18]. Predictive
FDD tools try to provide feedback based on static analysis. Analytic FDD tools evaluate
the code dynamically to provide feedback on the runtime behavior of the code.

A good example of the usage of analytic FDD tools is Test-Driven Development
(TDD)[19]. For TDD the development work�ow is to �rst write tests de�ning the de-
sired behavior, and after those tests are de�ned, implement the actual business logic while
continuously running the tests against it. The goal of these tests is getting immediate
feedback on exactly which parts of the business logic have been implemented successfully
and which parts still need attention. This way, developers track their progress based on the
automated feedback they receive. Sadly, in practice Test-Driven Development is only done
by a small subset of developers[20], despite the process causing less defects compared to
ad-hoc unit testing[21]. According to Adnan Causevic et al, reasons for not adopting TDD
despite these bene�ts include development speed and lack of testing experience[22].

2.3 DevOps
In recent years, expectations on software teams to release faster have risen, such that they
can keep up with shifting requirements[23]. From this business need, the industry started
working more agile, tightening deployment loops to short sprints, often one or two weeks in
length. However, once again the business needs have changed to be even more demanding.
From this demand, work�ows again changed, this time relying on automation to be able
to tighten the development cycle even further. This change is where the term DevOps
originates from, because to be able to make this possible, Development and Operations
need to work closer together, to make sure the company can deliver high quality software
at high speed.

To ensure this is possible, the term DevOps rests on �ve pillars of success:
Reduce organizational silos In order to be able to deliver software continuously, com-

munication between di�erent parts of a company is necessary. Shared responsibility
and shared awareness enable the speed needed to deliver software with con�dence.

Accept failure as normal With a high velocity of deployments, failure is a fact of life.
There will invariantly be failures, so having a plan to mitigate these failures quick, is
crucial to success.

Implement gradual changes To be able to deliver more quickly, moving fast is a hard
requirement. Reducing cost of failure by shipping small changes that can be validated
quickly gives developers the con�dence to do so. This practice is known as "Shifting
Left Development"[24], and the goals is to catch potential issues as early as possible.
In the 2018 State of DevOps report[25], the DORA team �nds "large-batch, less
frequent software deployments lead to bigger failures that take longer to �x".

Leverage tooling and automation By using the right tools to your advantage, repetitive
and time-intensive tasks can be automated to enable quick software delivery. This
brings long-term value to the system, as manual work can focus more on bringing
direct business value.

2.4 Industry solutions to software development at scale

2

9

Measure everything Measuring the impact of changes to the system is vital to be able
to detect and mitigate failures, validate the gradual changes and automate parts of
the work�ow.

If you can’t measure it, you can’t improve it

Peter Drucker

In this thesis, we will base ourselves on the de�nition "A set of practices intended to
reduce the time between committing a change to a system and the change being
placed into normal production, while ensuring high quality" for DevOps.

2.4 Industry solutions to softwaredevelopmentat
scale

The scalability of software development is a problem for many big companies. Interestingly,
many of these companies have developed extremely specialized tools to solve the scalability
issues they encounter. In this section, we go over a number of di�erent companies, see
their challenges of development at scale, and how they have developed solutions for these
issues. In Section 7.4, we’ll re�ect back on these solutions and compare them to our own
framework.

2.4.1 Google
Over the years, Google has encountered many scalability issues, both for development
and for production. Many of Google’s products have been built individually, so Google’s
codebase contains a lot of products, in many di�erent programming languages. This means
Google needed to solve their build scalability issues in a way, where they could support
multiple programming languages. The way they have achieved this, (for most products
within Google) is by building their own build system, Blaze[26], which is partly open-
sourced as Bazel1. By con�guring their build tool to behave like a Directed Acyclic Graph
(DAG), the system can re-use downstream build artefacts without having to rebuild them.

To further scale the build process, Blaze has the option to defer individual build steps
to remote machines. The artefacts generated by these build steps are cached globally and
are shareable between developers, so that code that has not changed does not need to be
rebuilt, even between developers. This concept is very strong in helping developers with
scaling up their local development productivity.

For production, Google has been working on their automated systems for years. Their
best practices from all generations of production deployment and orchestration have been
consolidated in the Kubernetes project, which is the open source base of Google’s internal
systems as well[27].

2.4.2 Facebook
Facebook versions their code as a monorepo. Their code is written primarily in Hack and
Javascript. This highlights the �rst step in getting a more scalable developer work�ow.
1https://bazel.build

https://bazel.build

2

10 2 Background And Related Work

Over the years, they have migrated their (originally) PHP codebase to Hack. Hack is
Facebook’s own programming language, which acts as a statically typed superset of PHP.
This has helped Facebook migrate incrementally by enabling static analysis, typechecking
and other types of feedback to the migrated parts of the codebase.

As Facebook’s code grew further, they ran into di�erent scalability issues, this time
through long local build times, slowing developers down while waiting for their local builds
to complete. To solve this, Facebook created HHVM, a just-in-time (JIT) compiler for Hack.
This decreased build times a lot by only having to rebuild classes that have changed.

Facebook also built Buck2, their build tool which is similar to Google’s Blaze. They use
this primarily for their Hack and Java codebases.

Later, Facebook has tackled the scale issue even further with Nuclide3, their own editor
based on Atom. This editor spins up a remote development server that can o�oad any
compilation or static analysis work from the developer’s machine. These machines reside
in Sandcastle, Facebook’s own continuous integration solution, so once a developer is done
with his work, he or she can transfer the entire development machine to the CI server,
saving more time in recompilation and getting CI feedback even faster.

This year, Facebook has even made its �rst attempts at fully automated bug �xing.
Their Geta�x[28] platform can automatically detect bugs, and apply mutations to propose a
�x to developers. This means that developers don’t even have to go through the debugging
and build stages for some work, but get a ready to go bug�x to review and send in.

Do note that these solutions are all heavily focused on how Facebook develops their
code, so while components are open source, their true power is di�cult to recreate.

For production deployments at scale, Facebook has built Tupperware[29], their own
orchestration service aimed to provision and deploy new releases of their products many
times a day. The volume of code changes at Facebook has grown quadratically[13] over
the years, so keeping their development work�ow fast and e�cient is a main priority to
"move fast".

2.4.3 Amazon
Amazon these days is obviously known as a big cloud-based company. Today, the AWS
cloud is a major player on cloud-based computing. In an interview with AWS CEO Andy
Jassy, he revealed the reason the �rst version of this platform has been built was to aid
internal development processes at scale[30].

Interestingly, Amazon approaches scalability challenges from multiple angles. As
indicated by the success of AWS, automation and developer tools help AWS stay e�ective.

In a more organizational sense, Amazon also recognizes the e�ects of Conway’s law[31]
on its products. Conway’s Law suggests that organizations designing systems will be con-
strained to designs that re�ect the organizational structure in the organization. In other
words, a company will always mirror the design of its software to the design of their organi-
zation. Amazon plays into this theory by employing a "scaling by mitosis" strategy[32] for
their product teams. This means that it splits up teams (and therefore services) whenever
they grow too big. By keeping teams and products small, they individually stay agile within
a large ecosystem.
2https://buck.build/
3https://nuclide.io/

https://buck.build/
https://nuclide.io/

2.4 Industry solutions to software development at scale

2

11

2.4.4 Lessons learned
From these large software companies, their methodologies and their solutions to these
scaling problems we can de�ne a few key lessons. We use these lessons as inspiration for
our platform architecture.

Companies run into similar scalabilty issues

Automation is key Both in development and in production, these companies all show
a heavy focus on automation. While Facebook’s Geta�x platform is an extreme
example, it is indicative of the length these companies go through in automation, to
allow their developers to focus on bringing value and less on keeping their system
running. In short, automation helps developers prevent interruptions. Therefore
a developer is more likely to get in a state of �ow, which helps developers stay
productive[12].

"Build only once"-mentality This mentality was most prevalent in Google’s Blaze sys-
tem. The idea is to only build a service once, when it changes, and store the built
artefact. If the same or another developer then needs the same artefact built again,
they can simply download it instead of having to rebuild.

Distribution of work The other interesting lesson from Blaze is the distribution of work.
By distributing the work of building multiple services to di�erent machines, build
systems can scale out pretty well. This means that given enough machines to
distribute the work over, a full build only takes as long as the longest individual
service.

Deeper integration with existing tooling helps with e�ectiveness This is a lesson
taken from Facebook’s Nuclide, where directly integrating Facebook’s development
servers into the IDE lowers the barrier of using the development servers’ features to
a single command or button click.

Learn from production deployment tooling All of the above mentioned companies
use some system for orchestration in their production environment. With the 12-
Factor App design in mind, we know that it is desirable to have a development
environment which resembles production as close as possible. If we look at Adyen’s
production system, we see services distributed over many di�erent servers, commu-
nicating over a network connection. Meanwhile, development happens on a single
machine, and a single TomCat instance running all webapps. This di�erence in run-
time environment is quite big, and has the potential to cause issues. The automated
orchestration solutions therefore seem like an interesting option to consider.

3

13

3
Virtualization

This section gives a brief overview of virtualization. This thesis is mostly focused on
virtualization of computer resources with the purpose of sharing these resources among
developers, but this section describes virtualization in a general sense in order to get the
correct context. Virtualization can be (loosly) de�ned as:

Virtualization is a framework or methodology of dividing the resources of
a computer into multiple execution environments, by applying one or more
concepts or technologies such as hardware and software partitioning, time-
sharing, partial or complete machine simulation, emulation, quality of service,
and many others[33].

Virtualization plays a major role in helping to reduce operational cost of running large
software systems[34]. By splitting physical resources between multiple virtualized services
or applications, the resources can be used more e�ectively. This chapter provides insights
into various forms of virtualization of services.

3.1 Hypervisor-based virtualization
A hypervisor is a mechanism that allows control over physical resources to be shared
across multiple virtual machines. These virtual machines are isolated from each other by
only allowing access to physical resources (such as storage or memory) via the hypervisor.
Hypervisors can be categorized in two groups[35]:

Type I This type of hypervisor runs directly on the hardware, without any host operating
system. This approach is relatively e�cient in terms of performance, as it eliminates
as many layers of overhead as possible. However, this type of hypervisors are
signi�cantly harder to develop, maintain and operate, as it is solely responsible for
both the hardware support and the management of the virtual machines on top.
This means that any hardware used in the system must be directly supported by the
hypervisor, which generally means that hardware support is limited in comparison.
The main usecase for type I hypervisors therefore lies in datacenter computing, and
other usecases where direct hardware access is not required or desired.

3

14 3 Virtualization

Figure 3.1: A visual comparison between hypervisor types

Type II Hypervisors of type II run on top of a host operating system. This has the
advantage of easier operation, as a full operating system is available to provide
management services in conjunction with the actual hypervisor software. These
types of hypervisors can bene�t from existing drivers in the host’s OS to talk to the
hardware. The downsides of this type of hypervisor are the added overhead of a full
operating system running between the hardware and the virtual machines, as well
as the additional security risk of virtual machine escapes. These VM escapes, when
they happen, result in a complete breakdown of the security model of the system[36].
The main usecase for type II hypervisors is client usage, such as developers running
virtual machines on their machines to test software in isolation.

3.2 Container Virtualization
Container Virtualization (more commonly called containerization) is a special type of
virtualization, where lightweight environments (called containers) can be deployed, isolated
and versioned easily.

In these containers, the focus is generally on one primary application running in the
system. A container essentially manages an application including its con�guration. Once
they are built, they can be moved around easily between hardware, without having any
worries about con�guration drift between servers.

What makes these containers so lightweight is the fact that they share the host’s kernel,
separated by kernel-level namespaces.

Containers bene�t from some key values in terms of usability[37]:

3.2 Container Virtualization

3

15

Figure 3.2: A visual comparison between a type II hypervisor and a system running containers

Portable Deployments Containers are made to be easy to move around. A deployment
using a container can be moved around between di�erent servers without being
a�ected. This is due to the fact that containers have all dependencies needed to
execute, including the runtime environment.

Rapid delivery Once containers are built and tested, they can be deployed quickly and
multiple times, allowing for repeat deployments and horizontal scaling.

Scalability Containers can be deployed to a collection of di�erent hardware platforms,
from public clouds to laptop computers. This allows developers to easily scale their
deployments up and down.

Faster build times Containers are generally small, containing just one service. This
means a container can be built quicker by scoping the build execution to a single
service.

Higher density with better performance Containers su�er from very little overhead,
especially in comparison with virtual machines running on hypervisors. Because
containers do not encapsulate their own operating system, they require signi�cantly
fewer resources. This means more containers can run with better performance on
the same hardware virtual machines could run on.

Runtime consistency Containers provide mechanisms to decouple runtime application-
layer software from the host operating system of the physical machine, to isolate
and �nely control these dependencies. This allows applications to update their

3

16 3 Virtualization

dependencies without worrying about the compatibility of the dependency for all
other applications.

3.2.1 System versus Application containers
An important distinction to make when talking about containerization is the di�erence
between System and Application containers. We identify the di�erences and clarify what
we mean in the remainder of this thesis.

Application containers are meant to package and deploy applications without running
a full operating system for every application. Their main advantage is easy and light
distribution of applications with better control over the runtime dependencies. Application
containers generally run only a single process, and therefore are single-purpose.

System containers can be seen as a lightweight replacement for virtual machines,
allowing for a full environment to run in a single environment, where multiple applications
can run together in a single container. System containers generally consist of a full operating
system image.

While containerization technologies can be used for both application and system
containers, there is generally a focus on one of the two. In this thesis we limit the "container"
de�nition to application containers.

3.2.2 Enabling the Immutable Infrastructure paradigm
An advantage of using containers is that it enables the use of the Immutable Infrastructure
paradigm[38]. This term was coined in 2013 by Chad Fowler[39]. It promises stable,
e�cient and version controlled infrastructure, by following the rule that once a component
has been started, it may not be manually changed. Any change in behaviour therefore
requires a new deployment. This makes con�guration changes and -di�erences easier to
keep track of and replicate for debugging.

3.3 Orchestration
Container virtualization is great way of creating runnable, portable applications. However,
with these bene�ts also comes an additional layer of complexity compared to a local
deployment on a single physical machine. Containers need to be deployed on one or
multiple machines, and need to be networked together for them to be able to communicate.
This process can be fairly complex and tedious if it has to be done manually, particularly at
scale. To automate and standardize this process, the concept of container orchestration has
grown in popularity.

Orchestration is the automated con�guration, coordination, and management of computer
systems and software.

—Thomas Erl[40]

This de�ntion means that all con�guration needed to deploy a given system needs to be
managed by the orchestration middleware. It is responsible for scheduling and balancing
workloads on the computing nodes (usually either bare-metal servers or (virtual) servers
in a public cloud). Orchestration tools are especially useful in combination with container

3.4 Introduction to external tools used

3

17

virtualization, as the images that have to be managed by the orchestration middleware are
relatively lightweight and therefore easier to distribute between nodes in the cluster. In
this thesis, we will use Kubernetes1 as our orchestration system.

Note that orchestration tooling very much coincide with the DevOps concepts we
discussed in Section 2.3. By automating repetitive and time-intensive tasks such as de-
ploying services and con�guring the network connections between these services, we can
deliver software faster. The use of these forms of automation will help the "shift left" of
deployment, making it possible to do deployments more often and in smaller batches. This
is bene�cial for production, but we can even use this during the development process.

3.4 Introduction to external tools used
To help us develop a complete scalable development server, we base ourselves on a few
external tools. For every tool, we give a brief introduction into what it is and go over its
purpose in our system.

We embrace new technology when it has clear bene�ts

—Adyen way of developing #12

3.4.1 Kubernetes
Kubernetes is an orchestration tool based o� of 15 years of DevOps experience at Google[27].
Kubernetes leans heavily on the concept of Infrastructure-as-code[41]. Resources are
de�ned in a declarative way using yaml con�guration �les. This means that the resource
con�guration can be checked in to version control systems alongside the code it is running.
We use the command-line tool kubectl2 to interact with the Kubernetes system. Using
these tools, Kubernetes’ strength is to give developers a very low barrier of entry in DevOps
operations, giving control over deployment, scaling and networking of various workloads
directly to the developer. For our development platform, we are interested in the elasticity
Kubernetes can provide, as well as a lot of the automation we can use as a base to build on.

The major bene�t of this elasticity is in the fact that it �ts our developers need to have
very powerful machines to do their build work quickly, but do not need this capacity during
other parts of their work. This way, we can use our powerful hardware more e�ectively, by
sharing it between developers as they need it. This cluster can handle the work of a large
number of developers, and can increase its capacity in the future by growing the number
of nodes in the cluster, either with physical servers in personal datacenters, entirely in
a cloud environment such as AWS3, or with some modi�cations even in a hybrid of the
two. This means that as the cluster requires more capacity, be it due to the number of
services growing, due to the number of developers growing or due to a di�erent growth in
complexity, adding more capacity is trivial.

All in all, we believe Kubernetes’ orchestration services make for a good base platform
for our implementation. It provides us with a solid foundation of tools and resources as
a distributed cluster of computing power. Upon this foundation we will build our own

1https://kubernetes.io/
2https://github.com/kubernetes/kubectl
3https://aws.amazon.com/

https://kubernetes.io/
https://github.com/kubernetes/kubectl
https://aws.amazon.com/

3

18 3 Virtualization

extensions to support development work more speci�cally. To give a bit more background
on Kubernetes, we go into a few core concepts.

Kubernetes architecture
Everything that happens in a Kubernetes cluster goes through the API server. This service
is the core of Kubernetes and it instructs all other components to create, change or destroy
other resources in the system. Clients such as kubectl send their requests directly to the
API server, which lives on the master node(s) of the cluster. Besides the API server, the
master node also has a scheduler and a controller manager component. The scheduler
holds the rulesets that determines the best place to deploy new resources, and the controller
manager is responsible for registering and running the various resource controllers in the
system.

All non-master nodes are called worker nodes. They have a tiny service called kubelet,
which receives instructions from the API server whenever any workload on that node
needs to be created, modi�ed or destroyed. It also runs a kube-proxy service that takes care
of the network routing for all workloads on this node.

Figure 3.3: A visual overview of the architecture in a Kubernetes cluster

Pods
The smallest unit within Kubernetes is a pod. A pod represents a logical set of processes,
which are running in one or more containers. The logical set can be de�ned as the group
of processes that would have to run on the same physical server in order to work properly.
Generally one container in the pod is considered the "main" container, running the main
process. Other containers may be running in the same pod as so called sidecars[42], which
help the main container with aggregating logs, changing con�guration or help out with any
other workload that doesn’t directly a�ect a request to the service in the main container.
Note that all operations such as pod restarts, redeployments or deletions happen for all
containers in a pod, as the Kubernetes tooling operates on a pod level. Example 3.1 shows
a minimal pod de�nition example.

3.4 Introduction to external tools used

3

19

1 kind: Pod
2 apiVersion : v1
3 metadata:
4 name: myApp
5 l abe l s :
6 app: myApp
7 spec :
8 containers :
9 - name: myApp

10 image: myapp: l a t e s t
11 ports :
12 - containerPort : 8080

Example 3.1: A sample pod de�nition

Services
An important property of pods is their ephemeral nature. If for example a new version
is available, or pods are scaled horizontally, Pods may be killed or restarted. This means
a service running in a Pod can have one or more IP addresses, and these may change
over time. In order to provide a more stable endpoint for other services and end-users,
Kubernetes has the concept of Services. Services route any incoming tra�c to a pod that
matches its selector criteria.

1 apiVersion : v1
2 kind: S e r v i c e
3 metadata:
4 name: my− s e r v i c e # Service will be exposed as my-service
5 spec :
6 s e l e c to r :
7 app: MyApp # Select all pods with label app set to MyApp
8 ports :
9 - protocol : TCP

10 port : 80 # Port forward an outside port to a container
port

11 targetPor t : 9376
Example 3.2: A sample service de�nition

Namespaces
Namespaces are Kubernetes’ concept of scoping. Namespaces allow us to logically separate
workloads, such that we can give every developer a scoped space in the cluster to do
their work without getting interfered by work done by other developers. Namespaces also
give us the ability to scope permissions for users, such that a developer may only modify
resources on their own workspace.

3

20 3 Virtualization

Custom resources
The before mentioned resources are all part of Kubernetes itself. Kubernetes however also
supports the extension of its resources in the form of Custom Resources. This is a way
to de�ne new types of objects and have controllers to help the API server in making the
correct alterations to the cluster whenever a change happens to these resources. For a more
fundamental understanding of these concepts we refer to the Kubernetes documentation
website[43].

3.4.2 Operator SDK
The pipeline that helps the developer with his work�ow is based on Kubernetes’ concept
of operators. An operator is a service you can build and deploy on a Kubernetes cluster. It
consists of two components, an API and a Controller object. We’ll cover both here in detail
to give a deeper insight of our development operator we describe in this chapter.

The API de�nes a new type in the form of a Custom Resource De�nition (CRD). A Custom
Resource in Kubernetes is a way to add new types of objects to a Kubernetes cluster. All
parts of the Kubernetes ecosystem then can read and interact with objects of these new
types. However, on their own these custom resources are simply data objects that won’t
do anything. A Custom Resource De�nition generally consists of three main elements:
Metadata to enrich tools with additional information about an instance of the custom
resource, A speci�cation object de�ning the �elds of the object, and a status object de�ning
�elds that can report back the status of a custom resource. However, on their own any
created custom resources of that type will simply store data as it is presented.

To let the cluster act on the custom resource objects, an operator also has a Controller
service. This is a service deployed in the cluster. It subscribes to any events (such as creation,
deletion or modi�cation) on the cluster that concern objects with the API’s custom resource
type. Whenever an event comes in, the Controller reconciles the a�ected object. The process
of reconciliation is to take the Speci�cation of an object, and make changes to the cluster
(such as launching pods, recon�guring networking or one of many other things) to match
it to the desired state de�ned by the speci�cation. Additionally, the reconciliation loop also
updates the resource’s status object to give feedback to the users about the observed state
of the cluster regarding this object. This way, users can keep track of the state of these
custom resources in the cluster, as they can with any other resource.

An important implementation detail to keep in mind is that the reconciliation function
may only apply a single change at a time. This can be anything from launching a pod, to
modifying another resource’s speci�cation, to updating the instance’s status object. After
any change to anything in the cluster is triggered, the reconciliation loop can choose to
requeue the custom resource instance. If this happens, the instance is put back at the end
of the controller’s work queue. Whenever it gets back to the front of the queue, it can again
apply a single change. This process repeats until the cluster’s state (including the instance’s
reported status) is fully up to date with the speci�cation. At that point, the resource is
not requeued. When any watched objects for that resource change for whatever reason
(including nodes going down, changes by the developer or events happening in the system
itself), the object is requeued for another loop through the reconciler. This makes sure the
object’s speci�cation still matches the cluster’s state.

This pattern of reconciliation with requeueing allows for changes spread widely across

3.4 Introduction to external tools used

3

21

the cluster to get applied in a structured way. All elements of our pipeline therefore use
this pattern extensively.

3.4.3 Kaniko
Kaniko is a project by the Google Container Tools team, that allows the building of a
container image from a Docker�le without depending on a Docker daemon. This greatly
improves the security of our platform, as we don’t have to allow access to a privileged
daemon service running on the servers’ host operating system.

Kaniko works by emulating all commands in a Docker�le inside of its own �le system.
Every step gets executed in a container with a decicated root for the �le system of the
container image. After every command, a snapshot operation runs to store the current
status of the container image. This way, Kaniko can cache intermediate steps and instead
of re-running a build process, it can re-use the same output, given no inputs have changed.
This massively speeds up the build of a container image for subsequent builds.

We use Kaniko in this project because it can run without this Docker daemon. However,
as this project is still under active development, some features were not fully complete yet.
To add some visibility to the Kaniko build process for tool integrations, we’ve done a small
contribution to Kaniko, which we’ll go into in Chapter 7.

3

22 3 Virtualization

‘

4

23

4
Developer workflow

In this chapter, we’ll explore the software development work�ow for a developer. We go
into the steps a developer takes during their daily activities and identify bottlenecks in this
process that can impact the developer’s productivity. Based on this, we identify the goals
for our developer platform.

4.1 Example: Alice fixes a bug
To illustrate a commonly occurring developer work�ow, we take the example of �xing a
reported bug. Note that this work�ow is very general and depending on the developer
and/or project, there may be di�erences in the exact order. However, we will see most of
the general principles will still apply.

Our example developer Alice is tasked with �xing a bug in one of the services of a
software system. After receiving the report, Alice wants to verify she can reproduce the
bug. To do this, she pulls in the latest version of the system from version control. Alice
now has to build her local version of the platform. She instructs her build tool to build
all services and spin up her local copy of the platform. The build system spends a few
minutes building all the di�erent services, databases and other artefacts she needs to run
the system. After the build tool is done, Alice can try and reproduce the reported bug, trace
the behaviour using her monitoring tools and form her initial hypothesis on what might
be wrong.

At this point, Alice enters the Edit-Compile-Test loop. In this loop, Alice will iteratively
write some code, compile it and test her solution There are a few di�erent ways this loop
can work. Alice could work test-driven: writing a test �rst that reproduces the bug on a unit
level, and then work on a �x in the production code to make the test pass with the expected
outcome. Alternatively, Alice could go for a more exploratory approach, running the code
through a debugger or reproduce the bug as a user and trace the interaction and outcome.
Depending on the nature of the bug, Alice may choose one of these methods, or a mix of
both. Any way Alice decides to go, she will go through a number of Edit-Compile-Test
loops, until she �xed the issue. She’ll then want to clean up her change, verify the bug has
indeed been �xed by trying the original reproduction once more, and commit her change.

4

24 4 Developer workflow

4.2 Identifyingbottlenecks inthe softwaredevel-
opment process

The above scenario is just one of the potential tasks Alice may go through, but the general
structure will always be roughly the same:

1. Get a local version of (a revision of) the system going

2. Make changes in a Edit-Compile-Test loop

3. Check in the changes to the system to version control and potentially verify the
correctness with the continuous integration system.

In each of these steps, the developer may encounter some bottlenecks

Bottleneck I: Cold start of a system Whenever a developer starts a new task, or has
been working for a considerable time on the same task, the developer will want to
incorporate intermediate changes done by other developers. This way, the developer
is exposed to the other changes of the system. This helps with getting feedback,
signalling any overlooked errors early, as well as prevent con�icts with the developers
own work. The downside is that the developer spends considerable time waiting
for the build tool whenever they pull in changes, as generally multiple services will
have been rebuilt.

Bottleneck II: Waiting for compilation When the developer enters their Edit-Compile-
Test loop, the time between �nishing a change and getting the feedback from com-
pilation, static analysis and automated and/or manual tests can become a serious
performance bottleneck. Not only do developers have to wait on their tools, but if it
takes a long time to get feedback, developers may get distracted and make a context
switch. This negatively impacts the developer’s productivity as they have to recover
their mental model of the change they were making. The shorter the feedback cycles
are, the more e�ective they are in bringing value to the developer[5].

Bottleneck III: Feedback from Continuous Integration After a change is checked in
to source control, the Continuous Integration system will try and verify to the best
of its ability if the change does not break anything unexpected. This could be due
to merge con�icts with other changes, a failing test or the change not passing the
quality gate set up by static analysis. Whatever the reason, the commit will get sent
back to the developer for them to �x. However, if getting this feedback takes a long
time, the developer will likely have moved on to their next task. The next task may
have made signi�cant changes to the system. If the developer has to go back to a
previous commit, this may cause multiple build cycles to switch back to the old task,
�x the issue and then switch to the new task’s setup once more. Besides waiting for
the build, this also takes multiple context switches, as the developer may have to
recover their mental model for the previous task to understand and �x the issue.

5

25

5
Building a scalable

developer workflow

As we can see by the bottlenecks we encountered in Section 4.2, a lot of the work that
needs to be done to be able to build and test new components, or �x existing ones, relies
on tools that build and deploy a local version of whatever software system the developer
is working on. However, with large software systems, these operations can be very time
consuming due to the large amount of work that needs to happen on the developer’s
machine during these processes. At the same time, due to the desire of both developers and
their employers to be able to work in a �exible environment (work from home, respond to
incidents, take computers into meetings), laptops have become industry standard equipment
for developers. These laptops are relatively constrained in the computing capacity they
can deliver. This creates a shortage in computing power, which slows down these build
processes the developer is already waiting on.

We hypothesize that giving developers a way to both keep their �exibility with their
laptops, and give them a way of decreasing the impact of these bottlenecks on their daily
work, will make these developers more productive. Because of the rapidly growing scale of
software systems, a good solution to this problem should be able to grow with a developer
over time, instead of simply kicking the can down the road by replacing a developer’s
machine with a slightly more powerful laptop every time, especially since every developer
only needs this computing capacity during these build-and-run tasks.

In this thesis, we present a scalable development cluster that attempts to solve this
problem. Our solution is based on the concepts of a cloud-native environments and
distribution of work to provide a platform that can scale over time, and that can be shared
between developers to make better use of the total computing capacity.

To illustrate how we designed this system and show why it works, we give a high level
overview of the full system in Section 5.1. Then, Section 5.2, Section 5.3, Section 5.4, and
Section 5.5 highlight the individual parts of the system and explain their role in more detail.
To illustrate how users interact with the system we close with examples in Section 5.7 and
Section 5.6.

5

26 5 Building a scalable developer workflow

5.1 A scalable developer platform
In order to understand what the developer’s work�ow looks like, and what happens behind
the scenes, we show a simpli�ed, high level overview of the full system in Figure 5.1. In
this section, we’ll walk through a typical usage scenario from the developer’s perspective.
The details of any of these components are further described in the next sections.

Figure 5.1: The high-level architecture of our development cluster

Suppose a developer is tasked with �xing a bug in one of the system’s services. The
developer will �rst pull in the latest changes from source control (Step 1 in the diagram).
This way, he makes sure he is on a recent enough revision that he has the bug in his
workspace.

The developer’s next step is to get the application running, in order to debug and
reproduce the bug. In the system, building and running the application all happens on the
Kubernetes cluster. To get his personal workspace on the cluster, the developer calls the
Gatekeeper service (Step 2) and authenticates himself. The developer is authorized to use
the system, so the Gatekeeper service will spin up a Kubernetes namespace including our
Operator (Step 3). Anything that is running in this namespace is speci�c to this particular
developer’s session. Once the namespace has started, the developer’s machine synchronizes
any code changes to the cluster, so the cluster has the exact same codebase as the developer
(Step 4).

At this point, the namespace also starts all the Application resources. Because the
developer hasn’t changed anything yet, the namespace can reuse container images it has
built before (Skipping step 5 and 6, moving on to step 7). By pulling in these pre-built

5.2 Gatekeeper service

5

27

images con�guring Revision resources with them for every application, the full system
is booted very quickly, as no services had to be built. The application controller also
con�gures the necessary Kubernetes resources to connect applications with each other
and expose certain applications for external access. The developer can then access the
application (Step 8) and start the debugging/reproducing process.

After pinpointing the bug and writing a possible �x, the developer then wishes to test
his �x on the running system, to make sure the bug can no longer be reproduced. To do
this, the system again visits Step 2-7, this time including Step 5 and 6, which create a new
container image for the changed service, and pushing it to the registry, before creating
a new Revision resource for the changed application. Once this revision is created, the
developer can again interface with his running system and verify the bug has been solved.

In the next sections, we describe the individual parts of the system in more detail.

5.2 Gatekeeper service
The Gatekeeper service is designed to be (as the name suggests) the gatekeeper to the
development cluster. It is responsible for authenticating developers and assigning them a
workspace on the cluster.

A workspace in this concept is a Kubernetes namespace that hosts all services, builds
and other tools for a developer. We use this concept to scope the resources of a developer,
such that we can control resource usage, do auditing on cluster usage and logically separate
out a developer’s workloads on the cluster from others.

When a developer calls the Gatekeeper to request a workspace, the gatekeeper returns a
namespace identi�er. This namespace is created dynamically and provisioned with services
that aid the developer, such as the source synchronization daemon (Section 5.3) and the
development operator (Section 5.4). The developer then gets the rights they needs to work
in this namespace bound to their user in the cluster. Finally, the namespace is annotated
with an expiry timestamp, by default 12 hours after creation.

All of this together makes that with a single command, any developer on the cluster
can request a namespace, that is provisioned within seconds with all the tools they need to
do their work. The Gatekeeper also runs a vacuum job on a set interval to clean up expired
namespaces.

Whenever the con�guration of a workspace changes, the Gatekeeper will apply the
new con�gurations to all new workspaces that get created after the change. This way,
a breaking change to developer tools can be safely deployed without a�ecting ongoing
sessions on the cluster.

5.2.1 Benefits of ephemeral, on-demand workspaces
One of the key bene�ts of creating these workspaces on demand is that if there is a problem
with any of the development tools in a workspace, the user can hand o� their workspace
to the infrastructure team for debugging and �xing, and in the meantime continue their
work by simply requesting a fresh workspace. Additionally, if a developer has to switch
between tasks quickly, they can simply create a new workspace, create their �x, and go
back to the original workspace afterwards to continue their original task.

5

28 5 Building a scalable developer workflow

Expect failure as normal

DevOps principles

An additional design decision we’ve made is the implementation of the Gatekeeper
vacuum job. This is a process running on a set interval that cleans up old namespaces. The
lifespan of a workspace can be con�gured during workspace creation, and modi�ed later by
authorized users. Once a system works smoothly on the platform, we propose a maximum
workspace lifespan of 12 hours. This means that developers will get a fresh workspace
every day to do their work. This helps with the roll-out of any new con�guration, but
also pushes developers to automate the con�guration of special setups. When a developer
automates the setup for their special reproduction case, this will also help them write
automated tests for this scenario.

5.3 Developer source synchronisation
Because developers want to be able to test their code before they check in any change to
version control, we need a way of shipping code to the developer’s workspace without
requiring changes to be pushed to a git remote. Therefore, this requires us to directly send
source code from developers’ laptops to their workspace in the cluster. A major concern for
Adyen was the network bandwidth required to push the full codebase to a workspace for
every developer. Including git history, this comes down to several gigabytes of source code
and assets. Therefore, keeping network load on the system down was a design priority, see
also Challenge VI in Section 1.3.

A B C D

E F

origin/master

developer's	changes

Figure 5.2: An illustration of how we gather the data for synchronization

We minimize the network load of synchronizing changes to the workspace by only
sending anything that changed in comparison to a mutually known point. This means that
we e�ectively simulate a (stack of) commit(s), but without the administration of creating a
real commit.

To synchronize the codebase on both sides, we �nd the latest branching point from
the master branch on origin. In Figure 5.2, this is commit C. This is the last state of the
codebase that is present on the git origin, and therefore will be our common starting point.
We then create di� �les of any local commits after this point (commit E in the �gure), as
well as changes and untracked �les that have not been formally added to a commit yet
(WIP commit F). We send over the branching point and di�s via the kubectl cp feature
to our source synchronization daemon in the workspace.

5.4 Build containers on-cluster

5

29

This daemon then re-applies the di� �les on the same branching point of the codebase,
and stores the result in a persistent volume. This volume is the source our build processes
can work from. Having this method of source synchronization has a few up- and downsides.
The major upside is that we only have to synchronize our changes to the workspace
whenever the developer wants to build a new version, minimizing the network load
between the developer and the cluster. The major downside to this approach is that we
will copy the source code twice in the process of building a service: Once between the
developer and the source synchronization daemon, and once between the daemon and the
build process of a service.

Note that the cluster does need a clone of the repository to start o� with. However, we
can make use of two facts to keep this overhead as low as possible still. Firstly, because both
the git server and our development cluster live in the same datacenters, we can bene�t from
datacenter-level bandwidth between these services. Secondly, since we know where in
history our starting point is, we can make a fairly shallow clone of the repository, without
having to worry about ancient history in this workspace.

5.4 Build containers on-cluster
Our pipeline o�ers an on-cluster solution to help developers get quick feedback on their
written code. Our build pipeline is �exible enough to allow for a wide range of build setups.
The only requirements for a service to be built is a Docker�le describing how to build
the service, and a way of describing the system how to supply the build process with
the correct source �les. To con�gure the build setup for a service, we present the ‘Build‘
custom resource. This resource is meant as a cluster con�guration of a build pipeline, while
leaving the application-speci�c implementation details to individual containers. Our Build
speci�cation has two main elements. The �rst step is loading the source code to build in
our environment. After that, a number of build steps are executed in sequence. We’ll go
into both phases of a Build more in depth.

Below you see an example of a build resource for a service.

1 apiVersion : adyen . com / v 1 a l p h a 1
2 kind: B u i l d
3 metadata:
4 name: h i p s t e r −shop − f r o n t e n d
5 spec :
6 source :
7 g i t :
8 reposi tory :
9 https : / / g i t h u b . com / Goog leC loudP la t fo rm / m i c r o s e r v i c e s −demo . g i t

10 commit: 55 f 5 0 6 1 5 3 2 7 9 8 b 9 7 3 0 b 3 3 b 4 6 4 0 1 9 8 9 c 7 1 1 5 f 7 4 2 d
11 bui ldSteps :
12 - container :
13 name: s l e e p e r
14 image: busybox
15 - kaniko:
16 dockerFile : . / D o c k e r f i l e

5

30 5 Building a scalable developer workflow

17 buildContext : / workdi r / s r c / f r o n t e n d
18 dest inat ion : h i p s t e r s h o p / f r o n t e n d : l a t e s t
19 registrySecretVolume : kaniko − s e c r e t
20 volumes:
21 - name: kaniko − s e c r e t
22 sec re t :
23 secretName: d o c k e r r e g i s t r y
24 items :
25 - key: . d o c k e r c o n f i g j s o n
26 path: . docker / c o n f i g . j s o n

Example 5.1: Sample con�guration of a Build resource

Once a Build resource gets created in the cluster, our Operator queues it up for reconcil-
iation. During this reconciliation process, the operator will use the speci�cation provided
by the user to con�gure and spin up a pod. This pod is con�gured to run everything needed
for the Build to execute. This consists of three main elements: (1) A volume that acts as a
working directory for the entire build. This is a Kubernetes volume of the type EmptyDir,
which means the volume is created when the pod is created without anything in it, and it’s
lifecycle is directly linked to the pod, so it is cleaned up together with the pod, after the
build is completed. (2) Secrets needed to clone git repositories, pull in images and push
built images to our container registry. (3) A number of containers that will run in sequence,
called InitContainers in the world of Kubernetes. These InitContainers carry out the work
in the con�gured build steps. These three elements in the pod’s con�guration enable it to
execute the full build. The Build controller keeps track of what this Pod is doing during its
execution, and reconciles the Build resource whenever something important changes.

To illustrate how this works, we will walk through the lifecycle of the build speci�ed
in Example 5.1. Note the lifecycle and the speci�cation of the Build resource are highly
parallel. This helps users track better what the system is doing, and makes it easier to
con�gure a Build resource.

5.4.1 Loading source files in the working directory
The building and deployment of a service in the developer’s workspace starts with the
source code. Our Build resource o�ers two ways of fetching the source code for a service.
Which one to use depends on the usecase. If the user wants to build an artefact for a
revision that has been checked in to source control, they can con�gure the source block
for their Build resource with a git block. An example of this can be seen in Example 5.1.

When the Build controller reconciles a Build resource with this block, it con�gures the
build Pod to start o� the build with a container designed to pull in this git revision. The
source container will always be the �rst one in the pod, as it doesn’t make sense to build
anything when there is no source code available yet.

1 source :
2 fromVolume:
3 volumeName: c ode bas e

Example 5.2: Sample con�guration getting source code from an existing volume on the cluster

5.4 Build containers on-cluster

5

31

As an alternative to building a service from a checked in git commit, another scenario
we are especially interested in is the concept of building services before the git commit
is done. For this, we have seen our source synchronization work�ow in Section 5.3. This
work�ow copied any code changes from the developer’s machine to a volume in the
cluster’s workspace. However, when we start a build with the fromVolume source, this
makes a copy of the data in the volume the developer synchronizes their source code to.
This is done for two reasons: (1) To keep the source code isolated while we’re running our
build process, and (2) to get a copy of the source code on the node in the cluster where
our build is running. If we keep it in the original volume we synchronized to, we run into
performance issues due to the build process continuously having to go back and forth to a
di�erent node’s copy of the data. Because of these reasons, our fromVolume starts o�
with a single copy operation to get all the source code close and ready for use.

5.4.2 Perform build steps
Once code has been loaded into the working directory, the Build resource can kick o� the
build. To specify what happens next, the user of the pipeline speci�es any number of build
steps, as shown in our Build resource example in Section 5.4. These steps can be a few
di�erent types, for our prototype we only have two implemented.

The most basic build step is the de�nition of an almost regular container. The only
di�erence is that the controller will inject the working directory volume automatically,
so it’s always ready to be used. This con�guration can be used for many di�erent special
usecases, such as uploading build reports to a CI server, running tests, or anything else
you need to do during a build, but that doesn’t need to be included in the �nal image or is
preprocessing for the �nal image build. An example of this can be seen in Example 5.1.

In addition to a bare container option there is also the option for a Kaniko block. This
takes a few arguments, and builds a con�guration with opinionated defaults for the Kaniko
container. Kaniko takes the role of a Docker daemon’s local build process. The di�erence is
that it doesn’t use the privileged daemon, but executes all Docker commands in userspace
to build an image.

Once con�gured, the build Controller takes a build resource including the source and
the to be executed build steps, and creates a pod that executes these steps in the correct
sequence.

5.4.3 Reporting build result
In order to keep the user informed on what is happening during the build, the controller
tracks the pod during its run, and updates the build resource’s Status �eld whenever there
is important information. In our case, the Build resource keeps track of the current phase
of the build (Pending, Succeeded or Failed), when the Build pod started its work, when it
was done, how long the build process took. Once the build is done, one more Status update
takes place. The controller looks through the containers in the build pod, and looks for
the last container that published a sha256 digest in its termination message. This is the
digest it can use automatically for the next phase, which is running a service. Users can
monitor their build progress with kubectl get builds.adyen.com.

1 s ta tus :
2 duration : 3m11s

5

32 5 Building a scalable developer workflow

3 endtime: "2019-05-14T13:42:12Z"
4 imagedigest :

h i p s t e r s h o p / f rontend@sha256 :7544 b 07 2 2b 8 bd 26 1 67 20 e 8a 2 2e . . .
5 phase: Succeeded
6 s tar t t ime : "2019-05-14T13:39:01Z"

Example 5.3: Example of a Build’s status at the end of a build

5.5 Managing the full Application pipeline
At the heart of our framework is the Application controller. This is the glue of our Operator,
and allows for automatic management of a source-to-url deployment. The Application
Custom Resource De�nition holds a con�guration for a build pipeline and a template
for Revisions. This is a YAML based con�guration of a service, in order to pass in the
con�guration of how to build and run a particular service. Examples of these con�gurations
can be found in Appendix A. These con�gurations need to be written once whenever a
new service is added, we will go over that process in Section 5.6.

If the Application does not get a digest pre-con�gured to run, it will start a Build
resource that is responsible of building a container image of the service, based on its own
con�guration. Once the Build resource reports back successfully, it provides the digest of
the just built image. The Application resource is then requeued, so the Reconcile loop can
con�gure a new Revision resource. This Revision resource actually deploys the built image
and manages its life-cycle.

5.5.1 Routing service communications
The Application resource also optionally manages a Kubernetes Service object. This is an
abstraction from Kubernetes to provide a consistent endpoint for the services. Generally, if
the Application needs to talk to anything else, be it another application or an end user, a
Service is probably desired.

A service object uses so called "label selectors" to �nd pods labelled with a speci�c
key-value tuple. All alive pods with this tuple are considered target endpoints for this
service. The service keeps track of the existing pods in the system and (randomly) load
balances tra�c between the current active nodes. That tra�c is all tra�c pointed to the
Service’s IP address. This means that applications can remember the stable IP address
of a service, rather than all having to deal with updating, scaling, or even failing pods.
This greatly simpli�es any communication between user and application, or applications
amongst each other.

5.5.2 Routing external users to an application
When the Application controller con�gures a service for an Application, it gets a stable
IP address for the Application inside the cluster. This way, other Applications can send
tra�c to that IP address to communicate. However, external users such as our developers
are not in the cluster directly, so they can not access services with this IP. Therefore, we
need an easy, scalable, automated approach to give developers access to their development
environment from outside the cluster.

5.6 Adding a new service

5

33

There are a number of di�erent ways of exposing externally facing services. A NodePort
service can expose a port on every node in the cluster for your service, but every port
for every service across namespaces has to be unique. A Loadbalancer service allows for
duplicate ports, but only by giving every service an external IP, which is also not scalable.

An automatic and scalable solution can be found by using Ingress controllers. These
run as a single (scaled) deployment for the entire cluster, and e�ectively run an NGINX
proxy. To allow applications across namespaces to expose their services to the outside
world, the Application creates an Ingress Object. This is a resource within Kubernetes that
is monitored by the NGINX proxy. It de�nes a structure for virtual host-based routing.
Our Application operator has control over the con�guration of this resource. This means
that once an Application "sampleapplication" in the namespace "johndoe" is con�gured
to expose itself, a user can navigate to http://sampleapplication.johndoe.
clusterdomainname.

Figure 5.3: How an ingress controller routes tra�c to the correct service

5.6 Adding a new service
In this section, we show what’s needed to add a service from any codebase to our de-
velopment cluster. Adding a new service to the cluster is fairly trivial. There are two
components needed to make it work: (1) A Docker�le capable of building a container
image with the built service running, and (2) an Application con�guration �le to con�gure
how the development cluster needs to use this Docker�le, and what runtime con�guration
needs to be supplied when the service runs, such as ports and environment variables. We
show an example of both of these con�guration �les in Example 5.4 and Example 5.5. We
will discuss some best practices for this con�guration in Section 7.5.

http://sampleapplication.johndoe.clusterdomainname
http://sampleapplication.johndoe.clusterdomainname

5

34 5 Building a scalable developer workflow

1 FROM golang@sha256:8cc1c0f534c0fef088f8fe09edc404f6ff4f729745b85deae5510bfd4c157fb2
as builder

2 ENV GO111MODULE=on
3 RUN addgroup -g 1000 -S user && \
4 adduser -u 1000 -S user -G user
5
6 WORKDIR /go/src/example.com/newservice
7 RUN chown user:user /go/src/example.com/newservice
8
9 USER user

10
11 COPY --chown=user go.mod .
12 COPY --chown=user go.sum .
13 RUN go mod download
14 COPY --chown=user . .
15 RUN go mod vendor
16
17 # Build the binary
18 RUN CGO_ENABLED=0 GOOS=linux GOARCH=amd64 go build -ldflags="-w -s" -o

/go/bin/newservice cmd/app/main.go
19
20 FROM scratch
21 # Import from builder.
22 COPY --from=builder /etc/passwd /etc/passwd
23
24 # Use an unprivileged user.
25 USER user
26
27 # Copy our static executable
28 COPY --from=builder /go/bin/newservice /go/bin/newservice
29 EXPOSE 5000
30 ENTRYPOINT ["/go/bin/newservice"]

Example 5.4: Example of a Service’s Docker�le

1 apiVersion : adyen . com / v 1 b e t a 1
2 kind: A p p l i c a t i o n
3 metadata:
4 name: n e w s e r v i c e
5 spec :
6 se rv i ce : true
7 external : f a l s e
8 buildTemplate :
9 fromVolume:

10 volumeName: c ode bas e
11 bui ldSteps :
12 - kaniko:
13 dockerf i le : . / D o c k e r f i l e
14 buildContext : / workdi r / s r c / n e w s e r v i c e
15 dest inat ion : y o u r r e g i s t r y / n e w s e r v i c e
16 registrySecretVolume : kaniko − s e c r e t
17 revisionTemplate :
18 count: 1
19 baseImage: y o u r r e g i s t r y / n e w s e r v i c e
20 port : 5000
21 env:
22 - name: PORT

5.7 Example: The new development workflow

5

35

23 value : "5000"
24 volumes:
25 - name: kaniko − s e c r e t
26 sec re t :
27 secretName: harbor − r e g i s t r y
28 items :
29 - key: . d o c k e r c o n f i g j s o n
30 path: . docker / c o n f i g . j s o n

Example 5.5: Example of the con�guration of an Application resource

For our Docker�le, we’ll go into an overview of the best techniques we’ve found in
Section 7.5. For the Application speci�cation, only four questions are truly important:

Should this service be able to communicate with other services in the workspace?
If so, service should be set to true

Should this service be available with users or external applications over HTTP?
If so,external should be true. Note this will create a hostname ofservicename.
namespace.clusterdomain.com.

What needs to happen to go from source to a built Docker image? In thebuildSteps
you can con�gure any container to be run, as well as a Kaniko process that will
actually build and publish the image. This means it is possible to do pre- or postpro-
cessing via the container steps, or integrate other means of building the container
image if Kaniko doesn’t work for the build process of this service. Note this also
means that the Build resource can be used, even if the end result isn’t (directly) a
Docker image. This leaves room for further development and experimentation.

What con�guration should be passed to a container image when it boots? This can
be any runtime con�guration such as environment variables, deploying multiple
copies of the service or opening up ports for the service to send and receive tra�c
with.

5.7 Example: The new development workflow
With this system in place, let’s compare in what aspects the development work�ow has
changed. First of all, let’s revisit Alice’s bug�x in Section 4.1.

To spin up a new environment, Alice �rst pulls in the latest version of her system to
version control. If Alice is doing multiple tasks at once, she can separate out her tasks
in di�erent git worktrees1. Once she has a worktree set up with the latest version of
the codebase, Alice calls the gatekeeper service to request a new workspace. Her client
is con�gured to work on workspace alice-a9df4b. Her client then con�gures the
workspace with all her services. Since Alice hasn’t made any changes yet to any of her
services, the client can launch the services as already built by the continuous integration
process. This means that within seconds of her workspace booting, all her services start
up and are ready for Alice to debug the issue. This means that while Alice just checked out
1https://git-scm.com/docs/git-worktree

servicename.namespace.clusterdomain.com
servicename.namespace.clusterdomain.com
https://git-scm.com/docs/git-worktree

5

36 5 Building a scalable developer workflow

an entirely new version of the platform compared to what she may have been working on
before, because the services were already built, she can immediately start reproducing the
bug. This means Alice will reach her Edit-Compile-Test loop faster.

During that loop, every time Alice has made a change she wants to test, she kicks
o� the synchronization and rebuilding command. This copies over all her changes to
her workspace and rebuilds and redeploys the targeted services. If Alice gets stuck, she
can share her environment’s frontend with a colleague to discuss and reproduce the case,
whether it is one desk over or in a di�erent country over a telephone call, the colleague can
navigate Alice’s workspace on his own, discuss the change even before committing it. This
way Alice can get early feedback if she desires. Once her �x is ready, Alice commits her
changes. This kicks o� the continuous integration, which can bene�t from Alice’s latest
build by reusing layers from the cache. This means it can give feedback faster for Alice
and whoever will review Alice’s change.

6

37

6
Evaluation

In order to evaluate our system, we simulate various forms of developer activity. To evaluate
our system, we test it against an open source microservices demo project from Google
called HipsterShop1. The purpose of this project is to show the versatility of cloud-native
applications. Because of this, the various microservices in the project are built in a variety
of di�erent programming languages (Go, Java, C#, Javascript and Python) and frameworks.
First of all, this helps us illustrate the added �exibility of our development platform: As
long as a service can be built in a container, our system can handle the process. In the
case of HipsterShop, there is an obvious overkill of di�erent techniques and programming
languages for a single system, but it does help showing the �exibility of our platform. To
give an idea of the HipsterShop application, Figure 6.1 shows the architecture diagram for
this application. The HipsterShop application consists of 10 services that communicate and
together create a webshop. The services are depicted in square boxes in the architecture
diagram.

To integrate the HipsterShop application in our platform, we add the con�guration
as described in Appendix A’s Example A.1. This con�guration, in combination with the
pre-existing Docker�les for every service, is the only thing needed for HipsterShop to
integrate with our platform. As a note, we will not discuss Challenge III in this chapter,
but rather in the Discussion in Chapter 7.

1https://github.com/GoogleCloudPlatform/microservices-demo

https://github.com/GoogleCloudPlatform/microservices-demo

6

38 6 Evaluation

Figure 6.1: The architecture diagram of HipsterShop, the demo project we evaluate our platform with.

6.1 Challenge I: Local build time
In Section 4.2, we found that one of the main bottlenecks for developer’s productivity is
developers having to wait for their build tool to build a full set of services for them. Large
software systems that have many services under active development su�er from this issue
particularly, since building all services in such a system is a lot of computing work, and
a developer’s laptop only has a limited pool of resources. Because of this bottleneck, we
de�ned our �rst challenge for the development cluster to be able to quickly build a full set
of services for a particular software system. To evaluate how well our cluster can handle
this task, we pose the �rst research question:

RQ 1 How can our development cluster help us speed up the build process of a large
software system?

As we have discussed in Chapter 1, developers need a relatively large amount of
computing power during their build processes, but this requirement does not extend to
all other parts of a developer’s activities. For example, the actual process of writing code
doesn’t need much computational power. Our development cluster is designed to be a
solution that can provide large amounts of (distributed) computing power, by spreading
the work of building all services over di�erent nodes in the cluster, and therefore making
use of much larger and stronger infrastructure to build the services. Because developers

We note that our cluster, besides being able to distribute multiple build processes across
nodes, also heavily relies on the concept of artefact reuse. We will go into this concept
more in Section 7.1, but for this test we are interested in build performance for when a
developer does need to rebuild multiple services.

To measure how much faster we can build a set of services, we will use our HipsterShop
demo project. We �rst set a baseline measurement. We take a sample of revisions, and
build all containers locally on a (relatively powerful) laptop. We measure the time every
service took to build, as well as the total time required to build all services. For these runs,
the docker process had access to 10 cores and 16 GB of memory. An overview of average
build times is visible in Figure 6.2. These are build statistics of services over the last 70
commits of the HipsterShop project. All builds of a particular revision were started at the
same time.

Due to the distributed nature of a cluster, as well as its deployment in a datacenter with
high-speed connections to third party sources for external dependencies, we hypothesize
our development cluster should be able to build services signi�cantly faster.

6.1 Challenge I: Local build time

6

39

To evaluate the performance of our platform’s build setup and test our hypotheses, we
ran 2794 builds of services of the HipsterShop project, spread over 392 commits. For every
build, we recorded the commit hash, start- and endtime, duration, result and digest of the
built image. We also pushed the artefact to a registry for re-use in other tests.

Protocol 1 Building services in a range of commits for a system
Inputs. List of commit hashes C
Goal. Build all existing services in all commits with hash i ∈ C .
The protocol:

1. Setup. Prepare template T which con�gures Build resources for all services with
placeholders for the commit hash. Every Build resource starts with a container that
checks if the service has a Docker�le available for the commit and cancels the build
immediately if it does not.

2. For all i ∈ C

(a) Request a new namespace N from gatekeeper service
(b) Inject commit hash i in template T
(c) Apply build con�guration Ti to namespace N
(d) Wait until no more builds are in a Pending phase, e.g. all builds have a

terminal phase of either Succeeded or Failed.
(e) Record build statistics (service name, namespace, commit hash, terminal phase,

artefact digest, start time, end time and duration) from all Build resources.
(f) Delete namespace N

Of these runs, 2003 builds were successful in creating an artefact. An aggregrated
overview of the di�erent builds of services can be found in Figure 6.3.

We note the low number of successful builds for the cartservice. Upon inspection of log
�les, this turned out to be an issue between the (C#) compiler’s debug output interfering
with the cache. Building the same image without the build cache works, but since it’s not
relevant for this test we have not built the full history again for this service.

Another interesting observation during this test is the high number of cache misses,
which required a rebuild of the image. Upon inspection of these cache misses, we ob-
served changes in dependencies that were not version locked. Additionally, some package
managers (apt-get in particular) fetched lists of latest versions in its repository on an
apt-get update. Because this list updates whenever a package updates, this caused
a lot of cache misses. These issues could be avoided by building a base image with binaries
from repositories, and assigning a version to these dependencies that way. Additionally,
the Docker�le could also be modi�ed to not store the indexed lists of dependencies in the
image.

We’ve executed these builds on a test cluster with 5 nodes, each with 2 CPUs and 4
GB of memory, which is a relatively limited setup, especially compared to our developer’s

6

40 6 Evaluation

378.5776923

242.7335294

244.8959322

142.127

451.243125

274.6717778

149.3785714

244.6968966

224.5952632

245.4431034

324.82

Local average execution time (seconds)

se
rv

ic
e

adservice

cartservice

checkoutservice

currencyservice

emailservice

frontend

paymentservice

productcatalogserv

recommendationse

shippingservice

Total build

0 100 200 300 400 500

Figure 6.2: The average build times on a developer’s laptop

Figure 6.3: The average build times on the developer cluster

6.2 Challenge II: Running a local environment

6

41

laptop. However, it is enough to show the general idea of our system. We note that in a
real world scenario with many developers, the nodes can be more taxed, so it is advisable
to monitor the load on the cluster and make sure enough computing capacity is available.
In the case of deployment on a cloud environment like AWS, the cluster could even be
dynamically resized if needed. Regardless, Kubernetes helps us by scheduling builds on
nodes that have the most capacity available2.

Observation 1 The development cluster is able to help developers build faster by providing
strong computing hardware on demand, and distributing the build processes of
various services over the nodes in the cluster to further speed up the build by not
having build processes interfere with each other.

Observation 2 Builds relying on external dependencies without version locking or with
indexing capabilities often rebuilt their services without application logic changing.

6.2 Challenge II: Running a local environment
In Chapter 1, we noted that for Adyen’s codebase, it was infeasible to run a full system
of services due to the size of the system. Since the HipsterShop application is a demo
application, it is obviously way smaller. However, we can simulate launching a larger
system by duplicating services under di�erent names and launching those together.

RQ 2 How quickly can the development cluster start a large software system?

To get a decently sized simulated environment, we’ve taken 100 tagged revisions of the
di�erent services in the HipsterShop project, and deployed them all using a (fake) unique
service name. This way, we simulate a larger software system.

We note that starting 100 services at the same time on a laptop is an intense task that
takes quite a bit of memory. In fact, during our run, only 59 services were able to boot
before the laptop ran out of available memory. The average boot time of the services that
were able to start was 4 minutes and 22 seconds. A histogram of the start delay of the
booted services is available in Figure 6.4.

On the cluster, there are a few advantages that help the development cluster deliver a
better result. First of all, the total available memory in the cluster can be way higher than
what ever could be in a developer’s laptop. Second, many nodes sharing the burden of
launching the services make for little work to be done per node, so this peak of computing
power required is spread over di�erent physical machines and can be dealt with fairly
easily. During our test run, our cluster was con�gured for with our more powerful nodes
(5 nodes, with 8 CPUs and 32 GB of memory each). Remarkably, the cluster had no issues
with booting all 100 services in a very short time window. Similar to the experiment on
the developer’s laptop, we have a histogram of the start delay available in Figure 6.5. Note
that the values on the x-axis here are signi�cantly smaller, with timings in the order of
seconds, not minutes. In fact, all 100 services in the cluster booted within a minute,
at an average start delay of 16 seconds.

This means that instead of the developer having to wait for (in the case of the slowest
service) 13 minutes, all services are running within a minute. Also, the developer is actually
2https://kubernetes.io/blog/2017/03/advanced-scheduling-in-kubernetes/

https://kubernetes.io/blog/2017/03/advanced-scheduling-in-kubernetes/

6

42 6 Evaluation

able to run the full software system, instead of having to resort to managing a runnable
subset of services for their work. This shows the power of our development cluster, that by
distributing the workload over multiple nodes, we can run way more complex workloads,
and reduce our bottleneck of booting that system to a fraction of the time required for a
laptop.

seconds

0

5

10

15

0.0
0

60
.00

12
0.0
0

18
0.0
0

24
0.0
0

30
0.0
0

36
0.0
0

42
0.0
0

48
0.0
0

54
0.0
0

60
0.0
0

66
0.0
0

72
0.0
0

78
0.0
0

80
0.0
0

Figure 6.4: Histogram of start delay of services on
a developer’s laptop

seconds

0

10

20

30

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00

Figure 6.5: Histogram of start delay of services on
the development cluster

Observation 3 Starting up even a huge system with many services will only take time in
the order of seconds on the development cluster.

Observation 4 Running a system with many services is no problem for the development
cluster, where it is impossible for a laptop to run the same collection of services.

6.3 Challenge IV: Resource exhaustion test
Before we evaluate how well our development cluster can grow with a software system in
the next section, we are interested in a worst-case scenario. We would like to see what
happens when our development cluster is put under too big of a load by developers trying
to run their workloads on the cluster, and explore ways on how we can prevent these
scenarios from occurring. We therefore pose the research questions:

RQ 3 What happens when the load on our development cluster becomes too big?

RQ 4 What can we do to prevent cluster failure?

To simulate an extreme load scenario, we use a single revision of the HipsterShop
project and use pre-built images. This gives us a controlled load to test the cluster with.
To �nd an answer to RQ III, we deploy multiple workspaces running a full HipsterShop
system on the development cluster, and monitor its resources.

We have performed this experiment in two cluster con�gurations. The �rst con�gura-
tion consists of 5 nodes, each with 2 CPUs and 4 GB of memory. The second con�guration
also consists of 5 nodes, but these each have 8 CPUs and 32 GB of memory.

Because we were interested in failure scenarios instead of degraded performance in
this test, we hypothesized node memory would be the limiting factor. Out-of-memory
errors will block or even crash processes that try to allocate more memory when a node’s
memory is full with data from other processes.

6.4 Challenge IV: Cluster scalability for resource-intensive workloads

6

43

With both clusters, we deployed increasingly large amount of services and monitored
the health of the processes and cluster nodes. The smaller cluster encountered its �rst
node failure after 400 services were deployed to the 5 nodes. As we hypothesized, memory
was the limiting factor. Once the cluster received signals from the failing node that its
processes were dying due to out-of-memory errors, the Kubernetes API server disabled
further scheduling on that node to try and reschedule the failing workloads elsewhere
in the cluster, and let the failing node recover. However, with the amount of workloads
deployed to the cluster, we observed a cascading failure.

For the larger cluster, we applied the same protocol. However, this time, after 530
deployed services the API server stopped scheduling workloads on any of the nodes. Upon
inspection, it became clear we hit the --max-pods limit Kubernetes puts in place to
prevent too many processes running on a particular node at once. This is one of Kubernetes’
safety limits, and in this case we could clearly observe existing workloads kept running
healthily, while new workloads were queued up, waiting for more capacity to become
available.

Besides the --max-pods safety limit, Kubernetes has more ways of preventing
failures such as the one we observed. Workloads can be given maximum budgets and/or
reservations for resources. These help the Kubernetes scheduler make an informed decision
on whether or not to schedule a new workload on a cluster under high load. Upon repeating
the experiment on the small cluster, this time with these resource budgets in place and set
to 128 MB per payload, we see the scheduler stop scheduling nodes after XXX deployments,
to prevent overcommitting resources.

Observation 5 A cluster that runs out of resources without safety measures in place will
cause node failures and in some cases cause cascading failures, grinding workloads
to a halt in the cluster.

Observation 6 With the proper safety measures (such as maximum pod counts and
resource limits) in place, the cluster will remain healthy by delaying the scheduling
of new workloads until capacity becomes available. This allows for delayed, but
healthy workloads on the cluster, until cluster administrators can either provide
more capacity or reduce total workload in other ways.

Observation 7 Regularly auditing the limits set on these safety measures can help provide
more security in preventing cluster failure.

6.4 Challenge IV:Cluster scalability forresource-
intensive workloads

Since the development cluster should scale with the growth of the number of services for
every developer and with the number of developers, we need to verify how our system
scales with bigger workloads. A big factor here is how the cluster responds to a larger
number of concurrent build processes.

RQ 5 How well can our development cluster scale with a growing software system?

6

44 6 Evaluation

To test this, we took our cluster with powerful nodes (8 core CPU and 32 GB of memory
each), and simulated large peaks in build workloads. Note we simulate a worst-case scenario
here, where a large number of developers all build all services in their system at the same
time. Therefore, the computational load per workspace is way larger than we expect
from actual developers in a real world scenario. With this test, we want to see how the
cluster behaves under di�erent con�gurations, and see if we can �nd a predictable relation
between the load on a system and execution performance, given di�erent sizes of the
cluster. Since we expect to be able to schedule the same number of workloads on every
node, we hypothesize that the development cluster scales it’s capacity for resource-intensive
workloads linearly with the number of nodes (with identical speci�cations) available in the
cluster.

To test our hypothesis, we take our cluster, and "cordon o�" all but a speci�ed number
of nodes. A cordoned node is excluded from scheduling workloads, and therefore will
never accept new workloads. This way, we test di�erent numbers of nodes in the cluster
against di�erent sizes of simulated workloads.

Protocol 2 Cluster scalability for growth in number of developers
Inputs. Commit hash of project ℎ, number of active nodes in the cluster available for
scheduling s, template T which contains Build templates for all services in the HipsterShop
project.
Goal. Compare how the average build time grows for di�erent values of s to see how well
our cluster scales for larger number of developers.
The protocol:

1. For s ∈ {1,2,4}

(a) Setup. Disable scheduling on all but s nodes using kubectl cordon.
(b) For i times with i ∈ {1,5,10,15,20,25,30,35}:

i. request a new namespace Ni from gatekeeper service
ii. Inject image hash j in template T

iii. Apply build con�guration Tj to namespace Ni

(c) Record After all builds are completed, record the average build duration for
every pair of s and i.

2. Compare Plot average build durations and compare the trend lines for di�erent
values of s

The experiment ran a total of 2080 builds of services in the HipsterShop project under
the various scenarios. We’ve plotted the average build time per scenario in Table 6.1 and
plotted it in Figure 6.6. The "N/A" entries are situations where the amount of builds exceeds
the --max-pods safety barrier set by Kubernetes.

In the graph, we can clearly see an (as good as) linear relation between the number
of builds scheduled on the cluster, and the average execution time in every con�guration.

6.4 Challenge IV: Cluster scalability for resource-intensive workloads

6

45

total builds Avg. build time (s): 1 node Avg. build time (s): 2 nodes Avg. build time (s): 4 nodes
10 140 139.50 134.80
50 567.34 261.94 174.56
100 995.23 497.89 257.76
150 N/A 696.80 362.79
200 N/A 1002.93 518.46
250 N/A N/A 657.33
300 N/A N/A 812.78
350 N/A N/A 904.25

Table 6.1: Average build time of various sizes of builds, on various sizes of clusters

However, what is more interesting is the relation between the di�erent setups. We note
that when the nodes available for scheduling double in capacity, it also takes almost twice
as many builds worth of workload before the average build time hits the same mark. Our
hypothesis therefore looks fairly accurate, but some of the biggest peak tests in our cluster
of 4 nodes slowed down slightly sooner than expected. After investigating this with a
couple more runs, we theorize this is due to the bandwidth of the container registry in our
setup, as the node hosting this registry peaked its network tra�c at a little over 70MB/s
during the run. We also see signi�cantly more retries in the logs when builds are try to
push their container images to the registry. Of course, due to the setup of our experiment,
a lot of builds pull and push their dependencies and artefacts around the same time causing
peak loads, but making sure the infrastructure such as the container registry is set up to be
highly available is critical to get the most out of a scaling cluster.

Observation 8 The capacity of the cluster scales almost linear with the number of nodes
in the cluster.

Observation 9 The loss compared to exact linear scaling can be mostly attributed to
network-based bottlenecks. This can be mitigated by properly caching dependencies
in separate layers and by running a High-Availability registry.

Observation 10 We observed signi�cant issues in the cluster in experiments that depleted
the nodes’ available memory, with nodes crashing, and their workloads getting
rescheduled on other nodes, increasing their load as well.

Observation 11 In experiments that depleted the nodes from their available computing
power, but preserved enough memory, processes simply slowed down and were
a�ected less critically compared to an out-of-memory failure. In general, sensible
budgets and limits for workloads prevent these issues all together by wait-
ing to schedule super�uous workloads during peak loads.

6

46 6 Evaluation

Figure 6.6: An overview of average build time under di�erent loads for di�erent size clusters

6.5 Challenge V: Deploying pre-commit work

To verify deploying pre-commit work is also working as expected, we simulate developer’s
work by replaying changes from a past commit on top of its previous parent. This e�ectively
simulates the end-result of a developer’s work on a task. In reality, the developer would
possibly build intermediate changes a few times, but since it follows the same process
every time, we simplify this to a single change.

RQ 6 Can a developer identify a bug, and build and test their �x on the development
cluster more e�ectively?

6.5 Challenge V: Deploying pre-commit work

6

47

Protocol 3 Deploying workspace and making changes
Inputs. Commit hash of project ℎ, number of active nodes in the cluster available for
scheduling s, template T which contains Build templates for all services in the HipsterShop
project.
Goal. Simulate how a developer would start up his system and make iterative changes.
The protocol:

1. Request new workspace N from gatekeeper

2. Deploy system based o� of last upstream commit in the git tree

3. Synchronize changes made to codebase to workspace N

4. Trigger build of changed services

5. Con�rm new version is deployed

We’ve run this test, simulating the work done in commit f27699553 of the Hipster-
Shop project, which changes a CVV input �eld in the frontend service’s checkout page.
We �rst create a new workspace and launch all services from f2f382f6b, the parent
commit from our change. This simulates the developer having done a git pull and built
his local system. Note that since we We then replicate the change from our test commit,
synchronize over the source code and rebuild and redeploy the frontend service. We then
verify the frontend service has been updated by navigating to the page (see Figure 6.7 and
Figure 6.8). We show an overview of timings in Table 6.2

Figure 6.7: A screenshot of the frontend service’s cart page before the change in our example commit

3https://github.com/GoogleCloudPlatform/microservices-demo/commit/
f276995585251b7b88554ff563b41e857a12d2dd

https://github.com/GoogleCloudPlatform/microservices-demo/commit/f276995585251b7b88554ff563b41e857a12d2dd
https://github.com/GoogleCloudPlatform/microservices-demo/commit/f276995585251b7b88554ff563b41e857a12d2dd

6

48 6 Evaluation

Figure 6.8: A screenshot of the frontend service’s cart page after the change in our example commit. Note the
change in CVV �eld, both in the inspector and visible on the page

Action Duration devcluster (s) Duration local (s) Speedup
Creating new workspace 3 N/A N/A
Starting local system 22 334 15.18 x
Synchronizing code change 2 N/A N/A
Rebuild of changed service 118 90 0.76x
Total 145 424 2.92x

Table 6.2: Overview of timings during the experiment

We see that especially setting up our local environment is extremely fast, because we
can simply pull in existing images and boot them. Synchronizing the code change is almost
negligible for small changesets. However, rebuilding a single service is not quite as fast,
especially compared to the incremental compilation of a local build. This is largely due
to our system not allowing for incremental compilation, as we are building from a clean
source every time. This means that whilst the cluster an re-use the dependencies for this
service, it must run the full build process for the source �les, instead of just the changed
�les. This step in the process can be sped up by combining our platform with remote
caching features from the underlying build tools. The choice for this clean build approach is
made by design, in order to not lock in our setup to a particular programming language or
build tool. If desired, one could even create additional build steps as described in Section 5.4
to fetch and reuse bytecode from previous runs, however, we have not included such an
approach in our current system.

Even without any compiler-level caching or re-use of compiled sources, in this case
the total waiting time of this work�ow was way less compared to local development. This
means the developer gets (1) a faster startup, allowing them to begin their work way faster,
and (2) a fully up to date system to test his change on, such that any interaction with
recently committed code from other developers can also be observed.

Observation 12 Setting up a working system from a known revision is extremely fast
compared to classic local development

Observation 13 Rebuilding a service from scratch takes the most time (on the developer

6.6 Challenge VI: Network traffic evaluation

6

49

cluster) in this work�ow, but can be optimized by proper Docker�le design and use
of build tool remote caching mechanics.

6.6 Challenge VI: Network traffic evaluation
A major concern raised at Adyen was the expected network load of continuously shipping
a codebase to a remote cluster. To verify our development cluster has covered this concern,
we ask:

RQ 7 How high is the network load between a developer and the development cluster
during active development?

To answer this question, we highlight the most important sources of network tra�c
between the developer and the cluster. Note that we are looking for a network load low
enough such that an o�ce of developers can comfortably connect to the development
cluster to do their work.

Source synchronization As we’ve discussed in Section 5.3, our source code synchroniza-
tion process has been designed with this network load in mind. We observe that any
work done on the source code is only modifying, adding or deleting small parts of the
codebase, compared to the previous version. Since this previous version will always
be a state of the system that is checked in to source control, we can minimize the data
we need to send to the development cluster ourselves. In other words: A developer
does not have to synchronize their entire codebase to their workspace on the cluster,
but instead can send only a set of updates, compared to a previous version. The size
of these changes is approximately the size of a commit, since we’re only sending
the changes and some metadata to negotiate the starting point of the change. This
network load is in the order of a few kilobytes for every synchronization, occasionally
growing to a megabyte or two for something like images or larger datasets.

Interacting with the software system Another additional factor of network load is the
interaction a user has with their running version of the system. This will generally
consist of interacting with web services or otherwise transferring payloads (for
Adyen this could be test transactions, capture requests etc). General usage during
active development will roughly be equivalent to browsing a web page.

Log streaming One of the possible ways of reading logs for deployed services is to stream
them directly to the user. Since this is a stream of text, the load of network tra�c
will generally be pretty manageable. Should the rate of logging be high enough to
become a problem, a potential solution could be to run a log aggregation tool in the
development cluster that will pre-process and �lter the logs that need to be sent
to a developer. In the worst-case scenario, this may be considered equivalent to
streaming a YouTube video. Note also that not every developer will need or want this
rate of logging, and many will not stream the logs continuously but rather consult
them on demand.

Cluster management interaction The last way a developer will have tra�c going to
and from the cluster is the tra�c needed to control the cluster. Generally, this will

6

50 6 Evaluation

not be more than applying con�guration �les, which is equal if not smaller than the
source synchronization payload we discussed earlier.

Besides these e�orts to minimize network tra�c between the developer and the cluster,
we also note that some tra�c, such as fetching dependencies, is no longer needed for the
developer’s laptop. All in all, we can conclude network tra�c between the developer and
the development cluster is minimal.

6.6.1 Datacenter traffic
To lighten the load of our connection between the user and the cluster, we have made a
few key decisions. Because of that, we also discuss the network tra�c in the datacenter.

Cluster management and application chatter First of all, because our cluster will con-
sist of multiple nodes, there is a fair bit of communication between them, both by
the cluster management services, and by application tra�c.

Artefact transfer Because services may be built on di�erent nodes they are run, we
distribute all images via our container registry. This means that every build will
result in an upload, and most deployments will require a download of the image.
Depending on the application, the dependencies bundled in the container image, and
the availability of cached image layers on the destination the size of this transfer
may di�er signi�cantly. It is therefore advisable to (1) keep images as small as
possible and (2) re-use base layers, for example by using a shared base image. See
our recommendations in Section 7.5 in this aspect. We also noticed in Section 6.4
that under high load, the registry can become a bottleneck for the throughput of the
system.

Version control tra�c Because of our source synchronization optimizations between
the developer and the cluster, we are forced to make fresh clones of our projects to
the cluster more often. This might somewhat impact the load on the version control
servers. We’ve opted for this optimization because (1) it doesn’t matter much for
the cluster itself, as we need to get the source code on the cluster regardless, and (2)
having a larger data transfer between two servers in a datacenter has signi�cantly
less impact due to the high bandwidth between servers in a datacenter.

An additional concern for network tra�c is the geographic distribution of nodes in the
cluster. If nodes are distributed over multiple datacenters in di�erent parts of the world,
this may impact the data transfer speeds. To mitigate this, cluster administrators could use
nodeAffinity4 annotations to indicate a manual preference of nodes to deploy a set
of services on.

Observation 14 Network tra�c between the developer and the cluster has been kept to
a minimum in our environment, particularly through minimizing the data transfer
needed to submit a code change to the development cluster.

4https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
#affinity-and-anti-affinity

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

6.6 Challenge VI: Network traffic evaluation

6

51

Observation 15 The general network requirements of a development cluster (both be-
tween nodes and between edge services such as container registries, version control
and dependency sources) are not to be underestimated, particularly at scale. However,
by managing a strong physical network, making sure services are highly available
and making clever use of cached resources this load can be managed e�ectively.

7

53

7
Discussion

In the previous chapter, we have seen a number of experiments and evaluations of the
development cluster, with respect to the challenges we’ve de�ned in Chapter 1. In this
chapter, we discuss our �ndings with respect to Challenge III, as we have not ran a formal
experiment for this challenge. We’ll also go in various learnings and recommendations for
anyone developing cloud-native applications.

7.1 Challenge III: Decreasing build avoidance
Build avoidance is the concept of avoiding (re)building parts of a system to not get blocked
by a long build process. A known best practice in software development in teams is to
make small, iterative changes to a system and share these as early as possible with others,
either via code review and/or by letting other developers run the changed code in their
own system, so they can give early feedback. This last concept is known as "dogfooding".
However, if developers go as long as possible without rebuilding services they do not
actually work on, they do not get exposed to these recent changes, and will therefore not
give feedback early enough. Because this challenge is a psychological issue as well as a
technical one, we were not able to run an experiment to see the e�ects of our development
cluster on build avoidance yet.

Instead, we will discuss what our development cluster can do to mitigate the problem
of build avoidance. The main way this cluster can help developers in this aspect is by the
ability to re-use build artefacts (in the form of container images) directly. As soon as either
a developer or a continuous integration pipeline has built the image of the changed service,
any developer can simply pull and run this version of the service on their workspace in
the development cluster. They can skip the build step that would be needed for their local
setup.

Using these container images, the developer can simply pull and rebase their codebase
from their version control system, and request the development cluster to update the
services in their workspace. If the developer hasn’t made changes to a particular service
himself, the container image containing the other developer’s changes can simply be pulled
and started immediately. If the developer has made changes themselves as well, the next
time they rebuild their own service will incorporate those changes as well.

7

54 7 Discussion

Therefore, we expect our development cluster to be a major help in decreasing build
avoidance and exposing recent changes to other developers sooner.

Observation 16 Because newer revisions of unchanged services are pre-built, updating a
developer’s setup to the latest revision can generally happen in a matter of seconds
to a few minutes, depending on the changes in the developers workspace.

Observation 17 Services that the developer is actively working on will still need a re-
compilation, but this will happen when the developer builds the next version of his
service with changes.

7.2 Contribution to Kaniko
During the work done with Kaniko in this thesis, it became clear that Kaniko was missing
a feature central to how our pipeline works. Speci�cally, Kaniko allows to specify a
destination to where an image can be pushed by tag, but there is no way to conveniently
and consistently get the digest (cryptographic hashes that represent a container image)
of the image built by the Kaniko container. This is unfortunate, as tags can be reassigned
to di�erent container image versions, potentially causing issues or even security risks. In
fact, this means an actor with push rights to the container registry could inject a payload
in any new image, and move the tag in the registry to this compromised image. Because of
this threat model, our development platform works with digests to ensure we’re always
running the code we are expecting.

To get the ability to work with digests through the entire pipeline, we needed a new
feature added to Kaniko. By writing the digest of the built container image to a speci�c �le
(/dev/termination-log), Kubernetes can pick up the image digest in its container
termination message. That allows us to extract the digest on completion of the build,
and make sure we’re running the correct image. To make this possible, a contribution to
Kaniko1 was made. This contribution adds a �ag, that if set writes the �nal image’s digest
to a �le speci�ed in the �ag’s argument. We use this feature in our Build controller to
update the Build resource’s status with the digest, so we can use it during runtime. This is
further illustrated in Section 5.5.

7.3 Application architecture
As we’ve said in Section 1.2.1, Adyen’s codebase is a Service-Based Architecture. The
HipsterShop project also has a number of di�erent services, separated even further by
not sharing any underlying modules, and even having services implemented in di�erent
programming languages. Of course, service based architectures, while very popular, are not
the only Application architectures. For some software systems, it may be very bene�cial
to keep a monolithic structure. While our development cluster is geared more towards
the service-based model, which would bene�t more from the ability to distribute building,
other application architectures would still be able to use the development cluster to bene�t
from the elastic infrastructure, the ability to share environments and the ability to switch
between tasks while keeping workspaces running. Having ready-to-go artefacts will work
1https://github.com/GoogleContainerTools/kaniko/pull/655

https://github.com/GoogleContainerTools/kaniko/pull/655

7.4 Development Cluster, Build tools and compiler-level caching

7

55

with clean working directories, but after even a single change the full system will need to
be rebuilt in that scenario. We theorize that a system closely following the Twelve-factor
app model[44] or other cloud-native methodologies may have the best results working on
this development platform as they already have (a large part of) the practices upon which
we built our platform.

7.4 DevelopmentCluster, Buildtools andcompiler-
level caching

As we have seen in Section 2.4, a strategy often taken by big organizations is to have a
caching system on the level of the build tool. At �rst glance, it may seem our system must
compete against build tools such as Bazel or Buck. However, what is important to note is
the di�erence in scope and the interaction between these scopes. Bazel and Buck work on
a module level, where it is providing scalability by building and caching artefacts of code
and dependencies. Our platform concerns itself about services as a whole, and defers the
exact build process of each service to the build tool inside the container. This allows build
tools to use their own (remote) caching solutions, as they will have the best knowledge
of how to manage the exact build. Our solution aims to have a development cluster that
allows the developer to build and deploy their services and have their own environment to
run their version of a software system on.

7.5 Designing container build recipes
To start using the development cluster a developer needs a build recipe (in our case a
Docker�le) and an Application resource con�guration. While the Application resource
is pretty straightforward, and only needs a bit of application-speci�c con�guration, the
Docker�le is a bit more complicated to set up e�ectively. We o�er a few pieces of advice,
which are re�ected in the example Docker�le in Section 5.6:

Start with a base image By maintaining a base image for every programming language/run-
time setup, upgrading runtime dependencies will be easier. For example, we have
built two (see the next point) base images, one containing the Java JDK, Gradle, and
other build time depenencies, and one containing the JDK and TomCat for use during
runtime. For both of these, we can use a simple FROM statement in the Docker�le of
an application to load in a particular version of a known compatible set of dependen-
cies. This way, every application has the power to choose its runtime environment
while separating the di�culty of building that environment from the build phase
of an application. For the development cluster, this also means the application’s
container build can potentially run without the need for administrative privileges in
the container.

Use multi-stage Docker�les to separate run- and build dependencies In the Dock-
er�le for the service, we recommend the usage of multi-stage builds. This essentially
gives you the ability to build something in a container, then start over and copy over
�les from a previous stage. This means that we can have a build- and an execute
image. The build image has all build dependencies, such as the build tool, compilers

7

56 7 Discussion

and other tools needed during the build. Then, we can copy in the built artefact to a
fresh container that only has the runtime dependencies. The reason this is bene�cial
for the development cluster, is that the �nal image does not contain the source code
or build dependencies, and therefore is way smaller. This helps the development
cluster, as a node in the cluster that is tasked with running the built image can
download a smaller payload, and may even have the execution environment’s base
layer (see the next point) cached.

Use container layers to minimize repeated work Layers are the building blocks of
containers. They are comparable to di� �les in Git, and are applied on top of each
other to create the full �lesystem for an image. The interesting mechanic here is that
layers can be cached if their inputs do not change. By cleverly using layers to our
advantage, we can reduce the work that needs to be done during building. A good
example of this is the installation of dependencies. If only the �les needed to fetch
dependencies are loaded in a layer and then dependencies are fetched, the resulting
layer can be re-used as long as dependencies are not changing. The build then can
avoid the dependency fetching the dependencies in subsequent builds.

Only use version-locked dependencies One thing we noticed with the HipsterShop
services is that they do not version-lock some of their dependencies. This causes a
high percentage of cache misses and requires many layers to rebuild. Make sure that
any external resource you pull in to the image is version-locked.

7.6 Debuggers, test runners and other IDE tools
A concern voiced by developers at Adyen is whether they would be able to use the tools they
use today, for example the IntelliJ debugger, as well as speci�c tools that generate test tra�c.
As long as these tools send tra�c over a network port, we can use kubectl port-
forward to redirect the tool’s request to the correct service.

We have seen in Chapter 5 how we use ingresses to expose our webservices. Other
services that do not have this ingress con�gured cannot be externally reached. However, if
a developer would for example want to attach a remote debugger, there is a second way
of connecting services. By using the kubectl port-forward command, we can
proxy any network-based tra�c directly into a running pod. This means that to an external
user the service is still not directly reachable, but the developer that owns the workspace
has the ability to send and receive data and instructions. This means that for example an
external debugger can be attached via this proxy to a service.

However, some tooling will have more issues. Especially tools that deeply integrate in
an application, such as PMD, which reads Java bytecode to detect potential issues, may
need more work to work e�ectively. While there are solutions to these issues, we put it
outside of the scope of our prototype.

8

57

8
Conclusion and future work

The goal of this thesis is to see what is needed to create a scalable development platform
for large-scale software systems. We explored this challenge by charting the size of the
problem for a system such as that of Adyen. Based on these �ndings, we presented an
idea for a scalable development platform, which is based on the concepts of orchestration
and cloud-native architecture. We designed and implemented this platform based on
previous engineering work done by the Kubernetes team, building upon their platform
to create custom work�ows that help developers work more e�ectively, by o�oading
build work to powerful machines and deploying these build artefacts in a developer’s
individual workspace. We then explored the scalability of our solution by simulating
developer activity on the cluster and charting the bene�ts of our platform. In the process,
we added an additional contribution in the form of a open source contribution to Kaniko
that helps us and other integrators of Kaniko to get more information from the Kaniko
tool.

During our evaluation, we’ve identi�ed a few key conclusions:

1. Due to the our basis on containerization technology, re-using images that have been
built by Continuous Integration or other developers can massively speed up the time
needed for a developer to get their own running system.

2. Due to the distribution of compute-intensive work over multiple machines, build
processes, in particular those that have to build multiple services, can cause a signi�-
cant speed-up when run on our development cluster as compared to a developer’s
local machine.

3. Scalability of our development cluster is as simple as growing the number of nodes
in the cluster. This means that our development cluster can handle both growth in
size of a software system, as well as growth in the number of users.

We also note a few concerns and areas of improvement. First of all, dealing with
high-velocity changes such as those during active development can be straining for sup-
porting resources such as the container registry, which is a key service in our build-and-run
work�ow. Critical to the success of a development cluster such as this is the availability of

8

58 8 Conclusion and future work

services such as these, and with all developers of a company building on such infrastructure,
it becomes a single point of failure that can stop all developers from building and running
their code, e�ectively blocking them from working. There are ways to prepare for these
issues, such as segmenting the cluster into multiple clusters, running edge infrastruc-
ture such as registries with high-availability con�gurations and having close and active
monitoring on the health of the cluster and surrounding services.

Running a local development environment in a distributed setting may also be chal-
lenging to developers, particularly in the beginning. By providing the correct tools for
developers to be able to log, debug and trace what is happening in their system, we can
mitigate this issue, but our current development cluster proof-of-concept does not include
in-depth solutions for this yet. Basic logs and the ability to enter a container remotely are
available, but more tool integration will be needed to make development even smoother.

8.1 Futurework in SoftwareEngineeringresearch
Many concepts used in our development cluster are based o� of (relatively) recent de-
velopments in cloud-native architectures. While a lot of attention from industry as well
as research has focused on production-related topics such as automatic scaling, alerting
and resilience to failure, there has been very little research with respect to the developer
experience using these new techniques. We found a lot of cloud-native methodologies
generate a lot of data, that is available at larger scales. We expect that gathering insights of
developer activity will be signi�cantly easier with the use of cloud-based tools compared
to trying to gain access to individual developer machines. As the integration of software
in our society continues to grow, we expect the challenge of providing a scalable way for
developers to do their job will shift signi�cantly. Our contribution can be a �rst step in
exploring this direction by bringing the power of these cloud-based systems to developers,
but many more steps, such as tools for testing, analysis, debugging and visualization still
need to be taken to help software engineers stay productive in software systems at massive
scale. The scienti�c community, in collaboration with industry, can aid massively in the
development of these tools and practices.

8.2 Future engineeringwork for the development
cluster

While this thesis describes a �rst version of our platform with a scalable build-and-run
work�ow, many more extensions to this platform can be made. We highlight a few potential
extensions that can be implemented as follow-up steps to this work.

Integrate more tooling By creating and integrating more diagnostic tools, such as tra�c
simulators, circuit breakers that test network failure or even advanced service dis-
covery, the development platform can aid the developer in many new ways. Having
a development environment that can take away barriers and even build new ways
to improve e�ciency is of great value to any large-scale software system, and our
platform is a solid start for this e�ort.

Improve traceability One of the major challenges for developers in a distributed system
is traceability. Keeping track of these highly asynchronous systems can be di�cult

8.2 Future engineering work for the development cluster

8

59

for a developer, as messages are passed between services are not always observable
by the developer.
There are multiple ways our platform could aid in solving this problem in the future.
Application logs can be extracted by attaching logging "sidecars"[42] and sent to a
central service in the workspace.
Another potential solution could be to not just rely on log messages, but monitor and
visualize all network tra�c in the user’s workspace. This can be done in a similar
matter, by injecting sidecars in the service pods that monitor the service’s network
tra�c.
Both of these solutions would help developers understand the �ow through the
distributed system faster, catching unexpected interactions before they become a
problem.

Workspace collaboration and hand-o� By taking advantage of the fact that a devel-
oper’s workspace has moved o� of his physical machine, new ways of collaboration
and even hand o� are possible. In our platform, multiple users can already use
a workspace’s deployed services, giving users the ability to let other developers
join in on interacting with their system for debugging speci�c scenarios, or ask for
expertise from another team. In the future, the platform could expand upon this
to fully transfer a workspace (including any potential changed code) to a di�erent
developer.

Workspace hand-o� for Continuous Integration Building from the previous point, a
Continuous Integration service running on this platform could give unique debugging
abilities. A complaint frequently made about complex bugs in CI environments is
that they are di�cult to recreate. If a CI run would run on our platform, the exact
environment could be handed over to a developer to investigate an issue with his/her
build. This has a few key bene�ts:

1. Developers can access the exact environment the CI was running in, so state-
dependent bugs are easy to inspect, not having to try and reproduce the situation
�rst.

2. The Continuous Integration service uses the exact same platform as developers,
ruling out many "it works on my machine" situations.

3. Developers that get back the results of a failing build can have the CI environ-
ment transferred back to them as a developer workspace immediately. This
means the developer, who may have moved on to a new task while the CI build
was running, immediately gets his exact environment for the original task in
a secondary workspace. This means his barrier to switch context back to �x
his bug is lowered signi�cantly, resulting in higher developer productivity and
satisfaction.

There are endless more scenarios to think of where a distributed development environ-
ment can aid the developer in their work. Today, the platform’s initial implementation helps
developers by o�oading computationally intensive build work to a powerful environment,

8

60 8 Conclusion and future work

and by providing a distributed runtime environment for active development, capable of
more closely providing a production-like experience during development. By extending
the platform in the future, application developers can become even more productive. They
will be able to use more powerful tools to help them produce higher quality software. We
hope our development cluster can be the �rst step in this process, allowing researchers to
gain more insights and helping developers stay productive.

A

61

A
Evaluation configurations

Below is the full con�guration of all services in the HipsterShop project, needed to integrate
with our system. While it may look like a lot, the setup for every service is very similar.
Good to know is that the Frontend service is the only one with external: true
con�gured, so only the frontend service will get an endpoint for http tra�c.

1 apiVersion : adyen . com / v 1 b e t a 1
2 kind: A p p l i c a t i o n
3 metadata:
4 name: f r o n t e n d
5 spec :
6 serv i ce : true
7 external : true
8 buildTemplate :
9 source :

10 g i t :
11 reposi tory : g i t@g i thub . com:Goog leC loudP la t fo rm /

m i c r o s e r v i c e s −demo . g i t
12 commit: COMMITID
13 bui ldSteps :
14 - kaniko:
15 dockerf i le : . / D o c k e r f i l e
16 buildContext : / workdi r / s r c / f r o n t e n d
17 dest inat ion : r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l /

l i b r a r y / f r o n t e n d
18 registrySecretVolume : kaniko − s e c r e t
19 revisionTemplate :
20 count: 1
21 baseImage: r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l / l i b r a r y /

f r o n t e n d
22 port : 8080
23 env:

A

62 A Evaluation configurations

24 - name: PORT
25 value : "8080"
26 - name: PRODUCT_CATALOG_SERVICE_ADDR
27 value : "productcatalogservice:3550"
28 - name: CURRENCY_SERVICE_ADDR
29 value : "currencyservice:7000"
30 - name: CART_SERVICE_ADDR
31 value : "cartservice:7070"
32 - name: RECOMMENDATION_SERVICE_ADDR
33 value : "recommendationservice:8080"
34 - name: SHIPPING_SERVICE_ADDR
35 value : "shippingservice:50051"
36 - name: CHECKOUT_SERVICE_ADDR
37 value : "checkoutservice:5050"
38 - name: AD_SERVICE_ADDR
39 value : "adservice:9555"
40 - name: ENABLE_PROFILER
41 value : "0"
42 volumes:
43 - name: kaniko − s e c r e t
44 sec re t :
45 secretName: harbor − r e g i s t r y
46 items :
47 - key: . d o c k e r c o n f i g j s o n
48 path: . docker / c o n f i g . j s o n
49 ---
50 apiVersion : adyen . com / v 1 b e t a 1
51 kind: A p p l i c a t i o n
52 metadata:
53 name: a d s e r v i c e
54 spec :
55 se rv i ce : true
56 external : f a l s e
57 buildTemplate :
58 source :
59 g i t :
60 reposi tory : g i t@g i thub . com:Goog leC loudP la t fo rm /

m i c r o s e r v i c e s −demo . g i t
61 commit: COMMITID
62 bui ldSteps :
63 - kaniko:
64 dockerf i le : . / D o c k e r f i l e
65 buildContext : / workdi r / s r c / a d s e r v i c e
66 dest inat ion : r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l /

l i b r a r y / a d s e r v i c e

A

63

67 registrySecretVolume : kaniko − s e c r e t
68 revisionTemplate :
69 count: 1
70 baseImage: r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l / l i b r a r y /

a d s e r v i c e
71 port : 9555
72 env:
73 - name: PORT
74 value : "9555"
75 - name: ENABLE_PROFILER
76 value : "0"
77 volumes:
78 - name: kaniko − s e c r e t
79 sec re t :
80 secretName: harbor − r e g i s t r y
81 items :
82 - key: . d o c k e r c o n f i g j s o n
83 path: . docker / c o n f i g . j s o n
84 ---
85 apiVersion : adyen . com / v 1 b e t a 1
86 kind: A p p l i c a t i o n
87 metadata:
88 name: c a r t s e r v i c e
89 spec :
90 serv i ce : true
91 external : f a l s e
92 buildTemplate :
93 source :
94 g i t :
95 reposi tory : g i t@g i thub . com:Goog leC loudP la t fo rm /

m i c r o s e r v i c e s −demo . g i t
96 commit: COMMITID
97 bui ldSteps :
98 - kaniko:
99 dockerf i le : . / D o c k e r f i l e

100 noCache: true
101 buildContext : / workdi r / s r c / c a r t s e r v i c e
102 dest inat ion : r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l /

l i b r a r y / c a r t s e r v i c e
103 registrySecretVolume : kaniko − s e c r e t
104 revisionTemplate :
105 count: 1
106 baseImage: r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l / l i b r a r y /

c a r t s e r v i c e
107 port : 7070

A

64 A Evaluation configurations

108 env:
109 - name: PORT
110 value : "7070"
111 - name: REDIS_ADDR
112 value : "redis-cart:6379"
113 - name: LISTEN_ADDR
114 value : "0.0.0.0"
115 - name: ENABLE_PROFILER
116 value : "0"
117 volumes:
118 - name: kaniko − s e c r e t
119 sec re t :
120 secretName: harbor − r e g i s t r y
121 items :
122 - key: . d o c k e r c o n f i g j s o n
123 path: . docker / c o n f i g . j s o n
124 ---
125 apiVersion : adyen . com / v 1 b e t a 1
126 kind: A p p l i c a t i o n
127 metadata:
128 name: c h e c k o u t s e r v i c e
129 spec :
130 se rv i ce : true
131 external : f a l s e
132 buildTemplate :
133 source :
134 g i t :
135 reposi tory : g i t@g i thub . com:Goog leC loudP la t fo rm /

m i c r o s e r v i c e s −demo . g i t
136 commit: COMMITID
137 bui ldSteps :
138 - kaniko:
139 dockerf i le : . / D o c k e r f i l e
140 buildContext : / workdi r / s r c / c h e c k o u t s e r v i c e
141 dest inat ion : r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l /

l i b r a r y / c h e c k o u t s e r v i c e
142 registrySecretVolume : kaniko − s e c r e t
143 revisionTemplate :
144 count: 1
145 baseImage: r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l / l i b r a r y /

c h e c k o u t s e r v i c e
146 port : 5050
147 env:
148 - name: PORT
149 value : "5050"

A

65

150 - name: PRODUCT_CATALOG_SERVICE_ADDR
151 value : "productcatalogservice:3550"
152 - name: SHIPPING_SERVICE_ADDR
153 value : "shippingservice:50051"
154 - name: PAYMENT_SERVICE_ADDR
155 value : "paymentservice:50051"
156 - name: EMAIL_SERVICE_ADDR
157 value : "emailservice:5000"
158 - name: CURRENCY_SERVICE_ADDR
159 value : "currencyservice:7000"
160 - name: CART_SERVICE_ADDR
161 value : "cartservice:7070"
162 - name: ENABLE_PROFILER
163 value : "0"
164 volumes:
165 - name: kaniko − s e c r e t
166 sec re t :
167 secretName: harbor − r e g i s t r y
168 items :
169 - key: . d o c k e r c o n f i g j s o n
170 path: . docker / c o n f i g . j s o n
171 ---
172 apiVersion : adyen . com / v 1 b e t a 1
173 kind: A p p l i c a t i o n
174 metadata:
175 name: c u r r e n c y s e r v i c e
176 spec :
177 serv i ce : true
178 external : f a l s e
179 buildTemplate :
180 source :
181 g i t :
182 reposi tory : g i t@g i thub . com:Goog leC loudP la t fo rm /

m i c r o s e r v i c e s −demo . g i t
183 commit: COMMITID
184 bui ldSteps :
185 - kaniko:
186 dockerf i le : . / D o c k e r f i l e
187 buildContext : / workdi r / s r c / c u r r e n c y s e r v i c e
188 dest inat ion : r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l /

l i b r a r y / c u r r e n c y s e r v i c e
189 registrySecretVolume : kaniko − s e c r e t
190 revisionTemplate :
191 count: 1

A

66 A Evaluation configurations

192 baseImage: r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l / l i b r a r y /
c u r r e n c y s e r v i c e

193 port : 7000
194 env:
195 - name: PORT
196 value : "7000"
197 - name: ENABLE_PROFILER
198 value : "0"
199 volumes:
200 - name: kaniko − s e c r e t
201 sec re t :
202 secretName: harbor − r e g i s t r y
203 items :
204 - key: . d o c k e r c o n f i g j s o n
205 path: . docker / c o n f i g . j s o n
206 ---
207 apiVersion : adyen . com / v 1 b e t a 1
208 kind: A p p l i c a t i o n
209 metadata:
210 name: e m a i l s e r v i c e
211 spec :
212 se rv i ce : true
213 external : f a l s e
214 buildTemplate :
215 source :
216 g i t :
217 reposi tory : g i t@g i thub . com:Goog leC loudP la t fo rm /

m i c r o s e r v i c e s −demo . g i t
218 commit: COMMITID
219 bui ldSteps :
220 - kaniko:
221 dockerf i le : . / D o c k e r f i l e
222 buildContext : / workdi r / s r c / e m a i l s e r v i c e
223 dest inat ion : r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l /

l i b r a r y / e m a i l s e r v i c e
224 registrySecretVolume : kaniko − s e c r e t
225 revisionTemplate :
226 count: 1
227 baseImage: r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l / l i b r a r y /

e m a i l s e r v i c e
228 port : 5000
229 env:
230 - name: PORT
231 value : "5000"
232 - name: ENABLE_PROFILER

A

67

233 value : "0"
234 volumes:
235 - name: kaniko − s e c r e t
236 sec re t :
237 secretName: harbor − r e g i s t r y
238 items :
239 - key: . d o c k e r c o n f i g j s o n
240 path: . docker / c o n f i g . j s o n
241 ---
242 apiVersion : adyen . com / v 1 b e t a 1
243 kind: A p p l i c a t i o n
244 metadata:
245 name: p a y m e n t s e r v i c e
246 spec :
247 serv i ce : true
248 external : f a l s e
249 buildTemplate :
250 source :
251 g i t :
252 reposi tory : g i t@g i thub . com:Goog leC loudP la t fo rm /

m i c r o s e r v i c e s −demo . g i t
253 commit: COMMITID
254 bui ldSteps :
255 - kaniko:
256 dockerf i le : . / D o c k e r f i l e
257 buildContext : / workdi r / s r c / p a y m e n t s e r v i c e
258 dest inat ion : r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l /

l i b r a r y / p a y m e n t s e r v i c e
259 registrySecretVolume : kaniko − s e c r e t
260 revisionTemplate :
261 count: 1
262 baseImage: r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l / l i b r a r y /

p a y m e n t s e r v i c e
263 port : 50051
264 env:
265 - name: PORT
266 value : "50051"
267 - name: ENABLE_PROFILER
268 value : "0"
269 volumes:
270 - name: kaniko − s e c r e t
271 sec re t :
272 secretName: harbor − r e g i s t r y
273 items :
274 - key: . d o c k e r c o n f i g j s o n

A

68 A Evaluation configurations

275 path: . docker / c o n f i g . j s o n
276 ---
277 apiVersion : adyen . com / v 1 b e t a 1
278 kind: A p p l i c a t i o n
279 metadata:
280 name: p r o d u c t c a t a l o g s e r v i c e
281 spec :
282 se rv i ce : true
283 external : f a l s e
284 buildTemplate :
285 source :
286 g i t :
287 reposi tory : g i t@g i thub . com:Goog leC loudP la t fo rm /

m i c r o s e r v i c e s −demo . g i t
288 commit: COMMITID
289 bui ldSteps :
290 - kaniko:
291 dockerf i le : . / D o c k e r f i l e
292 buildContext : / workdi r / s r c / p r o d u c t c a t a l o g s e r v i c e
293 dest inat ion : r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l /

l i b r a r y / p r o d u c t c a t a l o g s e r v i c e
294 registrySecretVolume : kaniko − s e c r e t
295 revisionTemplate :
296 count: 1
297 baseImage: r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l / l i b r a r y /

p r o d u c t c a t a l o g s e r v i c e
298 port : 3550
299 env:
300 - name: PORT
301 value : "3550"
302 - name: ENABLE_PROFILER
303 value : "0"
304 volumes:
305 - name: kaniko − s e c r e t
306 sec re t :
307 secretName: harbor − r e g i s t r y
308 items :
309 - key: . d o c k e r c o n f i g j s o n
310 path: . docker / c o n f i g . j s o n
311 ---
312 apiVersion : adyen . com / v 1 b e t a 1
313 kind: A p p l i c a t i o n
314 metadata:
315 name: r e c o m m e n d a t i o n s e r v i c e
316 spec :

A

69

317 serv i ce : true
318 external : f a l s e
319 buildTemplate :
320 source :
321 g i t :
322 reposi tory : g i t@g i thub . com:Goog leC loudP la t fo rm /

m i c r o s e r v i c e s −demo . g i t
323 commit: COMMITID
324 bui ldSteps :
325 - kaniko:
326 dockerf i le : . / D o c k e r f i l e
327 buildContext : / workdi r / s r c / r e c o m m e n d a t i o n s e r v i c e
328 dest inat ion : r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l /

l i b r a r y / r e c o m m e n d a t i o n s e r v i c e
329 registrySecretVolume : kaniko − s e c r e t
330 revisionTemplate :
331 count: 1
332 baseImage: r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l / l i b r a r y /

r e c o m m e n d a t i o n s e r v i c e
333 port : 8080
334 env:
335 - name: PORT
336 value : "8080"
337 - name: PRODUCT_CATALOG_SERVICE_ADDR
338 value : "productcatalogservice:3550"
339 - name: ENABLE_PROFILER
340 value : "0"
341 volumes:
342 - name: kaniko − s e c r e t
343 sec re t :
344 secretName: harbor − r e g i s t r y
345 items :
346 - key: . d o c k e r c o n f i g j s o n
347 path: . docker / c o n f i g . j s o n
348 ---
349 apiVersion : adyen . com / v 1 b e t a 1
350 kind: A p p l i c a t i o n
351 metadata:
352 name: r e d i s − c a r t
353 spec :
354 serv i ce : true
355 external : f a l s e
356 revisionTemplate :
357 count: 1

A

70 A Evaluation configurations

358 baseImage: r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l / l i b r a r y /
r e d i s

359 pinnedDigest : sha256 :72
c 0 9 6 1 7 b 3 8 1 8 9 1 2 3 a 9 b 3 6 0 c 8 a 1 9 9 8 a 5 9 b e 3 a f 5 2 7 5 9 2 6 9 d 4 c 740397
b d 5 4 a 3 1 f 2

360 port : 6379
361 env:
362 - name: ENABLE_PROFILER
363 value : "0"
364 volumes:
365 - name: kaniko − s e c r e t
366 sec re t :
367 secretName: harbor − r e g i s t r y
368 items :
369 - key: . d o c k e r c o n f i g j s o n
370 path: . docker / c o n f i g . j s o n
371 ---
372 apiVersion : adyen . com / v 1 b e t a 1
373 kind: A p p l i c a t i o n
374 metadata:
375 name: s h i p p i n g s e r v i c e
376 spec :
377 se rv i ce : true
378 external : f a l s e
379 buildTemplate :
380 source :
381 g i t :
382 reposi tory : g i t@g i thub . com:Goog leC loudP la t fo rm /

m i c r o s e r v i c e s −demo . g i t
383 commit: COMMITID
384 bui ldSteps :
385 - kaniko:
386 dockerf i le : . / D o c k e r f i l e
387 buildContext : / workdi r / s r c / s h i p p i n g s e r v i c e
388 dest inat ion : r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l /

l i b r a r y / s h i p p i n g s e r v i c e
389 registrySecretVolume : kaniko − s e c r e t
390 revisionTemplate :
391 count: 1
392 baseImage: r e g i s t r y 2 . k u b e r n e t e s . g i j s w e t e r i n g s . n l / l i b r a r y /

s h i p p i n g s e r v i c e
393 port : 50051
394 env:
395 - name: PORT
396 value : "50051"

A

71

397 - name: ENABLE_PROFILER
398 value : "0"
399 volumes:
400 - name: kaniko − s e c r e t
401 sec re t :
402 secretName: harbor − r e g i s t r y
403 items :
404 - key: . d o c k e r c o n f i g j s o n
405 path: . docker / c o n f i g . j s o n

Example A.1: Template of a full build con�guration for the HipsterShop project

73

Bibliography

References
[1] Robert J. Creasy. The origin of the vm/370 time-sharing system. IBM Journal of

Research and Development, 25(5):483–490, 1981.

[2] W Royce. The software lifecycle model (waterfall model). In Proc. WESTCON, volume
314, 1970.

[3] Gordon E Moore et al. Cramming more components onto integrated circuits, 1965.

[4] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Je�ries, et al.
Manifesto for agile software development. 2001.

[5] Moritz Beller. Toward an empirical theory of feedback-driven development. In
Proceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings, ICSE ’18, pages 503–505, New York, NY, USA, 2018. ACM.

[6] Jos Winter. Increasing operational awareness using monitoring-aware ides, 2018.

[7] Martin Fowler and Matthew Foemmel. Continuous integration. Thought-Works)
http://www. thoughtworks. com/Continuous Integration. pdf, 122:14, 2006.

[8] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous integration: improving
software quality and reducing risk. Pearson Education, 2007.

[9] Sallyann Bryant, Benedict Du Boulay, and Pablo Romero. Xp and pair programming
practices. PPIG Newsletter, pages 17–20, 2006.

[10] Mitch Denny. The inner loop. https://mitchdenny.com/
the-inner-loop/, 2018.

[11] Dan Lorenc. Build containers faster with cloud build with kaniko | google cloud blog,
Feb 2019.

[12] André N Meyer, Thomas Fritz, Gail C Murphy, and Thomas Zimmermann. Software
developers’ perceptions of productivity. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 19–29. ACM,
2014.

[13] Dror G Feitelson, Eitan Frachtenberg, and Kent L Beck. Development and deployment
at facebook. IEEE Internet Computing, 17(4):8–17, 2013.

https://mitchdenny.com/the-inner-loop/
https://mitchdenny.com/the-inner-loop/

74 Bibliography

[14] Fabian Fagerholm and Jürgen Münch. Developer experience: Concept and de�nition.
In Proceedings of the International Conference on Software and System Process, ICSSP
’12, pages 73–77, Piscataway, NJ, USA, 2012. IEEE Press.

[15] Margaret-Anne Storey and Alexey Zagalsky. Disrupting developer productivity one
bot at a time. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, pages 928–931, New York, NY, USA,
2016. ACM.

[16] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models: A
study of developer work habits. In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 492–501, New York, NY, USA, 2006. ACM.

[17] Gloria Mark, Daniela Gudith, and Ulrich Klocke. The cost of interrupted work:
More speed and stress. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’08, pages 107–110, New York, NY, USA, 2008. ACM.

[18] Jürgen Cito, Philipp Leitner, Harald C. Gall, Aryan Dadashi, Anne Keller, and Andreas
Roth. Runtime metric meets developer: Building better cloud applications using
feedback. In 2015 ACM International Symposium on New Ideas, New Paradigms, and
Re�ections on Programming and Software (Onward!), Onward! 2015, pages 14–27, New
York, NY, USA, 2015. ACM.

[19] H. Erdogmus, M. Morisio, and M. Torchiano. On the e�ectiveness of the test-�rst
approach to programming. IEEE Transactions on Software Engineering, 31(3):226–237,
March 2005.

[20] M. Beller, G. Georgios, A. Panichella, S. Proksch, S. Amann, and A. Zaidman. Developer
testing in the ide: Patterns, beliefs, and behavior. IEEE Transactions on Software
Engineering, pages 1–1, 2018.

[21] E Michael Maximilien and Laurie Williams. Assessing test-driven development at ibm.
In Software Engineering, 2003. Proceedings. 25th International Conference on, pages
564–569. IEEE, 2003.

[22] A. Causevic, D. Sundmark, and S. Punnekkat. Factors limiting industrial adoption
of test driven development: A systematic review. In 2011 Fourth IEEE International
Conference on Software Testing, Veri�cation and Validation, pages 337–346, March
2011.

[23] Manish Virmani. Understanding devops & bridging the gap from continuous integra-
tion to continuous delivery. In Innovative Computing Technology (INTECH), 2015 Fifth
International Conference on, pages 78–82. IEEE, 2015.

[24] Francesco Colavita. Devops movement of enterprise agile breakdown silos, create col-
laboration, increase quality, and application speed. In Proceedings of 4th International
Conference in Software Engineering for Defence Applications, pages 203–213. Springer,
2016.

References 75

[25] N Forsgren, J Humble, and G Kim. State of devops report. Puppet+ DORA, Portland,
OR Google Scholar, 2018.

[26] Fergus Henderson. Software engineering at google. arXiv preprint arXiv:1702.01715,
2017.

[27] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. Borg,
omega, and kubernetes. 2016.

[28] Andrew Scott, Johannes Bader, and Satish Chandra. Geta�x: Learning to �x bugs
automatically. arXiv preprint arXiv:1902.06111, 2019.

[29] Aravind Narayanan. Tupperware: containerized deployment at facebook, 2014.

[30] Ron Miller and Ron Miller. How aws came to be, Jul 2016.

[31] Melvin E Conway. How do committees invent. Datamation, 14(4):28–31, 1968.

[32] Todd Ho�. How is software developed at amazon?, Mar 2019.

[33] A Singh. An introduction to virtualization. http://www.kernelthread.
com/publications/virtualization/, 2004.

[34] Anton Beloglazov and Rajkumar Buyya. Energy e�cient resource management in
virtualized cloud data centers. In Proceedings of the 2010 10th IEEE/ACM international
conference on cluster, cloud and grid computing, pages 826–831. IEEE Computer Society,
2010.

[35] Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors vs. lightweight
virtualization: a performance comparison. In 2015 IEEE International Conference on
Cloud Engineering, pages 386–393. IEEE, 2015.

[36] Joel Kirch. Virtual machine security guidelines, 2007.

[37] Hui Kang, Michael Le, and Shu Tao. Container and microservice driven design for
cloud infrastructure devops. In 2016 IEEE International Conference on Cloud Engineering
(IC2E), pages 202–211. IEEE, 2016.

[38] Josh Stella. An introduction to immutable infrastructure, 2015.

[39] Chad Fowler. Trash your servers and burn your code: Immutable infrastructure and
disposable components, 2013.

[40] Thomas Erl. Service-oriented architecture: concepts, technology, and design. Prentice
Hall, 2005.

[41] Michael Hüttermann. Infrastructure as code. In DevOps for Developers, pages 135–156.
Springer, 2012.

[42] Brendan Burns and David Oppenheimer. Design patterns for container-based dis-
tributed systems. In The 8th Usenix Workshop on Hot Topics in Cloud Computing
(HotCloud ’16), 2016.

http://www.kernelthread.com/publications/virtualization/
http://www.kernelthread.com/publications/virtualization/

76 Bibliography

[43] Kubernetes documentation. https://kubernetes.io/docs/
concepts/. Accessed: 2019-04-14.

[44] Adam Wiggins. The twelve-factor app. The Twelve-Factor App, 2011.

https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/

