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Abstract—The large dimensionality of walking motions is a
challenge for robot learning. The human seems designated to
assist in this learning process, because of their aptness in walking.
This paper presents a step in the investigation how a human can
teach a robot a walking-like motion using incremental kinesthetic
teaching. This approach lets the human evaluate and correct
the teaching actions during robot learning. A state-dependent
tracking method is designed, which allows for spatio-temporal
variations of the trajectory during the teaching process. A model-
free iterative learning control method identifies a torque trajectory
for accurate reference tracking even with low-impedance feedback
control. The human teacher switches between iterative learning
control and incremental kinesthetic demonstrations with a button
press. To investigate the teaching performance of the human, a
metric is introduced representing the error between a predefined
target trajectory and the reference trajectory as taught to the
robot. Experiments with one leg of the TUlip humanoid robot
show accurate tracking performance of the iterative learning con-
troller. They identify an optimal learning rate of the incremental
kinesthetic teaching algorithm with respect to the teaching per-
formance of a human subject. However, unintuitive indication of
demonstration periods decreases the teaching performance, such
that a significant error between the target and the taught reference
trajectory still exists. Future work should focus on a more intuitive
interface to teach whole body motions more accurately.

I. INTRODUCTION

Robust, energy-efficient and fast bipedal walking forms a
key challenge in robotics. This is because it is an optimal way
of locomotion in a human-shaped world, it provides us with
insight into human motor control and it combines important dif-
ficulties in control engineering: floating-base non-linear hybrid
dynamics, under-actuation and the fact that the desired behavior
is not a steady state, but a limit-cycle motion.

To find such a limit cycle and create a policy for bipedal
walking robots that is robust against model uncertainties and
disturbances, robot learning is required because it does not rely
on an accurate model and is less complex to generalize.

There are multiple problems with robot learning for bipedal
walking. The high dimensionality of the configuration space
and control space of the robot leads to a large search space [1].
This makes it difficult to find an optimal policy. Exploration
must be performed cautiously to prevent falling, as it can dam-
age the robot. Robot learning from demonstration (RL{D) [2]
lets a human assist the machine learning process to solve this
problem. In RLfD a human teaches a robot a movement by
demonstrating it, instead of programming [3]. Although the
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human is not an expert in robot motions, relevant parts of the
state space can be indicated and alternatives can be suggested
to aid the exploration.

There are many examples in literature that use a batch of
motion demonstrations from a human teacher to initialize the
learning process. (e.g. [4], [5], [6]). However, human-robot
interaction stops after initialization and the robot is left on
its own for the rest of the learning process. Allowing the
teacher to evaluate the behavior of the robot as it learns from
the demonstrated motions and adapt the demonstrations in-
crementally based on the findings, can speed up the learning
process [7]. Examples of literature that follow this approach
are [8] and [9].The work of [8] uses motion capture and [9]
uses kinesthetic teaching, where the joints of the robot are
passive as the human demonstrates the motion. However, the
latter neglects the advantage of kinesthetic teaching that the
human uses haptic feedback to evaluate the robot motion.
Moreover, letting the robot actively execute the motion during
the incremental learning process simplifies the teaching task.
The human can make small adjustments to faulty parts of the
trajectory specifically and does not need to demonstrate the
entire trajectory during each trial [10].

This paper presents a step in the investigation of incremental
kinesthetic teaching (IKT) by a human, using impedance con-
trol with the objective to teach a robot a walking motion. The
research is divided in two parts. The first part, presented in this
work, considers how IKT with impedance control can be used,
such that a human can teach a desired joint motion to the robot.
The second part should answer if the human is able to identify
which trajectory leads to limit cycle walking.

The presented approach overcomes problems of the applica-
tion of existing IKT methods [11] and [12] to teaching walking
motions. The methods use model-based impedance control and
a motion refinement tube around the trajectory with locally
high impedance that the human needs to overcome to indicate
demonstrations. Like most RLfD approaches, the motion is
encoded with motion primitives, using a hidden Markov model
(HMM) [13]. The works of [11] and [12] use a forgetting
factor, which defines the learning rate, i.e. how much each
new demonstration influences the trajectory. This proposes the
following problems:

o The joint impedance of the robot used in this work is
limited due to the use of series elastic actuation [14] to
allow for energy efficiency [15]

o The learning method and controller must be model-free.



o There is no velocity reference tracking available on the
used robot.

« HMMs are discrete models that need explicit transition
smoothing [11]. Creating a limit cycle walking motion
prefers the use of an implicitly continuous trajectory rep-
resentation.

Moreover, learning performance is not assessed quantitatively
in literature with respect to this forgetting factor.

To overcome these problems, this work proposes a B-
spline representation [16] to encode the desired trajectory.
The B-spline representation is used because of its attractive
features like continuity, an easily computed derivative, local
controllability and the availability of linear regression fitting
method [17]. The closest point on the trajectory with respect to
the measured robot position is used as control reference, which
renders a state-dependent reference. A damped least squares al-
gorithm [18] updates the trajectory at a predefined measurement
rate. A model-free interaction controller is designed. It consists
of a torque trajectory and a low-impedance feedback controller,
allowing interaction with a human. The torque trajectory is
trained using iterative learning control (ILC) [19]. This is
motivated by its simple implementation and that it was found
in [20] to be very effective for the cyclic task of walking, with
human interaction.

In an experiment on the TUlip humanoid robot it is shown
that the proposed method allows IKT between the human and
the robot. A target motion is given that a human subject needs
to teach to the robot. A performance measure is defined as
the error between the target and taught reference motion. This
allows for quantitative assessment of the teaching performance.
Performing multiple trials with different learning rates shows
an optimal rate with respect to the learning performance. More-
over, this work shows that ILC is a viable model-free approach
to create accurate tracking, in spite of the hardware limits and
low-impedance feedback control.

The paper is structured into the following sections: First,
Section II provides an overview of the complete teaching
scheme. It is succeeded by Section III, which discusses the
use of B-splines as trajectory representation and the initial
trajectory fit. Section IV presents how the closest point on the
trajectory is estimated. Section V then presents the interaction
controller. Section VI discusses the algorithms used to update
the trajectories. Section VII presents the experimental setup
and Section VIII shows their results. Section IX presents a
discussion of the results. Section X proposes future research
directions and Section XI concludes this work.

II. INCREMENTAL LEARNING SCHEME

This section provides an overview of the motion initializa-
tion, ILC and IKT scheme.

A. Initializing the teaching and iterative learning control pro-
cesses

The scheme of the total process is provided in figure 1. The
process starts with the Initialization after a button press from
the teacher. The Interaction Controller block is turned off,
such that the robot is passive and the teacher can demonstrate

Initialization IKT ILC
¢lala]
Phase TUlip feat| Human
Estimation Robot Teacher
)
— u
ILC Interaction
Compute Controller
qQ ILC, lj'l J
Motion Motion Torque
Trajectory Trajectory Trajectory
Initialization Update Update
Pg, P,j, Pg, Pﬂj Py l

Fig. 1: Scheme of the IKT system. The outputs of the robot g,
G and ¢ indicate the joint positions, joint velocity estimations
and motor velocities. Control points P4, P, and P,, are the
parameters of the joint, phase and torque trajectory
respectively. The vectors w and w; ¢ are the joint and iterative
learning control torques, the value 1& is the phase estimation
and f..; is the force as applied by the human teacher.

an initial motion. At each measurement instance k, the robot
joint positions are saved in Motion Trajectory Initialization.
After a second button press, this block fits a B-spline motion
trajectory, that is a combination of a position trajectory and a
velocity magnitude trajectory.

The initial fit activates the ILC loop and the Interaction
Controller. A button press by the human teacher then switches
between the ILC and IKT mode.

B. The teaching and iterative learning control processes

At each time step ¢, the Phase Estimation block estimates a
location (hereafter indicated as the phase) on the trajectory that
is the closest to the current joint configuration of the robot. A
(Gauss-)Newton algorithm is used to estimate this point.

The Interaction Controller is designed to track the motion
references while allowing interaction with a human, in spite
of the lack of accurate velocity measurements in the joints.
It is a combination of a torque trajectory and a proportional
derivative (PD) feedback controller. Motion demonstrations
by the human are possible due to the low impedance of the
feedback controller. The torque trajectory is encoded in the
B-spline framework, together with the motion trajectory. The
phase, estimated in the Phase Estimation block, defines the
motion and torque references to allow the human to slow down
or speed up the motion.

In ILC mode the torque trajectory is trained each measure-
ment instance t;. The ILC Compute block uses the phase
estimate to indicate the motion reference and compute the ILC
torques. The Torque Trajectory Update block updates the
torque trajectory directly each time instance tj, using the ILC
torques. The phase estimate defines local weights of the torque
data on the B-spline parameters.



When the system is in /KT mode the human pushes the
robot limbs to indicate a change in the trajectory. The Mo-
tion Trajectory Update block measures the positions at each
measurement instance t; and updates the motion trajectory
parameters directly using a damped least squares algorithm and
the local weights, computed using the phase estimate.

III. TRAJECTORY INITIALIZATION

This section presents how the motion trajectory is encoded
and how it is initialized.

A. Trajectory representation

A cubic (degree o = 3) B-spline [21] representation is used
for the trajectory. (See Appendix A for more information on
B-splines.) This section describes how the robot motion and
torque trajectories are encoded as a B-spline.

Given that the joint configuration of the robot is indicated by
g(t) € R™ at time ¢, consider B-spline trajectories:

q.ref(l/)) Pq
wref(qp) = P1/1 W(W (1)
Uyref (w) Pu

Here 1 is the phase. The function g,.¢(1)) € R™ is the joint
position trajectory, Vet (1) € Ris the reference of the velocity
magnitude along the trajectory and wu,ef (1)) € R™ is the torque
reference trajectory.

The matrix P, € R"*™ contains the m control points,
which define the shape of the n-dimensional joint position
trajectory. The matrix P € RX™ consists of the control
points, which are the parameters of "l/‘]ref(w) and P, € R"*™
contains the control points of wyef(1)). The vector w(y)) € R™
contains the basis functions computed using the Cox-de Boor
recursion formula [16], which define the local weights of the
control points on the trajectory.

The joint velocity reference trajectory gyef(1)) can be com-
puted knowing the trajectories grof(t)) and 1/)rcf(d)) as in Equa-
tion 2.

Qref (w) = qllref (w)zbref (w)’ (2)

where g/ (1)) is the derivative of get (1)) to 1, as computed as
in Equation 28 of Appendix A.

B. Initial trajectory fit

Let M, € R¥witX" e the data matrix of the measured joint
positions g(¢;)T at time ¢;, with a row for each measurement
k € {1,..., Ninit }- Ninit is the amount of measurements used
during initialization. A fixed-knot least squares approach [17]
is used to fit the spline guer(1)) on M,. Upper and lower
phase boundaries ¥,, and V; are defined arbitrarily at 0 and
27 respectively. A phase location ¢ € [V, ¥,] is assigned
to each measurement, such that these measurements are evenly
spread over the spline. A weight vector w (1)) is computed for

each measurement use the Cox-de Boor recursion formula [16].
These values fill the matrix as in Equation 3.

w’ (¢r)
w’ (1)
) 3)

wT(’l/}Ninit)
Following Appendix A-B, the matrix P, is estimated as in

Equation 4 with lagrange multipliers A [22] and the constraint
matrix as in Equation 5.

P, _ [MIW][w'w 17| @
A 0 T 0
and
To = [Io 0o><m72o _Io] P (5)

where I, represents an o x o identity matrix and order o = 3.
The constraints make sure that the estimated spline is a closed
loop.

IV. PHASE ESTIMATION

This section discusses the phase and velocity magnitude
estimations.

A. Phase position estimation

The closest point on the trajectory with respect to the current
joint configuration is based on the Euclidean distance. Because
the joint space is not Euclidean, there is no trivial measurement
for distance and the closest point is not clearly defined [23].
However, for small errors in the joint angles, this distance
measure suffices.

Let qrot(1*) be the closest point to q(t). Finding ¢* is
defined as the non-linear least squares problem of Equation 6

¥*(q(t)) = argmin  D(¢, q(t)) (6)

U <Y<y,

with cost functions D (v, q(t)) as in Equation 7.
D(¥,q(t) = (a(t) = guer ()" ((t) = Gres(¥)). (D)

To solve this problem the phase estimation is done using
Newtons’ algorithm [24], with at least one iteration j each time
step ts. The phase 1) resets to the beginning of the cycle when
it reaches the end and vice versa, to remain in [¥;, ¥,,]. The
update rule is given by Equation 8.
L DED
- _ g _ + _ g+ _ J

where D’ (@j) and D" (zﬁj) are the first and second derivative
of D to 1) evaluated at @Z)jr Omitting the dependency on ¢ and

t:
D' =2q/%(q — q]

and
D" = 2q/Liqles + 200k [Grer — 4. ©)



Here g’ ; is derived from g/ ; using Equation 28 from appendix
A. This algorithm finds the extrema. It is thus also possible
that it converges to a maximum when D” < 0. The Gauss-
Newton algorithm approximates D" ~ 2¢'L.q/ . > 0. How-
ever, this approximation results in a less accurate estimate of
the minimum, causing the estimation to jump between time
instances. This creates non-smoothness in the control signal.
The used algorithm therefore switches between Newton and

Gauss-Newton, displayed in Equation 10.

D" = {Dgéf %fDK[ 2 0. (10)
ey D% <0

When the initial estimate is closest to a local maximum, the
algorithm will use Gauss-Newton to converge to the nearest
local minimum and converge to this minimum with Newton,
when that becomes the nearest extremum.

To go to a next or previous cycle, the following reset is
implemented after each iteration:

b7 =0, + Ty i > U,
b - U+ T, ifg; <

¥
The fact that the algorithm does not find a global minimum is
not a concern, as the controller will also attract g to g/.¢(¥*).
Convergence of the controlled system to the reference therefore
guarantees that the estimation becomes the global minimum
after a certain amount of time steps.

(1D

otherwise.

B. Phase velocity estimation

The speed estimates that are saved during each measurement
are approximated using a finite differences method. It disre-
gards the resets, to prevent inaccurate jumps at the domain
borders:

. AP
Vi1 1=
k

+ ;. (12)
—tk—1
Note that the time increment is calculated as the difference be-
tween measurement instances. In contrast to the phase estimate,
which updates every time step ¢, the speed estimate is saved
during each measurement instance k and set to zero such as in
Equation 13.

1/)j =0 th = 1. (13)

The speed could also be estimated as a finite difference over
each time step ¢, instead of each measurement. However, the
above methods allows the estimate to be averaged over the
amount of iterations between measurements.

V. INTERACTION CONTROL

This section presents how the interaction control torque is
defined and how the ILC torques are computed

A. Feedback control

The quantization of the joint position encoders leads to
inaccurate joint velocity measurements (see Figure 6). The
combination with series elastic actuation does not allow smooth
velocity reference tracking.

However, damping is possible on the motors directly. The
torque trajectory uyet (1)) plus the PD-feedback controller give
the control torque as in Equation 14.

U(lzh ts) = uref(&) + Kp(qref("/;) - Q(ts)) - KdC(ts)v (14)

where g;.f(¢) indicates the reference position as in Equation 1
with the phase estimate ¢, ¢ indicates the motor angular veloc-
ities and K, and K indicate hand-tuned diagonal proportional
and derivative gain matrices respectively. The torque trajectory

Uyer (1) is trained using the ILC approach as described below.

B. Iterative learning control

A proportional-derivative (PD)-ILC approach [25] trains the
feedforward control trajectory e (¢)).

The torque vector u; Lc,k(i)k) is the PD-ILC torque update,
which is computed as in Equation 15.

UILCk = Vet (Vk) + gpek + gar- (15)

Here v is referred to as the forgetting factor, g, and g4 are the
gains and e(vy, tx) and (), ty) are the position and velocity
errors:

er = qr i) — q(t

& ?ef(%) f{( k) (16)
€r = Gref (Vi) — q(tk)

with gre (1) as in Equation 2 and velocity estimate g(t) at

time step ¢, as in Equation 17.

q(ts) —q(ts—1)
ts —ts—1 '

q(t,) = (17)
To create independence of the ILC algorithm from the damping
factor 3, gq and g, in Equation 15 are set as a function of §,

given in Equation 18.

9p = ’Ypﬁ

18
gd = "YaP. (18)

An elaboration as to why this renders the ILC algorithm
approximately independent with respect to [ is provided in
Appendix B. The forgetting factor is set to v = 1 during for
the rest of the paper. Further discussion on the forgetting factor
is provided in the discussion.

VI. TRAJECTORY UPDATE

This section discusses how the data is handled during ILC
and IKT periods and how it is used to update the trajectories.



A. Data update

At each measurement k the phase estimate Uy, is used to fill

a new row of a matrix W}, with w? (¢), such that the each
column refers to its respective control point.

_ InIKT mode, the positions g(t;,) and estimated phase speed

1/;;9 are saved in a new row of the data matrix M qi k- 10 ILC
mode a data matrix M, ;, is filled with torque updates u;rc k.
Only a limited number of past measurements is used, referred
to as the memory size V. Using the position-speed data matrix
Mq,qj;,k as an example, the updates of Mq.,u}.,k and W, look
like Equation 19 and 20 respectively.

a"(ts-n)  Yr-n

q (ti-nt1) Ve-n+1

M (19)

qp.k =

q” (tx) Ui
and

w? (Yr—n)

w? (Yp-n11)
W, = . . (20)

w’ ()

Note that the value of NV is significantly smaller than the value
Ninis used during initialization, as it is not required for the
former that the data covers the complete motion trajectory. A
larger N increases the amount of information available each
update, such that there are less trials needed to completely
update the trajectory, but more computational power is needed
every update.

B. Trajectory fit

A damped least squares approach updates the trajectory
splines given the incoming data points. Consider a data matrix
M., which can be either M ak OF M, . and control points
estimated at the previous measurement Pj;_;, which can be
either

_ Pgi—1
Pk—l - |:Pw o1

depending on whether the system is in IKT or ILC mode
respectively. Consider also the matrix W, from Equation 20.
Because we are looking for a spline in the neighborhood of
the previous one the least squares estimate of Equation 4 is
transformed equivalently to the Tikhonov regularization [26] as
in Equation 21.

] or Py 1 =Py

[Pk} _ [MfWkJrﬁPk_l} [WfW;H—BI 7!

Ay 0 T 0 ’

1)
where I is an appropriately sized identity matrix. The value
for 8 resembles the damping factor of the learning process. It
defines the learning rate of the algorithm and is the value that
is varied in the experiment. The use of cyclic updates of the
trajectory have also been investigated. A comparison between
these methods and a notion about the use of an adapted 3 can
be found in Appendix C-A.

VII. EXPERIMENT

Two experiments are conducted where the proposed methods
are implemented and tested: An IKT experiment is performed
to investigate the influence of different values of the damping
factor 3 on the learning process. A walking-like motion is
taught to one leg of a humanoid robot using the IKT algorithm
as presented in the previous sections. An ILC-only experiment
is done to test the performance of the ILC. To be able to
compare the teaching performances of the human for different
values of f3, the influence of ILC must remain constant. It is
therefore investigated whether the ILC performance is constant
for values of f3.

Series
Elastic
Actuation

Fig. 2: Diagram of the joint configuration of the TUlip
humanoid robot, with the series elastic actuated joints. The
zero angles are displayed for the hip and knee joints, which are
used in the experiment.

A. Setup

The TUlip humanoid robot, developed at the Delft University
of Technology [27], is used to conduct the experiments. It
consists of a torso and two legs, weighs 18 kg and measures
1.1m. Six joints are in the legs that measure 0.6 m. The joint
configuration of the robot is displayed in Figure 2. There are
two ankle joints along the transverse and sagittal axes, one
knee joint and three hip joints. The knee and ankle joints
and hip transversal joint are controlled using series elastic
actuation [14]. Relative joint position encoders measure the
joint angles. The torque signal is updated at 500 Hz, such that
the increment between successive time steps ts as presented in
Section VIis (ts — ts_1 = 2ms).

B. Experimental protocol

During the IKT experiment, the author performed the
teaching task as is displayed in Figure 3. The trajectory that
the robot is supposed to follow after teaching is referred to as
the target trajectory. The taught trajectory that the robot aims to
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Fig. 3: The initial and target knee-hip trajectories of the right
robot leg. The human needs to convert the initial trajectory to
the target trajectory: a circular motion with a radius of 0.4 rad.
The cycle time is 2 seconds, such that the velocity trajectory is
circular with a radius of 0.47 rad. The trajectories are encoded
as a 3rd order spline with 12 control points.

follow, is referred to as the reference trajectory. This trajectory
is updated based on the demonstrations by the human during
IKT. Six test trials and one practice trial are executed for each
value of 3. To diminish effects of different initializations, each
trial starts with the same initial trajectory. After two ILC cycles,
the subject can start the demonstration mode.

During the ILC-only experiment the reference trajectory is
kept at the initial reference trajectory of Figure 3. One trial is
performed for each value of 5.

In both experiments, the performance is measured for five
values of 8 : 100, 300, 1000, 3000, 10000 (unitless). The
memory size is set at N = 10. A measurement is taken every
0.01 seconds (t; —tx—1 = 0.01s). The ILC gains are configured
as: gp = 0.058(Nm/rad) and g4 = 0.0058(Nms/rad). The
entries, each corresponding to a joint, on the diagonal of the
controller gain matrices K, and K are given in Table 1.

TABLE I: Feedback gains per joint
Joint | kp (Nm/rad) [ kg (Nms/rad)

HipZ 10 5
Hip X 75 37.5
HipY 45 22.5
Knee Y 25 12.5

Ankle Y 60 15

Ankle X 50 25

C. Data analysis

The average Euclidean distance per cycle between the target
and reference trajectory in the joint space for the joint positions
and velocities are used to investigate the performance. For
the IKT experiment they are indicated as ()4 and Q)4 for the
position and velocity trajectory respectively. They are defined
as in Equation 22, with position and velocity errors € and €y,

as in Equation 23.

Kend,1 /T
Q k=Fkinit,1 €L €k
=
kend,i — Kinit,1 22)
Kend,1 T
k=kinie,i \/ €k €k
Qq = .

kend,i — Kinit,i

The variables Kinj¢,; and kenq,; are the first and last measure-
ment instances of cycle [. The position and velocity errors at
measurement instance k are defined as:

€ = (Qig (¢tg,k) - %ef("Zk)

. . .7 (23)
€ = (Qtg (wtg,k) - qref(wk)-

Here qig(Ytg k), Gtg(Vtg,k) and g are target position and
velocity and the phase estimate along the target trajectory
Gt (11g,1) at measurement instance k. The vectors qref(lzlk)
and ¢,e¢(11,) are the references as in Section III and vy, is the
phase estimate along the reference trajectory at measurement k.
A new cycle begins when 1) 1, resets. Decreasing values of
and Q4 indicate improvement.

To interpret the values of Q4 and 4 a metric is introduced
as the ratio between (4 and Q4 and the radius of the position
and velocity target trajectories respectively:

Q
Mg = .
T'q,tg (24)
ng = 24
1 g

For the ILC-only experiment, the performance is measured
similarly as in Equation 22 as the average Euclidean distance
between the reference states and the actual states, i.e. using the
measured errors e and ey, of Equation 16.

Kend,1 /T
Q k=Fkinit,1 € €k
q,]LC =
iend,l — Kinit,1 25)
Cend, ST .
Q k=kinie,s \/ €k €k
G,ILC = .
kend,l — Kinit,1

VIII. RESULTS

Results of the ILC-only experiment and the IKT experiment
are shown in this section.

A. lIterative learning control

The performance metrics for the ILC are displayed in Fig-
ure 4. For each damping factor 3 the variable ()4 converges
from an error of approximately 0.05rad to 0.01rad over 26
cycles. The value of @4 converges from 0.6rads™! to about
0.2rads™ .

For reference, the trial of the ILC experiment for 5 = 1000
is shown in Figures 5 and 6 for the position and velocity
respectively. The knee does not extend fully as is shown by
the flattened part in the trajectory at the bottom of Figure 5.
Figure 6 shows the velocity measurements smoothed with a
moving average filter with a window of 3 data points. The
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Fig. 4: Performance of the ILC controller for different
damping factors 3. The reference trajectory is constant over
the cycles. The mean per cycle of the root of the sum of
squared errors at each measurement are displayed for the
position and velocities to the left and the right respectively.
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Fig. 5: Position tracking progression of the ILC trial with
3 = 1000. The motion direction is counter-clockwise.

straight segments of the trajectory are due to the quantization
on the velocity measurements. The Figure shows overshoot of
the velocity in the top right corner of the trajectory.

B. Incremental kinesthetic teaching

Figure 7 shows an exemplary IKT trial. The subject is able
to move the center of the cyclic trajectory to coincide with
the target trajectory in contrast to the radius. Knee extension
decreases over each cycle.

The values of Q4 and Q4 per trial are shown in Figure 8.
Figure 9 shows the metrics averaged per value of 3. Consider-
ing that the radius of the position target trajectory is 0.4 rad, the
mean (g ~ 0.6rad after 26 cycles at = 1000 indicates an
average position error 7 of 13 % over this cycle. The mean of
Q4 ~ 0.28rad s~ after 26 cycles at 3 = 1000 for the circular
velocity trajectory with radius 0.47 rad s~ indicates an error
ng of approximately 18 %.
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Fig. 6: Smoothed velocity tracking progression of the ILC trial
with 8 = 1000. The direction of the motion is
counter-clockwise.
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Fig. 7: Position trajectory progression of an exemplary trial,
for § = 1000. The motion direction is counter-clockwise. The
final trajectory has a performance of )4 = 0.055rad

IX. DISCUSSION

This section is divided into three parts. The first two of
which concern the ILC performance and the influence of 5 on
the teaching performance. The last part discusses the general
teaching performance of the subject using the presented algo-
rithm.

A. Iterative learning control performance

Figure 4 shows that the ILC performance using gains as in
Equation 18 does not depend on the damping factor 5.

That the controller does not achieve knee flexion, lower than
a certain angle, largely influences the final value of Q4 rrc as
shown in Figures 4 and 5. This indicates resistance in the joint
past that angle.

The overshoot in the velocity, visible in Figure 6 indicates
that the ILC is not able to counteract high velocities as well
as too low velocities. When the robot traverses a part of the
trajectory faster, there are less trajectory updates for that part,
reducing the amount of training for these parts. Moreover, faster
movements result in high frequencies in the dynamics. The
density of the control points is too low to counteract these
dynamics accurately.
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Fig. 9: Values of Q4 and Q4 for different damping factors 3
during different trials. The first trial at 5 = 100 and second
trial at 5 = 300 are not included in the mean because of an
initialization error. The first trials of 8 = 1000, 3000, 10000
are not included to have an equal amount of trials per damping
factor. As such, the data represents means of five experiments
+90 % confidence interval.

B. The influence of the damping factor on the teaching perfor-
mance

As shown in Figure 9 a damping factor of 1000 results in
the smallest error between final reference and target trajectory.
Lower damping factors allow faster improvements at the begin-
ning. The IKT performance is a trade-off between the final error
and the improvement speed.

The experimental task involves combined visual and tactile
stimuli. In [28] it was found that the average reaction time of a
human on such stimuli is about 0.2 seconds, which corresponds
to a tenth of the cycle time of the experiment. Such a reaction
is too slow to apply the right force at the right time. This leaves
the subject with two ways to accurately position the robot. The
first is co-contraction [29], but it is hard to maintain this for
many cycles because it requires a lot of energy. The second is
by learning a feedforward force trajectory. When the damping
factor is low, each new trial influences the behavior of the robot
more, such that it reacts increasingly differently each trial and it
becomes harder to identify a feedforward force trajectory. The
subject is not able to repeat performance between trials, as is
indicated by the increased confidence interval for low values of
B in Figure 9.

If values for [ decreases significantly, it is possible that
a mistake by the human deforms the trajectory too much,
creating loops in the trajectory. If these loops become too
large, it becomes increasingly difficult to smoothen them. This
is because more erroneous parts of the trajectory need larger
updates, which either requires a larger difference with respect
to the new measurement or more measurements. However,
the phase estimate is prone to move away from these parts,
because it searches for the closest point on the trajectory. The



erroneous parts will receive less measurement updates while
their neighboring parts will also receive updates that should
correct the faulty part. This pulls the neighboring parts together,
increasing the respective loop.

C. The overall teaching performance

Comparing Figures 7 and 8, it strikes that the learned trajec-
tories under maximal performance are not accurate with respect
to the target trajectory.

An important factor for this is that the push button is not
intuitive enough in indicating the beginning and end of an IKT
period to allow the subject to do targeted improvements, with
short IKT periods. This is because the teacher has to hold the
button separately, while both hands are needed to position the
robot. As such, the process becomes continuous and the subject
has to keep track of the complete cycle at all times, which
increases the task difficulty. Furthermore, the controller does
not update, due to the lack of ILC periods in between the IKT
periods.

A limited change of the center of the trajectory does not
significantly increase the effort of the teacher. However, an
increase in the radius of the cycle does, because it increases the
length and velocity of the motion. This explains why the subject
corrects the center of the cyclic motion well, in contrary to the
radius. ILC periods in between the IKT periods should reduce
the control effort from the teacher, such that it becomes easier
to increase the radius of the cycle.

Considered that a stable walking motion depends heavily on
a few parts of the complete trajectory: the push off and foot
placement, this limited performance does not signify that the
subject is not suited to teach the robot such a trajectory, as he is
allowed to put his focus mainly on these few parts. It points out
however, that the task objective should be very limited per IKT
period. The subject is only able to teach one leg at the time and
can only improve a part of the trajectory each time.

The fact that knee extension decreases during the IKT is
partly explained as it is also not achieved by the interaction
controller, which indicates the difficulty.

X. RECOMMENDATIONS

The following succeeding research directions are recom-
mended:

A. Full body limit cycle walking behaviors

Two recommendations are proposed concerning the learning
of full body walking motions.

Initializing the walking motion: A walking cycle involves
both legs that can not be taught by a single teacher at the same
time. The work of [8] solves this by initializing a full body
trajectory from motion capture data. Because the dynamics
of the human differ significantly to those of the robot, such
a trajectory will not be likely to generate a feasible walking
trajectory. A certain quality of the initial walking trajectory is
required regarding the balance of the robot, because there are
only limited IKT improvements possible each time and they
need to be done in series, because different adaptations at the

same time create unexpected effects, due to the linked dynamics
of the different states. A simulated walking motion might result
in an initial trajectory that is closer to a feasible walking motion
for the real robot than the motion capture approach. It should be
investigated if such a trajectory can be adapted by the human to
increase the number of steps the robot is able to make before
falling.

Learning different strides: To derive entire walking behav-
iors from the trajectory, it must be investigated whether new
stride motions can be learned from the nominal stride trajec-
tory as this guarantees that the control points of the different
trajectories lie in the same phases of the stride. This allows the
learned trajectories to be used as motion primitives, which can
be combined into a complete walking policy. This then consists
of a high level controller in the form of a map between the
uncontrolled floating base states and mixing factors that define
the combination of the trajectories. As the robot can fall in
both horizontal directions and these failure modes are linearly
independent, the stabilizing controllers can be decoupled, such
that the control problem is divided in two separate one dimen-
sional problems. This results in small state and action spaces,
which facilitates effective learning. Furthermore, combinations
of the trajectories can be used as starting points for another IKT
process, to define extra key points on the map.

It was found that the use of a continuous action space RL
does not provide an improvement over discrete ones as the high
action frequency averages out the long term response [30], for
the much lower stride frequency the use of a continuous value
function might improve performance.

B. Expanding the experimental group:

The experiment should be repeated for a larger group of test
subjects to be able to generalize conclusions on the influence of
human teaching performance on the optimal value for 5. When
the human makes less and smaller mistakes, the trajectory can
be updated faster. It is expected that the optimal value of
decreases when the control ability of the human increases due
to practice.

C. The algorithm

Multiple improvements on the algorithm are suggested:

Free-knot spline fitting: Currently a fixed-knot approach is
used estimate the B-spline trajectory. The quality of the method
depends heavily on the amount and phase location of the knots,
which depends on the form and dimensionality of the trajectory.
Free-knot spline fitting methods such as the works of [31], [32]
and [33] estimate the amount and location of knots together
with their location, such that they do not need to be determined
as a design parameter.

Varying the damping factor: To improve the learning
speed, it should be investigated if the damping factor can vary
during a trial. It should be examined if it is beneficial to begin
with a small 8 to promote fast improvements at the beginning
and increase it after a certain amount of trials to guarantee
consistent performance at the end.

Varying the update frequency: To increase the accuracy
of the estimates at fast or erroneous parts of the trajectory, it



is recommended that the measurement and update frequency

are a function of the phase speed estimate 1; and errors e
and é of Equations 16. During the ILC periods, this reduces
the overshoot in the velocities that is shown in Figure 6 and
it would solve the loop-problem as addressed at the end of
Subsection IX-B.

Optimizing trajectory updates: Information about objec-
tives of the motion trajectory can be integrated in the spline
update in the form of an objective function over which is
optimized, or in the form of constraints. An example of this
is shown in Appendix D-C. The spline update can be eval-
uated afterwards such that the spline update is succeeded by
an optimization step, or the optimization or constraints can
be implemented directly into the damped least squares spline
update.

Post-processing of the estimate: To solve the problem of
the phase estimation algorithm to disregard the parts of the
trajectory that require the most updating, the algorithm might
also be extended to evaluate the estimated phases of the mea-
surements, such that weights are spread more evenly over the
measurements.

D. The interface

The following recommendations are proposed to improve the
interface:

Intuitive mode switching: To make the switching between
IKT and ILC more intuitive, it is proposed to indicate the IKT
start with a button press and the end with a release, such that
the button remains pressed during IKT. Moreover, currently
the button needs to be held together with the robot such that
such both robot and button need to be handled with one hand.
The button should be fixed on the robot next to the joint that
is moved by the human teacher, such that it can be reached
easily during the IKT. Implementing a robot skin, to detect
forces applied by the human would also provide a solution.
Furthermore, a more intuitive switching between IKT and ILC
enables the human to relax in between IKT periods, such that
co-contraction becomes feasible during these periods. Since the
human does not have to learn when to apply which forces,
teaching should become easier.

Training with multiple teachers: To be able to test with
multiple subjects, it is proposed to increase robustness of the
hardware.

E. The iterative learning controller

Two recommendations concerning the iterative learning con-
troller are as follows:

Setting the ILC forgetting factor v: The result of [34] can
be used to assess which value to use for . As the robot needs
to behave predictable for the human to be able to teach it,
should generally be set higher than the human forgetting factor.
However, as there is already damping in the trajectory update, y
could be set somewhat lower. In standard PD-ILC # is not used
though and is therefore set to 1, which is well above the average
human forgetting factor of 0.76 as shown in [34].
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Investigating ground impacts in ILC: Another recommen-
dation regarding the ILC, is to investigate the influence of vary-
ing ground impacts on the ILC torque trajectory and tracking
performance. Slowing down the ILC process might improve
the damping of varying ground contacts, during stepping. The
ILC learning rate is already tuned close to its upper bound, with
respect to frequencies of the robot dynamics. As such, speeding
up is not feasible.

XI. CONCLUSION

In the investigation towards robot learning from demon-
stration for walking robots, this work proposes a model-
free incremental kinesthetic teaching method with limited
impedance control to teach a series elastic actuated robot a
motion trajectory. An iterative learning control method is pro-
posed to learn a phase depends torque trajectory, to allow the
velocity of the cycle to be adapted. It is shown that it allows
for trajectory tracking when no feedback velocity control is
available. The approach was tested on the TUlip humanoid
robot using a elliptic walking-like target trajectory.

The iterative learning controller accurately tracked the posi-
tion trajectory with the exception of a full knee extension. The
controller tracked the velocity trajectory better under counter-
acting forces than under concurring forces.

The subject was able to correct the center of the trajectory but
not the radius, because this requires increased effort from the
teacher. Due to non-intuitive switching between IKT and ILC
tasks, the trials were performed constantly in IKT mode, such
that the interaction controller could not increase the reduction
of the effort from the teacher. Moreover, it was difficult for the
subject to focus on the entire trajectory.

To increase accuracy of the teaching process, a more in-
tuitive interface should be implemented. This allows the hu-
man teacher to indicate fast and exactly which parts of the
trajectory need demonstrations, for which joints. The human
can then focus entirely on the indicated parts. Moreover, an
initial walking like trajectory is required such that only small
incremental updates are required by the teacher.

APPENDIX A
B-SPLINES

This section provides background on the B-spline repre-
sentation and the least-squares fit of a B-spline on a multi-
dimensional measurement sequence.

A. B-spline definition

An exemplary B-spline (or basis spline) is shown in Fig-
ure 10. A B-spline b(z)) € R™ is an n-dimensional piecewise-
polynomial curve that is defined using Equation 26 [21].

() = > piwio(1) = Pw(y),

i=1

(26)

where p; € R”™ are m control points that define the shape
of the curve and ¢ € [¥;,T,) is the value that represents
a location on the curve (or phase). ¥; and W, are the upper
and lower boundaries indicating the beginning and end of the
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Fig. 10: A 2-dimensional third-order closed B-spline trajectory
bs (1) with ten control points P; € R? withi € {1,...,10}.
The phase ¢ € [0, ..., 27) indicates the location along the
spline. The colors indicate segments of the spline. A
third-order indicates that each segment is influenced by three
control points and each control point influences three
segments. Therefore, the first and last three control points need
to overlap to close the loop [35]
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Fig. 11: Third-order B-spline basis functions of a closed
spline. They define the influence of each control point p; on
the trajectory at a given location 1. The integers above the
figure indicate the control point instance 4.

trajectory. The value o represents the order or degree of the
spline, such that an order o = 1 indicates linear segments, 0 = 2
indicates quadratic segments and so on. The basis functions
Wi o(¥) € R™ are defined using the Cox-de Boor recursion
formula [16]. They indicate the influence of the control points
on each location of the curve. The basis functions of an ex-
emplary third-order B-spline are provided in Figure 11. The

equation in matrix form is given by P € R"*™ = [p1, ..., pm]
and the vector with basis function looks like Equation 27.
w1 (1)
w(y) = : : 27
Wi (1)

The derivative b’(¢)) of the spline b(¢)) to the phase ¥ is
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computed as Equation 28.

W) = Z; Yitor :

28
1= Vit (28)

(Piv1 —Pi) Wio
which renders a trajectory of degree o — 1 [36].

B. Fixed-knot multi-dimensional B-spline fitting

Given the data point matrix M € RN*" control points
matrix P € R™*™ and basis matrix W € RNX™  where
N is the amount of data measurements. The entries of W are
computed based on the phase location ), of each measurement
k € {1,..., N}, using the recursion formula of [16]. To fit the
control points P; € R'*™ per dimension j € {1,...,n} on
the data points in M; € RV 1| the least squares cost functions
that are minimized for each dimension are [17]:

Jy = (M, - WPHT (M —wPTl)
' (29)
In—1= (M1 = WP_ )" (M, 1 - WP,_,)
Jo = (M, - WPHT (M, - WPT).

Using the least squares, the solutions to these minimizations

that follow from setting gl‘],j_ = 0, are given by Equation 30
J

P = MTW (WTW)A
P - M,?_lw (WTW)_I (30)
P, = MTW (WTW)_1 :

Concatenating these equations, the minimization for all dimen-
sions can be done at once:

P, MT

L )
P, M, _, (31)
P, M7

APPENDIX B
INDEPENDENCE OF THE ITERATIVE LEARNING
CONTROLLER WITH RESPECT TO THE DAMPING FACTOR

Consider Equation 21, while disregarding the constraints.
The ILC trajectory update then looks like Equation 32.

Puy = (MZ),CW;C + ﬂPu,H) (wak + 61)_1 (32)

with position ILC torques from Equation 15 and by ignoring
the velocity terms, the matrix M{ for the ILC becomes:

Mz,k = |:uref('lzjk_N), sy uref("zjk)} + 9p [ek_N, - ,ek] .
(33)



Equation 18 can now be filled in for g,. Considering the
torque trajectory from Equation 1 and W from Equation 20,

Equation 33 is equal to Equation 34.
M, = Pui Wi + 39,E, (34)

where E = [ex_n, ...
tion 32 to form:

P = (Pui 1 (WI Wy + 1) + 57, EW})

,ek]. This can be substituted in Equa-

(Wiwi+ 1) - (35)

T —1
=P 1 + f,EW, (Wk W, + /31) .

Considering that the entries W, are basis function with values
between one and zero (see appendix A) and the damping factor
B is chosen between 100 and 10000 in the experiments, the
updated torque trajectory is approximately as in Equation 36.

Pui ~Pus 1+ B1,EW, (B1) "

(36)
= Pu,k—l + ’YpEWk,

such that the update is independent of 5 if S1 > WfWk.

APPENDIX C
CYCLIC TRAJECTORY UPDATES

This section address cyclic updates of the motion trajectory.

A. Damped updates

Next to the damped least squares method trajectory esti-
mation method of Section VI a cyclic update method was
investigated. The two methods are referred to as the a- and (-
method corresponding to their respective learning rates. This
« method updates the full trajectory every cycle, as a linear
combination of the current trajectory estimate and previous
trajectory. The damping factor « is used as in Equation 37.

P =(1-a)Py+aP, 37)

where 151+1 is the spline estimate using Equation 4 and P; is
the estimate after the previous cycle . The update rule then
becomes:

AP = (1 —a)[Pry1 — Pyl (38)

B. Comparing cycle and measurement-wise updates

A disadvantage with respect to the [S-method is that the
amount of computations needed is not spread out over the
measurements, such that they need to be chopped up artificially,
which complicates the code. Moreover, the update can be as-
sessed directly during the demonstration in the S-method, as it
also influences the future reference signals due to the continuity
of the estimated reference trajectory.

To investigate how the measurement-wise updates relate to
the cyclic updates in terms of damping, the memory size N
of Section VI is increased, such that there are measurements
available around the whole trajectory and the weight matrix
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W is full column rank. The measurements of the a- and -
method are set equal, as well as the update frequency. If the
constraints are disregarded for the sake of the argument, the
damping factors of the two methods can be compared when the
updates are set equal, such that AP, = APg. This results in
Equation 39

T(W'W 4+ 81)7 =T(1 —a)(W'W)™1 (39
with
r=M"W-P,_ ,W'W. (40)
(WIW + pT)(WTW)~!
=1+ B(Wiw)~! (41)
= (WIW) Y (WTW + 31)
T(WIW) =T(1 — a)(WI'W + 3I) @)
=TW'W —TaW'W + T'3(1 — )
Equation 41, results in Equation 42, such that:
r—% wiw-=rg. (43)
11—«

This equation does not hold for any W and I'. The above and
the fact that the updates of the S-method are not necessarily at
each cycle illustrates that the learning rate /3 can not be related
directly to the forgetting factor a.

The previous trajectory is completely overwritten for @ =
B = 0 and there is no update for & = 1 that corresponds to
[ — .

C. Forgetting factors

To assess which values of either 8 or « are optimal for the
average human, we refer to the work of [34]. They investigate
human rehabilitation by a robot, which can be seen as the oppo-
site of the approach of this work. They find that the forgetting
factor of the robot needs to be less than that of the human,
such that the robot updates his action faster than a human to
remain challenging. It seems natural that the forgetting factor
in the opposite case needs to be higher than that of the human,
such that the robot learns slower than the human. The factors
« and S in this work refer to changes in the trajectory instead
of the force, but supposing that the process is the similar, the
two factors do still not have a similar effect. This is because,
in the case of [34] the forgetting factor of the robot causes
his action to be unpredictable enough to let the human learn
from its actions. In our case, setting it high enough would make
its actions predictable such that the human knows what it is
doing. However, because there is no exploration in the IKT
algorithm, actions of the robot do not become unpredictable in
case of a small forgetting factor and the robot does not need to
be challenged. However, the result of [34] can be used for the
iterative learning controller.

The value for 8 must remain sufficiently high, such that the
condition of the weight matrix remains sufficient. It has also
been analyzed if 3 could be updated in a similar fashion as



the damping factor the Levenberg-Marquardt algorithm [37].
Here the damping would vary depending on the residuals of
Equation 44. However, this is not suitable as adaptation. When
the teacher thinks the trajectory is good, he will deviate little
from the estimated trajectory and the residuals will be small.
Decreasing the damping will increase the update, such that the
trajectory will be updated more none the less, interfering with
the teachers intentions.

D. Measurement weights in the spline fit.

The use of different weights on the measurements has been
investigated briefly in simulation, depending on how far they
are in the past. The damped least squares problem of Equa-
tion 44 would then be transformed into Equation 44 with T as
in Equation 45 such that y,_;+1 > yr—;.

Pl [MIW, +Ps1] [W,DWE + 51 T7]
Al = 0 T 0

(44)

T = diag([Ye—1,Yk—2,- - Vh—N])s (45)

The influence was not significant however, with respect to the
case as presented in the experiments.

APPENDIX D
COUNTERACTING PERSISTENT ERRORS

This section discusses how the human can be aided in the
teaching process. It considers errors induced by external dis-
turbance, which are separated in errors that vary and errors
that persist over different cycles. The section presents two
approaches to counteract persistent errors in the learning pro-
cess. The first method corrects the reference trajectory using
an error measurement trial. The second introduces the use of
prior knowledge concerning the desired behavior of the robot
to adjust the trajectory after each update.

A. Errors in incremental kinesthetic teaching

Errors that prevent an optimal learning process are divided
into those that vary between cycles and those that persist over
different cycles.

Fluctuating errors are either due to external disturbances or
errors of the human teacher. Damping the trajectory updates
counteracts these effects. They are also counteracted by the
teacher during subsequent cycles.

Persisting errors arise for example due to gravity. It is dif-
ficult to maintain the torso height of the robot over multiple
cycles. Other examples include friction, Mass inertia that weak-
ens curves or play in the joints causing oscillations. Erroneous
demonstrations decrease support from the controller, making it
increasingly difficult to counteract them.

Moreover, PD feedback control does not counteract persist-
ing errors, resulting in a discrepancy between the performed
and demonstrated motion. The teacher can account for this by
introducing an offset between the demonstrated and the target
motion. However, this increases difficulty of the teaching task
and is not always possible due to joint limits.
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B. Error sampling trial

The first method to counteract persisting errors estimates
their influence by doing an error measurement cycle between
every certain amount of demonstration cycles. Consider the
position trajectory control points P;,; 4 and error sample tra-
jectory P41 . and let the previous trajectory be given by P;.
The change in the trajectory due to the persistent errors is
estimated as:

AP i1c=Pr1.— Py (46)

The change in the trajectory during a demonstration is esti-
mated as in Equation 47.

APit1,0=Pi114— Py, 47
such that trajectory update is done as in Equation 48.
P =a (AP0 — APy ) + Py, (48)

where  is the update weight as in Appendix C.

However, the method does not filter out the persistent errors
accurately, because the teacher corrects implicitly for some of
them by showing the target motion. The robot is not certain
whether a demonstrated motion is to counteract the errors or
because it is the target motion. The method over-corrects.

C. Assistance using performance information

The second method uses knowledge in terms of correct
behavior, to asses what kind of correction is needed. The correct
behavior is encoded as an optimization function, that depends
on the control points P, of joint trajectory. A gradient descent-
like method reduces the function after every trajectory update.

Consider as example the torso height z. When z decreases
every demonstration inverse kinematics can be used to increase
the mean of z over the trajectory.

Zmean = f(qu be) (49)
such that:
5Z’meun 5T
=J, (Pg, P 50
5Pq z ( q» fb) ( )

where  indicates the vectorization of a matrix, J. (Pq, P )
is the jacobian of 2,4y, With respect to the joint configuration
control points P4 as a function of the control points of the es-
timated floating base state trajectory P y;,. Equation 50 reduces
the height error e, = Zmean — Zref:

Pr=pP

S=P, — eI (P, Ps) (51)

This example is not model free, as a kinematic model of the
robot is needed to estimate the height of the torso. The floating
base coordinate points P salong the trajectory are estimated
using information of the robot’s joint positions, ground contact
switches and IMU data, using the extended Kalman filter, as
shown in [38] for example.
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Fig. 12: The initial and target knee-hip trajectories for the
simulated experiment. The human needs to convert the initial
trajectory to the target trajectory. The trajectories are encoded
as a 3rd order spline with 15 control points. Zero angles
indicate that the hip is straight down and the knee is
completely extended. Positive angles indicate knee flexion and
hip extension.

APPENDIX E
INCREMENTAL KINESTHETIC TEACHING ON A SIMULATED
ROBOT

The experiment as presented in Section VII is also done in
simulation using a fixed base model of one leg of the TUlip
robot. The influence of different values for the memory size N
and the damping factor [ are investigated.

A. Experimental setup

The human needs to adapt an initial hip-knee trajectory as
shown in Figure 12. Each trial starts with one cycle in the ILC
learning mode. After this the human can press the first button of
the joystick to start the IKT mode and press it agaiTIhlA to return to
the ILC mode. A Logitech Force 3D Pro joystick is
used to disturb the leg. Pushing the joystick to the front and
back (negative and positive along joystick axis 1) indicated
positive and negative knee torques respectively. Left and right
joystick pushes (negative and positive along joystick axis 2)
indicate negative and positive hip torques respectively.

B. Discussion

The results are shown in Figure 13. The optimum of 3 is
due to a trade off between learning rate and stability. For values
of (3 higher than its optimum, the learning rate decreases, but
the learning process remains stable. This means that the per-
formance measures will converge to the same level for higher
values of (3, given enough trials. For values of 3 smaller than
the optimum, the learning process becomes less stable. For low
damping factors, mistakes by the human are not damped out.
This indicates that the value optimal value of 5 decreases with
the control ability of the human. The physical interaction be-
tween the human and the robot is likely to increase this ability,
such that lower optimal values and thus faster convergence are
expected in the experiment.
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Fig. 13: Values of ()05 and Q. for different damping factors
(. It was considered to use the beta values of

B8 = 100, 300, 1000, 3000, 10000, but at 8 = 100 the trajectory
got mangled, such that the subject was not able to complete the
trial. The knee and hip input torques are computed as

Uhip = 272 and Ugpee = —271, Where 7 and 7 are the
joystick angles of axes 1 and 2 respectively. The a memory
size is N = 10. A measurement was done every 0.05 seconds.
The velocity trajectory does not improve for 8 = 300. The
fastest convergence is at § = 1000. The data represents means
of five experiments + 95% confidence interval.

APPENDIX F
PIECEWISE-AFFINE TRAJECTORY FOLLOWING WITH
VECTOR FIELDS

This section discusses an alternative piecewise trajectory
encoding method and how it is used to create state-dependent
reference tracking.

A. Encoding the motion as a piecewise affine trajectory

The idea is based on [39]. In this work a vector field is created
using a piecewise approximation of the trajectory with a finite
number n of points p;, connected by affine segments I, such
that I; connects points p; and p;; The vector field consists of
subfield V; corresponding to each segment I;. Each subfields is
an affine system consisting of a contraction part perpendicular
to the segment as in Equation 52 to force the robot to the
trajectory and part that flows parallel to the segment.

Vi=Vii+V
VLiii:ALiw‘FbLi
Viis = & = by,

with
(52)

where x is the state vector and A |; and b, ; are the affine
system matrices of the contraction field and b)|; determines the
parallel field. To provide continuity, the instantaneous field is a
linear combination of two active subfields:

V=001-x)Vi+xVis1. (53)



Here 0 < x < 1 is zero when « lies besides the midpoint of
l; and it goes to one when z is next to the midpoint of ; 4,
when this happens the active segments switch (: = ¢ + 1).
In [39] affinity of the vector field is used to calculate chi in
advance by solving the equations of motion for the vector field.
The reference is state-dependent. To create a state-dependent
reference y must depend on «. This is done using Equation 54.

Aipo —Dip1 .
= —" - th
X IAVE AV W 54)
Aj=|pj — =z

The switching is realized by setting A, 10 < A; = ¢ = i +
1. When a force pushes the robot back along the trajectory, a
switch back is also possible such that A;_y < A4 = @ =
i— 1.

The use of this piecewise affine approximation has the disad-
vantage that the reference tracking fails when angles between
the piecewise affine segments become sharp er than 90°, as is
shown in [39].

B. State dependent tracking of the piecewise trajectory

The dynamics resulting from the use of the algorithm of the
previous subsection is defined by the vector field parameters
and controller parameters. To decrease the amount of tuning
parameters the use of position control provides contraction
towards a segment. It is transformed to work perpendicular
to the trajectory. Velocity reference tracking creates a force in
the direction of the trajectory. Setting the closest point of the
trajectory to current configuration of the robot as reference,
removes the need of a piecewise affine approximation.

O

Fig. 14: The figure shows the joint configuration & and linear
trajectory segment 1; ;. The desired velocity vector X at &, lies
along tangent 7 X on &. e is thus perpendicular to &*.

Let a trajectory be defined as the manifold ¥ C S = {&|& =
bq(¥)|Y € [¥;,¥,]} with  as the current joint configuration
of the robot (see Figure 14). Position-wise it is satisfactory if
@ € X. The controller achieves this by minimizing position
error that is the distance between the joint configuration and
its closest point on the trajectory in terms of the Euclidean
distance: e = gyef(V*) — .

As shown in Figure 14 the component of e in the direction
of x* is always zero, such that the component of actuating
forces and torques due to the position tracking of * never act
in the direction of the velocity reference tracking of &*. No
transformation of the position control is required.

Looking at the above, it might be noticed that the weighted
activation of two consecutive segments of the piecewise affine
trajectory is actually a way of approximating gye(¢)*):

Gret (V") & (1 — X)Pj + XPj+1- (55)

APPENDIX G
A MODEL-BASED STEPPING TRAJECTORY

The following section provides notes on the model-based
design of a walking motion.

A. Stepping phases

Consider a bipedal robot, consisting of a trunk and two legs
with six floating body and twelve joint degrees of freedom
(DOF). Each footstep of the robot is separated into the follow-
ing four phases depending on the ground contact conditions.

1) Double stance Where both feet are kept on the ground,
constraining 6 x 2 = 12 DOF.

2) Push off The back foot rotates around its front edge, such
that the amount of constrained DOF becomes 6 x 2 —1 =
11

3) Swing The back foot is free and moves to a new posi-
tion in front of the other foot, such that 6 DOF remain
constrained.

4) Heel Strike The swing foot heel is in contact with the
ground, while the toes are still in the air

After heel strike the role of the feet switch and the robot can
either go back to double stance, or go to the push off phase
directly, when its center of mass (COM) has enough forward
momentum. At each phase the remaining DOF need to be
controlled to follow some trajectory or go to some point, in
such a way that the ground contact constrains are not violated.
As the robot would fall down in the latter case.

The presented method is to design a rough trajectory for the
the six DOF (3 rotational and 3 linear) of the trunk and one for
every unconstrained DOF of the swing foot.

B. Linearized hybrid dynamics

A suboptimal one-step-ahead MPC controller is designed to
convert the desired trunk and foot trajectories to feasible joint
trajectories, by solving a quadratic program (QP). Different
methods can be found in the literature (e.g. [40]) that linearize
the robotic system and design an LQR approach to stabilize the
system. However, these linearizations require derivatives of the
gravitational and Coriolis matrices V(q(k)) and C(q(k), q(k))
with respect to the discrete states g(k) and g(k) at discrete
time instance k to be defined. While computing the derivative
of V(q(k)) is doable but computationally extensive for sys-
tems with a large dimensionality, computing the derivative of
C(q(k),q(k)) is remains cumbersome. Operating points are
mostly set to have zero velocity to cancel out the the Coriolis
forces altogether. In case of a walking motion, this assumption
is not accurate. Using a one-step-ahead MPC control approach
does not require derivatives of the matrices of the EOM of the
robotic system as defined in Equation 56 with respect to the



states, because they are approximately constant during one time
step. Moreover, the discretization allows rigid contact dynamics
to be incorporated in the dynamic system.

Consider the equations of motion (EOM) of the free floating
robot as Equation 56.

M (a(b))d(8) = Olalh) d)AE) + V(ath) + Buh)
The state is defined by the positions of the DOF ¢ and their
velocities ¢. The reduced mass matrix is given by M(q),
the Coriolis terms by C(gq, q), gravitational pull V(q) and
input matrix B with joint torques u. Forward Euler is used to
discretize these equation as it creates a linear dependency on
the unknown velocity prediction g(k + 1):

M(q(k))q(k + 1) = M(q(k))q(k) + hC(q(k),
+ hV(q(k)) + hBu(k)

q(k))a(k)

(57)
where the time ¢ = hk for step k and step size h. For a
small time step, the matrices that depend on the positions and
velocities are assumed to be constant.

Rigid ground contact constraints are added depending on
the step phase. As the stance foot is not allowed to leave the
ground, vertical velocity constraints are added using Lagrange
multipliers A, (k + 1). A, (k + 1) needs to be positive as it
represents the ground forces. Moreover, constraints are added
using a linear approximation of the friction cone with the
horizontal ground impulses being given by Ap(k + 1) and the
friction coefficient, given by p to prevent scuffing. This results
in the equalities of Equation 58.

M(k)g(k + 1) + J(k)" X, (k + 1)
+In (k) AR (k + 1) — hBu(k) = M(k)q(k)

+ hC(k)q(k) + hV (k)

—pAy(k+1) = Ap(k

.u)‘v(k + ) + )‘h (k

(58)

Here, J, (k) and J, (k) are respectively the Jacobians relating

the velocities perpendicular and parallel to ground to the veloc-
ity states.

C. Computing joint torques and trajectories from trunk and
swing foot positions

The Euclidean space robot trunk and swing foot positions s
velocities § need to follow some space trajectory with respect
to the stance foot. Towards this goal, minimal controller torques
u need to be found that get the trunk and swing foot as close as
possible to the desired trajectory.

The position is discretized using backward Euler:

s(k+1)—s(k)
—

s(k+1) = (59)
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Because s(k + 1) needs to be as close as possible to the desired
position sg4, the desired velocity towards the trajectory is set to
Equation 60.

. sq(k) —s(k

L IUEC)
For a suitably defined reference the trajectory and position ref-
erences are always perpendicular, as is stated in Appendix F-B.
The desired velocity along the trajectory is defined as 34 (%),
such that the desired velocity is given by $4(k) = $4,1 (k) +
34, (k). The value to be minimized is given by Equation 61.

(60)

(8(k +1) — 8a(k))"
u” (k)Ru(k)

arg min Qs(8(k+1) — 8a(k))

u

(61)
with Q, and R as tuning parameters. The unknown vector x is
concatenated as in Equation 62.

gk+1)
el

An(k+1)
This results in the following QP-problem:

z* = argmin T T (k)QT(k)x — c*' (k)QT(k)x

x

s.t. C(k)x = d(k) (63)
A(k)x < b(k)
with
Q, o
-3 }
[Js(k) 0 0 O
T(k): 0 I 0 0}
Sd J_(k) + Sq ol (k)
c(k) = 0
i 0
M(k) —hB J,(k)" Jn(k)"
Ck)= I, (k) © 0 0
[ Jn(k) O 0 0
[M(k)q(k) + hC(k)q(k) +hV (k)
d(k) = 0
i 0
(0 0 —puI -1
A=10 0 —uI +I
0o -I o
[0
b= |0
0

It can be solved by MATLAR’s quadprog, however [40] proposes
an easily implementable active-set algorithm that is about 10
times faster than using quadprog. Moreover such an algorithm
can be compiled such that it can be implemented on a robot in
the form of an xPC-target.



e 0

PCA trans-
formation

motion
demon-
stration

vector field
creation

-

inverse
PCA trans-
formation
N\ J

controller

Fig. 15: Scheme of IKT scheme with an elliptical motion
representation. The motion’s first two principle components
are estimated and an ellipse is fitted on their scores. A vector
field is created to converge to the elliptical limit cycle. It
determines the control reference. The reference is transformed
back to work space using the inverse PCA transformation.
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Fig. 16: Fit of an elliptical vector field on trial data. An ellipse
is fitted using the method as presented by [41]. The vector field
is created using a generalization of the work of [42] that
creates a circular vector field, used in robot soccer to
circumvent obstacles.

APPENDIX H
ELIPTICAL VECTOR FIELD

An alternative approach to encode a cyclic reference trajec-
tory as an elliptic vector field is presented in this section. The
method is displayed in Figures 15 and 16.

The ellipse fitting method outputs the elliptical best fit on
given data as parameters of the implicit Equation 64.

ax? + brixo + cx% +dri+exs+ f=0 (64)

with variables x; and x, and parameters a, b, ¢, d, e and
f [43]. As the ellipse is a transformation of the unit circle,
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these parameters can be converted to a rotation, translation
and scaling of the description of the circle as displayed in
Equation 65

arctan (072%) forb #£ 0

a=190 forb=0,a<c
/2 forb=0,a>c
[2cd—be
=5 (65)
B = 2aeDbd:|
L™ D

v/ 2¢(a+c+C)
D
v/ 2¢(at+c—Q)

D
with ¢ = \/(a —c)2 + b2, & = ae? + cd? — bde + Df and
D = b? — 4ac [43]. Here « is the angle of rotation, and 3 and
~vare the translation and scaling vectors for x; and zo direction.

The equations of motion that govern this vector field of [42]
are described in affine form as in Equation 66.

y=1

y=0A(y)y
W(Q - ,ng) 1 0 Y1 (66)
= -1 w2—g"y) 0| |y,
0 0 ol |1

where o determines the velocity and w determines how quick
the system converges to the limit cycle. The elliptical vector
field is computed as a similarity transformation [44] with states
x = Ty, with homogeneous matrix:

. cosa —sina
T = diag() [sina CoS (v } A
0 |1

Differentiating & gives & = Tg + Ty = T4%. Substituting
g = T 'z and y = T ' into Equation 66 gives that the
equations of motion are given as in Equation 67.

z=TA(g)T 'z with

- 67)
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