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1
Report outline

The outline of this report will be broken down into three parts. First, the research paper will be
introduced. Within this paper the main points of research are presented along with the results. Most
concepts are considered known by the reader, giving importance to setting up the experiment along with
all contributing factors and parameters. The methodology is presented with only the most important
aspects needed to understand the experiment setup. The used algorithms are also shortly presented
and results will focus mostly on the top two performing algorithms. An in-depth discussion is delivered
with regards to the performance of all algorithms.

Following, the preliminary report will be included to provide additional steps that preceded the
creation of the research paper as well as presenting additional information about the chosen algorithms.
The preliminary report is a support document to the research paper that starts by presenting radar
theory that is necessary to understand how the databases used in the experiment are recorded and
applied. This is followed by the identification of limitations of participating databases with a focus on
the air-born radar database. After the discussion of how the radar map is obtained, the methodology is
introduced with a complete view that includes the hypothesis and the metric chosen to compare two dif-
ferent image candidates. Following, every candidate is introduced in more detail in order to understand
exactly the advantages and limitations for each and why a two tier system for image transformation was
chosen. The experiment setup is reiterated with additional information, and results are presented with
additional figures that completely visualizes the whole process of conducting the two part experiment.
Finally, the conclusion provides an overview over all items presented along with a discussion over the
results.

The last chapter includes the appendices with additional information relating to the research paper
especially with regards to statistical results. This includes information that covers all results and shows
the complete process, with a focus on the image database as well as results for all other experiments.
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Navigation through terrain recognition for on-board radar systems

Vlad Stefanovici, Ir. Jerom Maas and Prof.dr.ir. Jacco Hoekstra
TU Delft Faculty of Aerospace Engineering

Abstract— Radar technique advancements have made it pos-
sible to equip lightweight aircraft with radar systems. These
systems can help determine the relative position of the world
around the aircraft. Performing calculations on the incoming
radar signals, it is possible to determine the locations of the
ground elements in the aircraft body of reference, which can be
done using Direction of Arrival Estimation (DAE) in a lateral
setting, as a Side Looking Airborne Radar (SLAR). Using
traditional computing techniques for image processing as well
as two pre-trained image segmentation machine learning algo-
rithms, it is possible to identify the aforementioned structural
elements onto a satellite image to determine the actual position
of the aircraft. As a consequence, navigation may be possible
alongside Global Positioning Systems (GPS) methods, through
obtaining the coordinates of the aircraft based on radar images.
Experiment results show that a high accuracy identification rate
is possible, based on large features, such as highways, within
the radar image.

I. INTRODUCTION

Current developments on radar techniques have made it
possible to create lightweight radar systems that can be car-
ried on board of an aircraft and are now becoming available
to General Aviation (GA). When such a system is carried
on board, it may be used for in-flight surveillance of neigh-
bouring aircraft and the environment. A radar installation can
alert the pilot if proximity with other participants or terrain
poses a hazard to the safety of the aircraft. Additionally, radar
installations are especially useful for VFR flights that might
enter Instrument Meteorologic Conditions (IMC), as their
sensing capabilities are not completely infringed by adverse
weather[1].

In the near future, Frequency Modulated Continuous
Waves (FMCW) radars for on-board aircraft will be small,
lightweight and could be mounted almost anywhere on the
aircraft. This makes them an ideal test case to obtain radar
imagery that may be used to determine the aircrafts position.
The current proposal has the aim to assess whether within
the data provided by the on-board radar, a set of information
can be derived, which leads to a strategy that analyses and
deduces coordinate information of the aircraft. This will
allow the aircraft to obtain location information alongside
GPS, acting as a self-contained system.

A consequence for on-board radar systems is that they
may also be used to provide assistance in navigation and
attitude determination. Clear reflections of the ground can
be observed from radar images taken mid-flight, in which
structural reflections are distinguishable. These reflections
originate from ground elements, such as rivers, highways,
lakes, forests etc. It would be possible to determine the loca-
tions of these ground structural elements by using Direction

of Arrival Estimation (DAE), algorithm which makes use
of the propagating wave arriving at a certain point [1]. This
provides the basis for creating a new radar map, a translation
from the radar distance and Doppler velocity reflections
to their positions on a 2D plane depicting the distance
from the antenna. Within this radar map, certain features
become apparent. These features either present geometrical
or intensity consistency and together can be used as a
unique template. The task of image processing algorithms
is to segment the image in a robust way to ensure the
same template identification in both the radar and satellite
databases. Due to radar noise, as well as the absence of a
ground reference, the use of additional information from GPS
and flight parameters becomes of paramount importance.

Furthermore, the process needs to be conducted in a timely
manner and with the advances in machine learning and
computer vision, more specifically with the almost complete
dominance of systems built on top of Convolutional Neural
Networks, deep learning will also be considered. However,
due to the lack of a solid database upon which a deep
learning algorithms can be trained, only pre-trained algo-
rithms will be treated. These algorithms will mainly focus on
image segmentation within Synthetic Aperture Radar (SAR)
imagery, in order to offer a suitable comparison for future
research.

II. RADAR PRINCIPLES AND TECHNOLOGY

A radar system can determine the relative position of the
world around the aircraft, and this information can be used to
find the actual aircraft state information. The main working
principle is the emission of electromagnetic energy and the
analysis of the reflected energy by the environment, or echo
of a reflecting object. The echo can be used to determine
the direction and distance and based on the radar frequency,
the Doppler speed. Based on the type of technology, radars
can be categorized into multiple sets. A focus will be given
to Frequency Modulated Continous Wave (FMCW) radars,
Side Looking Airborne Radars (SLAR), as well as databases
based on Synthetic Aperture Radars (SAR). This is due
to the radar database being recorded in FMCW radar in
SLAR conditions. Most databases that encode geographical
information are captured using SAR technology and that will
be used for comparison purposes.

A. Frequency Modulated Continous Wave Radar

Frequency Modulated Continous Wave (FMCW) radars
have arguably become compact and low cost. Due to their
relatively low power consumption and continuous operation
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transmitting modest power, they have become of interest to
GA. The FMCW radar emits constant transmitted waves,
with the possibility of modulating the operating frequency
during the measurement in frequency or phase. This allows
for the necessary timing to accurately transmit and receive
increasing or decreasing frequency cycles and convert them
into range. Maintaining the frequency linear over a wide
range allows for range determination through frequency com-
parisons, making the frequency difference ∆f proportional to
the slant distance R from the antenna. Furthermore, without
Doppler effects, the absolute magnitude of ∆f becomes
linearly dependent on the decreasing frequency [2].

Should the reflecting object also have radial speed with
regards to the receiving antenna, a Doppler frequency ∆f

that is added or subtracted from the received echo frequency,
depending on the type of movement the object has in relation
to the antenna. Furthermore, for a FMCW radar to be used
as a imaging radar, two problems emerge. Namely, the
ambiguity and a stationary assumption problems. The first
one is with regards to placement on the airborne platform.

Unlike optical systems that look forward, radars need to
take into account the geometry of acquisition in order to
properly interpret radar data[2]. Two returns at an equal dis-
tance from the aircraft arrive at the antenna simultaneously.
This leads to the ambiguity problem in right/left symmetry,
that forces the radar position to one side of the platform, to
detect all points in the environment at different times and be
able to distinguish all points from each other. As it can be
seen in Fig. 1, all detected points within the Doppler cone
will have a different angle, effectively solving this ambiguity.
The aforementioned restriction effectively transforms the
radar intro a Side Looking Aperture Radar (SLAR)[3].

The second problem worth discussing relates to the sta-
tionary assumption that all aperture radars require in order to
deduce radar images. As FMCW radars work continuously
to produce information, frequency non-linearities appear in
data-acquisition. This has been enhanced by correcting the
whole range of frequencies to a comprehensive and success-
ful extent [4]. It is assumed that the received radar database
takes this into account to a degree that will not affect the
experiment.

Another important aspect of radar principles is the Direc-
tion of Arrival Estimation (DAE). DAE refers to the ability
to process the direction information of several electromag-
netic waves from received outputs onto a sensor array. The
literature offers multiple possibilities for conducting DAE on
to a successful extent. The echos in the image are considered
to be stationary and captured by a Multi Input Multi Output
(MIMO) FMCW radar[4].

B. Side Looking Airborne Radar

In a SLAR, the aircraft behaves like a platform that travels
forward with the radar antenna projected perpendicular to
the flight direction[3]. The nadir, or the projection of the
radar antenna onto the 2D surface lies directly beneath
the platform. The radar beam is thus transmitted obliquely
at right angles to the flight path, creating a swath. Range

is taken as a reference across-track, perpendicular to the
flight direction. Azimuth here directly refers to the parallel
along-track to the flight direction. Fig. 1 illustrates the
imaging geometry for a SLAR.

Fig.1: FMCW side looking radar concept

Using the geometry in Fig. 1, the SLAR translation to a
2D map and consequently the resolution, ca be expressed
in terms of system and flight parameters. Due to measuring
the slant range, side-looking radars create several distortions,
with regards to elevation and range, as well as with occlusion.
These conflicts are usually avoided when using a Synthetic
Aperture Radar (SAR), that removes the dependence of
the azimuth resolution on the incidence angle.A Synthetic
Aperture Radar (SAR), is a type of SLAR that electronically
reproduces a large antenna aperture by using the aircraft
flight path. The magnitude and the phase of the signal is
used to store data and create a high-resolution image of the
terrain[3].

III. AVAILABLE DATA

A test flight using Metasensings FMCW radar was con-
ducted on Teuge (ICAO: EHTE) airport, conducting one
flight with one touch and go, between cities Apeldoorn and
Twello, the Netherlands. The radar data was recorded as a
range and Doppler velocity matrix of all points detected in
a 5 km2 range. This also represents the maximum math-
ematical constraint of the radar data, i.e. all maps created
for comparison purposes will remain within this window.
As presented in the aforementioned chapter, information
with regards to altitude, velocity and flight path angle are
also necessary. This is provided for each GPS coordinate
recorded during the flight, with a one second increment.
Heading measurements were deduced via interpolation of
GPS coordinates. It should be noted that these heading
measurements do not take into account wind.
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Fig.2: Teuge Airport Satellite View, Apledoorn (left) and
Twello (right).

Synchronizing the radar and flight data yields a linear
function for parameter matching. This allows for all the
necessary values to translate the range Doppler-velocity
matrix onto a 2D radar map each second of the flight.

A. Comparison Databases

Having computed the radar map, it becomes increasingly
useful to have an equivalent map for comparison purposes.
Google maps allows the visualization of either a satellite
or a vectored depiction of the roads for a certain central
coordinate. The radar region is overlapped onto a Google
image to show what the radar can detect. This will also
provide a direct link between SAR and FMCW intensity
reflections. It is acknowledged that as the two databases
are in taken in different light spectrum, photography and
magnetic, this will have an effect on the intensity of each
presented point. However, geometrical features such as roads
or rivers in the image should remain constant. The Google
maps database will mostly be used within the comparison
due to its ease of access and filter.

The European Space Agency’s Sentinel 1 database will
be used, to have the similar spectrum comparison in the
experiment. The Sentinel 1 database [5] was chosen to be
vertically polarized, to ensure a close match to the radar
images. Fig.3 shows the databases used.

It becomes apparent that the vectored Google maps can
be used for road detection, while the Sentinel 1 database [5]
for highly reflective points, such as industrial buildings. It
should be noted that these are the only types of features that
can be identified in the radar image, i.e. geometrical features
from roads or highways and high intensity points from highly
reflective objects in the environment.

Fig.3: Radar map (left), Google road vectored map
(center), Sentinel I - Vertically polarized - SAR map(right)

at second 1000 of radar recording.

IV. METHODOLOGY

The available data offers the possibility to test various
filtering techniques and assess whether they are effective in
determining the scope of the research. The starting hypothe-
sis is that it is possible to recognize features within airborne
radar images that can assert the possibility of matching to
Google maps or satellite SAR maps. Given certain condi-
tions, GPS fails to provide a correct reading with little or no
systems put in place to aid [6]. Thus the ability to easily and
timely confirm the validity of GPS coordinates becomes of
paramount importance. The methodological approach thus
becomes to find a technique or composition of techniques
that robustly compares two images, one produced by the
radar antenna and one indicated by GPS coordinates onto
a satellite database. As all considered databases essentially
produce a gray-scale image of the information contained,
a computer vision approach can be easily implemented for
the comparison. The presence of noise and the quality of the
radar images excludes the possibility of using point detection
algorithms[7]. As such, image transformation algorithms that
are robust to noise is desired, as well as the effects presented
in the previous chapter. As such a list of the used algorithms
is shortly presented and explained below.

A. Experiment candidates

• Gamma Correction - Also known as Power Law
Transform. This function transforms the input image
pixel-wise as a power of gamma, after scaling each pixel
to the range 0 to 1 [8].

• Thresholding - The creation of a new binary containing
the pixel positions of all intensities that are above a
certain threshold.

• Local Histogram Equalization - A method which
modifies contrast, to stretch out the intensity range,
reducing any non-linearity within pixel intensities [9].

• Contour Finding - A curve joining all the continuous
points (along the borders) that have the same intensity
and or color. The contours are a useful for shape
analysis and object detection [10].

• Ridge Operators - Algorithm that relies on the eigen-
values of the Hessian matrix, calculated from intensities
within the image in order to detect ridge structures
where the intensity changes horizontal, but not along
the structure [11].
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• Straight Line Hough Transform - A common algo-
rithm that assigns pixels to the existence of a line that
meets width, length and direction properties [12].

• Blob Detection - A group of pixels that share some a
common property, for example intensity in this experi-
ment or colour [13].

• Entropy Detection - The entropy filter is capable
of detecting slight variations in the local gray level
distribution [14].

• Watershed - A marker controlled Watershed is an
image transformation algorithm that interacts for a
grayscale image and considers the image as a to-
pographic surface, calculating the energy gradient of
a higher altitude (higher intensity) towards a smaller
altitude (lower intensity value)[15].

• CGAN - CRF - Unsupervised learning algorithm based
on hierarchical Conditional Generative Adversarial Nets
(CGAN) and Conditional Random Fields (CRF) Geo
Land sensing - categorizing each pixel in satellite im-
ages into a category such that we can track the land
cover of each area [16].

• CAE-TVL - A pre-trained Convolutional Autoencoder
with Total Variation Loss (CAE-TVL) for satellite im-
age segmentation as well as generic images [17].

Due to the power capabilities of the radar, a non-linearity
for all intensities was observed, that could not be fixed
via multiplication with a range function. This non-linearity
is kept even with different range multiplications, whether
it is with regards to range squared, cubed or fourth. This
implies that local changes in intensities are required to
obtain a clear image. This can be easily obtained from using
image modification algorithms such as Gamma Correction,
Threshold setting or Local Histogram Equalization. These
algorithms become the corner stone for a first filter within
the image to attempt a linear equalization of all intensities
and assure that any transformation conducted by following
algorithms would work correctly over the whole considered
area.

It can be observed that both image transformations focus
on filtering certain features within the radar image. These
features can be any combination between high intensity
points and shape features, such as roads or highways. In order
to correctly compare to a database, a one-to-one comparison
is preferable. This means that vectored shape information
contained in Google images can only be compared to radar
images filtered by methods that focus on filtering for shapes.
It is possible to compare both within the same light spectrum,
however, the vertical polarized nature of the provided infor-
mation, makes filtering for intensity more favourable. Only
Methods 2 and 7 that use Blob Detection will compare with
Sentinel 1 database. As all other methods only filter mostly
for geometric shapes which represent roads or highways, it
is easier to use the Google database.

TABLE I
IMAGE TRANSFORMATION SEQUENCE

Method #
1st Image

Transformation
2nd Image

Transformation

1 Gamma Correction None
2 Gamma Correction Blob Detection
3 Gamma Correction Threshold
4 Threshold Contour Finding
5 Threshold Entropy Detection
6 Threshold Hough Line Transform
7 Threshold Blob Detection
8 Histogram Equalization Ridge Operators
9 Histogram Equalization Entropy Detection

10 Histogram Equalization Watershed marker
11 Histogram Equalization Contour Finding
12 CGAN - CRF None
13 CAE - TVL None
14 Histogram Equalization CGAN - CRF
15 Histogram Equalization CAE - TVL

B. Experiment setup

The output of the presented algorithms or set of algorithms
onto the radar is a template, in the sense of this paper, a
shape used as a pattern for matching. In order to compare
two templates from their designated radio or Google/SAR
databases, a comparison metric is necessary. The used com-
parison metric is the Structural Similarity Index Measure
(SSIM). This is a objective method for assessing perceptual
image quality alongside structural components [18]. The
SSIM is a metric for measuring the similarity[18], based
on luminance, contrast and structural correspondence. Fig. 4
shows how two images are compared using this algorithm.
In this case, both images are compared based on luminance,
defined as the intensity value found within a certain pixel.

Fig.4: Structure Similarity Index Measure: Flowchart
Contrast, which is defined as the difference in luminance

over a certain area and finally structure, or consistent geomet-
rical relations over a index map which provides local image
quality over space. The SSIM was compared with other pos-
sible comparison metrics such as Mean Square Error (MSE),
or Peak Signal to Noise Ratio (PSNR). Of these metrics,
only the SSIM analyzes the structure information between
the reference and the test images. It is very important that
the chosen metric takes into account differences in geometry
of detected points, even under heavy noise presented in
the image, hence why the SSIM is a valid and desired
metric [19]. Furthermore, preliminary tests have concluded
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the possibility of SSIM algorithms to detect rotations smaller
than 1, given perfect image quality, as well as being able of
assessing the quality of the given image[19]. This makes
SSIM a desirable candidate for this experiment.

Taking the radar image as the image perfect quality, and
a Google/SAR image as the comparison image, yields a
certain value for the SSIM. It is to be expected that due
to noise and lack of certain features, the value will be small.
What is left is to create a pool of randomised candidates in
which the original indicated image is to be placed. Ideally,
the SSIM will choose the corresponding Google/SAR image
to the radar, indicated by GPS coordinates, every time, out
of the randomized pool. In order to realistically randomize
around the given GPS, we turn to errors in flight, either
due to position (GPS) or direction (heading measurement
via magnetic compass). Literature shows that GPS can have
error measurements as low as 10m [20], while heading
measurements range around 1[20]. This means that to be
realistic, around the actual GPS position of the aircraft, a
radius of around 10m and variation of 1 is to be considered.
Due to large number of possible experiment setups, the
approach that was followed for the purposes of this research
was to devise two experiments. One to test all combination
and filter for the best working algorithms and another to test
these best algorithms in as realistic situations as possible.

V. EXPERIMENT A - SETUP

Both experiment setups follow the same logic, to create a
pool of randomized samples of radar-map pairs. Each pair
has an assigned range and heading, along with a calcu-
lated SSIM value. Within this pool the original indicated
pair is also present, with its own calculated SSIM value.

Image A Image B Image C Image D

Fig.5: Image pool for Experiment A

The purpose of the first experiment is to filter the best
combination of algorithms and choose the best top three.
As such, the first experiment will be less strict on the
randomization of the radar-map pairs. From the radar data, a
representative sample of 4 images were chosen that were
then translated to a 2D representation and assigned their
corresponding GPS coordinate. Fig. 5 shows a representation

of these images.
Following this step, candidate coordinates are produced

in a radius of 150 m around the original coordinate with
a modification of +/- 15 around the correct heading, as
represented in Fig. 6. The increment for creating randomized
values for both radii and heading measurements is always
one. The radius and heading measurements can be regarded
as the independent variables within the experiment. A total
of 300 candidates are created, each with their own SSIM
value, which will be regarded as the dependent variable. Fig.
7 shows an example of how a candidate is being created.

Fig.6: Illustration of radius and heading variations for
Experiment A
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Fig.7: Image pool for Experiment A with two candidates
with different radar views, (red) the original coordinate
(blue) a randomized candidate within the 150m radius.

A. Experiment A - Results

Following a total of 15 experiments done over 4 flight
radar images, Table II shows the average results with regards
to heading deviation, position error and the percentage of
SSIM that is greater than the original pair. The average of
position error, as well as heading values is of interest to
show the overall performance of the experiment, not just
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the best indicated value. It should be noted that the heading
deviation is absolute, between calculated heading and best
candidate heading. The position error is the distance from the
generated coordinate to the GPS-indicated coordinate. And,
finally, of the total randomized positions, a percentage above
the original pair is calculated and presented. All averages are
taken as integers, calculated by summing the best candidates
and dividing by the amount of total candidates. Over all
parameters within the results, the lower the value, the better
the performance.

TABLE II
AVERAGE RESULTS FOR HEADING DEVIATION, POSITION ERROR AND

SSIM VALUES OVER ALL EXPERIMENTS.

Results Experiment A - Average over 4 points

Method Absolute Heading
Deviation Position error False

Positive

1 7 108 53%
2 6 68 52%
3 3 75 50%
4 11 46 39%
5 5 24 23%
6 4 53 67%
7 8 35 28%
8 0 0 0%
9 0 0 0%
10 6 119 38%
11 2 37 89%
12 14 126 55%
13 12 124 53%
14 12 52 45%
15 6 112 35%

B. Discussion upon the results of Experiment A

Table II presents the results for a total of 15 experiments.
It should be noted that the performance of all experiments
relates directly to the SSIM, i.e. how well do overall trans-
formations relate the radar transformations to comparison
databases in terms of contrast, luminance and structure.
As such, it is to be expected that the methods that best
control all three parameters will provide the best results.
A special importance is given to structure, as that will be
main parameter used to determine position and rotational
differences within each image-pair.

Discussing these results it becomes apparent that overall
first image transformations using gamma correction behaves
as expected. Prior transformations to the ones based on
range had a similar effect on the radar image. Although
gamma correction highlights features that normally would be
hardly visible, the algorithm equation behaves in a quadratic
manner, maintaining a non-linear relation within all values.

Noise is carried forward to the second image transforma-
tion by all algorithms, leaving the second image transforma-
tion to provide a robust feature identification. This means that
first image transformations that filter the image drastically,
such as thresholding, do not provide a further attempt to
discriminate between noise and actual information. As such,
neither a high accuracy with regards to position is expected,
nor to rotation.

Of all image transformations, the local histogram equal-
ization was expected to perform, yielding a good start
for future algorithms to detect features, only pertaining to
structure, such as rivers, roads or highways. At the start
of the experiment, there was no specific way of pointing
whether a certain geometrical structure within the image was
a particular landmark, such as a river or a road. However, it
became clear as the experiment progressed that the radar
reflected mostly highway or road information. This was
verified through observation onto actual satellite images.

Going into detail for second image transformations, each
Method will be examined in particular. Method 1 does not
use any second image transformation and was chosen mostly
as a baseline to see how well a simple and fast algorithm will
behave. As explained above, gamma correction also forwards
noise found in the image. Even when the same contrast was
found between two comparison images, luminance and espe-
cially structural differences rendered the SSIM insignificant
to distinguish between images.

Method 2 employed an algorithm called Blob Detection.
Reflective buildings, such as industrial warehouses remained
in the image when 85% of intensity values were filtered.
Computing the laplacian of the gaussian (LoG) with a
increasing standard deviation, blobs become local maxims
within a cubic representation. Detecting larger blobs requires
a larger kernel size that slows down the convolution, however
for the purposes of the experiment that was neglected. This
methods removes noise by estimating the centre of gravity of
nearby bright points and its radius to encompass them. Here
a comparison with Sentinel 1 database is more desirable as
all features behave in a similar way. The explanation for
this comes from how noise contributes to the radar image,
changing the properties of the detected objects.

Method 3 attempted to use threshold measures to con-
trol for luminance. A binary image will have luminance
values between 0 and 1 and before that, contrast changes
will bring into view objects that are barely visible in the
electromagnetic spectrum. It was found that after gamma
correction for both images, high intensity objects were highly
visible, as well as roads roads. Via visual inspection, most
roads appeared in the image as a function of the maximum
intensity value, between 30-50% Unfortunately, that is also
where noise was identified, which predictably would skew
results. Again, the problem was with noise, as in both
transformations forwarded noise.

Method 4, with the aid of threshold and contour finding,
attempted to filter most noise and draw the contour of as
many features that it found. A visible improvement was
seen in the results, where the SSIM values did not seem
random. It became clear that contours contributed towards
improving the results. Again, noise played a role in distorting
the detected shapes. It becomes clear that a noise robust
algorithm that uses either the hessian, laplacian or gaussian
of the radar image is necessary.

With Method 5, the idea of entropy was introduced, or
the informational complexity contained in a given neighbour-
hood that is typically defined by a barrier. Thresholding with
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regards to most noise, allows the detection of features within
the radar image. With regards to the rest of the noise, an
entropy algorithm takes into account the uniform distribution
in the neighbourhood area. This yields structuring elements
such as roads or highways, even under noise skewing. The
reason for its lack of accuracy was that the thresholding
algorithm forwarded noise reflections as structuring elements
that were taken into account when comparing, yielding a
false comparison.

While applying threshold algorithm for roads, it was
observed that multiple points appeared in place of where
visually a road should be. Method 6 attempted to unite all
points that normally would be a road through the use of the
Hough Line Transform. Using multiple settings, alignment of
these points was attempted. Unfortunately, the process due
to the large amount of settings combinations, a good result
was not achieved.

Method 7 attempted to directly adjust the image to then
apply the blob detector. Unfortunately, due to noise, the
center of gravity of all remaining points was different from
what was detected within the Sentinel 1 Database. This is
also explained by the difference in power and settings of the
two radars that acquire images.

Method 8 moves to using Histogram Equalization as the
first image transformation. This algorithm works similarly
to gamma correction by improving contrast in images. How-
ever, it accomplishes this by effectively spreading the most
frequency intensity values and stretching the intensity range
withing the image, not through a quadratic equation. Follow-
ing, ridge operators calculate the eigenvalues of the second
order matrix of the image, also known as the hessian matrix.
The local maxima or minima of the matrix determines ridges.
This method works very well with noisy images, being
employed in the medical industry to detect blood vessels
in radio images. This is reflected in the excellent results
for experiment A, being able to identify the original image
overall.

Method 9 as with method 5, entropy detection is better
employed using histogram equalization. This provides the
necessary accuracy to detect features within the image to
an extraordinary effect. The resulting templates allows for
changes in range and rotation that better allow the SSIM to
discriminate for the original value. This also provided very
good results due to the ability to very well discriminate edges
under noisy conditions.

Method 10 allows for selecting the ranges of intensities
used to segment grayscale images. The higher or custom
intensities within an image are considered specific seed
points where flooding is simulated, segmenting the image.
The algorithm works poorly, even with custom ranges, as
noise is not at all filtered. The main advantage of this method
is that it can be directly related to intensity values of the
radar, allowing for automation.

Method 11 used histogram equalization first to transform
the image and attempt to find Contours. New contours were
created due to noise and it is impossible to determine whether
they are features within the candidate image or not.

Methods 12, 13, 14 and 15 represent a variation on
pre-trained neural network algorithms, designed to segment
SAR images. The scope was to attempt and segment the
image based solely on pixel value and see whether this
can be used for a suitable comparison. Local histogram
equalization is also used to bring into view features that
were otherwise ignored or miss-interpreted by the algo-
rithms. While segmenting the Sentinel 1 SAR databases
to an acceptable degree, both algorithms have been trained
on high resolution SAR images, or even on multi-spectral
information. The radar database does not offer the necessary
resolution and noise is not correctly filtered to allow for a
correct segmentation. It is possible to train these algorithms,
however a bigger database is necessary, as well as more pre-
processing to each individual radar image. With the hierar-
chichal CGANs and CRF [12], high resolution imagery are
necessary. The concept of superpixel is necessary to reduce
burden of performance, i.e. as with watershed markers, pixels
need to be pointed out as representative of an area that
is to be segmented. The Convolitional Autoencoder with
Total Variation Loss [13] is using multi-spectral data in
the segmentation process. Additionally, the sensor uses laser
scanning to produce the database. This method was selected
in the attempt to use ranges of intensities as part of a common
feature to segment mostly roads and highways.

VI. EXPERIMENT B

Once the top three most performing combinations of al-
gorithms are chosen, the second experiment can commence.
This algorithms are: Experiment 5, Experiment 8 and Exper-
iment 9 as taken from Table I. This time, a more extensive
representative sample is chosen, comprising a total of 20
images. In this experiment the independent variables are
randomized more strictly, in two steps. The first step assumes
the first randomization technique of radius and headings,
applied to a larger variation of radar images during the flight.
Within Fig. 8 it can be seen that these points are chosen as
far apart as possible along the two flights. During landing
and take off, the altitude of the aircraft is too low to ensure
a good reading of the surrounding area and proper match
within the five square kilometer area. As such, only points
above 100 m are taken into consideration. The second step
greatly increases the realism of the experiment, only varying
the heading by +/-15 while assuming a near-perfect reading
of the GPS coordinate, at 0 m.

A. Experiment B Results

Following this step, candidate coordinates are produced
in a radius of 150 m around the original coordinate with
a modification of +/- 15 around the correct heading. The
increment for creating randomized values for both radii and
heading measurements is always one. The radius and heading
measurements can be regarded as the independent variables
within the experiment. A total of 300 candidates are created,
each with their own SSIM value, which will be regarded as
the dependent variable.
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Fig.8: Illustration of selected coordinate points for
Experiment B

Following the 2 experiments done over 20 flight radar
images, Table III shows the average results with regards
to average heading deviation, average position error and
percentage better candidates with regards to the original
SSIM value. The average of position error, as well as heading
values is of interest to show the overall performance of
the experiment, not just the best indicated value. It should
be noted that the heading deviation is absolute, between
calculated heading and best candidate heading. The position
error is the distance from the generated coordinate to the
GPS-indicated coordinate. And, finally, percentage better is
the percentage of candidates with a higher value for the SSIM
than the one of the indicated pair. All averages are taken
as integers, calculated by summing the best candidates and
dividing by the amount of total candidates. Again, over all
parameters, the lower the value, the better the performance
and averages are taken as integers.

TABLE III
AVERAGE RESULTS OVER EXPERIMENT B

Results with 0:150m range

Method Absolute Heading
Deviation[] Position error[m] False

Positive

5 5 45 42%
8 1 1 14%
9 2 5 9%

Results with 0m range

Method Absolute Heading
Deviation[] Position error[m] False

Positive

5 12 N/A 51%
8 2 N/A 2%
9 9 N/A 48%

Through a quick look at the results, it becomes obvious
that the average position error is not 0, as in the previous ex-
periment. As such, a direct representation of these variations
per image is shown in Fig. 9 and Fig. 10.
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Fig.9: Illustration of radius variations for Experiment B,
for all 20 candidate images with 0:150m range
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Fig.10: Illustration of heading variations for Experiment B,
for all 20 candidate images with 0m range

B. Discussion upon the results of Experiment B

Through the virtue of complete randomization at a realistic
scale, the employed algorithms were heavily tested, each part
of experiment B multiple times, to ensure viability of results.

To begin with, the results of Method 5 will be discussed.
While being the third most promising method, thresholding
for road segmentation between 30-50% of the highest in-
tensity and applying entropy detection yielded competitive
results. The two image transformations are enough on aver-
age to affect the SSIM. The determining factor in this is the
first image transformation, which allows for too much noise
to be forwarded to the next step. Combining this with the
entropy algorithm that slightly blurs the image makes for a
increase in error and decrease in reliability, especially under
small variations.

Method 8 overall provided the best results. Fig. 11 shows
how the algorithm worked in identifying features within both
the radar and the google vectored road-map. It is possible
through the setup of the method to ignore smaller features
within a high quality image, however within the radar image,
a lot of noise is taken and cannot be changed. This forces
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Radar image at second 1000 M-8 M-9

Corresponding Google map M-8 M-9

Fig.11: Radar image 6 and its corresponding Google
vectored image transformed via Method 8 9.

the strategy to focus on identifying bigger structures, which
in this case will be highways.

When looking at the average results we can see a slight
inconsistency where position and heading errors appear. This
is in contrast to what Experiment A showed. When looking
at Fig.10, one can see that at image 10, 16 and 20, all
algorithms provided an erroneous estimation. Below, in Fig.
12, these radar images are depicted along a typical successful
radar image.

Image 10 Image 16 Image 20

Fig.12: Radar images 10 (left), 16 (middle) and 20 (right),
present no evident feature to track by any method.

It becomes obvious that these images, although presenting
heavy noise capture, do not contain any identifiable features
for all algorithms. Image 16 is taken during a turn, heavily
skewing the relative position of the reflected points with
regards to the aircraft. Image 10 and 20, however are
taken during straight, leveled flight. The major difference
between these two image sets and for example the ones from
experiment A is the absence of highways, i.e large detected
features. It becomes apparent that in most images used within
the experiment, large roads are detected that allow the SSIM
to calculate very small changes within candidate images.

Method 9 also did very well compared with other methods
in experiment A. When attempting to reduce the range to

0, this method was unable to detect small variations within
the candidate pool. This indicates the methods possibility
to discriminate based on range and not allow the SSIM
to calculate relevant values when the rotation involving
up to 5. This is due to a blur effect of the algorithm
to the Google database image that does not maintain any
identifiable features at small image rotations. Surprisingly,
the algorithm managed to identify the correct coordinate at
image 16 of the candidates. When looking at the respective
image, it can be seen that a large area near the middle of the
image may have been taken as the main feature. This could
be studied further for entropy algorithm with images that
possess heavy noise skewing. Regardless, the performance
of Method 9 was lackluster when small variations occurred
in all other candidate images.

Overall, both experiment setups had problems with the
noise contained within the image. Attempting to smooth the
image or apply synthetic aperture radar denoising techniques
blurred smaller features. A trade-off to find a common
ground became the basis for most employed methods.

Geometrical occlusion due to the altitude of the air-
craft may have provided a small source of noise, however
negligible with regards to feedback and power noise. The
mathematical area in which the antenna detected reflections
was invaluable towards the implementation of any method.
A continuous estimation based on the aircraft altitude may
allow for identification of features at smaller altitudes.

The SSIM is regarded as the most valuable algorithm
within this experiment. Given the right conditions, i.e. no
noise, approximate electromagnetic spectrum comparison, it
may be possible for it to work without any transformations
on the radar image. As image transformations changed all
candidate images, it normalized luminance and contrast to a
high degree. This allowed for the structure comparison part
of the algorithm to correctly identify features even in noisy
images. However, it affected the overall performance of the
SSIM and low scores were obtained.

All considered databases employ different electromagnetic
spectrum. This was a main reason why most methods consid-
ered shape as the main feature identification. When filtered
and thus normalized for color differences, all shapes become
similar and thus can be compared. There is no way of
identifying features within the radar map as roads, rivers or
highways, without comparison to a known database. Of all
shape features, highways were the least susceptible to noise
and occlusion, due to their size. This also provides a valuable
advantage as Google maps offers a vectored roadmap, where
highways are highlighted.

VII. CONCLUSION

Information is invaluable in decision making. The ability
to infer additional information from a sensor to verify other
system parameters increases the reliability and safety of the
whole platform. The possibility of using radar information to
deduce or check other flight parameters is the focus of this
study. Using a perceptual metric (SSIM) to quantify image
quality degradation, especially via noise in data transmission,
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transformed radar images are compared to Google vectored
roadmaps or Satellite 1 SAR vertically polarized databases.
All databases are transformed via one or two transformations,
that assures that shape features such as roads or highways,
or highly reflective objects are most visible.

To simulate possible GPS faults, new coordinates in an
area around the the actual aircraft coordinates are created.
From there new image candidates are proposed for com-
parison with the radar image. The best candidate is taken
and an error based on distance from original coordinate is
calculated. To attempt and analyze heading variations, the
rotation of candidate images is also employed. While being
heavily affected by noise via power and received echoes,
one algorithm provides a high degree of accuracy within the
experiments. The algorithm belonging to M-8 is especially
designed to detect blood vessels in noisy radiograms within
the medical field. The same algorithm was able of identifying
the image corresponding to the GPS coordinate in most test
cases where large shape features were present representing
highways. This allows for information identification under
heavy noise conditions to ascertain whether GPS coordinates
are correct, as well as for heading information from the
magnetic compass. This could be used in the future to make
the aircraft a self contained system, with no necessary outside
inputs.

VIII. FUTURE WORK

Within the boundaries of this experiment, it still remains to
be seen whether computational times can be improved. The
SSIM score should be increased by utilizing the algorithm
to its full capability, incorporating luminance and contrast
information. To achieve the transformations, it is necessary
to take into account additional radar parameters, especially
related to power. The SSIM can be used to discriminate
image quality. This means a potential for using the SSIM
to predict the amount of noise within an image and deter-
mine if it is suitable for comparison. Additionally, varying
parameters within the SSIM can also provide an answer of
whether there is an object to detect. Given a more in-depth
implementation of the SSIM, it may be possible to filter the
image without the need for additional algorithms.

As the heading was deduced from successive GPS coor-
dinates, a more qualitative method should be employed. The
overall test should verify whether the heading information
is consistent with radar information and if it can be used
as a secondary measurement or input to more consistently
determine heading information.

For shape detection within Google vectored maps, a simple
color and grayscale transform can be implemented to work
aside the transform of the radar image. This should ease the
calculations as well as improve the SSIM output due to a
direct segmentation consisting of only highways.

Due to the lack of an extensive database, no machine
learning algorithms can be employed to check coordinate
information. As of this moment, the test setup can only
attempt a prediction algorithm that takes aircraft parameters
as inputs and attempts to find the next image in the database

that best corresponds to a future radar image. Additionally,
the test setup used within this paper can be used to create a
database that can train machine learning algorithms to deduce
position and heading information, based on previous state
information.
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3
Preliminary thesis report

3.1. Introduction
Avionics represents the sum of all available information that is presented in order to allow decision
making on an informational level. Thus, the availability of information is the corner stone of efficient
decision making. It is through this philosophy that the development of avionics has evolved, to present
as much knowledge regarding the environment, the pilot and aircraft performing in that environment,
as well as filtering that information into a package that is easily understandable under time constraints.
The following report is a support document that offers additional information with regards to the
research paper, with a focus on the methodology.

According to the ICAO Annex 2[7], Rules of Air, the General Aviation (GA) is represented by
all the civilian aviation operations that fly under Visual Flight Rules (VFR), which are defined by
certain regulations that require an aircraft to be flown in conditions of visibility and distance from
clouds[7], which should be equal or greater than certain reglemented minimas. In these situations,
the pilot is in charge to look out in case of collisions. This constitutes a safety hazard for aircraft
flying under Visual Flight Rules and need to switch during the fight, under different circumstances, to
Instrumental Meteorological Conditions (IMC). This has been statistically deemed a leading factor for
fatal accidents[22]. This becomes more problematic for medium to high-speed aircraft, such as different
propeller aircraft, or business jets, as it leaves little or no time to understand a hazardous situation and
proceed to avoid it, in an ever increasingly populated environment.

Witih in VFR airspace, different aircraft are operated such as gliders, ultralight vehicles or bal-
loons. Under the ICAO regulations, these type of aircraft are not required to be equipped with active
transponders [8]. This leaves the pilot responsible to maintain the separation during the whole flight,
based on visual reference to the ground, therefore there is no explicit distance minima stated by the
regulations [7]. Consequently, efforts have been made to increase the pilot’s awareness during flight
[26]. This has brought the creation of airborne collision avoidance systems (ACAS). These systems are
regulated in regard to ICAO ANNEX 10[8]. This system issues traffic advisories that aids the pilot in
cases of possible traffic collisions, therefore it reducing the risk of collisions.

In the advent of UAVs, more specifically, commercial drones that have little to no legislation set
into place, only adds to the disruption of traffic and the balance of safety[10]. Consequently, both the
EU [29] and independent research facilities such as TU Delft have begun initiatives to offer new sensory
capabilities for VFR flights [35]. Developments on radar techniques have made it possible to create
lightweight radar systems that can be carried on board of an aircraft and are now becoming available to
General Aviation [39]. When such a system is carried on board, it may be used for in-flight surveillance
of neighbouring aircraft and the environment. A radar installation can alert the pilot if proximity with
other participants or terrain poses a hazard to the safety of the aircraft. Additionally, radar installations
are especially useful for VFR flights that might enter IMC [11], as their sensing capabilities are not
infringed by adverse weather [5].

15
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A consequence for on-board radar systems is that they may also be used to provide assistance in
navigation and attitude determination. A radar system can determine the relative position of the world
around the aircraft, and this information can be used to find the actual aircraft state information. Clear
reflections of the ground can be observed from radar images taken mid-flight, in which structural reflec-
tions are distinguishable. These reflections originate from ground elements, such as rivers, highways,
lakes, forests etc. It would be possible to determine the locations of these ground structural elements
by using Direction of Arrival Estimation (DAE), algorithm which makes use of the propagating wave
arriving at a certain point [39]. This allows for enough features to be recognized in order to possibly
navigate using a map.

As much as humans used to navigate using a map of the roads on the route they were taking, so
too it may be possible for aircraft to navigate using a satellite map, that has precise coordinates of all
available locations. Selfly [20] has created a Collision Avoidance Radar (CAR) to actively aid during
flight. The CAR operates on Frequency Modulated Continuous Waves (FMCW) with a relatively small
size and light with the possibility to be installed on the wing [35]. It can be used as an ideal test case
to obtain radar imagery that can determine the aircraft parameters.

The current proposal ”Navigation through terrain recognition for on-board radar systems” has the
aim to assess whether within the data provided by the on-board radar, a set of information can be
derived, which leads to a strategy that analyses and confirms coordinate information of the aircraft.
This brings up the question if we have the necessary computing and methodology to recognize landmarks
in a radar image that can help aircraft navigate?

If such options for an on-board radar system would become a reality, the system would behave closely
to current Global Positioning Systems (GPS), or Inertial Navigation Systems (INS). From an industry
perspective, this will allow the aircraft to confirm location information given by GPS, but acting as
a self-contained system, similar to INS [6]. A GPS system would still have several disadvantages to
a radar system. First of all, a radar system does not require other participants to have one in order
to conduct the separation. Secondly, and more important for this project, the radar system will be
self-contained and will not rely on external inputs to navigate. This lessens the reliance on GPS or
other Navigation Aids, namely Non-Directional Beacons (NDB) or VHF Omnidirectional Range (VOR)
, while also providing the aircraft with a system that allows it to independently navigate around the
world. Apart from the aircraft industry, airports and Air Navigation Service Providers (ANSP) would
also benefit from this technology, as the navigational system is completely moved on-board the aircraft,
which makes beacons obsolete in the face of a GPS/Radar navigational pair, by lessening the expensive
to maintain equipment and space.

On an academic level, a breakthrough in the area of navigation by on-board radars would allow for
a new field of research of navigation and aircraft parameter determination. Furthermore, research of
which type of radar is preferable for on-board navigation, or which frequencies are better for landmark
detection also become accessible. Research based on the methodology of radar image analysis and
coordinate computation can also be undertaken to provide a comprehensive view of this new field.
Finally, radar navigation will add the necessary sensors, methodology and self-reliance to allow for
advancements in the field of completely autonomous aircraft.

Following the Introduction, the next chapter includes the state of the art, where multiple exam-
ples are presented from adjacent industries or completely different and somewhat unrelated other fields
than aviation. The research questions along with the aims and objectives are presented in the following
chapters of this thesis. Next, the methodology chosen to accomplish this research is presented. Dif-
ferent techniques and methodologies will be discussed. Following this the results and outcome of the
experiment are depicted. This report will then end with the conclusion section.

3.2. State of the art
The first operational airborne radar was on board the Messerschmitt Me 110 G-4 in 1941, using a bulky
antenna outside the aircraft that managed an approximate range of 5 km [39]. The determination of
target coordinate was at the beginning, only within the aircraft body frame. Only latter, with the
advent of the Navigational Aids, was this extended to a global body frame. This was the very first
time when such a radar system was integrated into the aircraft and opened the path for more research
in this area. On this note, Selfly B.V attempts to continue the integration of such a system in GA, by
developing a Collision Avoidance Radar (CAR) that uses Doppler information to detect the surrounding
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around the aircraft[20], thus aiding the pilot during IMC.
Currently, two different researches conducted at TU Delft concluded the possibility to use an FMCW

radar in order to determin aircraft parameters[35]. This, however, in not a valid method for long-term
navigation, as the drift becomes too large over time [1]. One of the research attempted to use the CAR
radar, specifically as a Side Looking Aperture Radar (SLAR) in order to allow for navigation purposes
[11]. SLAR produce high resolution images of the surroundings, being usually used in missions to map
the Earth’s surface. The results showed no evidence that the modification of the CAR for SLAR would
bring the accuracy of the navigation below CAT I ILS navigation systems (which entails Decision height
above 200ft, Runway Visual Range above 550m or runway visibility above 800 m), linking the accuracy
to the wavelength of the radar signal. The possibility to process signal of FMCW synthetic apertures
is further upheld by literature [33].

Further in the literature, information with regards to SLAR [39] shows that this type of radar would
normally provide the necessary accuracy to create a map where landmark information can easily be
distinguished. They provide information with regards to reflected objects, ranging from smooth objects
such as roads or water fronts, to farm lands and trees, but also to buildings. Displaying these differences
in intensities of the received echoes, allows to produce a ground map of the terrain. Miniature SAR
have been successfully designed and developed to be effective in the use of drones, with limited power
requirements [39]. In order to be used on a commercial multi-purpose platform, a different system is
required to satisfy the transmitter power and antenna size, as well as the receiver noise [1].

What follows next is to search literature in order to find whether SARs are being used for any type
of navigation. Several research have posed the question of the possibility of using SAR Navigation and
map aiding [28], [40]. Some remarks can be presented with regards to the literature on SAR being
used for navigation. First of all, the computational power that was used to obtain these results is not
mentioned, either if it was on-board of the aircraft, or used on the ground. This is a limiting factor
for the computational possibilities found on aircraft. For reference, drones and UAVs with Jetson TX2
single board chips have more computational power due to the on-board Graphical Processing Unit
(GPU) [4]. Secondly, the algorithms used work once every 120 seconds, the typical time for SAR image
acquisition, during which corrections to the GPS/ INS navigation system are performed [40]. This
completely excludes real-time functionality, which excludes the fusion system from being a primary
system used for navigation and rather a correction brought to the conventional GPS/ INS navigation
system. The same observations are found in another study [38], where SAR adds to the accuracy of
the GPS/ INS system. Thirdly to the aforementioned remarks is the use of machine learning, more
specifically, deep learning.

The use of deep learning or machine learning algorithms in such a circumstance relates to real-time
use, availability of data and advances in computational power. The present software industry is moving
towards machine intelligence. Machine Learning (ML) has become a necessary tool on all technology
sectors. Quite forward, ML is a set of algorithms that parse data, learn them and apply the algorithm
to future, intelligent decisions. The downside of ML is that they behave still like a machine, needing
plenty of domain expertise and human intervention in order to work on a designated task. Here, Deep
Learning (DL) holds more promise as it is not bound by domain expertise and not substantially by
human intervention [23]. Practically, DL is a subset of ML that achieves higher power and flexibility
through learning the representation of a system as a nested hierarchy of concepts[23]. A key distinction
of DL is through the advent of ”Big Data” era, where vast amounts of data become available for the
algorithms to train on and learn better representations [44]. On the other hand, DL algorithms require
high-end machines, where GPUs have become an integral part of the overall system. Fortunately,
hardware is now available that specifically is tailored to work with DL algorithms [4]. Furthermore,
these algorithms require a longer time to train due to the large possible number of parameters, where
as traditional ML take a few seconds to a few hours. This has been taken into consideration in regards
to this proposal as well as any follow-up work as the expertise of the author will play a major role in
the decision of the type of algorithm to be used.

Literature in adjacent industries such as satellite image object recognition or drone sensing and
navigation provide valuable insights on where to begin and how to setup a DL algorithm. Of course,
SAR images offer a very high resolution which can be used to train DL algorithms, however, although
the FMCW provided by Selfly can work as a SAR, the high resolution of an image is not guaranteed.
What is left is to either make several assumptions or train a DL algorithm to recognize landmarks in
the received data. Fortunately, The Stationary Target Acquisitions and Recognition (MSTAR) study
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on the resolution of SARs have proven the possibility of low resolution target acquisition using DL[21].
Furthermore, the aforementioned study provides with an algorithm that does not require data sets with
targets that were preset by other MSTAR SAR databases, i.e. end-to-end.

As mentioned before, DL requires vast amounts of data to train. Fortunately, in the case of SAR
images, the database exists under the name of Sentinel 1&2 (abbreviated as SEN1&2) [31]. These
databases are available under request, developed by the Sentinel Application Platform (SNAP) software.
The free open source nature of the software aids in obtaining a database that can be used to train and
test a DL algorithm specifically for navigation. It should be mentioned that two sets of databases
are needed, one to train and one to test the DL algorithm. SAR images from the ESA database are
preferable also as they already come with attached coordinates. This makes for a perfect ground truth
in the testing phase. Ideally, the output of a DL algorithm is a set of coordinates along with a simplified
version of the captured radar image that can be used to compare with the test database.

An effective strategy on roads segmentation in SAR satellite images using DL comes from a particular
study [32]. This strategy converts the drawback of a SAR image into an advantage, namely, the fact
that they do not reflect very well roads and water masses, such as lakes or rivers. Their low reflective
coefficient makes them ideal candidates for building a template, of rivers and roads, that can be used
as features for recognition. Another strategy that can be used is to segment all detected objects as
much and as best as possible. Several studies help provide with approaches towards segmenting SAR
images [19]. This is done using Fully Convoluted Neural Networks (FCNN) with feature extraction
during training. As the literature suggests, Convolutional Neural Networks (CNN), or various variants
of it provide a feasible answer. The work within this proposal will complement the work conducted in
previous researches in the field of SAR navigation.

As it can be seen from the current state of affairs that was presented above, little to no research
has been conducted on the subject of navigation using radar information through deep learning algo-
rithms. However, adjacent fields of research have provided enough pieces of the puzzle, such that when
put together, they provide a coherent path that can be followed towards a suitable methodology and
experimental setup.

3.3. Research Questions
The research context can be established and includes airborne radar information, terrain recognition,
image processing, data matching with image database using deep learning and aircraft coordinate
retrieval. Furthermore, the scope of the research can now be elaborated as follows: The role of deep
learning algorithms in the navigability of aircraft under VFR using radar data. With the research
context and scope, together with the discussion from Chapter 2, one can proceed towards defining the
objective:”The creation of a convolutional neural network that can extract landmark information from
radar data and match it to a set map with known coordinates.”

In order to proceed further, a definition for performance must be given. This is the accuracy of
the results for a given algorithm per the computational time and e effort. The literature implies that
if successful results will be obtained, a measure in difference will be required in order to discriminate
between multiple algorithms. Therefore, to achieve the scope presented above, a traditional template
matching algorithm is necessary in order to better understand the whole process, after which to bring
optimization choices. Building upon this strategy, a system consisting of a convolutional neural network
can be built. From this, strategies to improve performance and assure real time capability can be un-
dertaken. Based on this research strategy, multiple secondary research questions have been established
to create a road-map.

With the research objective in mind, the research questions are as follows:
• Is it possible to identify landmarks in a radar data?

– If so, which types are easily recognizable?
– Can landmarks be recognized consistently through multiple iterations?

• Can the landmarks detected in one radar frame compound a unique template amongst the data?
– If not, can another assumption be made to mitigate this?

• Can the same type of landmarks be identified in SAR image databases, such as the Sentinel1&2
databases, landmarks similar to the ones identified in the second question?

• Is it possible to deduce coordinate information through template matching of the map and radar
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data?
– Can the computation be done in real-time and how accurate is the result?
– Can metrics be defined to calculate this?

• Can the same process of identifying landmarks in a radar frame of information and matching them
onto SAR images be replaced by deep learning algorithms?

– Which steps in the whole matching process can be replaced by deep learning algorithms?
• Do the steps replaced by deep learning algorithms lead to a better performance?

– Can metrics be defined to calculate this and afterwards to compare?
– How reasonable are the results in comparison to the metrics?

The aforementioned research questions are a good point that ensures the advancement of the research
towards its objectives as well as providing invaluable checks along the way. Up to this point the research
context, scope, objective and research questions were discussed. Therefore, the research framework
starts with the understanding of how image processing works and what techniques can be used to best
represent the radar data.

3.4. Radar principles and technology
The following chapter introduces the basics of radar (radio detection and ranging) that are relevant
to the thesis. Additionally, some aspects of using Frequency Modulated Continuous Wave radars as
Synthetic Aperture Radars(SAR) will also be displayed, as well as their importance to this thesis. It
is important to present within this chapter some basic aerospace radar relations. More specifically,
all parameters relevant towards mapping the range-radial velocity radar image onto the earth surface,
under the form of a radar map. These calculations were provided by supervisor, Ir. Jerom Maas and
are presented here more in-depth. A radar system can determine the relative position of the world
around the aircraft, and this information can be used to find the actual aircraft state information. The
main working principle is the emission of electromagnetic energy and the analysis of the reflected energy
by the environment, or echo of a reflecting object. The echo can be used to determine the direction
and distance and based on the radar frequency,the Doppler speed. Based on the type of technology,
radar scan be categorized into multiple sets. A focus will be given to Frequency Modulated Continuous
Wave (FMCW) radars, Side Looking Airborne Radars (SLAR), as well as databases based on Synthetic
Aperture Radars (SAR). This is due to the radar database being recorded in FMCW radar in SLAR
conditions. Most databases that encode geographical information are captured using SAR technology
and that will be used for comparison purposes.

3.4.1. Frequency Modulated Continous Wave Radar

Frequency Modulated Continuous Wave (FMCW) Radar is a type of radar where the power radiated
by the emitter is continuous[1], while also being able to change the range of frequencies with which it
operates, either in frequency or in phase, as shown in Figure 3.1. Within the figure, 𝛿𝑡 is the difference
in time, 𝛿𝑓 is the difference in frequency and 𝑓ፃ is the perceived Doppler frequency. It should be noted
that it is unknown whether the original radio also modulated a saw-tooth signal, and the figure is used
as an example.

Figure 3.1: Saw-tooth modulation example of a FMCW radar with transmitted signal (orange) and received
signal (green)
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The main advantage of FMCW is the possibility to determine range with regards to other types of
continuous wave radars[2]. Continues wave radars do not have the timing mark necessary that enables
the system to have a timing function between the transmission cycle and the reception cycle. By
frequency (or phase) manipulation, a time reference to measure distance towards stationary reflections
is obtained. This is done by manipulating the change of frequency linearly over time. Through this,
the radar behave closer to a pulse radar rather than an continuous wave radar, without measuring the
run-time directly. With FMCW radars, run-time is measured by detecting the differences in frequency
(or phase) between the received signals. FMCW radars have an advantage over other radars to measure
relatively short distances to a reflected object. This is due to the fact that the minimal measured range
is proportional to the wavelength). So far, reflected objects are considered to be stationary, however
FMCW radars can measure their relative velocity with a high accuracy of range.

Principle of measurement

FMCW becomes a viable solution for measuring reflections in a pre-defined environment. Setting a
pre-defined range for measurements greatly simplifies the comparison calculations further along the
system, especially with regards to comparison techniques [22]. The following relation 3.1 calculates the
distance R to an echo,replacing that the lack of pulse for normal radars with a change in frequency to
determine range.

𝑅 = 𝑐ኺ⋅ ∣ △𝑡 ∣
2 = 𝑐ኺ⋅ ∣ △𝑓 ∣

2 ⋅ (𝑑𝑓/𝑑𝑡) (3.1)

Here, 𝑐ኺ is defined as the speed of light ( or 3 ⋅ 10ዂ𝑚/𝑠, the time difference △𝑡 along with △𝑓, the
frequency difference between the when the signal is transmitted and the echo is received. And df/dt is
the frequency uplift or downshift per unit of time. It can be observed that range is highly affected by
the power of the radar and objects further away need to reflect more power to be detected [5].

Should the frequency change be linear over a wide range, yields a direct proportionality between
the radar and the frequency comparison. In case that echo is not stationary, a Doppler frequency Δ፟
that is added or subtracted from the received echo frequency, depending on the type of movement the
object has in relation to the antenna.

The Doppler frequency is proportional to the speed of the aircraft as well as the wavelength of the
transmitted beam [39]. Taking the radial velocity of a reflection on a earth fixed projection, it’s speed
is determined by 𝑣፫ = −𝑉 ⋅ 𝑐𝑜𝑠(𝛼), as a function of the aircraft speed V, and the flight path angle, 𝛼.
This yields the previous mentioned formula for calculating Doppler frequency based on aircraft speed
3.2.

𝐹 = −2 ⋅ 𝑣፫𝜆 = 2 ⋅ 𝑉𝜆 (3.2)

Range and Resolution Determination

The radar resolution can be determined through the deviation per unit of time. This offers an advantage
over pulse radars with regards to setting a resolution as well as for the range, i.e. the longer the rising
edge [1]. The bandwidth plays a critical role for determining the range resolution of an FMCW radar,
as shown in the figure 3.3, shown below.

△𝑓ፅፅፓ =
1
𝑇 =

𝛿(𝑓)
𝛿(𝑡) ⋅ (𝑓፮፩፬፡።፟፭ − 𝑓 ፨፰፧፬፡።፟፭)

(3.3)

Where △𝑓ፅፅፓ is the smallest frequency difference that is measured, ᎑(፟)᎑(፭) is the slope of the FMCW
radar function and 𝑓፮፩፬፡።፟፭𝑎𝑛𝑑𝑓 ፨፰፧፬፡።፟፭ are the largest and smallest frequency configurations set for
the radar. This equation determines the frequency at which the FMCW theoretically works as well as
the linear frequency duration to achieve that [43]. With regards to the range resolution, the bandwidth
is used as the chirp to determine the range. It is self contained and set to 5 km as per the experiment
data, being determined by the frequency change.
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3.4.2. SLAR

The concept of a Side Looking Airborne Radar assumes the transmission and antenna to be perpen-
dicular to the flight direction [39]. The transmitted ray from the radar along the flight path detects
two points in the earth fixed frame, symmetrically located along the flight path. This ambiguity is
resolved by placing the radar in a SLAR configuration [39]. The radar beam illuminates a swath of land
obliquely at right angles. Figure 3.2 shows a depiction of a SLAR concept, which can also be applied
to a Synthetic Aperture Radar.

Figure 3.2: FMCW side looking radar concept

In figure 3.2, the altitude ”h” is also where the first echo is detected, with its projection on the
ground known as the nadir. With SLAR, specular reflection is usually very strong, adding noise to he
captured reflections. As with all radars, the power of points decreases with the range at the fourth
power, also being modulated by the two-way elevation characteristics of the antenna. The nadir is
assumed to have no Doppler speed and can be used as a ground truth for correcting Doppler speed
information. The azimuth range is defined as the dimension parallel to the flight track and calculated
as a depicted in Eq. 3.4:

𝑅ፚ =
ℎ ⋅ 𝜆

𝐿 ⋅ 𝑐𝑜𝑠(𝜃) (3.4)

Here, h is the height of the detector or antenna which is also assumed to the the height of the airplane,
𝜆 wavelength, L the total breadth of the antenna and 𝜃 overly incidence angle. It becomes obvious that
increasing the altitude requires a longer antenna length to maintain the same resolution. This can be
avoided with a SAR. Furthermore, the equation shows that the ground resolution is distorted towards
the edge of the captured image, however within this experiment, the area is small enough to ignore.

The Swath width is defined as the part on the Earth’s surface where data is collected[39]. Both the
azimuth and the range are chosen within all databases to cover an area of 5 square km. The longitudinal
area captured by the SLAR comes through the motion of the aircraft. SLAR have a real aperture, that
normally require a fairly large antenna to record high angular resolutions. The following equation 3.5
determines the SLAR range acquisition[39].

𝑅፫ =
𝑐ኺ⋅ ∣ △𝑡 ∣
𝐿 ⋅ 𝑐𝑜𝑠(𝜃) (3.5)
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On a pulse radar, only the pulse duration is taken, however within an FMCW radar, this is simulated
by difference between the two upshift and downshift frequencies [3]. 3.5 depicts the increase in resolution
with regards to the azimuth in relation to the altitude. However, this can also be done via Synthetic
Aperture Radars, to acquire a higher resolution.

As discussed in the previous chapter, it is possible to use FMCW radars as SLAR, relating reflected
objects in a range and radial velocity matrix. This assumes that any coordinate in the earth fixed
coordinate has a corresponding echo that is expressed in the range-Doppler velocity, located in the
aircraft fixed frame[39]. Equation 3.6, depicts the mathematical formulation of the relation between the
echo coordinate on the ground and its range and Doppler velocity. This equation was fully provided by
the supervisor Jerom Maas.

𝐹(𝑥, 𝑦) = (
𝑥

±𝑦
) (𝑟, 𝑣፫) =

⎛
⎜

⎝

ℎ ⋅ 𝑡𝑎𝑛(𝛾) − ፯ᑣ⋅፫ᑣ
ፕᑒ/ᑔ⋅፜፨፬(᎐)

±√𝑟ኼ(1 − (፯ᑣፕ )
ኼ) − ℎኼ

⎞
⎟

⎠

(3.6)

Here, the x and y coordinate translation of a reflection are calculated using the altitude h, speed
V and the flight path angle 𝛾, as well as the Doppler speed and range of the object, 𝑣፫ and 𝑟፫. This
equation translates the range and Doppler velocity measurements of any reflected points to a 2D map
consisting of coordinate points in a 5 square km area, using flight parameters. Due to measuring
the slant range, SLAR create several distortions, with regards to elevation and range, and due to the
altitude, as well as with occlusion. These conflicts are resolved when using a Synthetic Aperture Radar
(SAR), that removes the dependence of the azimuth resolution on the incidence angle. By limiting the
SLAR emission of radar waves sideways, it solves the problem for object ambiguity, as it can be seen in
Fig. 3.3. Object ambiguity is the radar wave problem where for each range-Doppler velocity pair, two
other points that are reflected on the surface with their positions being symmetric to the flight path.

Figure 3.3: FMCW Resolving of Ambiguity

3.4.3. SAR

A Synthetic Aperture Radar (SAR), is a type of SLAR that electronically reproduces a large antenna
aperture by using the aircraft flight path [2]. This generates a very high resolution imagery of the
selected area. Over multiple runs at slightly different configurations, especially with regards to position,
a database is being created electronically. The signal is processed from a magnitude and phase point
of view and after a multiple series, the data is merged into a very high resolution image of the terrain.
Figure 3.2 also depicts the same working principle for a SAR. The difference is with the SAR behaving
similar to a phased array, or multiple antennas that is capable of detecting multiple transmission at
different phase shifts, all incorporated in one antenna, using the movement of the aircraft to simulate
the different geometric positions [2].
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The returned signals are all stored in accordance to amplitudes and phases at a certain time stamp.
This allows the reconstruction of the signal which normally would need an antenna of length 𝑣 ⋅𝑇, where
is the platform speed and T is the time. A synthetic aperture is produced as the line of sight changes,
which lengthens the antenna. This increase the resolution of the antenna by making T extremely large.

Any reflection from one object is recorded multiple times and as the aircraft moves forward, as long as
the object is within the beam. The resolution however remains constant due to the combined expanding
beam width that is synthesized and the increasing time. The azimuth resolution is proportional to half
the breadth antenna has, hence multiple small slices are required over time to build an entire area[2].

Several assumptions are made in order to achieve the creation of a synthetic aperture image:

• Constant relationship between oscillations and electromagnetic waves, or coherence.
• A powerful processor that computes the different slices;
• Exact knowledge of flight parameters, such as the flight path and velocity.

3.5. Scope and limitations

The main scope of this research thesis is the investigation of feature identification or recognition within
FMCW radar imagery taken in SLAR conditions as well as within SAR or Google databases. Further-
more, robustness is to be verified with a suitable comparison metric. Appendix 4.3 also presents how
the Sentinel 1 [31] are polarized.

Among various research topic regarding the Navigation through terrain recognition, this MSc Thesis’
scope is mainly related to computer vision applications within the aerospace industry:

• Radar systems
• Feature recognition and comparison
• Image segmentation
• Noise removal

The focus is on feature recognition techniques that can afterwards be incorporated into navigation
strategies. This implies the investigation of having an on-board database that is used to identify features
at a location given by GPS coordinates and compared to a 2D transpose of radar reflections, named the
radar map. This radar map is constructed using certain flight parameters and as some of them were not
defined, they were deduced from other available data. An example is the heading that was calculated
from GPS coordinates, that does not take into consideration wind velocity and direction. As such wind
is assumed to be negligible with regards to the impact of the final comparison. The flight path angle
used in equation 3.6 was again calculated using altitude readings.

3.6. Comparison databases

Within this section, all comparison databases are presented as well as how they were obtained. Several
examples and trade-off will be illustrated and an explanation will be provided in order to justify certain
design choices.

3.6.1. Radar database

As presented in the previous chapter, it is possible to employ a FMCW radar in SLAR configuration
to obtain echos of reflections within the environment and map them on a 2D translation in the aircraft
reference frame [35]. This provides a 2D matrix with the X and Y coordinates as well as encapsulating
the intensity of each pixel. Following is to represent this matrix under the form of the radar map. Two
methods were chosen namely, 2D histogram in Fig. 3.4 as well as a scatter map, presented in Fig.
3.5. Using equation 3.6, three vectors are computed relating to the X and Y coordinate in the aircraft
reference frame, encoding the third vector containing the intensities of all reflected points. This data
can be visualized under the form of a 2D density plot or 2D histogram as presented in Fig. 3.4.
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Figure 3.4: Histogram representation at second 1000 of GPS record start

A 2D histogram is a function that shows the occurrence of combination of intensities between two
data sets. As a comparison, a 1D histogram display the total number of elements with a particular
value occurs in the data set [37]. A 2D histogram shows the intensity relationship at each exact position
between two data sets. When adding this third intensity vector as a weight factor to the function to
further discriminate the intensity relation ship between the two coordinates, the 2D Histogram becomes
suitable to map the radar reflected intensities in a 2D plane [37], in the aircraft reference plane as shown
in Figure 3.4. Additionally, alternatives methods of mapping have been considered under the scatter
function, or a graph in which the values of two vectors are plotted along two axes, similar to the
2D Histogram, using intensity to create the grayscale. It becomes clear that for the same settings,
the scatter map presents more details that can be used in future image transformations. The second
method was chosen as part of all other future experiments.

Figure 3.5: Scatter representation of the same image

3.6.2. Google maps and Sentinel 1 databases

Having computed the radar map, it becomes increasingly useful to have an equivalent map for com-
parison purposes. Theoretically, several features should already be visible and show similarities for
roads. Google maps allows the visualization of either a satellite or a vectored depiction of the roads
for a certain central coordinate. The mathematical maximum of both calculated X and Y vectors is a
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distance of 5 km, which is the maximum mathematical area in which the antenna can detect reflections.
The region is overlapped onto a Google image to show what the radar can detect. Within Figure 3.6, a
vectored Google image along side a Sentinel 1 map are depicted for the given GPS coordinates at second
1000 from the start of the GPS reading. In future iterations, the use of a SAR database will provide
additional accuracy, especially towards the intensity of the detected points, as they are proportional to
the frequency and emitted power. This will provide a direct link between SAR and FMCW intensity
reflections. The databases considered are the Sentinel 1&2 databases [31] for their good resolution.

Figure 3.6: Histogram (left), Vectored road map Google (middle), Sentinel 1 (right)

3.7. Methodology
The following chapter presents the research methodology used to answer the research questions, the
research approach, as well as a description of all used algorithms, along with data analysis techniques,
metrics for measurement and adopted research method.

3.7.1. Hypothesis

This section introduces the hypothesis that will be tested during the research along with the resources
that will be used. The first hypothesis to be tested relates to the possibility of a connection between radar
information and coordinate determination. Although the literature implies that there is a connection
between radar information and the landmarks identified within [32], the efficiency of deep learning
algorithms on detecting coordinates information from the radar is not yet known[16]. The second
hypothesis is whether a strategy can be created such that real-time performance is achieved. Therefore,
the theoretical basis that will assure the research objective is set in motion. The research splits in two
blocks, one that deals with image processing and one that does template matching. Ideally, both of
these procedures should be done by a, modular or fixed, deep learning algorithm in real time.

The consequence for on-board radar systems is that they may also be used to provide assistance in
navigation and attitude determination [6]. Clear reflections of the ground can be observed from radar
images taken mid-flight, in which structural reflections are distinguishable. These reflections originate
from ground elements, such as rivers, highways, lakes, forests etc. It would be possible to determine the
locations of these ground structural elements by using Direction of Arrival Estimation (DAE), algorithm
which makes use of the propagating wave arriving at a certain point[2]. This provides the basis for
creating a new radar map, a translation from the radar distance and Doppler velocity reflections to their
positions on a 2D plane depicting the distance from the antenna. Within this radar map, certain features
become apparent. These features either present geometrical or intensity consistency and together can
be used as a unique template. The task of image processing algorithms is to segment the image in a
robust way to ensure the same template identification in both the radar and satellite databases. Due to
radar noise, as well as the absence of a ground reference, the use of additional information from GPS and



26 CHAPTER 3. PRELIMINARY THESIS REPORT

flight parameters becomes of paramount importance. Furthermore, the process needs to be conducted
in a timely manner and with the advances in machine learning and computer vision, more specifically
with the almost complete dominance of systems built on top of Convolutional Neural Networks, deep
learning will also be considered [23]. However, due to the lack of a solid database upon which a deep
learning algorithms can be trained, only pre-trained algorithms will be treated. These algorithms will
mainly focus on image segmentation within Synthetic Aperture Radar (SAR) imagery, in order to offer
a suitable comparison for future research.

3.7.2. Noise and non-linearities

The following subsection presents the analysis with regards to noise and non-linearities present within
the image. This analysis was conducted in order to cover as many techniques as possible to account for
noise as well as for the intensity of reflected object that are further away, that drops in value by the
range to the fourth power. The properties employed by FMCW radars in a SLAR configuration allows
for feedback that supersedes normal reflections intensities, under the form of noise. Additionally, due
to the fourth power rule, intensities of reflected objects further away from the antenna are not as strong
as those closer. This produces a ”drowning” effect of any echos further away than half the range of the
area being recorded. While analyzing the histogram of the original radar image, the same non-linearity
can be observed. Attempts to artificially linearity this particular non-linearity via a power of the range.
Finally, a technique to linearize taken from statistical literature for non-linear statistical system based
on [17] was also employed.

Fig. 3.7 shows the original histogram, followed by the histogram modified as a function of the range,
as well as statistical analysis. It can be observed that the result is not completely linearized and as such,
intensities that are close to the antenna are still high. As such, other techniques to account for this
non-linearity are required, as presented in the research paper. Furthermore, due to system performance,
or because interference between the emitter and the antenna, additional noise is being detected. With
this into consideration, several de-noising techniques are taken into consideration.

Figure 3.7: Histograms of different methods to transform non-linearities within the image
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The first one was the Mean Filter (Me-F) [25]. Altough the Me-F does not remove speckle noise, it
manages to reduce it to a moderate extent. Me-F works as the average around a center pixel, replacing
all pixels in the selected area by the calculated average. The filter has a tendency of blurring the image
and thus removing information that was considered important, especially with regards to a structural
comparison. Formula 3.7 below depicts how the algorithm works:

ℎ(𝑖, 𝑗) = 1
𝑚𝑛 ⋅ ∑

፤Ꭸ፦
∑
፥Ꭸ፧
𝑓(𝑘, 𝑙) (3.7)

Following, the Median Filter (Med-F) was used [25]. The center pixel is now interchanged by the
median value of surrounding ones within the selected area. This technique better preserves edges,
however, heavily burdens the computational speed.

The Lee Filter (LF) [25], is a very well known technique employed in the de-speckling of SAR
imagery, being based on a local statistical analysis to preserve edges. The LF performs smoothing over
predetermined areas that have a low variance, compared to the maximum computed within the image.
This allows to preserve details within the image, even when high differences in contrast are present.
The mathematical model for the Lee filter is presented below:

𝐼𝑚𝑔(𝑖, 𝑗) = 𝑀። +𝑊 ⋅ (𝐶፩ −𝑀።) (3.8)

With equation 3.8 the new image is computed via the mean pixel intensity of the filter window 𝑀።,
times the intensity of the center pixel 𝐶፩ minus the mean pixel intensity over the filter window W. A
distinct disadvantage for the filter is the inability to denoise the image near edges[25]. Finally, instead
of focusing on each pixel within the radar image on a local level, a Non-local Means De-noising (NLMD)
algorithm was chosen [cite]. This is usually employed in visual imagery and videos and was chosen with
regards to the radar database. The property of noise is considered to be a random variable that has a
zero mean. Constructing multiple areas and taking their average provides a better metric that reduces
noise. Below, Fig. 3.8, shows the employed techniques, it can be observed that the NLMD provides the
best results, however it also smooths features that are considered important in a structural context.

Figure 3.8: All four denoising techniques on different images with Me-F first, Med-F second, LF third and
NLMD fourth

As small features such as small streets or dirt roads present within the image may have played an
important part in the experiment, a higher importance to image transformation techniques that did not
containing de-noising was finally decided. Additionally, some considered algorithms incorporate a form
of median filtering under the form of Gaussian transformations, further motivating not using de-noising
techniques. With the results of the final experiment taken into consideration where it became evident
that only large features are important with regards to the comparison, applying a de-noising technique
may improve results.
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3.7.3. Metrics

In order to compare two templates from their designated radio or Google/SAR databases, a comparison
metric is necessary. The used comparison metric is the Structural Similarity Index Measure(SSIM).
Two other metric types were also chosen, namely the Mean Square Error (MSE) along with the Peak to
Signal Noise Ratio (PSNR) [9]. They are introduced in the following section with a test to determine
which ones should be used.

The MSE, also known as the mean square deviation is a measure of the average of the square errors
[9]. One reason for employing this measure is due to its simplicity as well as being used as a measure
of quality, where values that are as close as possible to zero are the best. The MSE incorporates the
variance of difference alongside the bias, which would allow an estimation of the quality of a comparison
as well as the actual value of the comparison. Equation 3.9 shows how the MSE is calculated:

𝑀𝑆𝐸 = 1
𝑛

፧

∑
።዆ኻ
(𝑖ፎ − 𝑖ፂ)ኼ (3.9)

Within equation 3.9 the evaluation between the radar image value and candidate is squared and mean
to yield the MSE. The Peak Signal to Noise Ratio (PSNR) represents the fraction of nois in relation to
the maximum power of a signal [9]. Under nominal image transformations, the PSNR represents a good
representation of the original radar image and its comparison image, identifying relevant noise within
the taken radar image. The Structural Similarity Index (SSIM) The SSIM is a metric for measuring the
similarity[18], based on luminance, contrast and structural correspondence, as shown in equation 3.10.

𝑆𝑆𝐼𝑀 =
(2𝜇፱𝜇፲ + 𝑐ኻ)(2𝜎፱፲ + 𝑐ኼ)

(𝜇ኼ፱ + 𝜇ኼ፲ + 𝑐ኻ)(𝜎ኼ፱ + 𝜎ኼ፱ + 𝑐ኼ)
(3.10)

SSIM requires two images that are identical graphically and bounded within the same size. This is
of great help with regards to the predetermined area captured by the FMCW radar during the flight
[9]. When comparing the perceptual difference between the two similar images, luminance, contrast
and structure is taken into consideration. Although it cannot decide which of the two images is better
or the original, it can detect the difference in structural similarities of even to a 1∘as shown in Fig. 3.9.

Figure 3.9: SSIM calculation for the same image with 1∘of rotation
Following the introduction of the metrics used, a test was conducted to decide the final one. A total

of 4 images were chosen in order to conduct the experiment from the radar database and the experiment
setup was similar to the one presented in the research paper. A total of 500 random coordinate points
were created and analyzed for the probability density distribution especially. Each pair had a MSE,
PSNR and SSIM calculation attached for images with no transformations conducted. Although the
results in table 3.1 are of poor quality in the context of the experiment, the SSIM still provided a low
number of false positives, which increased with further transformations with regards to structural and
luminance changes.
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Table 3.1: Average results for heading deviation, position error and SSIM values over all experiments.

Average results for selected metrics

Method
Absolute Heading

Deviation Position error
False

Positive

MSE 10 108 53%
PSNR 12 120 67%
SSIM 8 80 42%

The MSE will be calculated for each pixels within every image pair. The SSIM will look for simi-
larities in luminance, structure and contrast in each pixels[9]. This means that if the pixels have the
same or similar density values, it will increase the overall calculated value. It becomes obvious that the
MSE has arbitrarily high numbers and in a final examination it will be harder to standardize it, even
though the higher the MSE value, the more it is indicated that the compared images are not similar.
The results presented in table 3.1 that SSIM is the metric that best accommodates the needs of the
results.

3.7.4. Selected algorithms

The following section presents a more in-depth view of the image transformation algorithms used within
the whole experiment. A focus was given to chosen algorithms that were robust to noise. All selected
algorithms attempt to segment the image and produce a mask that contains only detected objects. The
targeted features that are taken as detected objects are either structural consistent features, such as
roads, or highly reflective objects, such as industrial roofs. Within Fig. 3.10, an example of both is
being presented for an image corresponding to second 1000 from radar start. It can be seen that the
image presents both roads as well as an industrial site in the middle that is highly reflective. Ideally,
an algorithm will be able to detect either of them in a consistent way.

Figure 3.10: Scatter representation of the same image
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Gamma Correction

Gamma Correction (GC) is a nonlinear transformation of the intensity within each pixel in a given
image, based on the following equation 𝑅ፅ = (𝑅ፈ)᎐:

Within this equation, 𝑅ፅ is the resulting intensity, as a function of the initial value for the intensity,
𝑅ፈ, raised to the power of 𝛾 [34]. As a power-law of 𝛾, it follows that in order to bring darker parts
within the image, 𝛾 needs to be less than 1. As it results in a nonlinear function of the input intensity,
it was chosen as a suitable algorithm to treat the non-linearity present within the radar images. Figure
3.12, shows values for 𝛾 and how it affects the relation between the input and the output value for a
grayscale input with values up to 250. This allows to set a value for 𝛾 that best fits the inverse of the
linear approximation taken for the histogram of the input image. A 𝛾 value between [0.04,0.1] should
provide a good approximation for future experiments [34].

Figure 3.11: Gamma plot for different 𝛾 values.

An example of a satellite Google image at time-step 1000 is shown below in Fig. 3.12. Within the
image, structures that are further away from the antenna become more apparent and allows a more
robust detection for the experiment. Of course it should be noted that this image transformations
brings new pixel values that need to be analyzed as part of any future transformations.

Figure 3.12: Original image (left) and gamma corrected image (right) with histograms shown below
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Thersholding

Applying thresholding techniques is a simple image transformation that uses a certain value to filter
the whole array of pixels. For each value, if the pixel value exceeds the threshold it will be accepted in
the mask of the image, otherwise its value is set to zero. Two thresholding techniques become apparent
here. One is where the thresholded pixel values are set to 1, called Binary Thresholding. The other
is where the pixel value greater than the selected threshold are maintained in the mask of the image,
where all values are either zero, or higher than the threshold, called Thresholding to Zero. Thresholding
to Zero is advantageous when within an image a threshold is applied for unnecessary information and
all other information needs to show variations. It is a good image segmentation technique, however,
as both databases are captured in different wavelengths or transformed in RGB, slight variations are
unnecessary. As such, the choice for Binary Thresholding becomes apparent, not only due to scope, but
also due to performance. Figures 3.13 and 3.14. shows how the algorithm works for the Google and
Sentinel 1 databases.

Figure 3.13: Google image for GPS at time step 1000, followed by a low binary threshold and a 80% or higher
hysteresis threshold

Figure 3.14: Sentinel 1 image for GPS at time step 1000, followed by a low binary threshold and a 80% or higher
hysteresis threshold

Local Histogram Equalization

Histogram Equalization(HE) is a image transformation method that uses the image’s histogram in order
to gamma correct the image, as shown in [18]. Local Histogram Equalization (LHE) uses only a selected
area within the image that equalizes the intensities within the image. An image that has an area with
low contrast such as the FMCW radar database will spread out frequent intensities within the whole
image, creating the effect of raising the contrast of the image [18]. This enhances many details within
the image, by gray transformation. This however, produces a total modification of the image from an
intensity point of view. This means that only structural features within the image can be taken into
consideration. However, the modifications produced are very favourable towards structural features. In
the case of the research, the equalization is done to an excellent degree the histogram of the FMCW
radar image, as it linearized the non-linearity distribution. Within Fig 3.15, both equalization methods
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are presented, with a focus on local histogram equalization.

Figure 3.15: Radar image (left) with its histogram below, global histogram equalization (middle) and adaptive
local equalization (right)

Contour Finding

Contour can be defined as a curve that follows all continuous points along a boundary, that present
intensity similarity. The resulting contours can be used as a the basis for object detection and recog-
nition [30]. The accuracy of contour finding increases with binary image, being an ideal second image
candidate. It should however be noted that some noise is forwarded into the final mask that will be used
by SSIM for comparison. However, the process begins with a Gaussian filter that reduces noise, along
with any fine details within the image that cannot be distinguished from noise. Eq. 3.11 represents the
Gaussian transformation of the image, a sdepicted in [30].

𝐺᎟ =
1

√2 ⋅ 𝜋 ⋅ 𝜎ኼ
⋅ 𝑒𝑥𝑝(−𝑖

ኼ + 𝑗ኼ
2 ⋅ 𝜎ኼ ) (3.11)

Afterwards applying a threshold on the image, where the thresholding parameters ensures all edge
elements will be forwarded, while suppressing noise. Figure 3.16 shows an example of detected edges
within an image used for the experiment.

Figure 3.16: Contour identification for the vectored Google database at radar image 1000 seconds after GPS
start
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Ridge Operators

Ridge Detection (RD) is an image transformation that attempts to detect edges in an image. It was
first introduced in the medical industry [36], in order to detect blood vessels taken by radio imagery
in extremely noisy conditions. It functions similar to contour finding by applying a Gaussian filter or
operating on the Hessian matrix[reference]. To define a ridge, a set of points where the local maxima of
the function show a gradient for one direction. With regards to our image within, a ridge is considered
over any number N of pixels if the gradient is constant for N-1 pixels. This behaves quite similar to a
local minimum.

Within the image, ridges are considered to be structural features, such as roads, rivers, highways
or blood vessels [36]. The algorithm works well with elongated objects within the image and extremely
robust. Fig. 3.17, presents the segmentation of the image.

Figure 3.17: Original image next to two ridge operators: Frangi (middle) and Hessian (right)

Straight Line Hough Transfrom

The Straight Line Hough Transform (SLHT) [14] is an image transformation technique that attempts
to detect lines within an image at any rotation that meet the following equation:

𝑦 = 𝑚𝑥 + 𝑐 (3.12)

Here, m is the gradient, y is the intercept and c is fitting constant. In order to avoid the equation
to go to infinity for vertical lines, a perpendicular segment to the line is constructed that converges
at the set origin. SLHT is characterized by its r as the length and an angle 𝜃 with regards to the
x-axis. Lines are then saved in a histogram array that defines the parameter space, encapsulating
the angle and range at which lines are detected as taken from [14]. This technique works very well
with binary images, local histogram equalization also being a good candidate. A local maxima found
within the calculated histogram indicates that certain ranges within it are potential candidates for lines.

Figure 3.18: The original Google satellite image next to the the hough line transformed image
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Blob Detection

Blob is a misnomer commonly accepted within the computer vision industry to define a group of pix-
els that share a common property. Within the constraints of the thesis, this common property is the
intensity of pixels that compound a highly reflective object. The method works very well with thresh-
olding techniques to group connected pixels in a binary image. Additionally, to ease the calculations, a
center and radius calculation along close enough objects to approximate their center and radius. Blob
Detection is an appealing technique to search for highly reflective points that are thresholded from
background and most noise [13]. Taking the second derivative of Gaussian for a function g, or the
Laplacian of the function g, in x and y coordinates is represented below inf Eq. 3.13:

∇፧𝑜𝑟𝑚ኼ = 𝜎ኼ ⋅ (
𝜕ኼ𝑔
𝜕𝑥ኼ +

𝜕ኼ𝑔
𝜕𝑦ኼ ) (3.13)

This provides a scale which can be used to determine the maximum of the Laplacian to 𝜎 = 𝑟 ∗ √2,
where r becomes the approximate radius that covers the blob or group of blobs. The algorithm take the
convolution of scale-normalized, or fixed length, Laplacian calculations at several different scales[13].
Finding the maxima of squared Laplacian response within the scale space ensures an approximation of
the blob, as presented in Fig. 3.19 and 3.20.

Figure 3.19: Blob Detection applied for the Google satellite map, for radar image at point 1000

Figure 3.20: Blob Detection applied for the Sentinel 1 satellite map, for radar image at point 1000

In optimal conditions, it can be observed that the difference of Hessians, altough being the fastest
algorithm, does not always detect a good amount of objects. In contrast the Difference of Gaussians
method for blob detection has an extremely high amount of detected blobs. This does not work very
well as a more consistent method is required to avoid false positives with the radar image. Although
the slowest, the Laplacian of Gaussian provided the most robust method for detecting methods overall.
Furthermore, within the Sentinel 1 database, more points are detected overall and their consistency
is more valuable as it is in the same or similar spectrum as reflective echos detected by the radar.
Additionally, based on settings, the blob region can be increased to take into account surrounding noise
and thus slightly increase the consistency.
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Entropy Detection

Entropy Detection (ED) is an image transformation algorithm that relates the complexity of intensities
within a given neighbourhood [42]. This complexity is defined by a structural element and can detect
variations in gray level distribution.

From a computational level, ED yields and array that contains the local entropy, which is computed
using a circular disk of a given radius. Different sizes will affect the overall detected entropy. The value
in the image can be used for segmentation of structural features, which is helpful for the chosen metric .
Entropy is defined by the equations below, through calculating a gray level co-occurrence matrix, using
the described radius as a given offset as shown in Eq. 3.14.

−
፧ዅኻ

∑
።዆ኺ

፧ዅኻ

∑
።዆ኺ

𝑃(𝑖, 𝑗) ⋅ 𝑙𝑜𝑔፛ ⋅ 𝑃(𝑖, 𝑗); (3.14)

Here,we have a total number of gray scales, represented by N, while P is represents the likelihood of
a pixel to have an intensity within the area with a logarithm base function b, representing the average
rate at which information is produced by the stochastic source. In short, using a sliding window of a
certain range to calculate the entropy within the area for each pixel[42]. Additionally, it is also possible
to calculate entropy over a moving window within the image. The window moves one pixel at a time
and local entropy is again estimated over a centre pixel within the selected radius as shown in the
following equation, where 𝜎(𝑋) represents the sliding window, in Eq. 3.15:

−
፧ዅኻ

∑
።዆ኺ

፧ዅኻ

∑
።዆ኺ

𝑝(𝑖, 𝑗) ⋅ 𝑙𝑜𝑔፛ ∗ 𝜎(𝑋); (3.15)

The following Fig. 3.21 represents the entropy transformation of the Google image. This image
transformation works very well with local histogram transform.

Figure 3.21: Entropy Detection applied for the Google satellite map, for radar image at point 1000
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Watershed

A marker controlled Watershed is an image transformation algorithm that interacts for a grayscale
image [41] and considers the image as a topographic surface, calculating the energy gradient of a higher
altitude (higher intensity) towards a smaller altitude (lower intensity value), similar to how water always
flows down towards a point of equilibrium. It follows that the mathematical choice is the local minima
of an image gradient. Eq. 3.16 presents the definition for the topographical distance to find the local
minima between two pixels q and p within the image:

𝑇 (𝑝, 𝑞) = inf
᎐
∫
፟
‖(𝛾(𝑠))‖𝑑𝑠 (3.16)

Here, infinity symbolises going over all possibilities (smooth curves) and 𝛾(0) = 𝑝 pixel and 𝛾(1) = 𝑞
pixel. The minimum of 𝑇 is taken as the overall minima. It can be observed that this techniques
presents a proneness for having multiple minimas when the gray scale of the q pixel and any other
candidates is close to another. This minima is segmented based on an marker, or the seed. The marker
can correpond to the calculated local minima, however it can also be chosen via manual input. This
offers an advantage over other algoirthms as it can be used directly via visual inspection to segment
structural features. Following the marker is the mask, or a binary copy of the image that is used to
restrict the area of application. For the scope of this experiment, the mask is set to the whole image or
the area of the image where features are apparent via visual inspection. Fig. 3.23 offers an example of
the Watershed marker being applied to a Google image.

Figure 3.22: Warshed custom markers applied to a Google satellite map, for radar image at point 1000
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Deep learning SAR segmentation techniques

Currently, Convolutional Neural Networks (CNN) are applied to most computer vision tasks, with
results outperforming other approaches [23]. This reduces the need for feature engineering by directly
leaving the network to learn suitable features. This can be used in two ways, either learning information
directly from the radar and satellite data, or from their image transformation, that only shows important
landmarks [12]. Of course, image transformation is resource consuming as it needs to go through the
matrix multiple times.

Unfortunately, deep learning techniques require a vast database to be used as for training and
validation [19]. This is not provided within the given FMCW database and forces any considered deep
learning techniques to be pre-trained with very small changes to accommodate the comparison within
the experiments. Furthermore, there is very little control over the setup of any deep learning techniques,
due to little to no control over the features that are available within the FMCW radars [24]. As such,
the techniques considered within the experiment methods were to measure the possibility of using deep
learning as part of future research in regards to the chosen metric.

Within the area intersected by CNN and SAR databases is the semantic segmentation of radar images
[19]. This process segments the image based on intensity values for roads, rivers, farm land, forests
and cities. Each pixel in the image is classified into a class, which also includes the background. Geo
Land Sensing [15] is an unsupervised learning algorithm based on hierarchical Conditional Generative
Adversarial Nets (CGAN) and conditional random fields (CRF) Geo Landsensing - categorizing each
pixel in satellite images with respect to the land cover of each area.

Another is [27], based on a pre-trained Convolutional Autoencoder with Total Variation Loss (CAE-
TVL) for satellite image segmentation as well as generic images. Using Pytorch [44] with Fully Con-
volutional Networks as well as DeepLab v3, pretrained on a subset of the PASCAL VOC dataset [27].
Within Fig. 3.23 an example of a RGB segmentation is shown. The image was segmented correctly
and consistently for roads and dark areas within the image that were assumed to be forests, however
everything else, including dirt roads were classified as grass which is not correct. Additionally, the
image was forwarded to its full resolution of 800 x 800 pixels in full RGB spectrum with a window size
of 2 pixels for segmentation. This shows the potential for this algorithm to work exceptionally well
under higher resolution for images in the future.

Figure 3.23: RGB Color segmented image for Google database showing roads(gray), forests (dark green) and
grass(green)
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Although traditional autoencoders are interlinked in order to identify mapping, the trend in com-
puter vision is to attempt the localization of features that repeat over a given input [21]. The research
paper reference attempts to replace all connected layers by convolutional layers. This helps reducing
redundancy. With 𝑊(𝑙) being a 4D tensor at the l-th layer containing all convolutional kernels, having
two dimensions for spatial coordinates, and two dimension for the numbers of channels of the input and
output layer. The algorithm was modified with regards to this experiment to mainly take into account
the spatial dimensions and only have one input and output channel, due to the grayscale configuration
of the radar intensity range. The convolution is defined in the equation below 3.17, with 𝑋(፥ዅኻ) being a
padding parameter to keep spatial size where needed and p,q,s,t being the dimensions of the 4D tensor:

(𝑊(፥) ∗ 𝑋(፥ዅኻ))፦፧፭ =
ፏᑝ
∑
፩዆ኻ

ፐᑝ
∑
፪዆ኻ

ፒᑝ
∑
፬዆ኻ
𝑊(፥)
፩፪፬፭𝑋(፥ዅኻ)፦ዄ፩,፬ (3.17)

This yields a 3D convolution with a time-step of 1, or stride. The activation function as well as
pooling window size was kept as within the paper. The resulting output of the l-th deconvolitional layer
is presented in equation 3.18

𝑍፦𝑛𝑡(፥) =
ፒᑝ
∑
፬዆ኻ

ፏᑝ
∑
፩዆ኺ

ፐᑝ
∑
፪዆ኺ

𝑊(፥)
፩ዄኻ,፪ዄኻ,፬,፭𝑋(፥ዅኻ)፦ዅ፩ዄኻ,፧ዅ፪ዄኻ,፬ (3.18)

Within the loss function presented in the paper, the color vector 𝑋𝜖ℜፌ፱ፍ፱ኻ, with M and N being
the spatial coordinates and only 1 color scale in accordance to the gray-scale. With these changes
to the algorithm, the new CNN was trained using the same training objective based on the Berkley
Segmentation Data Set (BSDS500)[15]. Below in Fig.3.24 the results of this attempt is shown. Once
the algorithm was trained and tested, a look at time, yielded times below two seconds for the image
segmentation. Although the google image was correctly segmented, the radar image included a lot of
noise. This unfortunately provided a lot of false positives within the results.

Figure 3.24: Warshed custom markers applied to a Google satellite map, for radar image at point 1000
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3.7.5. Experiment setup

Having all the algorithms ready, as presented in the previous section, along with the setup metric, the
experiment setup can be selected. As described in the hypothesis, the GPS coordinates provided at
a certain time frame along with other flight parameters are used in order to build a radar and GPS
pair. The scope is to use the radar frame to validate the GPS coordinate. Using a Google or Sentinel
database, the GPS coordinate can be attributed to a set image of what the radar should detect.

Furthermore, using flight parameters, the radar map, a 2D representation of all reflections within
the environment can be built. Due to the power capabilities of the radar, as presented in chapter 3.7.2,
the non-linearity for all intensities was observed, that could not be fixed via multiplication with a range
function. This non-linearity is kept even with different range multiplications, as presented in chapter
3.7.2. This implies that local changes in intensities are required to obtain a clear image. This can be
easily obtained from using image modification algorithms such as the Gamma Correction, Threshold
setting or Local Histogram Equalization. These algorithms become the corner stone for a first filter
within the image to attempt a linear equalization of all intensities and assure that any transformation
conducted by following algorithms would work correctly over the whole considered area. Fig. 3.25
shows how a random candidate is created for the experiment.

It can be observed that both image transformations focus on filtering certain features within the
radar image. These features can be any combination between high intensity points and shape features,
such as roads or highways. In order to correctly compare to a database, a one-to-one comparison
is preferable. This means that vectored shape information contained in Google images can only be
compared to radar images filtered by methods that focus on filtering for shapes. It is possible to
compare both within the same light spectrum, however, the vertical polarized nature of the provided
information, makes filtering for intensity more favourable. Only methods that use Blob Detection will
compare with Sentinel 1 database [? ]. As all other methods only filter mostly for geometric shapes
which represent roads or highways, it is easier to use the Google database.
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Figure 3.25: Example of experiment setup with exaggerated range of 1000 m
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3.8. Results
Within the following section, additional details that was not presented in the research paper is shown.
The presentation of the results starts by showing the first four images that were used for the first
experiment, within Fig. 3.26. Additionally, the image transformations table is presented.

Figure 3.26: Warshed custom markers applied to a Google satellite map, for radar image at point 1000

Within table 3.2, two image transformations are employed, one to transform the image and bring
most feature points and another to discriminate between either structural features such as roads or
rivers and high intensity features such as industrial rooftops. Due to the power capabilities of the
radar, a non-linearity for all intensities was observed, that could not be fixed via multiplication with a
range function. This non-linearity is kept even with different range multiplications, whether it is with
regards to range squared, cubed or fourth. This implies that local changes in intensities are required
to obtain a clear image. This can be easily obtained from using image modification algorithms such
as Gamma Correction, Threshold setting or Local Histogram Equalization. These algorithms become
the corner stone for a first filter within the image to attempt a linear equalization of all intensities and
assure that any transformation conducted by following algorithms would work correctly over the whole
considered area.

It can be observed that both image transformations focus on filtering certain features within the radar
image. These features can be any combination between high intensity points and shape features, such as
roads or highways. In order to correctly compare to a database, a one-to-one comparison is preferable.
This means that vectored shape information contained in Google images can only be compared to radar
images filtered by methods that focus on filtering for shapes. It is possible to compare both within
the same light spectrum, however, the vertical polarized nature of the provided information, makes
filtering for intensity more favourable. Only Methods 2 and 7 that use Blob Detection will compare
with Sentinel 1 database. As all other methods only filter mostly for geometric shapes which represent
roads or highways, it is easier to use the Google database.
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Table 3.2: Image transformation sequence

Method # 1st Image
Transformation

2nd Image
Transformation

1 Gamma Correction None
2 Gamma Correction Blob Detection
3 Gamma Correction Threshold
4 Threshold Contour Finding
5 Threshold Entropy Detection
6 Threshold Hough Line Transform
7 Threshold Blob Detection
8 Histogram Equalization Ridge Operators
9 Histogram Equalization Entropy Detection
10 Histogram Equalization Watershed marker
11 Histogram Equalization Contour Finding
12 CGAN - CRF None
13 CAE - TVL None
14 Histogram Equalization CGAN - CRF
15 Histogram Equalization CAE - TVL

3.8.1. Results experiment A

Following a total of 15 experiments done over 4 flight radar images,the results with regards to heading
deviation, position error and the percentage of SSIM that is greater than the original pair are presented
in table 4.1.

Figure 3.27: Probability distribution function over all Methods for Experiment A
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The average of position error, as well as heading values is of interest to show the overall performance
of the experiment, not just the best indicated value. It should be noted that the heading deviation
is absolute, between calculated heading and be candidate heading. The position error is the distance
from the generated coordinate to the GPS-indicated coordinate. And, finally, of the total randomized
positions, a percentage above the original pair is calculated and presented in Fig. 3.28. All averages
are taken as integers, calculated by summing the best candidates and dividing by the amount of total
candidates. Over all parameters within the results, the lower the value, the better the performance.

Figure 3.28: All experiment points along with best candidates per experiment

Table 3.3: Average results for heading deviation, position error and SSIM values over all experiments.

Results Experiment A - Average over 4 points

Method
Absolute Heading

Deviation Position error
False

Positive

1 7 108 53%
2 6 68 52%
3 3 75 50%
4 11 46 39%
5 5 24 23%
6 4 53 67%
7 8 35 28%
8 0 0 0%
9 0 0 0%
10 6 119 38%
11 2 37 89%
12 14 126 55%
13 12 124 53%
14 12 52 45%
15 6 112 35%

From the large amount of candidates within each method , several stand out for high results.
Unfortunately, all methods employing pre-trained deep learning techniques have a poor performance,
due to the noise that was forwarded to the algorithms for segmentation. Appendix secion 4.2, shows
the results and short explanations for the three remaining images.
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3.8.2. Results experiment B

Once the top three most performing combinations of algorithms are chosen, the second experiment can
commence. This algorithms are: Method 5, Method 8 and Method 9 as taken from Table I in the
research paper. This time, a more extensive representative sample is chosen, comprising a total of 20
images. In this experiment the independent variables are randomized more strictly, in two steps. The
first step assumes the first randomization technique of radius and headings, applied to a larger variation
of radar images during the flight as shown in Fig. 3.29. Additionally, Appendix 4.1, illustrates all used
images and explains the features that can be found within.

Figure 3.29: Warshed custom markers applied to a Google satellite map, for radar image at point 1000
Within Fig. 8 it can be seen that these points are chosen as far apart as possible along the two

flights. During landing and take off, the altitude of the aircraft is too low to ensure a good reading of the
surrounding area and proper match within the five square kilometer area. As such, only points above
100 m are taken into consideration. The second step greatly increases the realism of the experiment,
only varying the heading by +/-15◦while assuming a near-perfect reading of the GPS coordinate, at 0
m.

Following this step, candidate coordinates are produced in a radius of 150 m around the original
coordinate with a modification of +/- 15◦around the correct heading. The increment for creating
randomized values for both radii and heading measurements is always one. The radius and heading
measurements can be regarded as the independent variables within the experiment. A total of 300
candidates are created,each with their own SSIM value, which will be regarded as the dependent vari-
able.Following the 2 experiments done over 20 flight radar images, Table 3.4 shows the average results
with regards to average heading deviation, average position error and percentage better candidates with
regards to the original SSIM value. The average of position error, as well as heading values is of interest
to show the overall performance of the experiment, not just the best indicated value. It should be noted
that the heading deviation is absolute, between calculated heading and best candidate heading. The
position error is the distance from the generated coordinate to the GPS-indicated coordinate. And,
finally, False positive is the percentage of candidates with a higher value for the SSIM than the one
of the indicated pair. All averages are taken as integers, calculated by summing the best candidates
and dividing by the amount of total candidates. Again, over all parameters, the lower the value, the
better the performance and averages are taken as integers. Through a quick look at the results, it
becomes obvious that the average position error is not 0, as in the previous experiment. As such, a
direct representation of these variations per image is shown in Fig. 3.30 and 3.31.
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Table 3.4: Average Results over Experiment B

Results with 0:150m range

Method
Absolute Heading

Deviation Position error
Percentage

Better

5 5 45 42%
8 1 1 14%
9 2 5 9%

Results with 0m range

Method
Absolute Heading

Deviation Position error
False

Positive

5 12 N/A 51%
8 2 N/A 2%
9 9 N/A 48%

The first set of results within table 3.4 was the initial test for the final methods. It can be seen
that in accordance with experiment A, Method 5 provides consistent results. The same is for Method
8 and Method 9, however, unlike showing a 0 integer as the position error, the final average result was
different. This is due to some images having their candidates at different distances and averaging to
small integers. Fig. 3.30 shows the best candidate for all experiment images and in order to better
understand the results in the table. It can be seen that for image 10, 16, 17 and 20, all algorithms do
not provide a suitable result. The same consistency is present for the deviation from the calculated
heading as shown in 3.31. Within the Appendix 4.1, images 10,16 and 20 are presented in order to have
a more clear view of why all methods failed to provide any meaningful accuracy. When investigating
the images, it becomes clear that they do not provide any type of structural features. Additionally, the
images present high amounts of noise as they are taken during turns. Although urban zones are present
that show highly reflective objects, the present noise does not allow for any accuracy, regardless of the
used comparison database.

Figure 3.30: Best candidate error over all images and methods up to 150m
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Figure 3.31: Deviation error from calculated heading for all methods over all experiment images up to 150m

As two methods, method 8 and 9, have a high accuracy for detecting the original candidate pair,
a final setup was created, where the range was kept at 0m while the heading was varied between +/-
15∘. Fig. 3.32 shows the results that better explains table 3.4. Here completely different results can
be observed as Method 5 and 9 completely fail with regards to accuracy. However, the consistency of
Method 8 has been maintained. As shown in chapter ??, the difference of rotation even of 1∘is hard
to detect under visual inspection. The image transformations that are applied by Method 5 and 9
unfortunately forward too much noise to effectively let the SSIM detect rotational transformations even
up to 15∘.

Figure 3.32: Deviation error from calculated heading for all methods over all experiment images to 0 m
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Finally, a look at the computational times is considered. As it can be seen in 3.33, method 5 has
the fastest time calculation. This is due to applying thresholding as a first image transformation. This
was found to be the case with all thresholding techniques, as first a binary choice is made for each
pixel, followed by the entropy detection algorithm searching within the created binary mask. Following
is Method 8, which had times between 1.1 and 1.55 s. This is a fast time with regards all methods,
mainly because ridge detection applies modification to the Gaussian of a matrix that was created by
a local histogram equalization. The higher time is also explained as the final image contains every
pixel. Method 9 however has a very long duration in the context of both experiments. This is explained
through the fact that the local histogram for both the radio as well as the vectored Google image
transform the image and makes any edges and or ridges distinct. This increases the total number of
entropy calculations.

Figure 3.33: Warshed custom markers applied to a Google satellite map, for radar image at point 1000

Overall, both experiments achieved the scope of isolating candidates that provided a high accuracy
in relation to proposed radar-GPS candidates. Within experiment A, the probability distributions
functions (PDF) 3.27 shows curios results for methods 8, 9, 10 and 11. While methods 8 and 9 were
chosen afterwards to be part of Experiment B, methods 10 and 11 were analyzed more closely. The
calculated false positive metric shown in table ??, shows that for methods 10 and 11, the PDFs skew
the perceived percentage of better results. Should the original candidate pair have a high percentage
of false positive, additional investigation would have been requird.

Unexpectedly, Method 8 had an accuracy even at 0m when large enough structural features are
presented in the image. While inspecting the participating images that can be found in Appendix ??,
it can be seen that that for images 10, 16 and 20 no large structural elements were detected. As it can
be seen, these images present mostly noise with very little features that can be robustly detected by
any methods. Interestingly, image 19 is very similar to 20, however presents a road that is more visible
and detected by the employed methods. This opens the possibility of using ridge detection and SSIM
in noisy radar images to a high degree. The result will be a mechanism that verifies GPS coordinates
to increase the reliability of all parameters.
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3.9. Conclusion
The presented document aimed at displaying all important information as well as the process of decision
making on the way to a successful research analysis. Avionics are an invaluable asset in decision making
and safety practices, with their provision of environment information. Using existing sensing systems,
such as FMCW radars, to provide new information for the avionics system becomes apparent when
analyzing the possibility of use in a similar setting to SLAR or SAR. This may allow the identification
of features and as such the placement of the aircraft within a known coordinate system. In order to do
this, a synchronization between GPS and radar information, will place the radar database into a known
framework, and ease the matching process. It becomes clear that the calculated frame rate constitutes
an issue towards the synchronization process and only varying slightly the frequency, it matches the GPS
possibility. Finally, to continue and start identifying features as well as their efficiency, a comparison
experiment is proposed, concluding with an enumeration of algorithms that were used as part of the
experiment as well as their results.

Using a perceptual metric (SSIM) to quantify image quality degradation, especially via noise in
data transmission, transformed radar images are compared to Google vectored road maps or Satellite
1 SAR vertically polarized databases. All databases are transformed via one or two transformations,
that assured that shape features such as roads or highways, or highly reflective objects are most visible.
To simulate possible GPS faults, new coordinates in an area around the the actual aircraft coordinates
were created. From there, new image candidates are proposed for comparison with the radar image.
The best candidates are taken and an error based on distance from original coordinate is calculated.
To attempt and analyze heading variations, the rotation of candidate images is also employed. Out
of all the employed algorithms, several were able to produce high accurate results that required the
addition of other experiments. While being heavily affected by noise via power and received echoes, one
algorithm provides a high degree of accuracy within the created experiments. The algorithm belonging
to M-8 is especially designed to detect blood vessels in noisy radiograms within the medical field. The
same algorithm was able of identifying the image corresponding to the GPS coordinate in most test
cases where large shape features were present representing highways. Using deep learning techniques,
pre-trained on other databases, offered the possibility to investigate how they would work in the context
of radar images that presented heavy noise.

Within the boundaries of this experiment, it still remains to be seen whether computational times
can be improved. Although it is possible to determine the position using intensity features, they
unfortunately contain noise that decreases the accuracy. As such, a preference for Google vectored
images was chosen as well as a focus on detecting structural features. The SSIM score should be increased
by utilizing the algorithm to its full capability, incorporating luminance and contrast information. To
achieve the transformations, it is necessary to take into account additional radar parameters, especially
related to power. The SSIM can be used to discriminate image quality. This means a potential for using
the SSIM to predict the amount of noise within an image and determine if it is suitable for comparison.
Additionally, varying parameters within the SSIM can also provide an answer of whether there is an
object to detect. Given a more in-depth implementation of the SSIM, it may be possible to filter the
image without the need for additional algorithms.

As the heading was deduced from successive GPS coordinates, a more qualitative method should
be employed. The overall test should verify whether the heading information is consistent with radar
information and if it can be used as a secondary measurement or input to more consistently determine
heading information. For shape detection within Google vectored maps, a simple color and grayscale
transform can be implemented to work aside the transform of the radar image. This should ease
the calculations as well as improve the SSIM output due to a direct segmentation consisting of only
highways. Due to the lack of an extensive database, no machine learning algorithms can be employed
to check coordinate information. As of this moment, the test setup can only attempt a prediction
algorithm that takes aircraft parameters as inputs and attempts to find the next image in the database
that best corresponds to a future radar image. Additionally, the test setup used within this paper
can be used to create a data base that can train machine learning algorithms to deduce position and
heading information, based on previous state information. This allows for information identification
under heavy noise conditions to ascertain whether GPS coordinates are correct, as well as for heading
information from the magnetic compass. This could be used in the future to make the aircraft a self
contained system, with no necessary outside inputs.





4
Appendix

4.1. Image pairs used from the database

Within this section, all images used in both experiments are presented as well as a short presentation
of main features found in each image.

Figure 4.1: Radar image and Google maps pair at second 900 from GPS Start

Within image 4.1, taken at a lowest acceptable altitude, several large structural features can be seen
along with some high reflections towards the right. This is an ideal image due to the low level of noise
present in the image.

49
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Figure 4.2: Radar image and Google maps pair at second 926 from GPS Start

Within image 4.1, taken just before a turn, the effects of high relative motion can be observed. Here
the Doppler velocity is increased due to the antenna moving in two dimension, instead of one along the
flight path. However, a Large structural feature can still be seen on the left of the image center.

Figure 4.3: Radar image and Google maps pair at second 932 from GPS Start

Image 4.1 presents a large structure on the right of the image center, identifying a runway. In the
center and lower part of the image, a city can be seen, where the high reflection along with the power
of the radar mask any detectable features.
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Figure 4.4: Radar image and Google maps pair at second 965 from GPS Start

Image 4.1 presents the same highway as in image 4.1, along will low level of noise due to reflections.
This makes this image a good candidate for feature identification. Within the radar image, there are
some high reflecting points which cannot be identified as structures or noise.

Figure 4.5: Radar image and Google maps pair at second 973 from GPS Start

Image 4.1 is a continuation of 4.1. Within this image, the altitude is close to its highest point and
noise can be seen to be relatively low, allowing for smaller structural features to be observed.



52 CHAPTER 4. APPENDIX

Figure 4.6: Radar image and Google maps pair at second 1000 from GPS Start

Image 4.1 is the baseline used throughout this experiment. It can be taken as the minimum ideal
case for this type of radar which presents as much structural features as possible. Furthermore, in the
center of the image, a set of highly reflective structures can be observed, alongside the effects of noise
which mask some parts of the highway.

Figure 4.7: Radar image and Google maps pair at second 1018 from GPS Start

Within image 4.1, the aircraft begins a turn and the relative Doppler velocities added by the turning
antenna allow for the largest structural feature to be observed. This was taken as proof for the possibility
of identifying features even during turns if they are large enough.
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Figure 4.8: Radar image and Google maps pair at second 1024 from GPS Start

Image 4.1 is very similar to image 4.1, only taken during the turn. This image was chosen to test
how the methods would behave during high noise detection. The same as with image 4.1 can be said,
as a long street was detected.

Figure 4.9: Radar image and Google maps pair at second 1036 from GPS Start

In image 4.1 a large structural feature can be observed to the right of the image center. Although
one of the images that presented most noise, it still identified a road well enough to provide consistent
results.
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Figure 4.10: Radar image and Google maps pair at second 1062 from GPS Start

Image 4.1 was taken during a final turn of the first phase of the flight. Within this image an
extremely large amount of noise can be observed. Under visual inspection, multiple features can be
observed near the image center, however they do not match to any structural features in the assigned
Google image.

Figure 4.11: Radar image and Google maps pair at second 1155 from GPS Start
Within image 4.1 the same situation as within image 4.1 can be observed. The image was taken shortly
after the second take off during the acquisition of data.
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Figure 4.12: Radar image and Google maps pair at second 1171 from GPS Start

Image 4.1 was selected just before the first turn of the second take-off. This makes noise due to
turning antenna apparent when compared with either image 4.1 or 4.1.

Figure 4.13: Radar image and Google maps pair at second 1189 from GPS Start

Within image 4.1 almost no features can be observed under visual inspection, apart from some
intensity reflections due to the city to the right of the image center. However, a national road that is
long enough is observed to the right of the image center in the upper part.
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Figure 4.14: Radar image and Google maps pair at second 1195 from GPS Start

In image 4.1 the same road was detected as in image 4.1 to a more accurate degree. Again it can
be seen that the reflective features caused by the city are blended in with noise, making any feature
identification for intensity unreliable.

Figure 4.15: Radar image and Google maps pair at second 1198 from GPS Start

Image 4.1 was taken just as the aircraft was about to make the second turn of the second take-off.
Again, this image solidifies the hypothesis that large enough structural features offer a high amount of
detection accuracy.
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Figure 4.16: Radar image and Google maps pair at second 1222 from GPS Start

Within image 4.1 virtually no structure or intensity feature can be observed. This is due to the
aircraft turning and caused all methods to provide a high procentage of false positives.

Figure 4.17: Radar image and Google maps pair at second 1274 from GPS Start

Images 4.1 and 4.1 are the equivalent of image 4.1 during the second flight, proving that the high
altitude offers the best resolution for image recognition and identification.
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Figure 4.18: Radar image and Google maps pair at second 1281 from GPS Start

Figure 4.19: Radar image and Google maps pair at second 1335 from GPS Start

Image 4.1 was taken during the third turn of the second take-off. A large street in the city of
Appledorn can be observed, although surrounded by intensity features and noise.
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Figure 4.20: Radar image and Google maps pair at second 1347 from GPS Start

Finally, image 4.1 was taken during the end of the fourth turn of the second take-off. Again no
features are observed. This is explained by the turning of the aircraft coupled with the highly reflective
surfaces of the urban environment that does not allow for any structural features to be detected.

4.2. Results Experiment A

Within this section, results for experiment A for all images are presented. The section starts with the
PDFs of the experiment. Overall the PDFs ??, 4.22 and 4.23 show consistency, with extra attention
to Methods 3,5,8,9,10,11. As explained in the Results chapter, Methods 10 and 11 hide additional
information, while Methods 3,5,8,9 provide a very low number of False Positives. This enforces the use
of these Methods under higher image resolutions or lower noise through image denoising techniques as
presented in the previous chapter.

Figure 4.21: Probability distribution results for Experiment A, second image
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Figure 4.22: Probability distribution results for Experiment A, third image

Figure 4.23: Probability distribution results for Experiment A, fourth image

Following are examples of Polar scattering for possible candidates, within figures 4.24, 4.25, 4.26.
This is to check and show the randomness of the experiment overall. It should be noted that the polar
configuration of the graph, makes all candidate points near the center to be greater than those towards
the outer edges. This is not to be confused with the PDF. Furthermore, best candidates are presented
in color within the image
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Figure 4.24: Polar scattering of best candidate per each experiment for Experiment A, second image

It can be seen within all figures that the distribution is equal indicating a successful implementation.
Although there is no indication of the heading deviation, this can be found in Tables 4.1, 4.2, 4.3. It
also becomes clear that most methods did not provide a consistent accuracy for all experiments, except
4.

Figure 4.25: Polar scattering of best candidate per each experiment for Experiment A, third image
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Figure 4.26: Polar scattering of best candidate per each experiment for Experiment A, fourth image
Finally, the results in tabular form show the results of each method in detail. Again Methods 5,8

and 9 had very good results.

Table 4.1: Average results for heading deviation, position error and SSIM values over all experiments,
experiment A, second image

Results Experiment A Image 2 - Average over 4 points

Method
Absolute Heading

Deviation Position error
False

Positive

1 8 7 41%
2 6 48 28%
3 5 52 8%
4 11 6 48%
5 4 0 4%
6 11 125 67%
7 8 45 52%
8 0 0 0%
9 0 0 0%
10 6 119 96%
11 9 37 98%
12 14 126 34%
13 12 124 86%
14 12 41 72%
15 6 117 99%
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Table 4.2: Average results for heading deviation, position error and SSIM values over all experiments,
experiment A, third image

Results Experiment A Image 3- Average over 4 points

Method
Absolute Heading

Deviation Position error
False

Positive

1 7 108 50%
2 6 68 55%
3 5 117 37%
4 9 11 39%
5 3 22 4%
6 4 57 55%
7 8 35 52%
8 0 0 0%
9 0 0 0%
10 7 14 96%
11 11 114 80%
12 14 119 45%
13 12 124 48%
14 10 82 87%
15 6 112 51%

Table 4.3: Average results for heading deviation, position error and SSIM values over all experiments,
experiment A, fourth image

Results Experiment A Image 4 - Average over 4 points

Method
Absolute Heading

Deviation Position error
False

Positive

1 7 108 49%
2 6 68 51%
3 3 75 7%
4 11 46 55%
5 7 18 57%
6 4 53 3%
7 8 135 94%
8 0 0 0%
9 0 0 0%
10 6 119 1%
11 2 41 98%
12 14 126 65%
13 12 124 53%
14 12 52 82%
15 6 2 4%

4.3. Radar signal polarization
The following section presents how the radar signal is polarized and which of the Sentinel 1 databases
were chosen to best fit the data that was provided by the FMCW radar. Polarization is a denomination
of the wave orientation in an electromagnetic field. It is categorized in two basis types, vertical (V)
and horizontal (H). It follows that a vertical receiver will only detect vertically polarized waves. Radar
systems are usually created in such a way that they match the polarization of both the receiver (antenna)
and the transmitter. However, it is also possible to use of different signals.

As the scatter can change the frequency of the emitted radar wave, the antenna is designed to receive
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different components of the electromagnetic wave at the same time. However, for simplified systems,
that is unnecessary. It is also possible for a radar system to have multiple level of polarization such as
(HH) for the antenna and (VV) for the receiver.

The Sentinel 1 databases acquires radar data in multiple combinations of vertical (V) and horizontal
(H). Additionally, the polarization is with regards to the wave intensity or amplitude. It should be
noted that either intensity or amplitude is polarized in either (VH) or (VV) configuration and no other
combinations with regards to wave properties. Image 4.27 depicts the results of each. Starting from
the top left, Intensity (VH) polarization, top right, Amplitude (VH) polarization, bottom left, Intensity
(VV) polarization, bottom right, Amplitude (VV) polarization. The top images are referred to as
cross-polarized, while the bottom images are like-polarized.

Figure 4.27: Polarization of Sentinel 1 database for the same region,
Intensity VV (bottom left), Intensity VH(top left), Amplitude VV(bottom-right), Amplitude VH(top-right)

It is observed that Amplitude polarisation offers behaves similarly to gamma correction, increasing
the level of structural detail presented within the image, while intensity polarization emphasizes highly
reflective objects. As vectored Google images are available of the same coordinate setting, the decision
was made to use the Sentinel intensity (VV) polarized database as it is the same as the FMCW radar
polarization and most usefull towards an analysis for methods that detect intensity-based features.
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