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Abstract

Bidirectional Reflectance Distribution Functions,
BRDFs, describe the reflectance of light on a ma-
terial, and are widely used in computer graphics to
render materials. Acquiring a full measured BRDF
can be costly and time consuming, so this research
aims to answer the question ”How can we approx-
imate a full BRDF from a single slice (in-plane
BRDF)?”. Outlined in this paper is an algorithm
that uses solids of revolution to approximate a full
BRDF from a single slice. The algorithm finds sub-
curves of the slice, creates solids of revolution for
each, normalizes the data, and merges the solids
while removing overlapping data. The resulting
solid, described by a list of points using a Carte-
sian coordinate system, represents the full, three-
dimensional BRDF.

1 Introduction
In computer graphics a common task is to render multiple
objects comprised of different materials. To model the ap-
pearance of a material a common method is to determine the
amount of light that reaches an observer when light hits the
material. A function that is frequently used for this purpose is
a Bidirectional Reflectance Distribution Function (BRDF). A
BRDF provides the fraction of light reflected in a certain di-
rection based on the direction of incoming light for a specific
material [2].

In order to determine a BRDF a couple of methods can be
used. Traditionally a BRDF is either determined by using an
analytical model, such as Blinn-Phong or Oren-Nayar [11],
or by measuring the reflectance of a material for each combi-
nation of incoming and outgoing directions of light [9][10].
While this second method results in accurate representations
of the material, it is quite time consuming.

A slice of a BRDF, also called an in-plane BRDF, is a two-
dimensional slice of a BRDF. In a full, three-dimensional
BRDF the direction is in a three-dimensional space and the
direction can be represented by two angles: the elevation ϕ,
and the azimuth (θ), which represents the rotation around the
normal. For an in-plane BRDF θ is fixed, and as such the
only angle that can vary is ϕ. Figure 1 depicts a point in both
a three-dimensional and an in-plane BRDF with all the vari-
ables shown.

Figure 1: A three dimensional and in-plane BRDF with one point.
Left: A full, three dimensional BRDF with one point.
Right: An in-plane BRDF with one point.

While using measured BRDFs can be enticing due to the
accuracy of the data, the financial costs and time requirements
can be prohibitive. To combat these concerns a less costly or
faster method of acquiring a measured BRDF can be quite
beneficial. One way to achieve this is to approximate a full
BRDF from a single slice of the data. This paper will there-
fore focus on the question: “How can we approximate a full,
3D BRDF for a material from one slice (in-plane BRDF)?”

One option of approximating a BRDF from a single slice
is trough the use of solids of revolution. Solids of revolu-
tion are the solid figures created when rotating a curve around
an axis [13]. Solids of revolution can thus be used to create
three-dimensional shapes from two-dimensional curves. This
application of solids of revolution can be utilized to a full,
three-dimensional BRDF by creating a solid of revolution of
the two-dimensional, in-plane BRDF.

To approximate a BRDF through the generation of solids
of revolution one needs to first be able to find the sub-curves
that comprise an in-plane BRDF. This is needed in order to
create a solid of revolution for each curve. These solids can
then be added together to create an approximation of the full
BRDF that is represented by the slice given.

There are a couple of issues that need to be addressed, how-
ever. One issue is the fact that this method can leave areas of
the BRDF empty when no sub-curve spans the entire width
of the in-plane BRDF. Another issue arises when sub-curves
are not purely parabolic functions, thus requiring both a more
complex method of finding sub-curves, as well as requiring
the determining of non-vertical axes of revolution in order
to create a solid that most accurately reflects the BRDF pro-
vided.

These issues, as well as the full research question, lead to
the following sub-questions:

• How to create a simple BRDF as a solid of revolution of
a simple curve?

• How can solids of revolution be combined to create a
more complex BRDF?

• How can complete coverage of the BRDFs domain be
ensured?

• How can an in-plane BRDF be divided into sub-curves
that can be used to create the full BRDF?

• What method can be used to find non-vertical axes of
rotation for more complex sub-curves?

The first segment of this paper is the introduction. Here
background information will be discussed, as well as the rel-
evancy of the research detailed in this paper, the core research
question, as well as the sub-questions that comprise this main
question.

The second segment of this paper details the methodology
used in conducting this research. This section will include the
general plan that was used to conduct this research, explain
the steps taken during the research to reach the result gathered
by this research, and discuss the actual course of the research
as it was conducted.

The third section of this paper describes the results of the
research.



The final part of this paper are a set of discussions. This
discussion will contain the limitations of the research that was
conducted, a discussion regarding possible improvements
that can be made, a list of future work that can follow from
this research, and how this research improved and expanded
on existing research. This section will also include a con-
cise summary of all the results, direct answers to the research
question and it’s sub-questions, and discus the ethical impli-
cations of the method in which the research was conducted
and the results it gathered.

2 Methodology
To answer the research questions there are a number of steps
to take in order. Each step answers a sub-question, with the
core research question being answered at the end. The exact
steps are as follows:

1. Create a simple, three-dimensional plot of a solid of rev-
olution made from a simple curve, such as a quadratic or
sinusoidal function.

2. Combine multiple solids of revolution into a single solid
while both removing redundant/ unnecessary data and
ensuring that the resulting solid is still representative of
the input.

3. Find the sub-curves that comprise an in-plane BRDF
while ensuring coverage of the entire domain of the
BRDF by the resulting solids of revolution.

4. Find non-vertical axes of rotation for complex curves for
which vertical axes of rotation would not result in repre-
sentative BRDFs

5. Extract sub-curves from an in-plane BRDF that has mul-
tiple data-points with differing y-coordinates and equal
x-coordinates.

2.1 Simple solids of revolution
The first step in this research is to determine a method for
creating a solid of revolution from a simple curve. Examples
of such curves are quadratic functions or sinusoidal waves.
These types of curves are simple to create into solids of revo-
lution due to their inherent symmetry.

The first issue that needs to be addressed is how data is rep-
resented. This algorithm requires a list of two-dimensional
points using Cartesian coordinates, sorted in the order of
which they would appear when following the trajectory of
the curve the points represent. An example of this ordering is
shown in figure 2.

For each point the values for θ,ϕ , and the intensity are
then calculated. These values will later be used for compar-
ing points with differing coordinates that represent a vector
in the same direction. For these values the point is inter-
preted as a vector from 0 to the coordinates of the points.
θ is measured around the z-axis, with the x-axis in the posi-
tive direction representing zero and the angle increasing with
a counter-clockwise rotation, as can be seen in the unit circle

cite unit circle
. ϕ is the angle between the vector and the x,y-plane, which

can hold values between 0 and 90, these values represent the

Figure 2: Points (Red) representing a curve (Blue) along with their
ordering

vector being parallel and orthogonal to the surface respec-
tively. The intensity is the length of the vector, measured by
the distance from the point to 0.

using all the given points, the algorithm then finds the axis
of rotation for the curve. For simple curves a measure of sym-
metry is assumed in a way that the distribution of points in the
first half of the curve is similar or equal to the distribution in
the second half of the curve. Assuming this the axis is de-
termined by taking the vertical line through the highest point
of the curve, or trough the mean of the two highest points if
there are two points that are equally high.

The last step for this part of the algorithm is simply rotating
each point around the axis, creating a ring of points for each
point on the curve. These rings are combined into a single set
of points to create the solid of revolution for the curve.

2.2 Combining solids
The next step is to find a way to combine multiple solids. This
is needed due to the limitation that a full, complex BRDF
cannot be created through the revolution of a complete in-
plane BRDF ¡include figure of incorrect BRDF¿. This can be
mitigated by creating multiple solids of revolution, and then
combing them to create a single, complex shape.

Simply combing multiple solids is the not whole problem
here, however. By simply adding two solids that overlap you
might end up with data in the final BRDF that should not
be present, but is created through the rotation of one of the
sub-curves. Because of this issue this step is focused on com-
bining solids while removing data that should not be present
in the final BRDF.

To address this issue the algorithm does not remove points
based on overlapping x and y coordinates, as two points can
have differing coordinates while still representing a vector in
the same direction. To accomplish this the algorithm com-
pares the angles of two points and removes the point with
the lower intensity, as this points would not be visible in the
resulting BRDF due to the other point representing a higher
intensity of light already being reflected in its direction.

Comparing all points with each other is not desirable, how-
ever. Doing this is a brute-force method that results in an
O(n2) worst-case time complexity, with n as the number of
point in the solid. To alleviate this problem the algorithm



takes two steps:
1. Sorting the data.
2. Normalizing the data.

The algorithm sorts the data so it can compare points to only
points that are close to it. Simply sorting the points does not
fully alleviate the issue, however. All point can still have
slightly differing angles, which result in needing to define
which points are ”close” to each other in order to only com-
pare points that would be considered as overlapping. Depend-
ing on the definition this can, in the worst case, still result in
comparing all points to each other, if they are close enough to
each other.

To address this, the algorithm normalized the data based
on the direction of the vectors represented by the points. The
algorithm does this by adjusting a point so it points in a di-
rection that is distributed evenly based on θ and ϕ.

By first normalizing and then sorting the data the algorithm
will compare points only if they have equal directions. Ad-
ditionally, the algorithm only has to go trough all the points
once, as it can linearly compare all points with equal direc-
tions, only keeping the point with the highest intensity. Doing
this for all direction lowers the number of comparisons made
significantly, lowering time complexity of the comparisons to
O(n), meaning this entire process has an O(nlogn) worst-case
time complexity, as sorting the data is done in O(nlogn) time
complexity [1].

2.3 Finding sub-curves
A crucial part of this algorithm is creating a three-
dimensional BRDF from a single in-plane BRDF. This could
be achieved by splitting the curve represented by the slice
into multiple sub-curves. These sub-curves can then be used
to create solids of revolution, which can be combined into a
single, full BRDF.

To accomplish the division of the slice into multiple sub-
curves the algorithm needs to assume a number of aspects of
the curve present in the slice. The assumptions are as follows:

• The slice is a ”smooth” curve.
• Sub-curves begin when the curve changes direction.
The algorithm assumes that the curve represented by the

slice is a smooth curve, which means that the curve does not
have a large number of small bumps, which would give the
curve a wave-like quality. When this algorithm is given a
curve that is not smooth, it determines every bump as a sub-
curve, resulting in a BRDF where a lot of data had to be filled
in, due to the combined solids of revolution not covering a
large part of the domain. An example of these types of curves
and its sub-curves is shown in figure 3.

Additionally the algorithm assumes that the curve can be
split into sub-curves based on the acceleration of the curve.
The acceleration of a curve at a given point is the change di-
rection the curve travels, found trough calculating the second
derivative of a mathematical curve. The algorithm splits a
sub curve on areas where acceleration changes from negative
(trending towards a descending angle), to positive (trending
towards an ascending angle), and back to negative. The split
of between the sub-curves is at the median point of the area

Figure 3: A bumpy curve, depicted by a grey line.
Points of the same color belong to the same sub-curve, each color
represents a separate sub-curve

where the acceleration is positive. This method essentially di-
vides sub-curves based on positions where the curves seems
to make a turn. The middle of such a turn is where the sub-
curves would be divided. An example can be seen in figure
....

Another issue the algorithm has to account for in this step
is filling the entire domain. When multiple sub-curves are
turned into solids of revolution, the combined solid does not
necessarily cover the entire domain of the BRDF. This lack
of data can result unexpected behaviour when the BRDF is
used in rendering purposes that require this data. To solve
this issue the algorithm makes a simple decision: any direc-
tion in the domain that is not filled is filled with a vector with
intensity 0, which means no light is reflected in that direc-
tion. The algorithm specifically assigns an intensity of 0 as it
assumes that any direction not covered by the approximated
BRDF would not be covered by the full BRDF that the slice
originally represents.

2.4 Non-vertical axes of rotation
The previous steps combined allow for the creation of full
BRDFs from a large number of in-plane BRDFs. There are
still sub-curves that do not result in representative solids of
revolution when using a vertical axis of rotation, however. In
order to create more correct BRDFs from these curves the
next step is to find a method to determine non-vertical axes of
rotation for sub-curves, and rotating sub-curves around these
axes.

To find the non-vertical axis of rotation the algorithm uses
Principal component Analysis (PCA) [5]. When PCA is used
on a sub-curve it will result in a set of principal components,
which are unit vectors in the direction of a line that best fit the
data, with each principal component orthogonal to all other
principal components. The first principal component, which
represents the line trough the curve that best fits the data, can
then be used as the axis or rotation for the sub-curve, as no
other line will fit better to the data.

To rotate a sub-curve around a non-vertical axis the algo-
rithm uses Rodrigues’ rotation formula, which rotates a vec-
tor v around an axis, represented by a unit vector k, with by
an angle of θ around the axis in a counter-clockwise direction
[12]1.

1Original text in French, translation: [4]



To use this formula with axes that do not pass trough 0,
the algorithm shifts the data and the rotation axis along the
x-axis until the rotational axis passes trough 0, then applies
Rodrigues’ formula, and finally shifts the resulting data back
along the x-axis. This is needed as the data would otherwise
not be in the right position relative to k, and thus result in an
incorrect solid of revolution.

3 Results
Presented here are a number of BRDFs created using the al-
gorithm. The first BRDF is a simple diffuse BRDF made
from a half-circle, seen in figure 4 The second BRDF is a
simple specular lobe for a BRDF, seen in figure 5 The third
BRDF is a combination of a specular and a diffuse element
into a single BRDF, seen in figure 6. The fourth BRDF is
a combination of specular lobes to simulate front- and back-
scattering, seen in figure 7. The last BRDF is a full BRDF
with a front- and back-scatter lobe, seen in figure 8.

Figure 4: A simple BRDF created from a simple curve
left: the input data; right: the resulting BRDF

Figure 5: A simple BRDF created from a simple curve
left: the input data; right: the resulting BRDF

4 Conclusion
This research describes an algorithm that can create a full,
three-dimensional BRDF from an in-plane BRDF. The algo-
rithm takes a list of two-dimensional points to represent the
in-plane BRDF. It then divides these points into sub-curves,
representing rotatable segments of the in-plane BRDF. From
these sub-curves it creates solids of revolution, which it com-
bines into a single solid. This data is then treated so it repre-
sents the full, three-dimensional BRDF while ensuring cov-
erage of the domain and removing overlapping data.

Figure 6: A simple BRDF created from a simple curve
left: the input data; right: the resulting BRDF

Figure 7: A complex BRDF created from a simple curve
left: the input data; right: the resulting BRDF

4.1 limitations
Due to the nature of this research, as well as the time restric-
tions placed upon it, there are limitations to this research. The
first limitation is that it only handles measured BRDFs, as
trying to approximate analytical BRDFs from a slice is too
complex for this project. Another limitation is that this re-
search only covers Isotropic materials, as anisotropic materi-
als do not have BRDFs that can be approximated using solids
of revolution. A third limitation is that the algorithm does not
approximate or interpolate data in directions for which there
no data in the solids of revolution, instead defaulting the in-
tensity to 0. Another limitation is the code implementing the
algorithm2 is incomplete, as both the Principal Component
Analysis and the dividing of sub-curves are not implemented.

4.2 Possible improvements
Because of the limitations on this research, as well as unfore-
seen circumstances, there are still improvements that could
be made to this research. One notable improvement that can
be made is to how the algorithm splits an in-plane BRDF into
sub-curves. The current method is heavily flawed and is a
heavy limiting factor of the types of BRDFs that can be mod-
eled by the algorithm. A second improvement that could be
made is interpolating the data to get a more accurate plot af-
ter normalizing the angles of each points instead of slightly
rotating the vector represented by a point. Another possible
improvement is adding interpolation or approximation of data
in directions that have no data, as discussed in the limitations
of this research.

2A partial implementation, not including PCA or division into
sub-curves can be found at: https://github.com/Dead-gino/BRDF-
rotation



Figure 8: A complex BRDF created from a simple curve
left: the input data; right: the resulting BRDF

4.3 Future work

The algorithm detailed in this research can handle a large
amount of possible slices of BRDFs, but it is not exhaustive.
Possible extensions of this research could include extending
the algorithm to handle in-plane BRDFs that do not have a
smooth curve as described in section 3.3. Other additions to
the algorithm could be addressing the possible improvements
described above.

Besides extending the algorithm, another possibility of ex-
panding upon this research is creating an algorithm for ap-
proximating anisotropic BRDFs.

4.4 Improving on existing work

Due to the heavily generative nature of this research there
was not much research which to directly build upon. Most
research used was either regarding smaller sub-problems en-
countered throughout the research process, or used to defined
background information in this research paper, most notably
the introduction. Besides this there is not a lot of research to
improve upon.

4.5 Responsible research

While ethics are an important part of research, this research
has little room in terms of ethics or the violation thereof. The
algorithm created does not handle data that pertains to any
person or group, nor does it contain any bias towards certain
outcomes, due to the mathematical nature of the research.

All the sources used during this research have been cred-
ited as fully and correctly as possible, with any information
regarding a source being stored for later reference. Sources
have been provided to the full extent of what could be gath-
ered from the sources themselves. No sources used during
this research have knowingly or willingly been omitted, al-
tered, or miscredited.

The entirety of the algorithm developed in this research has
been detailed throughout this paper. As such one should not
have any issues reproducing the algorithm themselves, given
enough time and resources. Points where other implemen-
tations of the algorithm might differ should have no impact
of functionality, and instead only be in how information is
stored, how intermediate results are represented, or how data
is visualized.
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A Tools used
During the development of the algorithm described in this
paper, a program was coded to test the functionality of the
algorithm. The programming language used to implement
the algorithm is Python 3.9.13 [3]. In addition to the base
functionality present in Python the libraries Matplotlib 3.7.1
[7] and Numpy 1.24.3 [6] are used by the implementation.
Matplotlib is used to visualize the data into three-dimensional
plots, whereas Numpy is used for mathematical functions not
present in the base Python functionality. To create the code
for the implementation itself the IDE Pycharm 2022.3.3 [8]
was used.
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