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ARTICLE OPEN

A variational toolbox for quantum multi-parameter estimation
Johannes Jakob Meyer 1✉, Johannes Borregaard 2,3✉ and Jens Eisert1✉

With an ever-expanding ecosystem of noisy and intermediate-scale quantum devices, exploring their possible applications is a
rapidly growing field of quantum information science. In this work, we demonstrate that variational quantum algorithms feasible on
such devices address a challenge central to the field of quantum metrology: The identification of near-optimal probes and
measurement operators for noisy multi-parameter estimation problems. We first introduce a general framework that allows for
sequential updates of variational parameters to improve probe states and measurements and is widely applicable to both discrete
and continuous-variable settings. We then demonstrate the practical functioning of the approach through numerical simulations,
showcasing how tailored probes and measurements improve over standard methods in the noisy regime. Along the way, we prove
the validity of a general parameter-shift rule for noisy evolutions, expected to be of general interest in variational quantum
algorithms. In our approach, we advocate the mindset of quantum-aided design, exploiting quantum technology to learn close to
optimal, experimentally feasible quantum metrology protocols.

npj Quantum Information            (2021) 7:89 ; https://doi.org/10.1038/s41534-021-00425-y

INTRODUCTION
Quantum metrology exploits non-classical effects to extend the
sensitivity of sensing and parameter estimation methods beyond
classical limits. The achievable precision in quantum metrology
depends on the interplay of quantum correlations of the probe
states, the unavoidable quantum noise present in the scheme, the
geometry of the parameters to be estimated, and the information
that is gained by possibly intricate measurements1,2. Carefully
designing suitable quantum probes and measurements is there-
fore a frontier of quantum metrology3,4 and can lead to
significantly improved sensitivity as has been demonstrated in
numerous works5–9. Such methods have recently been general-
ized to a multi-parameter setting where a set of spatially
distributed sensors is used to simultaneously estimate a number
of distinct parameters or a function thereof10–14, a setting that is
relevant for a broad range of applications, including nanoscale
NMR15, multi-dimensional field and gradient estimation16,17, and
quantum networks for atomic clocks18 or astronomical imaging19.
Designing close to optimal quantum protocols for a specific

metrological task is, however, highly challenging. Identifying
suitable probes and measurement schemes can be a classically
intractable task even in the absence of errors. It requires
optimizing over quantum states of high dimension, which soon
becomes infeasible in practice due to the exponential growth of
dimension with the system size. To add insult to injury, the
solution of this task is even less obvious when realistic constraints
such as experimental imperfections and decoherence are taken
into account: Such decoherence processes, however, are at the
heart of the matter when designing realistic quantum metrolo-
gical protocols in the first place. This observation gives rise to the
insight that in many relevant and meaningful scenarios, one
cannot help but resort to quantum tools to find such protocols.
The increasing body of tools originating from the study of near-

term noisy intermediate-scale quantum (NISQ) computers20 may
come to the rescue here: variational quantum algorithms21 have
been proposed to solve one part of the metrology puzzle—

namely to optimize quantum probes for single-parameter
metrology in qubit-based systems22–24.
In this work, we provide a toolbox that allows quantum-aided

design of the entire metrology process as a whole. Our unified
framework allows us to optimize quantum probes and measure-
ments for the more general multi-parameter-sensing problems
while taking into account limited experimental capabilities. The
method can account for post-processing of the data, recognizing
that the physical variables measured are usually only surrogates
for the actual quantities of interest. The approach is sufficiently
general to be executed on both discrete- and continuous-variable
systems. We detail how our algorithm can be implemented on the
target platform or on NISQ computers, bringing forth a promising
application of these devices.
We consider the generic task of estimating a multi-variate

function of the sensing parameters and use the multi-parameter
Cramér-Rao bound to quantify the quality of probe state and
measurement as it provides for a saturable lower bound on the
quality of any unbiased estimator. Importantly, we describe how
this is extracted experimentally based on an insight regarding the
parameter-shift rule25 in a noisy setting, an idea that has arisen in
the context of quantum optimal control26 and learning applica-
tions of quantum circuits27 and which we develop further,
expected to be interesting in its own right. Due to the variational
nature of our quantum algorithm—involving a quantum circuit in
its core instead of a possibly inefficient classical prescription—we
can tailor estimation strategies to the specific experimental
capabilities and dominating noise sources. Our techniques are
very general and can be applied to both discrete variable
architectures based on atomic systems28,29, superconducting
qubits30 or optical systems31 and continuous-variable architec-
tures based on Gaussian light sources32,33. As such, we add
quantum metrology to the possible applications of NISQ devices
while at the same time providing a solution to the challenging
problem of optimizing quantum metrological prescriptions.
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RESULTS
The structure of the algorithm
A high-level description of our algorithm is sketched in Fig. 1. In
each step of the algorithm, a probe quantum state ρ0(θ) is
generated by a quantum circuit parametrized by θ. It undergoes a
quantum channel EðϕÞ that encodes the parameters, which are
the arguments of f, the multi-variate function representing the
post-processing. In this work, we will consider multiple ways to
parametrize the encoding channel. The state of the system before
the measurement is

EðϕÞ½ρ0ðθÞ� ¼ ρðθ;ϕÞ: (1)

The subsequent measurement is most generally described by a
parametrized positive-operator valued measure (POVM) M ¼
fΠlðμÞg resulting in measurement output probabilities

pl ¼ Tr fΠlðμÞρðθ;ϕÞg; (2)

with μ being the POVM parametrization. This concludes the part
of the protocol that runs on the quantum device. This step is
repeated a number of times to get accurate estimates of the
outcome probabilities. These are then used to classically compute
a cost function quantifying the estimation quality achieved by the
protocol. From this, both the state preparation circuit and the
measurement procedure are updated to further increase the
estimation quality based on gradient-descent techniques34. The
entire procedure is iterated until a minimum is reached, yielding a
close to optimal sensing protocol within the variational manifold
of probe state preparation and measurement procedure.

Cost function
The central challenge when constructing a variational quantum
algorithm is to identify a cost function that captures the nature of
the problem and that can be effectively evaluated and
differentiated on actual quantum hardware. We want to quantify
the performance of an estimator for a general multi-variate
function f(ϕ) of the parameters ϕ. We therefore consider the
classical Fisher information matrix (CFIM)35 f= JTIϕJ, where J is the
Jacobian of f with entries Jj,k= ∂ϕj/∂fk and

½Iϕ�j;k :¼
X

l

ð∂jplÞð∂kplÞ
pl

; (3)

where we have used ∂j as a shorthand notation for ∂/∂ϕj. The CFIM
gives a fundamental lower bound to the covariance matrix of any

unbiased estimator f̂ of f(ϕ) according to the Cramér-Rao bound

Cov ½̂f� � 1
n
I�1
f ; (4)

where n is the number of samples. The Cramér-Rao bound is the
definite measure of estimation precision because it can always be
saturated in the limit n→∞ by maximum-likelihood estimation36.
Previous variational approaches to quantum metrology relied on
surrogate quantities for the quantum Fisher information (QFI) as
their cost function. The QFI provides a bound on the achievable
classical Fisher information when optimizing over all possible
measurement schemes and as such does not quantify the
performance of the current incarnation of the sensing protocol.
As experimental capabilities are usually limited and not every
intricate measurement can be performed, it is actually a
misleading quantifier—there is no guarantee that a state with
maximum QFI also achieves the maximum CFI over the set of
possible measurements.
For single-parameter estimation, the CFIM reduces to a scalar

quantity and the Cramér-Rao bound can directly be used as a cost
function. For the multi-variate setting, we will follow the approach
of ref. 10 and apply a positive semi-definite weighting matrix W to
both sides of the Cramér-Rao bound (4) and perform a trace to
obtain the scalar inequality

Tr fWCov ½̂f�g � 1
n
Tr fWI�1

f g: (5)

The right-hand side is the natural choice for the cost function

CWðθ;ϕ;μÞ :¼ Tr fWI�1
f g: (6)

While the outcome probabilities {pl} can be readily estimated
through repeated measurements, the CFIM also contains their
derivatives with respect to the encoded parameters. These
derivatives are at the heart of our algorithm and we will detail
how to obtain them for multiple variants of quantum encoding
processes.
We note that as the most common elementary operations

considered both in the discrete variable and the Gaussian
continuous-variable case admit a parameter-shift rule, we will
assume that the circuits parametrizing the state preparation and
the POVM in our scheme can be trained using the parameter-
shift rule.

On the sensing platform
The difficulty of running the variational algorithm naturally
depends on the capabilities of the quantum device available. If
we have the opportunity to perform the parametrized state
preparation and measurement on the sensing platform, we can
use it directly to run the algorithm. This is of course desirable since
it circumvents the need to simulate the encoding and noise
channel on another device. To be able to execute the algorithm
we have to assume some structure about the encoding evolution
E. We will consider the case where a unitary encoding is followed
by a parameter-independent quantum channel as

EðϕÞ½ρ0� ¼ N ½UðϕÞρ0UyðϕÞ�: (7)

We stress that this model does not only capture noise processes
happening after the parameter encoding. It is valid for all
processes where the noise commutes with the encoding unitary,
which covers many practically relevant scenarios such as lossy
optical phase estimation, depolarizing noise in discrete variable
systems, and dephasing and amplitude-damping noise in Ramsay
spectroscopy23.
While initially derived for unitary quantum circuits, we prove in

the Supplementary Methods that the parameter-shift rule extends
to unitaries interleaved with noise channels. Consequently, all
necessary derivatives of expectation values can be computed
analytically on quantum hardware from the expectation values

Fig. 1 Illustration of the Algorithm. Illustration of the hybrid
approach presented in this work to variationally optimize the probe
state and measurement for a noisy multi-parameter estimation
problem. The various parameters are defined in the main text.
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evaluated at different points in parameter space25,37 even in the
presence of realistic noise as detailed above.
To apply the parameter-shift rule it will, however, be necessary

to be able to re-run the same evolution with the parameter in
question shifted by a fixed amount. On the sensing platform,
direct control over the physical parameters is usually not
possible, but we can exploit the composition of unitary
evolutions to synthesize a shift of the parameter in question as
shown in Fig. 2a. We give a detailed explanation of how the
parameter-shift rule should be applied in the Supplementary
Methods.

Emulating the sensing platform
If the necessary level of control is not achievable on the sensing
platform directly, another quantum system with more control can
be used to run the algorithm and optimize a sensing strategy. In
particular, NISQ devices with high levels of control could be
employed. We stress, however, that the inherent errors of the
NISQ device need to be sufficiently low to provide for a faithful
emulation of the sensing platform. The noise of the sensing
platform can be recreated either through the use of ancillary
qubits or repeated sampling of unitaries, an approach that we
explain in detail in the Supplementary Methods.
If a noise process of the form of Eq. (7) is hard to emulate on the

NISQ device, or if the parameter-shift rule cannot be implemented
for the encoding process, part of the algorithm can be moved
from the quantum device to the classical hardware. This can
alleviate the requirements for the NISQ device for a, in many
realistic cases, modest overhead on the classical computation. In
the Supplementary Methods, we provide observables Π0 and Δj

l
whose expectation values model the noisy output probabilities pl
and their derivatives ∂jpl. The procedure in this situation is shown
in Fig. 2b.
Emulating the sensing platform also opens up the possibility to

analyze more intricate encoding evolutions. The Stinespring
dilation theorem38 guarantees that any quantum channel can be
modeled via a unitary evolution on the system along with an
environment in some state σ:

EðϕÞ½ρ0� ¼ Tr EfUSEðϕÞðρ0 � σÞUy
SE ðϕÞg: (8)

If the unitary has the particular form

USEðϕÞ ¼ expð�it½HSE þ
X

j

αjHj�Þ; (9)

where the encoded parameters are given by ϕj= tαj, we can apply
a generalized parameter-shift rule to calculate the derivative

∂
∂αj

EðϕÞ and hence the derivative with respect to ϕj
37. Finally, the

Suzuki-Trotter formalism can be used to decompose the evolution
into elementary quantum gates that depend on ϕ and use the
parameter-shift rule for these gates to calculate the derivative.

Numerical experiments
To showcase possible applications of our variational approach, we
numerically investigate two exemplary noisy estimation problems.
The experiments have been implemented using the PennyLane
library for quantum machine learning39 and the QuEST mixed
state simulator40.
We first employ the setting of Ramsay spectroscopy, a widely

used technique for quantum metrology with atoms and ions. The
metrological parameters are phase shifts ϕ arising from the
interaction of probe ions modeled as two-level systems with an
external driving force. We follow ref. 41 and model the noise in the
parameter encoding as local dephasing with dephasing prob-
ability p. We consider a pure probe state and a projective
measurement, where the computational basis is parametrized by
local unitaries.
We optimize a sensing strategy for a system of three ions and

instead of estimating the phases independently, we analyze the
task of estimating their average 1

N

P
jϕj . We first reproduce known

results to validate the performance of our approach. Reference 10

has shown that generalized GHZ states are optimal when the
encoding is noise-free. We have emulated the sensing task with
ϕj ¼ π

6, the sweet spot for GHZ sensing and performed co-
optimization of state preparation and measurement. The para-
metrization was chosen so that it can produce any three qubit
quantum state and any local measurement. Figure 3 shows that
we recover the optimality of the GHZ-sensing procedure with a
measurement in the Hadamard basis for p= 0. At increasing noise
levels, the advantage of GHZ sensing disappears as expected41

and we find sensing procedures that outperform both GHZ and
standard Ramsay spectroscopy. In the Supplementary Methods,
we analyze the optimized sensing schemes and find that the
optimal probe states continue to have non-classical correlations
even for a high dephasing probabilities of up to 40%.
As a second task, we will apply our algorithm to the setting of

spin imaging. This is at the heart of nanoscale NMR, which has a
wide range of applications within chemistry and biological
imaging. In particular, nanoscale sensors based on nitrogen-
vacancy (NV) centers have shown great potential15,42–45 and we
will consider the task of determining the position of a spin by
triangulation with three NV center probes. In short, the
dipole–dipole interaction between the NV centers and the spin

Fig. 2 Realizing the algorithm. Realization of the approach
proposed in Fig. 1 for the encoding of Eq. (7). a On a sensing
platform or during its emulation, the output probabilities are
directly computed from the POVM measurements. The derivatives
are computed using the parameter-shift rule. b When simulating on
a quantum computer, the action of the noise channel is simulated
by altering the POVM. The derivatives are computed by measuring
the expectation values of a set of operators, used in training the
network.

Fig. 3 Average phase sensing results. Semi-logarithmic plot of the
Cramér-Rao bound for average phase sensing over the dephasing
probability of (blue) the standard Ramsey probe and (orange) a GHZ
probe. Each green dot marks the bound for a probe optimized for
the particular dephasing probability. The phase shifts were fixed at
the optimal spot for GHZ sensing at ϕj ¼ π

6. We recover the
optimality of the GHZ probe in the noiseless case and find improved
sensing protocols in the noisy case.
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shifts the energy levels of the NV centers resulting in a position
dependent phase shift. From measurements of this phase, the
position of the spin can be determined. We neglect the
dipole–dipole interaction between the three NV centers assuming
that they can be decoupled by appropriate pulse sequences46.
Furthermore, we perform a secular approximation, simplifying the
interaction to a Pauli rotation about the symmetry axis of the NV
centers47. We model the encoding noise as local dephasing with a
fixed probability of pe= 0.1. We refer to the Supplementary
Methods for a more detailed derivation of our model.
We use our algorithm to study the influence of noise that is

incurred by performing additional quantum gates in the state
preparation on the quality of the sensing protocol. We model the
noise as depolarizing noise with depolarization probability pg.
Specifically, we study the trade-off between additional noise
induced by performing entangling operations and the sensitivity
enhancement from the generated entanglement by comparing a
purely local probe with a probe that has two additional entangling
operations. The measurement is always kept local. The “shallow
entangled” probe constitutes the minimal example of a circuit that
can generate generic three-particle entanglement between the
NV probes. The exact structure of the sensing protocols is detailed
in the Supplementary Methods. Figure 4 shows that the shallow
entangled probe yields an advantage in the absence of gate noise.
But even at very small gate noise levels, the additional noise from
the entangling operations will make the entangled probe inferior
to the local probe. Although we only consider one specific ansatz
for an entangled probe, this sheds light on the importance of gate
noise in realistic probe preparations. In the Supplementary
Methods, we further analyze the optimized sensing schemes
and show that entanglement causes the advantage in the
noiseless case and is still present in the optimized probes at
small noise levels (≲1%). However, the probes quickly become
separable as the gate noise is increased.

DISCUSSION
In this work, we have introduced a variational approach that can
be applied to a wide variety of metrological problems to optimize
multi-parameter estimation schemes both on sensing platforms
and on quantum devices. These approaches can be tailored to
specifically match the available hardware and the sensing
problem in question. Instead of addressing the challenges of
noisy quantum metrology by classically computing optimal
probes and measurements, we have shown how to learn
variational parameters of a quantum circuit for this purpose. The

proposed machinery can also be used to improve upon an already
good guess. The variational nature of our approach naturally
causes a dependence of the quality of the optimized protocol on
the choice of parametrization and optimization method. It is
therefore complementary to analytic approaches that broaden our
understanding of optimal sensing schemes in realistic scenarios
which in turn can inform good choices for the parametrization of
probes and measurements.
While the approach outlined in the main text is widely

applicable, covering arbitrary noise models and post-processing
functions, it still does not cover all possible metrological tasks. In
the Supplementary Methods, we therefore present extensions of
our algorithm that take into account prior knowledge about the
underlying parameters, handle mutual time dependence of
unitary evolution and noise, and outline how we can benchmark
our results against the ultimately attainable precision given by the
quantum Cramér-Rao bound. The results about parameter-shift
rules for quantum channels furthermore allow the extension of
our method to the metrology of error channel parameters. We
hope that the present work contributes to a shift in mindset—
somewhat reminiscent of the idea of quantum computer-aided
design of physical platforms48—so that not all sensing protocols
have to be designed classically, but that one can make use of
quantum technologies themselves to actually learn improved
quantum protocols.
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