
Delft Center for Systems and Control

CONFIDENTIAL

A General Purpose Control De-
sign For Vision Based Au-
tonomous Quadrotor Navigation

Manuel Rucci

M
as

te
ro

fS
cie

nc
e

Th
es

is

mscconfidential

A General Purpose Control Design For
Vision Based Autonomous Quadrotor

Navigation

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Manuel Rucci

October 28, 2017

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work described in this thesis was carried out in cooperation with the Computer Vision
Aerial Robotic group of the Technical University of Madrid. Their cooperation is hereby
gratefully acknowledged.

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
A General Purpose Control Design For Vision Based Autonomous

Quadrotor Navigation
by

Manuel Rucci
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: October 28, 2017

Supervisor(s):
prof.dr.ir. Pascual Campoy

Reader(s):
prof.dr.ir. Javier Alonso Mora

dr.ir. Joris Sijs

ir. Christophe De Wagter

Abstract

Quadrotors are unmanned aerial vehicles (UAVs) which are controlled by changing the angu-
lar speed of the four rotors. In the recent years, they have received a large attention from the
research community thanks to their vertical take-off and landing capability, small dimension,
payload, flight endurance and low price which it has increased the interest in making them
completely autonomous. In this thesis two different problems related to the autonomous
quadrotor navigation field have been studied. The first one is how it is possible to drive the
quadrotor from its current pose (position and orientation) to the desired one assuming that
the quadrotor’s full states measurements (position, orientation,velocity and acceleration) are
available. The second problem deals with the use of visual informations either acquired by the
front or bottom camera to place the quadrotor at a desired distance from a chosen static or
moving object keeping the latter centered in the acquired camera image without knowing nei-
ther the quadrotor’s pose nor the object one. To solve the first problem a navigation controller
framework able to communicate with both parrot AR. Drone 2.0 and Pixhawk autopilot has
been designed. A cascade control design made up by seven 2DOF PID controllers divided into
five different modules (horizontal position controller, vertical position controller, horizontal
speed controller, vertical speed controller, yaw controller) has been developed to ensure that
the navigation controller framework is able to simultaneously track the desired yaw angle (ψ?)
together with either the desired velocities (ẋ?, ẏ?, ż?) or the positions (x?, y?, z?). To solve the
second problem a vision based planner made up by three different modules (perception, image
state estimator, image based visual servo) has been developed. Planar ArUco markers have
been used to avoid the need of designing different specific objects’ detectors. Their corners
have been extracted by the ArUco detector located inside the perception module. Inside the
image state estimator module a Kalman filter with velocity constant model has been designed
for both estimating the corners when a detection is suddenly not available and providing to
the image based visual servo module feedbacks data (estimated corners) at a specific chosen
frequency. An image based visual servo algorithm has been implemented to compute the
desired quadrotor’s translational velocities that the navigation controller framework has to
track to minimize the error between the estimated and the desired corners where the latter
are computed as a function of the desired distance between the quadrotor and the visual
marker. To validate the navigation controller framework and the vision based planner a mis-

Master of Science Thesis CONFIDENTIAL Manuel Rucci

ii

sion has been chosen in which firstly the quadrotor autonomously reaches a first predefined
desired pose, secondly it approaches up to a desired distance a static visual marker using the
front camera image data, thirdly it reaches a second predefined desired pose and finally it
autonomously lands using the bottom camera image information either on a static or moving
visual marker. The mission has been tested in real flight with Parrot AR. Drone 2.0 and
in simulation using Gazebo simulator in combination with PX4 Software-In-The-Loop. Both
the navigation controller framework and the vision based planner have been developed using
ROS as a software framework to guarantee system communication and all the algorithms have
been coded using C++ as a programming language.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Table of Contents

Preface xvii

Acknowledgements xix

1 Introduction 1
1-1 Motivation . 1
1-2 Problem description . 2
1-3 Goals . 4
1-4 Approaches . 5

2 Navigation controller framework 7
2-1 Two degree of freedom PID controller . 11

2-1-1 Inputs . 13
2-1-2 Outputs . 17
2-1-3 Algorithm . 18

2-2 Horizontal position controller module . 20
2-2-1 State space representation . 20
2-2-2 Inputs . 21
2-2-3 Outputs . 23
2-2-4 Algorithm . 24

2-3 Vertical position controller module . 24
2-3-1 State space representation . 24
2-3-2 Inputs . 25
2-3-3 Outputs . 26
2-3-4 Algorithm . 27

2-4 Horizontal speed controller module . 27
2-4-1 State space representation . 27

Master of Science Thesis CONFIDENTIAL Manuel Rucci

iv Table of Contents

2-4-2 Inputs . 28
2-4-3 Outputs . 32
2-4-4 Algorithm . 32

2-5 Vertical speed controller module . 33
2-5-1 State space representation . 33
2-5-2 Inputs . 34
2-5-3 Outputs . 36
2-5-4 Algorithm . 36

2-6 Yaw controller module . 37
2-6-1 State space representation . 37
2-6-2 Inputs . 37
2-6-3 Outputs . 39
2-6-4 Algorithm . 39

3 Vision based planner to approach either a static or moving object 41
3-1 Perception module . 43

3-1-1 Inputs . 44
3-1-2 Outputs . 48
3-1-3 Algorithm . 56

3-2 Image state estimator module . 57
3-2-1 Inputs . 58
3-2-2 Outputs . 60
3-2-3 Algorithm . 63

3-3 Image based visual servo controller module . 64
3-3-1 Inputs . 64
3-3-2 Outputs . 68
3-3-3 Algorithm . 74

4 Experiment 77
4-1 Experiment description . 77
4-2 Experiment requirements . 80

4-2-1 State estimator . 81
4-2-2 Mission planner . 82
4-2-3 Autopilot drivers . 84
4-2-4 How to use the navigation controller framework to control an AR. Drone

2.0? . 85
4-2-5 How to use the navigation controller framework to control a quadrotor

equipped with Pixhawk autopilot? . 86

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Table of Contents v

5 Results 89
5-1 Simulation experiment . 89

5-1-1 Default parameters used in the simulation experiment (Simulation Pixhawk
autopilot) . 89

5-1-2 Simulation experiment results . 92
5-2 Real flight experiment . 100

5-2-1 Default parameters used in the real experiment (AR Drone 2.0)) 100
5-2-2 Real flight experiment results . 103

6 Conclusions 113
6-1 Navigation controller framework conclusions . 113
6-2 Vision based planner to approach either static or moving objects conclusion . . . 114
6-3 Future works . 115

6-3-1 Navigation controller framework future work 115
6-3-2 Vision based planner future work . 116

A Quadrotors 117
A-1 Parrot AR.Drone 2.0 (Parrot autopilot quadrotor) 117
A-2 Parrot Bebop 2.0 (Parrot autopilot quadrotor) 118
A-3 Eagle (Pixhawk autopilot quadrotor) . 120
A-4 Sparrow (Pixhawk autopilot quadrotor) . 121

B Navigation Controller Framework Appendix 123
B-1 Quadrotor dynamics . 123

B-1-1 Translational dynamic . 123
B-1-2 Rotational dynamic . 125
B-1-3 Simplified quadrotor model . 128

B-2 Navigation controller framework controller tuning experiment results 128
B-2-1 Multiples velocity ẋ?W steps . 128
B-2-2 Multiples velocity ẏ?W steps . 129
B-2-3 Multiples position x?W steps . 130
B-2-4 Multiples position y?W steps . 132
B-2-5 Multiples position z?W steps . 133
B-2-6 Multiple yaw ψ?W steps . 134
B-2-7 Navigation controller + EKF mission experiment 135

B-3 Code used to send Pixhawk autopilot commands using the mavros package . . . 140

C Vision Based Planner Appendix 143
C-1 Distance estimation . 143
C-2 Time derivative of a 2D image point . 145
C-3 Derivation of the distance between two 2D image coordinate points 148

Master of Science Thesis CONFIDENTIAL Manuel Rucci

vi Table of Contents

Glossary 151
List of Acronyms . 151
List of Symbols . 151

Manuel Rucci CONFIDENTIAL Master of Science Thesis

List of Figures

1-1 Combination of the three areas of research to achieve fully autonomous quadrotor
flight . 2

2-1 Navigation controller framework to control both quadrotor equipped with Parrot
and Pixhawk autopilot . 7

2-2 Navigation controller framework references
(
x?W , y?W , z?W , ẋ?W , ẏ?W , ż?W

ψ?W
)
, EKF or MOCAP feedbacks

(
x̂W , ŷW , ẑW , ψ̂W , ˆ̇xW , ˆ̇yW , ˆ̇zW

)
and nav-

igation controller framework controller outputs
(
θ?R, φ?R, ż?R, ψ̇?R, T ?R

)
. The

controller references and the feedbacks are expressed in world (W) fixed coordinate
frame whereas the controller outputs are in robot (R) coordinate frame. 11

2-3 2DOF PID Controller block diagram . 12
2-4 Anti wind up using back calculation block diagram 16
2-5 This figure shows the input and output of the discrete 2DOF PID controller

(2dofP id(x?,x̂)→ẋ?) and of the discrete open loop plant model (x̂(z)
ẋ?(z)) used to

tune it. The output of the horizontal position controller module is (ẋ?W). 22

2-6 This figure shows the input and output of the discrete 2DOF PID (2dofP id(y?,ŷ)→ẏ?)
controller and of the open loop discrete plant model (ŷ(z)

ẏ?(z)) used to tune it. The
output of the horizontal position controller module is (ẏ?W). 23

2-7 This figure shows the input and output of the discrete 2DOF PID (2dofP id(z?,ẑ)→ż?)
controller and of the open loop discrete plant model (ẑ(z)

ż?(z)) used to tune it. The
output of the vertical position controller module is (ż?W) 26

2-8 This figure shows the input and output of the discrete 2DOF PID (2dofP id(ẋ?,ˆ̇x)→θv
)

controller and of the open loop discrete plant model (ˆ̇x(z)
θv(z)) used to tune it. It also

shows how the controller output (θv) is used in combination with the estimated
yaw angle (ψ̂) and the (2dofP id(ẏ?,ˆ̇y)→φv

) controller output (φv) to derive the
output of the horizontal speed controller module (θ?R). 30

Master of Science Thesis CONFIDENTIAL Manuel Rucci

viii List of Figures

2-9 This figure shows the input and output of the discrete 2DOF PID (2dofP id(ẏ?,ˆ̇y)→φv
)

controller and of the open loop discrete plant model (ˆ̇y(z)
φv(z)) used to tune it. It also

shows how the controller output (φv) is used in combination with the estimated
yaw angle (ψ̂) and the (2dofP id(ẋ?,ˆ̇x)→θv

) controller output (θv) to derive the
output of the horizontal speed controller module (φ?R). 31

2-10 This figure shows the input and output of the discrete 2DOF PID (2dofP id(ż?,ˆ̇z)→Tv
)

controller and of the open loop discrete plant model (ˆ̇z(z)
Tv(z)) used to tune it. It also

shows how the controller output (Tv) is used in combination with the (scalethrust)
value to derived the output of the vertical speed controller module (T ?R≈W). . 35

2-11 This figure shows the input and output of the discrete 2DOF PID (2dofP id(ψ?,ψ̂)→ψ̇?)

controller and of the open loop discrete plant model (ψ̂(z)
ψ̇?(z)) used to tune it. Fur-

thermore, it also shows how to modify the yaw error to ensure that the quadrotor
will always rotate clockwise or counterclockwise depending on the direction in
which the yaw error is smaller. The controller output of the yaw controller module
is (ψ̇?R≈W). 39

3-1 The figure shows on the left side the desired pixel values (pink) computed knowing
the desired center location (u?5, v?5) of the visual marker on the image plane (τ?)
and the desired distance between visual marker and camera (d?mm). On the right
side is shown the image based visual servo control problem which consist in driving
the detected pixel points (red) towards the desired ones (pink). The aim of the
IBVS controller is to move the camera frame (C) attached with the quadrotor
itself such that the detected pixel points (red) appearing on the current camera
image plane (τ) will move towards the desired ones (pink). 42

3-2 Vision based planner combined with navigation controller framework 43
3-3 ArUco markers . 46
3-4 Illustration of World coordinate frame (W), Robot coordinate frame (R), Front

camera coordinate frame (Cf) and Bottom camera coordinate frame (Cb). For
both front and bottom camera frame a pinhole camera model has been chosen.
The World and Robot coordinate frame follow ENU convention. 48

3-5 The figure shows how given different desired center pixel coordinate values (u?5, v?5)
and a desired distance (d?mm) in millimeters between camera and visual marker is
possible to located the desired corners (pink) of the chosen ArUco marker freely
on the desired image plane (τ?). 51

3-6 This figure shows the output of the ArUco detector (red points) when the ArUco
marker has different orientation. 52

3-7 The figure shows how the detected corners (red) are independent from the ArUco
marker orientation. The latter only depends on the side and on the center of the
detected marker. 53

3-8 Illustration of the error terms. On the left image side the detected corners (red)
are shown. They are extracted independently from the marker orientation knowing
the detected center (u5, v5) and the side of the marker (sidepix). On the right side
the desired corners (pink) are illustrated. Respectively in red and pink have been
highlighted the 2D image coordinates values used to formulate the IBVS error. . 69

4-1 Frame convention used to express the Parrot AR Drone 2.0 Autopilots commands 86

Manuel Rucci CONFIDENTIAL Master of Science Thesis

List of Figures ix

4-2 Frame convention (ENU) used for the Navigation controller framework outputs
commands . 86

4-3 Frame convention used for the Pixhawk autopilot commands 87
4-4 Frame convention used for the navigation controller outputs 87

5-1 The figure shows the quadrotor’s (3D) trajectory associated to the quadrotor’s
mission 4-1. The simulation is performed in the Gazebo simulation environment
using the Pixhawk Software-In-The-Loop. The ground truth data are used to esti-
mate the quadrotor’s states (position,velocity,acceleration,orientation) expressed in
world coordinate frame. The numbers appearing on the figure are used to indicate
the mission task’s number that the quadrotor is facing. 92

5-2 The figure shows the (2D) quadrotor’s trajectory associated to the quadrotor mis-
sion 4-1 which it stands for how the quadrotor moves along the (x) and (y) direction
of the world coordinate frame. The numbers appearing on the figure are used to
indicate the mission task’s number that the quadrotor is facing. 93

5-3 The figure shows on the left side the quadrotor’s ground truth estimated (x̂W)
position (red line) with respect to the desired reference (x?W) (blue line). On the
right side it is shown the output of the horizontal position controller module (ẋ?W)
representing the desired reference velocity along the (x) direction of the quadrotor
expressed in world coordinate frame. 93

5-4 The figure shows on the left side the quadrotor’s ground truth estimated (ˆ̇xW)
velocity (red line) with respect to the desired reference (ẋ?W) (blue line). On the
right side it is shown the output of the horizontal speed controller module (θ?R)
representing the desired reference pitch angle of the quadrotor expressed in robot
coordinate frame. 94

5-5 The figure shows on the left side the quadrotor’s ground truth estimated (ŷW)
position (red line) with respect to the desired reference (y?W) (blue line). On the
right side it is shown the output of the horizontal position controller module (ẏ?W)
representing the desired reference velocity along the (y) direction of the quadrotor
expressed in world coordinate frame. 94

5-6 The figure shows on the left side the quadrotor’s ground truth estimated (ˆ̇yW)
velocity (red line) with respect to the desired reference (ẏ?W) (blue line). On the
right side it is shown the output of the horizontal speed controller module (φ?R)
representing the desired reference roll angle of the quadrotor expressed in robot
coordinate frame. 95

5-7 The figure shows on the left side the quadrotor’s ground truth estimated (ẑW)
position (red line) with respect to the desired reference (z?W) (blue line). On the
right side it is shown the output of the vertical position controller module (ż?W)
representing the desired reference velocity along the (z) direction of the quadrotor
expressed in world coordinate frame. 95

5-8 The figure shows on the left side the quadrotor’s ground truth estimated (ˆ̇zW)
velocity (red line) with respect to the desired reference (ż?W) (blue line). On the
right side it is shown the output of the vertical speed controller module (T ?R≈W)
representing the desired reference thrust along the (z) direction of the quadrotor
expressed in robot coordinate frame. 96

5-9 The figure shows on the left side the quadrotor’s ground truth estimated (ψ̂W)
angle (red line) with respect to the desired reference (ψ?W) (blue line). On the
right side it is shown the output of the yaw controller module (ψ̇?W) representing
the desired reference yaw angle of the quadrotor expressed in world coordinate frame. 96

Master of Science Thesis CONFIDENTIAL Manuel Rucci

x List of Figures

5-10 The figure shows the evolution in time of the estimated marker’s corners and center
(start ×, end ◦) towards the desired ones (�). The number 6 appearing in the figure
it is used to underline that these results belong to the quadrotor task number 6.
The latter consists in approaching a static visual marker using the front camera
up to a desired distance which it is equivalent to drive on the current (2D) image
plane the estimated corners towards the desired ones. 97

5-11 The figure shows the trajectories of the estimated corners and center (start ×, end
◦) towards the desired ones (�) on the (2D) image coordinate plane. This result
is associated to quadrotor task number 6. 97

5-12 The figure shows on the left side the estimated distance (d red line) between
quadrotor and ArUco marker computed using Eq. (3-9) with respect to the desired
chosen value (d? blue line). On the right side it is shown the evolution in time of
the norm of the IBVS error given in Eq. (3-25). The result shows in this figure
belongs to the mission task number 6 in which the quadrotor uses the front camera
to approach a static object up to a desired distance (equal to 1m), minimizing the
error (|e|) between the estimated and the desired marker’s corners and center. . . 98

5-13 The figure shows the evolution in time of the estimated marker’s corners and center
(start ×, end ◦) towards the desired ones (�). This figure is associated to the
mission task number 14. The latter consists in making the quadrotor approaching
a static visual marker using the bottom camera up to a desired distance. This
task is equivalent to say that the quadrotor is autonomously landing on a static
platform on which the ArUco visual marker is placed. Indeed when the quadrotor
reach the desired a land command is sent. 99

5-14 The figure shows the trajectories of the estimated corners and center (start ×, end
◦) towards the desired ones (�) on the (2D) image coordinate plane. In particular
it represents how the estimated marker’s corners and center move towards the
desired ones. This figure is associated to the mission task number 14. 99

5-15 The figure shows on the left side the estimated distance (d red line) between
quadrotor and ArUco marker computed using Eq. (3-9) with respect to the desired
chosen value (d? blue line). On the right side it is shown the evolution in time of
the norm of the IBVS error given in Eq. (3-25). The result shows in this figure
belongs to the mission task number 14 in which the quadrotor uses the bottom
camera to approach a static object up to a desired distance (equal to 0.75m),
minimizing the error (|e|) between the estimated and the desired marker’s corners
and center. When this distance is reached the quadrotor lands on the platform. . 100

5-16 The figure shows the quadrotor’s (3D) trajectory associated to the quadrotor’s real
flight mission. The mission is performed using the AR Drone 2.0. An EKF is used to
estimate the quadrotor’s states (position (red line) ,velocity,acceleration,orientation)
expressed in world coordinate frame. The yellow arrows are used to represent the
quadrotor estimated yaw angle during the mission. The purple line represents the
ground truth data measured during the Approach_to_an_object (visual servoing)
tasks (6 and 14). The latter shows that the quadrotor is moving correctly toward
the goal identified by the dashed blue line although the estimation of the position
provided by the EKF (red line) is wrong. This occurs because during task 6 and
14 only EKF velocity measurements and visual information are used. The numbers
appearing on the figure are used to indicate the mission task’s number that the
quadrotor is facing. 103

5-17 The figure shows the (2D) quadrotor’s trajectory associated to the quadrotor mis-
sion which it stands for how the quadrotor moves along the (x) and (y) direction
of the world coordinate frame. The numbers appearing on the figure are used to
indicate the mission task’s number that the quadrotor is facing. 104

Manuel Rucci CONFIDENTIAL Master of Science Thesis

List of Figures xi

5-18 The figure shows on the left side the quadrotor’s EKF estimated (x̂W) position
(red line) with respect to the desired reference (x?W) (blue line). The ground
truth position (x̂WMOCAP) (yellow line) is provided for a comparison purpose. On
the right side it is shown the output of the horizontal position controller module
(ẋ?W) representing the desired reference velocity along the (x) direction of the
quadrotor expressed in world coordinate frame. 104

5-19 The figure shows on the left side the quadrotor’s EKF estimated (ˆ̇xW) velocity (red
line) with respect to the desired reference (ẋ?W) (blue line). The ground truth
velocity (ˆ̇xWMOCAP) (yellow line) is provided for a comparison purpose. On the
right side it is shown the output of the horizontal speed controller module (θ?R)
representing the desired reference pitch angle of the quadrotor expressed in robot
coordinate frame. 105

5-20 The figure shows on the left side the quadrotor’s EKF estimated (ŷW) position
(red line) with respect to the desired reference (y?W) (blue line). The ground
truth position (ŷWMOCAP) (yellow line) is provided for a comparison purpose. On
the right side it is shown the output of the horizontal position controller module
(ẏ?W) representing the desired reference velocity along the (y) direction of the
quadrotor expressed in world coordinate frame. 105

5-21 The figure shows on the left side the quadrotor’s EKF estimated (ˆ̇yW) velocity (red
line) with respect to the desired reference (ẏ?W) (blue line). The ground truth
velocity (ˆ̇yWMOCAP) (yellow line) is provided for a comparison purpose. On the
right side it is shown the output of the horizontal speed controller module (φ?R)
representing the desired reference pitch angle of the quadrotor expressed in robot
coordinate frame. 106

5-22 The figure shows on the left side the quadrotor’s EKF estimated (ẑW) position
(red line) with respect to the desired reference (z?W) (blue line). The ground
truth position (ẑWMOCAP) (yellow line) is provided for a comparison purpose. On
the right side it is shown the output of the horizontal position controller module
(ż?W) representing the desired reference velocity along the (z) direction of the
quadrotor expressed in world coordinate frame. 106

5-23 The figure shows on the left side the quadrotor’s EKF estimated (ψ̂W) angle (red
line) with respect to the desired reference (ψ?W) (blue line). The ground truth
angle (ψ̂WMOCAP) (yellow line) is provided for a comparison purpose On the right
side it is shown the output of the yaw controller module (ψ̇?W) representing the
desired reference yaw angle of the quadrotor expressed in world coordinate frame. 107

5-24 The figure shows the evolution in time of the estimated marker’s corners and
center (start ×, end ◦) towards the desired ones (�). The number 6 appearing in
the figure it is used to underline that these results belong to the quadrotor task
number 6. The latter consists in approaching a static visual marker using the front
camera up to a desired distance which it is equivalent to drive on the current (2D)
image plane the estimated corners towards the desired ones. To solve this task
front camera image information together with the EKF velocities and yaw angle
measurements have been used. 108

5-25 The figure shows the trajectories of the estimated corners and center (start ×, end
◦) towards the desired ones (�) on the (2D) image coordinate plane. In particular it
represents how the estimated marker corners and center move towards the desired
ones. 108

Master of Science Thesis CONFIDENTIAL Manuel Rucci

xii List of Figures

5-26 The figure shows on the left side the estimated distance (d red line) between
quadrotor and ArUco marker computed using Eq. (3-9) with respect to the desired
chosen value (d? blue line). On the right side it is shown the evolution in time of
the norm of the IBVS error given in Eq. (3-25). The result shows in this figure
belongs to the mission task number 6 in which the quadrotor uses the front camera
to approach a static object up to a desired distance (equal to 1m), minimizing the
error (|e|) between the estimated and the desired marker’s corners and center. . . 109

5-27 The figure shows the evolution in time of the estimated marker’s corners and center
(start ×, end ◦) towards the desired ones (�) during the quadrotor mission task
number 14. The latter consists in making the quadrotor approaching a static visual
marker using the bottom camera up to a desired distance. 110

5-28 The figure shows the trajectories of the estimated points (start ×, end ◦) towards
the desired ones (�) on the (2D) image plane during the quadrotor task number
14. The top right figure spikes represent the estimated points predicted by the
image state estimator module (Kalman filter with velocity constant model) when
a detection is lost. A fast converge to the new detected points is obtained setting
the diagonal values of the measurement covariance matrix (RT2×2) to small values
(high confidence in the measurements) (see Table 5-14 pixel unit). 110

5-29 The figure shows on the left side the estimated distance (d red line) between
quadrotor and ArUco marker computed using Eq. (3-9) with respect to the desired
chosen value (d? blue line). On the right side it is shown the evolution in time of
the norm of the IBVS error given in Eq. (3-25). The result shows in this figure
belongs to the mission task number 14 in which the quadrotor uses the bottom
camera to approach a static object up to a desired distance (equal to 0.75m),
minimizing the error (|e|) between the estimated and the desired marker’s corners
and center. When this distance is reached the quadrotor lands on the platform. . 111

A-1 AR. Drone 2.0 with outdoor hull . 117
A-2 Bebop 2.0 . 118
A-3 Eagle with protection . 120
A-4 Sparrow . 121

B-1 X Configuration, motor number and body frame 127
B-2 The figure shown on the left side the reference velocity (ẋ?W) (blue line), the EKF

measured one (ˆ̇xWEKF) (red line) and the ground truth (ˆ̇xWMOCAP) (yellow line)
available for comparison. On th right side it is shown the pitch (θ?R) controller
output calculated by the 2DOF PID controller (2dofP id(ẋ?,ˆ̇x)→θv

). 129

B-3 The figure shown on the left side the reference velocity (ẏ?W) (blue line), the EKF
measured one (ˆ̇yWEKF) (red line) and the ground truth (ˆ̇yWMOCAP) (yellow line)
available for comparison. On th right side it is shown the (φ?R) controller output
calculated by the 2DOF PID controller (2dofP id(ẏ?,ˆ̇y)→φv

). 130

B-4 The figure shown on the left side the reference position (x?W) (blue line), the EKF
measured one (x̂WEKF) (red line) and the ground truth (x̂WMOCAP) (yellow line)
available for comparison. On th right side it is shown the velocity (ẋ?W) which is
the controller output calculated by the 2DOF PID controller (2dofP id(x?,x̂)→ẋ?). 131

B-5 The figure shown on the left side the reference velocity (ẋ?W) (blue line), the EKF
measured one (ˆ̇xWEKF) (red line) and the ground truth (ˆ̇xWMOCAP) (yellow line)
available for comparison. On th right side it is shown the pitch (θ?R) controller
output calculated by the 2DOF PID controller (2dofP id(ẋ?,ˆ̇x)→θv

) 131

Manuel Rucci CONFIDENTIAL Master of Science Thesis

List of Figures xiii

B-6 The figure shown on the left side the reference position (y?W) (blue line), the
EKF measured one (ŷWEKF) (red line) and the ground truth (ŷWMOCAP) (yellow
line) available for comparison. On th right side it is shown the (ẏ?W) which is the
controller output calculated by the 2DOF PID controller (2dofP id(y?,x̂)→ẏ?). . . 132

B-7 The figure shown on the left side the reference velocity (ẏ?W) (blue line), the EKF
measured one (ˆ̇yWEKF) (red line) and the ground truth (ˆ̇yWMOCAP) (yellow line)
available for comparison. On th right side it is shown the roll (φ?R) controller
output calculated by the 2DOF PID controller (2dofP id(ẏ?,ˆ̇y)→φv

) 133

B-8 The figure shown on the left side the reference position (z?W) (blue line), the EKF
measured one (ẑWEKF) (red line) and the ground truth (ẑWMOCAP) (yellow line)
available for comparison. On th right side it is shown the velocity (ż?W) which is
the controller output calculated by the 2DOF PID controller (2dofP id(z?,ẑ)→ż?). 134

B-9 The figure shown on the left side the reference yaw (ψ?W) (blue line), the EKF
measured one (ψ̂WEKF) (red line) and the ground truth (ψ̂WMOCAP) (yellow line)
available for comparison. On th right side it is shown the yaw rate (ψ̇?) which is
the controller output calculated by the 2DOF PID controller (2dofP id(ψ?,ψ̂)→ψ̇?). 135

B-10 The figure shows the quadrotor’s (3D) trajectory associated to the quadrotor’s
mission B-2-7. The EKF data are used to estimate the quadrotor’s states (po-
sition,velocity,acceleration,orientation) expressed in world coordinate frame (red
line). The numbers appearing on the figure are used to indicate the mission task’s
number that the quadrotor is facing. 136

B-11 The figure shows the (2D) quadrotor’s trajectory associated to the quadrotor mis-
sion B-2-7 which it stands for how the quadrotor moves along the (x) and (y)
direction of the world coordinate frame. The numbers appearing on the figure are
used to indicate the mission task’s number that the quadrotor is facing. 137

B-12 The figure shown on the left side the reference position (x?W) (blue line), the EKF
measured one (x̂WEKF) (red line) and the ground truth (x̂WMOCAP) (yellow line)
available for comparison. On th right side it is shown the velocity (ẋ?W) which is
the controller output calculated by the 2DOF PID controller (2dofP id(x?,x̂)→ẋ?). 137

B-13 The figure shown on the left side the reference velocity (ẋ?W) (blue line), the EKF
measured one (ˆ̇xWEKF) (red line) and the ground truth (ˆ̇xWMOCAP) (yellow line)
available for comparison. On th right side it is shown the pitch (θ?R) controller
output calculated by the 2DOF PID controller (2dofP id(ẋ?,ˆ̇x)→θv

) 138

B-14 The figure shown on the left side the reference position (y?W) (blue line), the
EKF measured one (ŷWEKF) (red line) and the ground truth (ŷWMOCAP) (yellow
line) available for comparison. On th right side it is shown the (ẏ?W) which is the
controller output calculated by the 2DOF PID controller (2dofP id(y?,x̂)→ẏ?). . . 138

B-15 The figure shown on the left side the reference velocity (ẏ?W) (blue line), the EKF
measured one (ˆ̇yWEKF) (red line) and the ground truth (ˆ̇yWMOCAP) (yellow line)
available for comparison. On th right side it is shown the roll (φ?R) controller
output calculated by the 2DOF PID controller (2dofP id(ẏ?,ˆ̇y)→φv

) 139

B-16 The figure shown on the left side the reference position (z?W) (blue line), the EKF
measured one (ẑWEKF) (red line) and the ground truth (ẑWMOCAP) (yellow line)
available for comparison. On th right side it is shown the velocity (ż?W) which is
the controller output calculated by the 2DOF PID controller (2dofP id(z?,ẑ)→ż?). 139

Master of Science Thesis CONFIDENTIAL Manuel Rucci

xiv List of Figures

B-17 The figure shown on the left side the reference yaw (ψ?W) (blue line), the EKF
measured one (ψ̂WEKF) (red line) and the ground truth (ψ̂WMOCAP) (yellow line)
available for comparison. On th right side it is shown the yaw rate (ψ̇?) which is
the controller output calculated by the 2DOF PID controller (2dofP id(ψ?,ψ̂)→ψ̇?). 140

C-1 CMOS, lens and object illustration required to derive the distance between lens
and object (dmm) . 143

C-2 Camera (C) and object frame (O) representation. The point POi is rigidly attached
to the object frame. The latter is thought as a rigid body. 145

Manuel Rucci CONFIDENTIAL Master of Science Thesis

List of Tables

2-1 Table summarizing the frame convention used to expressed the inputs and the
outputs of the navigation controller framework 10

2-2 PID Controller Structures . 13

3-1 Relation between tuning parameters (fλ1,
fλ2,

fλ3) and (bλ1,
bλ2,

bλ3) and veloc-
ities of the quadrotor expressed camera, robot and world coordinate frames . . . 67

4-1 The table shows the Go_to_point behavior’s inputs and the modules that has to
be started to solve the Go_to_point task in both real and simulation flight. . . 82

4-2 The table shows the Rotate behavior’s input and the modules that has to be started
to solve the Rotate task in both real and simulation flight. 83

4-3 The table shows the behavior used in the chosen mission together with the module
associated to them for both real and simulated flight. 84

5-1 Horizontal position controller module default parameters (Simulation Pixhawk au-
topilot) . 90

5-2 Vertical position controller module default parameters (Simulation Pixhawk autopilot) 90
5-3 Horizontal speed controller module default parameters (Simulation Pixhawk au-

topilot) . 90
5-4 Vertical speed controller module default parameters (Simulation Pixhawk autopilot) 91
5-5 Yaw controller module default parameters (Simulation Pixhawk autopilot) 91
5-6 Perception module default parameters (ArUco marker has been used) 91
5-7 Image state estimator module default parameters (ArUco marker has been used) 91
5-8 Image based visual servo module default parameters 92
5-9 Horizontal position controller module default parameters (Parrot AR. DRONE 2.0) 101
5-10 Vertical position controller module default parameters (Parrot AR. DRONE 2.0) . 101
5-11 Horizontal speed controller module default parameters (Parrot AR. DRONE 2.0) 101
5-12 Yaw controller module default parameters (Parrot AR. DRONE 2.0) 102

Master of Science Thesis CONFIDENTIAL Manuel Rucci

xvi List of Tables

5-13 Perception module default parameters (ArUco marker has been used) 102
5-14 Image state estimator module default parameters (ArUco marker has been used) 102
5-15 Image based visual servo module default parameters 103

A-1 Parrot AR.Drone 2.0 Technical Specification 118
A-2 Parrot Bebop 2.0 Technical Specification . 119
A-3 Eagle Technical Specification . 120
A-4 Sparrow Technical Specification . 121

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Preface

This thesis is the result of an amazing experience that I have the pleasure to live in the city
of Madrid. In this beautiful city I met brilliant people coming from different countries and
having different academic backgrounds. I came to Madrid with the idea of doing an internship
of three months and I remained there for one year and a little bit more. The choice to remain
and start my thesis in the Computer Vision Aerial Robotics from the Technical University
of Madrid was not difficult to make. I was surrounded by brilliant, genuine and expert PhD
students that every day were answering about my stupid questions spending some time in
teaching something new. If I think on how this thesis has been developed the answer is
really simple. It is basically the result of a series of problems that I had to face to make
the algorithm works. In the beginning I was focusing my attention in designing a vision-
based planner algorithm to solve object following and autonomous landing missions. In doing
this the implementation was a mess and I start facing big problems in using my algorithms
combined with different algorithms of the group. Thus, I start paying more attention on how
to develop a code that was in tune with the idea of the Aerostack. The latter is an open
source framework developed by the group allowing to fully autonomous control different type
of UAVs. Learning how the Aerostack works allowed me to modify my code and make it more
modular and above all readable. Furthermore, I realize the power of the Aerostack mainly
when I was able to combine my module in a simple way with the other one already available.
Engineering is a group work and I think this is the biggest lesson that I learn this year. After
having integrated the vision based planner algorithm inside the Aerostack I start working
with the Aerostack controllers. Discussing with the people of the group we realize that it was
required to modify the design of the Aerotack controller architecture especially because it was
not easy to tune the controllers and replace them with new ones. Thus, together with the
other people of the group we start thinking how to modify the Aerostack control architecture
to ensure autonomous UAV navigation. Having designed everything according to Aersotack
conventions allowed me to combine the new designed navigation controller architecture with
the vision based planner and generate different type of mission among which object following
and autonomous landing ones. In this thesis I will present both the navigation controller
architecture and the vision based planner.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

xviii Preface

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Acknowledgements

There is a huge amount of people that I would like to thank for having spend part of their
own time in teaching me things that were banal for them. I have really appreciate that and
from academic point of view I am really glad to have had the opportunity to work with so
brilliant and genuine people.

Firstly, I would like to say thank you to my professor supervisor Pascual Campoy for giving me
the opportunity to come to Madrid and join to the Computer Vision Aerial Robotics group.
Secondly, I would like to say thank you to Hriday Bavle an Indian PhD student speaking
Spanish far better than me. He teaches me everything about both ROS and the Aerostack
software framework investing a great deal of time answering to my stupid questions. Thirdly,
I would like to say thank you to the PhD student Alejandro Rodriguez Ramos. He teaches
me everything I know about Gazebo simulation environment. Fourthly, I would like to say
thank to Jose Luis Sanchez Lopez from which I learn the importance of having code properly
organize and structured as it is in the Aerostack.

It is time to say thank you to the PhD Carlos Sampedro Pérez from which I learn how
to program properly in C + + reading lots of it is code. He also helps me a lot for every
problem related to computer vision. Other two PhD students that have really supported
me and helped me during this year are Adrián Carrio and Ramón Suárez Fernández . The
first one help me a lot in designing the vision based planner and the second in designing the
controller architecture. Without them I will never have developed a thesis like this one. They
listen to all my problems and discuss with me possible solutions providing me a great deal of
suggestions. I really have to say thank you to both of them for their help.

If I grow up as a person this year it is because I share this experience in Madrid with special
people. If I think to this people thousand of beautiful memories of this experience in Madrid
rise and each of them is able to make me smile. I am speaking about Lorenzo Bracco,
Maddalena Giglia, Danila Pilastro, Pedro Ojea, Anna Mingozzi, Irene Bolanos, Maria Stella
Cipriani, Alessandro Moroldo, Sergio Vivarelli, Alex Orsenigo and Maddalena Parente.

Delft, University of Technology Manuel Rucci
October 28, 2017

Master of Science Thesis CONFIDENTIAL Manuel Rucci

xx Acknowledgements

Manuel Rucci CONFIDENTIAL Master of Science Thesis

“Why do you love Engineering? Because It is just a big problem that cannot be
solved in one single shot by only one person. It has to be decomposed in really
small subproblems that are so many that a single person will take all his/her life
to solve them. Different people have to cooperate and trust each other to solve
different subproblems and get a result that a single person will never be able to
reach in the same period of time.”

Chapter 1

Introduction

1-1 Motivation

The works developed in this literature has been carried out at the Center for Automation and
Robotics with the Computer Vision Aerial Robotics 1 group from the Technical University of
Madrid. The group has a background in Computer Vision mainly oriented to aerial robotics.
The main focus of this group is to develop an aerial robotic opens source platform called
Aerostack2 [1] [2] aiming at simplifying the design of complex aerial robotic missions such
as inspection of indoors environments, transportation of objects either in indoor or outdoor
environments, search and rescue and exploration of unknowns and dangerous environments.
The main objective of this group is to develop algorithms aiming at increasing the level
of autonomy of UAVs. Among the different types of UAVs the group is mainly oriented in
studying a specific type of UAV called quadrotor. To be able to achieve autonomous quadrotor
navigation three different area of research have to cooperate with each other.

1. State Estimation area of research.

This area of research focuses on the estimation of the position
(
x, y, z

)
, the velocity(

ẋ, ẏ, ż
)
and the orientation

(
φ, θ, ψ

)
of the quadrotor with respect to a fixed world

coordinate frame whose origin is usually located on the take off point of the quadrotor.

2. Planner area of research.

This research area is in charge of selecting what the quadrotor has to do. It can generate
either 3D points or velocities or trajectories. The quadrotor will make decision based on
what the user wants or on how the quadrotor interacts with the environment by means
of sensors. Vision based planners can be developed aiming at solving object following
and autonomous landing tasks using visual feedback to generate reference velocities that
the quadrotor has to track to accomplish the desired task.

1http://www.vision4uav.eu
2https://github.com/Vision4UAV/Aerostack/wiki

Master of Science Thesis CONFIDENTIAL Manuel Rucci

http://www.vision4uav.eu
https://github.com/Vision4UAV/Aerostack/wiki

2 Introduction

3. Control area of research.

This research field is mainly focus on how the quadrotor can track the reference given by
the planner (position, velocity, orientation, trajectory), minimizing the error between
the desired references provided by the planner and the estimated ones given by the state
estimator.

A scheme summarizing how the three researches area cooperate to complete an autonomous
mission is provided.

State
Estimator

Planner Navigation
Controller

Sensors

+

-

Figure 1-1: Combination of the three areas of research to achieve fully autonomous quadrotor
flight

To summarize, the planner receives as a input the estimation provided by the state estimator
and it generates as a output the desired reference commands required to accomplish the
planned task. The navigation controller takes as inputs both the planner and the state
estimator outputs and it uses them to generate specific controller outputs for the quadrotor.
Applying the controller outputs to the quadrotor the latter moves in a way that the desired
reference commands are tracked minimizing the error between the latter and the estimated
ones. When the error is small enough the planner sends new reference commands an a new
task starts.

1-2 Problem description

To achieve autonomous quadrotor navigation in both indoor and outdoor environment two
different type of approaches can be used.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

1-2 Problem description 3

1. Pose based approach.

This approach consists in sending to the quadrotor the desired pose (position and ori-
entation) that it has to reach expressed in world coordinate frame. If obstacles are
present in the environment the quadrotor has to be able to plan a trajectory able to
avoid obstacles minimizing the flight time required to move from the initial to the final
desired location. The design of the trajectory planner belongs to a second research
area that is the planner area. To be able to move from the initial pose to the desired
one the quadrotor requires to know at every time instant its current pose which it is
estimated combining information coming from the quadrotor’s sensors. The reference
pose is expressed in world coordinate frame and it is sent to the quadrotor. The latter
moves until the error between the desired and measured one is driven to zero. A navi-
gation controller framework is required to ensure that the desired references are tracked
correctly.

Advantages

• It does not require visual information to achieve the task. To recognize an object
a detector is required and to speed up the detection frame rate a tracker is used.
The detector is computationally expensive and to detect something it requires the
object to be always visible in the image which might not be the case if the desired
location can be far from the initial take off point.

Disadvantages

• It requires to know the position of the quadrotor in world coordinate frame. The
latter in outdoor environments can be retrieved from GPS data but in indoor
environment it requires different sensors to be fused together to achieve a proper
result.

• It requires to know the desired quadrotor’s pose. This is usally not a problem
because the latter is chosen a priori. However it becomes a problem when the
quadrotor either has to follow a moving object whose pose is unknown in space or
it has to land on a moving platform whose pose might change randomly.

2. Vision based approach.

This approach uses visual information as a feedback directly in the control law to com-
pute the desired velocities expressed in world coordinate frame that the quadrotor has
to track to located itself at a desired distance from the chosen object. The quadrotor is
not aware of it is pose and it moves with respect to a chosen desired object whose pose
can change in time. The vision based approach is computed combining the vision based
planner with the navigation controller framework. The main difference from the pose
based approach is that the vision based approach use visual information to compute the
desired velocities (not position) required to drive asymptotically the quadrotor up to a
certain desired distance from the detected object.

Advantages

Master of Science Thesis CONFIDENTIAL Manuel Rucci

4 Introduction

• It does not require to know the position of the quadrotor with respect to a world
fixed coordinate frame.
• There is no need to know a priori the object position in world coordinate frame.
This is a great advantage because it allows the quadrotor to move with respect
to an object whose position can change in time without the need to add external
sensors to calculate the pose of the desired object.

Disadvantages

• A visual marker is required to be placed on the desired location to be reached and
the visual marker needs to be always visible in the acquired image. Nowadays,
machine learning power is growing and the need to add visual marker to identify a
specific object is not required anymore. Powerful algorithms have been developed
in the state of the art to be able to directly identify objects.

Both the approaches have been used to solve autonomous quadrotor navigation. The goal of
this thesis is to provide a framework in which it is possible to easily switch between the two
approaches to solve different type of missions. The idea is that it has to be simple to generate
a mission in which firstly the quadrotor reaches a first predefined pose, secondly it follows an
object only when it appears on the acquired camera image, thirdly it makes a square given
four different predefined desired pose and finally it autonomously lands either on a static or
moving platform.

1-3 Goals

The goal of this thesis is to achieve autonomous quadrotor navigation either relying on position
measurements (pose based approach) or visual information (vision based approach). The final
goals of this thesis are

• Design a navigation controller framework able to communicate with both
parrot AR Drone 2.0 and Pixhawk autopilot that it is able to track simultane-
ously either the quadrotor’s desired positions and the yaw angle (x?, y?, z?, ψ?)
or the desired velocities and the yaw angle (ẋ?, ẏ?, ż?, ψ?) or the horizontal de-
sired velocities, the altitude and the yaw angle (ẋ?, ẏ?, z?, ψ?).

• Design a vision based planner that uses visual information acquired either
by the front or by the bottom camera to calculate the desired translational
velocities (ẋ?, ẏ?, ż?) required by the quadrotor to approach up to a desired
distance a chosen static or moving object keeping the latter centered in the
acquired camera image without knowing neither the quadrotor’s pose nor
the object one. The translational velocities are sent to the navigation con-
troller framework. The latter ensures that the desired velocities are tracked
correctly.

Assuming to have an estimate of the position provided by the EKF the navigation controller
framework ensures that given a desired pose (position and orientation) and an estimation of

Manuel Rucci CONFIDENTIAL Master of Science Thesis

1-4 Approaches 5

it the quadrotor moves from the current to the desired one. The vision based planner allows
to face tasks as object following and autonomous landing and it works without the need to
estimate the quadrotor’s pose.

1-4 Approaches

To achieve the desired goals

1. A cascade control design made up by seven 2DOF PID controllers divided into five
different modules (horizontal position controller, vertical position controller, horizon-
tal speed controller, vertical speed controller, yaw controller) has been developed to
ensure that the navigation controller framework is able to track simultaneously either
(x?, y?, z?, ψ?) or (ẋ?, ẏ?, ż?, ψ?) or (ẋ?, ẏ?, z?, ψ?). An explanation is provided on why
this design has been chosen for the navigation controller framework.

2. Three different modules (perception, image state estimator, image based visual servo)
has been developed to achieve the vision based planner objective. Planar ArUco markers
have been used to avoid the need of designing different specific objects’ detectors. Their
corners have been extracted by the ArUco detector located inside the perception module.
An image state estimator module has been developed inside which a Kalman filter with
velocity constant model has been designed to estimate the visual marker’s corners when
a detection is suddenly lost. Given an estimation of the visual marker corners at a
specific chosen frequency an image based visual servo algorithm embedded inside the
image based visual servo module has been developed to calculate the desired quadrotor’s
translational velocities (ẋ?, ẏ?, ż?) required by the navigation controller framework to
minimize the error between the estimated and the desired corners where the latter are
computed as a function of the desired distance between the quadrotor and the visual
marker.

To validate both the navigation controller framework and the vision based planner firstly the
navigation controller has been validated separately firstly in simulation using Gazebo sim-
ulator in combination with PX4 Software-In-The-Loop and secondly in real flight with the
Parrot AR Drone 2.0. After having adjusted the control parameters, the vision based planner
has been combined with the navigation controller framework to solve high level tasks such as
object following and autonomous landing either on static or moving platform. In particular
a mission has been chosen in which firstly the quadrotor autonomously reaches a first pre-
defined desired pose, secondly it approaches up to a desired distance a static visual marker
using the front camera image data, thirdly it reaches a second predefined desired pose and
finally it autonomously lands using the bottom camera image information either on a static
or moving visual marker. The mission has been tested in real flight with Parrot AR. Drone
2.0 and in simulation using Gazebo simulator in combination with PX4 Software-In-The-
Loop. All the modules have been developed to be in tune with the Aerostack conventions. To
conclude, Aerostack project enforces modularity and this is achieved using the open source
software operating system Ubuntu 16.04.2 LTS (Xenial Xerus)3 , ROS Kinetic Kame4 as

3http://releases.ubuntu.com/16.04/
4http://wiki.ros.org/kinetic

Master of Science Thesis CONFIDENTIAL Manuel Rucci

http://releases.ubuntu.com/16.04/
http://wiki.ros.org/kinetic

6 Introduction

robotic middleware to ensure system communication and Gazebo 7 as a simulator that comes
automatically installing ROS Kinetic Kame. Thus, in order make the code compatible com-
patible with the Aerostack the same version of Ubuntu, ROS and Gazebo will be chosen.
Furthermore, the algorithms will be coded using as a programming language C + + following
the ROS C + + style guide5 to make the code readable by a third person and easy to be
debugged.

5http://wiki.ros.org/CppStyleGuide

Manuel Rucci CONFIDENTIAL Master of Science Thesis

http://wiki.ros.org/CppStyleGuide

Chapter 2

Navigation controller framework

In this chapter the main features of the design of the navigation framework are presented.
An illustration of the navigation controller framework is provided.

C

C

C

C

x*

y*

z*

W

W

W

x*
. W

y*
. W

C

C

Yaw Controller

Horizontal Position Controller

Vertical Position Controller

Change
From
World

To Robot
 frame

θ v

φ
v

Horizontal Speed Controller

C

C

C C

Vertical Speed Controller

ψ*
. R

θ*
R

 φ*
R

T*
R

z*
W.

θ*
 φ*

.
ψ*

.
z*

θ*
 φ*

.
ψ*

.
z*

PA

PA

PA

PA

R

R

R

R

R

R

R

R

z*
. W

ψ*
W

θ*
 φ*

.
ψ*
T*

R

R

R

R

θ*
 φ*

ψ*
T*

PI

PI

PI

PI

R

R

R

R

C

Mavros
 ROS
 Driver

Interface Pixhawk

Interface Parrot

Parrot
 ROS
Driver

ROS Package

+
-

+
-

+
-

-
+

+
--

-
+

+
-

x W yW..
zW.

x W yW ψ
W

zW

ψ
W

Figure 2-1: Navigation controller framework to control both quadrotor equipped with Parrot and
Pixhawk autopilot

Master of Science Thesis CONFIDENTIAL Manuel Rucci

8 Navigation controller framework

The latter has been designed with the aim to improve the Aerostack navigation controller
framework described in [3]. The reason why it has been chosen to design the controller
framework as showed in Figure 2-1 are summarized as follows.

1. Modular design: The design has been inspired by the Matlab Simulink approach.
In the latter the controller are represented as blocks. According to the controller type
the same block can be used multiple times simply modifying the default parameters of
the block. In the controller framework design the approach it is similar. Indeed the
controllers are embedded into a library. The library is used inside a module which runs
at a chosen frequency and it is in charge of getting inputs an send outputs data. The
module uses the controller available in the controller library to generate the desired
outputs. Having a framework like this facilitate the develop and test of new controllers.
Indeed if a new controller is designed it is required to add it inside the controller library
and inside the chosen module it is possible to replace the previous used one with the
new desired one. In doing this it is possible to take advantage of the fact that the data
required by the module to accomplish the task are not modified. What it is going to
change inside a module is the controller chosen from the controller library to solve the
task. Different modules will use the same controller library with different input data
which are the ones required by the chosen module to accomplish the task.

2. Module activation and deactivation capability: Each module can be activated or
deactivated. This ensure to easily switch between position control to velocity control
simply shutting down the horizontal and vertical position control. The process of shut-
ting down means that the module will not get any data and will not send any output
anymore. However, it is able to listen to the activation or deactivation variable used to
activate or deactivate it.

3. Modules structure design: The choice to split the framework into yaw, horizontal
position, vertical position, horizontal speed and vertical speed controller is related to
the task that a quadrotor usually performs. Indeed a quadrotor can freely move in space
receiving a desired (3D) input position and yaw angle. In doing this all the controllers
inside the framework have to be activated. However, a quadrotor using the bottom
camera can attempt to located itself on a bucket to release an object on it. To do this
the quadrotor can be controller in the velocity domain which means that it does not
required the horizontal position controller to be activated. Furthermore, it is possible
to choose to control the altitude or the velocity along the (z) direction to make the
quadrotor able to release an object inside the bucket. Both the choices are available
because it is possible to choose to activate or deactivate the vertical position controller.
The choice to split the horizontal and vertical speed controllers is connected to the fact
that the Parrot Autopilot does not required the vertical speed controller to be activated.
The latter is already embedded into the Parrot Autopilot itself. On the other hand this
module is required in dealing with the Pixhawk Autopilot. For this reason it has been
chosen to split the horizontal and vertical speed controller. Indeed, if the navigation
controller is used to control a Parrot quadrotor the navigation controller framework will
have the horizontal position, the vertical position , the horizontal speed , the vertical
speed and the yaw controller activated. In trying to control a quadrotor equipped with
Pixhawk Autopilot also the vertical speed controller will be activated.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

9

4. Modules frequency choice: Each module can run at a chosen frequency which de-
pends on the input frequency data and on the cascade control design choice. Indeed,
according to the cascade theory is required that the horizontal and vertical position con-
troller will run at a frequency lower than the horizontal and vertical speed controller.
The input data of the horizontal and speed controller are calculated by an EKF in
charge of estimating the full quadrotor’ states (position, velocity, acceleration, orienta-
tion) expressed in world coordinate fusing together different sensors information. Thus
the frequency of the speed controller has to be set to be the same of the frequency at
which the EKF provides an estimation of the desired input. After having selected the
frequency of the horizontal and speed controller modules the frequency of the horizon-
tal and vertical position modules is set to be lower than the frequency of the position
controllers modules. To define how much lower the frequency of the position controller
modules has to be with respect to the frequency of the speed controllers module firstly it
is required to tune the speed controller modules ensuring that they are able to track the
desired reference velocities, secondly the position controllers modules are added to try
to track a certain reference position at a certain frequency from three to ten times lower
than the speed controller modules frequency. In checking the velocities outputs with re-
spect to the references it is required that the speed controller modules will have enough
time to reach the reference velocities provided by the position controller modules. If this
does not occur it is required to reduce the frequency of the position controller modules.
Furthermore, another factor which influences the choice of the frequency of the posi-
tion controller modules is the frequency at which an estimation of the quadrotor’s pose
(position and orientation) is available. Indeed it is possible that the estimation of the
quadrotor’s pose is perform at a frequency lower than the estimation of the quadrotor’s
velocities and acceleration. Two different EKF fusing different data might be developed
to solve this two different estimation problems. Therefore the position controller mod-
ules frequency has to be set lower or equal than the frequency at which the estimation
of the quadrotor’s pose is provided. If the quadrotor’s pose estimation is provided at
the same frequency of the quadrotor’s velocities and accelerations estimation a rule of
thumb is to set the position controller modules frequency around three of four times
lower than the frequency of the speed controller modules.

5. Inputs and outputs navigation controller framework convention:

Master of Science Thesis CONFIDENTIAL Manuel Rucci

10 Navigation controller framework

Table 2-1: Table summarizing the frame convention used to expressed the inputs and the outputs
of the navigation controller framework

Data Convention (C) Description
x?W

y?W
ENU convention: unit

[
m
]

x?W → (+ forward, − backward)
y?W → (+ leftward, − rightward)

Horizontal positions references expressed in world coor-
dinate frame. x?W , y?W are the inputs of the horizontal
position controller.

z?W ENU convention: unit
[
m
]

z?W → (+ upward, − downward)
Vertical position reference expressed in world coordinate
frame. z?W is the input of the vertical position con-
troller.

ψ?W ENU convention: unit
[
rad
]

ψ?W → (+ ccw, − cw)
ψ?W ∈

[
−π π

] Reference yaw angle expressed in world coordinate
frame. ψ?W is the input of the yaw controller.

ẋ?W

ẏ?W
ENU convention: unit

[
m/s

]
ẋ?W → (+ forward, − backward)
ẏ?W → (+ leftward, − rightward)
ẋ?W , ẏ?W ∈

[
−1 1

]
Horizontal velocities references expressed in world coor-
dinate frame. ẋ?W , ẏ?W are the inputs of the horizontal
speed controller or the outputs of the horizontal position
controller.

θ?R

φ?R
ENU convention: unit

[
rad
]

θ?R → (+ forward, − backward)
φ?R (+ rightward, − leftward)
θ?R, φ?R ∈

[
−0.2828 0.2828

]
Reference pitch θ?R and roll φ?R expressed in robot coor-
dinate frame. θ?R, φ?R are the outputs of the horizontal
speed controller.

ż?R ENU convention: unit
[
m/s

]
ż?R → (+ upward, − downward)
ż? ∈

[
−1 1

] Vertical velocity reference expressed in robot coordinate
frame. ż?R is the output of the vertical position con-
troller or the input of the vertical speed controller. Small
angle approximation ensures that z?R ≈ z?W .

T ?R ENU convention: dimensionless
T ?R → (+ upward, − downward)
T ?R ∈

[
0 1

] Reference thrust expressed in robot coordinate frame.
The thrust required by the Pixhawk autopilot is in be-
tween zero and one therefore no measurement thrust
unit has been used. T ?R is the output of the vertical
speed controller. Small angle approximation ensures that
T ?R ≈ T ?W .

ψ̇?R ENU convention: unit
[
rad/s

]
ψ̇?R → (+ ccw, − cw)
ψ̇?R ∈

[
−0.4 0.4

]
≈ ±23◦/s

Reference yaw angular velocity expressed in robot coor-
dinate frame. ψ̇?R is the output of the yaw controller.
Small angle approximation ensures that z?R ≈ z?W =⇒
ψ̇?R ≈ ψ̇?W .

x̂W

ŷW

ψ̂W

ENU convention: unit
[
m
]

x̂W → (+ forward, − backward)
ŷW → (+ leftward, − rightward)

Estimated horizontal positions x̂W , ŷW expressed in
world coordinate frame. x̂W , ŷW are the outputs either
of EKF or MOCAP.

ẑW
ENU convention: unit

[
m
]

ẑW → (+ upward, − downward)
Estimated vertical position ẑW expressed in world co-
ordinate frame. ẑW is the output either of EKF or
MOCAP.

ψ̂W
ENU convention: unit

[
rad
]

ψ̂W → (+ ccw, − cw)
ψ̂W ∈

[
−π π

]
Estimated yaw angle ψ̂W expressed in world coordinate
frame. ψ̂W is the output either of EKF or MOCAP.

ˆ̇xW
ˆ̇yW

ENU convention: unit
[
m/s

]
ˆ̇xW → (+ forward, − backward)
ˆ̇yW → (+ leftward, − rightward)

Estimated horizontal velocities expressed in world coor-
dinate frame. ˆ̇xW , ˆ̇yW are the outputs either of EKF or
MOCAP.

ˆ̇zW ENU convention: unit
[
m/s

]
ˆ̇zW → (+ upward, − downward)

Estimated vertical velocity expressed in world coordinate
frame. ˆ̇zW is the output either of EKF or MOCAP.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-1 Two degree of freedom PID controller 11

A figure underlining the convention used for the inputs and outputs data of the navi-
gation controller framework is provided.

Figure 2-2: Navigation controller framework references
(
x?W , y?W , z?W , ẋ?W , ẏ?W , ż?W

ψ?W
)
, EKF or MOCAP feedbacks

(
x̂W , ŷW , ẑW , ψ̂W , ˆ̇xW , ˆ̇yW , ˆ̇zW

)
and navigation controller

framework controller outputs
(
θ?R, φ?R, ż?R, ψ̇?R, T ?R

)
. The controller references and the

feedbacks are expressed in world (W) fixed coordinate frame whereas the controller outputs are
in robot (R) coordinate frame.

2-1 Two degree of freedom PID controller

In this section the parallel 2DOF PID single input single output controller used in all the
navigation controller framework module is presented. The controller output is given in both
the Laplace and discrete Z domain. The difference equation used to calculate the controller
output is also provided to simplify the code implementation of the algorithm. The choice to
develop a 2DOF PID controller is motivated by the fact that this controller allows to easily
implement different PID controller structures. Indeed it is possible to say that among the
different PID controller designs’ type it is the most generic one. Indeed, it is a type of PID
controller where it is possible to weight both the proportional and the derivative error by
means of two tuning parameters (b, c). The structure it is shown in the following figure.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

12 Navigation controller framework

Figure 2-3: 2DOF PID Controller block diagram

The 2DOF PID controller structure is the result of the composition of a feedback (C(s))
and a feed-forward controller (X(s). The feedback controller transfer function in the Laplace
domain is defined as

C(s) = U(s)/E(s) = U(s)
E(s) = Kp + Ki

s
+ sKd E(s) = R(s)− Y (s) (2-1)

whereas the Laplace transfer function of the feed-forward controller is given by

X(s) = U(s)
R(s) = (b− 1)Kp + (c− 1)sKd (2-2)

Thus the feedback controller represents a simple PID controller whereas the feed-froward
controller stands for a PD controller. Thus it is possible to conclude that the 2DOF PID
controller is the combination of a feedback PID and a feed-forward PD controller. The 2DOF
PID controller output (U(s)) in the Laplace domain is given by the sum of both the feedback
and the feed-forward controller outputs.
The Laplace feedback controller output is defined as

U(s) = C(s)E(s) = KpE(s) + KiE(s)
s

+ sKdE(s) =

= KpR(s)−KpY (s) + KiR(s)
s

− KiY (s)
s

+ sKdR(s)− sKdY (s)
(2-3)

whereas the Laplace feedforward controller output is
U(s) = X(s)R(s) = (b− 1)KpR(s) + (c− 1)sKdR(s) =

= bKpR(s)−KpR(s) + csKdR(s)− sKdR(s)
(2-4)

The 2DOF PID controller output in the Laplace domain is calculated as

U(s) = C(s)E(s) +X(s)R(s) = KpR(s)−KpY (s) + KiR(s)
s

− KiY (s)
s

+

+ sKdR(s)− sKdY (s) + bKpR(s)−KpR(s) + csKdR(s)− sKdR(s) =

= Kp

(
bR(s)− Y (s)

)
+ Ki

s

(
R(s)− Y (s)

)
+ sKd

(
cR(s)− Y (s)

)
=

= KpEp(s) + Ki

s
Ei(s) + sKdEd(s) = Up(s) + Ui(s) + Ud(s)

(2-5)

where (Up, Ui, Ud) represent respectively the proportional,integral and derivative controller
outputs actions performed by 2DOF PID controller. In the following subsection an explana-
tion of the input of the controller is provided together with the controller output derivation.
In the last subsection the 2DOF PID controller algorithm is presented.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-1 Two degree of freedom PID controller 13

2-1-1 Inputs

1. Ts: It represents the sampling time used in the design of the 2DOF PID controller. The
sampling time choice is usually calculated as the inverse of the frequency at which the
measurement is provided. This choice ensures that every time the 2DOF PID runs the
reference and the measurement data are available to calculate the controller output.

2. Kp,Kd,Ki: They represents respectively the proportional, derivative and integral gains
of the 2DOF PID controller. The tuning of these parameters is a well known problem
in the state of the art. For the sake of this thesis it has been chosen to use the Matlab
PID Tuner1 to retrieve the controller parameters. To do this a discrete model derived
analyzing the quadrotor dynamics is used. Given the discrete model the PID Matlab
Tuner has been used to tune the controllers parameters such that steady state error is
achieved and the controller output saturation boundaries are satisfied. The choice to
use the Matlab Tuner is related to the fact that the aim of the navigation controller
framework is to be able to work with different quadrotors providing a fast way to tune
the parameters according to the needed purpose. Having a 2DOF PID controller has
also the advantage that is possible to play with the weight parameters (b, c) to ensure
that the measurement (plant output) does not have any overshoot. This is a good
advantage in dealing with quadrotor because it allows the quadrotor to reach (3D)
position close to obstacles without having any overshoot (over-damped behavior). In
tuning the controllers a filter on the derivative error term has been introduced with
the purpose to make the control sensitivity function realizable. The latter allows to see
given a certain input what is the controller output (when the control loop it is closed).
Knowing the controller output the parameters have been adjusted to keep the controller
output inside the desired saturation boundaries.

3. b, c: They are two weighted parameters (b, c ∈
[
0 1

]
) used to weight the proportional

and the derivative error terms. In combining these parameters in a different ways differ-
ent PID controller structures can be selected [4]. Given the 2DOF PID controller output
presented in Eq. (2-5) different types of PID designs can be implemented modifying the
weight parameters (b, c).

Table 2-2: PID Controller Structures

b c Laplace Equation
1)PID 1 1 U(s) = Kp

(
R(s)−Y (s)

)
+Ki

s

(
R(s)−Y (s)

)
+sKd

(
R(s)−Y (s)

)
2)PI-D 1 0 U(s) = Kp

(
R(s)− Y (s)

)
+ Ki

s

(
R(s)− Y (s)

)
+ sKd

(
− Y (s)

)
3)I-PD 0 0 U(s) = Kp

(
− Y (s)

)
+ Ki

s

(
R(s)− Y (s)

)
+ sKd

(
− Y (s)

)
4)ID-P 0 1 U(s) = Kp

(
− Y (s)

)
+ Ki

s

(
R(s)− Y (s)

)
+ sKd

(
R(s)− Y (s)

)

The PID number one has the drawback that the derivative term contains the set-point
(R(s)) value. Thus, a sudden change in the set-point might cause an unwanted large
change in the derivative controller output action. To solve this problem the PID number

1https://es.mathworks.com/help/control/pid-controller-design.html

Master of Science Thesis CONFIDENTIAL Manuel Rucci

https://es.mathworks.com/help/control/pid-controller-design.html

14 Navigation controller framework

two can be chosen. The latter does not use the reference to calculated the derivative error
term and for this reason the derivative controller output action when a step reference
is applied does not present any spikes that instead appear using the PID number one.
To conclude decreasing the value of (b) the overshoot of the system is reduced but the
system response becomes slower. On the other hand decreasing the parameter (c) close
to zero the controller output action is reduced ensuring a smooth set point tracking
(over-damped behavior)). Thus using a 2DOF PID controller is possible to modify the
weights according to the requirements (rise time, overshoot, settling time, steady state
error, disturbance rejection) that the system has to satisfy.

4. UMin,UMax: They represent the saturation constraints applied to the controller output.
In dealing with quadrotors the 2DOF PID controller output has a physical value. Thus
it is important to properly saturate this value according to the physical meaning and
unit of measure that it has.

5. enablereffilter ,Nr: These parameters are introduced with the aim to be able to filter
the supplied reference value sent to the 2DOF PID controller. A low pass filter with
filter gain (Nr) is used to filter the reference value. The variable (enablereffilter

) is a
boolean variable that if it is true it will ensure that the supplied reference is filtered
with a low pass filter with filter gain equal to (Nr). The latter determines how fast the
set-point reference changes. The low pass filter Laplace transfer function between the
reference input (R(s)) and the filtered reference output (Rf (s)) is given by

Rf (s) = Nr

Nr + s
R(s) (2-6)

where (Rf (s)) and (R(s)) stand for respectively the filtered reference and supplied
reference values in the Laplace domain. However in designing an algorithm able to
perform this filter operation is required to calculate the difference equation relating the
filtered reference with the supplied one. To do this firstly Eq. (2-6) is discretized ((Z)
domain) using Backward Euler discretization method (s ≈ z−1

Ts
) as follows

Rf (z) = 1
1 +NrTs

Rf (z)z−1 + NrTs
1 +NrTs

R(z) (2-7)

secondly the difference equation is derived

rf (k) = 1
1 +NrTs

rf (k − 1) + NrTs
1 +NrTs

r(k) (2-8)

Knowing the difference equation and the sampling time (Ts) representing the inverse
of the frequency at which the controller is running it is possible to calculate given a
supplied reference (r(k)) at time instant (k) what is the value of the filtered reference
(rf (k)) at the same time instant (k). To summarize, the boolean value of (enablereffilter

)
determines if the reference has to be filtered or not. The choice to introduce a filter
applied to the reference is related to the need to avoid spikes on the 2DOF PID controller
output. The latter occurs mainly when a step reference is provided. Indeed, given the
PID derivative controller output action

ud(k) = Kd

Ts
(ed(k)− ed(k − 1) with e(k) = cr(k)− y(k) (2-9)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-1 Two degree of freedom PID controller 15

if a step reference is supplied to the 2DOF PID controller a large difference will occur
between (ed(k)) and (ed(k − 1) which divided by the sampling time will result in large
derivative controller output action. Introducing a filter on the supplied reference will
result in a smother supplied reference that will cause a smaller derivative controller
action. To tune the filter gain (Nr) is better to plot the filter output and the supplied
reference given different filter gain (Nr) values to see how much the filter gain affects
the supplied reference. However, a rule of thumb to choose (Nr) is to ensure that the
sampling time (Ts) is at least five times smaller than the filter time constant (1/Nr).

Ts ≤
(1
Nr

)
5 → Nr ≤

1
5Ts

(2-10)

6. enablederfilter ,Nd: They are parameters that have been introduced to filter the deriva-
tive error term. The boolean variable is used to enable (enablederfilter

= True) or not
(enablederfilter

= False) the derivative filter applied to the derivative error term. The
choice to apply a low pass filter on the derivative error term has the aim to ensure that
the control sensitivity function is physical realizable. The latter is defined as

U(s)
R(s) = C(s)

1 +G(s)C(s)

where R(s), (U(s)), (C(s)) and (G(s)) are respectively the reference supplied to the
system, the controller output action, the PID controller transfer function and the plant
transfer function. Only when the control sensitivity transfer function is physically re-
alizable it is possible to see what is the controller output action (U(s)) associated to a
specific reference supplied input (R(s)). In dealing with a quadrotor it is really help-
ful to have the possibility to tune the 2DOF PID controller such that given a certain
reference the generated controller output is bounded inside some predefined saturation
values. For example inside the horizontal position controller module two single input
single output 2DOF PID controllers are located. The goal of them is to ensure that
given the desired (x) and (y) quadrotor’s position expressed in world coordinate frame
the quadrotor will track them. Because a cascade control design has been developed in
the navigation controller framework the output of the horizontal position controllers are
the desired velocities at which the quadrotor has to move along the (x) and (y) direction
of the world coordinate frame. These velocities are physical values and to ensure that
the quadrotor will not move too fast they are bounded between one and minus one me-
ter per second. Having a realizable control sensitivity function allows during the tuning
of the controllers to have the possibility to see what are the horizontal position con-
trollers outputs given the supplied inputs (when the control loop it is closed). Thanks
to this information it is possible to check if the controller outputs are inside the desired
boundaries or not. If this does not occurs it is required to change the tuning controllers
parameters. The low pass filter transfer function in the Laplace domain is

Edf
(s) = Nd

Nd + s
Ed(s) (2-11)

where (Edf
(s)) and (Ed(s) = cR(s)−Y (s)) are respectively the filtered and not filtered

derivative error term of the 2DOF PID controller. Using Backward Euler discretization

Master of Science Thesis CONFIDENTIAL Manuel Rucci

16 Navigation controller framework

method (s ≈ z−1
Ts

) Eq. (2-11) becomes

Edf
(z) = 1

1 +NdTs
Edff

(z)z−1 + NdTs
1 +NdTs

Ed(z) (2-12)

The difference equation associated to Eq. (2-12) is provided.

edf
(k) = 1

1 +NdTs
edf

(k − 1) + NdTs
1 +NdTs

ed(k) (2-13)

Eq. (2-10) provided a rule of thumb to tune the filter gain (Nd) knowing the sampling
time (Ts). To conclude, only if the boolean variable (enablederfilter

) is set to true the
low pass filter, with filter gain (Nd), is applied on the derivative error term.

7. enableantiwindup ,Kaw: These two variables represent respectively a boolean variable
used to enable or disable the anti wind up scheme and the gain associate to the anti wind
up back calculation approach. In dealing with small angle approximation assumption it
is important to properly choose the saturation boundaries associated to the controllers’
outputs. A problem related to the controller output saturation that occurs only if an
integrator is present and the controller output saturate is the wind up. When this
occurs the integrator error continues to increase leading the controller output value to
increase as well over the saturated maximum value. This causes an undesired behavior
in the output of the plant due to the fact that the controller output provided to the
plant is the saturated one and not the one provided by the 2DOF PID controller. If this
situation occurs a constant error will appear between the reference and the measurement
plant values which will introduce lag in the system. To solve the wind up problem a
back calculation technique has been applied. The latter consists in adding to the PID
integrator another integrator multiplied times the saturated error (Usat − U). A block
diagram is shown.

Figure 2-4: Anti wind up using back calculation block diagram

Given Figure 2-4 is possible to infer that the expression in the Laplace domain of
integrator error term introduced to solve wind up problem is

Uaw(s) = Kaw

s
Esat(s) with Esat(s) = (Usat(s)− U(s) (2-14)

where (Usat(s)) and (U(s)) are respectively the saturated and not saturated controller
outputs. (Kaw) represents the integrator tunable gain used to reduce the integrator error
when saturation occurs . Applying Backward Euler discretization method (s ≈ z−1

Ts
)

Eq. (2-14) becomes
Uaw(z) = Ts

1− z−1KawEsat(z) (2-15)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-1 Two degree of freedom PID controller 17

The difference equation associated to (2-15) is

uaw(k) = uaw(k − 1) + TsKawesat(k) (2-16)

with (esatk = usat(k)− u(k)).

2-1-2 Outputs

1. Usat: It represents the controller output saturated value calculated by the 2DOF PID
controller. To derive this value it is required to calculate the difference 2DOF PID con-
troller equation. To do this firstly the 2DOF PID controller is derived in the Laplace
domain. Secondly Backward Euler discretization approach is applied to retrieve the
controller output equation in the (Z) domain. Finally the difference equation is pre-
sented. Given the Laplace equation of the 2DOF PID controller showed in Eq. (2-5)
applying Backward Euler discretization method (s ≈ z−1

zTs
) the latter becomes

U(z) = Up(z) + Ui(z) + Ud(z) (2-17)

with the proportional, integral derivative controller output actions (Up(z), Ui(z), Ud(z))
equal to

Up(z) = KpEp(z)

Ui(z) = Ki
zTs
z − 1Ei(z)→ Ui(z) = Ui(z)z−1 +KizTsEi(z)

Ud(z) = Kd
(z − 1)
zTs

Ed(z)→ Ud(z) = Kd

Ts

(
Ed(z)− Ed(z)z−1

) (2-18)

with (Ep(z) = bR(z) − Y (z)) ,(Ei(z) = R(z) − Y (z)) and (Ed(z) = cR(z) − Y (z)).
Given the representation of the 2DOF PID controller in the discrete domain showed in
Eq. (2-18) the associated difference equation are provided as follows

up(k) = Kpep(k) with ep(k) = br(k)− y(k)
ui(k) = ui(k − 1) +KiTsei(k) with ei(k) = r(k)− y(k)

ud(k) = Kd

Ts

(
ed(k)− ed(k − 1)

)
with ed(k) = cr(k)− y(k)

(2-19)

from which it is possible to conclude that the difference equation representing at sample
time instant (k) the output of the 2DOF PID controller is

u(k) = up(k) + ui(k) + ud(k) (2-20)

It is important to remember that depending of the values of the boolean variables
(enablereffilter

) and (enablederfilter
) Eq. (2-19) and Eq. (2-20) might be modified re-

placing the reference (r(k)) with the filter reference (rf (k)) and the derivative error
(ed(k)) with the filtered derivative error (edf

(k)). The equations describing the values
of the filtered reference (rf (k)) and of the filtered derivative error term are respectively
Eq. (2-8) and Eq. (2-13). However, the 2DOF PID controller output is subjected to
saturation constraint which might cause the wind up problem if the integrator term

Master of Science Thesis CONFIDENTIAL Manuel Rucci

18 Navigation controller framework

is present. To avoid this problem an anti wind up back calculation scheme has been
developed. Adding the anti wind up integrator term given in Eq. (2-16) to the 2DOF
PID controller equation is possible to obtain the final controller output equation.

u(k) = up(k) + ui(k) + ud(k) + uaw(k − 1) (2-21)

where the anti wind up integrator term (uaw(k− 1)) is taken at sample (k− 1) because
it depends on the the saturation error which has not been defined yet when the overall
controller output (u(k)) is calculated. Therefore the saturation error at sample (k − 1)
is considered. The saturated overall controller output at time instant (k) is defined as

if u(k) ≥ UMax

usat(k) = UMax

else if u(k) ≤ UMin

usat(k) = UMin

else

usat(k) = u(k)

2-1-3 Algorithm

The overall 2DOF PID algorithm has been summarized as follows

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-1 Two degree of freedom PID controller 19

Algorithm 1 Two degree of freedom PID controller
Initialization:

1: Get 2DOF PID controller gain parameters:
(
Ts,Kp,Kd,Ki, b, c, UMin, UMax

)
2: Get

(
enablereffilter

, Nr
)
,
(
enablederfilter

, Nd

)
,
(
enableantiwindup

,Kaw
)

3: Initialization:
(
uaw1 = 0, ui1 = 0, rf1 = 0, edf1

= 0, ed1 = 0
)

Algorithm: (Run at frequency equal to 1/Ts Hz)
4: Get reference (ref) and measurement (y)
5: if enablereffilter

= True then

6: rf =
(1

Nr
1

Nr
+Ts

)
rf1 +

(Ts
1

Nr
+Ts

)
ref (Filtered reference)

7: r = rf
8: else
9: r = ref

10: end if
11: ep = br − y (Proportional error)
12: ei = r − y (Integral error)
13: ed = cr − y (Derivative error)
14: if enablederfilter

= True then

15: edf
=
(1

Nd
1

Nd
+Ts

)
edf1

+
(Ts

1
Nd

+Ts

)
ed (Filtered derivative error)

16: ud = Kd
Ts

(edf
− edf1

) (Filtered derivative action)
17: else
18: ud = Kd

Ts
(ed − ed1) (Derivative action)

19: end if
20: up = Kpep (Proportional action)
21: ui = ui1 +KiTsei (Integral action)
22: u = up + ui + ud + uaw1 (Controller output not saturated)
23: if u ≥ UMax then
24: usat = UMax

25: else if u ≤ UMin then
26: usat = UMin

27: else
28: usat = u
29: end if
30: Send usat (Saturated controller output)
31: if enableantiwindup

= True and Ki 6= 0 then
32: uaw = uaw1 +KawTs(usat − u)
33: else
34: uaw = 0
35: end if
36: uaw1 = uaw, ui1 = ui, rf1 = rf , edf1

= edf
, ed1 = ed (Update previous values)

Master of Science Thesis CONFIDENTIAL Manuel Rucci

20 Navigation controller framework

2-2 Horizontal position controller module

2-2-1 State space representation

• Dynamics :

ˆ̇xW = ẋ?W

ˆ̇yW = ẏ?W
(2-22)

• State space :
Given

X2×1 =
[
x1
x2

]
=
[
x̂W

ŷW

]
Y2×1 =

[
y1
y2

]
=
[
x̂W

ŷW

]
U2×1 =

[
u1
u2

]
=
[
ẋ?W

ẏ?W

]
(2-23)

the state space representation of the linear system shown in Eq. (2-22) is

Ẋ2×1 = A2×2X2×1 +B2×2U2×1 (2-24)

with

A2×2 =
[
0 0
0 0

]
B2×2 =

[
1 0
0 1

]
C2×2 =

[
1 0
0 1

]
D2×2 =

[
0 0
0 0

]
(2-25)

• Laplace domain :
The Laplace transfer function between inputs (U(s)) and outputs (Y(s)) is

Y(s) =
[

1
s 0
0 1

s

]
U(s)→ Y1(s) = 1

s
U1(s) Y2(s) = 1

s
U2(s) (2-26)

• Z domain :
Applying Backward Euler discretization method

(
s ≈ z−1

zTs

)
Eq. (2-26) becomes

Y(z) =
[

Ts
1−z−1 0

0 Ts
1−z−1

]
U(z)→ Y1(z) = Ts

1− z−1U1(z) Y2(z) = Ts
1− z−1U2(z)

(2-27)
where

(
Ts
)
represents the chosen sampling time. The difference equations associated to

Eq. (2-27) are

Y1(k) = Y1(k − 1) + TsU1(k) Y2(k) = Y2(k − 1) + TsU2(k) (2-28)

where (k) represent a generic sample time instant.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-2 Horizontal position controller module 21

2-2-2 Inputs

1. Thpc
s : It represents the sampling time of the horizontal position controller module.

The latter contains two 2DOF PID controllers running at the same frequency equal to
the inverse of the chosen horizontal position controller module sampling time (T hpcs).
The choice of this value is related to the frequency at which the measurements are
available. Furthermore having designed the navigation controller framework using a
cascade control design it is required to set the horizontal position controller sampling
time at least three times lower than the horizontal speed controller module sampling time
(T hscs). For the sake of this thesis the frequency of the horizontal position controller
module has been set equal to 10Hz. This choice leads to a sampling time equal to
(T hscs = 1/10 = 0.1s).

2. par(x?,x̂)→ẋ? =
(
K(x?,x̂)→ẋ?

p ,K(x?,x̂)→ẋ?

d ,K(x?,x̂)→ẋ?

i ,b(x?,x̂)→ẋ?
, c(x?,x̂)→ẋ?

,

U(x?,x̂)→ẋ?

Min U(x?,x̂)→ẋ?

Max , enable(x?,x̂)→ẋ?

derfilter
,N(x?,x̂)→ẋ?

d enable(x?,x̂)→ẋ?

reffilter
,N(x?,x̂)→ẋ?

r

enable(x?,x̂)→ẋ?

antiwindup
,K(x?,x̂)→ẋ?

aw
)

: They represents the controller tuning parameters asso-
ciated to the 2DOF PID controller (2dofP id(x?,x̂)→ẋ?). The latter takes as input the
error between the desired (x?W) and the estimated (x̂W) position of the quadrotor along
the (x) direction expressed in the world coordinate frame. The 2DOF PID controller
output represents the desired reference velocity (ẋ?W ∈

[
−1 1

] [
m/s

]
) along the (x)

direction expressed in world coordinate frame. The choice to bound the velocity value
between minus one and one meters per second is related to the small angle approxima-
tion assumption allowing to decouple translational quadrotor’s motion if the quadrotor
movements (pitch and roll angles) are small (15 degree maximum). An illustration de-
scribing the 2DOF PID controller together with the discrete plant model used to tune
it is provided.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

22 Navigation controller framework

+

- x*
2dof

(x*,x)

Plant ModelController

x(z)

x*(z)

x*w

 xw

x*w
.

..

Figure 2-5: This figure shows the input and output of the discrete 2DOF PID controller
(2dofP id(x?,x̂)→ẋ?) and of the discrete open loop plant model (x̂(z)

ẋ?(z)) used to tune it. The
output of the horizontal position controller module is (ẋ?W).

The derivation of the discrete plant model used to to tune the (2dofP id(x?,x̂)→ẋ?) con-
troller is given in 2-2-1. The discrete model equation is showed in Eq. (2-27). The
tuning of the controller parameters have been done ensuring that the controller output
is inside the desired boundaries given different types of reference inputs and that the
estimated value (x̂W) will track the reference one (x?W) with no overshoot and a steady
state error equal to zero. To be able to see the controller output the (enablederfilter

)
boolean variable is set to true and a filter gain (Nd) is chosen such that Eq. (2-10) is
satisfied. The choice to introduce a low pass filter on the derivative error term ensures
that the control sensitivity function (ẋ

?(z)
x?(z)) is realizable.

3. par(y?,ŷ)→ẏ? =
(
K(y?,ŷ)→ẏ?

p ,K(y?,ŷ)→ẏ?

d ,K(y?,ŷ)→ẏ?

i ,b(y?,ŷ)→ẏ?
, c(y?,ŷ)→ẏ?

,

U(y?,ŷ)→ẏ?

Min ,U(y?,ŷ)→ẏ?

Max , enable(y?,ŷ)→ẏ?

derfilter
,N(y?,ŷ)→ẏ?

d enable(y?,ŷ)→ẏ?

reffilter
,N(y?,ŷ)→ẏ?

r ,

enable(y?,ŷ)→ẏ?

antiwindup
,K(y?,ŷ)→ẏ?

aw
)

: They represent the tuning parameters associated to the
2DOF PID controller (2dofP id(y?,ŷ)→ẏ?). This controller takes as input the error be-
tween the desired (y?W) and the estimated (ŷW) position along the (y) direction and it
provides as output the desired velocity of the quadrotor (ẏ?W ∈

[
−1 1

] [
m/s

]
) along

the (y) direction . All the data are expressed in world coordinate frame. An illustration
of the 2DOF PID controller and of the discrete model used to tune it is provided.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-2 Horizontal position controller module 23

+

-

Plant Model

y(z)

y*(z)

y*w

 yw

y*w
.

y*
2dof

(y*,y)

Controller

. .

Figure 2-6: This figure shows the input and output of the discrete 2DOF PID (2dofP id(y?,ŷ)→ẏ?)
controller and of the open loop discrete plant model (ŷ(z)

ẏ?(z)) used to tune it. The output of the
horizontal position controller module is (ẏ?W).

The discrete plant model is given in Eq. (2-27). The derivation of the discrete plant model
used to to tune the (2dofP id(y?,ŷ)→ẏ?) controller is given in 2-2-1. Also in this case the
controller parameters have been tuned such the controller output is inside the boundaries
and a steady state error is achieved.

2-2-3 Outputs

1. ẋ?W, ẏ?W : They represents the controller outputs provided respectively by the 2DOF
PID controller (2dofP id(x?,x̂)→ẋ?) and (2dofP id(y?,ŷ)→ẏ?). They are the outputs of the
horizontal position controller module and they represents the horizontal quadrotor ve-
locities expressed in world coordinate frame. For the sake of this thesis a saturation con-
straint has been introduced on both the controller outputs (ẋ?W , ẏ?W ∈

[
−1 1

] [
m/s

]
).

The unit of measure is introduced to underline that although a 2DOF PID controller
provides adimensional output it is possible in this case to state that the two controllers
outputs values have been tune to have a physical meaning. Indeed they represent ve-
locity.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

24 Navigation controller framework

2-2-4 Algorithm

A summary of the algorithm running inside the horizontal position controller module is pro-
vided.

Algorithm 2 Horizontal position controller module
Initialization:

1: Get horizontal position controller module sampling time (T hpcs)
2: Get 2dofP id(x?,x̂)→ẋ? tuning parameters:
par(x?,x̂)→ẋ? =

(
K

(x?,x̂)→ẋ?

p ,K
(x?,x̂)→ẋ?

d ,K
(x?,x̂)→ẋ?

i , b(x?,x̂)→ẋ?
, c(x?,x̂)→ẋ?

, U
(x?,x̂)→ẋ?

Min , U
(x?,x̂)→ẋ?

Max ,

enable
(x?,x̂)→ẋ?

derfilter
, N

(x?,x̂)→ẋ?

d , enable
(x?,x̂)→ẋ?

reffilter
, N

(x?,x̂)→ẋ?

r , enable
(x?,x̂)→ẋ?

antiwindup
,K

(x?,x̂)→ẋ?

aw
)

3: Get 2dofP id(y?,ŷ)→ẏ? tuning parameters:
par(y?,ŷ)→ẏ? =

(
K

(y?,ŷ)→ẏ?

p ,K
(y?,ŷ)→ẏ?

d ,K
(y?,ŷ)→ẏ?

i , b(y?,ŷ)→ẏ?
, c(y?,ŷ)→ẏ?

, U
(y?,ŷ)→ẏ?

Min , U
(y?,ŷ)→ẏ?

Max ,

enable
(y?,ŷ)→ẏ?

derfilter
, N

(y?,ŷ)→ẏ?

d , enable
(y?,ŷ)→ẏ?

reffilter
, N

(y?,ŷ)→ẏ?

r , enable
(y?,ŷ)→ẏ?

antiwindup
,K

(y?,ŷ)→ẏ?

aw
)

4: Initialize 2DOF PID controllers:
2dofP id(x?,x̂)→ẋ? ←

(
par(x?,x̂)→ẋ? , T hpcs

)
2dofP id(y?,ŷ)→ẏ? ←

(
par(y?,ŷ)→ẏ? , T hpcs

)
Algorithm: (Run at frequency equal to 1/T hpcs Hz)

5: Get references: (x?W , y?W) Unit
[
m
]

6: Get measurements: (x̂W , ŷW) Unit
[
m
]

7: Calculate 2dofP id(x?,x̂)→ẋ? controller output:
ẋ?W ← 2dofP id(x?,x̂)→ẋ? ← (x?W , x̂W) with ẋ?W ∈

[
−1 1

]
Unit

[
m/s

]
8: Calculate 2dofP id(y?,ŷ)→ẏ? controller output:
ẏ?W ← 2dofP id(y?,ŷ)→ẏ? ← (y?W , ŷW) with ẏ?W ∈

[
−1 1

]
Unit

[
m/s

]
9: Send

(
ẋ?W , ẏ?W

)

2-3 Vertical position controller module

2-3-1 State space representation

• Dynamics :

ˆ̇zW = ż?W (2-29)

• State space :
Given

X = ẑW Y = ẑW U = ż?W (2-30)

the state space representation of the linear system shown in Eq. (2-29) is

Ẋ1×1 = A1×1X1×1 +B1×1U1×1 (2-31)

with
A1×1 = 0 B1×1 = 1 C1×1 = 1 D1×1 = 0 (2-32)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-3 Vertical position controller module 25

• Laplace domain :
The Laplace transfer function between inputs (U(s)) and outputs (Y(s)) is

Y(s) = 1
s

U(s) (2-33)

• Z domain :
Applying Backward Euler discretization method

(
s ≈ z−1

zTs

)
Eq. (2-33) becomes

Y(z) = Ts
1− z−1 U(z) (2-34)

where
(
Ts
)
represents the chosen sampling time. The difference equations associated to

Eq. (2-34) are

Y (k) = Y (k − 1) + TsU(k) (2-35)

where (k) represent a generic sample time instant.

2-3-2 Inputs

1. Tvpc
s : It represents the sampling time of the vertical position controller which it is an

altitude controller. The choice to separate the horizontal and vertical position controller
in two different modules which might have different sampling time it is related to the
fact that the altitude measurement can be provided at a higher frequency with respect
to the horizontal position measurements. Therefore it is possible to select the frequency
of the two modules according to the frequency at which the measurements are available.
For the sake of this thesis an EKF is used to provide the quadrotor position, orientation,
velocity and acceleration measurements at a frequency close to 30Hz. Thus, according
to the cascade control design it has been chosen to set the vertical position controller
module frequency equal to 10Hz.

2. par(z?,ẑ)→ż? =
(
K(z?,ẑ)→ż?

p ,K(z?,ẑ)→ż?

d ,K(z?,ẑ)→ż?

i ,b(z?,ẑ)→ż?
, c(z?,ẑ)→ż?

,

U(z?,ẑ)→ż?

Min ,U(z?,ẑ)→ż?

Max , enable(z?,ẑ)→ż?

derfilter
,N(z?,ẑ)→ż?

d enable(z?,ẑ)→ż?

reffilter
,N(z?,ẑ)→ż?

r ,

enable(z?,ẑ)→ż?

antiwindup
,K(z?,ẑ)→ż?

aw
)

: They represent the tuning parameters associated to the
2DOF PID controller (2dofP id(z?,ẑ)→ż?). This controller takes as input the error be-
tween the desired (z?W) and the estimated (ẑW) position along the (z) direction and it
provides as output the desired velocity of the quadrotor (ż?W ∈

[
−1 1

] [
m/s

]
) along

the (z) direction . All the data are expressed in world coordinate frame. An illustration
of the 2DOF PID controller and of the open loop discrete model used to tune it is
provided.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

26 Navigation controller framework

+

-

Plant Model

z(z)

z*(z)

z*w

 zw

z*w
.

z*
2dof

(z*,z)

Controller

. .

Figure 2-7: This figure shows the input and output of the discrete 2DOF PID (2dofP id(z?,ẑ)→ż?)
controller and of the open loop discrete plant model (ẑ(z)

ż?(z)) used to tune it. The output of the
vertical position controller module is (ż?W)

The discrete plant model is given in Eq. (2-34). The derivation of the discrete open
loop plant model used to tune the (2dofP id(z?,ẑ)→ż?) controller is given in 2-3-1. Also
in this case the controller parameters have been tuned such that the controller output
is inside the boundaries and a steady state error is achieved.

2-3-3 Outputs

1. ż?W : It represents the output of the vertical position controller module. In particular
it stands for the desired reference velocity along the (z) direction expressed in world
coordinate frame that the quadrotor has to track to ensure that it will reach the desired
altitude. For the sake of this thesis the value of this velocity has been bounded between
minus one and one meter per second. The ENU convention is used to express the value
of (ż?W) which means that a positive value of the latter will make the quadrotor to
move upward whereas a negative value downward. is An illustration of the ENU robot
frame together with the navigation framework controller outputs is given in Figure 2-2.
A summary of the convention used in the navigation controller framework is given in
Table 2-1.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-4 Horizontal speed controller module 27

2-3-4 Algorithm

A summary of the algorithm running inside the vertical position controller module is provided.

Algorithm 3 Vertical position controller module
Initialization:

1: Get vertical position controller module sampling time (T vpcs)
2: Get 2dofP id(z?,ẑ)→ż? tuning parameters:
par(z?,ẑ)→ż? =

(
K

(z?,ẑ)→ż?

p ,K
(z?,ẑ)→ż?

d ,K
(z?,ẑ)→ż?

i , b(z?,ẑ)→ż?
, c(z?,ẑ)→ż?

, U
(z?,ẑ)→ż?

Min , U
(z?,ẑ)→ż?

Max ,

enable
(z?,ẑ)→ż?

derfilter
, N

(z?,ẑ)→ż?

d , enable
(z?,ẑ)→ż?

reffilter
, N

(z?,ẑ)→ż?

r , enable
(z?,ẑ)→ż?

antiwindup
,K

(z?,ẑ)→ż?

aw
)

3: Initialize 2DOF PID controllers:
2dofP id(z?,ẑ)→ż? ←

(
par(z?,ẑ)→ż? , T vpcs

)
Algorithm: (Run at frequency equal to 1/T vpcs Hz)

4: Get references: (z?W) Unit
[
m
]

5: Get measurements: (ẑW) Unit
[
m
]

6: Calculate 2dofP id(z?,ẑ)→ż? controller output:
ż?W ← 2dofP id(z?,ẑ)→ż? ← (z?W , ẑW) with ż?W ∈

[
−1 1

]
Unit

[
m/s

]
7: Send (ż?W)

2-4 Horizontal speed controller module

2-4-1 State space representation

• Dynamics :

ˆ̈xW = T ?W≈R

m

[
cos(ψ̂W) sin(ψ̂W)

] [θ?R
φ?R

]

ˆ̈yW = T ?W≈R

m

[
sin(ψ̂W) −cos(ψ̂W)

] [θ?R
φ?R

] (2-36)

Linearizing around the equilibrium point
(
T ?W≈R = mg

)
Eq. (2-36) becomes

ˆ̈xW = 1
g

[
cos(ψ̂W) sin(ψ̂W)

] [θ?R
φ?R

]

ˆ̈yW = 1
g

[
sin(ψ̂W) −cos(ψ̂W)

] [θ?R
φ?R

] (2-37)

• State space :

Master of Science Thesis CONFIDENTIAL Manuel Rucci

28 Navigation controller framework

Given

X2×1 =
[
x1
x2

]
=
[

ˆ̇xW
ˆ̇yW

]
Y2×1 =

[
y1
y2

]
=
[

ˆ̇xW
ˆ̇yW

]

U2×1 =
[
u1
u2

]
=
[
cos(ψ̂W) sin(ψ̂W)
sin(ψ̂W) −cos(ψ̂W)

] [
θ?R

φ?R

]
[
θ?R

φ?R

]
=
[
cos(ψ̂W) sin(ψ̂W)
sin(ψ̂W) −cos(ψ̂W)

] [
u1
u2

] (2-38)

the state space representation of the linear system shown in Eq. (2-36) is

Ẋ2×1 = A2×2X2×1 +B2×2U2×1 (2-39)

with

A2×2 =
[
0 0
0 0

]
B2×2 =

[1
g 0
0 1

g

]
C2×2 =

[
1 0
0 1

]
D2×2 =

[
0 0
0 0

]
(2-40)

• Laplace domain :
The Laplace transfer function between inputs (U(s)) and outputs (Y(s)) is

Y(s) =
[
g
s 0
0 g

s

]
U(s)→ Y1(s) = g

s
U1(s) Y2(s) = g

s
U2(s) (2-41)

• Z domain :
Applying Backward Euler discretization method

(
s ≈ z−1

zTs

)
Eq. (2-41) becomes

Y(z) =
[

gTs

1−z−1 0
0 gTs

1−z−1

]
U(z)→ Y1(z) = gTs

1− z−1U1(z) Y2(z) = gTs
1− z−1U2(z)

(2-42)
where

(
Ts
)
represents the chosen sampling time and (g) is the gravity force value. The

difference equations associated to Eq. (2-42) are

Y1(k) = Y1(k − 1) + gTsU1(k) Y2(k) = Y2(k − 1) + gTsU2(k) (2-43)

where (k) represent a generic sample time instant.

2-4-2 Inputs

1. Tvsc
s : It represents the sampling time value chosen for the horizontal speed controller

controller module. The latter contains two 2DOF PID controller in charge of making
the quadrotor able to track an horizontal desired velocity. Because the EKF used in this
thesis provides data at 30Hz it has been chosen to set the horizontal speed controller
module sampling time equal to (T hscs = 1/30 = 0.033s).

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-4 Horizontal speed controller module 29

2. par(ẋ?,ˆ̇x)→θv =
(
K(ẋ?,ˆ̇x)→θv

p ,K(ẋ?,ˆ̇x)→θv
d ,K(ẋ?,ˆ̇x)→θv

i ,b(ẋ?,ˆ̇x)→θv , c(ẋ?,ˆ̇x)→θv ,

U(ẋ?,ˆ̇x)→θv
Min ,U(ẋ?,ˆ̇x)→θv

Max , enable(ẋ?,ˆ̇x)→θv
derfilter

,N(ẋ?,ˆ̇x)→θv
d enable(ẋ?,ˆ̇x)→θv

reffilter
,N(ẋ?,ˆ̇x)→θv

r ,

enable(ẋ?,ˆ̇x)→θv
antiwindup

,K(ẋ?,ˆ̇x)→θv
aw

)
: They represent the tuning parameters associated to the

2DOF PID controller (2dofP id(ẋ?,ˆ̇x)→θv
). This controller takes as input the error be-

tween the desired (ẋ?W) and the estimated (ˆ̇xW) velocity along the (x) direction and it
provides as output the pitch that the quadrotor has to track expressed in world coordi-
nate frame (θv) with (θv ∈

[
−0.2 0.2

] [
rad

]
) . However, this value does not represent

the pitch of the quadrotor expressed in robot coordinate frame required to be sent to the
Parrot and Pixhawk autopilot. For this reason a transformation taking into account the
quadrotor’s yaw (ψ̂W) and the roll angle (φv, output of (2dofP id(ẏ?,ˆ̇y)→φv

)) expressed
in world coordinate frame are required. The explanation of how the transformation is
derived in given in Appendix B-4 and the transformation equation is showed in Eq. (2-
38). Thus it is possible to conclude that the value of the pitch angle expressed in robot
coordinate frame is given by

θ?R = cos(ψ̂W)θv + sin(ψ̂W)φv (2-44)

Choosing to set both the controller outputs (θv, φv ∈
[
−0.2 0.2

] [
rad

]
) and knowing

that (ψW ∈
[
−π π

] [
rad

]
) it is possible to state that

θ?R ∈
[
−
√
−(θ2

vMin
+ φ2

vMin
)
√

(θ2
vMax

+ φ2
vMax

)
]

=
[
−0.2828 0.2828

] [
rad

]
(2-45)

which are equivalent to (±16.2◦). An illustration of the 2DOF PID controller and of
the open loop discrete model used to tune it is provided.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

30 Navigation controller framework

+

-
2dof

Plant ModelController

x(z)

θ (z)

x*w

 xw

θv
.

.

.

θ*
R

.

(x*,x) θv
.

ψ
W

vθ

θv φvψ
W

cos() ψ
W

sin()+ θ* =
R

v

Figure 2-8: This figure shows the input and output of the discrete 2DOF PID (2dofP id(ẋ?,ˆ̇x)→θv
)

controller and of the open loop discrete plant model (ˆ̇x(z)
θv(z)) used to tune it. It also shows how

the controller output (θv) is used in combination with the estimated yaw angle (ψ̂) and the
(2dofP id(ẏ?,ˆ̇y)→φv

) controller output (φv) to derive the output of the horizontal speed controller
module (θ?R).

The discrete plant model is given in Eq. (2-42). The derivation of the discrete open
loop plant model used to tune the (2dofP id(ẋ?,ˆ̇x)→θv

) controller is given in 2-4-1. The
tuning of this controller has been done ensuring that the controller output is inside the
boundaries and a steady state error is achieved.

3. par(ẏ?,ˆ̇y)→φv
=
(
K(ẏ?,ˆ̇y)→φv

p ,K(ẏ?,ˆ̇y)→φv
d ,K(ẏ?,ˆ̇y)→φv

i ,b(ẏ?,ˆ̇y)→φv , c(ẏ?,ˆ̇y)→φv ,

U(ẏ?,ˆ̇y)→φv
Min ,U(ẏ?,ˆ̇y)→φv

Max , enable(ẏ?,ˆ̇y)→φv
derfilter

,N(ẏ?,ˆ̇y)→φv
d enable(ẏ?,ˆ̇y)→φv

reffilter
,N(ẏ?,ˆ̇y)→φv

r ,

enable(ẏ?,ˆ̇y)→φv
antiwindup

,K(ẏ?,ˆ̇y)→φv
aw

)
: They represent the tuning parameters associated to the

2DOF PID controller (2dofP id(ẏ?,ˆ̇y)→φv
). This controller takes as input the error be-

tween the desired (ẏ?W) and the estimated (ˆ̇yW) velocity along the (y) direction and
it provides as output the roll angle that the quadrotor has to track expressed in world
coordinate frame (φv) with (φv ∈

[
−0.2 0.2

] [
rad

]
) . To be able to be sent to the

Parrot or Pixhawk autopilot the roll angle has to be mapped from world coordinate
to robot coordinate frame. To this the quadrotor’s yaw (ψ̂W) and the pitch angle (θv,
output of (2dofP id(ẋ?,ˆ̇x)→θv

)) are required. A detail explanation of how the mapping
from world to robot frame is achieved is given in Appendix B-4 and the matrix used to
map the roll and pitch from world to robot frame coordinate is presented in Eq. (2-38).

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-4 Horizontal speed controller module 31

Thus it is possible to conclude that the value of the desired roll angle (φ?R) expressed
in robot coordinate frame is given by

φ?R = sin(ψ̂W)θv − cos(ψ̂W)φv (2-46)

Setting the controller outputs saturation values to (θv, φv ∈
[
−0.2 0.2

] [
rad

]
) it is

possible to calculate knowing that (ψW ∈
[
−π π

] [
rad

]
) the saturation boundaries

associated to the roll angle expressed in robot coordinate frame.

φ?R ∈
[
−
√
−(θ2

vMin
+ φ2

vMin
)
√

(θ2
vMax

+ φ2
vMax

)
]

=
[
−0.2828 0.2828

] [
rad

]
(2-47)

which are equivalent to (±16.2◦). An illustration of the 2DOF PID controller and of
the open loop discrete model used to tune it is provided.

+

-

Plant ModelController

y(z)

φ (z)

y*w

 yw

φv

.

.

θv φvψ
W

 sin() ψ
W

cos()- φ* =
R

φ*R

ψ
W

vθ

.
2dof.

(y*,y) v
.

φ
v

Figure 2-9: This figure shows the input and output of the discrete 2DOF PID (2dofP id(ẏ?,ˆ̇y)→φv
)

controller and of the open loop discrete plant model (ˆ̇y(z)
φv(z)) used to tune it. It also shows how

the controller output (φv) is used in combination with the estimated yaw angle (ψ̂) and the
(2dofP id(ẋ?,ˆ̇x)→θv

) controller output (θv) to derive the output of the horizontal speed controller
module (φ?R).

The discrete plant model is given in Eq. (2-42). The derivation of the discrete open loop
plant model used to tune the (2dofP id(ẏ?,ˆ̇y)→φv

) controller is given in 2-4-1. The tuning
of this controller has been done ensuring that the controller output (φ?R) is inside the
boundaries and a steady state error is achieved.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

32 Navigation controller framework

4. ψ̂W : It represents the estimated yaw angle of the quadrotor expressed in world coor-
dinate frame. Usually this value is provided by the EKF but it can also be obtained
using a MOCAP system. To be precise it represents how much (degree or radians)
the quadrotor’s robot frame is rotated with respect to the world coordinate frame only
considering the robot frame rotation about the (z) axis of the world coordinate frame.

2-4-3 Outputs

1. θ?R, φ?R : They are respectively the desired pitch and roll angles expressed in robot co-
ordinate frame that it has been chosen to send to the quadrotor’s autopilot. To calculate
the two values two different 2DOF PID controller has been used (2dofP id(ẋ?,ˆ̇x)→θv

) and
(2dofP id(ẏ?,ˆ̇y)→φv

). It has been chosen to limit these values at around (±16◦) to ensure
that the small angle approximation assumption is satisfied. The ENU convention is
used to represents the two outputs value. This choice leads to say that a positive value
of (θ?R) makes to quadrotor to move forward whereas a negative value backward. On
the other hand a positive value of (φ?R) makes the quadrotor to move right whereas
a negative value to move left. An illustration of the ENU robot frame together with
the navigation framework controller outputs is given in Figure 2-2. A summary of the
convention used in the navigation controller framework is given in Table 2-1.

2-4-4 Algorithm

A summary of the algorithm running inside the horizontal speed controller module is provided.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-5 Vertical speed controller module 33

Algorithm 4 Horizontal speed controller module
Initialization:

1: Get horizontal speed controller module sampling time (T hscs)
2: Get 2dofP id(ẋ?,ˆ̇x)→θv

tuning parameters:

par(ẋ?,ˆ̇x)→θv
=
(
K

(ẋ?,ˆ̇x)→θv
p ,K

(ẋ?,ˆ̇x)→θv

d ,K
(ẋ?,ˆ̇x)→θv

i , b(ẋ?,ˆ̇x)→θv , c(ẋ?,ˆ̇x)→θv , U
(ẋ?,ˆ̇x)→θv

Min , U
(ẋ?,ˆ̇x)→θv

Max ,

enable
(ẋ?,ˆ̇x)→θv

derfilter
, N

(ẋ?,ˆ̇x)→θv

d , enable
(ẋ?,ˆ̇x)→θv

reffilter
, N

(ẋ?,ˆ̇x)→θv
r , enable

(ẋ?,ˆ̇x)→θv

antiwindup
,K

(ẋ?,ˆ̇x)→θv
aw

)
3: Get 2dofP id(ẏ?,ˆ̇y)→φv

tuning parameters:

par(ẏ?,ˆ̇y)→φv
=
(
K

(ẏ?,ˆ̇y)→φv
p ,K

(ẏ?,ˆ̇y)→φv

d ,K
(ẏ?,ˆ̇y)→φv

i , b(ẏ?,ˆ̇y)→φv , c(ẏ?,ˆ̇y)→φv , U
(ẏ?,ˆ̇y)→φv

Min , U
(ẏ?,ˆ̇y)→φv

Max ,

enable
(ẏ?,ˆ̇y)→φv

derfilter
, N

(ẏ?,ˆ̇x)→φv

d , enable
(ẏ?,ˆ̇y)→φv

reffilter
, N

(ẏ?,ˆ̇y)→φv
r , enable

(ẏ?,ˆ̇y)→φv

antiwindup
,K

(ẏ?,ˆ̇y)→φv
aw

)
4: Initialize 2DOF PID controllers:

2dofP id(ẋ?,ˆ̇x)→θv
←
(
par(ẋ?,ˆ̇x)→θv

, T hscs

)
2dofP id(ẏ?,ˆ̇y)→φv

←
(
par(ẏ?,ˆ̇y)→φv

, T hscs

)
Algorithm: (Run at frequency equal to 1/T hscs Hz)

5: Get yaw angle measurement: (ψ̂W) ∈
[
−π π

]
Unit

[
rad

]
6: Get references: (ẋ?W , ẏ?W) ∈

[
−1 1

]
Unit

[
m/s

]
7: Get measurements: (ˆ̇xW , ˆ̇yW) Unit

[
m/s

]
8: Calculate 2dofP id(ẋ?,ˆ̇x)→θv

controller output:
θv ← 2dofP id(ẋ?,ˆ̇x)→θv

← (ẋ?W , ˆ̇xW) with θv ∈
[
−0.2 0.2

]
Unit

[
rad

]
9: Calculate 2dofP id(ẏ?,ˆ̇y)→φv

controller output:
φv ← 2dofP id(ẏ?,ˆ̇y)→φv

← (ẏ?W , ˆ̇yW) with φv ∈
[
−0.2 0.2

]
Unit

[
rad

]
10: Calculate reference pitch: θ?R ← cos(ψ̂W)θv + sin(ψ̂W)φv
11: Calculate reference roll: φ?R ← sin(ψ̂W)θv − cos(ψ̂W)φv
12: Send

(
θ?R, φ?R

)
with θ?R, φ?R ∈

[
−0.2828 0.2828

]
Unit

[
rad

]

2-5 Vertical speed controller module

2-5-1 State space representation

• Dynamics :

ˆ̈zW = T ?W≈R

m
− g (2-48)

• State space :
Given

X = ˆ̇zW Y = ˆ̇zW U = T ?W≈R

m
− g

T ?W≈R = mU + g

(2-49)

the state space representation of the linear system shown in Eq. (2-48) is

Ẋ1×1 = A1×1X1×1 +B1×1U1×1 (2-50)

Master of Science Thesis CONFIDENTIAL Manuel Rucci

34 Navigation controller framework

with
A1×1 = 0 B1×1 = 1 C1×1 = 1 D1×1 = 0 (2-51)

• Laplace domain :
The Laplace transfer function between inputs (U(s)) and outputs (Y(s)) is

Y(s) = 1
s

U(s) (2-52)

• Z domain :
Applying Backward Euler discretization method

(
s ≈ z−1

zTs

)
Eq. (2-52) becomes

Y(z) = Ts
1− z−1 U(z) (2-53)

where
(
Ts
)
represents the chosen sampling time. The difference equations associated to

Eq. (2-53) are
Y (k) = Y (k − 1) + TsU(k) (2-54)

where (k) represent a generic sample time instant.

2-5-2 Inputs

1. Tvsc
s : It represents the sampling time of the vertical speed controller module. Inside

this module a 2DOF PID controller in charge of calculating the desired quadrotor thrust
given the desired and estimation velocity along the (z) direction has been developed.
This controller module is used only in dealing with quadrotor equipped with Pixhawk
autopilot. In dealing with Parrot quadrotors it is not required the use of this module
because the autopilot accepts the desired velocity along the (z) direction as input which
it is the output of the vertical position controller. The sampling time chosen for this
module is (T vsps = 1/30 = 0.033s). This sampling time choice is related to the fact that
the EKF used to get the estimated velocity along the (z) direction provides data at
(30Hz).

2. scalethrust : In dealing with the Pixhawk autopilot it is required to move the quadrotor
to send a thrust command value between zero and one. This means that the 2DOF PID
controller has to generate an output in this range. However, in this case the output has
lost the physical meaning because it does not represent a force (Newton). However, it
is still possible to tune the controller to ensure that the controller output is bounded
between zero and one. Furthermore, to avoid that a too large thrust is applied to the
motor the (scalethrust) variable has been introduced. The latter has the aim to prevent
that large thrust value are applied to the quadrotor. This variable is really useful
to understand what is the quadrotor minimum thrust to overcome gravity. Indeed in
using the Pixhawk autopilot quadrotors with different motors the minimum thrust to
overcome gravity will change. To avoid to send a too large thrust which might cause
the quadrotor to crash it is useful to start increasing slowly the (scalethrust) variable up
the point that the quadrotor starts moving overcoming gravity. After having found the
minimum required thrust value to overcome gravity it is possible to use the (scalethrust)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-5 Vertical speed controller module 35

variable to select the desired maximum thrust value. If a different quadrotor with smaller
size and less powerful motors is used it sufficient to decrease the (scalethrust) value
without modifying the controller parameters to make the quadrotor fly. To summarize
the output of the vertical speed controller module is obtained multiplying the output
of 2DOF PID controller (Tv) with the (scalethrust) factor.

T ?R = Tvscalethrust with Tv, scalethrust ∈
[
0 1

]
(2-55)

3. par(ż?,ˆ̇z)→Tv
=
(
K(ż?,ˆ̇z)→Tv

p ,K(ż?,ˆ̇z)→Tv
d ,K(ż?,ˆ̇z)→Tv

i ,b(ż?,ˆ̇z)→Tv , c(ż?,ˆ̇z)→Tv ,

U(ż?,ˆ̇z)→Tv
Min ,U(ż?,ˆ̇z)→Tv

Max , enable(ż?,ˆ̇z)→Tv
derfilter

,N(ż?,ˆ̇z)→Tv
d enable(ż?,ˆ̇z)→Tv

reffilter
,N(ż?,ˆ̇z)→Tv

r ,

enable(ż?,ˆ̇z)→Tv
antiwindup

,K(ż?,ˆ̇z)→Tv
aw

)
: They represent the controller tuning parameters asso-

ciated to the 2DOF PID controller (2dofP id(ż?,ˆ̇z)→Tv
). This controller takes as input

the error between the desired (ż?W) and the estimated (ˆ̇zW) velocity and it provides as
output a thrust value (Tv ∈

[
0 1

]
). The output of the vertical speed controller mod-

ule is the thrust value (Tv) provided by the 2DOF PID controller multiplied times the
(scalethrust) factor as showed in Eq. (2-55). An illustration of the 2DOF PID controller
and of the open loop discrete model used to tune it is provided.

+

-
2dof

Plant ModelController

z(z)

T (z)

z*w

 zw

Tv
.

.

 T* =
R

T*R

scale

.

thrust

 Tv scale thrust

v(z*,z) vT
. .

Figure 2-10: This figure shows the input and output of the discrete 2DOF PID
(2dofP id(ż?,ˆ̇z)→Tv

) controller and of the open loop discrete plant model (ˆ̇z(z)
Tv(z)) used to tune it.

It also shows how the controller output (Tv) is used in combination with the (scalethrust) value
to derived the output of the vertical speed controller module (T ?R≈W).

Master of Science Thesis CONFIDENTIAL Manuel Rucci

36 Navigation controller framework

The discrete plant model is given in Eq. (2-53). The derivation of the discrete open
loop plant model used to tune the (2dofP id(ż?,ˆ̇z)→Tv

) controller is given in 2-5-1. The
tuning of this controller has been done ensuring that the controller output is inside the
boundaries and a steady state error is achieved.

2-5-3 Outputs

1.
(
T?R≈W)

: It represents the output of the vertical speed controller module and it is
calculated according to Eq. (2-55). In dealing with the Pixhawk autopilot this output is
bounded between zero and one. To be precise it represents how much force is applied by
the motor to make the quadrotor move. The upper script (R ≈ W) is used to indicate
that the (z) direction of the robot frame is close the (z) direction of the world frame.
This occurs because small angle approximation assumption is satisfied. For this reason
it is possible to say that the quadrotor thrust can be referred to both robot and world
coordinate frame. The ENU convention is used to describe the thrust value (T ?R≈W).
Because the latter is mapped between zero and one is possible to say that increasing
the thrust value the quadrotor will move upward where decreasing it the quadrotor will
move downward. An illustration of the ENU robot frame together with the navigation
framework controller outputs is given in Figure 2-2. A summary of the convention used
in the navigation controller framework is given in Table 2-1.

2-5-4 Algorithm

A summary of the algorithm running inside the vertical speed controller module is provided.

Algorithm 5 Vertical speed controller module
Initialization:

1: Get vertical speed controller module sampling time (T vscs)
2: Get thrust scale value: scalethrust ∈

[
0 1

]
3: Get 2dofP id(ż?,ˆ̇z)→Tv

tuning parameters:

par(ż?,ˆ̇z)→Tv
=
(
K

(ż?,ˆ̇z)→Tv
p ,K

(ż?,ˆ̇z)→Tv

d ,K
(ż?,ˆ̇z)→Tv

i , b
ˆ̇z→ż?

, c(ż?,ˆ̇z)→Tv , U
(ż?,ˆ̇z)→Tv

Min , U
(ż?,ˆ̇z)→Tv

Max ,

enable
(ż?,ˆ̇z)→Tv

derfilter
, N

(ż?,ˆ̇z)→Tv

d , enable
(ż?,ˆ̇z)→Tv

reffilter
, N

(ż?,ˆ̇z)→Tv
r , enable

(ż?,ˆ̇z)→Tv

antiwindup
,K

(ż?,ˆ̇z)→Tv
aw

)
4: Initialize 2DOF PID controllers:

2dofP id(ż?,ˆ̇z)→Tv
←
(
par(ż?,ˆ̇z)→Tv

, T vscs

)
Algorithm: (Run at frequency equal to 1/T vscs Hz)

5: Get references: (ż?W) ∈
[
−1 1

]
Unit

[
m/s

]
6: Get measurements: (ˆ̇zW) Unit

[
m/s

]
7: Calculate 2dofP id(ż?,ˆ̇z)→Tv

controller output:
Tv ← 2dofP id(ż?,ˆ̇z)→Tv

← (ż?W , ˆ̇zW) with Tv ∈
[
0 1

]
(Pixhawk thrust boundaries)

8: T ∗W≈R = Tvscalethrust
9: Send (T ∗W≈R)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-6 Yaw controller module 37

2-6 Yaw controller module

2-6-1 State space representation

• Dynamics :

ˆ̇ψW = ψ̇?W≈R (2-56)

• State space :
Given

X = ˆ̇ψW Y = ˆ̇ψW U = ψ̇?W≈R (2-57)

the state space representation of the linear system shown in Eq. (2-56) is

Ẋ1×1 = A1×1X1×1 +B1×1U1×1 (2-58)

with
A1×1 = 0 B1×1 = 1 C1×1 = 1 D1×1 = 0 (2-59)

• Laplace domain :
The Laplace transfer function between inputs (U(s)) and outputs (Y(s)) is

Y(s) = 1
s

U(s) (2-60)

• Z domain :
Applying Backward Euler discretization method

(
s ≈ z−1

zTs

)
Eq. (2-60) becomes

Y(z) = Ts
1− z−1 U(z) (2-61)

where
(
Ts
)
represents the chosen sampling time. The difference equations associated to

Eq. (2-61) are
Y (k) = Y (k − 1) + TsU(k) (2-62)

where (k) represent a generic sample time instant.

2-6-2 Inputs

1. Tψc
s : It represents the sampling time of the yaw controller module. The choice of this

sampling time depends on the yaw angle measurement of the robot frame with respect to
the world coordinate frame. In this thesis it has been chosen to set (Tψcs = 1/10 = 0.1s).
The yaw measurement is available also at a higher frequency however it is convenient to
avoid to control the yaw angle at a higher frequency rate to ensure that the assumption
stating that the rotational and translation quadrotor’s motion are decoupled is satisfied.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

38 Navigation controller framework

2. par(ψ?,ψ̂)→ψ̇? =
(
K(ψ?,ψ̂)→ψ̇?

p ,K(ψ?,ψ̂)→ψ̇?

d ,K(ψ?,ψ̂)→ψ̇?

i ,b(ψ?,ψ̂)→ψ̇?
, c(ψ?,ψ̂)→ψ̇?

,

U(ψ?,ψ̂)→ψ̇?

Min U(ψ?,ψ̂)→ψ̇?

Max , enable(ψ?,ψ̂)→ψ̇?

derfilter
,N(ψ?,ψ̂)→ψ̇?

d enable(ψ?,ψ̂)→ψ̇?

reffilter
,N(ψ?,ψ̂)→ψ̇?

r

enable(ψ?,ψ̂)→ψ̇?

antiwindup
,K(ψ?,ψ̂)→ψ̇?

aw
)

: They represents the controller tuning parameters asso-
ciated to the 2DOF PID controller (2dofP id(ψ?,ψ̂)→ψ̇?). This controller takes as in-
put the error between the desired (ψ?W ∈

[
−π π

] [
rad

]
) and the estimated (ψ̂W ∈[

−π π
] [
rad

]
) yaw angle and it provides as output an angular velocity value (ψ?R≈W ∈[

−0.4 0.4
] [
rad/s

]
). To control the yaw angle ensuring that the quadrotor will always

rotate along the direction in which the yaw error is smaller it is required to modify the
calculated yaw error (ev) as following

if ev > π

eψ = ev − 2π
else if ev < −π
eψ = ev + 2π

else

eψ = ev

(2-63)

where (ev = ψ?W − ψ̂W) represents the error between the desired and the measured
yaw angle. Thus it is possible to conclude that the input error of the 2DOF PID
(2dofP id(ψ?,ψ̂)→ψ̇?) controller is (eψ). An illustration of the 2DOF PID controller and
of the open loop discrete model used to tune it is provided.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

2-6 Yaw controller module 39

+

-
ψ*2dofψ

Plant ModelController

ψ(z)

ψ*(z)

ψ*w

 ψw

..

.

ψ*R
If ev > π
 eψ = ev – 2π
else if ev < -π
 eψ = ev + 2π
else
 eψ = ev

eev ψ

Figure 2-11: This figure shows the input and output of the discrete 2DOF PID
(2dofP id(ψ?,ψ̂)→ψ̇?) controller and of the open loop discrete plant model (ψ̂(z)

ψ̇?(z)) used to tune it.
Furthermore, it also shows how to modify the yaw error to ensure that the quadrotor will always
rotate clockwise or counterclockwise depending on the direction in which the yaw error is smaller.
The controller output of the yaw controller module is (ψ̇?R≈W).

The discrete plant model is given in Eq. (2-61). The derivation of the discrete open
loop plant model used to tune the (2dofP id(ψ?,ψ̂)→ψ̇?) controller is given in 2-6-1. The
tuning of this controller has been done ensuring that the controller output is inside the
boundaries and a steady state error is achieved.

2-6-3 Outputs

1.
(
ψ̇?R≈W)

: It is the output of the yaw controller module and it represents the yaw angu-
lar rate that the quadrotor has to track to make itself reach the desired yaw angle. This
value follow ENU convention which means that if the yaw rate is positive the quadro-
tor will rotate counterclockwise whereas if it is negative it will rotate clockwise. An
illustration of the ENU robot frame together with the navigation framework controller
outputs is given in Figure 2-2. A summary of the convention used in the navigation
controller framework is given in Table 2-1.

2-6-4 Algorithm

A summary of the algorithm running inside the yaw controller module is provided.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

40 Navigation controller framework

Algorithm 6 Yaw controller module
Initialization:

1: Get yaw controller module sampling time (Tψcs)
2: Get 2dofP id(ψ?,ψ̂)→ψ̇? tuning parameters:

par(ψ?,ψ̂)→ψ̇? =
(
K

(ψ?,ψ̂)→ψ̇?

p ,K
(ψ?,ψ̂)→ψ̇?

d ,K
(ψ?,ψ̂)→ψ̇?

i , b(ψ?,ψ̂)→ψ̇?
, c(ψ?,ψ̂)→ψ̇?

, U
(ψ?,ψ̂)→ψ̇?

Min , U
(ψ?,ψ̂)→ψ̇?

Max ,

enable
(ψ?,ψ̂)→ψ̇?

derfilter
, N

(ψ?,ψ̂)→ψ̇?

d , enable
(ψ?,ψ̂)→ψ̇?

reffilter
, N

(ψ?,ψ̂)→ψ̇?

r , enable
(ψ?,ψ̂)→ψ̇?

antiwindup
,K

(ψ?,ψ̂)→ψ̇?

aw
)

3: Initialize 2DOF PID controllers:
2dofP id(ψ?,ψ̂)→ψ̇? ←

(
par(ψ?,ψ̂)→ψ̇? , T

ψc
s

)
Algorithm: (Run at frequency equal to 1/Tψcs Hz)

4: Get references: (ψ?W) ∈
[
−π π

]
Unit

[
rad

]
5: Get measurements: (ψ̂W) ∈

[
−π π

]
Unit

[
rad

]
6: eψ = ψ?W − ψ̂W
7: if eψ > π then
8: rψ = eψ − 2π
9: yψ = 0

10: else if eψ < −π then
11: rψ = eψ + 2π
12: yψ = 0
13: else
14: rψ = ψ?W

15: yψ = ψ̂W

16: end if
17: Calculate 2dofP id(ψ?,ψ̂)→ψ̇? controller output:

ψ̇?R≈W ← 2dofP id(ψ?,ψ̂)→ψ̇? ← (rψ, yψ) with ψ̇?R≈W ∈
[
−0.4 0.4

]
Unit

[
rad/s

]
18: Send (ψ̇?R≈W)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Chapter 3

Vision based planner to approach
either a static or moving object

After having completed the design of the navigation controller framework the goal of this
chapter is to present a vision based planner composed by a perception, state estimator and
image based visual servo module able to generate the desired reference velocities required to
drive the quadrotor up to a certain desired distance from the chosen visual marker minimizing
the error between the estimated visual marker center position on the image plane and the
desired one. An illustration of the problem is showed in the bottom figure.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

42 Vision based planner to approach either a static or moving object

X
Y
Z

C*

τ*

d*mm

*(,)4u v *4

(,)

1 1
* *(,)u v

*
5u v *5

C

τ

d

* *

*(,)4u v *4

(,)

1 1
* *(,)u v

2u v 2(,)
*
5u v *5

*(,)3u v *3
*(,)3u v *3

* *
2u v 2(,)

1 1(,)u v

4 4u v
3 3u v

2 2u v

5 5v (,)u

(,) (,)

(,)

mm

Desired configuration Current configuration

Desired
Marker
Position Current

Marker
Position

Figure 3-1: The figure shows on the left side the desired pixel values (pink) computed knowing
the desired center location (u?5, v?5) of the visual marker on the image plane (τ?) and the desired
distance between visual marker and camera (d?mm). On the right side is shown the image based
visual servo control problem which consist in driving the detected pixel points (red) towards the
desired ones (pink). The aim of the IBVS controller is to move the camera frame (C) attached
with the quadrotor itself such that the detected pixel points (red) appearing on the current camera
image plane (τ) will move towards the desired ones (pink).

Figure 3-1 shows the vision based planner problem which is solved combining three different
modules.

• Perception Module: This module is in charge of detecting the chosen visual marker
and extract the pixel points (red) (ui=1,2···5 = row, vi=1,2···5 = column) representing
the markers’ corners and the center. Furthermore, it also generates the desired pixel
points (pink) given both the desired center position of the visual marker on the image
plane plane (τ?) and the desired distance between visual marker and chosen quadrotor
camera.

• State Estimator Module: This module takes as input the detected pixel points (red)
and it provides an estimation of them that is used when a detection is lost for a small
amount of time.

• Image Based Visual Servo Module: This module is in charge given both the desired
and the estimated pixel points of computing the desired velocities that the quadrotor
has track to drive asymptotically the error between the desired and the detected pixel
points to zero.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-1 Perception module 43

An illustration of the vision based planner architecture combined with the navigation con-
troller framework is provided.

y*
. W

C

Yaw Controller

Change
From
World

To Robot
 frame

θ*W

φ*W

Horizontal Speed Controller

C

C

C

Vertical Speed Controller

ψ*
. R

θ*
R

 φ*
R

T*
R

z*
W.

z*
. W

ψ*
W

ROS Package

-

-
+

+
--

-
+

-+

Navigation Controller

Vision based planner

 IBVS Controller Module

Estimator

mτ
2D

dm

mτ*
2D

m
2D

τ

md*

Yes/No If Yes

Image Estimator Module

RW
RR

R
C

Change
From

Camera
To

World
frame

v
C,O
C v

image* image

1 2

34

5

θ*
 φ*

.

.
z*

R

R

R

R

Mavros
 ROS
 Driver

Parrot
 ROS
Driver

ψ*

θ*
 φ*

.

.
z*

PA

PA

PA

R

R

R

RPA
ψ*

θ*
 φ*

.T*

R

R

R

R
ψ*

θ*
 φ*
T*

PI

PI

PI

R

R

R

RPI
ψ*C

x*
. WW,O

C

Perception Module

1 2

4

5

3

1 2

34

5

Detector

,

IBVS

Le

+ Interface Parrot

 Interface Pixhawk

x W yW..
ψ

W
zW.

ψ
W

ψW
θ

W φW

Figure 3-2: Vision based planner combined with navigation controller framework

In dealing with the vision based planner only the horizontal and vertical speed controllers are
required because the image based visual servo works in the velocity domain. Therefore the
horizontal and vertical position controllers have been removed by the navigation controller
framework because there are not required to accomplish the vision based planner task. The
yaw controller appears in the navigation controller framework because it is possible to control
independently the yaw angle while the vision based planner is active. In controlling the yaw
is important to avoid that a quadrotor rotation will make the visual marker disappear from
the acquired chosen camera image.

3-1 Perception module

Th goal of the perception module is the extraction of the center and of the four corners of
the chosen visual marker in pixel (row,column) and (2D) image coordinates. The detector is
the key element of this module and it is in charge of extracting the pixel coordinate values of
the center of the visual marker and the size of its side in pixel coordinates unit. For the sake
of this thesis the ArUco detector from the ArUco library [5] has been chosen and the ArUco

Master of Science Thesis CONFIDENTIAL Manuel Rucci

44 Vision based planner to approach either a static or moving object

markers have been used to solve the vision based planner task. The choice to use ArUco as
a visual marker is mainly due to the fact that the ArUco detector available in the ArUco
library works at a frequency of around 30 Hz which allows to extract the center of the chosen
marker and its side in pixel coordinates unit almost every time an image is acquired. For a
first trial of the algorithm it has been preferred to rely on a good detector to exploit firstly
how the vision based planner performs with high frequency detection.

3-1-1 Inputs

1. chosen_camera : It is an integer value indicating from which camera (0=bottom) or
(1=front) the quadrotor has to acquire the image to solve the vision based planner task.
A quadrotor is usually equipped with a front and a bottom camera from which images
can be acquired at a specific rate usually around 30Hz. However the perception module
does not know from which camera it has to get the image. Furthermore, the vision
based planner should be designed to be able to be used either with the front or the
bottom quadrotor’s camera image. For example using the front quadrotor’s camera the
vision based planner can be used to follow a visual marker placed on an moving object
or simply approach to it, if the latter is static, to release a certain item or perform some
manipulation (if a robotic arm is provided). On the other hand the vision based planner
used in combination with the image acquired by the bottom quadrotor’s camera can be
used to land either on a moving or on a static platform where the visual marker has
been previously located. For this reason in designing the perception module an integer
variable called (chosen_camera) has been introduced. The latter if it is set to zero it
will ensure that the perception module will get both the bottom camera image and the
intrinsic matrix and distortion coefficients associated to it. On the other hand if the
variable is set to one the front camera image and the intrinsic and distortion coefficients
associated to the front camera will be used. The drawback of this approach is that both
the two cameras are required to be active at the same time and this might increase the
computational cost of the algorithm. The vision based planner will choose which image
has to use according to the (chosen_camera) variable which is set as default to one
(front camera images used) but that can be changed online either by the mission planner
or by the user itself. When the perception module is initialized if no (chosen_camera)
value is provided the (chosen_camera) values is set to one by default. Dealing with two
cameras there is the need to load two different set of configuration variables associated
to the front and bottom camera. This occurs because in a mission the quadrotor has to
be able to use the vision based planner with both front and bottom camera without the
need to switch off the quadrotor and load new parameters. For example, the vision based
planner can be used with the front camera to approach a specific ArUco marker with
(fID) number equals to (fID? = 5) at a desired distance (fd?mm = 1000) (millimeters)
and later with the bottom camera to approach a different ArUco marker with different
side dimension (bside?mm = 170) (millimeters) and different (bID? = 9) at a different
desired distance (bd?mm = 500) (millimeters) from it. Therefore, it is required that the
perception module is able to switch easily between front and bottom camera. The upper
scripts (f) and (b) are used to differentiate between default fixed variables associated
respectively to the front and to the bottom camera.

2.
(f u?5, f v?5, bu?5, bv?5

)
: They represent respectively the desired (u = row, v = column)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-1 Perception module 45

pixel coordinates values of the center of the ArUco marker respectively in the image ac-
quired by the front and by the bottom camera. Thus given an image acquired by the cho-
sen camera a desired ideal marker will appear on the acquired image with (row, column)
pixel coordinate value equal to (u?5, v?5). It is important to be able to choose freely the
location of the desired center on the acquired image to avoid to have the latter always
located on the center of the acquired image itself. An example where it is convenient to
set the desired center of the ArUco marker in a different location from the image center
is a mission where the quadrotor has to release an object inside a bucket. Assuming
that the object to release is located under the quadrotor, having the desired center of
the ArUco marker in the center of the acquired bottom image will require to place the
ArUco marker on top of the bucket. However, this choice will prevent the object to be
released to fall inside the bucket itself. For this reason having the possibility to locate
the desired center of the visual marker in a different location from the image’s center
will make the quadrotor able to release the object inside the bucket simply setting the
desired center to the left or to the right of the bucket itself. Also in this case different
desired center location can be selected for the front and bottom camera according to
the task that the quadrotor has to do. It is important to avoid to place the desired
center of the visual marker close to the border of the image. If this occurs the image
based visual servo control law will not perform nicely because it is really simple that
given a quadrotor movement the ArUco marker will disappear from the image. The goal
of the defaults parameters (fu?5, fv?5) and (bu?5, bv?5) is to accurately select the desired
center of the visual marker on the acquired chosen image. The perception module will
choose to load either the desired center of the front or bottom camera according to the
(chosen_camera) value (0=bottom, 1 = front).

3.
(f ID?, bID?

)
: They represent the (ID) numbers of the desired ArUco that the detector

inside the perception module has to detect according to the chosen camera value (front
or bottom). It is like having two different markers like an helipad and a circle associated
to the front and bottom camera. The choice to work with ArUco visual markers allows
to have different visual markers available for different tasks which are identified by a
unique (ID) number. An illustration showing different ArUco markers is provided.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

46 Vision based planner to approach either a static or moving object

Figure 3-3: ArUco markers

The same detector is used to detect all the ArUco markers showed in Figure 3-3 and it
provides as a output the center, the side dimension in pixel and the (ID) of the detected
marker. For example, if the front camera has been chosen (chosen_camera = 1) and the
ArUco marker appearing in the front image has the same (ID) number of (fID?), the
corners and the center of the detected marker will be extracted otherwise not. Having
the possibility to associate different markers to front and bottom camera images will
allow to place different ArUco markers in the same environment without the need to
ensure that when for example the landing task is started only an ArUco marker is present
in the scenario. In addition visual markers such as ArUco markers can be used also to
improve the estimation of the position of the quadrotor with respect to the chosen fixed
world coordinate frame if the position of the marker with respect to the world is known
a priori. This means that it is possible that in a scenario different ArUco markers will
appear.

4.
(f d?mm,

bd?mm
)

: They are the desired distance expressed in millimeters between either
the front or the bottom camera and the chosen ArUco marker with desired (ID?)
number equal either to (fID?) or (bID?). The desired distance between chosen camera
and chosen ArUco markers is used to calculate the desired pixel corners location knowing
the desired center of the marker (u?5, v?5). Furthermore, in the image based visual servo
module the desired distance (d?mm) can also be used to compute the desired interaction
matrix that is required to derive the desired velocities required by the quadrotor to
approach the visual marker at the desired distance (d?mm) minimizing the error between
the desired center (u?5, v?5) and the detected one (u5, v5). In selecting the desired distance
between chosen camera and visual marker is important to ensure that at the chosen
desired distance the chosen camera is able to detect the marker. Setting the desired
distance to zero for example does not make any sense because when the camera gets to
close to the marker the latter disappear from the image itself. The same consideration
can be done in setting a to large desired distance between camera and visual marker.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-1 Perception module 47

Thus the desired distance is in between the minimum distance between camera and
visual marker such that a detection occurs and the maximum distance at which it is
possible to detect the marker. This minimum and maximum distance value depend on
the chosen camera, on the size of the visual marker and on the chosen detector.

5. (f sidemm,
bsidemm) : They represent the dimension in millimeters of the side of the

chosen ArUco markers identified by (fID?) or (bID?). According to which camera is
enable a specific ArUco marker is chosen and it is side is measured and it is used to
both estimate the distance between the chosen camera and the marker and to calculate
the desired marker’s corners.

6.
(f fmm,

f shmm ,
f imhpix ,

bfmm,
bshmm ,

bimhpix

)
: They are default variables associated

to the chosen camera. Usually the values of these variables are found looking at the
technical camera specification. To be precise (fmm, shmm , imhpix

) stand for respectively
the absolute focal length (millimeters), the camera sensor height (millimeters) and the
number of rows of the chosen image (front or bottom). A quadrotor can have different
front and bottom cameras and for this reason different values are required to differentiate
between front and bottom default camera parameters.

7.
(
RR

Cf
,RR

Cb

)
: These two rotation matrices stand for how either the front or bottom

camera frame is rotated with respect to the robot coordinate frame. They are fixed
rotation matrices because usually the front and the bottom quadrotor cameras are fixed
with the quadrotor frame. The robot frame follow ENU convention and a pinhole camera
model is used to model both the front and bottom camera. An illustration is provided
to show world, robot, front and bottom camera frame.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

48 Vision based planner to approach either a static or moving object

W

R

C

C

f

b

X
Y
Z

Figure 3-4: Illustration of World coordinate frame (W), Robot coordinate frame (R), Front
camera coordinate frame (Cf) and Bottom camera coordinate frame (Cb). For both front and
bottom camera frame a pinhole camera model has been chosen. The World and Robot coordinate
frame follow ENU convention.

Given Figure 3-4 is possible to calculate the matrices
(
RRCf

, RRCb

)
as following

RRCf
=

 0 0 1
−1 0 0
0 −1 0

 and RRCb
=

 0 −1 0
−1 0 0
0 0 −1

 (3-1)

3-1-2 Outputs

1.
(
mτ?

pixi=1,2,···5
,mτ?

pixi=1,2,···5

)
: They represent respectively the desired pixel (u?i , v?i) =

(rowi, columni) and (2D) image coordinates (x?2Di
, y?2Di

) of the corners (i = 1, 2, 3, 4)
and of the center (i = 5) of the chosen marker.
According to the chosen_camera value the front

(
fu?5,

fv?5,
fd?mm,

fsidemm,
fID?,

ffmm,
fshmm ,

f imhpix
, RRCf

)
or the bottom

(
bu?5,

bv?5,
bd?mm,

bsidemm,
bID?, bfmm,

bshmm ,
bimhpix

, RRCb

)
default camera parameters are loaded into the variables

(
u?5, v

?
5,

d?mm, sidemm, ID
?, fmm, shmm , imhpix

, RRC
)
. To compute

(
mτ?

pixi=1,2,···5
,mτ?

pixi=1,2,···5

)
the variables

(
u?5, v

?
5, d

?
mm, sidemm, fmm, shmm , imhpix

)
are used to derive the top

left, top right, bottom right, bottom left corners of the visual marker with respect to
the desired center

(
u?5, v

?
5
)
. Assuming that the marker is planar the side of the desired

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-1 Perception module 49

marker expressed in pixel is given by

side?pix =
fmm sidemm imhpix

d?mm shmm

(3-2)

The derivation of Eq. (3-2) is given in Appendix C-1. Given the side of the desired
marker in pixel (side?pix) and the desired marker center location

(
u?5, v

?
5
)
the desired row

and column pixel coordinate values of the marker’s corners are given by

(u?1, v?1) = (
imhpix

2 −
side?pix

2 ,
imwpix

2 −
side?pix

2) top left

(u?2, v?2) = (
imhpix

2 −
side?pix

2 ,
imwpix

2 +
side?pix

2) top right

(u?3, v?3) = (
imhpix

2 +
side?pix

2 ,
imwpix

2 +
side?pix

2) bottom right

(u?4, v?4) = (
imhpix

2 +
side?pix

2 ,
imwpix

2 −
side?pix

2) bottom left

(3-3)

where (ui=1,2,···4, vi=1,2···4) are respectively the row and the column pixel values. To
summarize the desired pixel coordinate values are

mτ?

pixi=1,2,···5 =

u1
?

v1
?

u2
?

v2
?

...
u5
?

v5
?

(3-4)

After having calculated the desired pixel coordinate values given the intrinsic camera
parameters (fx, fy, cx, cy) associated to the chosen camera and derived from a previous
offline camera calibration (using Matlab [6] or OpenCV [7]) it is possible to calculate
the (2D) image coordinate associated to

(
mτ?

pixi=1,2,···5

)
. Using perspective projection [8]

the desired (2D) image coordinates
(
mτ?

2Di=1,2···5
)
are

mτ?

2Di=1,2···5 =

x?2D1
y?2D1
x?2D2
y?2D2...
x?2D5
y?2D5

=

v?
1−cx

fx
u?

1−cy

fy
v?

2−cx

fx
u?

2−cy

fy

...
v?

5−cx

fx
u?

5−cy

fy

(3-5)

Master of Science Thesis CONFIDENTIAL Manuel Rucci

50 Vision based planner to approach either a static or moving object

A scheme summarizing how to calculate
(
mτ?

pixi=1,2···5
,mτ?

2Di=1,2···5

)
is provided for the

sake of clarity.

fu?5, fv?5, fd?mm, fsidemmffmm,
fshmm ,

f imhpix
ffx,

ffy,
fcx,

fcy

 −−−−−−−−−−−−−−−−−→
chosen_camera = 0 or 1bu?5, bv?5, bd?mm, bsidemmbfmm,

bshmm ,
bimhpix

bfx,
bfy,

bcx,
bcy

 −−−−−−−−−−−−−−−−−→

u∗5
v∗5
d∗mm
sidemm
fmm
shmm

imhpix

fx
fy
cx
cy

→
[
mτ?

pixi=1,2,···5

mτ?

2Di=1,2···5

]

Another option to compute the desired references is to take a picture of the visual
marker where the latter will appear in the acquired image in the desired position.
Given this desired image it is possible to extract the desired corners and center using
the detector. It has been chosen to make the computation of the desired references(
mτ?

pixi=1,2,···5
,mτ?

2Di=1,2···5

)
independent from the chosen visual marker to avoid to have

different desired images given different markers and to allow to place the desired center
precisely on the image plane. An illustration of the extracted corners given different
desired centers location but same desired distance between visual marker and camera
is provided in the bottom figure.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-1 Perception module 51

C*

τ*

*(,)3u v *3
*(,)4u v *4

d*mm

X
Y
Z

C*

τ*

d*mm

* *

*(,)3u v *3
*(,)4u v *4

(,)

1 1
* *(,)u v

2u v 2(,)

*
5u v *5 *(,)1u v *1

*
2u v *2(,)

* *
5u v 5(,)

Figure 3-5: The figure shows how given different desired center pixel coordinate values (u?5, v?5)
and a desired distance (d?mm) in millimeters between camera and visual marker is possible to
located the desired corners (pink) of the chosen ArUco marker freely on the desired image plane
(τ?).

2.
(
mτ

pixi=1,2,···5
,mτ

pixi=1,2,···5

)
: They stand for respectively the detected pixel (ui, vi) =

(rowi, columni) and (2D) image coordinates (x2Di , y2Di) of the corners (i = 1, 2, 3, 4)
and of the center (i = 5) of the chosen visual marker. To calculate (mτ

pixi=1,2,···5
,mτ

2Di=1,2···5
)

a detector is required able to extract the corners and the center of the detected marker.
Using the ArUco marker detector of the ArUco library is possible given a certain image
where the ArUco marker appears to extract the ArUco marker’s corners, the center, the
perimeter and also the ArUco marker (ID) number. The detector orders the ArUco
corners in a clockwise direction from the top left corner according to the front side of the
ArUco. However if the ArUco rotate the detected corners will rotate as well with the
marker. A figure showing how the ArUco detector outputs the corners given different
ArUco marker orientation is provided.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

52 Vision based planner to approach either a static or moving object

3u v 3

1(,)u v 1 2u v 2

4u v 4 3u v 3(,) (,)

(,)

5u v 5(,)

4u v 4 1(,)u v 1

2u v 23u v 3 (,)(,)

(,)

5u v 5(,)

4u v 4

1(,)u v 12u v 2(,)

(,) (,)

5u v 5(,) 5u v 5(,)

5u v 5(,)

2u v 2

1(,)u v 1 4u v 4

3u v 3(,) (,)

(,)

1(,)u v 1

2u v 2

3u v 3

4u v 4

4u v 4

2u v 2

3u v 3

1(,)u v 1

(,)

(,)

(,)

(,)

(,)

(,)

5u v 5(,)

Figure 3-6: This figure shows the output of the ArUco detector (red points) when the ArUco
marker has different orientation.

The output showed in Figure 3-6 is not optimal in dealing with an under actuated system
such as the quadrotor. Indeed, the latter cannot rotate itself without translating which
means that it is impossible for the quadrotor to ensure that the desired marker’s corners
and center will coincide with the detected ones if a pitch or roll rotation on the marker is
applied. A solution to overcome this problem is to create the detected corners knowing
the side and the center of the detected ArUco marker at every iteration. In this way
the side of the ArUco will change depending on the detected side but the orientation of
the detected corners is independent from the ArUco marker orientation. An illustration
showing how using the side and the center of the ArUco marker the detected corners
become independent from the ArUco marker orientation is provided.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-1 Perception module 53

X
Y
Z

C

τ

dmm
(,)3u v 3

1 1(,)u v

(,)5u v 5

2u v 2

(,)4u v 4

C

τ

dmm

C

τ

dmm

(,)

3u v 3

1 1(,)u v

(,)5u v 5

2u v 2

(,)4u v 4
(,)

(,)

3u v 3

1 1(,)u v

(,)5u v 5

2u v 2

(,)4u v 4
(,)

(,)

Figure 3-7: The figure shows how the detected corners (red) are independent from the ArUco
marker orientation. The latter only depends on the side and on the center of the detected marker.

Given the detected side of the ArUco (sidepix) obtained divided the perimeter by four
and the detected center of it (u5, v5) the corners of the ArUco marker are derived as

(u1, v1) = (u5 −
sidepix

2 , v5 −
sidepix

2) top left

(u2, v2) = (u5 −
sidepix

2 , v5 + sidepix
2) top right

(u3, v3) = (u5 + sidepix
2 , v5 + sidepix

2) bottom right

(u4, v4) = (u5 + sidepix
2 , v5 −

sidepix
2) bottom left

(3-6)

Master of Science Thesis CONFIDENTIAL Manuel Rucci

54 Vision based planner to approach either a static or moving object

a matrix representation is provided

mτ
pixi=1,2,···5 =

u1
v1
u2
v2
...
u5
v5

(3-7)

Given the computed detected marker’s corners and center (mτ
pixi=1,2,···5

) expressed in
pixel coordinate values the corresponding (2D) image coordinates (mτ

2Di=1,2···5
) are com-

puted as follows

mτ
2Di=1,2···5 =

x2D1

y2D1

x2D2

y2D2
...

x2D5

y2D5

=

v1−cx
fx

u1−cy

fy
v2−cx
fx

u2−cy

fy

...
v5−cx
fx

u5−cy

fy

(3-8)

To conclude given an acquired image a detector is used to retrieve the center of the
marker (u5, v5) and the side of it in pixel coordinate (sidepix). Given this two informa-
tion available only if a detection occurs (measurement = true) both the detected pixel
coordinates (mτ

pixi=1,2···5
) and (2D) image coordinate (mτ

2Di=1,2···5
) values are calculated.

A scheme summarizing how to calculate
(
mτ
pixi=1,2···5

,mτ
2Di=1,2···5

)
is provided for the

sake of clarity.[
f image, fID?

ffx,
ffy,

fcx,
fcy

]
↘

chosen_camera
= 0 or 1[

bimage, bID?

bfx,
bfy,

bcx,
bcy

]
↗

→

image
ID?

fx
fy
cx
cy

→
[

Detector
if(ID = ID?)

]
→

u5
v5

sidepix
fx
fy
cx
cy

→
[
mτ
pixi=1,2···5

mτ
2Di=1,2···5

]

3.
(
d?m,dm

)
: They are the desired and the estimated distance between marker and chosen

camera. To estimate the distance it has been assumed that the marker is planar which
means that all the marker detected points lie on the same plane and therefore they all
have the same distance from the chosen camera. Using perspective projection knowing
the absolute focal length (fmm), the sensor height (shmm), the number of rows of the
image (imhpix

), the real side of the marker in millimeters (sidemm) and the detected
side of the marker in pixel (sidepix) is possible to obtain a rough distance estimation.
The latter is given by

dmm =
fmm sidemm imhpix

sidepix shmm

dm = dmm
1000 (3-9)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-1 Perception module 55

A detailed explanation of how Eq. (3-9) is derived it is given in Appendix C-1. To solve
the image based visual servo problem either the desired distance or an estimation of it
in meters is required.

4. measurement : It is a boolean variable that is set to true if the desired marker has
been detected successfully and false otherwise. To be precise given an image acquired
by the chosen quadrotor’s camera only if the desired ArUco marker with (ID) equal to
(ID?) is detected the variable (measurement) is set to true. The latter becomes false
if in the sequent acquired image no detection occurs.

5. safety_counter : It is an integer variable that counts how many consequently not
detection occurs. Every time a detection occurs the variable is set to zero. The
(safety_counter) variable has been introduced to avoid that if the desired ArUco
marker is lost the quadrotor will continue to move in a direction that might bring it far
away from the area in which the desired ArUco marker is placed. To be precise a thresh-
old variable has been introduced called (safety_counter_threshold) having the goal
to put the quadrotor to hover (reference velocities equal to zero) if (safety_counter)
is greater than (safety_counter_threshold). The choice to introduce this variable
is mainly related to the image state estimator module. Indeed, having an estima-
tion of the marker’s corners is important to avoid problems when the detection is lost
just for some instant. However, a wrong estimation might cause the quadrotor to
move in a direction in which it will never see again the desired marker. Thus, the
(safety_counter_threshold) variable is used by the image based visual servo module
to understand that the image state estimator module is estimating from a lot of time
the corners and this might be a problem because the desired marker can be far away
from the correct position. Therefore, the (safety_counter) variable can be thought as
a variable able to tell to the image based visual servo module how long the quadrotor
can continue to move when a detection is not available before to stop the quadrotor and
wait until a detection will occur again.

6. RR
C : It represents the rotation matrix describing how the camera frame is rotated with

respect to robot frame. This rotation matrix is fixed because the quadrotor’s front and
bottom camera do not move with respect to the robot frame fixed with the quadrotor
itself. The choice to set this matrix in the perception module is motivated by the fact
that every time a quadrotor camera is defined it is required to evaluate not only the
default camera parameters but also the transformation between camera frame and robot
frame. The latter will be used to map the image based visual servo controller output
representing the velocities (vC,OC) of the camera frame (C) with respect to the visual
marker frame (O) expressed in camera coordinate frame (C) into the velocities (vR,OC)
of the camera frame (C) with respect to the visual marker frame (O) expressed in robot
coordinate frame (R).

7. (fx, fy, cx, cy) : The are the intrinsic camera coefficients of the chosen camera required
to move from pixel coordinates to (2D) image coordinates and vice versa. This pa-
rameters will be used in the image state estimator module to transform the estimated
pixel coordinates

(
m̂τ?

pixi=1,2,···5

)
into the corresponding (2D) estimated image coordinates(

m̂τ?

2Di=1,2,···5

)
.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

56 Vision based planner to approach either a static or moving object

3-1-3 Algorithm

A summary of the overall algorithm running inside the perception module is presented.

Algorithm 7 Perception Module
Initialization:

1: Get default variables front camera:(
fu?5,

fv?5,
fd?mm,

fsidemm,
fID?, ffmm,

fshmm ,
f imhpix

, RRCf

)
2: Get default variables bottom camera:(

bu?5,
bv?5,

bd?mm,
bsidemm,

bID?, bfmm,
bshmm ,

bimhpix
, RRCb

)
Algorithm: (Run at acquired image frame rate (30 Hz))

3: Get camera bottom image and Get front camera image
4: Get bottom camera intrinsic matrix (bfx, bfy, bcx, bcy) and

distortion coefficients (bk1,
bk2,

bp1,
bp2,

bk3)
5: Get front camera intrinsic matrix (ffx, ffy, fcx, fcy) and

distortion coefficients (fk1,
fk2,

fp1,
fp2,

fk3)
6: Get chosen_camera (0=bottom, 1=front)
7: if chosen_camera = 0 then
8: Set img = bottom image
9: Set camera intrinsic matrix (fx, fy, cx, cy) = (bfx, bfy, bcx, bcy) and

distortion coefficients (k1, k2, p1, p2, k3) = (bk1,
bk2,

bp1,
bp2,

bk3)
10: Set default variables

(
u?5, v

?
5, d

?
mm, sidemm, ID

?, fmm, shmm , imhpix
, RRC

)
=

=
(
bu?5,

bv?5,
bd?mm,

bsidemm,
bID?, bfmm,

bshmm ,
bimhpix

, RRCb

)
11: else
12: Set img = front image
13: Set camera intrinsic matrix (fx, fy, cx, cy) = (ffx, ffy, fcx, fcy) and

distortion coefficients (k1, k2, p1, p2, k3) = (fk1,
fk2,

fp1,
fp2,

fk3)
14: Set default variables

(
u?5, v

?
5, d

?
mm, sidemm, ID

?, fmm, shmm , imhpix
, RRC

)
=

=
(
fu?5,

fv?5,
fd?mm,

fsidemm,
fID?, ffmm,

fshmm ,
f imhpix

, RRCf

)
15: end if
16: Detect ArUco marker from img
17: if ArUco marker detected then
18: Extract (u5, v5, sidepix, ID)
19: if (ID∗ = ID) then
20: measurement = true and safety_counter = 0
21: Compute measurements:

(
mτ
pixi=1,2···5

,mτ
2Di=1,2···5

)
= f(u5, v5, sidepix, fx, fy, cx, cy)

22: Estimate distance: dm = f(sidepix, sidemm, fmm, shmm , imhpix
)

23: Send
(
mτ
pixi=1,2···5

)
,
(
mτ

2Di=1,2···5

)
and

(
dm
)

24: else
25: measurement = false and safety_counter = safety_counter +1
26: end if
27: end if
28: Compute references:(

mτ?

pixi=1,2,···5
,mτ?

2Di=1,2···5

)
=f
(
u?5, v

?
5, d

?
mm, sidemm, fmm, shmm , imhpix

, fx, fy, cx, cy
)

29: Send
(
mτ?

pixi=1,2···5

)
,
(
mτ?

2Di=1,2···5

)
,
(
d?m
)
,
(
measurement),

(
safety_counter

)
,
(
RRC
)
,
(
fx, fy, cx, cy

)
Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-2 Image state estimator module 57

In the upper algorithm the world Get is used to indicate that the perception module will read
a certain input whereas the word Send is used to say that the perception module will output
a certain value. A resume of the inputs and outputs of the perception module is provided.

INPUTS
1)Default variables front camera :(f u?5, f v?5, f d?mm,

f sidemm,
f ID?,

f fmm,
f shmm ,

f imhpix ,RR
Cf

)
2)Default variables bottom camera :(bu?5, bv?5, bd?mm,

bsidemm,
bID?,

bfmm,
bshmm ,

bimhpix ,RR
Cb

)
3)chosen_camera (0 = bottom, 1 = front)

4)Front camera image
5)Bottom camera image

6)Bottom camera intrinsic matrix
and distortion coefficients :

(bfx,
bfy,

bcx,
bcy,

bk1,
bk2,

bp1,
bp2,

bk3)
7)Front camera intrinsic matrix
and distortion coefficients :

(f fx,
f fy,

f cx,
f cy,

f k1,
f k2,

f p1,
f p2,

f k3)

→

OUTPUTS
1)Desired pixel coordinates :(

mτ?

pixi=1,2,···5

)
2)Detected pixel coordinates :(

mτ
pixi=1,2···5

)
3)Desired 2D image coordinates :(

mτ?

2Di=1,2···5

)
4)Detected 2D image coordinates :(

mτ
2Di=1,2···5

)
5)Desired distance in meters between
chosen camera frame and marker

(Assumption Marker is planar) : d?m
6)Estimated distance in meters between

chosen camera frame and marker
(Assumption Marker is planar) : dm

7)True/False detection variable :
measurement

8)Safety variable counting the number
of consequently no detection :

safety_counter
9)Fixed rotation matrix from

camera frame to robot frame : RR
C

10)Intrinsic matrix : (fx, fy, cx, cy)

3-2 Image state estimator module

The image state estimator module is in charge of estimating the pixel points (marker’s corners
and center) at a certain desired chosen frequency which will be the same of the image based
visual servo controller module. The need of this module is mainly due to the fact that the
image based visual servo controller module has to generate the output in a synchronous way
which means at a specific frequency rate. Thus it cannot work using as a feedback the marker’s
corners and center detected by the perception module because it is not guaranteed that every
time an image is acquired a detection is provided. Indeed something can appear between
marker and camera and the detected pixel points might not be available at one specific
discrete time instant which means that a feedback is not available for the image based visual
servo controller module. For this reason to ensure that the corners are provided at a chosen
frequency rate the image state estimator module has been introduced. Two different approach
to provide an estimation of the detected pixel points when a detection is not available have
been developed.

• Static Approach: This approach when a detection is not available it assigns to the
estimated pixel points the values of the previous detected ones. This approach does

Master of Science Thesis CONFIDENTIAL Manuel Rucci

58 Vision based planner to approach either a static or moving object

not try to guess how the pixel points moved on the image plane if the marker for some
reason has disappeared from the image.

• Kalman Filter Approach: This approach uses a Kalman filter with a velocity con-
stant model to estimate how the pixel points (marker’s corners and center) have been
moved on the image plane when the detected pixel points are not available. The aim of
this filter is to estimate how the pixel points move on the image plane to try to guess
how the marker is moving in space.

According to different tasks one approach might result better than the other. Indeed, in
a scenario where the marker does not move it is better to use the static approach because
if the marker disappear it is because something has appeared between camera and marker.
Therefore, it is better to avoid to guess where the marker is because it is already known that
the marker is in the same position of before. Thus, in this situation it is better to assign to
the estimated pixel points the previous detected values to avoid that the quadrotor will move
far way from the desired area where the marker is located. On the other hand in dealing with
a marker that is moving freely in space it is better to try to estimate the pixel points to guess
where the marker is when it disappears from the image. In this case there is not advantage
in keeping the estimated pixel points values equal to the previous detected ones because the
marker is not static anymore and it is position in space might randomly change.

3-2-1 Inputs

1. (measurement),
(
mτ

pixi=1,2···5
,mτ

2Di=1,2···5

)
,
(
fx, fy, cx, cy

)
: They are the outputs of the

perception module. The meaning of them have been already discussed in subsection 3-
1-2.

2. selector : This is an integer variable that is used to switch among the static approach
(selector=0) and the Kalman filter approach (selector=1).
By default the selector is set to one. Different task can required different approaches
therefore this parameter can be changed online.

3. Q,R,Ts : They represent the process covariance noise matrix (Q), the measurement
covariance noise matrix (R) and the sampling time (Ts) at which the image is acquired.
A reasonable sampling time choice is (Ts = 1/30 = 0.033s) that is derived assuming that
the camera provides images at a frequency of 30Hz. It is also possible to increase and
decrease the variable (Ts) to a have bigger or a smaller displacement of the predicted
pixel points between two consequently acquired images. Indeed increasing (Ts) the
estimated corners in the second image will appear further than in the case in which (Ts)
is decreased. Choosing (Ts = 0) will make the estimated corners to do not move on the
image plane which resembles to the static filter approach. The process covariance (Q)
and measurement noise (R) matrices are used to tell to the Kalman filter respectively
how much the noise affects the states and how much the noise affects the measurements.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-2 Image state estimator module 59

The (Q) and (R) matrices are defined as

Q20×20 =

QT 4×4 04×4 04×4 04×4 04×4
04×4 QT 4×4 04×4 04×4 04×4
04×4 04×4 QT 4×4 04×4 04×4
04×4 04×4 04×4 QT 4×4 04×4
04×4 04×4 04×4 04×4 QT 4×4

R10×10 =

RT 2×2 02×2 02×2 02×2 02×2
02×2 RT 2×2 02×2 02×2 02×2
02×2 02×2 RT 2×2 02×2 02×2
02×2 02×2 02×2 RT 2×2 02×2
02×2 02×2 02×2 02×2 RT 2×2

(3-10)

where (QT 4×4) and (RT 4×4) are the two diagonal covariance matrices used to tune the
Kalman filter. The values of these matrices are usually provided as default parameters
of the Kalman filter and they are usually loaded in the initialization of the Kalman filter
itself. The size of (Q) and (R) matrices is determined by the states and measurement
size. Indeed at a specific discrete time instant (k) the estimated states (x̂(k)) and the
measurement (z(k)) (if they are available) are defined as

x̂(k) =
[
û1(k) v̂1(k) ˆ̇u1(k) ˆ̇v1(k) · · · û5(k) v̂5(k) ˆ̇u5(k) ˆ̇v5(k)

]T
20×20

z(k) = mτ
pixi=1,2···5

(k) =
[
u1(k) v1(k) u2(k) v2(k) · · · u5(k) v5(k)

]T
10×10

(3-11)

In tuning the (Q) and (R) covariance matrices the following consideration have been
done.

• Q: The covariance process noise matrix (Q) matrix takes into account uncertainty
in the model. Increasing the diagonal elements of (Q) causes the Kalman filter
prediction to be far from the provided model’s value. This occurs because the
process covariance noise (Q) is added to the process model matrix (A) and large
values in (Q) results in large noise added inside the model on which the Kalman
filter rely on. Therefore if it is known that the pixel points will move following a
velocity constant model is better to keep (Q) small. If instead the visual marker
is moving randomly it is better to increase (Q) to tell to the Kalman filter that
it does not have to rely too much on the model available. In choosing a diagonal
matrix it is assumed that the states are independent from each other.

• R: The measurement covariance matrix (R) matrix takes into account uncertainty
in the measurements. Increasing the diagonal elements of (R) more uncertainty is
introduced in the measurements. This causes the predicted pixel points to converge
slower towards the real measurements ones because the Kalman filter does not rely
too much on the measurements values. On the other hand decreasing the diagonal
element of the (R) matrix means that the Kalman filter in making the prediction
will rely more on the measurements rather than on the model. This choice will
cause the predicted values to converge faster towards the detected measurements
ones when they are available.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

60 Vision based planner to approach either a static or moving object

3-2-2 Outputs

1.
(
m̂τ

pixi=1,2···5
, m̂τ

2Di=1,2···5

)
: They represents the estimated corners in both pixels and

(2D) image coordinates. The need of a corners’ estimation is mainly due to the fact
that in the attempt of following an object where the visual marker is placed on it the
quadrotor can loose the marker due to unknowns and fast movements of the object. For
this reason a corners’ estimator has been implemented aiming at predict the corners’
movement when a detection is not available. Furthermore, a detection is provided at
a certain detector frequency which might be a feedback to slow for the image based
visual servo controller. Therefore, it is a good design choice to introduce an estimator
able to select the frequency at which the corners are needed. In using for example
a Kalman filter to estimate the corners is important to be aware that the filter will
predict the corners pixel values if no detection occurs and it will update the prediction
with real detected corners pixel values every time a detection occurs. This means that
it is possible to generate predicted corners at every desired frequency but to be able
to rely on them to solve a landing or object following task it is better to select the
state estimator module frequency around 30Hz to ensure that the number of corners
prediction is not to high with respect to then number of detections. To make the image
based visual servo controller synchronous which means that it will work at a desired
chosen frequency and not only when a detection is available two possible solutions have
been developed.

• Static approach: It consists in assigning to the estimated pixel points and (2D)
image coordinates values (m̂τ

pixi=1,2···5
, m̂τ

2Di=1,2···5

)
the detected ones (mτ

pixi=1,2···5
,

mτ
2Di=1,2···5

)
when they are available otherwise it keeps the previous detected values

until a new one is provided by the perception module. This approach allows the
image based visual servo controller module to work having feedbacks at a chosen
frequency. However this approach does not provide any information on how the
corners move on the image plane if a detection is not available anymore. Applying
this approach, unexpected movements of the visual marker might result in a lost of
the marker from the image plane which will make the quadrotor unable to complete
the vision based planner task. A resume of the algorithm is provided.

Algorithm 8 Static approach
Initialization:

1: Initialize previous values
(
prevmτ

pixi=1,2,···5
, prevmτ

2Di=1,2,···5

)
=
(
010×1, 010×1

)
Algorithm: (Run at desired frequency)

2: Get measurement
3: if measurement = true then
4: Get

(
mτ
pixi=1,2,···5

,mτ
2Di=1,2,···5

)
5:

(
prevmτ

pixi=1,2,···5
, prevmτ

2Di=1,2,···5

)
=
(
mτ
pixi=1,2,···5

,mτ
2Di=1,2,···5

)
6:

(
m̂τ
pixi=1,2,···5

, m̂τ
2Di=1,2,···5

)
=
(
mτ
pixi=1,2,···5

,mτ
2Di=1,2,···5

)
7: else
8:

(
m̂τ
pixi=1,2,···5

, m̂τ
2Di=1,2,···5

)
=
(
prevmτ

pixi=1,2,···5
, prevmτ

2Di=1,2,···5

)
9: end if

10: Send
(
m̂τ
pixi=1,2,···5

, m̂τ
2Di=1,2,···5

)
Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-2 Image state estimator module 61

• Kalman filter approach: It consists in using a Kalman filter to estimate the
corners and the center of the chosen ArUco marker. This approach will provide an
estimation of how the marker’s corners and the center move on the image plane
if a detection is a not available anymore. The Kalman filter formulation is given
in [9]. To design the Kalman filter the process and the measurement matrices are
set based on a velocity constant model. The input of the Kalman filter are the
detected pixel points (mτ

pixi=1,2···5
(k)) at discrete time instant (k).

The process velocity constant model given a generic pixel point (i) is given by

ûi(k) = ûi(k − 1) + Ts ˆ̇ui(k − 1)
v̂i(k) = v̂i(k − 1) + Ts ˆ̇vi(k − 1)
ˆ̇ui(k) = ˆ̇ui(k − 1)
ˆ̇vi(k) = ˆ̇ui(k − 1)

(3-12)

Extending the model of a single pixel point (i) to the marker’s corners and center it
is possible to derive the process model used in the image state estimator module to
estimate the position in pixel and the velocity of the marker’s corners and center.
The process model is

x̂(k) = Ax̂(k − 1) (3-13)

which is equivalent to

û1(k)
v̂1(k)
ˆ̇u1(k)
ˆ̇v1(k)
û2(k)
v̂2(k)
ˆ̇u2(k)
ˆ̇v2(k)
...

û5(k)
v̂5(k)
ˆ̇u5(k)
ˆ̇v5(k)

=

AT 4×4 0 0 0 0

0 AT 4×4 0 0 0
0 0 AT 4×4 0 0
0 0 0 AT 4×4 0
0 0 0 0 AT 4×4

û1(k − 1)
v̂1(k − 1)
ˆ̇u1(k − 1)
ˆ̇v1(k − 1)
û2(k − 1)
v̂2(k − 1)
ˆ̇u2(k − 1)
ˆ̇v2(k − 1)

...
û5(k − 1)
v̂5(k − 1)
ˆ̇u5(k − 1)
ˆ̇v5(k − 1)

(3-14)

with

AT 4×4 =

1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

 (3-15)

The measurement model is

mτ
pixi=1,2···5

(k) = Cmτ
pixi=1,2···5

(k − 1)→ z(k) = Cz(k − 1) (3-16)

Master of Science Thesis CONFIDENTIAL Manuel Rucci

62 Vision based planner to approach either a static or moving object

that is equivalent to:

u1(k)
v1(k)
u2(k)
v2(k)
...

u5(k)
v5(k)

=

CT 2×4 0 0 0 0

0 CT 2×4 0 0 0
0 0 CT 2×4 0 0
0 0 0 CT 2×4 0
0 0 0 0 CT 2×4

u1(k − 1)
v1(k − 1)
u2(k − 1)
v2(k − 1)

...
u5(k − 1)
v5(k − 1)

(3-17)

with

CT 2×4 =
[
1 0 0 0
0 1 0 0

]
(3-18)

The Kalman filter approach with its predict and update stage is summarized here.

Algorithm 9 Kalman filter approach
Initialization:

1: Get default variables:
(
Q,R, Ts = 0.033

)
2: Calculate A = f(Ts), C matrices
Algorithm: (Run at desired frequency)

3: Get intrinsic matrix (fx, fy, cx, cy)
4: Get measurement
5: if measurement = true (update Kalman filter stage) then
6: Get

(
mτ
pixi=1,2,···5

)
7: if first time (first time the marker is detected) then
8: Initialize Kalman filter: x̂ =

[
u1 v1 Ts Ts · · ·u5 v5 Ts Ts

]T
20×1

and P̂ = I20×20

(Identity matrix)
9: end if

10: Set z = mτ
pixi=1,2,···5

11: P̂model = AP̂AT +Q
12: x̂model = Ax̂
13: K =

(
P̂modelC

T
)(
R+ CP̂modelC

T
)−1

14: P̂ = P̂model −KCP̂model
15: x̂ = x̂model +K

(
z − Cx̂model

)
(Update)

16: else
17: P̂ = P̂model = AP̂AT +Q (Prediction covariance)
18: x̂ = x̂model = Ax̂ (Prediction states)
19: end if
20: Calculate

(
m̂τ
pixi=1,2,···5

)
= f(x̂) =

[
û1 v̂1 û2 v̂2 · · · û5 v̂5

]T
with

x̂ =
[
û1 v̂1 ˆ̇u1 ˆ̇v1 · · · û5 v̂5 ˆ̇u5 ˆ̇v5

]T
21: Calculate

(
m̂τ

2Di=1,2,···5

)
= f(m̂τ

pixi=1,2,···5
, fx, fy, cx, cy)

22: Send
(
m̂τ
pixi=1,2,···5

, m̂τ
2Di=1,2,···5

)
Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-2 Image state estimator module 63

3-2-3 Algorithm

A summary of the overall algorithm running inside the image state estimator module is
provided.

Algorithm 10 Image state estimator module
Initialization:

1: Get selector (0= Static approach, 1 Kalman filter approach)
2: Get default variables:

(
Q,R, Ts = 0.033

)
3: Calculate A = f(Ts), C matrices
4: Initialize previous values

(
prevmτ

pixi=1,2,···5
, prevmτ

2Di=1,2,···5

)
=
(
010×1, 010×1

)
Algorithm: (Run at image frequency 30Hz to have as much measurements as possible)

5: Get measurement
6: Get intrinsic matrix (fx, fy, cx, cy)
7: if selector = 0 then
8: if measurement = true then
9: Get

(
mτ
pixi=1,2,···5

,mτ
2Di=1,2,···5

)
10:

(
prevmτ

pixi=1,2,···5
, prevmτ

2Di=1,2,···5

)
=
(
mτ
pixi=1,2,···5

,mτ
2Di=1,2,···5

)
11:

(
m̂τ
pixi=1,2,···5

, m̂τ
2Di=1,2,···5

)
=
(
mτ
pixi=1,2,···5

,mτ
2Di=1,2,···5

)
12: else
13:

(
m̂τ
pixi=1,2,···5

, m̂τ
2Di=1,2,···5

)
=
(
prevmτ

pixi=1,2,···5
, prevmτ

2Di=1,2,···5

)
14: end if
15: else
16: if measurement = true (update Kalman filter stage) then
17: Get

(
mτ
pixi=1,2,···5

)
18: if first time (first time the marker is detected) then
19: Initialize Kalman filter: x̂ =

[
u1 v1 Ts Ts · · ·u5 v5 Ts Ts

]T
20×1

and P̂ =
I20×20 (Identity matrix)

20: end if
21: Set z = mτ

pixi=1,2,···5
(measured variables)

22: P̂model = AP̂AT +Q
23: x̂model = Ax̂
24: K =

(
P̂modelC

T
)(
R+ CP̂modelC

T
)−1

25: P̂ = P̂model −KCP̂model
26: x̂ = x̂model +K

(
z − Cx̂model

)
27: else
28: P̂ = P̂model = AP̂AT +Q
29: x̂ = x̂model = Ax̂
30: end if
31: Calculate

(
m̂τ
pixi=1,2,···5

)
= f(x̂) =

[
û1 v̂1 û2 v̂2 · · · û5 v̂5

]T
with

x̂ =
[
û1 v̂1 ˆ̇u1 ˆ̇v1 · · · û5 v̂5 ˆ̇u5 ˆ̇v5

]T
32: Calculate

(
m̂τ

2Di=1,2,···5

)
= f(m̂τ

pixi=1,2,···5
, fx, fy, cx, cy)

33: Send
(
m̂τ
pixi=1,2,···5

, m̂τ
2Di=1,2,···5

)
34: end if

Master of Science Thesis CONFIDENTIAL Manuel Rucci

64 Vision based planner to approach either a static or moving object

A resume of inputs and outputs of the image state estimator module is provided.

INPUTS
1)selector : (0 = Static approach,

1 = Kalman filter approach)
2)Default Kalman Filter Process and

Measurement Covariance Matrix : (Q,R)
3)Sampling time acquired images : Ts

4)True/False detection variable :
measurement

5)Detected pixel coordinates :
(
mτ

pixi=1,2,···5

)
6)Detected 2D image coordinates :

(
mτ

2Di=1,2···5

)
7)Intrisic : (fx, fy, cx, cy)

→

OUTPUTS
1)Estimated pixel coordinates :(

m̂τ
pixi=1,2···5

)
2)Estimated 2D image coordinates :(

m̂τ
2Di=1,2···5

)

3-3 Image based visual servo controller module

The image based visual servo controller module is a controller having as a goal the minimiza-
tion of the error between the estimated (2D) image points provided by the state estimator
module and the desired references ones given by the perception module. To achieve this goal it
calculates the reference camera velocities with respect to the visual marker expressed in world
coordinates frame that the quadrotor has to track to drive the error to zero. The formulation
of the IBVS for a full actuated system is given in [10], [11], [12]. However, the quadrotor is an
under-actuated system which means that it only has four control inputs (four motor speeds)
to reach any (3D) position in space with a certain orientation. Indeed it cannot translate
along (x) and (y) axis without turning. Examples of how to apply IBVS to an under-actuated
system such as the quadrotor are given in [13], [14] where the IBVS algorithm is used to solve
the quadrotor autonomous landing problem. For the sake of this thesis only the instantaneous
translational camera velocities

(
vC,OC

)
will be tracked by the quadrotor. The yaw orientation

is not controller by the IBVS but the yaw controller can be used to modify the quadrotor
yaw angle when the IBVS algorithm is active. In modifying the yaw angle while the IBVS
algorithm is active it is important to avoid to send a big change in desired yaw reference
that might cause the quadrotor to rotate to fast and to loose the marker from the image. To
summarize, the goal of this section is to derive an IBVS formulation that given the estimated
and the desired (2D) image points is able to provide the reference translational velocities
required to move the quadrotor such that the error is driven to zero.

3-3-1 Inputs

1. (chosen_camera), (safety_counter), (RR
C), (dm,d?m), (mτ?

2Di=1,2,···5
) : A deep expla-

nation of the meaning of the perception module input variables (chosen_camera,
safety_counter, RRC , d?m) is given in 3-1-1 whereas the calculation of the perception
module output variables (dm,mτ?

2Di=1,2,···5
) is given in 3-1-2.

2. m̂τ
2Di=1,2,···5

: They represent the estimated (2D) visual marker’s corners and center
calculated by the image state estimator module either using the static approach (selector

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-3 Image based visual servo controller module 65

= 0) or the Kalman filter approach (selector = 1). A detailed explanation on how these
values are derived and what they represent is given in 3-2-2.

3. RW
R : It represents the rotation matrix describing how the robot frame attached with

the quadrotor is rotated with respect to the world frame. A detailed explanation of
how this variable is derived is given in B-1-1 and the value of the rotation matrix is
given in Eq. (B-2). To calculate this matrix it is required to know the pitch (θ) , roll
(φ) and yaw (ψ) angles of the quadrotor expressed in world coordinate frame. These
values represent the orientation of the quadrotor with respect to the world coordinate
frame and they are provided to the image based visual servo module either by the EKF
or by a motion capture system. The latter is in charge of estimating the full quadrotor
states (position, velocity, orientation ,acceleration) of the quadrotor expressed in world
coordinate frame.

4. safety_counter_threshold : It is an integer variable that is used in combination with
the (safety_counter) variable whose explanation is given in 3-1-1. In particular the
(safety_counter_threshold) variable has been introduced with the aim to provide to
the quadrotor a threshold variable indicating after how much time it has to stop to
listen to the estimation given by the image based visual servo module and wait until
new commands are provided. To be precise if the (safety_counter) is greater than
the (safety_counter_threshold) the quadrotor will send to the navigation controller
framework velocities along (x),(y),(z) direction equal to zero and not the output of the
image based visual servo controller. This choice will bring the quadrotor to stay in
same position (hover state). If later on the marker is detected again the velocities cal-
culated by the image based visual servo module will be sent to the navigation controller
framework.

5. (fλ, bλ :) According to the chosen camera value (1=front, 0=bottom) the chosen tuning
controller parameter either (fλ) or (bλ) is loaded into the variable (λ). The latter is a
diagonal three times three positive definite matrix where the elements of its diagonal
are all greater than zero .

λ =

λ1 0 0
0 λ2 0
0 0 λ3

 with det(λ) > 0→ λ1, λ2, λ3 > 0 (3-19)

The values on its diagonal matrix (λ1, λ2, λ3) are multiplicative always positive factors
that are used to increase or decrease the velocities (vC,OC) calculated by image based
visual servo controller representing the velocities of the camera frame (C) with respect
to the visual marker frame (O) expressed in camera frame coordinate (C). Therefore,
the tuning parameters (λ1, λ2, λ3) are applied on the velocities expressed in the chosen
camera frame and not on the velocity expressed in the world frame which are the input of
the navigation controller framework. This might cause misunderstanding in tuning the
parameters to increase or decrease the speed of the quadrotor along a chosen quadrotor
axis. Indeed, if the user wants to use the front camera to make the quadrotor approach
an object and it also wants to increase the speed of the quadrotor along the (x) direction
of the robot frame (assumed to be aligned with the world frame) it has to know which
tuning parameter he/she has to increase to do that. For example increasing the value

Master of Science Thesis CONFIDENTIAL Manuel Rucci

66 Vision based planner to approach either a static or moving object

of (fλ1) the quadrotor will not move faster along the (x) direction of the robot frame
(forward or backward) but it will move faster along the (y) direction of the quadrotor
frame (left or right) (see Figure 3-4). Thus, it is important to know how the tuning
parameters are related to both the velocities of the quadrotor expressed either in the
robot or in the world coordinate frame. Different cameras might have different frame
orientation. For this reason it is interesting how the front (fλi=1,2,3) and the bottom
(bλi=1,2,3) gains are related with both the velocities of the robot expressed either in robot
or world coordinate frame. Knowing this information is possible to increase or decrease
the quadrotor velocities along a chosen desired direction of the world coordinate system.
The navigation controller framework receives as input the velocities expressed in world
coordinate frame and it has to track them. Therefore, it is required to transform the
velocities derived by the IBVS controller expressed in camera coordinate frame into
world coordinate frame. Knowing that the camera is fixed with the quadrotor it is
possible to infer that the velocities of the camera frame is the same of the velocities
of the quadrotor expressed in the chosen coordinate frame. Thus to transform the
velocities of the chosen camera frame expressed in the chosen camera coordinate frame
into velocities of the robot expressed in the world coordinate the following equation is
used.

vW,OR = RWR vR,OR

with vR,OR = vR,OC = RRCvC,OC = RRCλvIC,O
C

(3-20)

(vIC,O
C) represents the instantaneous camera velocities without any scale factor applied

(λ = I3×3). Given Eq. (3-20) is possible to compute the mapping between the transla-
tional not scaled camera velocities (vIC,O

C) derived using either the front (f vIC,O
C) or the

bottom camera (bvIC,O
C) and the corresponding velocities expressed in robot coordinate

frame (f vR,OC , bvR,OC). The mapping is showed here.

fvR,OR = fvR,OC = RRCf

fλvIC,O
C =

=

 0 0 1
−1 0 0
0 −1 0

fλ1 0 0

0 fλ2 0
0 0 fλ3

fvIx

C,O
C

fvIy
C,O

C
fvIz

C,O
C

 =

fλ3

fvIz
C,O
C

−fλ1
fvIx

C,O
C

−fλ2
fvIy

C,O

C

 (3-21)

bvR,OR = bvR,OC = RRCb

bλvIC,O
C =

=

 0 −1 0
−1 0 0
0 0 −1

bλ1 0 0

0 bλ2 0
0 0 bλ3

bvIx

C,O
C

bvIy
C,O

C
bvIz

C,O
C

 =

−bλ2

fvIy
C,O

C

−bλ1
fvIx

C,O
C

−bλ3
fvIz

C,O
C

 (3-22)

where (RRCf
) and (RRCb

) are respectively the rotation matrix describing how the front and
the bottom camera frame are rotated with respect to the robot frame. A more detailed
explanation of these values in given in 3-1-1. Assuming the pitch and roll quadrotor
angles are close to zero it is possible to infer that the rotation matrix (RWR) describing
how the robot frame is rotated with respect to the world frame is only affected by the
rotation of the quadrotor about the (z) quadrotor axis by a yaw (ψ) angle. Making this

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-3 Image based visual servo controller module 67

assumption is possible to calculate how the tuning parameters (fλi=1,2,3) and (bλi=1,2,3)
affect the velocities expressed in the world coordinate frame.

f vW,OR = RWR
fvR,OR ≈

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

fλ3

fvIz
C,O
C

−fλ1
fvIx

C,O
C

−fλ2
fvIy

C,O

C

 =

=

cos(ψ)fλ3

fvIz
C,O
C + sin(ψ)fλ1

fvIx
C,O
C

sin(ψ)fλ3
fvIz

C,O
C − cos(ψ)fλ1

fvIx
C,O
C

−fλ2
fvIy

C,O

C

(3-23)

bvW,OR = RWR
bvR,OR ≈

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

−bλ2

bvIy
C,O

C

−bλ1
bvIx

C,O
C

−bλ3
bvIz

C,O
C

 =

=

−cos(ψ)bλ2

bvIy
C,O

C
+ sin(ψ)bλ1

bvIx
C,O
C

−sin(ψ)bλ2
bvIy

C,O

C
− cos(ψ)bλ1

bvIx
C,O
C

−bλ3
bvIz

C,O
C

(3-24)

A table summarizing how the front (fλi=1,2,3) and the bottom (bλi=1,2,3) tuning param-
eters influence the velocities of the quadrotor expressed in camera (vC,OR), robot (vR,OR)
and world (vW,OR) coordinate frame is provided.

Table 3-1: Relation between tuning parameters (fλ1,
fλ2,

fλ3) and (bλ1,
bλ2,

bλ3) and velocities
of the quadrotor expressed camera, robot and world coordinate frames

vC,OC = vC,OR (IBVS) vR,OR vW,OR (Navigation controller)
fλ1 it affects vxC,OC it affects vyR,OR It affects vxW,OR and vyW,OR

fλ2 it affects vyC,OC it affects vzR,OR it affects vzW,OR

fλ3 it affects vzC,OC it affects vxR,OR it affects vxW,OR and vyW,OR

bλ1 it affects vxC,OC it affects vyR,OR it affects vxW,OR and vyW,OR

bλ2 it affects vyC,OC it affects vxR,OR it affects vxW,OR and vyW,OR

bλ3 it affects vzC,OC it affects vzR,OR it affects vzW,OR

Because the navigation controller framework receives as input the velocities of the
quadrotor expressed in world coordinate frame (vW,OR) in tuning the front camera pa-
rameters (fλ1,

fλ2,
fλ3) it is preferred to set both (fλ1,

fλ3) around the same value if
the quadrotor will perform rotation about the (z) axis. Otherwise knowing the orienta-
tion of the robot frame with respect to the world frame is possible to do a fine tuning
of (fλ1,

fλ3) to achieve a greater speed either along the (x) or (y) direction of the world
coordinate frame. The same consideration referring to table Table 3-1 can be done for
the bottom tuning parameters (bλ1,

bλ2,
bλ3).

Master of Science Thesis CONFIDENTIAL Manuel Rucci

68 Vision based planner to approach either a static or moving object

6. (f interaction_matrix, binteraction_matrix) : They represent integers variables re-
spectively associated to the front or bottom camera that are used to selected which type
of interaction matrix the image based visual servo controller has to use. Given a task
the image based visual servo controller has to generate the velocities that the camera
frame has to track to ensure that the estimated (2D) image points will coincide with the
desired ones. In doing this, it can use three different types of error interaction matrices

• Desired error Interaction Matrix (interaction_matrix = 0): This is a constant in-
teraction matrix that is a function of the desired center (x?2D5

, y?2D5
) of the marker,of

the difference between the desired third and the desired second corner (d?y2D2,3
)

along the (y) direction of the (2D) image coordinate system and of the desired
distance in meters between visual marker and chosen camera (d?m).
• Measured error Interaction Matrix (interaction_matrix = 1) : This interaction
matrix is not constant. Indeed it changes at every iteration and it is a function
of the estimated center (x̂2D5 , ŷ2D5), of the estimated difference between third and
second corners (d̂y2D2,3

) along the (y) direction of the (2D) image coordinate system
and of the estimated distance in meters between the visual marker and the chosen
camera (d̂m). This type of interaction matrix will generate large velocities changes
which will make the quadrotor to approach the visual marker in an aggressive way.
• Average error Interaction Matrix (interaction_matrix = 2): It is an average inter-
action matrix combining both the information of the desired and of the measured
interaction matrices. Choosing this interaction matrix will make the quadrotor
to move faster than the desired interaction matrix but slower than the measured
interaction matrix. This interaction matrix is usually preferred with respect to the
other two because it is able to combine more information together to generate the
velocities for the navigation controller framework.

A detailed explanation of how these interaction matrices are derived is given in 3-2-2.

7. (Max,Min) : They are saturation constraints that are used to saturate the velocities
(vW,OR) that are sent to the navigation controller framework. A saturation should not
occur tuning properly the (fλ) and (bλ) matrices. However for a safety condition it
has been preferred to introduce this saturation constraints to avoid that the navigation
controller framework will receive velocities to high to be tracked. Furthermore, the
small angle approximation assumption has been used to design the controllers of the
navigation controller framework. According to this assumption the quadrotor cannot
track large velocities references (greater than 1 m/s) because the horizontal and vertical
speed controller should not generated a pitch and roll greater than fifteen degrees to
meet the small angle approximation assumption. For this reason it has been chosen to
saturate the velocities at 1 m/s.

3-3-2 Outputs

1. vW,OR : The main steps required to compute the translational camera velocities that the
quadrotor has to track to minimize the error between the estimated and the desired
corners are shown.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-3 Image based visual servo controller module 69

(a) Compute Error (e)
Given the estimated (m̂τ

2Di=1,2,···5
) and the desired (mτ?

2Di=1,2,···5
) corners expressed

in (2D) image coordinates, following the error formulation of [15, chapter 7, pages:
189–191] is possible to write that the IBVS error (positive feedback) is given by

e = f(m̂τ
2Di=1,2,···5 , m̂

τ?

2Di=1,2,···5) =

 x̂2D5 − x?2D5
ŷ2D5 − y?2D5

dy2D3,2
− d?y2D3,2

 (3-25)

with (dy2D3,2
= y2D3 − y2D2) and (d?y2D3,2

= y?2D3
− y?2D2

). In calculating the error
the positive distance along the (y) direction between the second and the third
marker has been considered. This choice is mainly due to the fact that it has been
preferred to formulate the error saying that the IBVS controller has to minimize
the error between the estimated and the desired center and it has to bring it is
detected current side equal to the desired one. An illustration is provided showing
the meaning of the error parameters.

(X2D , Y2D)

(
 Y

2D
 - Y

2D
)

 3

(X2D - X2D)
2

1

(X2D , Y2D)

(X2D , Y2D)

(X2D , Y2D)

(X2D , Y2D)(X2D , Y2D)

1 1 2 2

3344

5 5

(
 Y

2D
 - Y

2D
)

 3
 2

(X2D - X2D)
2

1

 2

1

1

(X2D , Y2D)44 (X2D , Y2D)33

(X2D , Y2D)22

(X2D , Y2D)55

Detected Corners

Desired Corners

Image plane τ

Figure 3-8: Illustration of the error terms. On the left image side the detected corners (red)
are shown. They are extracted independently from the marker orientation knowing the detected
center (u5, v5) and the side of the marker (sidepix). On the right side the desired corners (pink)
are illustrated. Respectively in red and pink have been highlighted the 2D image coordinates
values used to formulate the IBVS error.

(b) Compute Error Interaction Matrix (Le)
Dealing with visual servoing algorithm such IBVS brings immediately to underline

Master of Science Thesis CONFIDENTIAL Manuel Rucci

70 Vision based planner to approach either a static or moving object

the concept of interaction matrix. The latter is a matrix relating the chosen visual
features with the camera instantaneous velocity (translational and rotational cam-
era frame velocities). The derivation of the interaction matrix for different visual
features (point, straight line, plane primitives and circle) is given in [16]. Accord-
ing to Appendix C-2 the time derivative considering only translation motion of a
generic (2D) i image point (ṁτ

2Di
) is

[
ẋ2Di

ẏ2Di

]
=

− 1
ZC

i

0 x2Di

ZC
i

0 − 1
ZC

i

y2Di

ZC
i

vx

C,O
C

vy
C,O
C

vz
C,O
C

 = Lxiv
C,O
C (3-26)

According to Appendix 3-9 the time derivative of the difference between two generic
2D k and j image points along the y direction considering only translational motion
is

ḋy2Dk,j
= ẏ2Dk

− ẏ2Dj

[
0 (− 1

ZC
k

+ 1
ZC

j

) (y2Dk

ZC
k

−
y2Dj

ZC
j

)
]

vC,OC (3-27)

Assuming that the visual marker is planar is possible to state that all the visual
marker points have the same distance from the camera. This means that (ZCk =
ZCj = ZCi). In this thesis the term (dm) is used to indicate the distance between the
planar marker and the origin of the camera frame expressed in meters. Applying
the assumption that the marker is planar to both Eq. (3-26) and Eq. (3-27) is
possible to state that the derivative of the estimated terms (x̂2D5 , ŷ2D5 , d̂y2D2,3

)
required in the formulation of the error shown in Eq. (3-25) is

ˆ̇x2D5
ˆ̇y2D5

ˆ̇dy2D3,2

 =

− 1
dm

0 x̂2D5
dm

0 − 1
dm

ŷ2D5
dm

0 0 ŷ2D3−ŷ2D2
dm

vx

C,O
C

vy
C,O
C

vz
C,O
C

 = LxvC,OC (3-28)

The interaction matrix (Lx) is made up by the (2D) image coordinates of the
estimated center of the visual marker (x̂2D5 ,ŷ2D5), the current distance (dm) be-
tween the planar visual marker and the current camera frame, and the difference
(dy2D3,2

= y2D3 − y2D2) between the third and the second estimated (2D) im-
age points along the (y) direction of the (2D) image coordinate system. [10]
proposes other two different ways to compute the interaction matrix. The first
one is to replace the measured values (x̂2D5 ,ŷ2D5 , dm, dy2D3,2

) with the desired one
(x?2D5

,y?2D5
, d?m, d

?
y2D3,2

). This result in a constant interaction matrix Lx? defined
as

Lx? =

− 1
d?

m
0

x?
2D5
d?

m

0 − 1
d?

m

y?
2D5
d?

m

0 0
y?

2D3
−y?

2D2
d?

m

 (3-29)

The second approach aims at combined both the measured (Lx) and the desired
(Lx?) interaction matrices to derive an average interaction matrix (Lxa) defined as

Lxa = Lx
2 + Lx?

2 = 1
2

− 1
dm
− 1

d?
m

0 x̂2D5
dm

+
x?

2D5
d?

m

0 − 1
dm
− 1

d?
m

ŷ2D5
dm

+
y?

2D5
d?

m

0 0 ŷ2D3−ŷ2D2
dm

+
y?

2D3
−y?

2D2
d?

m

 (3-30)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-3 Image based visual servo controller module 71

According to the chosen interaction matrix the behavior of the controller will result
not aggressive (Lx?), aggressive (Lx) or average (Lxa). Given the derivative of a
(2D) image coordinate provided in Appendix C-2 and the derivative of the distance
among two (2D) image coordinate given in Appendix C-3 is possible to calculate
the derivative of the error showed in Eq. (3-25) assuming that the desired (2D)
image coordinates (x?2D5

, y?2D5
, d?y2D3,2

) do not move on the image plane (τ) where
the current image is acquired and where the estimated (2D) image points move
depending on the real position of the visual marker.

ė =

ˆ̇x2D5 −��

�* 0
ẋ?2D5

ˆ̇y2D5 −��
�* 0

ẏ?2D5

ˆ̇dy2D3,2 −��
��*

0
ḋ?y2D3,2

 = LevC,OC (3-31)

with (Le = Lx) or (Le = Lx?) or (Le = Lxa).
Given the three possible choice for the interaction error matrix the determinant of
the desired (L?x), measured (Lx) and average interaction matrix is computed. The
following conclusion have been derived.
• Measured Interaction Matrix Singularity:

det(Lx) = y2D3 − y2D2

d3
m

= 0

if y2D3 = y2D2 & dm 6= 0
(3-32)

The condition that the estimated distance has to be different from zero (dm 6=
0) it is always achieved because it is not possible to see the visual marker
when the quadrotor camera is really close to it (dm ≈ 0). This means that to
be able to see the visual marker and calculate an estimation of the distance
(dm) it is required a minimum distance between visual marker and camera
allowing the visual marker to completely appear on the image plane. The
second condition regards the difference along the (y) direction between the
third and the second (2D) image points. This difference represents a measure
of the side of the visual marker. The latter can approach to zero only if the
marker rotate on the image plane. To avoid this problem it has been chosen to
do not consider the marker orientation in calculating the markers corners. The
latter are computed using the center and the side of the detected marker see
Figure 3-7 and Figure 3-8. Thanks to this choice the difference (y2D3 − y2D2)
it will always be different from zero. Indeed it can only be zero or get close
to zero if the visual marker is a point. However this is not the case and
thanks to the detector limitation there will always be a minimum marker size
with (y2D3 6= y2D2) at which it is possible to detect the marker. If the size
will appear smaller than the minimum size the corners will not be detected
anymore. Thus it is possible to conclude that the condition required to avoid
that the measured interaction matrix is singular are satisfied.
• Desired Interaction Matrix Singularity;

det(L?x) =
y?2D3

− y?2D2

d3?
m

= 0

if y?2D3 = y?2D2 & d?m 6= 0
(3-33)

Master of Science Thesis CONFIDENTIAL Manuel Rucci

72 Vision based planner to approach either a static or moving object

In this case to avoid singularity issues is required to select the desired pa-
rameters (y?2D3

, y?2D2
, d?m) such that the condition to avoid singularity are met.

(y?2D3
, y?2D2

, d?m) are fixed in time and they represent the desired values at which
the estimated ones have to converge. Usually in setting the mission the user
will choose the desired distance between camera and marker and the center of
the desired marker on the image plane. Given these values the desired corners
are compute as shown in the perception module outputs 3-1-2 . The desired
corners computation is equivalent at extract the desired corners from a chosen
picture where the visual marker appears in the desired position. Therefore to
be able to get the pixel points it is required that the marker is big enough so
that its corners and center can be extracted. Therefore it will never be possible
that (y?2D3

= y?2D2
) is satisfied. The latter means that the marker has turned

into a point where all the marker’s corners and center are the same point.
In choosing properly the desired parameters it is possible to avoid singularity
issues related with the desired interaction matrix.
• Average Interaction Matrix Singularity:

det(Lxa) =
(dm + d?m)2(dm(y?2D3

− y?2D2
) + d?m(y2D3 − y2D2))

(8d3
md

?3
m) = 0

if dm(y?2D3 − y
?
2D2) = −d?m(y2D3 − y2D2) & dm, d

?
m 6= 0

(3-34)

The latter is the result of the combination of the measured and desired in-
teraction matrix. To avoid singularity in this case both the desired and the
estimated distances have to be different from zero as explained before. Then, a
second condition is required which is

(
dm(y?2D3

− y?2D2
) 6= −d?m(y2D3 − y2D2)

)
.

The latter is always satisfied because in dealing with no orientation of the
marker the desired corners will always have the same sign of the detected
ones. Furthermore also the distances (dm, d?m) need to have the same sign
which is always positive for convention. For this reason it is not possible that
(dm(y?2D3

− y?2D2
) = −d?m(y2D3 − y2D2)) because this means that the desired

and estimated values will have opposite signs. It is like having the quadrotor
approaching the visual marker upside down that is not feasible. A situation in
which the condition can be satisfied is when the quadrotor’s bottom camera
is used to land on platform where a visual marker attached to it is rotating
about the vertical axis of the platform. This situation can cause the desired
and the estimated values to be equal and with different sign when the platform
is rotated 180 degree with respect to the desired values. However, even if this
occurs it has been chosen to extract the pixel points always assuming that the
visual marker orientation does not change and for this reason the condition
(dm(y?2D3

− y?2D2
) 6= −d?m(y2D3 − y2D2)) is always satisfied.

The singularity of the error interaction matrix (Le) has been studied and it is
possible to conclude that there are not singularity issues related with the desired,
measured and average interaction matrix.

(c) Compute vC,O
C

Imposing an exponential error decay (ė = −λe) is possible to retrieve the camera

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-3 Image based visual servo controller module 73

instantaneous translational camera velocities

vC,OC = −λL̂−1
e e→

vx
C,O
C

vy
C,O
C

vz
C,O
C

 = −λL̂−1
e

 x̂2D5 − x?2D5
ŷ2D5 − y?2D5

d̂y2D3,2
− d?y2D3,2

 (3-35)

where (λ) is a positive convergence factor. (vC,OC) represents the translational
velocities of the camera frame (C) with respect to the visual marker frame (O)
expressed in camera coordinate frame (C) . The goal of this section is to map these
velocities into the input velocities of the navigation controller framework which are
the velocities of the quadrotor robot frame (R) with respect to the visual marker
frame (O) expressed in world coordinate frame (vW,OR). The rotation matrices
describing how the front and bottom camera frame are rotated with respect to
the robot frame have been presented in 3-1-2. An illustration showing how the
front camera, bottom camera, robot and world frames are oriented one respect
to each other is presented in Figure 3-4. Given these values is possible to derive
the velocity of the camera frame (C) with respect to the visual marker frame (O)
expressed in robot coordinate frame (R) as follows

vR,OC = RRCvC,OC →

vx
R,O
C

vy
R,O
C

vz
R,O
C

 = RRC

vx
C,O
C

vy
C,O
C

vz
C,O
C

 (3-36)

with (RRC = RRCf
) if the chosen camera is the front one or (RRC = RRCb

) if the
selected camera is the bottom one. The rotation matrices values (RRCf

, RRCb
) are

given in Eq. (3-1). Knowing that the chosen camera is fixed with the quadrotor
and assuming that both the camera’s frames have their origin on the robot frame
it is possible to state that the velocities of the camera frame (C) with respect to
visual marker (O) expressed in robot coordinate frame (R) is equivalent to the
velocities of the robot frame (R) with respect to visual marker (O) expressed in
robot coordinate frame (R). This assumption is possible because the two cameras
are fixed with the quadrotor itself which means that moving the quadrotor the
camera will move as well in the same way. Thus it is possible to infer

vR,OR = vR,OC (3-37)

Given (vR,OR) is required to map these velocities into the corresponding velocities
expressed in world coordinate frame. To do this the rotation matrix describing how
the robot frame (R) is rotated with respect to the World frame (RWR) is required.
The latter has been present in B-1-1 and its value is given in Eq. (B-2). Once the
rotation matrix (RWR (ψ, θ, φ)) is available the translational velocities of the robot
frame (R) with respect to the visual marker (O) expressed in world coordinate
frame (W) are given by

vW,OR = RWR vR,OR →

vx
W,O
R

vy
W,O
R

vz
W,O
R

 = RWR

vx
R,O
R

vy
R,O
R

vz
R,O
R

 (3-38)

Master of Science Thesis CONFIDENTIAL Manuel Rucci

74 Vision based planner to approach either a static or moving object

3-3-3 Algorithm

A summary of the overall algorithm running inside the image based visual servo module is
provided.

Algorithm 11 Image based visual servo controller module
Initialization:

1: Get default (safety_counter_threshold,Min,Max)
2: Get default variables front camera:

fλ = diag(fλ11,
fλ22,

fλ33), f interaction_matrix
3: Get default variables bottom camera:

bλ = diag(bλ11,
bλ22,

bλ33), binteraction_matrix
Algorithm: (Run at same frequency of image state estimator module)

4: Get chosen_camera
5: Get safety_counter
6: Get RRC and RWR
7: Get

(
m̂τ

2Di=1,2,···5
,mτ?

2Di=1,2,···5
, d?m, dm

)
8: if chosen_camera = 0 then
9: Set

(
λ, interaction_matrix

)
=
(
bλ, binteraction_matrix

)
10: else
11: Set

(
λ, interaction_matrix

)
=
(
fλ, f interaction_matrix

)
12: end if
13: Compute e = f(m̂τ

2Di=1,2,···5
,mτ?

2Di=1,2,···5
)

14: if interaction_matrix = 0 (constant interaction matrix) then
15: Compute Le = f(mτ?

2Di=1,2,···5
, d?m)

16: else if interaction_matrix = 1 (measured interation matrix) then
17: Compute Le = f(m̂τ

2Di=1,2,···5
, dm)

18: else if interaction_matrix = 2 (average interaction matrix) then
19: Compute Le = f(mτ?

2Di=1,2,···5
, m̂τ

2Di=1,2,···5
, d?m, dm)

20: else
21: Compute Le = f(mτ?

2Di=1,2,···5
, d?m)

22: end if
23: Compute vC,OC = −λL−1

e e

24: Compute vW,OC = RWR R
R
CvC,OC (Assumption: camera frame fixed with the quadrotor)

→ vW,OR = vW,OC

25: Check if vW,OR ∈
[
Min Max

]
, if NOT → saturate

26: if safety_counter > safety_counter_threshold then
27: vW,OR = 03×1 (hover)
28: end if
29: Send vW,OR (Navigation controller input)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

3-3 Image based visual servo controller module 75

A resume of inputs and outputs of the image bases visual servo controller module is provided.

INPUTS
1)chosen_camera : (0 = bottom, 1 = front)

2)safety_counter
3)safety_counter_threshold

4)Default variables front camera :
fλ, f interaction_matrix

5)Default variables bottom camera :
bλ, bnteraction_matrix

6)Fixed rotation matrix from
camera frame to robot frame : RR

C
7)NOT fixed rotation matrix from
robot frame to world frame : RW

R
9)Estimated pixel coordinates :

(
m̂τ

2Di=1,2···5

)
9)Desired pixel coordinates :

(
mτ?

2Di=1,2,···5

)
10)Estimated distance in meters between

chosen camera frame and marker
(Assumption Marker is planar) : dm

11)Desired distance in meters between
chosen camera frame and marker

(Assumption Marker is planar) : d?m
12)Saturation IBV S output velocities

constraints : (Min,Max

→

OUTPUTS

1)V elocities of the robot
with respect to the marker

expressed in world coordinate frame :
vW,O

R

Master of Science Thesis CONFIDENTIAL Manuel Rucci

76 Vision based planner to approach either a static or moving object

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Chapter 4

Experiment

4-1 Experiment description

The objective of this chapter is to validate how the vision based planner and the navigation
controller framework perform in solving a fully autonomous chosen mission. The mission
chosen to validate both the vision based planner and the navigation controller framework
designed is the following.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

78 Experiment

Mission

1. Take_off

2. Go_to_point →
[
x?W y?W z?W ψ?W

]
=
[
0, 0, 1.3, 0

]
3. Go_to_point →

[
x?W y?W z?W ψ?W

]
=
[
0, 2, 1.3, 0

]
4. Rotate → ψ?W = −90

5. Go_to_point →
[
x?W y?W z?W ψ?W

]
=
[
1.5, 2, 1.3,−90

]
6. Approach_to_an_object → camera = 1 (front camera)

7. Go_to_point →
[
x?W y?W z?W ψ?W

]
=
[
1.5, 2, 1.3,−90

]
8. Rotate → ψ?W = −180

9. Go_to_point →
[
x?W y?W z?W ψ?W

]
=
[
1.5, 0, 1.3,−180

]
10. Rotate → ψ?W = 90

11. Go_to_point →
[
x?W y?W z?W ψ?W

]
=
[
0, 0, 1.3, 90

]
12. Rotate → ψ?W = 0

13. Go_to_point →
[
x?W y?W z?W ψ?W

]
=
[
0, 0.5, 3, 0

]
14. Approach_to_an_object → camera = 0 (bottom camera)

15. Land

The upper mission has been designed as a sequence of task taking different inputs parameters
that can be used multiple times in the mission to achieve different goals simply assigning
to the task input parameters with different values. In designing the mission the following
quadrotor tasks have been chosen.

• Go_to_point
(
x?W , y?W , z?W , ψ?W

)
→ Reach a desired pose: The goal of this

task it is given a desired pose (x?W , y?W , z?W , ψ?W) to drive the quadrotor from it
its current pose up to the desired one. This is accomplished using the navigation
controller framework and a state estimator in charge of estimating the quadrotor full
states (position, velocity, acceleration, orientation).

• Rotate
(
ψ?W

)
→ Rotate keeping the same position: This task has the objective

to make the quadrotor rotate of a desired yaw angle (ψ?W) minimizing the quadrotor’s
displacement from its current position. This task is also solved combining the navigation
controller framework with the state estimator. In this task it is not required to specify
the desired quadrotor position as a input parameter.

• Approach_to_an_object
(
camera = 1

)
→ Approach to a known either static

Manuel Rucci CONFIDENTIAL Master of Science Thesis

4-1 Experiment description 79

or moving ArUco Marker up to a desired distance: This task has the aim
to make a quadrotor able to approach to either a static or moving ArUco marker up
to a desired distance from it keeping the center of the detected ArUco marker on a
desired position on the acquired camera image. To solve this task it has been chosen
to use the quadrotor front camera and to keep the ArUco marker static. This task is
achieved combining the vision based planner with the navigation controller framework.
A state estimator is also required with the aim to provide velocities and yaw orientation
quadrotor’s measurements. In dealing with this task the quadrotor does not require to
know neither its position in space nor the position of the marker. Indeed, it is sufficient
that the visual marker appears on the acquired camera image.

• Approach_to_an_object
(
camera = 0

)
+ Land → Autonomously land on a

static platform. This task can be split in two subtasks. The first one is to approach
a platform on which an ArUco marker is placed up to a desired distance from it. It has
been chosen to keep the platform static. In doing this task it has been chosen to keep
the platform static. The second one it is to land on this platform when the quadrotor
has reached the desired distance. Thus this task has been solved combining the vision
based planner with the navigation controller framework using the quadrotor bottom
camera. Also in this case a state estimator is required with the aim to provide velocities
and yaw orientation quadrotor’s measurements .

The mission will be performed in both real flight using the AR Drone 2.0 and in simulation
environment using the Gazebo simulator in combination with the PX4 Software-In-The-Loop.
The specification of the two choices are provided.

• Real flight mission (AR Drone 2.0): To perform the mission in real flight an AR
drone 2.0 has been chosen. The specification of the latter are given in Appendix A
whereas the control technology allowing it to take off, land and hover without drifting
is presented in [17]. In solving the real flight mission the developed navigation controller
framework and vision based planner are combined with the Aerostack EKF state estima-
tor and with the mission planner. Furthermore the driver package ardrone_autonomy
it is used to receive the onboard sensors data measurements and to send autopilot com-
mands allowing to control as desired the quadrotor. In dealing with the AR Drone 2.0
the Take_off and the Land tasks described in 4-1 are performed simply sending to the
ardrone_autonomy ROS driver a specific command for the taking off task and another
for the landing task.

• Simulated flight mission (Gazebo + PX4 SITL): For the simulation flight it
has been chosen to use the Gazebo simulator combined with the PX4 Software-In-
The-Loop (SITL) [18]. This simulation runs the same firmware that is running on a
real Pixahwk1 autopilot. Therefore to test how the navigation controller framework
can be combined with the Pixhawk autopilot it has been preferred to use the simulation
environment to avoid useless crashes. In this mission the gazebo ground truth data have
been used to accurately estimated the quadrotor states in the simulation environment.
In making this choice it is possible to forget the state estimation problems and validate
only the vision based planner and the navigation controller framework in an almost ideal

1https://pixhawk.org/modules/pixhawk

Master of Science Thesis CONFIDENTIAL Manuel Rucci

https://pixhawk.org/modules/pixhawk

80 Experiment

condition. The Aerostack mission planner has been used as well in combination with
the developed vision based planner and navigation controller framework to make the
quadrotor performs the desired tasks. The ROS driver mavros package has been used
for both receiving data from the Pixhawk autopilot and for sending autopilot commands
to the latter. The Take_off and the Land tasks in dealing with a quadrotor equipped
with Pixhawk autopilot have to be designed . Indeed there are not commands such as
in the AR Drone 2.0 to ensure a stable take off and land. To overcome this problem the
Take_off task has been designed as a Go_to_point task which means that to do solve
that both the navigation controller framework and the ground truth measurements are
required. About the Land task it has been chosen to design it simply shutting down
the motor.

To be able to combine the upper tasks in a unique fully autonomous mission the Aerostack
mission planner has been used. The idea is that each task has to be able to be used multiple
times in a mission according to a different set of parameters that are used to configure the
mission itself. For example the task Go_to_point can be used multiple times during the
mission to make the quadrotor reach different poses. The same consideration can be done for
the Rotate task which can be used to make the quadrotor rotate up to a desired yaw angle.
Also in this case it is possible that this task can be repeated different times in the same
mission. To conclude the quadrotor experiment goal is to solve a fully autonomous mission in
both real and simulation flight respectively using the AR Drone 2.0 and the Gazebo simulator
combined with the PX4-Software-In-The-Loop. The mission is the result of different tasks
(Take_off, Go_to_point,Rotate,Approach_to_an_object, Land) which can be combined as
desired and used multiple times with different input parameters in the same mission.

4-2 Experiment requirements

ROS has been chosen as a software framework to ensure communication among different
modules. An overview of how ROS works is given in [19] whereas a more detailed explanation
is available in this book [20]. The navigation controller is made up by five different modules
(horizontal position controller, vertical position controller, horizontal speed controller, vertical
speed controller, yaw controller) representing five different ROS packages which can run
at a different frequency. The vision based planner is composed by three different modules
(perception, image state estimator, image based visual servo). All the modules have been
designed such that it is possible with a ROS service to start or stop them. However to be
able to design the desired fully autonomous mission (4-1)‘ the vision based planner and the
navigation controller framework are not enough. Indeed firstly a state estimator is requried
to get an estimate of the quadrotor states (position, velocity, acceleration and orientation),
secondly a mission planner is needed to be able to set up the mission and in particular to
allow the quadrotor to perform different tasks consecutively, finally it is required to know
how it is possible to control both the AR Drone 2.0 and a quadrotor equipped with Pixhawk
autopilot using the the navigation controller framework.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

4-2 Experiment requirements 81

4-2-1 State estimator

To make the quadrotor be able to move in space a quadrotor state estimator is required.
The latter is in charge of estimating the quadrotor full states (position, velocity, acceleration,
orientation) fusing together the quadrotor onboard sensors. Different choices have been done
related to the state estimator for the simulation and the real flight experiment.

• State estimator simulation experiment: For the simulation experiment it has
been preferred to use the Gazebo ground truth data measurements to test how the
vision based planner and the navigation controller framework perform with a quadrotor
equipped with a Pixhawk autopilot. Indeed the PX4 Software-In-The-Loop has been
used. It has been preferred to use the ground data in this experiment to do not add
further estimation problems in the validation of both the vision based planner and the
navigation controller framework. In making this choice it is possible to focus only on
how the developed modules behave in an almost ideal condition. Only when the sim-
ulation has been validated it is possible to move to a real flight scenario in which an
EKF is used to fuse the different on board sensors to provide the quadrotor full states
estimation.

• State estimator real flight experiment: In dealing with real flight performed
with the AR Drone 2.0 the estimation of the quadrotor states has been provided
by an EKF module available in the Aerostack. The latter fuses together the IMU
(θ, φ, ψ, θ̇, φ̇, ψ̇, ax, ay, az), the optical flow (ẋ, ẏ) and the ultrasound altimeter (z, ż)
data provided by the ROS driver ardrone_autonomy package to obtain an estimation
of the quadrotor states (x̂W , ŷW , ẑW , ˆ̇xW , ˆ̇yW , ˆ̇zW , φ̂W , θ̂W , ψ̂W) expressed in world co-
ordinate frame following ENU convention. However the estimation of the position is
performed integrating the velocities and for this reason the quadrotor will accumulated
a drift in the estimation of the latter that it will increase in time. To validate the vision
based planner and the navigation controller framework it has been chosen to use the
estimated EKF data rather than the ground truth data provided by a MOCAP system.
This choice is related to the fact that the quadrotor velocities are estimated correctly
by the EKF. This means that in making the quadrotor approaching an object up to a
desired distance all the required estimated data are available using the EKF. However
in trying to drive the quadrotor from the current to a chosen desired pose the position
estimation will accumulated drift in time. Anyway having a wrong position estimation
does not affect how the navigation controller framework tracks the desired reference. If
the measurements are wrong the navigation controller framework will track the wrong
ones. The drawback is that it thinks to have reached a pose in space that it is not the
real one. Furthermore, it is has been chosen to do not rely on the MOCAP system in
doing the mission because it is an expensive system that cannot be moved freely from
one location to another. For this reason it has be preferred to validate the developed
modules using EKF estimated data rather than the ground truth ones to increase the
level of autonomy of the mission. Anyway the ground truth data have been collected for
comparison purpose. The EKF estimated data are provided at a frequency of (30Hz)
because optical flow data are derived from sequences of images acquired by the bot-
tom camera of the AR Drone which runs at (30Hz). The estimated data are used as
feedbacks in the navigation controller framework (see Figure 2-1).

Master of Science Thesis CONFIDENTIAL Manuel Rucci

82 Experiment

4-2-2 Mission planner

They are a set of modules available in the Aerostack that allow to define a mission in which the
quadrotor has to face different tasks. Each quadrotor task is solved thanks to the combination
of different modules that has to be started. When the task is solved all the modules associated
with the solved task are stopped and a new task with new associated modules can start.
To be able to perform different tasks in the same mission a mission planner is required.
The Aerostack mission planner has been used to build the desired mission. The latter is
composed by a python mission interpreter in charge of reading a python mission file and
by an Executive system which is in charge of starting and stopping different ROS modules
according to a specific task that the quadrotor has to face. A detailed explanation of how it
works it available here [21],[22] [23]. The main idea behind this system is that a quadrotor
mission can be divided into multiple tasks that the quadrotor has to accomplish. These tasks
are called behaviors. To solve these problems the quadrotor requires different modules to be
started. The knowledge of which module is associated to a certain behavior is provided a
priori by an operator. To conclude, a mission is sequence of behaviors where each behavior
requires a set of modules to be activated. A behavior condition is introduced inside each
behavior and it is used to tell to the mission planner when a specific task is solved. Indeed,
when the condition is satisfied a new behavior can start. The advantage of this approach it
is that simply modifying the behavior parameters and arranging them in a different order it
is possible to build different mission in a fast an easy way. For the sake of this thesis three
different behaviors have been used to design the final mission used to validate the vision based
planner and the navigation controller framework. They are summarized as follows

• Go_to_point: This behavior takes as input the desired pose (x?W , y?W , z?W , ψ?W)
from the mission file. Then, it activates all the modules associated to it. The modules
associated to this behavior in both the real flight and in the simulated flight are provided
in the following table.

Table 4-1: The table shows the Go_to_point behavior’s inputs and the modules that has to be
started to solve the Go_to_point task in both real and simulation flight.

Behaviors Required ROS packages AR
Drone 2.0

Required ROS packages
Gazebo + PX4 SITL

Go_to_point

Inputs:
(x?W ,y?W ,z?W ,ψ?W)

horizontal position controller
vertical position controller
horizontal speed controller
yaw controller
EKF

ground truth
horizontal position controller
vertical position controller
horizontal speed controller
vertical speed controller
yaw controller

This means that to be able to perform the two missions it is required to distinguish
among modules associated to the behaviorGo_to_point in the real and in the simulation
flight. Given Table 4-1 it is possible to state that the behavior Go_to_point goal is to
drive a quadrotor from it is current pose to a desired one. The choice of the desired
pose is provided in the mission file. Because a behavior represents a quadrotor task a
condition is required to end the task. The stop condition associated to the behavior

Manuel Rucci CONFIDENTIAL Master of Science Thesis

4-2 Experiment requirements 83

Go_to_point is√
(x?W − x̂W)2 + (y?W − ŷW)2 + (z?W − ẑW)2 + (ψ?W − ψ̂W)2 < σp (4-1)

which means that the quadrotor has reached the desired pose with a pose error smaller
than a chosen preloaded threshold value (σp). The latter is used to increase or decrease
the accuracy of the behavior Go_to_point.

• Rotate: This behavior takes as input the desired yaw angle (ψ?W) from the mission
file. Then, it activates all the modules associated to it. The modules associated to this
behavior in both the real flight and in the simulated flight are provided in the following
table.

Table 4-2: The table shows the Rotate behavior’s input and the modules that has to be started
to solve the Rotate task in both real and simulation flight.

Behaviors Required ROS packages AR
Drone 2.0

Required ROS packages
Gazebo + PX4 SITL

Rotate

Input:
(ψ?W)

horizontal position controller
vertical position controller
horizontal speed controller
yaw controller
EKF

ground truth
horizontal position controller
vertical position controller
horizontal speed controller
vertical speed controller
yaw controller

According to Table 4-2 it is possible to see that the same modules of the Go_to_point
behavior are started. The difference between the two modules it is that the Rotate be-
havior only takes as input the desired yaw angle an not the position that the quadrotor
has to reach. This means that this behavior allows the quadrotor to rotate on it is
current position. Indeed the desired position in this case it is the first position mea-
surements that the state estimator provides when the Rotate behavior is started. The
stop condition associated to the behavior Rotate is

|ψW − ψ̂W | < σψ (4-2)

which means that the quadrotor has reached the desired yaw angle with an error smaller
than a chosen preloaded threshold value (σψ). The latter is used to increase or decrease
the accuracy of the behavior Rotate. It has been preferred to start all the controllers of
the navigation controller framework and not only the yaw controller because it is better
if the quadrotor rotate keeping itself in the same position. To do this all the navigation
controller framework are required.

• Approach_to_an_object: This behavior takes as input the desired camera that it has
to use to approach an object. This input parameter is used to tell to the vision based
planner which camera it has to use either front or bottom for the solution of the task.
Simply changing this value the Approach_to_an_object behavior can be used to follow
an object using the front camera of to autonomously land either on a static or moving
platform using the bottom camera. The modules associate to this behavior in both the
real flight and in the simulated flight are provided in the following table.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

84 Experiment

Table 4-3: The table shows the behavior used in the chosen mission together with the module
associated to them for both real and simulated flight.

Behaviors Required ROS packages AR
Drone 2.0

Required ROS packages
Gazebo + PX4 SITL

Approach_to_an_object

Input:
(chosen_camera)

perception
image state estimator
image based visual servo
horizontal speed controller
yaw controller
EKF

ground truth
perception
image state estimator
image based visual servo
horizontal speed controller
vertical speed controller
yaw controller

From Table 4-3 it is possible to see that this behavior combines both the developed
vision based planner and the navigation controller framework to solve the task. The
condition chosen to stop the behavior is that the IBVS error defined in Eq. (3-25) is
smaller than a chosen threshold value (σIBV S). This behavior is in charge of starting
all the modules required to make the quadrotor approach to an object up to a desired
distance keeping the center of the latter in a precise desired image position. Thus it is
possible to conclude that the condition used to stop the modules is

eIBV S < σIBV S (4-3)

To conclude it is possible to say that the design of the mission presented in 4-1 is a combination
of behaviors which requires different modules to be activated. The main advantage of this
design it is that the same behavior can be used multiple times in the same mission and it can
be configured with different input parameters. In addition combining the presented behaviors
in a different way it is possible to easily design different missions.

4-2-3 Autopilot drivers

To be able to communicate with AR Drone 2.0 and with the Pixhawk autopilot two different
open source ROS drivers are required.

• ardrone_autonomy 2: This ROS package it is used to control the AR. Drone 2.0 using
ROS as a software communication framework. Thanks to this package it is possible to
both read the AR Drone 2.0 onboard sensor data and send Parrot autopilot commands
(PAθ?, PAφ?, PAż?, PAψ̇?) to control as desired the quadrotor.

• mavros3: This ROS package it is used to coomunicate with the Pixhawk autopilot.
In particular the mavros package it is used to deal with a MAVLink communication
protocol were MAV stands for Micro Aerial Vehicle. Thanks to this ROS package it is
possible to both read the Pixhawk autopilot sensor data and send Pixahwk autopilot
commands

(PIθ?R,PI φ?R,PI ψ?R,PI T ?R) to control the quadrotor.

2http://wiki.ros.org/ardrone_autonomy
3http://wiki.ros.org/mavros

Manuel Rucci CONFIDENTIAL Master of Science Thesis

http://wiki.ros.org/ardrone_autonomy
 http://wiki.ros.org/mavros

4-2 Experiment requirements 85

However different autopilots requires different autopilot commands to be sent and different
convention can be used to express them. For this reason it is required to find the relation
between the navigation controller framework outputs and both the Parrot and Pixahwk au-
topilot commands. In the following subsection it is explained how the navigation controller
framework outputs are related with both the Parrot and Pixhawk ones. (see Figure 2-1).

4-2-4 How to use the navigation controller framework to control an AR. Drone
2.0?

The Parrot AR Drone 2.0 autopilot commands (PAθ?, PAφ?, PAż?, PAψ̇?) convention used in
the ROS ardrone_autonomy driver package is the following.

PAθ?R ∈
[
−1 1

]
(+forward,−backward)

PAφ?R ∈
[
−1 1

]
(+leftward,−rightward)

PAż?R ∈
[
−1 1

]
(+upward,−downward)

PAψ̇?R ∈
[
−1 1

]
(+ccw,−cw)

(4-4)

Given the navigation controller framework conventions available on Table 2-1 and illustrated
on Figure 2-2 the mapping between Parrot Autopilot commands

(
PAθ?R, PAφ?R, PAż?R, PAψ̇?R

)
and navigation controller framework commands

(
θ?R, φ?,Aż?R,Aψ̇?R

)
is given by

PAθ?R = θ?R

PAφ?R = −φ?R
PAż?R = ż?R

PAψ̇?R = ψ̇?R

(4-5)

where
(
PAθ?R, PAφ?R, PAż?R, PAψ̇?R

)
represent the Autopilot commands that is required to

send to the ROS Driver package ardrone_autonomy to control the Parrot AR Drone 2.0. An
illustration of the convention used to represent both the Parrot Autopilot and the navigation
framework commands is provided.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

86 Experiment

Figure 4-1: Frame convention used to
express the Parrot AR Drone 2.0 Au-
topilots commands

Figure 4-2: Frame convention
(ENU) used for the Navigation con-
troller framework outputs commands

It is interesting to underline that the ROS Driver package bebop_autonomy 4 used to control
the Parrot Bebop 2.0 follows the same Autopilot commands convention of the AR Drone 2.0.
Thus it is possible to infer that the autopilot commands showed in Eq. (4-5) can also be used
to control the Parrot Bebop 2.0. The specification of both AR Drone 2.0 and Bebop 2.0 are
given in Appendix A.

4-2-5 How to use the navigation controller framework to control a quadrotor
equipped with Pixhawk autopilot?

To test the navigation controller framework with the Pixahawk autopilot [24] the Gazebo
simulator combined with the PX4 Software-In-The-Loop has been used. This simulation runs
the same firmware that is running on a real Pixahwk autopilot. Therefore to test how the
navigation controller framework can be combined with the Pixhawk autopilot it has been
preferred to use the simulation environment to avoid useless crashes. The convention used to
send Pixhawk autopilots commands to the ROS driver package mavoros are summarized as
follows

Piθ?R ∈
[
−1 1

]
(+backward,−forward)

PIφ?R ∈
[
−1 1

]
(+rightward,−leftward)

PIT ?R ∈
[
0 1

]
(+upward,−downward)

PIψ?R ∈
[
−1 1

]
(+cw,−ccw)

(4-6)

Given Eq. (4-6) it is possible to conclude that
(
PIθ?R,PI φ?R,PI ψ?R

)
follow NED convention

whereas
(
PIT ?R

)
follows ENU convention. The mapping between navigation controller out-

4http://wiki.ros.org/bebop_autonomy

Manuel Rucci CONFIDENTIAL Master of Science Thesis

http://wiki.ros.org/bebop_autonomy

4-2 Experiment requirements 87

puts
(
θ?R, φ?R, T ?R, ψ̇?R

)
and the autopilot commands

(
PIθ?R,PI φ?R,PI T ?R,PI ψ?R

)
that it

is required to send to the ROS driver package mavros is provided.

PIθ?R = −θ?R
PIφ?R = φ?R

PIT ? = T ?R

PIψ? = −
(
ψRIMU + ψ̇?R

) (4-7)

where
(
PIψ?R ∈

[
−π π

] [
rad

])
is the reference yaw expressed in NED convention,

(
ψRIMU ∈[

−π π
] [
rad

])
is the yaw derived from the IMU data expressed in ENU convention ob-

tained subscribing to the /mavros/imu/data topic and
(
ψ̇?R ∈

[
−0.4 0.4

] [
rad/s

])
is the

output of the yaw controller module which follows ENU convention. A sample code is
available in Appendix B-3 with aim to show how it is possible to send both open loop(
PIθ?R,PI φ?R,PI T ?R,PI ψ?R

)
and navigation controller outputs

(
θ?R, φ?R, T ?R, ψ̇?R

)
com-

mands to the mavros ROS driver package to control a quadrotor equipped with Pixhawk
autopilot. An illustration showing the Pixhawk autopilot commands convention with respect
to the navigation controller framework ones is provided.

Figure 4-3: Frame convention used
for the Pixhawk autopilot commands

Figure 4-4: Frame convention used
for the navigation controller outputs

Master of Science Thesis CONFIDENTIAL Manuel Rucci

88 Experiment

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Chapter 5

Results

In this chapter the results of the experiment described in chapter 4 are presented. In particular
these results are related to the mission described in 4-1 which it has been chosen to perform
in both real flight using the AR Drone 2.0 and in simulation flight combining the Gazebo
simulator with the PX4 Software-In-The-Loop.

5-1 Simulation experiment

The video associated to the simulation experiment presented in this section is available here.

https://www.youtube.com/watch?v=ca6HT5rsF5Q

Another video representing the same experiment where the platform it is performing a circular
motion it provided at this link (https://www.youtube.com/watch?v=IP0spKf_1Rw). For the
sake of this thesis it has been preferred to see how the vision based planned perform using
static platform rather than a moving one to be able to visualize clearly the trajectory of the
estimated marker’s corners and center with respect to the desired ones.

5-1-1 Default parameters used in the simulation experiment (Simulation Pix-
hawk autopilot)

The navigation controller framework and the vision based planner parameters that have been
used to perform the fully autonomous mission described in 4-1 are provided. The description
of their meaning together with the explanation of how they are derived is given in chapter 2
and 3.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

https://www.youtube.com/watch?v=ca6HT5rsF5Q
https://www.youtube.com/watch?v=IP0spKf_1Rw

90 Results

Table 5-1: Horizontal position controller module default parameters (Simulation Pixhawk au-
topilot)

Sampling time 2DOF PID gains Saturations
boundaries

Derivative error and
reference filter gains

Anti windup

Thpcs = 0.1s K
(x?,x̂)→ẋ?

p = 1
K

(x?,x̂)→ẋ?

d = 0.5
K

(x?,x̂)→ẋ?

i = 0
b(x?,x̂)→ẋ? = 1
c(x?,x̂)→ẋ? = 0
K

(y?,ŷ)→ẏ?

p = 1
K

(y?,ŷ)→ẏ?

d = 0.5
K

(y?,ŷ)→ẏ?

i = 0
b(y?,ŷ)→ẏ? = 1
c(y?,ŷ)→ẏ? = 0

U
(x?,x̂)→ẋ?

Min = −1
U

(x?,x̂)→ẋ?

Max = 1
U

(y?,ŷ)→ẏ?

Min = −1
U

(y?,ŷ)→ẏ?

Max = 1

enable
(x?,x̂)→ẋ?

derfilter
= True

N
(x?,x̂)→ẋ?

d = 17.3
enable

(x?,x̂)→ẋ?

reffilter
= False

N
(x?,x̂)→ẋ?

r = N.R.
enable

(y?,ŷ)→ẏ?

derfilter
= True

N
(y?,ŷ)→ẏ?

d = 17.3
enable

(y?,ŷ)→ẏ?

reffilter
= False

N
(y?,ŷ)→ẏ?

r = N.R.

enable
(x?,x̂)→ẋ?

antiwindup
= False

K
(x?,x̂)→ẋ?

aw = N.R.
enable

(y?,ŷ)→ẏ?

antiwindup
= False

K
(y?,ŷ)→ẏ?

aw = N.R.

Table 5-2: Vertical position controller module default parameters (Simulation Pixhawk autopilot)

Sampling time 2DOF PID gains Saturations
boundaries

Derivative error and
reference filter gains

Anti windup

T vpcs = 0.1s K
(z?,ẑ)→ż?

p = 1
K

(z?,ẑ)→ż?

d = 0
K

(z?,ẑ)→ż?

i = 0
b(z?,ẑ)→ż? = 1
c(z?,ẑ)→ż? = 0

U
(z?,ẑ)→ż?

Min = −1
U

(z?,ẑ)→ż?

Max = 1
enable

(z?,ẑ)→ẋ?

derfilter
= False

N
(z?,x̂)→ż?

d = N.R

enable
(z?,ẑ)→ẋ?

reffilter
= False

N
(z?,ẑ)→ż?

r = N.R.

enable
(x?,x̂)→ẋ?

antiwindup
= False

K
(x?,x̂)→ẋ?

aw = N.R.

Table 5-3: Horizontal speed controller module default parameters (Simulation Pixhawk autopilot)

Sampling time 2DOF PID gains Saturations
boundaries

Derivative error and
reference filter gains

Anti windup

Thscs = 0.033s K
(ẋ?,ˆ̇x)→θv
p = 0.253

K
(ẋ?,ˆ̇x)→θv

d = −0.025
K

(ẋ?,ˆ̇x)→θv

i = 0.115
b(ẋ?,ˆ̇x)→θv = 0.55
c(ẋ?,ˆ̇x)→θv = 1.73
K

(ẏ?,ˆ̇y)→φv
p = 0.253

K
(ẏ?,ˆ̇y)→φv

d = −0.025
K

(ẏ?,ˆ̇y)→φv

i = 0.115
b(ẏ?,ˆ̇y)→φv = 0.55
c(ẏ?,ˆ̇y)→φv = 1.73

U
(ẋ?,ˆ̇x)→θv

Min = −0.2
U

(ẋ?,ˆ̇x)→θv

Max = 0.2
U

(ẏ?,ˆ̇y)→φv

Min = −0.2
U

(ẏ?,ˆ̇y)→φv

Max = 0.2

enable
(x?,x̂)→ẋ?

derfilter
= True

N
(x?,x̂)→ẋ?

d = 3.439
enable

(x?,x̂)→ẋ?

reffilter
= False

N
(x?,x̂)→ẋ?

r = N.R.
enable

(y?,ŷ)→ẏ?

derfilter
= True

N
(y?,ŷ)→ẏ?

d = 3.439
enable

(y?,ŷ)→ẏ?

reffilter
= False

N
(y?,ŷ)→ẏ?

r = N.R.

enable
(x?,x̂)→ẋ?

antiwindup
= True

K
(x?,x̂)→ẋ?

aw = 10.
enable

(y?,ŷ)→ẏ?

antiwindup
= True

K
(y?,ŷ)→ẏ?

aw = 10.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

5-1 Simulation experiment 91

Table 5-4: Vertical speed controller module default parameters (Simulation Pixhawk autopilot)

Sampling time 2DOF PID gains Saturations
boundaries

Derivative error and
reference filter gains

Anti windup

T vpcs = 0.033s K
(ż?,ˆ̇z)→Tv
p = 2.014

K
(ż?,ˆ̇z)→Tv

d = −0.331
K

(ż?,ˆ̇z)→Tv

i = 0.502
b(ż?,ˆ̇z)→Tv = 0.574
c(ż?,ˆ̇z)→Tv = 1.298

U
(ż?,ˆ̇z)→Tv

Min = 0
U

(ż?,ˆ̇z)→Tv

Max = 1
enable

(ż?,ˆ̇z)→Tv

derfilter
= True

N
(ż?,ˆ̇z)→Tv

d = 2.29
enable

(ż?,ˆ̇z)→Tv

reffilter
= False

N
(ż?,ˆ̇z)→Tv
r = N.R.

enable
(ż?,ˆ̇z)→Tv

antiwindup
= True

K
(ż?,ˆ̇z)→Tv
aw = 10

Table 5-5: Yaw controller module default parameters (Simulation Pixhawk autopilot)

Sampling time 2DOF PID gains Saturations
boundaries

Derivative error and
reference filter gains

Anti windup

Tψcs = 0.1s K
(ψ?,ψ̂)→ψ̇?

p = 0.15
K

(ψ?,ψ̂)→ψ̇?

d = 0
K

(ψ?,ψ̂)→ψ̇?

i = 0
b(ψ?,ψ̂)→ψ̇? = 1
c(ψ?,ψ̂)→ψ̇? = 0

U
(ψ?,ψ̂)→ψ̇?

Min = −0.4
U

(ψ?,ψ̂)→ψ̇?

Max = 0.4
enable

(ψ?,ψ̂)→ψ̇?

derfilter
= False

N
(ψ?,ψ̂)→ψ̇?

d = N.R.

enable
(ψ?,ψ̂)→ψ̇?

reffilter
= False

N
(ψ?,ψ̂)→ψ̇?

r = N.R.

enable
(ψ?,ψ̂)→ψ̇?

antiwindup
= False

K
(ψ?,ψ̂)→ψ̇?

aw = N.R.

Table 5-6: Perception module default parameters (ArUco marker has been used)

Ideal centers
and desired
distance

Camera parameters:
Front image (48x640)
Bottom image (480x640)

Marker parameters Rotation matrix from
camera to robot frame

fu?5 = 240
fv?5 = 320
fd?mm = 1000
bu?5 = 240
bv?5 = 320
bd?mm = 750

ffmm = 7.6
fshmm = 9.9382
f imhpix = 480
bfmm = 7.6
bshmm

= 7.938
bimhpix

= 480

fsidemm = 170
fID? = 12
bsidemm = 170
bID? = 9

RRCf
=

 0 0 1
−1 0 0
0 −1 0

RRCb

=

 0 −1 0
−1 0 0
0 0 −1

Table 5-7: Image state estimator module default parameters (ArUco marker has been used)

Estimation approach Kalman filter approach default
parameters

selector = 1
(0 = Static approach,
1 = Kalman filter ap-
proach)

Ts = 0.033s

QT 4×4 =

0.1 0 0 0
0 0.1 0 0
0 0 0.5 0
0 0 0 0.5

RT 2×2 =

[
3 0
0 3

]

Master of Science Thesis CONFIDENTIAL Manuel Rucci

92 Results

Table 5-8: Image based visual servo module default parameters

Safety and saturation constraint
variables

IBVS default parameters

safety_counter_threshold = 80
Min = −1
Max = 1

f interactionmatrix = 0

fλ3×3 =

0.6 0 0
0 0.6 0
0 0 0.4

binteractionmatrix = 0

bλ3×3 =

0.7 0 0
0 0.7 0
0 0 0.15

5-1-2 Simulation experiment results

0
-2

-1

1

-0.50

y [m]

0

z
 [

m
]

x [m]

1

2

0.5
12

1.5

3

11
2

4
14

3

78 5

910 1

6 12

13

Figure 5-1: The figure shows the quadrotor’s (3D) trajectory associated to the quadrotor’s
mission 4-1. The simulation is performed in the Gazebo simulation environment using the Pix-
hawk Software-In-The-Loop. The ground truth data are used to estimate the quadrotor’s states
(position,velocity,acceleration,orientation) expressed in world coordinate frame. The numbers ap-
pearing on the figure are used to indicate the mission task’s number that the quadrotor is facing.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

5-1 Simulation experiment 93

-0.500.511.5

x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y
 [

m
]

6

7 5

10 9 12

13

4 38

14

1 2

11

Figure 5-2: The figure shows the (2D) quadrotor’s trajectory associated to the quadrotor mission
4-1 which it stands for how the quadrotor moves along the (x) and (y) direction of the world
coordinate frame. The numbers appearing on the figure are used to indicate the mission task’s
number that the quadrotor is facing.

0 50 100

time [s]

-1

-0.5

0

0.5

1

1.5

2

[m
]

0 50 100

time [s]

-1

-0.5

0

0.5

1

[m
/s

]

Figure 5-3: The figure shows on the left side the quadrotor’s ground truth estimated (x̂W)
position (red line) with respect to the desired reference (x?W) (blue line). On the right side it
is shown the output of the horizontal position controller module (ẋ?W) representing the desired
reference velocity along the (x) direction of the quadrotor expressed in world coordinate frame.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

94 Results

0 50 100

time [s]

-1

-0.5

0

0.5

1
[m

/s
]

0 50 100

time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

[r
a

d
]

Figure 5-4: The figure shows on the left side the quadrotor’s ground truth estimated (ˆ̇xW)
velocity (red line) with respect to the desired reference (ẋ?W) (blue line). On the right side
it is shown the output of the horizontal speed controller module (θ?R) representing the desired
reference pitch angle of the quadrotor expressed in robot coordinate frame.

0 50 100

time [s]

-1

-0.5

0

0.5

1

1.5

2

2.5

[m
]

0 50 100

time [s]

-1

-0.5

0

0.5

1

[m
/s

]

Figure 5-5: The figure shows on the left side the quadrotor’s ground truth estimated (ŷW)
position (red line) with respect to the desired reference (y?W) (blue line). On the right side it
is shown the output of the horizontal position controller module (ẏ?W) representing the desired
reference velocity along the (y) direction of the quadrotor expressed in world coordinate frame.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

5-1 Simulation experiment 95

0 50 100

time [s]

-1

-0.5

0

0.5

1

1.5
[m

/s
]

0 50 100

time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

[r
a

d
]

Figure 5-6: The figure shows on the left side the quadrotor’s ground truth estimated (ˆ̇yW)
velocity (red line) with respect to the desired reference (ẏ?W) (blue line). On the right side it
is shown the output of the horizontal speed controller module (φ?R) representing the desired
reference roll angle of the quadrotor expressed in robot coordinate frame.

0 50 100

time [s]

0

0.5

1

1.5

2

2.5

3

3.5

[m
]

0 50 100

time [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

[m
/s

]

Figure 5-7: The figure shows on the left side the quadrotor’s ground truth estimated (ẑW)
position (red line) with respect to the desired reference (z?W) (blue line). On the right side
it is shown the output of the vertical position controller module (ż?W) representing the desired
reference velocity along the (z) direction of the quadrotor expressed in world coordinate frame.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

96 Results

0 50 100

time [s]

-1.5

-1

-0.5

0

0.5

1
[m

/s
]

0 50 100

time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5-8: The figure shows on the left side the quadrotor’s ground truth estimated (ˆ̇zW)
velocity (red line) with respect to the desired reference (ż?W) (blue line). On the right side it
is shown the output of the vertical speed controller module (T ?R≈W) representing the desired
reference thrust along the (z) direction of the quadrotor expressed in robot coordinate frame.

0 50 100

time [s]

-4

-3

-2

-1

0

1

2

3

[r
a

d
]

0 50 100

time [s]

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

[r
a

d
/s

]

Figure 5-9: The figure shows on the left side the quadrotor’s ground truth estimated (ψ̂W) angle
(red line) with respect to the desired reference (ψ?W) (blue line). On the right side it is shown
the output of the yaw controller module (ψ̇?W) representing the desired reference yaw angle of
the quadrotor expressed in world coordinate frame.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

5-1 Simulation experiment 97

10

0.2

time [s]

-0.2 5-0.1

0.1

0

x [m]

0.1
0.2

0

0.3

y
 [
m

]

00.4

-0.1

-0.2

6

Figure 5-10: The figure shows the evolution in time of the estimated marker’s corners and center
(start ×, end ◦) towards the desired ones (�). The number 6 appearing in the figure it is used
to underline that these results belong to the quadrotor task number 6. The latter consists in
approaching a static visual marker using the front camera up to a desired distance which it is
equivalent to drive on the current (2D) image plane the estimated corners towards the desired
ones.

-0.2 -0.1 0 0.1 0.2 0.3 0.4

x [m]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

y
 [
m

]

6

Figure 5-11: The figure shows the trajectories of the estimated corners and center (start ×, end
◦) towards the desired ones (�) on the (2D) image coordinate plane. This result is associated to
quadrotor task number 6.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

98 Results

0 5 10

time [s]

1

1.5

2

2.5

3

3.5

4

4.5
[m

]

0 5 10

time [s]

0

0.1

0.2

0.3

0.4

0.5

[m
]

Figure 5-12: The figure shows on the left side the estimated distance (d red line) between
quadrotor and ArUco marker computed using Eq. (3-9) with respect to the desired chosen value
(d? blue line). On the right side it is shown the evolution in time of the norm of the IBVS error
given in Eq. (3-25). The result shows in this figure belongs to the mission task number 6 in which
the quadrotor uses the front camera to approach a static object up to a desired distance (equal
to 1m), minimizing the error (|e|) between the estimated and the desired marker’s corners and
center.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

5-1 Simulation experiment 99

0.4

0.2

y [m]

0

20

0.4 -0.20.2

x [m]

15

0 -0.2

ti
m

e
 [
s
]

10

-0.4 -0.4-0.6

5

0

14

Figure 5-13: The figure shows the evolution in time of the estimated marker’s corners and
center (start ×, end ◦) towards the desired ones (�). This figure is associated to the mission task
number 14. The latter consists in making the quadrotor approaching a static visual marker using
the bottom camera up to a desired distance. This task is equivalent to say that the quadrotor is
autonomously landing on a static platform on which the ArUco visual marker is placed. Indeed
when the quadrotor reach the desired a land command is sent.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

x [m]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

y
 [
m

]

14

Figure 5-14: The figure shows the trajectories of the estimated corners and center (start ×, end
◦) towards the desired ones (�) on the (2D) image coordinate plane. In particular it represents
how the estimated marker’s corners and center move towards the desired ones. This figure is
associated to the mission task number 14.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

100 Results

0 10 20

time [s]

0.5

1

1.5

2

2.5

3

3.5

4

4.5
[m

]

0 10 20

time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

[m
]

Figure 5-15: The figure shows on the left side the estimated distance (d red line) between
quadrotor and ArUco marker computed using Eq. (3-9) with respect to the desired chosen value
(d? blue line). On the right side it is shown the evolution in time of the norm of the IBVS error
given in Eq. (3-25). The result shows in this figure belongs to the mission task number 14 in which
the quadrotor uses the bottom camera to approach a static object up to a desired distance (equal
to 0.75m), minimizing the error (|e|) between the estimated and the desired marker’s corners and
center. When this distance is reached the quadrotor lands on the platform.

5-2 Real flight experiment

The video associated to the real flight experiment presented in this section is available here.

https://www.youtube.com/watch?v=T6Ep4t_QX6M

Another video showing how the quadrotor is able to follow using the front camera a vi-
sual marker is provided here (https://www.youtube.com/watch?v=GssfIm8woMg) and here
(https://www.youtube.com/watch?v=Eot1V2JZUf4).

5-2-1 Default parameters used in the real experiment (AR Drone 2.0))

The navigation controller framework and the vision based planner parameters that have been
used to perform the fully autonomous mission described in 4-1 are provided. The description
of their meaning together with the explanation of how they are derived is given in chapter 2
and 3 . Available in Appendix B-2 are also the results associated to the experiments that have
been done to properly select the controller parameters of the navigation controller framework.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

https://www.youtube.com/watch?v=T6Ep4t_QX6M
https://www.youtube.com/watch?v=GssfIm8woMg
https://www.youtube.com/watch?v=Eot1V2JZUf4

5-2 Real flight experiment 101

Table 5-9: Horizontal position controller module default parameters (Parrot AR. DRONE 2.0)

Sampling time 2DOF PID gains Saturations
boundaries

Derivative error and
reference filter gains

Anti windup

Thpcs = 0.1s K
(x?,x̂)→ẋ?

p = 0.5
K

(x?,x̂)→ẋ?

d = 0
K

(x?,x̂)→ẋ?

i = 0
b(x?,x̂)→ẋ? = 1
c(x?,x̂)→ẋ? = 0
K

(y?,ŷ)→ẏ?

p = 0.5
K

(y?,ŷ)→ẏ?

d = 0
K

(y?,ŷ)→ẏ?

i = 0
b(y?,ŷ)→ẏ? = 1
c(y?,ŷ)→ẏ? = 0

U
(x?,x̂)→ẋ?

Min = −1
U

(x?,x̂)→ẋ?

Max = 1
U

(y?,ŷ)→ẏ?

Min = −1
U

(y?,ŷ)→ẏ?

Max = 1

enable
(x?,x̂)→ẋ?

derfilter
= True

N
(x?,x̂)→ẋ?

d = 17.3
enable

(x?,x̂)→ẋ?

reffilter
= False

N
(x?,x̂)→ẋ?

r = N.R.
enable

(y?,ŷ)→ẏ?

derfilter
= True

N
(y?,ŷ)→ẏ?

d = 17.3
enable

(y?,ŷ)→ẏ?

reffilter
= False

N
(y?,ŷ)→ẏ?

r = N.R.

enable
(x?,x̂)→ẋ?

antiwindup
= False

K
(x?,x̂)→ẋ?

aw = N.R.
enable

(y?,ŷ)→ẏ?

antiwindup
= False

K
(y?,ŷ)→ẏ?

aw = N.R.

Table 5-10: Vertical position controller module default parameters (Parrot AR. DRONE 2.0)

Sampling time 2DOF PID gains Saturations
boundaries

Derivative error and
reference filter gains

Anti windup

T vpcs = 0.1s K
(z?,ẑ)→ż?

p = 1
K

(z?,ẑ)→ż?

d = 0
K

(z?,ẑ)→ż?

i = 0
b(z?,ẑ)→ż? = 1
c(z?,ẑ)→ż? = 0

U
(z?,ẑ)→ż?

Min = −1
U

(z?,ẑ)→ż?

Max = 1
enable

(z?,ẑ)→ẋ?

derfilter
= False

N
(z?,x̂)→ż?

d = N.R

enable
(z?,ẑ)→ẋ?

reffilter
= False

N
(z?,ẑ)→ż?

r = N.R.

enable
(x?,x̂)→ẋ?

antiwindup
= False

K
(x?,x̂)→ẋ?

aw = N.R.

Table 5-11: Horizontal speed controller module default parameters (Parrot AR. DRONE 2.0)

Sampling time 2DOF PID gains Saturations
boundaries

Derivative error and
reference filter gains

Anti windup

Thscs = 0.033s K
(ẋ?,ˆ̇x)→θv
p = 0.319

K
(ẋ?,ˆ̇x)→θv

d = −0.026
K

(ẋ?,ˆ̇x)→θv

i = 0.181
b(ẋ?,ˆ̇x)→θv = 0.549
c(ẋ?,ˆ̇x)→θv = 1.729
K

(ẏ?,ˆ̇y)→φv
p = 0.367

K
(ẏ?,ˆ̇y)→φv

d = −0.026
K

(ẏ?,ˆ̇y)→φv

i = 0.238
b(ẏ?,ˆ̇y)→φv = 0.548
c(ẏ?,ˆ̇y)→φv = 1.723

U
(ẋ?,ˆ̇x)→θv

Min = −0.2
U

(ẋ?,ˆ̇x)→θv

Max = 0.2
U

(ẏ?,ˆ̇y)→φv

Min = −0.2
U

(ẏ?,ˆ̇y)→φv

Max = 0.2

enable
(x?,x̂)→ẋ?

derfilter
= True

N
(x?,x̂)→ẋ?

d = 4.337
enable

(x?,x̂)→ẋ?

reffilter
= False

N
(x?,x̂)→ẋ?

r = N.R.
enable

(y?,ŷ)→ẏ?

derfilter
= True

N
(y?,ŷ)→ẏ?

d = 4.979
enable

(y?,ŷ)→ẏ?

reffilter
= False

N
(y?,ŷ)→ẏ?

r = N.R.

enable
(x?,x̂)→ẋ?

antiwindup
= True

K
(x?,x̂)→ẋ?

aw = 10.
enable

(y?,ŷ)→ẏ?

antiwindup
= True

K
(y?,ŷ)→ẏ?

aw = 10.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

102 Results

Table 5-12: Yaw controller module default parameters (Parrot AR. DRONE 2.0)

Sampling time 2DOF PID gains Saturations
boundaries

Derivative error and
reference filter gains

Anti windup

Tψcs = 0.1s K
(ψ?,ψ̂)→ψ̇?

p = 1.2
K

(ψ?,ψ̂)→ψ̇?

d = 0
K

(ψ?,ψ̂)→ψ̇?

i = 0
b(ψ?,ψ̂)→ψ̇? = 1
c(ψ?,ψ̂)→ψ̇? = 0

U
(ψ?,ψ̂)→ψ̇?

Min = −0.4
U

(ψ?,ψ̂)→ψ̇?

Max = 0.4
enable

(ψ?,ψ̂)→ψ̇?

derfilter
= False

N
(ψ?,ψ̂)→ψ̇?

d = N.R.

enable
(ψ?,ψ̂)→ψ̇?

reffilter
= False

N
(ψ?,ψ̂)→ψ̇?

r = N.R.

enable
(ψ?,ψ̂)→ψ̇?

antiwindup
= False

K
(ψ?,ψ̂)→ψ̇?

aw = N.R.

Table 5-13: Perception module default parameters (ArUco marker has been used)

Ideal centers
and desired
distance

Camera parameters:
Front image (360x640)
Bottom image (360x640)

Marker parameters Rotation matrix from
camera to robot frame

fu?5 = 180
fv?5 = 320
fd?mm = 1000
bu?5 = 180
bv?5 = 320
bd?mm = 750

ffmm = 7.6
fshmm = 9.9382
f imhpix

= 360
bfmm = 7.6
bshmm

= 7.938
bimhpix

= 360

fsidemm = 255
fID? = 13
bsidemm = 255
bID? = 2

RRCf
=

 0 0 1
−1 0 0
0 −1 0

RRCb

=

 0 −1 0
−1 0 0
0 0 −1

Table 5-14: Image state estimator module default parameters (ArUco marker has been used)

Estimation approach Kalman filter approach default
parameters

selector = 1
(0 = Static approach,
1 = Kalman filter ap-
proach)

Ts = 0.033s

QT 4×4 =

0.1 0 0 0
0 0.1 0 0
0 0 0.5 0
0 0 0 0.5

RT 2×2 =

[
3 0
0 3

]

Manuel Rucci CONFIDENTIAL Master of Science Thesis

5-2 Real flight experiment 103

Table 5-15: Image based visual servo module default parameters

Safety and saturation constraint
variables

IBVS default parameters

safety_counter_threshold = 40
Min = −1
Max = 1

f interactionmatrix = 2

fλ3×3 =

0.65 0 0
0 0.45 0
0 0 0.6

binteractionmatrix = 2

bλ3×3 =

0.3 0 0
0 0.2 0
0 0 0.3

5-2-2 Real flight experiment results

0

-2

-1

1

0 -0.5

y [m]

0

x [m]

1

z
 [

m
]

0.5

2

12 1.5

3

4 3

8 7 5

9

2

1

11 12

14

10

6

13

Figure 5-16: The figure shows the quadrotor’s (3D) trajectory associated to the quadrotor’s
real flight mission. The mission is performed using the AR Drone 2.0. An EKF is used to
estimate the quadrotor’s states (position (red line) ,velocity,acceleration,orientation) expressed in
world coordinate frame. The yellow arrows are used to represent the quadrotor estimated yaw
angle during the mission. The purple line represents the ground truth data measured during the
Approach_to_an_object (visual servoing) tasks (6 and 14). The latter shows that the quadrotor
is moving correctly toward the goal identified by the dashed blue line although the estimation of
the position provided by the EKF (red line) is wrong. This occurs because during task 6 and 14
only EKF velocity measurements and visual information are used. The numbers appearing on the
figure are used to indicate the mission task’s number that the quadrotor is facing.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

104 Results

x [m]
1.5 1 0.5 0 -0.5

-2

-1

0

1

2

y
 [

m
]

6

11 12

1 2

14

109

7 58
4 3

13

Figure 5-17: The figure shows the (2D) quadrotor’s trajectory associated to the quadrotor
mission which it stands for how the quadrotor moves along the (x) and (y) direction of the world
coordinate frame. The numbers appearing on the figure are used to indicate the mission task’s
number that the quadrotor is facing.

0 50 100

time [s]

-1

-0.5

0

0.5

1

1.5

2

[m
]

0 50 100

time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

[m
/s

]

Figure 5-18: The figure shows on the left side the quadrotor’s EKF estimated (x̂W) position
(red line) with respect to the desired reference (x?W) (blue line). The ground truth position
(x̂WMOCAP) (yellow line) is provided for a comparison purpose. On the right side it is shown
the output of the horizontal position controller module (ẋ?W) representing the desired reference
velocity along the (x) direction of the quadrotor expressed in world coordinate frame.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

5-2 Real flight experiment 105

0 50 100

time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
[m

/s
]

0 50 100

time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

[r
a

d
]

Figure 5-19: The figure shows on the left side the quadrotor’s EKF estimated (ˆ̇xW) velocity
(red line) with respect to the desired reference (ẋ?W) (blue line). The ground truth velocity
(ˆ̇xWMOCAP) (yellow line) is provided for a comparison purpose. On the right side it is shown the
output of the horizontal speed controller module (θ?R) representing the desired reference pitch
angle of the quadrotor expressed in robot coordinate frame.

0 50 100

time [s]

-2

-1

0

1

2

3

4

[m
]

0 50 100

time [s]

-1.5

-1

-0.5

0

0.5

1

[m
/s

]

Figure 5-20: The figure shows on the left side the quadrotor’s EKF estimated (ŷW) position
(red line) with respect to the desired reference (y?W) (blue line). The ground truth position
(ŷWMOCAP) (yellow line) is provided for a comparison purpose. On the right side it is shown
the output of the horizontal position controller module (ẏ?W) representing the desired reference
velocity along the (y) direction of the quadrotor expressed in world coordinate frame.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

106 Results

0 50 100

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5
[m

/s
]

0 50 100

time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

[r
a

d
]

Figure 5-21: The figure shows on the left side the quadrotor’s EKF estimated (ˆ̇yW) velocity
(red line) with respect to the desired reference (ẏ?W) (blue line). The ground truth velocity
(ˆ̇yWMOCAP) (yellow line) is provided for a comparison purpose. On the right side it is shown the
output of the horizontal speed controller module (φ?R) representing the desired reference pitch
angle of the quadrotor expressed in robot coordinate frame.

0 50 100

time [s]

-1

0

1

2

3

4

[m
]

0 50 100

time [s]

-1

-0.5

0

0.5

1

[m
/s

]

Figure 5-22: The figure shows on the left side the quadrotor’s EKF estimated (ẑW) position
(red line) with respect to the desired reference (z?W) (blue line). The ground truth position
(ẑWMOCAP) (yellow line) is provided for a comparison purpose. On the right side it is shown
the output of the horizontal position controller module (ż?W) representing the desired reference
velocity along the (z) direction of the quadrotor expressed in world coordinate frame.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

5-2 Real flight experiment 107

0 50 100

time [s]

-4

-3

-2

-1

0

1

2

3

4
[r

a
d

]

0 50 100

time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

[r
a

d
/s

]

Figure 5-23: The figure shows on the left side the quadrotor’s EKF estimated (ψ̂W) angle (red
line) with respect to the desired reference (ψ?W) (blue line). The ground truth angle (ψ̂WMOCAP)
(yellow line) is provided for a comparison purpose On the right side it is shown the output of
the yaw controller module (ψ̇?W) representing the desired reference yaw angle of the quadrotor
expressed in world coordinate frame.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

108 Results

0.2
-0.4 15

0.1

0

-0.2

y
 [
m

] -0.1

10

-0.2

x [m] time [s]

0

-0.3

50.2
0.4 0

6

Figure 5-24: The figure shows the evolution in time of the estimated marker’s corners and center
(start ×, end ◦) towards the desired ones (�). The number 6 appearing in the figure it is used
to underline that these results belong to the quadrotor task number 6. The latter consists in
approaching a static visual marker using the front camera up to a desired distance which it is
equivalent to drive on the current (2D) image plane the estimated corners towards the desired
ones. To solve this task front camera image information together with the EKF velocities and
yaw angle measurements have been used.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

x [m]

-0.3

-0.2

-0.1

0

0.1

0.2

y
 [
m

]

6

Figure 5-25: The figure shows the trajectories of the estimated corners and center (start ×, end
◦) towards the desired ones (�) on the (2D) image coordinate plane. In particular it represents
how the estimated marker corners and center move towards the desired ones.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

5-2 Real flight experiment 109

0 5 10

time [s]

0.5

1

1.5

2

2.5

3

3.5

4
[m

]

0 5 10

time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

[m
]

Figure 5-26: The figure shows on the left side the estimated distance (d red line) between
quadrotor and ArUco marker computed using Eq. (3-9) with respect to the desired chosen value
(d? blue line). On the right side it is shown the evolution in time of the norm of the IBVS error
given in Eq. (3-25). The result shows in this figure belongs to the mission task number 6 in which
the quadrotor uses the front camera to approach a static object up to a desired distance (equal
to 1m), minimizing the error (|e|) between the estimated and the desired marker’s corners and
center.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

110 Results

0.520

y [m]

0

15

0.6

10

ti
m

e
 [
s
]

0.4

5

0.2

x [m]

0

0 -0.2 -0.4 -0.5-0.6

14

Figure 5-27: The figure shows the evolution in time of the estimated marker’s corners and
center (start ×, end ◦) towards the desired ones (�) during the quadrotor mission task number
14. The latter consists in making the quadrotor approaching a static visual marker using the
bottom camera up to a desired distance.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x [m]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

y
 [
m

]

14

Figure 5-28: The figure shows the trajectories of the estimated points (start ×, end ◦) towards
the desired ones (�) on the (2D) image plane during the quadrotor task number 14. The top
right figure spikes represent the estimated points predicted by the image state estimator module
(Kalman filter with velocity constant model) when a detection is lost. A fast converge to the
new detected points is obtained setting the diagonal values of the measurement covariance matrix
(RT2×2) to small values (high confidence in the measurements) (see Table 5-14 pixel unit).

Manuel Rucci CONFIDENTIAL Master of Science Thesis

5-2 Real flight experiment 111

0 10 20

time [s]

0.5

1

1.5

2

2.5

3
[m

]

0 10 20

time [s]

0

0.2

0.4

0.6

0.8

1

[m
]

Figure 5-29: The figure shows on the left side the estimated distance (d red line) between
quadrotor and ArUco marker computed using Eq. (3-9) with respect to the desired chosen value
(d? blue line). On the right side it is shown the evolution in time of the norm of the IBVS error
given in Eq. (3-25). The result shows in this figure belongs to the mission task number 14 in which
the quadrotor uses the bottom camera to approach a static object up to a desired distance (equal
to 0.75m), minimizing the error (|e|) between the estimated and the desired marker’s corners and
center. When this distance is reached the quadrotor lands on the platform.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

112 Results

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Chapter 6

Conclusions

In this thesis a quadrotor controller framework and a vision based planner have been devel-
oped. The explanation of how they have been designed it is provided respectively in chapter
2 and 3. The experiment chosen to validate them has been presented in chapter 4 and the
associated results have been shown in 5. It is time now to derive the conclusion of this thesis
and discuss what it has to be done in the future to improve the developed algorithms. It
has been chosen to separate the conclusion associated to the navigation controller framework
from the ones related to the vision based planner.

6-1 Navigation controller framework conclusions

The navigation controller framework has been designed to able to communicate with both
Parrot AR. Drone 2.0 and Pixhawk autopilot. It is composed by five different modules
(horizontal position controller, horizontal speed controller, vertical position controller, verti-
cal speed controller, yaw controller) where a total of seven 2DOF PID controller allow the
quadrotor to track simultaneously either the quadrotor’s desired positions and the yaw an-
gle (x?W , y?W , z?W , ψ?W) or the desired velocities and the yaw angle (ẋ?W , ẏ?W , ż?W , ψ?) or
the horizontal desired velocities, the altitude and the yaw angle (ẋ?W , ẏ?W , z?W , ψ?W). The
navigation controller conclusions are summarized here.

• The controller framework shown in Figure 2-1 has shown to be compatible with both
AR Drone 2.0 and Pixahwk autopilot. Furthermore, the cascade design choice obtained
designing different modules able to be started and stopped has permitted in the same
mission to make the quadrotor firstly track the desired pose and secondly the transla-
tional velocities provided by the vision based planner. This has been possible simply
stopped the horizontal and vertical position controller modules. The design has been
inspired by the Simulink design where blocks (modules) running at a precise frequency
are used to design controller’s structures. The tuning of the controller’s parameters
has been done simplified the quadrotor autonomous navigation into subproblems where

Master of Science Thesis CONFIDENTIAL Manuel Rucci

114 Conclusions

the small angle angle approximation assumption has been found to be a satisfactory
assumption to ensure indoor autonomous quadrotor navigation.

• The modularity of the design has enabled to easily replace the navigation controller
modules with new modules with the same inputs and outputs and immediately test them
running an autonomous mission. Thus it is possible to state that the modularity of the
design has simplified the development and test of new controllers. This feature allows
different people dealing with different control design to focus only on the development
of the controller. Indeed a controller library is available where different controller can
be added. This choice allows to easily select inside a module which controller available
in the library better suits to the task problem.

• The simulation framework chosen combining the Gazebo simulation with the PX4
Software-In-The-Loop has allowed to validate the architecture design and the commu-
nication with different Aerostack modules such as EKF and Mission planner. Thanks to
the simulation environment it has been possible to improve the design avoiding useless
crashes. However in moving from simulation to real world environment it is required to
perform a fine tuning of the controller’s parameters.

• The design has shown to be robust to estimation errors introduced by the EKF. Indeed
the real experiment has been conducted using EKF measurements with the aim to
increase the level of autonomy of the quadrotor.

• The convention chosen for the navigation controller outputs, feedbacks and reference
inputs data are in tune with the standard convention used in robotics to ensure that
different state of art algorithms whose are developed using ROS can easily be combined
with the navigation controller framework.

6-2 Vision based planner to approach either static or moving ob-
jects conclusion

It is made up by three different modules (perception, image state estimator, image based visual
servo) whose final goal it is to calculate the desired translational velocities (ẋ?W , ẏ?W , ż?W)
required by the quadrotor to approach up to a desired distance a chosen static or moving
object keeping the detected center of the latter in a precise position on the current image
plane. The vision based planner does not require to know neither the quadrotor’s pose nor
the visual marker one. The vision based planner conclusions are summarized here.

• The generalization of the task solved by the vision based planner which consists in
approach to an object up to a desired distance has permitted to use the vision based
planner to solve different tasks such as approach to a static or moving object or land
on a static or moving platform.

• The division of the vision based planner problem into subproblems represented using
modules has clearly underlined which are the three main components required by the
vision based planner to solve the task. The latter are the detector, the marker’s corners
and center estimator and the image based visual servo controller located respectively

Manuel Rucci CONFIDENTIAL Master of Science Thesis

6-3 Future works 115

inside the perception, the image state estimator and the image based visual servo mod-
ules. This division has permitted to improve separately the three modules and test the
overall planner in a fast and easy way. Indeed if a new detector it is designed it is only
required to add it inside the perception module. Then it is required to compare the out-
put of the already tested detector with the new developed. If the output are satisfactory
it is possible to immediately run a fully autonomous mission using the new detector to
accomplish the task. The same consideration can be done for both the marker’s corner
and center estimator and the control law used to derive the translational quadrotor
velocities.

• The trajectory that the quadrotor performs in the real world when the vision based
planner is used has been found to be strongly dependent on the choice of the controller
parameter λ (Table 5-15 and Table 5-8). The latter are scaling translational velocities
factors that can be used to modified the quadrotor trajectory in the real world. To be
precise closer they are to the same value smother will appear the quadrotor trajectory
in approaching to the marker.

• It has shown that it is able to work without knowing neither the object position in
space nor the quadrotor one. Indeed the vision based planner solves the problem of how
the quadrotor can move with respect to an object whose pose it is unknown and can
change randomly. In term of quadrotor measurements it is required to only estimate
the quadrotor velocities and yaw angle.

• The choice to make the vision based planner able to easily switch between front and
bottom camera has permitted to the quadrotor to solve different tasks such as object
following and autonomous landing in the same mission simply selecting the camera that
the vision based planner has to use. This design has showed great advantages especially
related to the simplification of the mission’s design.

6-3 Future works

The presented designs have been proved that can be used to increase the level of autonomy
of the quadrotor in performing autonomous missions. However, a great deal of improvements
can be done related to both the navigation controller and the vision based planer designs.

6-3-1 Navigation controller framework future work

The navigation controller framework improvements are summarize here

• The navigation controller framework has been validated only in simulation environment
for a quadrotor equipped with Pixhawk autopilot. Thus it is required to test it in a real
quadrotor equipped with Pixhawk autopilot.

• To make the navigation controller as less dependent as possible from the choice of the
autopilot it is required to test how it performs with different autopilots available on the
market and ROS compatible.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

116 Conclusions

• Identify a proper quadrotor model ensures a fast and accurate tuning of the 2DOF PID
controller parameters. For this reason it is required to improve the navigation controller
framework design using system identification techniques to derive and validate better
quadrotor models that can be used to design new controllers or improve the tuning of
the available ones.

6-3-2 Vision based planner future work

The vision based planner improvements are summarize here

• Improve the perception module design adding different type of detectors able to extract
the side and the center of a given object in pixels coordinated. The constriction that it
is only possible to approach an object on which a specific marker is applied on it has to
be removed.

• Improve the image state estimator model (velocity constant model) with the aim to
have a more reliable and robust estimation of the object corners’ and center.

• Improve the image based visual servo control law such that it is able to deal with
dynamic obstacles appearing between the camera and the chosen object.

• Remove the assumption that the marker is planar and use the marker orientation to
also control the quadrotor rotation about the (z) axis.

• Validate how the (2D) trajectory (on the image plane) of the markers’ corner and center
change in using different type of interaction matrices to exploit which among the desired,
the estimate and the average better suits to a specific quadrotor task.

• Replace the bottom quadrotor camera with a Gimbal and use the image based visual
servo controller outputs to control both the translational quadrotor velocities and the
Gimbal angular velocities to avoid to loose the marker from the acquired image. This
choice reduce the possibility that the object disappears from the image and it uses all
the six image based visual servo controller outputs to control the translational quadrotor
velocities and the the Gimbal angular velocities.

• Remove the assumption that the marker is planar in the estimation of the distance
between the quadrotor and the chosen camera.

• Compare the image based visual servo design with both the position and homography
based visual servo.

• Validate the maximum speed at which the quadrotor can follow a moving object or land
on a moving platform using the vision based planner design in combination with the
navigation controller framework.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Appendix A

Quadrotors

A-1 Parrot AR.Drone 2.0 (Parrot autopilot quadrotor)

Figure A-1: AR. Drone 2.0 with outdoor hull

It is a wireless quadrotor that can be controlled using the open source ROS Driver package
ardrone_autonomy 1. It is equipped with a front HD CMOS Video Camera: 720p (1280×720
pixels) at 30fps (92◦ wide angle lens) and a bottom VGA CMOS Video Camera: QVGA
(320 × 240) at 60fps (64◦ wide angle lens). Both the cameras data are available but only
one per time can broadcast camera image data. Thus, the user according to its purpose has
to select from which camera get the image data. A resume of the AR. Drone 2.0 technical
specification is shown in the following table.

1http://wiki.ros.org/ardrone_autonomy

Master of Science Thesis CONFIDENTIAL Manuel Rucci

http://wiki.ros.org/ardrone_autonomy

118 Quadrotors

Table A-1: Parrot AR.Drone 2.0 Technical Specification

Ardrone 2.0 with outdoor hull
Weight 380 grams
Dimensions 35(length)× 28(width)× 11(height) cm
Battery Lithium polymer battery (3 cells, 11.1V,1500mAh)

Running time: 12 minutes
Processor 1GHz 32 bit ARM Cortex A8 processor with 800MHz

video DSP TMS320DMC64x
Operating System Linux 2.6.32

Resolution:1280x720 pixels (720p)
Front Camera Video Rate 30fps

92◦ wide-angle diagonal lens camera, HD CMOS sensor
Resolution:320x240 pixels (QVGA)

Vertical Camera Video Rate 60fps
64◦ wide-angle diagonal lens camera, CMOS sensor

Ultrasound Altimeter Emission frequency: 40kHz , Range: 6m
Accelerometer 3-axis, +/- 50mg precision
Gyroscope 3-axis, 2000◦/second precision
Magnetometer 3 axis, 6◦ precision
Motors 4 brushless inrunner motors: 14.5 watts and 28500

rev/min
Connection Wi-Fi b g n, b=(2.4GHz-11 Mb/s) g=(2.4GHz-54Mb/s)

n=(2.4GHz-300Mb/s))
Price 249.99 Euro

A-2 Parrot Bebop 2.0 (Parrot autopilot quadrotor)

Figure A-2: Bebop 2.0

The Bebop 2 quadrotor also called AR. Drone 3.0 it is an evolution of the AR Drone 2.0.
Comparing with the AR. Drone 2.0 it is a lighter and smaller quadrotor with higher flying

Manuel Rucci CONFIDENTIAL Master of Science Thesis

A-2 Parrot Bebop 2.0 (Parrot autopilot quadrotor) 119

capability. Furthermore it is equipped with a 14 Mega-pixels CMOS front video camera:
HD 1080p 1920 × 1080p (30 fps) Fisheye (180◦ wide angle lens) with digital stabilization
implemented. A ROS Driver package called bebop autonomy is available making it compatible
with ROS. The front camera can be controlled by software and the user can choose to look
front or backward tilting the virtual camera by software command. Furthermore, thanks to
the software image stabilization and the 14 Mega-pixel bottom side image view this quadrotor
becomes a more suitable platform to test landing algorithm than the previous one (AR.
Drone 2.0). However a low frequency (5 Hz) IMU data is available using the ROS driver
package bebop_autonomy. This limitation makes difficult to estimate the quadrotor position
and orientation in world using an EKF. To overcome this problem Parrot has developed a
navigation system called S.L.A.M.dunk2. It is a 140 grams platform equipped with a Fish-
eye stereo camera with a 1500 × 1500 resolution at 60fps, a Ubuntu computer with a ROS
compatible SDK, IMU, magnetometer,ultrasound and barometer sensors. Thanks to the high
resolution stereo camera the platform is able to generate an environment depth map used
for both identify obstacles and measure how far they are from the quadrotor itself. The
combination of the S.L.A.M.dunk with the Bebop 2 makes this quadrotor having all the
sensors required to navigate autonomously in a GPS-denied environment and for this reason
a relevant investigation research product. A resume of the Bebop 2.0 technical specification
is shown in the following table.

Table A-2: Parrot Bebop 2.0 Technical Specification

Bebop 2.0
Weight 500g
Dimensions 21× 26× 10 cm
Battery Lithium polymer battery (11.1V, 2700mAh), 25 minutes

fight time
Processor ARM Cortex-A9, Dual core processor with quad-core

GPU
Operating System Linux

Resolution: 4096× 3072 pixels (1080p)
Front Camera Video Rate 30fps, 3-axis digital system stabilization

Sunny 180◦ wide-angle diagonal fish-eye lens: 1/2.3"
aperture, HD CMOS 14 Mpx

Sensors vertical stabilization camera (16fps), Ultrasound Altime-
ter, Pressure Sensor, 3-axis gyroscope, Accelerometer, 3-
axis magnetometer, Global Navigation Satellite System
(GNSS) chipset (GPS + GLONASS)

Motors 4 brushless motor, rotation speed is 7500 rpm in run-up
and can reach over 12000 rpm.

Connection Wi-Fi 802.11 a b g n ac
Price 500 Euro

2https://www.parrot.com/us/business-solutions/parrot-slamdunk

Master of Science Thesis CONFIDENTIAL Manuel Rucci

https://www.parrot.com/us/business-solutions/parrot-slamdunk

120 Quadrotors

A-3 Eagle (Pixhawk autopilot quadrotor)

Figure A-3: Eagle with protection

Table A-3: Eagle Technical Specification

Eagle with protection
Weight 3.2Kg, maximum payload capacity 1Kg
Dimensions 61× 61× 40 cm
Battery 2 Lithium polymer battery 4500mAh each, 12 minutes

fight time
Processor Intel-NUC 6i5SYK, 16GB of RAM and SSD de 256GB

computer
Operating System Ubuntu 14.04.5 LTS (Trusty Tahr) with ROS Jade and

Aerostack installed
Autopilot Pixhawk Autopilot of 3D Robotics, IMU and magnetome-

ter integrated in the Autopilot, RC Module for user con-
trol

Sensors Hokuyo Laser range finder UTM-30 LX (30m 270◦), Intel
Realsense RGB-D camera, RGB 180 degree fisheye lens
bottom camera, Lightware altimeter SF10/A, 2 servos
controlled using PWM signals from an oboard Arduino
pro-mini board.

Oboard sensor com-
munication

USB connection

Motor 4 motors of T-Motor MT2814-10 of 770KV with 2 blade
propeller of 11× 4.7 inch

Ground Station Com-
puter to Onboard
Computer communi-
cation

Wi-Fi

Price 6000 Euro

Manuel Rucci CONFIDENTIAL Master of Science Thesis

A-4 Sparrow (Pixhawk autopilot quadrotor) 121

A-4 Sparrow (Pixhawk autopilot quadrotor)

Figure A-4: Sparrow

Table A-4: Sparrow Technical Specification

Sparrow
Weight 1.2Kg
Dimensions 21× 24× 19 cm
Battery 1 Lithium polymer battery 5000mAh each, 12 minutes

fight time
Onboard Processor UpBoard Intel Atom TM x5-Z8350, RAM 4GB DDR3L-

1600, Storage 32GB eMMC, 4*USB2.0+USB3.0 OTG,
alimentation 5VDC

Operating System Ubuntu 16.04.2 LTS (Xenial Xerus) with ROS Kinetic
and Aerostack installed

Autopilot Pixhawk Mini Autopilot of 3D Robotics, IMU and mag-
netometer integrated in the Autopilot , RC Controller
Module to user control

Sensors Hokuyo URG-04LX-UG01 (5.6m, 240◦ view angle),
Lightware SF10/A (up to 25m)

Oboard sensor com-
munication

USB connection

Motor 4 motors of T-Motor F40 II 2400KV with 2 blade pro-
peller

Ground Station Com-
puter to Onboard
Computer communi-
cation

Data Link, Module OEM IPnDDL, frequency 5.8GHz,
up to 12Mbps data transfer, electromagnetic power up
to 1W (range greater than 1 Kilometer), alimentation 7-
30VDC

Price 4000 Euro

Master of Science Thesis CONFIDENTIAL Manuel Rucci

122 Quadrotors

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Appendix B

Navigation Controller Framework
Appendix

B-1 Quadrotor dynamics

B-1-1 Translational dynamic

According to Euler’s equation of motion and neglecting air drag forces the quadrotor trans-
lational dynamic can be described as

m

ẍÿ
z̈

 = −m

0
0
g

+RWR

0
0
T

 (B-1)

which means that the overall force applied to the quadrotor expressed in the world reference
frame is given by the gravity force acting only along the z negative direction of the world
frame plus the thrust force. This force is always oriented along the positive direction of the z
axis of the robot frame. However due to the fact that the robot frame directions will change
when the quadrotor moves, a rotation matrix able to transform a vector in the robot frame
to the corresponding vector in the world frame is applied. Using the rotation matrix RWR it is
possible to map the thrust vector force into the corresponding force applied in the three axis
of the world frame. The resulting rotation matrix RWR is able to transform the orientation
of a vector in the robot frame coordinates into the corresponding orientation of the same
vector in the world frame coordinates is calculated using ZY X convention. The final rotation
matrix describing how to transform a vector from robot frame coordinates to world ones is

Master of Science Thesis CONFIDENTIAL Manuel Rucci

124 Navigation Controller Framework Appendix

the following

RWR = Rz(ψ)Ry(θ)Rx(φ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)

1 0 0

0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 =

=

cos(ψ)cos(θ) cos(ψ)sin(θ)sin(φ)− sin(ψ)cos(φ) cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ)
sin(ψ)cos(θ) sin(ψ)sin(θ)sin(φ) + cos(ψ)cos(φ) sin(ψ)sin(θ)cos(φ)− cos(ψ)sin(φ)
−sin(θ) cos(θ)sin(φ) cos(θ)cos(φ)

(B-2)

m

ẍÿ
z̈

 = −

 0
0
mg

+

... ... cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ)
... ... sin(ψ)sin(θ)cos(φ)− cos(ψ)sin(φ)
... ... cos(θ)cos(φ)

0

0
T

 (B-3)

The final translational dynamic of the quadrotor isolating the acceleration results being

ẍ =
(
cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ)

)
T

m

ÿ =
(
sin(ψ)sin(θ)cos(φ)− cos(ψ)sin(φ)

)
T

m

z̈ =
(
cos(θ)cos(φ)

)
T

m
− g

(B-4)

The Maclaurin expansion (the Taylor expansion about 0) of the sine and cosine of angle η is

sin(η) =
∞∑
n=0

(−1)n

(2n+ 1)!η
2n+1 = η − η3

3! + η5

5! −
η7

7! + · · · = η − η3

6 + η5

120 −
η7

5040 + · · ·

cos(η) = d

dη
sin(η) = d

dη

∞∑
n=0

(−1)n

(2n+ 1)!η
2n+1 = d

dη

(
η − η3

3! + η5

5! −
η7

7! + · · ·
)

=

= d

dη

(
η − η3

6 + η5

120 −
η7

5040 + · · ·
)

= 1− η2

2 + η4

24 −
η6

720 + · · ·

Assuming small angle approximation and neglecting higher order term we write

sin(η) ≈ η
cos(η) ≈ 1

According to small angle approximation assumption the dynamics can be rewritten as
[
ẍ
ÿ

]
= T

m

[
cos(ψ) sin(ψ)
sin(ψ) −cos(ψ)

] [
θ
φ

]

z̈ = T

m
− g

Manuel Rucci CONFIDENTIAL Master of Science Thesis

B-1 Quadrotor dynamics 125

B-1-2 Rotational dynamic

Looking at the rotational dynamic recalling Euler momenta equation of motion it is possible
to write the rotational dynamic of the quadrotor as

Iẇ + w × Iw = τ (B-5)

where the upper equations describes how the rotational dynamic changes in the world frame
which it stands for how the angular acceleration change (or momenta) when some external
torques τ are applied to the quadrotor. The inertial matrix I is a diagonal matrix thanks
to the assumption that the rotating robot reference frame has its axis fixed to the body and
parallel to the body’s principal axis of inertia.

I =

Ix 0 0
0 Iy 0
0 0 Iz

 (B-6)

To write the angular velocities as a function of the Euler angles the derivate of the rotation
matrix able to transform a vector from the body to the world frame required. The latter is
given by

ṘWR = RWR

[
w
]
×

(B-7)

where
[
w
]
×

stands for the skew symmetric matrix resulting from vector w ∈ Re3×1 and is
computed as follows wxwy

wz

×

=

 0 −wz wy
wz 0 −wx
−wy wx 0

 (B-8)

The relation between angular velocities w =
[
wx wy wz

]T
with the derivative of pitch,roll

and yaw α̇ =
[
φ̇ θ̇ ψ̇

]
is obtained

wxwy
wz

 =
[
RWT
R ṘWR

]v
=

1 0 −sin(θ)
0 cos(φ) cos(θ)sin(φ)
0 −sin(φ) cos(θ)cos(φ)

φ̇θ̇
ψ̇

 = J(α)α̇ (B-9)

where
[
RWT
R

˙RWR
]v

stands for the inverse operation of the skew symmetric one. Assuming

small angle approximation the J(α) matrix relating angular velocities w =
[
wx wy wz

]T
with the derivative of pitch,roll and yaw α̇ =

[
φ̇ θ̇ ψ̇

]
results being the identity

J(α) =

1 0 0
0 1 0
0 0 1

 (B-10)

Replacing Eq. (B-9) into Eq. (B-5) the rotational quadrotor dynamic equation becomes

IJα̈+ IJ̇α̇+ Jα̇× IJα̇ = τ (B-11)

Master of Science Thesis CONFIDENTIAL Manuel Rucci

126 Navigation Controller Framework Appendix

where knowing that J(α) is the identity from equation Eq. (B-10) it is possible to state that

Iα̈ = −α̇× Iα̇+ τ → Iα̈ = −
[
α̇
]
×
Iα̇+ τ (B-12)

where
[
α̇
]
×
stands for the skew symmetric matrix resulting from vector α̇

[
α̇
]
×

=

 0 −α̇3 α̇2
α̇3 0 −α̇1
−α̇2 α̇1 0

 (B-13)

The complete rotational dynamics equations are

Ix 0 0
0 Iy 0
0 0 Iz

φ̈θ̈
ψ̈

 = −

 0 −ψ̇ θ̇

ψ̇ 0 −φ̇
−θ̇ φ̇ 0

Ix 0 0

0 Iy 0
0 0 Iz

φ̇θ̇
ψ̇

+

τxτy
τz

 (B-14)

Isolating the angular acceleration
[
φ̈ θ̈ ψ̈

]
and writing the torques as (τx, τy, τz)

φ̈ = θ̇ψ̇
Iy − Iz
Ix

+ τx
Ix

θ̈ = φ̇ψ̇
Iz − Ix
Iy

+ τy
Iy

ψ̈ = φ̇θ̇
Ix − Iy
Iz

+ τz
Iz

(B-15)

Assuming that the derivative of the Euler angle are really small the rotational dynamic turns
being

φ̈ = τx
Ix

θ̈ = τy
Iy

ψ̈ = τz
Iz

(B-16)

The relation between the torques
(
τx, τy, τz

)
and the angular speed of each motor

(
w1, w2, w3, w4

)
is derived as following.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

B-1 Quadrotor dynamics 127

Figure B-1: X Configuration, motor number and body frame

T = F1 + F2 + F3 + F4 = b(w2
1 + w2

2 + w2
3 + w2

4)
τx = F3 + F2 − F1 − F4 = Lb(w2

3 + w2
2 − w2

1 − w2
4)

τy = F2 + F4 − F3 − F1 = Lb(w2
2 + w2

4 − w2
3 − w2

1)
τz = F1 + F2 − F4 − F3 = db(w2

1 + w2
2 − w2

4 − w2
3)

(B-17)

T
τx
τy
τz

 =

b b b b
−Lb Lb Lb −Lb
−Lb Lb −Lb Lb
db db −db −db

w2

1
w2

2
w2

3
w2

4

 = A

w2

1
w2

2
w2

3
w2

4

 (B-18)

det(A) = 16L2b4d 6= 0 ∀b, d, L 6= 0 (B-19)
w2

1
w2

2
w2

3
w2

4

 =

1
4b

−1
4Lb

−1
4Lb

1
4bd

1
4b

1
4Lb

1
4Lb

1
4bd

1
4b

1
4Lb

−1
4Lb

−1
4bd

1
4b

−1
4Lb

1
4Lb

−1
4bd

T
τx
τy
τz

 (B-20)

w1 =
√

1
4b

(
T − τx

L
− τy
L

+ τz
d

)

w2 =
√

1
4b

(
T + τx

L
+ τy
L

+ τz
d

)

w3 =
√

1
4b

(
T + τx

L
− τy
L
− τz
d

)

w4 =
√

1
4b

(
T − τx

L
+ τy
L
− τz
d

)
(B-21)

where b , d and L are respectively the motor constant, the motor drag coefficient and the arm
length whereas w1, w2, w3, w4 are the quadrotor angular velocity of each motor.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

128 Navigation Controller Framework Appendix

B-1-3 Simplified quadrotor model

The simplified quadrotor dynamics derived under the small angle approximation is the fol-
lowing

ẍ = T

m

[
cos(ψ) sin(ψ)

] [θ
φ

]

ÿ = T

m

[
sin(ψ) −cos(ψ)

] [θ
φ

]

z̈ = T

m
− g

φ̈ = τx
Ix

θ̈ = τy
Iy

ψ̈ = τz
Iz

(B-22)

B-2 Navigation controller framework controller tuning experiment
results

B-2-1 Multiples velocity ẋ?W steps

This experiment has been done to validate how the (2dofP id(ẋ?,ˆ̇x)→θv
) performs in tracking

multiples velocity (ẋ?) steps between -1 and 1 meters per seconds. The control parameters
used in this experiment are given in Table 5-11. A video showing the experiment it is available
here (https://www.youtube.com/watch?v=5Q4DxjXFzJE).

Manuel Rucci CONFIDENTIAL Master of Science Thesis

https://www.youtube.com/watch?v=5Q4DxjXFzJE

B-2 Navigation controller framework controller tuning experiment results 129

0 20 40

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5
[m

/s
]

0 20 40

time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

[r
a

d
]

Figure B-2: The figure shown on the left side the reference velocity (ẋ?W) (blue line), the
EKF measured one (ˆ̇xWEKF) (red line) and the ground truth (ˆ̇xWMOCAP) (yellow line) available
for comparison. On th right side it is shown the pitch (θ?R) controller output calculated by the
2DOF PID controller (2dofP id(ẋ?,ˆ̇x)→θv

).

B-2-2 Multiples velocity ẏ?W steps

This experiment has been done to validate how the (2dofP id(ẏ?,ˆ̇y)→φv
) performs in tracking

multiples velocity (ẏ?) steps between -1 and 1 meter per seconds. The control parameters
used in this experiment are given in Table 5-11. A video showing the experiment it is available
here (https://www.youtube.com/watch?v=pHfy-lsMHYk).

Master of Science Thesis CONFIDENTIAL Manuel Rucci

https://www.youtube.com/watch?v=pHfy-lsMHYk

130 Navigation Controller Framework Appendix

0 20 40 60

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

2
[m

/s
]

0 20 40 60

time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

[r
a

d
]

Figure B-3: The figure shown on the left side the reference velocity (ẏ?W) (blue line), the
EKF measured one (ˆ̇yWEKF) (red line) and the ground truth (ˆ̇yWMOCAP) (yellow line) available for
comparison. On th right side it is shown the (φ?R) controller output calculated by the 2DOF PID
controller (2dofP id(ẏ?,ˆ̇y)→φv

).

B-2-3 Multiples position x?W steps

This experiment has been done to validate how the (2dofP id(x?,x̂)→ẋ?) performs in tracking
multiples position (x?W) steps. The control parameters used in this experiment are given in
Table 5-9. A video showing the experiment it is available here (https://www.youtube.com/
watch?v=P6tBmfbejFg).

Manuel Rucci CONFIDENTIAL Master of Science Thesis

https://www.youtube.com/watch?v=P6tBmfbejFg
https://www.youtube.com/watch?v=P6tBmfbejFg

B-2 Navigation controller framework controller tuning experiment results 131

0 20 40 60

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5
[m

]

0 20 40 60

time [s]

-1

-0.5

0

0.5

1

[m
/s

]

Figure B-4: The figure shown on the left side the reference position (x?W) (blue line), the
EKF measured one (x̂WEKF) (red line) and the ground truth (x̂WMOCAP) (yellow line) available
for comparison. On th right side it is shown the velocity (ẋ?W) which is the controller output
calculated by the 2DOF PID controller (2dofP id(x?,x̂)→ẋ?).

0 20 40 60

time [s]

-1.5

-1

-0.5

0

0.5

1

[m
/s

]

0 20 40 60

time [s]

-0.2

-0.1

0

0.1

0.2

0.3

[r
a

d
]

Figure B-5: The figure shown on the left side the reference velocity (ẋ?W) (blue line), the
EKF measured one (ˆ̇xWEKF) (red line) and the ground truth (ˆ̇xWMOCAP) (yellow line) available
for comparison. On th right side it is shown the pitch (θ?R) controller output calculated by the
2DOF PID controller (2dofP id(ẋ?,ˆ̇x)→θv

)

Master of Science Thesis CONFIDENTIAL Manuel Rucci

132 Navigation Controller Framework Appendix

B-2-4 Multiples position y?W steps

This experiment has been done to validate how the (2dofP id(y?,ŷ)→ẏ?) performs in tracking
multiples position (y?W) steps. The control parameters used in this experiment are given in
Table 5-9. A video showing the experiment it is available here (https://www.youtube.com/
watch?v=2qNIbvRdwcE).

0 20 40 60

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

[m
]

0 20 40 60

time [s]

-1

-0.5

0

0.5

1

[m
/s

]

Figure B-6: The figure shown on the left side the reference position (y?W) (blue line), the
EKF measured one (ŷWEKF) (red line) and the ground truth (ŷWMOCAP) (yellow line) available for
comparison. On th right side it is shown the (ẏ?W) which is the controller output calculated by
the 2DOF PID controller (2dofP id(y?,x̂)→ẏ?).

Manuel Rucci CONFIDENTIAL Master of Science Thesis

https://www.youtube.com/watch?v=2qNIbvRdwcE
https://www.youtube.com/watch?v=2qNIbvRdwcE

B-2 Navigation controller framework controller tuning experiment results 133

0 20 40 60

time [s]

-1.5

-1

-0.5

0

0.5

1
[m

/s
]

0 20 40 60

time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

[r
a

d
]

Figure B-7: The figure shown on the left side the reference velocity (ẏ?W) (blue line), the
EKF measured one (ˆ̇yWEKF) (red line) and the ground truth (ˆ̇yWMOCAP) (yellow line) available for
comparison. On th right side it is shown the roll (φ?R) controller output calculated by the 2DOF
PID controller (2dofP id(ẏ?,ˆ̇y)→φv

)

B-2-5 Multiples position z?W steps

This experiment has been done to validate how the (2dofP id(z?,ẑ)→ż?) performs in tracking
multiples position (z?W) steps. The control parameters used in this experiment are given in
Table 5-10. A video showing the experiment it is available here (https://www.youtube.com/
watch?v=mTIoTSK9JLE).

Master of Science Thesis CONFIDENTIAL Manuel Rucci

https://www.youtube.com/watch?v=mTIoTSK9JLE
https://www.youtube.com/watch?v=mTIoTSK9JLE

134 Navigation Controller Framework Appendix

0 20 40

time [s]

0

0.5

1

1.5

2

2.5

3

3.5
[m

]

0 20 40

time [s]

-1

-0.5

0

0.5

1

[m
/s

]

Figure B-8: The figure shown on the left side the reference position (z?W) (blue line), the
EKF measured one (ẑWEKF) (red line) and the ground truth (ẑWMOCAP) (yellow line) available
for comparison. On th right side it is shown the velocity (ż?W) which is the controller output
calculated by the 2DOF PID controller (2dofP id(z?,ẑ)→ż?).

B-2-6 Multiple yaw ψ?W steps

This experiment has been done to validate how the (2dofP id(ψ?,ψ̂)→ψ̇?) performs in tracking
multiples desird yaw (ψ?W) steps. The control parameters used in this experiment are given
in Table 5-12. A video showing the experiment it is available here (https://www.youtube.
com/watch?v=riIPh0GbROk).

Manuel Rucci CONFIDENTIAL Master of Science Thesis

https://www.youtube.com/watch?v=riIPh0GbROk
https://www.youtube.com/watch?v=riIPh0GbROk

B-2 Navigation controller framework controller tuning experiment results 135

0 20 40 60

time [s]

-4

-3

-2

-1

0

1

2

3

4
[r

a
d

]

0 20 40 60

time [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

[r
a

d
/s

]

Figure B-9: The figure shown on the left side the reference yaw (ψ?W) (blue line), the EKF
measured one (ψ̂WEKF) (red line) and the ground truth (ψ̂WMOCAP) (yellow line) available for
comparison. On th right side it is shown the yaw rate (ψ̇?) which is the controller output
calculated by the 2DOF PID controller (2dofP id(ψ?,ψ̂)→ψ̇?).

B-2-7 Navigation controller + EKF mission experiment

In this experiment the previously tuned controller are combined to solve a mission in which
different desired poses have to be tracked. In performing the mission the Aerostack EKF
state estimator is used. A video showing the experiment it is available here (https://www.
youtube.com/watch?v=MsWUhc1AMzU).

Master of Science Thesis CONFIDENTIAL Manuel Rucci

https://www.youtube.com/watch?v=MsWUhc1AMzU
https://www.youtube.com/watch?v=MsWUhc1AMzU

136 Navigation Controller Framework Appendix

Mission

1. Take off

2. Go to point →
[
x?W y?W z?W ψ?W

]
=
[
0, 0, 1, 0

]
3. Go to point →

[
x?W y?W z?W ψ?W

]
=
[
1, 0, 1, 90

]
4. Go to point →

[
x?W y?W z?W ψ?W

]
=
[
1, 1, 1, 180

]
5. Go to point →

[
x?W y?W z?W ψ?W

]
=
[
−1, 1, 1,−90

]
6. Go to point →

[
x?W y?W z?W ψ?W

]
=
[
−1, 0, 1, 0

]
7. Go to point →

[
x?W y?W z?W ψ?W

]
=
[
0, 0, 1, 0

]
8. Land

0

0
0.5

y [m]

1
0.5

x [m]

0 1
-0.5

-1

0.5z
 [

m
] 1

1.5

3

4

5

6

1 8

7

2

Figure B-10: The figure shows the quadrotor’s (3D) trajectory associated to the quadro-
tor’s mission B-2-7. The EKF data are used to estimate the quadrotor’s states (posi-
tion,velocity,acceleration,orientation) expressed in world coordinate frame (red line). The numbers
appearing on the figure are used to indicate the mission task’s number that the quadrotor is facing.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

B-2 Navigation controller framework controller tuning experiment results 137

-1-0.500.51

x [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y
 [

m
]

12

3
87

5

6

4

Figure B-11: The figure shows the (2D) quadrotor’s trajectory associated to the quadrotor
mission B-2-7 which it stands for how the quadrotor moves along the (x) and (y) direction of the
world coordinate frame. The numbers appearing on the figure are used to indicate the mission
task’s number that the quadrotor is facing.

0 20 40 60

time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

[m
]

0 20 40 60

time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

[m
/s

]

Figure B-12: The figure shown on the left side the reference position (x?W) (blue line), the
EKF measured one (x̂WEKF) (red line) and the ground truth (x̂WMOCAP) (yellow line) available
for comparison. On th right side it is shown the velocity (ẋ?W) which is the controller output
calculated by the 2DOF PID controller (2dofP id(x?,x̂)→ẋ?).

Master of Science Thesis CONFIDENTIAL Manuel Rucci

138 Navigation Controller Framework Appendix

0 20 40 60

time [s]

-1

-0.5

0

0.5

1

1.5
[m

/s
]

0 20 40 60

time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

[r
a

d
]

Figure B-13: The figure shown on the left side the reference velocity (ẋ?W) (blue line), the
EKF measured one (ˆ̇xWEKF) (red line) and the ground truth (ˆ̇xWMOCAP) (yellow line) available
for comparison. On th right side it is shown the pitch (θ?R) controller output calculated by the
2DOF PID controller (2dofP id(ẋ?,ˆ̇x)→θv

)

0 20 40 60

time [s]

-0.5

0

0.5

1

1.5

2

[m
]

0 20 40 60

time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

[m
/s

]

Figure B-14: The figure shown on the left side the reference position (y?W) (blue line), the
EKF measured one (ŷWEKF) (red line) and the ground truth (ŷWMOCAP) (yellow line) available for
comparison. On th right side it is shown the (ẏ?W) which is the controller output calculated by
the 2DOF PID controller (2dofP id(y?,x̂)→ẏ?).

Manuel Rucci CONFIDENTIAL Master of Science Thesis

B-2 Navigation controller framework controller tuning experiment results 139

0 20 40 60

time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
[m

/s
]

0 20 40 60

time [s]

-0.1

-0.05

0

0.05

0.1

0.15

[r
a

d
]

Figure B-15: The figure shown on the left side the reference velocity (ẏ?W) (blue line), the
EKF measured one (ˆ̇yWEKF) (red line) and the ground truth (ˆ̇yWMOCAP) (yellow line) available for
comparison. On th right side it is shown the roll (φ?R) controller output calculated by the 2DOF
PID controller (2dofP id(ẏ?,ˆ̇y)→φv

)

0 20 40 60

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

[m
]

0 20 40 60

time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

[m
/s

]

Figure B-16: The figure shown on the left side the reference position (z?W) (blue line), the
EKF measured one (ẑWEKF) (red line) and the ground truth (ẑWMOCAP) (yellow line) available
for comparison. On th right side it is shown the velocity (ż?W) which is the controller output
calculated by the 2DOF PID controller (2dofP id(z?,ẑ)→ż?).

Master of Science Thesis CONFIDENTIAL Manuel Rucci

140 Navigation Controller Framework Appendix

0 20 40 60

time [s]

-4

-3

-2

-1

0

1

2

3

4
[r

a
d

]

0 20 40 60

time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

[r
a

d
/s

]

Figure B-17: The figure shown on the left side the reference yaw (ψ?W) (blue line), the EKF
measured one (ψ̂WEKF) (red line) and the ground truth (ψ̂WMOCAP) (yellow line) available for
comparison. On th right side it is shown the yaw rate (ψ̇?) which is the controller output
calculated by the 2DOF PID controller (2dofP id(ψ?,ψ̂)→ψ̇?).

B-3 Code used to send Pixhawk autopilot commands using the
mavros package

An example of code used to send pitch, roll, yaw and thrust commands (PIθ?R, PIφ?R, PIT ?R, PIψ?R)
derived in Eq. (4-7) through the mavros topic mavros/setpoint_raw/attitude using as a feed-
back only the IMU data coming from /mavros/imu/data is provided.

1 /*
2 1) Get IMU msg.orientation
3 from /mavros/imu/data
4 message type exmaple sensor_msgs::Imu msg;
5 */
6
7 /*
8 2) Extract yaw_IMU from IMU data in ENU (+ccw,-cw) [-pi pi]
9 */

10
11 //convert quaternion msg to eigen
12 Eigen : : Quaterniond quaterniond ;
13 tf : : quaternionMsgToEigen (ImuMsgs . orientation , quaterniond) ;
14
15 //Converts ENU (Mavros) frame to NED frame
16 //Rotating the frame in x-axis by 180 degrees
17 Eigen : : Quaterniond BASE_LINK_TO_AIRCRAFT = mavros : : UAS : :

quaternion_from_rpy (M_PI , 0 . 0 , 0 . 0) ;

Manuel Rucci CONFIDENTIAL Master of Science Thesis

B-3 Code used to send Pixhawk autopilot commands using the mavros package 141

18 quaterniond = quaterniond∗BASE_LINK_TO_AIRCRAFT ;
19 //Rotating the frame in x-axis by 180 deg and in z-axis by 90 axis
20 Eigen : : Quaterniond ENU_TO_NED = mavros : : UAS : : quaternion_from_rpy (M_PI

, 0 . 0 , M_PI_2) ;
21 quaterniond = ENU_TO_NED∗quaterniond ;
22
23 //converting back quaternion from eigen to msg
24 geometry_msgs : : Quaternion quaternion ;
25 tf : : quaternionEigenToMsg (quaterniond , quaternion) ;
26 tf : : Quaternion q (quaternion . x , quaternion . y , quaternion . z , quaternion

. w) ;
27 tf : : Matrix3x3 m (q) ;
28
29 double yaw_IMU_NED , pitch_IMU_NED , roll_IMU_NED ;
30 mavros : : UAS : : quaternion_to_rpy (quaterniond , roll_IMU_NED ,

pitch_IMU_NED , yaw_IMU_NED) ;
31
32 //convert quaternion to euler angels
33 m . getEulerYPR (yaw_IMU_NED , pitch_IMU_NED , roll_IMU_NED) ;
34
35 //Converts NED frame to ENU frame
36 double yaw_IMU_ENU = − yaw_IMU_NED ; // ENU [-pi pi]
37
38 /*
39 3) Get Navigation controller (NC) outputs
40 NC_ref_yaw_ENU (ENU in [-pi, pi] +ccw -cw)
41 NC_ref_pitch_ENU (ENU in [-pi, pi] +forward ,-backward)
42 NC_ref_roll_ENU (ENU in [-pi, pi] +rigthward ,-leftward)
43 NC_ref_thrust_ENU (ENU in [0 1] +upward ,-downward)
44 */
45
46 /*
47 4) Calculate Pixhawk Autopilot commands (PI)
48 PI_ref_yaw_NED (NED in [-pi, pi] +cw -ccw)
49 PI_ref_pitch_NED (NED in [-pi, pi] +backward ,-forward)
50 PI_ref_roll_NED (NED in [-pi, pi] +rigthward ,-leftward)
51 PI_ref_thrust_ENU (ENU in [0 1] +upward ,-downward)
52 */
53
54 double PI_ref_yaw_NED = −(yaw_IMU_ENU + NC_ref_dyaw_ENU) ;
55 double PI_ref_roll_NED = NC_ref_roll_ENU ;
56 double PI_ref_pitch_NED = −NC_ref_pitch_ENU ;
57 double PI_ref_thrust_ENU = NC_ref_thrust_ENU ;
58
59 /*
60 5) Send to the Pixhawk through mavros
61 */
62
63 Eigen : : Quaterniond quaterniond_NED = mavros : : UAS : :

quaternion_from_rpy (PI_ref_roll_NED , PI_ref_pitch_NED ,
PI_ref_yaw_NED) ;

64

Master of Science Thesis CONFIDENTIAL Manuel Rucci

142 Navigation Controller Framework Appendix

65 Eigen : : Quaterniond quaterniond_ENU = mavros : : UAS : :
transform_orientation_ned_enu (mavros : : UAS : :
transform_orientation_baselink_aircraft (quaterniond_NED)) ;

66
67 geometry_msgs : : Quaternion orientation_ENU ;
68 tf : : quaternionEigenToMsg (quaterniond_ENU , orientation_ENU) ;
69
70 mavros_msgs : : AttitudeTarget attitude_msg ;
71 attitude_msg . orientation = orientation_ENU ;
72 attitude_msg . thrust = PI_ref_thrust_ENU ;
73
74 /***/
75 // Publish message into "mavros/setpoint_raw/attitude" topic
76 /***/

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Appendix C

Vision Based Planner Appendix

C-1 Distance estimation

CMOS

LENS

OBJECT

fmm

s
mmh

h mm

s
mm

ho

o

dmm

Figure C-1: CMOS, lens and object illustration required to derive the distance between lens and
object (dmm)

Given Figure C-1 is possible to derive an estimation of the distance between object and camera
lens (dmm). To do this two different consideration are done.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

144 Vision Based Planner Appendix

• Firstly is possible to find a relation between the real object height (homm), the corre-
sponding height of the object on the CMOS camera sensor (shomm

) , the absolute focal
length and the distance between object and camera lens where all the parameters are
expressed in millimeters. The mathematical relation is given by

homm

shomm

= dmm
fmm

(C-1)

which means that ratio between the real object height and the height of object appearing
on the camera sensor is equal to the ratio between the distance between object and
camera lens and the absolute focal length.

• Secondly is possible to find a relation between the height of the object on the camera
sensor expressed in millimeters and the height of the object in pixel. The need of this
relation is due to the fact that it is easier to know the height of an object in pixel rather
than the height of an object on the camera sensor in millimeters. The mathematical
relation is

shomm

hopix

= shmm

imhpix

→ shomm
=
shmmhopix

imhpix

(C-2)

where (hopix) and (imhpix
) represent respectively the object height in pixel and the

height of the image (number of rows) expressed in pixel.

Combining Eq. (C-1) with Eq. (C-2) is possible to derive an equation able to estimate the
distance between object and camera lens as follow

dmm =
fmmhommimhpix

shmmhopix

(C-3)

where the absolute focal length (fmm), the sensor height (shmm) and he image height (imhpix
)

in pixel are available looking at the chosen camera documentation whereas the height of
the object is given by the detector. Given equation Eq. (C-3) knowing the desired distance
between camera and object (d?mm), it is possible to compute the object height in pixel as
follow

hopix =
fmmhommimhpix

shmmd
?
mm

(C-4)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

C-2 Time derivative of a 2D image point 145

C-2 Time derivative of a 2D image point

C
TO

C
RO

C
R

C ,

O

C
Pi

Pi

O
Pi

Figure C-2: Camera (C) and object frame (O) representation. The point POi is rigidly attached
to the object frame. The latter is thought as a rigid body.

Given a point PCi =
[
XC
i Y C

i ZCi

]T
representing the coordinate of a point i expressed in

the camera frame (C) and a point POi =
[
XO
i Y O

i ZOi

]T
attached to the rigid target object

frame (O), the equation describing PCi as a function of POi is

PCi = RCOP
O
i + TCO (C-5)

The derivative of this point (˙PCi) is

˙PCi = ṘCOP
O
i +��

��*
0

RCO
˙POi + ṪCO (C-6)

Making the following considerations

• ��
��*

0
RCO

˙POi because the point Pi is rigidly attached to the object frame (O). This condition
makes the derivative of point Pi expressed in the object frame equal to zero. If an
observer is sitting on the origin of the object frame it will see the point Pi static in
time.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

146 Vision Based Planner Appendix

• wC,CO is the angular velocity of the object frame with respect to the camera frame
expressed in camera frame coordinate. The latter can be rewritten as[

wC,C
O

]
×

= ṘCOR
O
C → ṘCO =

[
wC,C
O

]
×
RCO (C-7)

where
[
wC,C
O

]
×
is the skew symmetric matrix of the vector wC,CO ∈ R3×1.

[
wC,C
O

]
×

=

wxwy
wz

×

=

 0 −wz wy
wz 0 −wx
−wy wx 0

 (C-8)

• ṪCO represents the translational velocity of the object frame with respect to the camera
frame in camera frame coordinate (vC,CO)

is possible to write

˙PCi =
[
wC,C
O

]
×
RCOP

O
i + vC,CO =

[
wC,C
O

]
×
PCi + vC,CO =

= −
[
PCi

]
×

wC,C
O + vC,CO

(C-9)

which is equivalent to

˙PCi =

ẊC
i

Ẏ C
i

ŻCi

 =
[
I3×3 −

[
PCi

]
×

] [vC,CO

wC,C
O

]
with

[
PCi

]
×

=

 0 −ZCi Y C
i

ZCi 0 −XC
i

−Y C
i XC

i 0

 (C-10)

where (vC,CO) and (wC,C
O) represent respectively the translational velocity of the object frame

with respect to the camera frame expressed in camera frame coordinate and the rotational
velocity of the object frame with respect to the camera frame expressed in camera frame
coordinate. Dealing with visual servoing is more interested to know the velocities of the
camera frame with respect to the object frame in camera frame coordinate (vC,OC ,wC,O

C) .
The relation between (vC,OC ,wC,O

C) and (vC,CO ,wC,C
O) is

vC,OC = −vC,CO

wC,O
C = −wC,C

O

(C-11)

Thus (C-10) can be rewritten as

˙PCi =

ẊC
i

Ẏ C
i

ŻCi

 =
[
−I3×3

[
PCi

]
×

] [vC,OC

wC,O
C

]
(C-12)

which is equivalent to

ẊC
i = −vxC,OC − wyC,OC ZCi + wz

C,O
C Y C

i

Ẏ C
i = −vyC,OC − wzC,OC XC

i + wx
C,O
C ZCi

ŻCi = −vzC,OC − wxC,OC Y C
i + wy

C,O
C XC

i

(C-13)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

C-2 Time derivative of a 2D image point 147

Knowing that the 2D image coordinates of a generic i point, according to perspective projec-
tion, are defined as

x2Di = XC
i

ZCi
= ui − cx

fx

y2Di = Y C
i

ZCi
= vi − cy

fy

(C-14)

with ui = columni and vi = rowi pixel coordinates. The derivative of the 2D image coordi-
nates are

ẋ2Di = ẊC
i

ZCi
− XC

i Ż
C
i

ZCi
2 = (ẊC

i − x2DiŻ
C
i)

ZCi

ẏ2Di = Ẏ C
i

ZCi
− Y C

i Ż
C
i

ZCi
2 = (Ẏ C

i − y2DiŻ
C
i)

ZCi

(C-15)

Replacing (C-13) into (C-15) results

ẋ2Di = −vx
C,O
C

ZCi
+ x2Divz

C,O
C

ZCi
+ x2Diy2Diwx

C,O
C − (1 + x2

2Di
)wyC,OC + y2Diwz

C,O
C

ẏ2Di = −vy
C,O
C

ZCi
+ y2Divz

C,O
C

ZCi
− x2Diy2Diwy

C,O
C + (1 + y2

2Di
)wxC,OC − x2Diwz

C,O
C

(C-16)

Rewriting (C-16) in a matrix form results

[
ẋ2Di

ẏ2Di

]
= LxiV

C,O
C with VC,O

C =
[

vC,OC

wC,O
C

]
=

vx
C,O
C

vy
C,O
C

vz
C,O
C

wx
C,O
C

wy
C,O
C

wz
C,O
C

(C-17)

where Lxi is known as interaction matrix and it is equal to

Lxi =

− 1
ZC

i

0 x2Di

ZC
i

x2Diy2Di −(1 + x2
2Di

) y2Di

0 − 1
ZC

i

y2Di

ZC
i

1 + y2
2Di

−x2Diy2Di −x2Di

 (C-18)

Considering only translational motion Eq. (C-17) becomes

[
ẋ2Di

ẏ2Di

]
=

− 1
ZC

i

0 x2Di

ZC
i

0 − 1
ZC

i

y2Di

ZC
i

vx

C,O
C

vy
C,O
C

vz
C,O
C

 = Lxiv
C,O
C (C-19)

where vC,OC are the instantaneous translational camera velocities describing the tranlsational
velocities of the current camera frame (C) with respect to the object frame (target visual
marker O) expressed in the current camera frame (C). Lxi is the interaction matrix relating
the derivative of the 2D image point (ṁτ

2Di
) with the instantaneous translational camera

velocities (vC,OC).

Master of Science Thesis CONFIDENTIAL Manuel Rucci

148 Vision Based Planner Appendix

C-3 Derivation of the distance between two 2D image coordinate
points

Given a generic distance among two points k and j along x2D and y2D direction

dx2Dk,j
= x2Dk

− x2Dj

dy2Dk,j
= y2Dk

− y2Dj

(C-20)

the derivative in time is

ḋx2Dk,j
= ẋ2Dk

− ẋ2Dj

ḋy2Dk,j
= ẏ2Dk

− ẏ2Dj

(C-21)

Knowing from Appendix C-2 that the derivative of a generic i 2D image feature is given by[
ẋ2Di

ẏ2Di

]
=

− 1
ZC

i

0 x2Di

ZC
i

x2Diy2Di −(1 + x2
2Di

) y2Di

0 − 1
ZC

i

y2Di

ZC
i

1 + y2
2Di

−x2Diy2Di −x2Di

[vC,O
C

wC,O
C

]
(C-22)

combining Eq. (C-21) with Eq. (C-22) is possible to rewrite the derivative of the distance as

ḋx2Dk,j
=
(
− 1
ZCk

+ 1
ZCj

)
vx
C,O
C +

(
x2Dk

ZCk
−
x2Dj

ZCj

)
vz
C,O
C +

(
x2Dk

y2Dk
− x2Djy2Dj

)
wx

C,O
C +

+
(
− (1 + x2

2Dk
) + (1 + x2

2Dj
)
)
wy

C,O
C +

(
y2Dk

− y2Dj

)
wz

C,O
C

ḋy2Dk,j
=
(
− 1
ZCk

+ 1
ZCj

)
vy
C,O
C +

(
y2Dk

ZCk
−
y2Dj

ZCj

)
vz
C,O
C +

(
(1 + y2

2Dk
)− (1 + y2

2Dj
)
)
wx

C,O
C +

+
(
− x2Dk

y2Dk
+ x2Djy2Dj

)
wy

C,O
C +

(
− x2Dk

+ x2Dj

)
wz

C,O
C

(C-23)

Considering only translational motion Equation (C-23) becomes

ḋx2Dk,j
=
[
(− 1

ZC
k

+ 1
ZC

j

) 0 (x2Dk

ZC
k

−
x2Dj

ZC
j

)
]

vC,OC

ḋy2Dk,j
=
[
0 (− 1

ZC
k

+ 1
ZC

j

) (y2Dk

ZC
k

−
y2Dj

ZC
j

)
]

vC,OC

(C-24)

Manuel Rucci CONFIDENTIAL Master of Science Thesis

Bibliography

[1] J. L. Sánchez López, A General Architecture for Autonomous Navigation of Unmanned
Aerial Systems. PhD thesis, Industriales, 2017.

[2] J. L. Sanchez-Lopez, R. A. S. Fernández, H. Bavle, C. Sampedro, M. Molina, J. Pestana,
and P. Campoy, “Aerostack: An architecture and open-source software framework for
aerial robotics,” in Unmanned Aircraft Systems (ICUAS), 2016 International Conference
on, pp. 332–341, IEEE, 2016.

[3] J. Pestana, I. Mellado-Bataller, C. Fu, J. L. Sanchez-Lopez, I. F. Mondragon, and
P. Campoy, “A general purpose configurable navigation controller for micro aerial multi-
rotor vehicles,” in Unmanned Aircraft Systems (ICUAS), 2013 International Conference
on, pp. 557–564, IEEE, 2013.

[4] G. Szafranski and R. Czyba, “Different approaches of pid control uav type quadrotor,”
2011.

[5] R. Munoz-Salinas, “Aruco: a minimal library for augmented reality applications based
on opencv,” Universidad de Crdoba, 2012.

[6] J.-Y. Bouguet, “Matlab camera calibration toolbox.” http://www.vision.caltech.
edu/bouguetj/calib_doc/, 2000.

[7] G. Bradski and A. Kaehler, “Opencv camera calibration.” http://docs.opencv.org/
2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html,
http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/
camera_calibration.html.

[8] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library.
" O’Reilly Media, Inc.", 2008.

[9] M. Verhaegen and V. Verdult, Filtering and system identification: a least squares ap-
proach. Cambridge university press, 2007.

Master of Science Thesis CONFIDENTIAL Manuel Rucci

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html

150 Bibliography

[10] F. Chaumette and S. Hutchinson, “Visual servo control. ii. advanced approaches [tuto-
rial],” IEEE Robotics & Automation Magazine, vol. 14, no. 1, pp. 109–118, 2007.

[11] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic approaches,” IEEE
Robotics & Automation Magazine, vol. 13, no. 4, pp. 82–90, 2006.

[12] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo control,” IEEE
transactions on robotics and automation, vol. 12, no. 5, pp. 651–670, 1996.

[13] D. Lee, T. Ryan, and H. J. Kim, “Autonomous landing of a vtol uav on a moving
platform using image-based visual servoing,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on, pp. 971–976, IEEE, 2012.

[14] P. Serra, R. Cunha, T. Hamel, D. Cabecinhas, and C. Silvestre, “Landing of a quadrotor
on a moving target using dynamic image-based visual servo control,” IEEE Transactions
on Robotics, vol. 32, no. 6, pp. 1524–1535, 2016.

[15] C. V. Martínez Luna, Visual Tracking, Pose Estimation, and Control for Aerial Vehicles.
PhD thesis, Industriales, 2013.

[16] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual servoing in robotics,”
ieee Transactions on Robotics and Automation, vol. 8, no. 3, pp. 313–326, 1992.

[17] P.-J. Bristeau, F. Callou, D. Vissiere, and N. Petit, “The navigation and control technol-
ogy inside the ar. drone micro uav,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 1477–
1484, 2011.

[18] “Px4 software-in-the-loop.” http://github.com/PX4/sitl_gazebo.

[19] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source
software, vol. 3, p. 5, Kobe, 2009.

[20] A. Martinez and E. Fernández, Learning ROS for robotics programming. Packt Publishing
Ltd, 2013.

[21] M. Molina, “An execution engine for aerial robot mission plans,” technical report,
ETSI_Informatica, June 2017.

[22] G. de Fermín Cordeiro, “Mission plan interpretation for the aerostack software frame-
work.” June 2017.

[23] A. C. Portela, “Development of a behavior management system for the aerial robot
software framework aerostack.” June 2017.

[24] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys, “Pixhawk:
A micro aerial vehicle design for autonomous flight using onboard computer vision,”
Autonomous Robots, vol. 33, no. 1-2, pp. 21–39, 2012.

Manuel Rucci CONFIDENTIAL Master of Science Thesis

http://github.com/PX4/sitl_gazebo

Glossary

List of Acronyms

UAV Unmanned Aerial Vehicle

GPS Global Positioning System

EKF Extended Kalman Filter

MOCAP Motion Capture System

IMU Inertial Measurement Unit

ROS Robot Operating System

ENU East North Up

NED North East Down

PID Proportional Integral Derivative controller

PD Proportional Derivative controller

2DOF Two degree of freedom

IBVS Image Based Visual Servoing

Master of Science Thesis CONFIDENTIAL Manuel Rucci

152 Glossary

Manuel Rucci CONFIDENTIAL Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgements

	Main Matter
	Introduction
	Motivation
	Problem description
	Goals
	Approaches

	Navigation controller framework
	Two degree of freedom PID controller
	Inputs
	Outputs
	Algorithm

	Horizontal position controller module
	State space representation
	Inputs
	Outputs
	Algorithm

	Vertical position controller module
	State space representation
	Inputs
	Outputs
	Algorithm

	Horizontal speed controller module
	State space representation
	Inputs
	Outputs
	Algorithm

	Vertical speed controller module
	State space representation
	Inputs
	Outputs
	Algorithm

	Yaw controller module
	State space representation
	Inputs
	Outputs
	Algorithm

	Vision based planner to approach either a static or moving object
	Perception module
	Inputs
	Outputs
	Algorithm

	Image state estimator module
	Inputs
	Outputs
	Algorithm

	Image based visual servo controller module
	Inputs
	Outputs
	Algorithm

	Experiment
	Experiment description
	Experiment requirements
	State estimator
	Mission planner
	Autopilot drivers
	How to use the navigation controller framework to control an AR. Drone 2.0?
	How to use the navigation controller framework to control a quadrotor equipped with Pixhawk autopilot?

	Results
	Simulation experiment
	Default parameters used in the simulation experiment (Simulation Pixhawk autopilot)
	Simulation experiment results

	Real flight experiment
	Default parameters used in the real experiment (AR Drone 2.0))
	Real flight experiment results

	Conclusions
	Navigation controller framework conclusions
	Vision based planner to approach either static or moving objects conclusion
	Future works
	Navigation controller framework future work
	Vision based planner future work

	Appendices
	Quadrotors
	Parrot AR.Drone 2.0 (Parrot autopilot quadrotor)
	Parrot Bebop 2.0 (Parrot autopilot quadrotor)
	Eagle (Pixhawk autopilot quadrotor)
	Sparrow (Pixhawk autopilot quadrotor)

	Navigation Controller Framework Appendix
	Quadrotor dynamics
	Translational dynamic
	Rotational dynamic
	Simplified quadrotor model

	Navigation controller framework controller tuning experiment results
	Multiples velocity W steps
	Multiples velocity W steps
	Multiples position xW steps
	Multiples position yW steps
	Multiples position zW steps
	Multiple yaw W steps
	Navigation controller + EKF mission experiment

	Code used to send Pixhawk autopilot commands using the mavros package

	Vision Based Planner Appendix
	Distance estimation
	Time derivative of a 2D image point
	Derivation of the distance between two 2D image coordinate points

	Back Matter
	Glossary
	List of Acronyms
	List of Symbols

