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Preface
A child’s enquiry and imagination knows no bounds. I clearly remember the day my mother and I were
riding in the backseat of our car while my father was driving. I was probably around eight or ten years
old. There were thick clouds and rain was imminent. ”Do you know why it rains?” she asked. Why does
the river flow? How are mountains formed? After few moments of an eight year old’s contemplation,
she helped me understand. That was the first spark that gradually became stronger and led me to
pursue my career in the field of earth sciences.

Two years ago I arrived at TU-Delft, to learn and grow in the field of Geo-sciences and Remote
Sensing. I learned about Deltares, a well known research institute for applied research in the field of
water and subsurface soon after arriving in Delft. I was aware that this institute would help to acquire
and further develop my research skills.

Looking back, I am beyond grateful for the opportunity to have worked on my thesis research with
the company on tropical cyclones. But none of this would have been possible without the guidance
and assistance of a few notable individuals.

First and foremost, I’d like to thank my supervisors, Marc Schleiss and Tim Leijnse. I want to
acknowledge Marc for his time and effort in frequently provide me with excellent and critical feedback.
I couldn’t have adhered tomy strict thesis schedule without our regular weekly meetings. Tim has taught
me a great deal about this subject, has shown me how things work at Deltares, and most importantly,
has always made me feel like I had someone to go to when I needed help. I am grateful for his
continuous guidance and support. I also want to express my gratitude to Franziska Glassmeier and
Ruud Van Der Ent for their time and feedback, which significantly improved the quality of my thesis. I
would also like to thank Robert McCall for giving me the opportunity to conduct this study at Deltares
and for always taking part in progress meetings. The Coastal Hazard team at Deltares has shown great
interest in my work and I am grateful for their support.

This masters thesis concludes my time as a student here in Delft. I owe a debt of gratitude to my
university friends for making Delft my home. I want to extend a special thanks to my family, especially
my parents, for their confidence in me and for providing me with financial support. Last but not the
least, I would like to thank my friends Adityam Rai, Antony Joseph Valiaveetil, Denzil Abraham Joy,
and Musaab Elabbassi, for their grammatical expertise while writing my thesis and for their time in
listening to technical/conceptual problems I was facing during my thesis. our Discussions helped me
to clarify certain facts, and their inquiries frequently revealed flaws in my logic that allowed me come
up with a better solution.

A. Hasan
Delft, August 18, 2022
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Summary
Torrential rain from Tropical Cyclones (TCs) can have a devastating impact, causing loss of life and
damage to property. To better understand the risk faced by coastal communities, it is important to
estimate how often a tropical cyclone could occur, how much rainfall it would produce and what the
following impact would be. One way to do this is by analyzing past events and building parametric
models to predict rainfall rates during tropical cyclone events. Parametric models are needed because
methods like full physics meteorological models are too computationally expensive to deal with the
large number of realisations needed for needed stochastic simulations. While many parametric precip-
itation models –such as the IPET, BaCla model, R-CLIPER exist, their accuracy remains limited and
many challenges still need to be overcome. The most important challenges are output overestimation
and a poor representation of rainfall over land, which results in poor skill when performing flood impact
assessments. Therefore, this thesis aims to reduce these biases by answering the following research
question:

How can the spatio-temporal biases of the D.J.Bader & J.N. Claassen (BaCla) model be
reduced, and how do they impact the parametric tropical cyclone precipitation model’s ability

to predict precipitation, associated flood hazards and damage?

To answer this question, rainfall profiles were generated based on existing parametric models for
case studies of Hurricanes Florence (2018), Matthew (2016) and Bonnie (2016) for the regions of
Charleston (South Carolina, USA), Wilmington (North Carolina, USA) and selected area of North-South
Carolina combined. The associated flooding scenario was calculated based on Super-Fast INundation
of CoastS (SFINCS) model and damage is estimated by Flood Impact Assessment Tool (FIAT) model
simulations. To check the accuracy of the modelled rainfall, values of the model were compared with
actual observed Stage IV rainfall data collected by the American National Centers for Environmental
Prediction (NCEP). Additionally, the damage related to the modelled and actual rainfall-based scenar-
ios were compared. In these comparisons it is observed that Pressure deficit (pdef) based models are
better suited for large rainfall rate and maximum sustained wind-speed (Vmax) based models shows
better results for lower rainfall scenarios. Both these Vmax and Pdef based BaCla models produced
better results compared to the benchmark IPET model.

The highest precipitation does not have a one-to-one relationship between the radius of maximum
precipitation and the radius of maximum sustainedwind speed, according to proposed alternative BaCla
model that has been developed. Additionally, various adjustments were made to the fitting coefficients
of the modified Holland wind profile fit, which is employed in the model to determine the azimuthal
average of TC precipitation.This is done to overcome the BaCla model’s overestimated and underesti-
mated rainfall for hurricane Bonnie 2016 and Matthew 2016 respectively. Finally, the improved model
is compared to the original BaCla and the benchmark IPET model. It is observed that the proposed
model improves the spatial spread of rainfall as well as better estimates the cumulative rainfall. The
improved model performed the best in the selected case study.

The new model ensures better rainfall representation over land. The overestimation and underesti-
mation of precipitation is reduced, resulting in actual cumulative rainfall mostly lying within the 5th and
95th percentile of the model prediction. By correctly predicting cumulative rainfall for three additional
hurricanes namely Alberto 2006, Charley 2004 and Hermine 2016, the model is expected to be applica-
ble to area outside of the calibration data-set with more confidence. However, no definitive conclusion
could be reached upon if the model is globally applicable as more case studies would be required in
other oceanic basins. As a concluding remark, this research project highlights the importance of being
able to generate accurate predictions to enhance the decision making and risk management of natu-
ral hazards: a model that accurately quantifies uncertainty and the impact associated with a tropical
cyclone, representing a valuable tool for better understanding flood impact.
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1
Introduction

1.1. Context
Tropical Cyclones (TCs), also known as typhoons or hurricanes, are a low pressure system that forms
over warm tropical waters, i.e., between 23.4∘North and 23.4∘South [17].TCs are known for their as-
sociated high wind speeds and heavy precipitation [19]. They have a closed wind circulation and a
defined centre, known as the eye as could be seen in fig. 1.1. The eye of a TC on one hand is a cir-
cular area that has low pressure, warm temperature, and relatively calm weather. On the other hand,
the eye wall, a ring of deep convective clouds around the eye, is usually the region where the highest
winds and precipitation intensities are observed [35].

TCs are one of the major natural disasters that affect many countries around the world. Over the
past two centuries, 1.9 million deaths have been attributed to hazards related to TCs, including strong
wind, intense rainfall, and storm surge [51]. In China, between 1983 and 2006, seven tropical cyclones
made landfall in the mainland, causing economic losses of 28.7 billion yuan (€4.06 billion) and killing
472 people on average each year [51]. Similarly, in the United States, Hurricane Harvey (2017) alone
caused 106 deaths and an economic loss of $125 billion dollars (€118.16 billion) [49].

Rainfall rates and their locations are important factors that need to be considered for risk manage-
ment. For resource planning, flooding, erosion, as well as structural risk assessments, even approx-
imate estimates can be of great help. Hence, there is an ongoing search for adopting to accurate
approaches for estimating rainfall rates and their distribution from the eye of the TC. Several dy-
namic weather models do exist like the Weather Research and Forecasting (WRF) model, which use
physically-based equations to advance an atmospheric state forward through time, simulating the likely
precipitation and other atmospheric parameters [22]. However, these dynamic models are computa-
tionally expensive [22], which is problematic because for risk assessments, lots of different scenarios
need to be modelled due to the large uncertainties involved with TCs. Also, the dynamic models re-
quire multiple data inputs that are not that easily available globally. So, faster and less computationally
intensive parametric models based on factors like stormmotion, surface wind speeds, and atmospheric
pressure were developed. A parametric rainfall model is considered to be good, if it is simple and needs
as little information as possible to achieve reasonable predictive performance at a low computational
cost.

Heavy precipitation events in both TCs and extra-tropical cyclones can contribute significantly to
floods, which might intensify in the future [12]. Various driving processes might cause coastal flooding,
for example (extreme) flooding is caused by the interplay of high sea levels, large river flows, and local
precipitation [48]. Uncertainties surrounding various flooding mechanisms must be taken into account
in order to accurately estimate the flood danger brought on by compound flooding [24].

To simulate compound floods, there are essentially three methods: simple, reduced-complexity, and
full-physics process-based models [24]. All of these methods have a compromise between computing
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2 1. Introduction

demand and accuracy. This study has used the Deltares-developed reduced-complexity Super-Fast
INundation of CoastS (SFINCS) model [24] to predict the flood hazard created by TC precipitation.
The flood predictions made by SFINCS are used for planning long-term flood mitigation strategies and
making Probabilistic Flood Risk Assessments [13]. A flexible suite of open source tools called Delft-
Flood Impact Assessment Tool (FIAT), as developed by Deltares, is used to create and execute flood
impact models that use the unit-loss approach. Delft-FIAT is a simplified damage assessment tool for
estimating direct losses to buildings, contents, and roadways as well as expenditures associated with
business disruption and road closures. It can execute a significant number of damage calculations
automatically and is designed to be quick, adaptable and connect to any hydrodynamic model [14].
This is necessary in order to compare an average expected sum to the initial capital expenditure and
ongoing operating expenses of mitigation infrastructure and strategy investments and also to make
appropriate policy recommendations [29].

Figure 1.1: Cross section of a typical hurricane [19]

This thesis was born from a collaboration between TU Delft and Deltares- a leading institute for
applied research on water and the subsurface. Deltares is performing ongoing research in tackling
these issues in order to improve the accuracy of the input to their highly developed flood models.
Deltares provides TC risk assessment for the present and the future based on their synthetic cyclone
simulator known as Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) [31], [25].

1.2. Research Objective and Question
The main objective of the research is to reduce the biases in Deltares’s currently used BaCla model
and improve the accuracy of rainfall profiles in TCs and along with that provide the associated risk
assessment. Hence, to achieve that goal the following research question is formulated:

How can the spatio-temporal biases of the BaCla model be reduced, and how do they impact
the parametric tropical cyclone precipitation model’s ability to predict precipitation,

associated flood hazards and damage?

The main research question will be answered through the use of the following sub-questions:

1. How well does the present BaCla model predict rainfall associated with TCs and what are the
main biases?

2. How can the spatio-temporal biases of the BaCla parametric models in the precipitation prediction
be reduced?

3. How good is the improved model in predicting rainfall as compared to IPET, the current practice?

4. How do different parametric tropical cyclone precipitation distributions affect the associated flood-
ing and flood damage?
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1.3. Challenges
Several parametric models do exist but each come with their own limitations. Some underestimate the
rainfall like the Rainfall- CLImatology and PERsistence (R-CLIPER) model and Parametric Hurricane
Rainfall Model (PHRaM) [28], whereas other models like IPET [6] and Modified Smith for Rainfall (MSR)
[18] model overestimate the rainfall. Calculating flood damages is the main goal of this thesis. Accurate
prediction of rainfall rates and spatial or temporal patterns in tropical cyclones over land is a crucial
component to realise this goal. Accurate prediction of rainfall rate and its spatial and temporal pattern
will be achieved by reducing the bias and uncertainty in the currently used acBaCla model, keeping in
mind the computational efficiency. This study will also focus on finding out the spatial distribution of
rainfall associated with tropical cyclones at various distances from the eye with respect to the direction
of movement of TC.

The focus of this work is on estimating flood damages. A key factor in this is the accurate repre-
sentation of rainfall rates and rainfall spatial or temporal structure in TCs.

1.4. Outline
To address the research questions above, the remainder of this report has been divided in six chapters.
Chapter 2, the literature review, conceptualizes tropical cyclone fundamental processes, followed by
a compilation of existing and currently used parametric models. Chapter 3 serves as an overview of
all data sources used. Chapter 4 describes the methods to conduct the research. This includes the
general approach, working of SFINCS and FIAT model, and an overview of case studies considered.
Chapter 5, the results and discussion, presents the performance of BaCla in case studies of Hurricane
Florence, Matthew and Bonnie which hit the US in 2018, 2016 and 2016 respectively. The flood risk
assessment based on SFINCS and FIAT model is also presented. It is followed by an interpretation
of different model variations along with highlighting what could be going wrong. Then, the proposed
improvised model is further tested here and the model is evaluated for its performance over land.
Finally, the new model is compared with the original BaCla model to assess whether the goal of the
research has been met. The work is concluded in chapter 6, providing the key findings, limitations and
future recommendations.





2
Literature Review

2.1. Tropical cyclone fundamentals
Tropical Cyclone motion is a very complex atmospheric system consisting of multi-scale and non-linear
system interaction. Some of the well-known factors that affect TC dynamics are vertical wind shear,
warm eddy core interactions, eddy angular flow convergence, dry air intrusions, eye wall cycles, low-
level temperature advection, ocean currents, etc. In the case of near land cyclonic flow, some other
factors like coastline shape, topography, soil moisture do play an important role, particularly during the
land-falling stages

TCs are one of the major cause of coastal flooding. Storm surge due to intense winds over ocean
and high sustained precipitation over land are considered to be the primary divers. Extreme precipita-
tion over land causes in-land flooding along with supporting immediate coastal flooding due to storm
surge. In some regions of the world, this can contribute to 15-17% of the total annual rainfall, where
many TCs are responsible for the highest rainfall accumulation on an hourly and daily time scale [41]

TC precipitation can be categorized into two main types, convective and stratiform. Convective
precipitation is caused by the rising hydrometeors that grow with altitude until they fall down. Stratiform
precipitation, on the other hand, is caused by weak vertical air motion and drifts down over a larger area
of the weak updraft and grows slowly due to aggregation and deposition [41]. Convective precipitation
can mostly be found in the inner eye wall, where there are high wind speeds, and stratiform precipitation
forms further away from the eye. To understand and distinguish between different tropical cyclones
Saffir–Simpson hurricane wind scale (SSHWS), formerly the Saffir–Simpson hurricane scale (SSHS),
is used. It classifies hurricanes that exceed the intensities of Tropical Depression (TD) and Tropical
Storm (TS) into five categories based on intensities of their sustained winds. A TD forms when a
low pressure area is accompanied by thunderstorms that produce a circular wind flow with maximum
sustained winds below 62 km/h. An upgrade to a TS occurs when cyclonic circulation becomes more
organized and maximum sustained winds gust between 63 km/r and 118 km/h. SSHS classification
can be refereed in the table 2.1.

Table 2.1: Saffir–Simpson hurricane scale (SSHS) classification along with TS and TD

Category
Wind Speeds

(for 1-minute maximum sustained winds)
m/s knots(kn) mph km/h

Five (major) ≥70 ≥137 ≥157 ≥252
Four (major) 58-70 113-136 130-156 209-251
Three (major) 50-58 96-112 111-129 178-208
Two 43-49 83-95 96-110 178-208
One 33-42 64-82 74-95 119-153
Tropical Storm 18-32 34-63 39-73 63-118
Tropical Depression ≤17 ≤33 ≤38 ≤62

5
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Lonfat, Marks Jr, and Chen [27] after studying azimuthal rainfall rate of 260 TCs in all basins between
1998 and 2000, where TS are categorised by winds <33 m/s, CAT12 are hurricane of category 1-2 and
CAT35 are hurricanes of category 3-5, found intense rainfall in within 100 km of the eye and intensity
of rainfall increases with the increase in wind-speed fig. 2.1 .

Figure 2.1: Azimuthal mean rain rate for different strengths in the TRMM data [27]

Furthermore, Jiang, Halverson, and Simpson [21] tested the relationship between maximum sus-
tained wind-speed and rainfall over land and over ocean. It was concluded that the correlation between
maximum wind-speed and maximum precipitation is more over the ocean as compared to land as can
be seen in fig 2.2. Therefore, there maybe a reduced model performance of parametric precipitation
model based on wind-speed over land [21]. It might also be concluded that if the model is trained and
evaluated separately for over-ocean and over-land evaluated in the same way the prediction accuracy
might increase.

Figure 2.2: Azimuthal mean rain rate for different strengths: land vs. ocean [21]
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2.2. Parametric precipitation models
Conventionally, rainfall is one of the most difficult variables to model within an atmospheric system.
The variation of the rainfall amount at a different distance from the eye of cyclones is a result of si-
multaneously interacting numerous nonlinear processes. Even the most comprehensive modelling
systems, with very detailed physics, and numerical algorithms assimilating observational data, have
limited success in estimating the rainfall intensity and location associated with the hurricane [16]. Apart
from that most of the physics based models require a lot of data that is needed to run the model which
is generally not available globally [22]. This guides us towards parametric models that makes use of
combined statistical methods and physically-relevant environmental conditions that governs formation,
movement , and intensity of TC and is much less computationally intensive. [22] A parametric pre-
cipitation model predicts precipitation based on TC parameters, such as storm motion, surface wind
speeds, atmospheric pressure etc. A good parametric rainfall model should be simple and require as
little information as possible to achieve reasonable predictive performance at a low computational cost.

Several parametric models do exist but most of them come with some limitations. R-CLIPER model
[47] and the PHRaM model [27] clearly showed a strong correlation to the amount of rainfall with max-
imum horizontal wind speed Vmax. In contrast, the IPET model (US Army Corps of Engineers) [6]
did suggest the pressure deficit Δp from the eye at a certain radius R has a linear relation with pre-
cipitation. In a 2021 TU Delft thesis written by J.N. Claassen [11], in collaboration with Deltares, titled
“Parametric Precipitation Model for Tropical Cyclone Radial Rainfall Profiles: Reducing the biases in
the Bader model [2] for the North Atlantic” a “best-fit” Frank copula approach is tested for both maximum
sustained wind speed [m/s] (vmax), and the pressure deficit [hPa] (Δp). While this method has been
able to provide an estimate of the rainfall intensity, several improvements are still required in order to
provide sufficient accuracy for the forecast.

2.2.1. IPET Model
IPET was introduced by the US Army Crops of Engineers to better evaluate hurricane protection sys-
tems. The model was based on work of Lonfat, Marks Jr, and Chen [27] and Chen, Knaff, and Marks
Jr [9]. The model computes mean rainfall intensity 𝑝𝑟(𝑅) with distance R (in km) from the hurricane
center to the point of interest and azimuth 𝛽 (in degrees) relative to the direction of motion. The sym-
metric component is estimated by assuming linear dependence of mean rainfall intensity at 𝑅𝑚𝑎𝑥 on
the central pressure deficit Δ𝑃 and fitting an exponential decay function with distance.

𝑝𝑟(𝑅) = {
1.14 + 0.12Δ𝑃 𝑟 ≤ 𝑅𝑚𝑎𝑥
(1.14 + 0.12Δ𝑃)𝑒−0.3( 𝑟−𝑅𝑚𝑎𝑥𝑅𝑚𝑎𝑥

) 𝑟 > 𝑅𝑚𝑎𝑥
(2.1)

Where pr(R) is in millimeter per hour and Δ𝑃 in millibars. This model’s inputs include the storm’s
position in terms of latitude and longitude, time, the radius of its strongest winds 𝑅𝑚𝑎𝑥, and the central
pressure deficit (Δ𝑃). The asymmetric component is computed by multiplying the symmetric mean
rainfall values by a factor of 1.5 for storm passing to the left of the sub-basin centroid (i.e. 50% more
rain on the right hand side of the storm).[6] It is important to notice that IPET based results do not have
a probabilistic estimate component.

2.2.2. BaCla Model
BaCla model is an improvement to IPET model as it does contain probabilistic estimate components.
In BaCla model 𝑝𝑚𝑎𝑥 is estimated based on copula and adapted Holland wind profiles are used to
calculated 1D rain profile. Asymmetry may or may not be added to make a 2D rain profile. The details
of the model have been discussed below.[11]

Blending of satellite and Stage IV data
As observed by Claassen [11] the spatio-temporal variation of Tropical Rainfall Measuring Mission
(TRMM) and Global Precipitation Mission (GPM) data can vary significantly. This results in limited cap-
ture of most of the tropical cyclones. Apart from that, for some time steps TC are captured partially
because the area satellite captures does not overlap with the area affected by TC.Therefore, the differ-
ence between two data frames captured the TC can of several days. To overcome this downside data
from both passive microwave sensor (TRMM Microwave Imager (TMI)/GPM Microwave Imager (GMI))
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and radar (Precipitation Radar (PR)/Dual frequency Precipitation Radar (DPR)) are used. While pas-
sivemicrowave sensors have a larger spatial coverage the data obtained from the radar is more reliable.
Apart from that, both TRMM as well as GPM are not available or become less reliable above land, and
TRMM is limited to the tropics. To overcome these limitations and recompile more reliable and frequent
precipitation data over land, the satellite data is blended with the Stage IV product.

An overview of the procedure followed by Claassen [11] to merge the satellite data with Stage IV
is provided in section 2.3. In order to combine the different data sources, Claassen [11] blended data
within a 550 km radius of the TCs eye, as this is approximately the radius of a TC. International Best
Track Archive for Climate Stewardship (IBTrACS) best track data is used to determine the maximum
sustained wind speed pressure deficit for longitude and latitude of the eye at each time step. Linear
interpolation was used to estimate the track at the time of interest as the best track data is 6 hourly.

From the longitude (𝑥𝑒𝑦𝑒) and latitude (𝑦𝑒𝑦𝑒) of the eye, points have been generated every 1
360

degrees (𝜃𝐷𝑖) and radians (𝜃𝑅𝑖) and every 10 Km in radius (R) outwards. the longitude and latitude of
each point has been calculated as follows:

𝜃𝑅𝑖 =
𝜃𝐷𝑖𝜋
180 (2.2)

𝐿𝑜𝑛𝑖,𝑗 = 𝑥𝑒𝑦𝑒 +
1
√2
(𝑐𝑜𝑠(𝜃𝑅𝑖)𝑟𝑗 − 𝑠𝑖𝑛(𝜃𝑅𝑖)𝑟𝑗) (2.3)

𝐿𝑎𝑡𝑖,𝑗 = 𝑥𝑒𝑦𝑒 +
1
√2
(𝑐𝑜𝑠(𝜃𝑅𝑖)𝑟𝑗 + 𝑠𝑖𝑛(𝜃𝑅𝑖)𝑟𝑗) (2.4)

Where 𝐿𝑜𝑛1,1 = 𝑥𝑒𝑦𝑒 and 𝐿𝑎𝑡1,1 = 𝑦𝑒𝑦𝑒
For each longitude 𝐿𝑜𝑛𝑖,𝑗 latitude point 𝐿𝑎𝑡𝑖,𝑗 associated precipitation value is calculated for both

data types of TRMM/GPM and Stage IV separately by linear interpolation. Next, each point is labelled
as above land or above the ocean by testing whether it falls within the coastline polygon provided by
MATLAB (coast.mat). Following this, the rainfall at point is selected based on the scheme in 2.3 where
𝑝𝑖,𝑗 is precipitation at 𝐿𝑜𝑛𝑖,𝑗 and 𝐿𝑎𝑡𝑖,𝑗

Figure 2.3: Data blending selection schema [11]

In step 1, the PR/DPR data is favored over TMI/GMI. If PR/DPR is not available. TMI/GMI is used.
The combination of the PR/DPR and TMI/GMI precipitation will be known as the TRMM/GPM data. A
second data set is produced by blending the TRMM/GPM data with the available stage IV data. Stage
IV data is available hourly, therefore, the precipitation is averaged according to the nearest hour. Above
land the Stage IV data is favored over the TRMM/GPM.
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Estimation of radial profiles

The azimuthally averaged rainfall rate is the mean precipitation at different radii. During the blending
process, the precipitation is already calculated at 10 km increments away from the eye for every degree,
resulting in 360 vectors. These vectors have been averaged, excluding NaN values, to obtain the mean
rainfall every 10 km. These increments have been considered as a proper resolution for the study,
ensuring computational efficiency.

Additionally, for each 10 km increment, the number of non missing values are noted, as often not
the entire TC is captured. To illustrate this consider the following examples: there are 360 data points
for every distance, hence if exactly half of the TC is being captured, this means that 180 out of 360 data
points are present at every distance. If on the other hand, 30% of the TC is captured, no points are
being captured close to the eye. As this is likely the area where the highest precipitation is expected, it
is possible that the true maximum was not captured. Consequently, taking note of the ratio of present
and missing data provides an indication of its reliability.

Parametric precipitation model

A copula is a joint multivariate distribution used to model dependence structure of two (or more) random
variables. In BaCla model Multivariate Copula Analysis Toolbox (MvCAT), a copula toolbox developed
in MATLAB is utilised to get the most appropriate copula among 26 set of copula families that describes
the best dependence structure of two variables based on performance matrix. Once the most favorable
copula is identified, the corresponding variable marginal distribution are used to sample values of 𝑝𝑚𝑎𝑥.

BaCla model finds out the relation between 𝑝𝑚𝑎𝑥 and the maximum sustained wind-speed as well as
the pressure deficit separately. Adapted Holland wind-profile is used to identify the azimuthal average
of TC precipitation using formula:

𝑝𝑟(𝑅) = (𝑝𝑚𝑎𝑥 ∗ 𝑅
𝑏𝑠𝑝

𝑒𝑥𝑝(𝑅𝑏𝑠𝑝 )
)
𝑥𝑛

(2.5)

Here, 𝑅𝑝 =
𝑅𝑝𝑚𝑎𝑥
𝑅 = 𝑅𝑣𝑚𝑎𝑥

𝑅 assuming 𝑅𝑝𝑚𝑎𝑥 = 𝑅𝑣𝑚𝑎𝑥. The fitting coefficients 𝑏𝑠 and 𝑥𝑛 has been
identified using 4 different methods named and explained in alphabetical bullet points [11].

(A) Least square fitting method is used for each of the two data sets separately.

(B) Least square fitting method for 𝑝𝑚𝑎𝑥 below and above 5mm/h separately for each data sets.

(C) 𝑥𝑛 is calculated such that the sampled 𝑝𝑚𝑎𝑥 is the curve 𝑝𝑚𝑎𝑥 by making 𝑥𝑛 = 𝑙𝑜𝑔(𝑝𝑚𝑎𝑥)
𝑙𝑜𝑔( 𝑝𝑚𝑎𝑥𝑒𝑥𝑝(1) )

, 𝑏𝑠 is
determined using least square method.

(D) 𝑥𝑛 is identified such that the samples 𝑝𝑚𝑎𝑥 is the curve 𝑝𝑚𝑎𝑥 by making 𝑥𝑛 = 𝑙𝑜𝑔(𝑝𝑚𝑎𝑥)
𝑙𝑜𝑔( 𝑝𝑚𝑎𝑥𝑒𝑥𝑝(1) )

. 𝑏𝑠 is
identified as the best fit of the area under the graph where 𝑏𝑠 is tested for a variety of samples
between 0 and 2 to find the optimal fit.

The fig 2.4 shows the performance for each fit for different precipitation strength.
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Figure 2.4: The fit from eq. 2.5 using method a, b, c and d to determine the coefficients for different precipitation magnitude.
[11]

Each of the four methods for fitting coefficients 𝑏𝑠 and 𝑥𝑛 has some limitations discussed below
alphabetically corresponding to method.

(A) The best fit for 𝑏𝑠 and 𝑥𝑛 appears to be a good fit for low 𝑝𝑚𝑎𝑥 values but is not a good fit for
samples where 𝑝𝑚𝑎𝑥 >15mm/h.

(B) It makes a distinction between 𝑝𝑚𝑎𝑥 above and below 5mm/h. This performs significantly better
for higher 𝑝𝑚𝑎𝑥 but still not the best fit.

(C) It was unsuitable for 𝑝𝑚𝑎𝑥 values under 2.8mm/h as low values of 𝑏𝑠 and 𝑥𝑛 would result in an
error resulting in extreme values of precipitation. So, an alternative radial fit was introduced for
values below 2.8mm/h, where precipitation is same pr(R) = 𝑝𝑚𝑎𝑥, low quantity, at all radii. c
performs well at larger radii and fit reaches the true 𝑝𝑚𝑎𝑥.

(D) It results in higher precipitation values for larger radii leading to overestimation of the total rainfall.
It also follows the same rainfall distribution method for rainfall less than 2.8mm/h as in c.

In Holland parameter, the coefficients of 𝑥𝑛 determines the 𝑝𝑚𝑎𝑥 of the curve, the 𝑏𝑠 coefficients controls
the slope at which the curve descends after reaching the fit’s 𝑝𝑚𝑎𝑥.
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Figure 2.5: Pressure profiles and gradient balanced wind velocity profiles for different values of Holland parameter B (bs) [10]

The model is finally tested with 𝑏𝑠 and 𝑥𝑛 calculated using method d, for its potential to reproduce
the precipitation of hurricane Florence 2018.It was observed that the Δ𝑃 based model performs best in
the particular case of Florence 2018. [11].





3
Data

The data utilized in the study are presented in this chapter. Precipitation and best track are the two
key categories of data. To get the maximum resolution and the finest depiction above land and ocean,
many data sources for precipitation were gathered by Claassen [11], almost the same has been used
in this study except IBTrACS data. Claassen [11] used Extended Best Track Data-set (EBTRK) with
a temporal resolution of 6 hours where as in this study IBTrACS data with a temporal resolution of 3
hrs are used. An overview of the data used along with their resolution is provided in Table 3.1. The
input parameters and data for SFINCS and FIAT models have been discussed in section 4.4 & 4.5
respectively.

3.1. TRMM
The TRMM was a joint mission by the U.S. National Aeronautics and Space Administration (NASA)
and the Japan Aerospace Exploration Agency (JAXA)[27]. The satellite acquired data for 17 years
in orbit from November 1997 till June 2015. This mission was specifically designed to gather tropical
precipitation data between 35∘north and south latitude [11].

The main sensors onboard TRMM are a microwave imager TMI, PR and a Visible and Infrared
Radiometer System (VIRS) to quantify the precipitation [27]. The 2A12 “TMI Profiling”, contains surface
rainfall as well as vertical hydrometeor profiles on a pixel by pixel basis from the TMI instrument data
using the Goddard Profiling algorithm GPROF2010. Surface rain is represented as the liquid portion of
precipitation and are in mm/hr. The spatial resolution is approximately 5.1 x 5.1 km, except for the data
originated before August 2001, whose resolution is 4.4 x 4.4 km due to a shift in the orbit.The 2A12
data has been acquired from the JAXA/ Earth Observation Research Center (EORC) TC database [11].

Table 3.1: Overview of the different data types and sources used in this research [11]

Product Product
type

Years
active Instrument Spatial

resolution
Temporal
resolution Source

TRMM 2A12:TMI 1997-2015 Microwave
imager 5.1 x 5.1 km varies JAXA/EORC

TC online databa

TRMM 2A25:PR 1997-2015 Precipitation
radar 4 x 4 km varies Nasa Earth Data

online database

GPM 2AGROFGMI 2015-present Microwave
imager 13 x 13 km varies JAXA/EORC TC

online database

GPM 2ADPR 1997-2015 Precipitation
radar 5 x 5 km varies Nasa Earth Data

online database

STAGE IV STAGE IV
Hourly 2002-present Radar,

gauge 4 x4 km varies EOL online
database

IBTrACS Global 1840-present - - 3-hourly NCEI NOAA
online database

13
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The vertical rainfall rate profiles are estimated by 2A25 “PR Profile”. Surface rain is represented as
the liquid portion of precipitation and are in mm/hr. The spatial resolution is 4 x 4 km.The 2A25 data
has been provided by the NASA Earth database [11].

3.2. GPM
The GPM is the advance successor of TRMM. GPM only has two instruments on board, namely the
DPR and the GMI, with the capabilities of sensing light rain and falling snow [44]. The most significant
upgrade from TRMM to GPM is its capability for a more global coverage. It was launched in February
2014 and operates in a non-sun-synchronous orbit with an inclination of 65∘north and south latitude
reach. It can capture precipitation across all hours of the day from the tropics to the Arctic and Antarctic
circle along with observing hurricanes and typhoons [44].

The 2AGPROFGMI generates surface rainfall and vertical hydrometeor profiles on a pixel by pixel
basis similar to 2A12, . However, it uses an updated version of GPROF2010, called GPROF2014.
Surface rain is represented as the liquid portion of precipitation and is also in mm/hr. It has a spatial
resolution 13 x 13 km. The 2AGPROFGMI data has been acquired from the JAXA/EORC TC database
as well [11].

The 2ADPR data originates from the GPM on board DPR. Same as 2AGPROFGMI, the surface
rain is represented in mm/hr and has a resolution of 5 x 5 km.The 2ADPR data is provided by NASA
Earth database [11].

3.3. Stage IV
Stage IV is a product of the American National Centers for Environmental Prediction (NCEP). Stage IV
is available from late 2001 on-wards. The stage-IV data-set is a mosaic of 12 contiguous United States
(ConUS) River Forecast Centers (RFCs) regionally analysed and produced. The regional analysis
completed at the RFCs uses an advanced multi-sensor analysis algorithm, and are subjected to the
gauge correction and quality control.[4]

Stage IV has a 4 x 4 km spatial and hourly temporal resolution, merging data from 140 radars and
approximately 5500 gauges over the ConUS. The data has been retrieved through the Earth Observing
Laboratory (EOL) online database [4].

3.4. IBTrACS
The IBTrACS provides location and intensity for global tropical cyclones. The aim of the IBTrACS
project is to collect the historical tropical cyclone best-track data from all available Regional Specialized
Meteorological Centers (RSMCs) and other agencies, combine different data sets into one product,
and distribute the data in formats used by the tropical cyclone community. Each RSMC forecasts and
monitors storms for a specific region and annually archives best-track data, which consist of information
on a storm’s position, intensity, and other related parameters. Files are available subset by Basin or
time period generally at an interval of 3hrs from the 1840s to present day [23].



4
Methods

The method section is divided into five parts. Section 4.1 provides an overview of the approach used.
Section 4.2 and 4.3 outlines the case study and the validation case studies, talking about the area
of interest, the TC considered and their characteristics. Section 4.4 describes the SFINCS model in
details, including the factors that it takes into account for water level estimation. Section 4.5 explains
the working principle of the FIAT model and how it assesses the flood risk.

4.1. General approach
The primary research objective of this thesis is to evaluate the effectiveness of rainfall and flood risk
prediction for different parametric models (i.e. BaCla and IPETmodel). The selected parametric models
will be making use of parameters associated with TCs like central pressure deficit, radius of maximum
wind-speed and radius of maximum precipitation as discussed in detail in section 2.2.2.

Before selecting the cyclone for the study, the area of the study must be selected. In this study, a
selected area of North-South Carolina and Georgia is considered to be a suitable fit as there is ground
data available for rainfall, high quality data for flood risk calculation and most importantly the region gets
affected by a lot by TCs. Three TCs are taken into consideration, each with very distinct characteristics
in terms of wind and rainfall rates: Matthew (2016), Bonnie (2016), and Florence (2018). The track
information like time, location and intensity for the TC is obtained from IBTrACS data. After obtaining
the track, parametric model of Holland, Belanger, and Fritz [18] is used to calculate spatially varying
wind fields with the help of Wind Enhanced Scheme (WES). Nederhoff et al. [30] relationships are
employed either to determine the most likely TC geometry or to consider geometry as a stochastic
variable [31]. Both general correlations and calibrations for various basins are available to the user. As
a result, azimuthal wind speeds are reliable. Based on Schwerdt, Ho, and Watkins [43], TC asymmetry
is taken into account and a constant inflow angle of 22∘is assumed [50].

Once the research location has been chosen and the TCs parameters have been obtained the
models and the testing parameters are selected. In the current work, IPET and the BaCla model are
used to generate rainfall, and the outcomes will be verified using high resolution stage IV data. For
pdef and vmax BaCla model both symmetric and asymmetric rainfall distribution will be analyzed.
The different percentiles for rainfall variations will be evaluated as well. After the rainfall has been
modelled, the SFINCS and FIAT models are used to asses the flooding and flood damage respectively.
The working of SFINCS and FIAT are discussed in subsequent sections. The basic workflow chart
(Fig. 4.1) attached below, shows the flow diagram of the methodology followed from selection of area
of interest and TC to running different models.

15
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Figure 4.1: A schematic workflow diagram of methodology used

Finally, the sum of total rainfall over the selected region of North Carolina, South Carolina and Geor-
gia (Which is referred as N-S Carolina at most places in this thesis) fig 4.2 is investigated along with
Charleston andWilmington.The obtained results are then evaluated for its effectiveness in representing
the real scenario, which in this case is based on calculations made using Stage IV data. The discrepan-
cies in the model are then corrected and the above mentioned steps are repeated to check the quality
of improvement.

4.2. Overview of calibration case studies
Three tropical cyclones are considered: Florence 2018, Matthew 2016 and Bonnie 2016.

Once the tropical cyclone and its year of occurrence is selected, by making use of IBTrACS data
information like pmax, vmax and Δ P are extracted. They are used as an input to run BaCla and IPET
model. For all the time steps the modeled rainfall data are calculated for different percentiles and
compared to actual stage IV data.To define the occurrence of rainfall, BaCla model uses a percentile-
based threshold since that describes rare events in the tail of statistical distribution [52]. A percentile
is a measurement that tells us what percent of the total frequency of rainfall data set that was at or
below that measure. By increasing the percentile threshold, extremes can be more clearly identified,
but it implies lower sample sizes and less reliable results [20]. For comparing the modeled and actual
amount of rainfall over-land, three locations: Charleston (South Carolina, USA), Wilmington (North
Carolina, USA) and selected region of North-South Carolina (USA) were selected as the selected TCs
pass either through or nearby these locations fig 4.2. The two smaller regions around Charleston and
Wilmington are used to study the performance of the models close to and farther away from the eye
of the storms while the bigger domain around them is useful to get a sense of the overall situation.
The smaller region are also useful in estimation of damages associated to flooding because of TCs.
To understand the actual rainfall variation to that of the modeled one we selected a large portion of
North and South Carolina as well. For Charleston and Wilmington SFINCS model and FIAT models
are further used for flooding and associated damage values.

To gain a deeper understanding of the model’s performance above land, the model has been tested
by attempting to reproduce the rainfall that precipitated during hurricane Florence 2018, Matthew 2016
and Bonnie 2016. All the three tropical cyclones are different in terms of wind speed, tracks and pre-
cipitation values. The direction of motion, area of interest considered in study and type of cyclone can
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be seen in fig. 4.2.

Figure 4.2: Different tropical cyclones selected in the area of interest

4.2.1. Florence 2018
Florence was a relatively large and slow moving TC that originated from a convectively active tropical
wave, which was accompanied by a broad low pressure system that moved off the west coast of Africa
on 30 August 2018 [34]. It made landfall as a category 1 hurricane [46] on the 14th of September at
Wrightsville Beach, North Carolina, with a sustained maximum wind speed of 145 km/hr. After landfall,
Florence’s winds steadily weakened as it moved inland, however, torrential rain continued to fall for
days. The storm produced record breaking precipitation across North and South Carolina, exceeding
the highest single storm precipitation observed in this part of the country (above 20 inches/ 508mm
at some location) [46]. As a result, nine river gauges exceeded their 1 in 500 years expected floods
and USGS reported several dams breached [34]. The flooding significantly damaged homes and other
infrastructure, resulting in an estimated $16.7 billion in damages. As Florence produced relatively large
amount of rain without being a major hurricane, and continued to produce large amount of precipitation
as it traveled inland, it serves as an interesting and challenging case for testing the accuracy of the
parametric rainfall model.

4.2.2. Matthew 2016
Matthewwas a category five hurricanewith wind speed of around 160mph or 71.52m/s on 29th Septem-
ber 2016, in the Caribbean sea. It reduced to category one hurricane with 75 mph or 33.5 m/s winds
near McClellanville, South Carolina on 8th October, 2016. It resulted in exceptionally heavy rainfall
amounting between 10(254mm) to 18(406.4mm) inches at large regions of North and South Carolina.
As soils were heavily saturated with the rain in the previous month because of hurricane Hermine,
deadly flash flooding immediately resulted. Matthew unfortunately resulted in billions of dollars of dam-
age and 32 fatalities across eastern Carolina. Matthew’s storm surge was around 6 feet(1.82m).[33].
Due to all of these factors, including the fact that it was affecting North and South Carolina, it was
chosen as the second storm to examine.
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Table 4.1: Overview of the different Tropical Cyclones considered

Tropical Cyclone Severity RVmax
[km]

Cum. Precip.
N-S Carolina
[𝑚𝑚/𝑚2]

Cum. Precip.
Charleston
[𝑚𝑚/𝑚2]

Before
landfall

After
landfall

Florence 2018 Category 2 Cat1/TS/TD 55-101 197.74 24.73
Matthew 2016 Category 2/1 Category 1 120-82 197.32 235.29
Bonnie 2016 TS TD 50-80 50.04 56.26

4.2.3. Bonnie 2016
Bonnie was an yearly out-of-season tropical storm that developed along the south east coast of USA
in May 2016. It became a tropical storm on May 28th while approaching the Gulf Stream east of Jack-
sonville, Florida. The storm reduced to a tropical depression before moving ashore at Isle of Palms,
South Carolina, but regained tropical characteristics near Cape Lookout, North Carolina as it moved
back to sea. It lead to heavy rain of around 5 inches (12.7cm) in Carolina’s and was having its track
crossing Charleston. So, it was also selected to test our model [33].

The table 4.1 provides a summary of three calibration TC that were taken into consideration.

4.3. Overview of validation case studies
To validate the effectiveness of the improved model three new tropical cyclones Alberto 2006, Hermine
2016 and Charley 2004 are selected. They have different characteristics and pass through the same
area of interest are selected. The following discussion includes a brief explanation of each of them and
the track they followed.

Figure 4.3: Different new tropical cyclones selected in the area of interest
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Table 4.2: Overview of the different Tropical Cyclones considered for verification of improved model

Tropical Cyclone Severity RVmax
[km]

Cum. Precip.
N-S Carolina
[𝑚𝑚/𝑚2]

Cum. Precip.
Charleston
[𝑚𝑚/𝑚2]

Before
landfall

After
landfall

Alberto 2006 NA TD/ET 31-60 60.22 47.35
Charley 2004 Category 1 Cat 1/TS 100-40 16.73 14.03
Hermine 2016 NA TS <20 117.71 86.76

4.3.1. Alberto 2006
Disturbed weather over Central America and the northwestern Caribbean Sea led to the formation of
Tropical storm Alberto 2006 and it produced torrential rainfall.At 0000 UTC on June 13, the cyclone
grew stronger and peaked at 60 kt, with a minimum pressure of 995 mb, about 100 n miles south of
Apalachicola, Florida. After then, the storm started to lose strength as it approached the coast, and at
around 16:30 UTC on June 13, Alberto made landfall with winds of 40 knots close to Adams Beach,
Florida. Alberto weakened as it moved deeper inland and towards the northeast. At 1200 UTC on June
14, it started to lose its tropical features over South Carolina and became extra-tropical. After moving
back over the Atlantic, it intensified into a strong extra-tropical storm about south of Nova Scotia [5].

4.3.2. Hermine 2016
Hermine 2016, a category 1 hurricane (according to the Saffir-Simpson Hurricane Wind Scale), made
landfall just east of St. Marks in Florida. Hermine hadmaximum sustained winds of 50 kt as it proceeded
northeastward just inland across Georgia, South Carolina, and North Carolina’s coasts on September
2 and early September 3. Deep-layer southwesterly shear increased dramatically during that time, and
Hermine gradually started to display non-tropical characteristics with the formation of frontal bound-
aries, resulting in an increase in the asymmetry of the convective structure. Hermine, around 1200
UTC on September 3, became extra-tropical, near Oregon Inlet, North Carolina [1].

4.3.3. Charley 2004
Hurricane Charley 2004 swiftly grew stronger, before making landfall on Florida’s southwest coast as a
Category 4 storm on the Saffir-Simpson Hurricane Scale. Despite its tiny size, Storm Charley inflicted
significant wind damage on Charlotte County, Florida, making it the fiercest hurricane to strike the
United States since Andrew in 1992. Over the Florida peninsula, there was significant damage that
was well inland. At around 1400 UTC on August 14, as a weakening hurricane with top winds of about
70 kt, Charley made landfall once more close to Cape Romain, South Carolina. Over southeastern
North Carolina, Charley quickly fell to a tropical storm [39]. The table 4.2 provides a summary of three
validation TC that were taken into consideration.

4.4. The SFINCS model
In order to get flooding scenario, several factors needs to be taken into account along with rain, such
as fluvial, wind-driven surge, tidal and waves. To take these factors into account Deltares developed
SFINCSmodel. SFINCS (Super-Fast INundation of CoastS) is based on the equations of Bates, Horritt,
and Fewtrell [3] in which several terms in the Saint-Venant equations are simplified and neglected [24].
SFINCS is the first reduced-complexity models to include all the processes that are deemed relevant for
the computation of coastal compound flooding (i.e. fluvial, pluvial, tidal, wind-driven surge and waves).

The SFINCS model is developed to efficiently simulate compound flooding events at limited com-
putational cost and good accuracy. SFINCS solves the Simplified Shallow Water Equations (SSWE)
and thus includes advection in the momentum equation. However, it can also run using the LIE (Local
Inertial Equations) without advection. Processes such as spatially varying friction, infiltration and pre-
cipitation are included. Moreover, SFINCS includes wind-driven shear and an absorbing-generating
weakly-reflective boundary is considered which are not included in other reduced-physics models.
Wave-driven flooding has so far only been modelled in those models by adding over-topping volume
sources terms from another wave model, rather than actually solving for the waves itself (e.g. Brown
et al. [7]).

SFINCS uses a text-based input file that contains relevant information regarding the model grid (grid
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spacing, and number of cells in both directions), simulation times, and various physical and numerical
input parameters. Additionally, a depth file (containing the vertical elevation of each cell) and a mask file
need to be provided. The mask file indicates which cells are active, inactive or boundary cell. Inactive
cells are the one which are located below or above certain threshold elevation. Time series for water
level boundary conditions are provided at one or more boundary points along the coast. The model
computes the water level at each boundary grid cell as the weighted average of the provided water
levels at the two nearest boundary points. This research analyzes SFINCS with both a static offshore
water level and a variable water level.

Other input files for SFINCS include those with the location and time-series of point discharges, and
spatially-varying roughness and infiltration rates. Meteorological forcing (i.e. winds and precipitation)
can be provided as spatially-uniform time-series, or in a gridded or spiderweb format, whereby the
forcing variables are provided as a function of space and time.

Figure 4.4: Schematic representation of the modelling chain used to calculate damage assessment along with different source
of uncertainty [37]. The two blue boxes are the one relevant to this thesis.

In this thesis the parameters that were controlled or changed while running SFINCS model are:
grid sizes, date and time, location of observation station for calculation of rainfall variation over time, a
mask file to crop the area of interest and tidal effects while calculating the flooding. For Charleston, a
grid size of 200 by 200 meters is used whereas for Wilmington, 100 by 100 meters is used. Different
grid sizes were employed to calculate flooding scenarios more quickly, and this little adjustment in grid
size had little impact on creating flooding scenarios or calculating damage. For the reasons described
in the section 5.5, both flooding scenarios—one taking into account tidal effects and the other without,
are taken into consideration.

4.5. The FIAT model
The Flood Impact Assessment Tool, or FIAT, is used to calculate and show the economic consequences
due to flooding [29]. FIAT is a flexible open-source tool-set, where direct damages are estimated at the
unit level (e.g. a single building or piece of infrastructure).It incorporates information about the exposed
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assets, depth damage functions, and flood inundation maps together with absolute occurrence rates
and anticipated damages from single events [38].

FIAT takes into account the probability of forcing events on a yearly basis, ranging from high or
low input amounts which occur once in a century, to replicate levels which correspond to the mean
input every year [13]. The flood inundation maps with absolute occurrence rates are overlaid with a
polygon file showing the built environment of the study area through the spatial positions of building
footprints. The polygon file roughly describes each and every building within an urban area, its use,
condition, and number of people living there. Based on the provided data, damage is calculated per
raster cell comparing the number of buildings affected to themaximum damage that can occur. Damage
raster maps for each probability are combined statistically into an expected annual damage report by
overlaying the individual raster file while taking their probability in relation to one another in account
[29]. A schematic representation of the modelling chain is used to calculate damage assessment along
with different sources of uncertainty as shown in fig 4.4.

The FIAT model also takes into account the shared socioeconomic pathways (SSPs) for predicting
the future scenario in order to calculate the damage. In this study SSP2 (i.e., the middle of the road
scenario) has been considered [15]. The associated damage has been estimated in US dollar ($).
Building data of 2012 and population data of 2019 has been used for calculations. Fig 4.5 shows
diagram of different SSP scenarios and what they stand for along with the workflow diagram of Delft-
FIAT model. Delft-FIAT is used in this study because it does an exposure assessment in addition to the
hydrodynamic analysis. Hazard data (from the SFINCS model) may be translated into monetary and
social values using this tool. This conversion may be completed in a matter of minutes and is a useful
tool for decision- and policy-makers [2].

Figure 4.5: Workflow of Delft-FIAT model[14] along with the different SSPs options[36] it provides.





5
Results and Discussion

This study will be looking at the amount of rainfall that BaCla Model suggest for 𝑝𝑑𝑒𝑓 and 𝑣𝑚𝑎𝑥 based
inputs for symmetrical and asymmetrical scenarios. The results will be compared with IPET and the
actually observed rainfall measured by gauges of Stage IV data to come to a conclusion for the effec-
tiveness of the model. This chapter will suggest possible improvements in the BaCla model and will
also look into how the improved model performs after the suggested improvements are implemented.
The improved model will be called as D.J.Bader, J.N. Claassen & A. Hasan (BaClHa) model. The
flooding scenarios using the SFINCS model and the accompanying damage using the FIAT model will
both be evaluated in relation to the amount of precipitation.

5.1. Calibration case studies
Understanding what each graph represents is crucial before looking at the case studies. In almost each
of the case studies, the cumulative precipitation map for selected area of interest will be investigated
(e.g. fig. 5.1), which will help in better understanding the spatial rainfall distribution. Difference between
modeled and observed (stageIV) based results will be compared. The spatial cumulative rainfall distri-
bution map of just pressure deficit based symmetrical model is shown in the report. To get the idea on
how the pressure deficit (𝑝𝑑𝑒𝑓) based symmetrical/asymmetrical cases and maximum sustained wind-
speed (𝑣𝑚𝑎𝑥) symmetrical/ asymmetrical model perform for different percentile (in our case 5, 50 and
95) are performing there are bar graphs plots (e.g. fig 5.2) are plotted. The bar graphs reflect the cu-
mulative amount of precipitation that occurred per unit area because of a particular TC. The bar graphs
only reflects the values for selected location and number of days for which the eye of TC was close to
the area of interest. For some of the cases there are Cumulative Distribution Functions (CDF) are also
plotted showing Pdef and Vmax symmetric and asymmetric case along with IPET, observed(Stage IV)
and 100 runs of pdef symmetric and asymmetric model with random percentile fig. 5.2.

5.1.1. Florence 2018
After following the steps as discussed in the Methodology section, at first, the cumulative rainfall over
the selected region of north south Carolina and Georgia (fig 5.1) is investigated. As discussed in section
4.2 Florence was a relatively large and slow moving tropical cyclone that made a landfall as category
1 hurricane and produced record breaking rainfall in North and South Carolina. The percentile of pdef
that captures the similar amount of cumulative rainfall per unit area as the observed (Stage IV) data
is considered. Looking at the rainfall distribution of BaCla Pdef 50𝑡ℎ percentile model and StageIV
results in the fig 5.1, we see that the BaCla model provides higher amount of rainfall for all percentiles
at a location which is at larger distance from the eye. The fig 5.1 & 5.2 shows that the model is able
to capture cumulative rainfall for the selected area of interest, but not the spread and peak amount of
rainfall. This suggests that the model needs to be improved for limiting high amount of rainfall at larger
distances from eye of TC as there is less or no rainfall at those distances in reality.

The fig. 5.2 shows that the cumulative rainfall prediction per unit area of the BaCla model broadly
agrees with the observations in the sense they lie between 30𝑡ℎ and 65𝑡ℎ percentile. However, on
average, fig (5.2), all the models, including IPET, over-estimate the rainfall. Fig 5.2 shows that as the
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percentile values increases i.e a score at or below which a given percentage of rainfall data falls, the
amount of rainfall increases. As expected, the rainfall amount increases with the increase in percentile.
This applies to both pdef based or vmax based model. The asymmetric case shows slightly higher
amount of rainfall as compared to the symmetric one. This is due to the fact that we are only examining
specific spiderweb segments that are located inside the region of interest. When the cumulative rainfall
of spiderweb is evaluated, both symmetrical and asymmetrical situations exhibit comparable values.
Overall, it looks like the BaClamodel over-estimates rainfall at large distances from the region where the
storm makes landfall, as well as far away from the eye (around 300 km away). To further investigate
the location and area based applicability of the BaCla model, the two smaller regions in Wilmington
(where Florence made landfall) and Charleston (approx 300 km away) are analyzed.

Figure 5.1: Florence 2018: N-S Carolina 50𝑡ℎ percentiles Pdef BaCla model vs observed (stage IV) cumulative precipitation.
The black line shows the track of TC, red crosses are the location of eye at different time interval, the circles represent the

radius of maximum wind-speed and the stars location of ground station at Charleston and Wilmington.

Figure 5.2: Florence 2018: N-S Carolina cumulative precipitation plot for different percentile and models along with its CDF.
The blue color stands for IPET model, pink for observed stage IV data, orange for 𝑝𝑑𝑒𝑓 symmetric, red for 𝑝𝑑𝑒𝑓 symmetric,

light green for 𝑣𝑚𝑎𝑥 symmetric and dark green for 𝑣𝑚𝑎𝑥 asymmetric model. The black and grey color are for 𝑝𝑑𝑒𝑓
symmetric and asymmetric random percentile model respectively.

When fig 5.3, 75𝑡ℎ percentile of pressure deficit pdef based precipitation at Wilmington, is compared
with stageIV based observations, it shows that the BaCla model based precipitation variation is smooth
and gradually reducing. For stageIV based data fig 5.3, there is more rainfall in the south eastern
region or near the selected station at Wilmington as compared to the other parts. Before looking into
the cumulative rainfall variation per unit area it is interesting to look how the rainfall at a particular
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station actually varied over a span of 4 days between 14𝑡ℎ of September 2018 to 17𝑡ℎ of September
2018. This was the time when the tropical cyclone was near the coast and moved inland. The fig
5.4, suggests that even the 95𝑡ℎ percentile pdef based model is not able to capture the peak amount
of rainfall. This might be because our model considers the radial mean values of rainfall whereas in
this case we are comparing it with actual rainfall at that particular location suggested by stageIV data.
IPET model based results is not able to capture any of the peaks. Random percentile pdef symmetrical
model shows variation in rainfall but still fails to capture peak. This might not be the perfect way of
comparison but will surely give an idea about the variation.

Figure 5.3: Florence 2018: Wilmington 75 percentiles Pdef BaCla model vs observed (stage IV) cumulative precipitation

Figure 5.4: Florence 2018: Wilmington precipitation plot for a particular station. The yellow, dotted red and red line shows
rainfall variation based on BaCla model, cyan represents IPET, green represents random percentile, and the black line shows

the Stage IV data over the span of 4 days.

Fig. 5.4 is the result of multiple adapted Holland wind profile, it shows that the pressure deficit
pdef based model displays gradual rainfall reduction once the peak amount of rainfall is achieved,
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which results in over estimation of rainfall for higher percentile based pdef models as shown in fig 5.5.
Maximum velocity vmax basedmodels shows slightly lower amount of rainfall in general because 𝑣𝑚𝑎𝑥
has slightly stronger relation with 𝑝𝑚𝑎𝑥. The 𝑝𝑑𝑒𝑓 based model have higher uncertainty range as a
result shows higher amount of rainfall and may act advantageous for extreme rainfall prediction [11].
IPET underestimates rainfall quite significantly, depicting almost half of the actual amount of rainfall
that occurred. Looking at the cumulative distribution function fig. 5.5 which also includes the results
of randomly selected 100 pdef symmetric and asymmetric model. The CDF shows that around 80𝑡ℎ
percentile pdef model captures the actual amount of rainfall at Wilmington. The random percentile
based results generally lie between 40𝑡ℎ to 65𝑡ℎ percentile of pdef based results.

Figure 5.5: Florence 2018: Wilmington cumulative precipitation plot for different percentile and models along with its CDF. The
blue color stands for IPET model, pink for observed stage IV data, orange for 𝑝𝑑𝑒𝑓 symmetric, red for 𝑝𝑑𝑒𝑓 symmetric, light
green for 𝑣𝑚𝑎𝑥 symmetric and dark green for 𝑣𝑚𝑎𝑥 asymmetric model. The black and grey color are for 𝑝𝑑𝑒𝑓 symmetric and

asymmetric random percentile model respectively.

Now, let’s observe how effective the model is at Charleston which is at a distance of around 300
km from the eye of TC, Florence 2018. The fig. 5.8 shows that if the same 75𝑡ℎ percentile based pdef
symmetrical model overestimate rainfall by quite a lot. So, 5𝑡ℎ percentile based results are compared.
The fig 5.6 shows that the model is providing high amount of rainfall at locations where there is less or
no amount of rainfall. It means that the model is not good at estimating the rainfall at large distance
from the eye of TC. To correct that a threshold must be introduced for distance up-to which the model
is applicable and after which it over-estimates rainfall or the variable of copula needs to corrected so it
can effectively capture the distant locations rainfall as well.

Figure 5.6: Florence 2018: Charleston 5 percentiles Pdef BaCla model vs observed (stage IV) cumulative precipitation

Fig. 5.7 shows rainfall variability over the span of 4 days based on different models and stageIV
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data at Charleston because of Florence 2018. Fig 5.8 shows the model strongly over-estimates the
total amount of precipitation in the area. This is because the peak amount of rainfall rate is less than
2.8mm/h, which causes the BaCla model to predict the same amount of rainfall across all radii as
explained in section 2.2.2.The model provides same low quantity precipitation at all radii but they ac-
cumulate over time and space, which makes the predicted cumulative rainfall per unit area to be too
large as fig 5.8 justifies. Similar results are observed for IPET or BaCla pdef based and vmax models.
Fig 5.8 shows the CDF of symmetrically or asymmetrically selected random percentile values in 100
runs lies between the 40𝑡ℎ to 90𝑡ℎ percentile of percentile based observations.

Figure 5.7: Florence 2018: Charleston precipitation plot for a particular station

Figure 5.8: Florence 2018: Charleston cumulative precipitation plot for different percentile and models along with its CDF

Overall the insights on model performance based on Florence 2018 case study are as follows:
1. Model over-estimates rainfall at larger distance from eye of TC.
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2. When the peak amount of rainfall is less than 2.8 mm/hr, it provides equal high amount of rainfall
at all radii.

3. Peak amount of rainfall is not captured by the model and after reaching the peak value of rainfall
it shows a gradual fall.

4. IPET as currently used standard method is not good enough for smaller areas of interest, as it
highly over estimates rain at Charleston and underestimates in Wilmington. For larger area like
that of North and South Carolina is can provide rainfall near by the actual one.

5. 100 randomly selected percentile based rainfall model is neither able to capture Charleston nor
Wilmington.

5.1.2. Matthew 2016
Moving forward, for Matthew as well, the first thing investigated is rainfall distribution over the selected
region of North Carolina, South Carolina and Georgia. As discussed in section 4.2 Matthew was a cat-
egory five hurricane that reduces to category one hurricane with wind-speed of around 33.5 m/s near
south Carolina and results in exceptionally heavy rainfall. Fig 5.9 shows that the maximum amount of
rainfall is concentrated from coast to more in-land based on observed stageIV data . When it is com-
pared with the model based results, fig 5.9 shows that even for 95𝑡ℎ percentile pdef based model the
maximum amount of rainfall is concentrated more within or nearby the radius of maximum wind speed
and not moving more into in-land. Even the amount of rainfall that the model estimates it quite less than
what actually occurred based on gauges of stageIV data. Fig. 5.9 shows that the model based precipi-
tation variation is smooth and gradually reduces which is not the case with stageIV based observation.
StageIV based data suggests two separated regions of intense rainfall. This kind of performance might
be because of assumption in adapted Holland wind-profile [equation 2.5], that maximum amounts of
precipitation occurs at radius of maximum wind speed or radius of maximum pressure deficit. It is also
assumed that radius of maximum wind speed is equal to the radius of maximum precipitation. This
suggests that the assumption of radius of maximum wind speed is equal to radius of maximum pre-
cipitation must be re-investigated. It is also possible that the higher amount of rainfall, more in-land is
because of other factors like land surface friction that were not taken into account.

Figure 5.9: Matthew 2016: N-S Carolina 95𝑡ℎ percentiles Pdef BaCla model vs observed (stage IV) cumulative precipitation.
The black line shows the track of TC, red crosses are the location of eye at different time interval, the circles represent the

radius of maximum wind-speed and the stars location of ground station at Charleston and Wilmington.

When the cumulative rainfall per unit area (fig 5.10) is observed, the model predictions does not
agree with the Stage IV observations, as the stageIV result is far more than even the 95𝑡ℎ percentile
based calculation of the BaClamodel. Even IPETmodel highly underestimates the rainfall as compared
to actual stageIV based observations. As expected when the percentile values increases the rainfall
increases but that still remains highly under actual values, this might be because BaCla model is not
able to capture the rainfall more in-land. The BaClamodel considers the radius of maximumwind-speed
to be the radius of maximum precipitation which might not be true in all cases. Random percentile
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based results still lies between 40𝑡ℎ and 65𝑡ℎ percentile of percentile based model runs (fig 5.10). To
investigate the applicability of the BaCla model for a smaller area of study, Charleston is selected. It is
nearby the coast from where the track of Matthew 2016 crosses.

Figure 5.10: Matthew 2016: N-S Carolina cumulative precipitation plot for different percentile and models along with its CDF.
The blue color stands for IPET model, pink for observed stage IV data, orange for 𝑝𝑑𝑒𝑓 symmetric, red for 𝑝𝑑𝑒𝑓 symmetric,
light green for 𝑣𝑚𝑎𝑥 symmetric and dark green for 𝑣𝑚𝑎𝑥 asymmetric model. The black color is for 𝑝𝑑𝑒𝑓 symmetric random

percentile model.

When fig. 5.11, 95𝑡ℎ percentile of pdef based precipitation at Charleston is compared with actual
stageIV based results, it is observed that for stageIV based results, the rainfall is heavily concentrated
in a smaller south-western region whereas the model based results. BaCla shows a gradual reduction
in rainfall from the coast to more inland.

Figure 5.11: Matthew 2016: Charleston 95𝑡ℎ percentiles Pdef BaCla model vs observed (stage IV) cumulative precipitation

Looking at the fig 5.12 that shows the variation of rainfall at a particular station in Charleston over
the span of 2 days and 6 hours when the TC is nearby, it is detected that the parametric models merge
the three peaks of stageIV based observation into one for almost all the cases but the rise and fall
of peaks are gradual and spread contrary to actual rainfall.This suggests that the models are good at
capturing the highest peak amount of rainfall but not as effective in detecting all the peaks. This might
be because of adapted Holland wind profiles being used.
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Figure 5.12: Matthew 2016: Charleston precipitation plot for a particular station. The yellow, dotted red and red line shows
rainfall variation based on BaCla model, cyan represents IPET, green represents random percentile, and the black line shows

the Stage IV data over the span of 2 days.

Fig. 5.13 shows the cumulative rainfall variability over the span of 2 days and 6 hours because
of Matthew 2016 at Charleston. The model generally underestimates the cumulative rainfall per unit
area. This might be because of capturing just one peak amount of rainfall by the model as it is based
on adapted Holland wind profile or because of the radius of maximum wind speed is considered to be
same as radius of maximum precipitation which is limiting the amount of rainfall more in-land. IPET still
underestimates the rainfall by almost half of the actual one. The CDF of randomly selected percentile
values in 100 runs for 𝑝𝑑𝑒𝑓 symmetric model lies between 25 to 90 percentile of percentile based
observations fig 5.13.

Figure 5.13: Matthew 2016: Charleston cumulative precipitation plot for different percentile and models along with its CDF.
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Over-all the insights on model performance based on Matthew 2016 case study are as follows:

1. Model under-estimates rainfall at larger distance from eye of TC. Perhaps assuming that the
radius of maximum wind speed and radius of maximum precipitation are the same might not
always be true.

2. The model just tries to capture one peak amount of rainfall and after reaching the peak value of
rainfall it shows a gradual fall.

3. IPET always underestimates the amount of rainfall.

4. 100 randomly selected percentile based rainfall model is neither able to capture N-S Carolina nor
Charleston.

5.1.3. Bonnie 2016
Finally, for Bonnie 2016, the rainfall variation was investigated for selected regions of North Carolina,
South Carolina and Georgia (fig 5.14). As discussed in section 4.2 Bonnie was a slow moving TC that
became tropical storm and then tropical depression while it was near the coast. It resulted in light and
spread rainfall based on stageIV observations (fig 5.14) but as discussed earlier, when the amount of
rainfall is less than 2.8 mm/hr, the model provides max of lower amount of rainfall spread over the radii.
Therefore, even 5 percentile 𝑝𝑑𝑒𝑓 symmetric BaCla model shows higher cumulative rainfall evenly
spread over the region. So, it becomes a must to correct the amount of rainfall that the BaCla model
predicts for the scenarios where the highest amount of rainfall is less than 2.8mm/h .

Figure 5.14: Bonnie 2016: N-S Carolina 5 percentiles Pdef BaCla model vs observed (stage IV) cumulative precipitation. The
black line shows the track of TC, red crosses are the location of eye at different time interval, the circles represent the radius of

maximum wind-speed and the stars location of ground station at Charleston and Wilmington.

Looking at the cumulative rainfall 5.15, as expected most of the model based results overestimates
the amount of rainfall than the actual one, except the 5 percentile based results of maximum velocity
vmax based model. The CDF shows an interesting effect of cumulative precipitation when the peak
amount of rainfall is less than 2.8mm/h. The 65𝑡ℎ percentile maximum velocity vmax based BaCla
model shows higher cumulative rainfall than the 85 or 95𝑡ℎ percentile case. This is because of the
cumulative effects of less that 2.8mm/hr of peak rainfall. Similar is the case with 𝑝𝑑𝑒𝑓 based 5 and 25
percentile based observations. To investigate the applicability of the BaCla model for a smaller area of
study, Charleston is selected. It is nearby the coast from where the track of Bonnie 2016 crosses.
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Figure 5.15: Bonnie 2016: N-S Carolina cumulative precipitation plot for different percentile and models along with its CDF. The
blue color stands for IPET model, pink for observed stage IV data, orange for 𝑝𝑑𝑒𝑓 symmetric, red for 𝑝𝑑𝑒𝑓 symmetric, light
green for 𝑣𝑚𝑎𝑥 symmetric and dark green for 𝑣𝑚𝑎𝑥 asymmetric model. The black color is for 𝑝𝑑𝑒𝑓 symmetric random

percentile model.

When fig. 5.16, 50𝑡ℎ percentile of symmetric 𝑝𝑑𝑒𝑓 based precipitation at Charleston is compared
with Stage IV based results, the figures suggest high amount of gradually reducing rainfall predicted by
the model. Looking at fig. 5.17 that shows the variation of rainfall at a particular station in Charleston
over the span of 4 days between 29𝑡ℎ May and 2𝑛𝑑 June 2016 when the TC is nearby, it is detected that
the parametric models fails to capture the peaks of stageIV based observation and shows continuous
high amount of rainfall in almost all the cases. This suggests that the models is not good at capturing
the highest peak amount of rainfall when the peak amount of rainfall is low. So it must be looked at
if 2.8 mm/h threshold is the right value above which adapted Holland wind profile works fine or the
value needs to be changed. As the model is based on adapted Holland wind profile it shows one peak
and then gradual reduction in rainfall. The random case as expected remains random and can show
random distribution for different runs.

Figure 5.16: Bonnie 2016: Charleston 5 percentiles Pdef BaCla model vs observed (stage IV) cumulative precipitation
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Figure 5.17: Bonnie 2016: Charleston precipitation plot for a particular station. The yellow, dotted red and red line shows
rainfall variation based on BaCla model, cyan represents IPET, green represents random percentile, and the black line shows

the Stage IV data over the span of 4 days.

Fig. 5.18 shows the cumulative rainfall variability over the span of 4 days because of Bonnie 2016
at Charleston. The model strongly overestimates the cumulative rainfall in the area. This might be
because of the constant high amount of rainfall distribution assumption of BaCla model for lower peak
amount of rainfall. IPET also overestimates the rainfall by almost 10 times of the actual one. The CDF
of randomly selected percentile values in 100 runs for 𝑝𝑑𝑒𝑓 symmetric model lies between 30𝑡ℎ to 90𝑡ℎ
percentile of percentile based observations.

Figure 5.18: Bonnie 2016: Charleston cumulative precipitation plot for different percentile and models along with its CDF
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Over-all the insights on model performance based on Bonnie 2016 case study are as follows:

1. Model over-estimates rainfall even at location near to the eye of TC.

2. When the peak amount of rainfall is less than 2.8 mm/h it provides equal high amount of rainfall
at all radii.

3. Peak amount of rainfall is not captured by the model and after reaching the peak value of rainfall
it shows a gradual fall.

4. IPET always overestimates the amount of rainfall.

5. 100 randomly selected percentile based rainfall model is neither able to capture N-S Carolina nor
Charleston.

5.1.4. Overall rainfall prediction
To summarize the insights over the 3 hurricanes together:

• BaCla model overestimates the amount of rainfall in cases where the peak amount of rainfall is
less than 2.8mm/h because of uniform rainfall assumption.

• The appropriate threshold for using method D (best fit area under the total rainfall curve method)
to get fitting coefficients may not be 2.8 mm/hr (section 2.2.2).

• Radius of maximum wind-speed not necessarily always equal to radius of maximum precipitation.

• Peak amount of rainfall not necessarily always captured by the model.

• Based on the location and scenarios the models over or underestimates the amount of cumulative
rainfall.

• For tropical cyclones of category 1 or above the model underestimates the cumulative amount of
rainfall whereas for low wind-speed Tropical storms and tropical depressions it overestimates the
amount of rainfall based on current study.

• In general, randomly selected percentile based rainfall model is neither suitable to capture rainfall
for smaller region nor for larger area of interest.

5.2. Improved Model
Based on the insights obtained by studying three different case studies, three major factors that are
decided to be targeted for improvement of the model are:

1. The validity of the assumption that the radius of maximum wind speed is equal to the radius of
maximum precipitation based on available data.

2. BaCla model’s consideration for providing equal high value for amount of rainfall for the cases
when the peak amount of rainfall is less than 2.8mm/h, which might be leading to a too high
cumulative amount of rainfall.

3. The appropriate threshold for using method D (best fit area under the total rainfall curve method)
to get fitting coefficients may not be 2.8 mm/hr (section 2.2.2).

5.2.1. Relation between radius of maximum wind-speed and radius of maximum
precipitation

The average radius of maximum precipitation based on blended data are plotted with the radius of
maximum wind-speed based on available IBTrACS data for 53 separate tropical storms (fig. 5.19).For
the selected tropical there were 220 time steps with the radius of maximum wind-speed and stageIV
based the radius of maximum precipitation. Out of those observation 170 time steps were selected
for which the radius of maximum precipitation was less than 300 km from the eye based on the study
of Lonfat et al. [28], Jiang, Halverson, and Simpson [21] as well as Bader [2]. The above mentioned
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studies suggested that maximum amount of precipitation generally occurs within 300 km from the eye of
tropical cyclones fig. 2.1, 2.2. So, the cases where the maximum amount of precipitation is farther than
300 km are removed and a linear curve was fit along with polynomial fit of order 2, 3 and 4 for the values
fig. 5.19(Appendix A). The equation 5.1 of the linear fit obtained is mentioned below. In equation y is
radius of maximum precipitation and x is the radius of maximum wind-speed. The equation suggests
that when the radius of maximumwind-speed is zero the radius of maximum precipitation is 34.7867km.
Which is almost equal to the upper limit of the radius of the eye of most of the Tropical Cyclone (Average
radius of eye is in range of 16.1 to 32.2 km) [32]. The equation also suggests what when the radius
of maximum wind speed is around 96km then it is equal to radius of maximum precipitation. Above
this value the peak amount of rainfall occurs inside the radius of maximum precipitation based on the
simple linear equation considered. In extremely powerful storms, the inner eye-wall dissolves and is
replaced by the outer eye-wall during an eye-wall replacement cycle. When this occurs, the intensity
of a hurricane may momentarily decrease before temporarily regaining power when the new outer
eye-wall’s diameter reaches the size of the old eye-wall [45].The reason for higher amount of rainfall
inside or outside of the eye for a TC having radius less or more than 96 km, could be attributed to the
dissipation of inner eye-wall resulting in outer eye-wall circling the eye as occurred in case of super
Typhoon Winnie 1997 [40]. There is less evidence available to support high rainfall inside the eye of
TC due to a lack of literature available on the rainfall distribution pattern during an eye-wall replacement
cycle. Rainfall distribution pattern during an Eye-wall replacement cycle based on few literature studies
can be found in appendix D.

𝑦 = 0.6383𝑥 + 34.7867 (5.1)

Figure 5.19: Radius of maximum sustained wind-speed vs radius of maximum precipitation

The Gaussian Model probability PDF is presented for the given data since the 𝑅2 values are rel-
atively low (fig. 5.20). The Gaussian model is considered as that is the most common distribution in
climatology (Central Limit Theorem).The linear fit is drawn in magenta, and each point for the radius of
maximum wind-speed with the highest chance of occurrence for the radius of maximum precipitation
is plotted in red. The graph 5.20 suggest the linear fit, and the points of highest probability runs almost
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with same slope and different Y intercept. The Y intercept value for linear fit it 34.7 km whereas for the
Gaussian model it is 18.1 km. After the point where the radius of maximum wind-speed is greater than
60 km the probability curve behaves differently. This might be because of less availability of data for
the extreme values. But this method appears to be a promising option with more data.

Figure 5.20: Radius of maximum sustained wind-speed vs radius of maximum precipitation with contour lines of Gaussian
model PDF

In this study linear fit is considered to keep model simple. As there was less data available for radius
of maximum wind-speed greater than 80km. So, linear fit appeared to be a less biased fit.

Based on the equation 5.1 the relation between radius of maximum wind-speed and radius of max-
imum precipitation, the BaCla Model was tested again for Matthew as it was the case where it was
observed that most of the precipitation was extending quite in land whereas the model based precip-
itation was concentrated over the coast. The changes in Rmax values for precipitation increased the
spread of rainfall and that almost compensated for the cumulative amount of rainfall as well (fig. 5.21d
and table 5.5). The relation resulted in reduction in spread of rainfall when the radius of maximum
wind-speed is more than 96 km which is visible in few time steps of Florence 2018 (fig. 5.21b and
Bonnie 2016 table 5.4& 5.1). For Florence where the radius of maximum wind-speed is almost near to
100km the results are almost similar to that of BaCla model results (fig. 5.21a and table 5.6).

5.2.2. Fitting coefficient for cases where peak amount of rainfall is less than
2.8mm/hr

The case studies also suggested that when peak amount of rainfall is less than 2.8mm/hr, the BaCla
model providing equal high amount of rainfall for all area inside the spiderweb is not suitable (fig.
5.21c and table 5.3).This was resulting in a very high amount of rainfall (table 5.3). So, method A
(least square fitting section 2.2.2) of curve (fitting fig. 2.4) is tried for capturing peak amount of rainfall
below 2.8mm/hr and the performance of the model is tested. The changes resulted in better capturing
cumulative rainfall as visible in fig. 5.21c and table 5.3. These two changes in the parent BaCla model
helped to improved the model a lot but still there were cases where the amount of rainfall was just a bit
higher than 2.8mm/h and method D for curve fitting was implemented in adapted Holland wind profile
resulting in high amount of cumulative precipitation specifically for low wind speed TC, for example in
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case of Bonnie 2016 (fig. 5.21f table 5.1).

(a) (b)

(c) (d)

(e) (f)

Figure 5.21: Radial Rainfall and wind-speed variation of different TCs for different percentile based on different models. (a)
Florence 2018: Radial Rainfall and wind-speed variation for 50𝑡ℎ percentile (b) Florence 2018: Radial Rainfall and wind-speed
variation for 50𝑡ℎ percentile (c) Florence 2018: Radial Rainfall and wind-speed variation for 5 percentile (d) Matthew 2016:
Radial Rainfall and wind-speed variation for 95𝑡ℎ percentile (e) Matthew 2016: Radial Rainfall and wind-speed variation for 5

percentile (f) Bonnie 2016: Radial Rainfall and wind-speed variation for 5 percentile

5.2.3. Threshold 2.8mm/hr vs 5mm/hr
To prevent the high amount of rainfall for cases where peak amount of rainfall is just above 2.8 mm/hr,
it is tested that if a threshold of 5mm/hr performs better than of 2.8mm/hr peak amount of rainfall as
considered in case of method B (separate least square fitting for rainfall above and below 5mm/hr)
but with method A(least square fitting). This was done instead of just following method B, as method
A shows less or no rainfall for larger distances for low 𝑝𝑚𝑎𝑥 values contrary to B that shows higher
amount of rainfall for larger distances (fitting fig. 2.4). This is one of the problem that this thesis is trying
to address.
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Table 5.1: An overview of the various modifications made to the BaCla model for Bonnie 2016 (Charleston)

Bonnie 2016 (Charleston)

Different model
improvements

Symmetric pressure deficit model-based cumulative
rainfall for different percentile per unit area (𝑚𝑚/𝑚2) IPET

(𝑚𝑚/𝑚2)
Actual

(𝑚𝑚/𝑚2)5% 25% 50% 75% 95%
Only precipitation
Rmax changed 148.47 153.40 254.12 428.35 863.19

Instead of const.
using method A fit
for peak rainfall

45.10 93.29 256.29 429.15 861.32

198.08 56.26Using method A fit
for peak rainfall
below 5mm/hr

44.83 78.19 148.80 430.22 866.49

All three changes
together 44.68 78.62 149.19 428.54 868.31

Previous BaCla
model 149.31 163.54 259.36 429.03 865.53

Table 5.2: An overview of the various modifications made to the BaCla model for Matthew 2016 (Charleston)

Matthew 2016 (Charleston)

Different model
improvements

Symmetric pressure deficit model-based cumulative
rainfall for different percentile per unit area (𝑚𝑚/𝑚2) IPET

(𝑚𝑚/𝑚2)
Actual

(𝑚𝑚/𝑚2)5% 25% 50% 75% 95%
Only precipitation
Rmax changed 27.17 67.11 118.67 196.94 395.59

Instead of const.
using method A fit
for peak rainfall

16.29 44.01 74.69 126.58 260.12

116.49 235.29Using method A fit
for peak rainfall
below 5mm/hr

15.88 41.12 74.27 126.43 259.43

All three changes
together 24.05 69.23 119.18 190.94 392.84

Previous BaCla
model 14.55 41.76 73.82 126.37 253.32

Table 5.3: An overview of the various modifications made to the BaCla model for Florence 2018 (Charleston)

Florence 2018 (Charleston)

Different model
improvements

Symmetric pressure deficit model-based cumulative
rainfall for different percentile per unit area (𝑚𝑚/𝑚2) IPET

(𝑚𝑚/𝑚2)
Actual

(𝑚𝑚/𝑚2)5% 25% 50% 75% 95%
Only precipitation
Rmax changed 97.34 186.41 316.73 510.63 1010.92

Instead of const.
using method A fit
for peak rainfall

39.05 188.41 305.18 487.88 966.36

246.15 24.73Using method A fit
for peak rainfall
below 5mm/hr

45.62 95.84 304.12 485.38 942.67

All three changes
together 49.90 106.28 312.34 513.55 992.97

Previous BaCla
model 96.29 188.84 302.77 490.31 951.64
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Table 5.4: An overview of the various modifications made to the BaCla model for Bonnie 2016 (N-S Carolina)

Bonnie 2016 (N-S Carolina)

Different model
improvements

Symmetric pressure deficit model-based cumulative
rainfall for different percentile per unit area (𝑚𝑚/𝑚2) IPET

(𝑚𝑚/𝑚2)
Actual

(𝑚𝑚/𝑚2)5% 25% 50% 75% 95%
Only precipitation
Rmax changed 139.49 116.08 153.68 286.40 608.58

Instead of const.
using method A fit
for peak rainfall

34.57 55.07 173.76 311.39 648.24

173.76 50.04Using method A fit
for peak rainfall
below 5mm/hr

34.41 65.32 117.50 313.31 655.99

All three changes
together 33.28 63.84 109.32 286.63 613.20

Previous BaCla
model 140.26 127.99 176.09 311.50 654.18

Table 5.5: An overview of the various modifications made to the BaCla model for Matthew 2016 (N-S Carolina)

Matthew 2016 (N-S Carolina)

Different model
improvements

Symmetric pressure deficit model-based cumulative
rainfall for different percentile per unit area (𝑚𝑚/𝑚2) IPET

(𝑚𝑚/𝑚2)
Actual

(𝑚𝑚/𝑚2)5% 25% 50% 75% 95%
Only precipitation
Rmax changed 7.61 26.11 50.46 87.80 184.04

Instead of const.
using method A fit
for peak rainfall

3.90 13.92 27.22 48.06 102.71

68.96 197.32Using method A fit
for peak rainfall
below 5mm/hr

8.76 13.29 26.94 48.38 102.23

All three changes
together 14.47 26.66 50.05 84.84 182.64

Previous BaCla
model 3.39 13.46 26.63 48.45 103.99

Table 5.6: An overview of the various modifications made to the BaCla model for Florence 2018 (N-S Carolina)

Florence 2018 (N-S Carolina)

Different model
improvements

Symmetric pressure deficit model-based cumulative
rainfall for different percentile per unit area (𝑚𝑚/𝑚2) IPET

(𝑚𝑚/𝑚2)
Actual

(𝑚𝑚/𝑚2)5% 25% 50% 75% 95%
Only precipitation
Rmax changed 115.26 183.33 315.02 513.50 1020.39

Instead of const.
using method A fit
for peak rainfall

45.82 183.57 304.39 490.43 978.10

255.61 197.74Using method A fit
for peak rainfall
below 5mm/hr

49.69 101.22 303.11 488.37 953.91

All three changes
together 54.11 115.75 311.36 515.43 1003.30

Previous BaCla
model 109.58 183.06 302.13 492.30 963.08
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Making change in threshold from 2.8mm/h to 5mm/h resulted in better capturing of cumulative rain-
fall for Bonnie 2016 (fig. 5.21f) and Matthew 2016 (fig.5.21e, table 5.1 & 5.2). Combining these three
changes together is expected to result in an improved model that should be able to capture the cumu-
lative amount of rainfall for all three previously consider case studies along with three new randomly
selected TCs. The results of these three changes together and individually are discussed in the tables
below along with old BaCla model, IPET and observed (StageIV) results for calibration TCs.

5.3. Validation: Previously considered TC
After making the above mentioned three changes we obtain a new improved model. The new model
will be refereed as BaClHa in the coming sections. In this section, the BaClHa model’s performance is
compared to the BaCla model.

5.3.1. Florence 2018
N-S Carolina
For Florence 2018 as in the BaCla model, the BaClHa model is able to capture cumulative precipitation
(fig.5.23) but now the spread of precipitation is better captured (fig.5.22). For N-S Carolina the BaCla
𝑝𝑑𝑒𝑓 symmetric mode model predicts 183.06𝑚𝑚/𝑚2 and 302.13𝑚𝑚/𝑚2 of precipitation for 25𝑡ℎ and
50𝑡ℎ percentile. The BaClHa 𝑝𝑑𝑒𝑓 symmetric mode model on the other hand predicts 115.75 𝑚𝑚/𝑚2
and 303.11 𝑚𝑚/𝑚2 of precipitation for 25𝑡ℎ and 50𝑡ℎ percentile (table:5.6). The actual amount of
precipitation based on StageIV data is 197.74 𝑚𝑚/𝑚2. So, both model are able to capture cumulative
rainfall but the spread in range of rainfall is larger in BaClHa. This is because the BaClHa model has
reduced the high amount of precipitation that BaCla showed larger distance from the eye of TC. The
fig. 5.23 shows that the 95𝑡ℎ percentile cumulative rainfall per unit area in BaClHa model is slightly
higher as compared to BaCla. This might-be because of increase in spread of rainfall for the cases
where the radius of maximum wind-speed is less than 96km/hr as discussed in section 5.2.

(a) (b)

(c)

Figure 5.22: Florence 2018: Cumulative precipitation at selected regions of North South Carolina (a) Observed (Stage IV)
cumulative precipitation (b) BaCla model cumulative precipitation for 50𝑡ℎ percentile (c) Improved model (BaClHa) cumulative

precipitation for 50𝑡ℎ percentile
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(a) (b)

Figure 5.23: Florence 2018: Cumulative precipitation for different model at selected regions of N-S Carolina (a) BaCla model
results (b) Improved model (BaClHa) results

Charleston
The figure 5.24 shows the BaClHa model does help in capturing the spread of rainfall but the reduction
is still gradual not as sharp as it is in StageIV based observations. The BaClHa model is not able to ef-
fectively capture the cumulative amount of rainfall at Charleston (fig. 5.25) but has improved the values
as compared to BaCla. The BaCla 𝑝𝑑𝑒𝑓 symmetric mode model predicts 96.29 𝑚𝑚/𝑚2 of precipita-
tion whereas the BaClHa model suggest 49.90 𝑚𝑚/𝑚2 of precipitation for 5 percentile (table:5.3).The
actual amount of precipitation based on StageIV data is 24.73 𝑚𝑚/𝑚2.

(a) (b)

(c)

Figure 5.24: Florence 2018: Cumulative precipitation at Charleston (a) Observed (Stage IV) cumulative precipitation (b) BaCla
model cumulative precipitation for 5 percentile (c) Improved model (BaClHa) cumulative precipitation for 5 percentile
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(a) (b)

Figure 5.25: Florence 2018: Cumulative precipitation for different model at Charleston Carolina (a) BaCla model results (b)
Improved model (BaClHa) results

Wilmington
The BaClHa model is able to completely capture the cumulative amount of rainfall at Wilmington (fig.
5.27) but has slightly improved the results as compared to BaCla. The BaClHa model predicts sightly
higher amount of rainfall per unit area 𝑚𝑚/𝑚2 due to which 𝑣𝑚𝑎𝑥 based models are able to capture
the actual cumulative rainfall. The figure 5.26 shows the BaClHa model is not that effective in capturing
the peak amount of rainfall and exact spatial distribution of rainfall as observed based on StageIV data.
This is because the symmetric model is being considered and the model considers the radial mean
amount of rainfall to capture the peak amount of rainfall as discussed in earlier.

(a) (b)

(c)

Figure 5.26: Florence 2018: Cumulative precipitation at Wilmington (a) Observed (Stage IV) cumulative precipitation (b) BaCla
model cumulative precipitation for 75 percentile (c) Improved model (BaClHa) cumulative precipitation for 75 percentile
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(a) (b)

Figure 5.27: Florence 2018: Cumulative precipitation for different model at Wilmington Carolina (a) BaCla model results (b)
Improved model (BaClHa) results

5.3.2. Matthew 2016
N-S Carolina

For Matthew 2016, contrary to BaCla model, the BaClHa model is almost able to capture cumulative
precipitation (fig.5.28) and the spread of precipitation is better captured (fig.5.29). For N-S Carolina the
BaCla 𝑝𝑑𝑒𝑓 symmetric mode model predicts 103.99 𝑚𝑚/𝑚2 of precipitation for 95𝑡ℎ percentile. The
BaClHa 𝑝𝑑𝑒𝑓 symmetric modemodel on the other hand predicts 182.64𝑚𝑚/𝑚2 of precipitation for 95𝑡ℎ
percentile (table:5.5). The actual amount of precipitation based on StageIV data is 197.34𝑚𝑚/𝑚2. The
BaClHa model is able to increase the spread of rainfall more inland but still is not effective in capturing
actual spatial distribution. There is a region of less rainfall near Charleston based on StageIV data but
the model is not able to capture that along with in-land rainfall to the west of Wilmington (fig.5.29). This
is because the symmetrical model is considered and the BaClHa model is not effective in capturing the
asymmetrical rainfall distribution.

(a) (b)

Figure 5.28: Matthew 2016: Cumulative precipitation for different model at selected regions of N-S Carolina (a) BaCla model
results (b) Improved model (BaClHa) results
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(a) (b)

(c)

Figure 5.29: Matthew 2016: Cumulative precipitation at selected regions of North South Carolina (a) Observed (Stage IV)
cumulative precipitation (b) BaCla model cumulative precipitation for 95𝑡ℎ percentile (c) Improved model (BaClHa) cumulative

precipitation for 95𝑡ℎ percentile

Charleston

Figure 5.31 shows the BaClHa model helps in capturing the spread of rainfall at a lower percentile but
the reduction in rainfall pattern is gradual and not as sharp as it is in StageIV based observations. The
BaClHa model is able to completely capture the cumulative amount of rainfall at Charleston (fig. 5.30).
The BaCla 𝑝𝑑𝑒𝑓 symmetric mode model predicts 126.37 𝑚𝑚/𝑚2 and 253.32 𝑚𝑚/𝑚2 of precipitation
whereas the BaClHamodel suggest 190.94𝑚𝑚/𝑚2 and 392.84𝑚𝑚/𝑚2 of precipitation for 75 and 95𝑡ℎ
percentile (table:5.2).The actual amount of precipitation based on StageIV data is 235.29 𝑚𝑚/𝑚2.

(a) (b)

Figure 5.30: Matthew 2016: Cumulative precipitation for different model at Charleston (a) BaCla model results (b) Improved
model (BaClHa) results
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(a) (b)

(c) (d)

Figure 5.31: Matthew 2016: Cumulative precipitation for different model at Charleston (a) Observed (Stage IV) cumulative
precipitation (b) BaCla model cumulative precipitation for 95𝑡ℎ percentile (c) Improved model (BaClHa) cumulative precipitation

for 95𝑡ℎ percentile (d) Improved model (BaClHa) cumulative precipitation for 75 percentile

5.3.3. Bonnie 2016
N-S Carolina
For Bonnie 2016, contrary to BaCla model, the BaClHa model is able to capture cumulative precipi-
tation (fig.5.32) and now the spread of precipitation is better captured (fig.5.33). For N-S Carolina the
BaCla 𝑝𝑑𝑒𝑓 symmetric mode model predicts 140.26𝑚𝑚/𝑚2 of precipitation for the 5𝑡ℎ percentile. The
BaClHa 𝑝𝑑𝑒𝑓 symmetric mode model on the other hand predicts 33.28 𝑚𝑚/𝑚2 of precipitation for the
5𝑡ℎ percentile (table:5.4). The actual amount of precipitation based on StageIV data is 50.04 𝑚𝑚/𝑚2.
The BaClHa model is not able to exactly show the consolidated patches of high cumulative rainfall per
unit area but provides a good general overview (fig.5.33). This is because the symmetrical model is
considered and the BaClHa model is not effective in capturing the asymmetrical rainfall distribution.
The cumulative amount of rainfall per unit area has also reduced in BaClHa model as compared to
BaCla as there is no over estimation of rainfall for low peak amount of rainfall.

(a) (b)

Figure 5.32: Bonnie 2016: Cumulative precipitation for different model at selected regions of N-S Carolina (a) BaCla model
results (b) Improved model (BaClHa) results
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(a) (b)

(c) (d)

Figure 5.33: Bonnie 2016: Cumulative precipitation at selected regions of North South Carolina (a) Observed (Stage IV)
cumulative precipitation (b) BaCla model cumulative precipitation for 5 percentile (c) Improved model (BaClHa) cumulative

precipitation for 5 percentile (d) Improved model (BaClHa) cumulative precipitation for 25 percentile

Charleston

The figure 5.35 shows that the BaClHa model is able to completely capture the cumulative amount of
rainfall at Charleston (fig. 5.34) contrary to over-estimations by BaCla model. The BaClHa model is
not able to exactly show the consolidated patches of high cumulative rainfall per unit area but provides
a good general overview (fig.5.35). The BaCla 𝑝𝑑𝑒𝑓 symmetric mode model predicts 149.31 𝑚𝑚/𝑚2
of precipitation whereas the BaClHa model suggest 44.68 𝑚𝑚/𝑚2 of precipitation for 5 percentile (ta-
ble:5.1).The actual amount of precipitation based on StageIV data is 56.26 𝑚𝑚/𝑚2.

(a) (b)

Figure 5.34: Bonnie 2016: Cumulative precipitation for different model at Charleston (a) BaCla model results (b) Improved
model (BaClHa) results
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(a) (b)

(c) (d)

Figure 5.35: Bonnie 2016: Cumulative precipitation for different model at Charleston (a) Observed (Stage IV) cumulative
precipitation (b) BaCla model cumulative precipitation for 5 percentile (c) Improved model (BaClHa) cumulative precipitation for

5 percentile (d) Improved model (BaClHa) cumulative precipitation for 25 percentile

It must be noted that the peak amount of rainfall is not captured as the model still considers the
radial mean amount of rainfall while training as well as predicting the amount of rainfall.

5.4. Validation over other TC
To further evaluate the effectiveness of the improved model three other tropical cyclones Alberto 2006,
Hermine 2016 and Charley 2004 are selected. They have different characteristics and pass through
the same area of interest. The cumulative amount of rainfall and spread of rainfall are compared. In
section both BaCla and BaClHa model is compared for 𝑝𝑑𝑒𝑓 symmetric mode.

5.4.1. Alberto 2006
N-S Carolina
Alberto 2006, had low wind speed and almost evenly distributed rainfall in major portions of N-S Car-
olina. For Alberto 2006, contrary to BaCla model, the BaClHamodel is able to better capture cumulative
precipitation for different percentiles (fig.5.36). The figure 5.37 shows that the BaCla 𝑝𝑑𝑒𝑓 symmet-
ric mode model both 5𝑡ℎ and 50𝑡ℎ percentile are having almost the same cumulative rainfall per unit
area. The BaCla 𝑝𝑑𝑒𝑓 asymmetric mode model for the 95𝑡ℎ percentile has lesser cumulative rainfall
per unit area as compared to 5𝑡ℎ and 50𝑡ℎ percentile. All these parameter are improved in BaClHa
model along with capturing the spread of rainfall. For N-S Carolina the BaCla 𝑝𝑑𝑒𝑓 symmetric mode
model predicts around 80 𝑚𝑚/𝑚2 and 85 𝑚𝑚/𝑚2 of precipitation for 5𝑡ℎ and 50𝑡ℎ percentile. The
BaClHa 𝑝𝑑𝑒𝑓 symmetric mode model on the other hand predicts around 20 𝑚𝑚/𝑚2 and 70 𝑚𝑚/𝑚2
of precipitation for 5𝑡ℎ and 50𝑡ℎ percentile (fig. 5.37). The actual amount of precipitation based on
StageIV data is around 60 𝑚𝑚/𝑚2. The BaClHa model is not able to exactly show the consolidated
patches of high cumulative rainfall per unit area but provides a good general overview (fig.5.36). The
cumulative amount of rainfall per unit area is reduced in BaClHa model as compared to BaCla as there
is no over estimation of rainfall for low peak amount of rainfall.
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(a) (b)

(c) (d)

Figure 5.36: Alberto 2006: Cumulative precipitation at selected regions of North South Carolina (a) Observed (Stage IV)
cumulative precipitation (b) BaCla model cumulative precipitation for 5𝑡ℎ percentile (c) Improved model (BaClHa) cumulative

precipitation for 5 percentile (d) Improved model (BaClHa) cumulative precipitation for 50𝑡ℎ percentile

(a) (b)

Figure 5.37: Alberto 2006: Cumulative precipitation for different model at selected regions of N-S Carolina (a) BaCla model
results (b) Improved model (BaClHa) results

Charleston
The figure 5.39 shows that the BaClHa model is able to completely capture the cumulative amount
of rainfall at Charleston contrary to overestimation by BaCla model. The BaClHa model is not able
to show the exact consolidated patches of high cumulative rainfall per unit area but provides a good
general overview (fig.5.38). The inconsistencies in cumulative amount of rainfall per unit area is also
improved. The BaCla 𝑝𝑑𝑒𝑓 symmetric mode model predicts around 100 𝑚𝑚/𝑚2 and 95 𝑚𝑚/𝑚2 of
precipitation whereas the BaClHa model suggest 20 𝑚𝑚/𝑚2 and 80 𝑚𝑚/𝑚2 of precipitation for 5𝑡ℎ
and 50𝑡ℎ percentile (fig. 5.39).The actual amount of precipitation based on StageIV data is around 45
𝑚𝑚/𝑚2.
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(a) (b)

(c) (d)

Figure 5.38: Alberto 2006: Cumulative precipitation for different model at Charleston (a) Observed (Stage IV) cumulative
precipitation (b) BaCla model cumulative precipitation for 5 percentile (c) Improved model (BaClHa) cumulative precipitation for

5 percentile (d) Improved model (BaClHa) cumulative precipitation for 25 percentile

(a) (b)

Figure 5.39: Alberto 2006: Cumulative precipitation for different model at Charleston (a) BaCla model results (b) Improved
model (BaClHa) results

5.4.2. Charley 2004
N-S Carolina
Charley 2004, was a hurricane of category 1 before it made second landfall in South Carolina and
gradually became Tropical Storm afterwards. It shows 2 bands of rainfall (fig. 5.40), one nearby its
track and the other more inland. The rainfall near the track is well captured by 50𝑡ℎ percentile 𝑝𝑑𝑒𝑓
symmetric by both BaCla and BaClHamodel but the second band of in-land rainfall is not captured at all.
The reason for the same are as follows. Primarily our model is based on adapted Holland wind profile
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that just captures 1 peak amount of rainfall and then gradually reduces and secondly these rainfall might
be because of topographic effects (fig. 4.3) that our model does not takes into account [8],[28]. The
effects of three changes introduced in BaClHa model can clearly be seen here. The fig. 5.40 and fig.
5.41 shows the BaCla model is over-estimates rainfall for 5𝑡ℎ percentile which is improved in BaClHa
model. The BaClHa model shows higher amount of rainfall for 95𝑡ℎ percentile. This is because of the
change in relation between radius of maximum wind-speed and radius of maximum precipitation.For
N-S Carolina the BaCla 𝑝𝑑𝑒𝑓 symmetric mode model predicts around 42 𝑚𝑚/𝑚2 and 15 𝑚𝑚/𝑚2 of
precipitation for 5𝑡ℎ and 50𝑡ℎ percentile respectively. The BaClHa 𝑝𝑑𝑒𝑓 symmetric mode model on the
other hand predicts around 8 𝑚𝑚/𝑚2 and 20 𝑚𝑚/𝑚2 of precipitation for 5𝑡ℎ and 50𝑡ℎ percentile (fig.
5.41). The actual amount of precipitation based on StageIV data is around 17 𝑚𝑚/𝑚2.

(a) (b)

(c) (d)

Figure 5.40: Charley 2004: Cumulative precipitation at selected regions of North South Carolina (a) Observed (Stage IV)
cumulative precipitation (b) BaCla model cumulative precipitation for 5𝑡ℎ percentile (c) Improved model (BaClHa) cumulative

precipitation for 5𝑡ℎ percentile (d) Improved model (BaClHa) cumulative precipitation for 50𝑡ℎ percentile

(a) (b)

Figure 5.41: Charley 2004: Cumulative precipitation for different model at selected regions of N-S Carolina (a) BaCla model
results (b) Improved model (BaClHa) results
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Charleston
The figure 5.42 shows that the BaClHa model is able to completely capture the cumulative amount
of rainfall at Charleston contrary to overestimation by BaCla model. The BaClHa model is unable to
show exactly the consolidated patches of high cumulative rainfall per unit area but provides a good
general overview (fig.5.42). The inconsistencies in cumulative amount of rainfall per unit area is also
improved. The BaCla 𝑝𝑑𝑒𝑓 symmetric mode model predicts around 42 𝑚𝑚/𝑚2 and 30 𝑚𝑚/𝑚2 of
precipitation whereas the BaClHa model suggest 10 𝑚𝑚/𝑚2 and 40 𝑚𝑚/𝑚2 of precipitation for 5𝑡ℎ
and 50𝑡ℎ percentile (fig. 5.43).The actual amount of precipitation based on StageIV data is around 16
𝑚𝑚/𝑚2.

(a) (b)

(c) (d)

Figure 5.42: Charley 2004: Cumulative precipitation for different model at Charleston (a) Observed (Stage IV) cumulative
precipitation (b) BaCla model cumulative precipitation for 5 percentile (c) Improved model (BaClHa) cumulative precipitation for

5 percentile (d) Improved model (BaClHa) cumulative precipitation for 25 percentile

(a) (b)

Figure 5.43: Charley 2004: Cumulative precipitation for different model at Charleston (a) BaCla model results (b) Improved
model (BaClHa) results
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5.4.3. Hermine 2016
N-S Carolina
Hermine 2016 crossed inland coastal region of N-S Carolina as a Tropical Storm. It resulted in almost
evenly spread rainfall in most regions of our area of study. The fig. 5.45 shows that the rainfall near
the track is well captured by around 75𝑡ℎ percentile 𝑝𝑑𝑒𝑓 symmetric mode for both BaCla and BaClHa
model. The fig. 5.44 and fig. 5.45 shows the BaCla model is over-estimates rainfall for 5𝑡ℎ percentile
which is improved in BaClHa model. For N-S Carolina both the BaCla and BaClHa 𝑝𝑑𝑒𝑓 symmetric
mode model predicts around 65 𝑚𝑚/𝑚2 and 195 𝑚𝑚/𝑚2 of precipitation for 50𝑡ℎ and 95𝑡ℎ percentile
respectively. The actual amount of precipitation based on StageIV data is around 120 𝑚𝑚/𝑚2(fig.
5.45).

(a) (b)

(c) (d)

Figure 5.44: Hermine 2016: Cumulative precipitation at selected regions of North South Carolina (a) Observed (Stage IV)
cumulative precipitation (b) BaCla model cumulative precipitation for 5 percentile (c) Improved model (BaClHa) cumulative

precipitation for 5 percentile (d) Improved model (BaClHa) cumulative precipitation for 75 percentile

(a) (b)

Figure 5.45: Hermine 2016: Cumulative precipitation for different model at selected regions of N-S Carolina (a) BaCla model
results (b) Improved model (BaClHa) results
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Charleston
The figure 5.47 shows that both BaClHaand BaClHa model are able to completely capture the cumu-
lative amount of rainfall at Charleston. The BaClHa model is unable to exactly show the consolidated
patches of high cumulative rainfall per unit area but provides a good general overview (fig.5.46). The
inconsistencies in cumulative amount of rainfall per unit area for 5𝑡ℎ percentile scenario is improved.
Both the BaCla and BaClHa 𝑝𝑑𝑒𝑓 symmetric mode model predicts around 75 𝑚𝑚/𝑚2 of precipitation
for 50𝑡ℎ percentile (fig. 5.47).The actual amount of precipitation based on StageIV data is around 80
𝑚𝑚/𝑚2.

(a) (b)

(c) (d)

Figure 5.46: Hermine 2016: Cumulative precipitation for different model at Charleston (a) Observed (Stage IV) cumulative
precipitation (b) BaCla model cumulative precipitation for 5𝑡ℎ percentile (c) Improved model (BaClHa) cumulative precipitation

for 5𝑡ℎ percentile (d) Improved model (BaClHa) cumulative precipitation for 50𝑡ℎ percentile

(a) (b)

Figure 5.47: Hermine 2016: Cumulative precipitation for different model at Charleston (a) BaCla model results (b) Improved
model (BaClHa) results
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5.5. Flood hazard and damage
In this section the damage associated with flooding due to Florence 2018, Matthew 2016 and Bonnie
2016 are discussed.

5.5.1. Florence 2018
Based on the rainfall values estimated by the models (BaCla and IPET), and providing the results of
SFINCS as an input in FIAT model, the damage associated with the cyclone is calculated in US dollar
($) as explained in section 4.5. For Wilmington as the higher percentile based results of models had
nearby rainfall values to actual stageIV based observation (fig 5.5), so, the damage associated also
lies in the range of damage associated with the stageIV based rainfall values. There are few strange
observations as well. For few higher percentile conditions, with higher amount of rainfall the damage
is less whereas for IPET where the rainfall is almost the half of the actual stageIV based rainfall the
damage associated is higher. This might be because of high rainfall distribution in the area with houses
and constructions that can get damaged or might be because the highest amount of damage that can
happen, already happened in the region so extra rainfall does not add to the value fig 5.48. The higher
damage might also be because of variation in surface water level between the different percentile. To
verify that the damage is not variation is not because of tidal effects, the thick bar graph in fig. 5.48
shows the damage just associated with rainfall where as the thin bar graph shows damage associated
with all factors. Based on the results no justifiable conclusions have been reached. Refer appendix
C for more details. When the variation in rainfall between 5𝑡ℎ and 95𝑡ℎ percentile is compared with
variation of damage it is observed that in case of Wilmington the variation in rainfall is around 700%
where as variation is associated damage is just 16%.

Figure 5.48: Florence 2018: Damage associated with Florence 2018 at Wilmington. The blue color stands for IPET model, pink
for observed stage IV data, orange for 𝑝𝑑𝑒𝑓 symmetric, red for 𝑝𝑑𝑒𝑓 symmetric, light green for 𝑣𝑚𝑎𝑥 symmetric and dark
green for 𝑣𝑚𝑎𝑥 asymmetric model. The black color is for 𝑝𝑑𝑒𝑓 symmetric random percentile model. The thin bar graph

includes tidal effects whereas the thick represents constant offshore water level.

When we look for damage at Charleston, as all the models suggested higher amount of rainfall,
(fig 5.8) so the damage associated is higher as well, when compared to damage that can happen
because of stageIV based total rainfall. In case of Charleston as the percentile of rainfall increases,
so is the damage associated fig (5.49). However, IPET demonstrates nearly identical damage to the
65𝑡ℎ percentile of the vmax-based model, despite having more rainfall. Again this can be associated
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with the reasons discussed above. In case of Charleston damage just because of rainfall and those
including all factors shows almost the same pattern. When the variation in rainfall between 5𝑡ℎ and 95𝑡ℎ
percentile is compared with variation of damage it is observed that in case of Wilmington the variation
in rainfall is around 900% where as variation is associated damage is just 120%.

Figure 5.49: Florence 2018: Damage associated with Florence 2018 at Charleston

5.5.2. Matthew 2016 and Bonnie 2016
In case of Matthew 2016 when the actual amount of rainfall is near to 95𝑡ℎ percentile of BaCla model
based results the damage associated also remains near the percentile but the damage associated with
5𝑡ℎ percentile is not as low as compared to the variation in amount of rainfall. When the variation in
rainfall between 5𝑡ℎ and 95𝑡ℎ percentile is compared with variation of damage it is observed that in
case of Wilmington the variation in rainfall is around 1650% where as variation is associated damage
is just 100%.

Figure 5.50: Matthew 2016: Charleston precipitation plot for different percentile along with damage associated
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For Bonnie even though the model overestimates the amount of rainfall, the damage associated
remains similar to the damage associated to stageIV based rainfall. For 5 percentile scenarios when
the amount of rainfall is higher than the actual (stageIV) based rainfall, the damage associated is lower
because of variation in the distribution of rainfall.When the variation in rainfall between 5 and 95𝑡ℎ
percentile is compared with variation of damage it is observed that in case of Wilmington the variation
in rainfall is around 475% where as variation is associated damage is just around 57%.

Figure 5.51: Bonnie 2016: Charleston precipitation plot for different percentile along with damage associated

5.5.3. Overall - flood hazard and damage
• Performance of rainfall prediction is not one to one transformable to damage prediction.

• Damage associated is less sensitive than rainfall prediction. For example the variation in rainfall
at Wilmington due to Florence 2018 is around 700% where as the associated damage variation
is just around 16%.

• For Wilmington there are cases when low amount of rainfall results in high damage.(appendix C)

• Location of rainfall plays an important role associated damage calculation. For instance, even
though the associated IPET rainfall in Wilmington during Hurricane Florence in 2018 was about
half as much as what was seen based on Stage IV, the IPET still predicts greater damage.

• Tidal effects generally result in more flooding-related damage.



6
Conclusions and recommendations

6.1. Synthesis
In this thesis, an improvement of the existing parametric BaCla stochastic tropical cyclone precipitation
model has been proposed and is compared with the standard practice IPET model in order to answer
the research question:

How can the spatio-temporal biases of the BaCla model be reduced, and how do they impact
the parametric tropical cyclone precipitation model’s ability to predict precipitation,

associated flood hazards and damage?

In this study the main biases of the BaCla model have been identified as follows:

• The model may over- or underestimate the total quantity of cumulative rainfall depending on the
location and scenario.

• For tropical cyclones of category 1 or stronger, the model underestimates the cumulative amount
of rainfall whereas for low wind-speed, Tropical storms and depressions it overestimates the
amount of rainfall.

• The model may not always accurately predict the maximum quantity of precipitation because it
takes into account the azimuthal average of the TC associated precipitation.

• Due to the uniform radial rainfall assumption, the BaCla model overestimates the quantity of
rainfall in situations where the peak amount of rainfall is less than 2.8mm/hr.

• The appropriate threshold for using method D (best fit area under the total rainfall curve method)
to get fitting coefficients may not be 2.8 mm/hr as it leads to over estimation of rainfall e.g. table
5.3

• The assumption of the radius that the maximum wind speed radius and radius of maximum pre-
cipitation are equal generally does not hold.

The main components that were of importance for the reduction of the aforementioned biases in
the model were identified as the relation between radius of maximum wind speed (𝑅𝑣𝑚𝑎𝑥) and radius
of maximum precipitation (𝑅𝑝𝑚𝑎𝑥) and the fitting coefficients of precipitation profile (adapted Holland
wind profile, Section 2.2.2).

In order to determine a correlation between the radius of the maximum wind speed (𝑅𝑣𝑚𝑎𝑥) and
the radius of the maximum precipitation (𝑅𝑝𝑚𝑎𝑥), 53 TCs were chosen for which blended data sets
(including Stage IV data, TRMM, and GPM) were available. For the selected tropical cyclones there
were 220 time steps for which the radius of maximumwind-speed (𝑅𝑣𝑚𝑎𝑥) and correspondingly StageIV
based radius of maximum precipitation (𝑅𝑝𝑚𝑎𝑥) was available. Out of those observation 170 time steps
were plotted for which the radius of maximum precipitation (𝑅𝑝𝑚𝑎𝑥) was within 300 km from the eye of
TC. This is the radius generally up to which the maximum precipitation because of a TC can occurs
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based on the study by Lonfat, Marks Jr, and Chen [27], Jiang, Halverson, and Simpson [21] and Bader
[2]. The relationship between the radius of the maximum wind speed (𝑅𝑣𝑚𝑎𝑥) and the radius of the
maximum precipitation (𝑅𝑝𝑚𝑎𝑥) was then determined using a linear fit.

𝑦 = 0.6383𝑥 + 34.7867 5.1

In equation 5.1, y and x represents the radius of maximum precipitation and radius of maximum wind-
speed respectively. The linear relation was used to find the radius of maximum precipitation by the
model, which helped to better capture the spread of rainfall. The least square fit (method A) was
used to obtain fitting coefficients of adapted Holland wind profile for the cases where the maximum
amount of rainfall was less than 2.8 mm/hr. This helped in reducing over-estimation of rainfall for the
cases where the BaCla model was providing constant high value of rainfall (e.g. fig. 5.21c). Despite the
improvement to the model, there were cases like fig. 5.21e, where the precipitation was over estimated
because the peak amount of rainfall was just above 2.8 mm/hr. To overcome this problem, the threshold
was increased to 5 mm/hr as proposed by Claassen [11] in method B (separate least square fitting for
rainfall above and below 5 mm/hr). This threshold with method A is in turn used to determine the fitting
coefficient for adapted Holland wind profile. Instead of only providing a continuous high value of rainfall,
this improvement provided for a more realistic representation of the rainfall at larger distances from the
eye of the TC. It also helped in capturing the rainfall when the wind speed was low or the radius of
maximum wind speed was large.

The three improvements in the model were validated for calibration sets of TCs together with three
other tropical cyclones that crossed the same area of interest. The results showed that the BaClHa
(improved) model performed better at capturing the cumulative amount of rainfall that occurred during
different tropical cyclonic event for smaller area of interest (e.g. Charleston) as well as a larger one
(N-S Carolina). In this study, the 𝑣𝑚𝑎𝑥 based cumulative mean precipitation range lower than the 𝑃𝑑𝑒𝑓
based cumulative mean precipitation. However, single-parameter models are rudimentary, unable to
replicate the intricate spatio-temporal rainfall pattern that tropical cyclones create when they make
landfall. For instance, there are situations where 𝑃𝑑𝑒𝑓 and 𝑣𝑚𝑎𝑥 values are low yet the rainfall rates
are high due to other physical phenomena, such as topographic effects [8],[28]. A model with only one
parameter has this genuine limitation.

A comparison with the IPET model showed that the BaClHa model is competitive as generally the
40𝑡ℎ−60𝑡ℎ percentile of the cumulative mean precipitation based on the 𝑃𝑑𝑒𝑓model is almost identical
to that of IPET. However, the 𝑃𝑑𝑒𝑓 based model performs best for the selected case studies, but it still
needs to be tested for more tropical cyclones, preferably in some other geographical location to test
the global applicability of the model and to comment on the efficiency of 𝑃𝑑𝑒𝑓 and 𝑣𝑚𝑎𝑥 based model.
The new model ensured better representation over land, the over and under estimation is reduced, and
the model is expected to be applicable globally with more confidence.

Having a model calibrated by the incorporation of appropriate prepossessed data that highlights the
risks associated with extreme occurrences, such as TC, may be extremely beneficial in the field of risk
management for a better understanding of flood risk. The current study suggests that the performance
of rainfall prediction is not a one-to-one transformable to damage prediction. Damage associated is
less sensitive to the rainfall prediction. Therefore the range of damage estimation is narrower than the
range of rainfall prediction. The improved model is better at predicting the actual amount of rainfall.
As it is better at estimating rainfall, it can act as a better choice for creating flood scenario but might
contribute less to risk assessment.

6.2. Limitations
Despite a major improvement over the original BaCla model, the new model still has a number of
drawbacks.

1. The improved model fails to capture the peak amount of rainfall at a particular location and time.
This is because the model considers the radial mean amount of precipitation which will always
lower than the actual peak amount of rainfall.

2. The model does not takes into account the topographic effects, so it generally fails to capture the
rainfall due to topographic effects.
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3. The model only captures the highest peak of rainfall neglecting other peaks, like rain bands, since
it is based on the adapted Holland wind-profile, even though they are sometimes only slightly
lower in value.

4. The model is still unable to capture the asymmetrical rainfall distribution by following the asym-
metry in wind profile.

5. For some high and very low wind speed storms the 95𝑡ℎ and 5𝑡ℎ percentile based results of the
BaClHa model slightly underestimates and overestimates the cumulative amount of rainfall.

6. The model has not been tested for its applicability at other geographical locations. It might be the
case that it does not perform well at other locations as the model is trained based on data from
the North Atlantic basin only.

6.3. Recommendations for future research
The study could be advanced by concentrating on the points listed below.

1. Test the model at some other location outside the North Atlantic basin, preferably somewhere
in the southern hemisphere. This is due to the fact that a different geographic position will be
verified together with the clockwise rotation of the TCs.

2. The BaClHa model’s asymmetrical rainfall distribution does not completely match with the actual
rainfall distribution. Explore better ways to take into account the asymmetry in the rainfall (like
making use of Golden spiral).

3. Re-verify the relation between radius of maximum wind-speed and radius of maximum precipita-
tion by taking more data into account and subsequently check the effectiveness of the model.





A
Radius of maximum wind-speed vs

radius of maximum precipitation
To understand if it is justifiable to assume radius of maximum wind-speed is same as radius of maxi-
mum precipitation, IBTrACs based radius of maximum wind-speed is plotted with radius of maximum
precipitation based on TRMM or GPM data and StageIV blended data. The radius on maximum pre-
cipitation is capped at 300 km as Lonfat et al [27] fig 2.1 and Jiang et al. [21] fig. 2.2 suggested that
maximum precipitation because of TCs occur at a distance of within 300 km from eye.

Figure A.1: Radius of maximum sustained wind-speed vs radius of maximum precipitation

Fig. A.1 shows the data based on 54 different TC cyclones (220 observations) data for the IBTrACS
was having radius of maximum wind-speed available. Fig. A.1 depicts it is not always the case that
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radius of maximum wind speed is equal to radius of maximum precipitation. Radius of maximum pre-
cipitation is almost twice or more for smaller values (e.g. 20km) of radius of maximum wind-speed but
it reduces to almost equivalent or less than radius of maximum wind speed for values around 100 km.
To better understand the relation box plot are plotted first at 20 km interval of maximum wind speed fig.
A.2 and then at an interval of 40 km fig. A.3.

Figure A.2: Box plot of radius of maximum sustained wind-speed vs radius of maximum precipitation at 20 km interval

Figure A.3: Box plot of radius of maximum sustained wind-speed vs radius of maximum precipitation at 40 km interval

Box plots clearly suggested that the radius of maximum wind speed is not always equal to radius
of maximum precipitation. Considering the median values for fig A.3 the relation between Rpmax =
2.5 Rvmax for radius of maximum wind speed up to 40 km. The relation changes to Rpmax = 1.67
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Rvmax and Rpmax = 0.9 Rvmax for interval 40-80km and 80-120 km respectively. But the limitation of
proceeding ahead with this interval method is that it might not hold true for all the case as the interval
is quite large. This might lead to over estimation of rainfall or might show a larger spread of rainfall.
So, it is decided to proceed further with the linear fit in the scatter plot as in the fig. A.1 not significantly
better than the linear fit in terms of fit. For a polynomial of order 2, 3, and 4, the 𝑅2 values are 0.067,
0.083, and 0.091, respectively. The 𝑅2 value for a linear fit is 0.065.

The Gaussian Model probability PDF is presented for the given data since the 𝑅2 values are rel-
atively low (fig. A.4). The Gaussian model is considered as that is the most common distribution in
climatology (Central Limit Theorem).The linear fit is drawn in magenta, and each point for the radius of
maximum wind-speed with the highest chance of occurrence for the radius of maximum precipitation
is plotted in red. The graph A.4 suggest the linear fit, and the points of highest probability runs almost
with constant slope and different Y intercept. The Y intercept value for linear fit it 34.7 km whereas for
the Gaussian model it is 18.1 km. After the point where the radius of maximum wind-speed is greater
than 60 km the probability curve behaves differently. This might be because of less availability of data
for the extreme values. But this method appears to be a promising option with more data.

Figure A.4: Radius of maximum sustained wind-speed vs radius of maximum precipitation with contour lines of Gaussian
model PDF

So, in this study linear fit is considered to keep model simple. The linear fit gives us a relation
between radius of maximum wind speed and radius of maximum precipitation as :

𝑦 = 0.6383𝑥 + 34.7867 (A.1)

where y is radius of maximum precipitation and x is the radius of maximum wind-speed.





B
Flood Risk assessment for different SSP

scenario
In research long term scenarios on global environmental change plays an important role. The shared
socioeconomic pathways (SSPs) is one of the characterisation that describes plausible alternative
changes in social, economic, technological, demographic, governance and environmental factors of
society. It is based on back-casting approach, where an end state is already in mind as the pathways
are being developed. SSP outcomes helps in adaptation to socioeconomic challenges. Without explic-
itly considering climate change itself, it is intended to describe worlds in which societal trends results
in making mitigation of, or adaptation to, climate change harder or easier [36]. A simple graphical
representation has been attached in section 4.5.

It this study SSP2 (intermediate challenges) case has been considered for calculation of flood as-
sociated damage because of TCs. To have an idea how much the results vary for 10 years of return
period, a graph showing the damage caused at Charleston for different parametric model in SSP1 and
SSP2 scenario has been attached below. It is clear that there is not much of a difference.

Figure B.1: Damage caused at Charleston for different parametric model in SSP1 and SSP2 scenario
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C
Florence: Rainfall variation and

associated damage at Wilmington

Based on the BaCla model, the rainfall variance at Wilmington for various percentiles were analyzed
(fig C.1). Because the spiderwebs took a bigger quantity of rainfall into account in each time step,
it was expected that the rainfall would grow with an increase in percentile. However, analysis of the
accompanying damage (fig. C.2) reveals that the 65 percentile has less damage than the 50 percentile
of rainfall. Due to SFINCS’s consideration of tidal effects, it was initially thought that this was the rea-
son.In certain circumstances, excluding tidal effects reduced damage, and in other cases, it increased
damage (fig. C.2). However, damage caused by rainfall at the 65th percentile was less severe than
damage from rainfall at the 50th percentile.

Figure C.1: Florence 2018: Total rainfall per unit area in 4 days for various scenarios at Wilmington (BaCla)
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68 C. Florence: Rainfall variation and associated damage at Wilmington

Figure C.2: Florence 2018 SSP2-Middle Road:Flood Damage [USD] at Wilmington

The variation in rainfall, difference in associated flooding, and associated damage are compared
to better understand the cause (fig. C.3). The 65 percentile scenario results in an additional 14 to 15
cm of rainfall overall, although the region highlighted with a circle in the map experiences less flooding.
Surprisingly, some areas in the circle have seen more damage even with less flooding.Perhaps how
the houses are arranged or how much of a region is constructed is important. Further research is
necessary to determine the cause of this, which is yet unknown.

Figure C.3: Florence 2018: Comparison of 65 and 50 percentile of rainfall, flooding and associated damage



D
Tropical cyclone eye wall replacement

The rate of dissipation of the inner eye-wall in tropical cyclones determines the Eye-wall Replacement
Cycle (ERC), this is an important indicator for forecasting changes in the intensity and structure of
tropical cyclones. Li et al. [26] studied the eye-wall replacement cycle of typhoon Trami 2018. Trami
2018 simulations produced an ERC that matched the observation using a coupled atmospheric-ocean
model based on Weather Research and Forecasting (WRF) Model. Fig. D.1 and D.2 clearly show high
rain-bands inside the 50km circle for time step (a) and (b). When we look at time step (d) and (e) it is
clear that the high rain-bands are outside the 50 km circle.

Figure D.1: Trami 2018: Satellite microwave images from Cooperative Institute for Meteorological Satellite Studies (CIMSS) at
(a) 1800 UTC 24 Sept, (b) 0000 UTC 25 Sept, (c) 0600 UTC 25Sept, (d) 1200 UTC 25Sept, (e) 1800 UTC 25Sept, (f) 0000

UTC 26Sept.
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Figure D.2: Trami 2018: Plane view of the radar reflectivity (dBZ) at the height of 3 km in the coupled simulation. The model
time is noted at the top left of each panel. The dashed circles located at the radii of 50, 120, and 200km. The annular regions

between the dashed circles indicate the inner and outer rain-bands regions.

In another study by Rozoff et al. [42] to simulate secondary eyewall formation (SEF) in a tropical
cyclone (TC) using WRF model similar kind of observations could be observed (fig. D.3).

Figure D.3: Low level(z = 1km) synthetic radar reflectivity (dBZ) at (a) 102, (b) 107, (c) 112, (d) 117, (e) 122, (f) 127, (g) 132, (h)
137, and (i) 142 h.



E
Rainfall variation for different TC based

on distance from coast

To understand how rainfall is affected when the eye of TC is near the coast and when it is farther away
over land? A total of 143 TC are studied. TCs were divided into three parts, in the first type there were
TC that were just Tropical storm or tropical depression near the coast or inland, Second type was TC
upto category 2 and in third type there were TC that were of category 3 to category 5. For all three
parts the rainfall suggested by stageIV data within the radii of 600 km of eye of TC over land is plotted
with respect to distance from coast. Distance of eye from coast is made the color coded third axis.

Based on the plots it is observed that when the eye of TC is within 100-200 Km from coast the
rainfall gets concentrated to a smaller region for higher wind speed TC as compared to low speed TC
i.e. for type 1 the rainfall is spread quite in-land up to 600-700 km where as for part 3 it mainly gets
concentrated within 200 km from the coast. This suggests that radius of maximum wind speed and
radius of maximum precipitation is affected by the type of TC and its associated wind speed.

Figure E.1: Rainfall variation as a function of distance from coast for TC of type 1
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Figure E.2: Rainfall variation as a function of distance from coast for TC of type 1 based on location eye

Figure E.3: Rainfall variation as a function of distance from coast for TC of type 2
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Figure E.4: Rainfall variation as a function of distance from coast for TC of type 2 based on location eye

Figure E.5: Rainfall variation as a function of distance from coast for TC of type 3
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Figure E.6: Rainfall variation as a function of distance from coast for TC of type 3 based on location eye
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