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Performance-Oriented Fault
Tolerance in Computing Systems

Demid Borodin

Abstract

I n this dissertation we address the overhead reduction of fault tolerance
(FT) techniques. Due to technology trends such as decreasing feature
sizes and lowering voltage levels, FT is becoming increasingly important

in modern computing systems. FT techniques are based on some form of re-
dundancy. It can be space redundancy (additional hardware), time redundancy
(multiple executions), and/or information redundancy (additional verification
information). This redundancy significantly increases the system cost and/or
degrades its performance, which is not acceptable in many cases.

This dissertation proposes several methods to reduce the overhead of FT tech-
niques. In most cases the overhead due to time redundancy is targeted, al-
though some techniques can also be used to reduce the overhead of other
forms of redundancy. Many time-redundant FT techniques are based on ex-
ecuting instructions multiple times. Redundant instruction copies are created
either in hardware or software, and their results are compared to detect possi-
ble faults. This dissertation conjectures that different instructions need varying
protection levels for the reliable application execution. Possible ways to assign
proper protection levels to different instructions are investigated, such as the
novel concept of instruction vulnerability factor. By protecting critical instruc-
tions better than others, significant performance improvements, power savings,
and/or system cost reductions can be achieved. In addition it is proposed to em-
ploy instruction reuse techniques such as precomputation and memoization to
reduce the number of instructions to be re-executed for fault detection.

Multicore systems have recently gained significant attention due to the popular
conviction that the instruction level parallelism has reached its limits, and due
to power density constraints. In a cache coherent multicore system the correct
functionality of the cache coherence protocol is essential for the system oper-
ation. This dissertation also proposes a cache coherence verification technique
which detects faults at a lower cost than previously proposed methods.
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1
Introduction

E xperience shows that in spite of all efforts to avoid it, manufactured
computer systems tend to produce errors [1]. Fault avoidance [1] (also
called fault-intolerance [2]) techniques, such as a thorough design pro-

cess, using highly reliable materials, increasing the frequency and voltage mar-
gins, and post-manufacturing testing, are not able to prevent or catch all faults,
or incur significant costs.

As the complexity of systems grows, the number of unfixed development faults
increases. Because of the high design complexity, it is practically impossible
to find all specification mistakes; because of the high complexity of produced
systems, even very sophisticated testing methods fail to reveal all implementa-
tion mistakes. These are called specification and implementation mistakes [3]
or development faults [1]. Malicious and non-malicious faults [1] can be made
by designers, as well as by human operators working with a system at the
operation stage.

In addition to the development faults, there are faults that occur during the
system lifetime. These are physical faults, which can be internal and exter-
nal (interaction) faults [1]. Examples of physical faults that can occur during
a system’s operation are noise-related faults [4], induced by electrical distur-
bances between the wires, and the faults triggered by environmental extremes
such as fluctuations in temperature and power supply voltage, and radiation
interference (gamma rays arriving from space [5] and alpha particles [6]).

The successful construction of dependable systems (systems able to deliver
service that can justifiably be trusted [1]) requires applying both fault avoid-
ance and fault tolerance (FT) techniques. Avizienis [7] argues that applying
either of them alone leads to inefficiency and limited dependability. For ex-
ample, applying fault avoidance by means of using highly reliable components
is very expensive by itself. If these components still fail and there is no FT
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2 CHAPTER 1. INTRODUCTION

mechanism which is able to keep the system operating correctly for a certain
time after a failure, immediate manual maintenance is required to recover the
system. Hence, maintenance personnel must always be present near a critical
system, which adds a lot of expenses. At some point investing in a system’s FT
at the design stage becomes more cost-effective and efficient than increasing
the investments in fault avoidance [8].

After the switch from vacuum tubes to the significantly more reliable tran-
sistors and until recently, strong FT features could typically be found only
in special-purpose expensive computing systems that required extremely high
reliability, such as computers used for military purposes and controlling air-
crafts. The technology reliability was considered sufficient for commodity sys-
tems, and only a few FT techniques, such as Error Correcting Codes (ECC) [9]
in memory, were usually used. However, modern technology trends such as
shrinking the feature size and increasing the integration level have increased
the probability of faults [4]. As a result, FT features are becoming necessary
even in personal computers and embedded systems.

Avizienis [10] defines FT as “the ability to execute specified algorithms cor-
rectly regardless of hardware failures and program errors”. There are sev-
eral works introducing FT, defining its basic concepts and presenting a taxon-
omy [1, 2, 7, 8, 10–18].

This dissertation investigates low-cost FT techniques suitable for the design
of systems in which expensive protection techniques are not affordable, such
as general purpose personal computers and embedded systems. For these sys-
tems, it is not acceptable, for instance, to double the cost or to halve the perfor-
mance in order to achieve reliability. Several techniques proposed in this work
are able to reduce the FT integration cost for such systems. Most of the pro-
posed methods reduce the performance degradation of existing time-redundant
FT techniques. Because they target performance improvement, they are called
Performance-Oriented Fault Tolerance (POFT) techniques in this thesis.

1.1 Problem Statement and Objectives

FT is achieved by introducing redundancy. Redundancy can appear in dif-
ferent forms. It can be space redundancy (additional hardware), information
redundancy (additional information helping to verify some data), and time re-
dundancy (multiple sequential executions of the same code, and/or execution
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of additional verification code). Combinations of these redundancy types are
also possible.

High-end critical computing systems, such as those used in aviation, nuclear
plants, and for military purposes, typically use very expensive massive space
redundancy. Multiple identical components, such as whole processors or their
parts, are used to verify each other, detecting and possibly tolerating faults.
Such a method provides a performance similar to that of a non-redundant sys-
tem, but at a very high cost. The cost of the system, as well as its power and
energy consumption, easily exceeds the cost of the non-redundant system by
multiple times. While such a high cost is justifiable for critical-mission sys-
tems, this type of redundancy is in most cases not suitable for low-cost systems.
Information redundancy (parity codes, ECC, etc.) is used both in expensive
and relatively low-cost systems. It is mostly suitable for memory structures,
however, and is usually unable to sufficiently protect the whole system. Time
redundancy is often used in low-cost systems. It can significantly degrade the
system performance, however, and can also increase the energy consumption.
Hybrid FT techniques incorporating different forms of redundancy are very
useful for both high-end and low-cost systems.

A careful design of FT techniques, employing (possibly combinations of) dif-
ferent redundancy types, is able to achieve significant reliability improvements
at low cost and/or relatively little performance degradation. This is the main
objective of this dissertation. Different approaches can be taken to achieve
this goal. For example, unique system characteristics can be employed. Some
systems are often unable to effectively utilize all their available resources. For
example, the lack of Instruction-Level Parallelism (ILP) often leads to under-
utilized resources in superscalar processors. These idle resources can be used
for FT purposes, thereby significantly reducing the performance penalty due
to FT (see Section 2.4). A novel approach proposed in this dissertation (Chap-
ter 3) questions what to protect, instead of how to protect it. It is shown that
by protecting only the critical application parts, the overall application reli-
ability can be achieved with a significantly reduced cost and/or performance
degradation, or a higher reliability can be achieved at the same cost. Another
approach employs performance improvement techniques, such as instruction
precomputation and memoization, to reduce the FT overhead (see Chapter 5).
Finally, low-cost function-specific protection methods can be designed, such
as the cache coherence verification method proposed in Chapter 6.
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1.2 Organization and Contributions

This dissertation makes several contributions to the FT overhead reduction.

Chapter 2 presents background information. First, it includes a brief history of
FT development to introduce the reader to the subject. Then, existing POFT
techniques for different architectures are presented. The ILCOFT approach
proposed in this dissertation (Chapter 3) can be used with many of these tech-
niques.

Chapter 3 introduces the Instruction-Level Configurability of Fault Tolerance
(ILCOFT) approach. ILCOFT is based on the observation that different appli-
cation parts differ in how critical they are for the overall application reliability.
If more critical application parts are protected better than less critical parts, the
same overall reliability can be achieved (or even improved) with a reduced FT
overhead. To achieve this goal, ILCOFT requires a programmer to assign the
proper protection to different application parts. Chapter 3 demonstrates when
and why ILCOFT is useful, discusses how it can be implemented manually by
a programmer, and automatically by a compiler. Then the ILCOFT concept is
experimentally evaluated.

The greatest challenge ILCOFT faces is the difficulty to effectively assign
proper protection levels to different application parts. The manual method re-
quires significant programming effort and is very error-prone. The automatic
compiler method is based on the assumption that only control flow instructions
need to be protected, which is not safe for many applications. This problem is
addressed in Chapter 4, where the novel Instruction Vulnerability Factor (IVF)
concept is introduced. IVF measures how much of the final application output
is corrupted due to fault(s) in every particular instruction. IVF is computed off-
line, once per application, and is then used by ILCOFT to determine the proper
protection level for every executed instruction. As the experiments in Chap-
ter 4 show, IVF provides a more accurate required protection level estimation
than manual and compiler-based methods.

Chapter 5 proposes to employ the instruction precomputation [19] and mem-
oization [20–22] techniques to reduce the fault detection overhead. Instead
of duplicating every instruction for fault detection, this Chapter 5 proposes to
compare the obtained instruction results with the corresponding precomputed
and/or memoized results, when possible. Both instruction precomputation and
memoization improve the performance and fault coverage compared to the
duplication-based system. In addition, instruction precomputation is shown to
improve the fault coverage, and in some cases the performance, of a previously
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proposed memoization-based scheme. Moreover, a combination of precompu-
tation and memoization is shown to outperform any one of these techniques
used alone.

Chapter 6 addresses the multiprocessor-specific issue of cache coherence veri-
fication. For systems supporting cache coherence, the correct cache coherence
operation is essential for the overall system reliability. Chapter 6 presents a
low-cost verification scheme which outperforms previously proposed similar
techniques at the expense of a slightly reduced fault coverage.

Finally, Chapter 7 summarizes the work presented in this dissertation and
draws conclusions. In addition, possible future research directions are pro-
posed.





2
An Overview of FT in Computing

Systems

T his chapter introduces the reader to FT in computing systems. First,
a brief history of FT is provided in Section 2.1. Then, traditional FT
techniques are presented in Section 2.3. Most existing FT techniques

are based on the fundamental principles described in this section, such as du-
plication with comparison for fault detection, and N-modular redundancy for
fault detection and recovery.

Thereafter, the chapter focuses on low-cost FT techniques suitable not only for
expensive high-end systems, but also for low-cost general-purpose and embed-
ded systems. Section 2.4 surveys existing POFT techniques. Many of these
techniques can be enhanced with the ILCOFT approach presented in Chap-
ter 3 to further reduce the FT overhead. SIFT techniques are presented in Sec-
tion 2.5. SIFT methods are attractive because they do not require any hardware
modifications, and thus, can be implemented faster and at a lower cost. Sec-
tion 2.6 discusses FT techniques addressing the multiprocessor-specific cache
coherence verification problem. Finally, Section 2.7 summarizes this chapter.

2.1 A Brief History of Fault Tolerance

Early computers, appearing from the 1940s until the late 1950s, were known
to suffer from a lack of reliability [23, 24], since they were made from rel-
atively unreliable vacuum tubes. For example, the first all-purpose digital
electronic computer, ENIAC [25], which appeared in 1946, featured a Mean
Time Between Failures (MTBF) of 7 minutes [26], and solved the given prob-
lems correctly only 54% of the time during a 4-year period [27]. Despite this,
ENIAC was considered a pioneering device in reliability as it incorporated

7
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18000 tubes, while at that time many experts found 300 tubes to be the max-
imum limit providing a feasible reliability [27]. Not surprisingly, FT gained
significant attention at that time. The EDVAC computer, designed in 1949,
is considered to be the first computer featuring duplicated ALUs whose re-
sults were compared to detect faults [24]. Another early computer, the Univac
I [28], appeared in 1951. The Univac I extensively used ECC and parity check-
ing for state elements, as well as duplicated arithmetic units and registers. The
Univac I is considered to be the first computer using memory scrubbing: every
5 seconds all memory contents were verified by a parity checker.

The IBM systems featured several failure detection and recovery strate-
gies [29, 30]. In the early systems (beginning 1950s), maintenance personal
had to be available during the operation time. This ensured that if the sys-
tem malfunctioned, an engineer with a deep knowledge of the system could
recreate the failure and isolate the fault. Identifying the source of the problem
involved running diagnostic programs, and if this did not help, an oscilloscope
with logic diagrams was used for signal tracing. Fault isolation was usually
performed by replacing a suspect unit with a spare one. Later (end of 1950s
- beginning 1960s), as the system complexity grew, this method was found to
be infeasible. It became too difficult to create diagnostic software with good
coverage and precision (identifying the source of the problem sufficiently pre-
cise), and to trace errors in complicated designs. The concept of self-testing
hardware was born. Following the terms in [30], the “failure capture” era came
in place of the “failure recreation” era. When an error was detected, the opera-
tion terminated providing the information needed for error analysis. Finally, a
transparent recovery without processing termination entered the scene, intro-
ducing the “failure recover” era. The IBM 650 system (mid-1950s, vacuum
tubes) used error detecting codes, parity checks, duplicated certain circuitry,
and utilized some software techniques such as checks for invalid operation
codes and addresses, overflows, and others.

The first theoretical work on FT is attributed to John von Neumann [10] in his
lectures given in 1952 and in [31], where the concept of Triple Modular Re-
dundancy (TMR) was developed and analyzed. After a relatively slow progress
in the late 1950s, two conferences on FT topics appeared in 1961 and 1962,
which stimulated further developments in the field [10].

The second generation of computers, using semiconductor digital elements,
appeared in the late 1950s [23]. Transistors feature a much higher reliability
than the relays and tubes used before [24]. As the reliability of the compo-
nents improved, the overall reliability of computing systems enjoyed a level
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never seen before. This led to a temporal decrease of attention to computer FT
(more precisely, to automated fault recovery) for non-critical systems. Fault
detection/isolation techniques were still being used since they minimized the
system downtime when a fault occurred [12]. The I/O equipment was protected
by error detection and/or correction mechanisms [24]. In general, designers
concentrated on the speed of computing systems, avoiding redundancy to keep
the costs low, trusting the transistors to provide sufficient reliability [3].

In the late 1960s computers began to play key roles in space, military, trans-
port, and other life-critical missions [32]. Because the potential cost and dan-
ger of malfunctions was extremely high, redundancy was employed again to
implement automatic fault recovery [3, 12]. Since that time, the field of fault
tolerant computing attracted a lot of research interest and was rapidly develop-
ing [3]. However, FT techniques have been applied mostly to special-purpose
computers designed for critical missions.

The IBM 7030 (early 1960s, transistors, also called Stretch) used Single Error
Correcting and Double Error Detecting (SEC-DED) codes in memory, parity
checks and modulo-3 residue checks in arithmetic units and data paths. In ad-
dition, IBM 7030 duplicated some circuitry. A notable achievement in FT was
the AN/FSQ-7 system (late 1950s, vacuum tubes), developed for air defense
purposes, which had a spare processor running in parallel with the main one,
executing test programs to test itself. Its memory was kept consistent with that
of the main processor, so if the main processor detected a failure, the standby
could continue operation. The I/O system also used standby spares. The IBM
System/360 (mid-1960s) introduced a number of novel error detection tech-
niques, such as two-rail checkers [33], scan-in and scan-out process, and mi-
crodiagnostics [34]. Several models of the System/370 (early 1970s) were the
first to implement the CPU instruction retry. They also introduced autonomous
diagnostic processors, which are also called watchdog processors. More infor-
mation on IBM systems and their evolution can be found in [29, 30, 35, 36].

The third generation of computer systems (1969-1977) introduced integrated
circuits. In the 1980s, the fourth generation appeared, when Very Large-Scale
Integration (VLSI, integrated circuits with more than 30,000 transistors) be-
came common [23]. The technology advances brought new trends [4]. To
increase performance and decrease cost, designers attempted to reduce the fea-
ture size and power consumption. This inevitably increases the soft error rate
of logic components [37]. From another point of view, the reduced cost of logic
allows more protective redundancy, in some cases making the implementation
of FT techniques very practical and cost effective [3]. VLSI features different
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failure modes than previous technologies [3]. While small scale integration
(integrated circuits with fewer than 30 transistors) and medium scale integra-
tion (30 to 300 transistors) mostly experienced faults on the pins and packag-
ing, in large scale integration (300 to 30,000 transistors) and VLSI there are
more internal faults. Assuming occurrence of only single faults is not suffi-
ciently adequate in VLSI, because the smaller feature sizes lead to a larger
amount of logic corrupted by external disturbances. Finally, the higher com-
plexity leads to an increasing number of design mistakes. These new trends
lead to the application of FT techniques not only in critical, but even in general
purpose systems, and to an increasing research attention to FT [30].

We give a few examples of later FT systems, mostly targeted at critical mis-
sions. The Compaq NonStop Himalaya Servers [38], which appeared in early
1990s, have the fail-fast design philosophy: any faulty hardware or software
module must detect the problem immediately and stop the operation to pre-
vent fault propagation. The Compaq NonStop Himalaya uses lockstepping:
two processors execute the same instructions and check each other every clock
cycle. The memory is protected with SEC-DED codes, which is also able to
detect three or four faulty bits in a row. In addition, a memory “sniffer” runs
in the background every few hours, which tests the whole memory for latent
faults. All data buses, I/O controllers, communication between processors and
peripherals, and disk drives are protected by cyclic redundancy check, check-
sums, and other error detection techniques. The operating system and other
system software is designed specifically for the system, thereby further en-
hancing the data integrity.

In 1994 IBM shifted from bipolar to CMOS technology in its mainframe sys-
tems. There had been several generations of CMOS System/390 (S/390) main-
frames, implementing the ESA/390 (Enterprise Systems Architecture/390) in-
struction set architecture, until the end of the 1990s. The S/390 is a successor
of the S/360 that first appeared in 1964. The first three generations of CMOS
systems could not compete with the latest bipolar systems, neither in perfor-
mance nor in FT. The IBM G4 [39, 40] (fourth generation S/390) system, an-
nounced in 1997, is the first which achieved a performance and FT level at least
equivalent to those of the latest bipolar machines. Although CMOS technol-
ogy features considerably larger fault avoidance characteristics than the bipolar
technology, G4’s design goals necessitated integrating significant FT features.
Statistics show that the most powerful bipolar system, the 9X2 (9020 system
generation), features a mean time between unplanned system downtime of 10
to 16 years. Bipolar IBM mainframe designs extensively use inline checking
techniques [41] such as parity prediction. A parity predictor receives the same
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inputs as the FU it checks (for example, the ALU) and calculates the expected
parity of the output. This predicted parity is compared to the parity of the unit’s
output. The use of parity predictors, and inline checking in general, is not con-
sidered feasible for the G4, because it affects the cycle time and/or increases
the chip area, wire length etc. [40]. Instead of inline checking, duplication
of the entire I-unit (which fetches and decodes instructions) and E-unit (with
execution elements) in a lock-step manner, with a comparison of all output
signals every clock cycle, is preferred in the G4. In this way, neither the cycle
time nor the CPI is affected, because the critical path is not lengthened, and the
comparison of the results is overlapped in the instruction execution pipeline.
The outputs of the duplicated I and E-units are compared at the (N-1)st stage
of the instruction pipeline, and if they match, at the Nth (final) pipeline stage
the ECC-protected checkpoint array in the recovery unit R-unit is updated for
future recovery needs. If an error (mismatch of outputs of the duplicated units)
is detected, the final pipeline stage of the failed instruction is blocked, the
CPU (except the R-unit) is reset, the parity-protected write-through on-chip
L1 cache is flushed and loaded again using the contents of the ECC-protected
off-chip L2 cache. In the mean time, the contents of the ECC-protected R-
unit are checked, and if a permanent error is deduced, the CPU is stopped (the
clock is stopped on the chip) since it is unable to recover. Otherwise, the CPU
is set to the last checkpoint (state known to be good) and starts execution from
the failed instruction. If the instruction fails again, the fault is considered to
be permanent rather than transient (temporary), and the CPU is stopped. This
recovery algorithm is invoked for any type of hardware error in the CPU. All
the inner CPU recovery in the G4 is implemented in hardware, as opposed to
microcode in the 9X2. In the case a failed CPU is stopped, the task which it ran
is assigned to another CPU, with all the state information preserved. If a spare
CPU is not available, graceful degradation of the system takes place. This pro-
cess involves operating system intervention. The total CPU area overhead for
FT in the G4 is estimated at 40%, while in the 9X2 the inline error detection
caused an area overhead of about 30% [40]. Since the on-chip L1 cache is
write-through, all the data it contains is also available in the L2 cache or main
memory. Thus, parity protection is considered sufficient for the L1 cache. The
L2 cache can hold the only valid copy of data, hence it needs higher protection
and uses (72,64) SEC-DED codes. In the main memory, each chip provides 4
bits of a stored word, so an ECC able to correct a 4-bit error is used (a chip
failure can be tolerated). The main memory uses background scrubbing (pe-
riodic checks) to make sure the data it stores is correct. Chips with detected
permanent faults are marked as faulty and are not used after that. For the I/O
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system, inline checking and some other techniques using space redundancy
are utilized. The power and cooling systems also use space redundancy. At the
end of 1997, the G4 experienced a mean time to unplanned system downtime
of 22 to 26 years. More details on the FT features of the IBM S/390 G4 can
be found in [40]. In the next generation S/390 system, the G5 [42], the FT
further improved. The major difference with the G4 is that the G5 used a new
mechanism of migrating tasks from a failed CPU to a spare. Unlike in the G4,
this process does not involve operating system intervention, it is transparent
to software. In the main memory system of the G5, unlike the G4, each chip
provides only one bit of a word, so the lower cost (72,64) SEC-DED code is
sufficient to correct a chip failure. Some FT enhancements in the I/O system
are also introduced in the G5. A complete overview of the FT features of the
G5 is presented in [43]. Bartlett and Spainhower compare the IBM zSeries and
the Compaq NonStop Himalaya in [44].

Most superscalar processors are designed with the emphasis on high perfor-
mance and lack FT features, trusting the reliable technology. The FT tech-
niques are usually confined to the memory systems protected by ECC. There
are a few exceptions, however. The HaL SPARC64 [45], which appeared in the
mid-1990s, is a superscalar processor that features significant FT. The HaL-R1
computer system consists of a SPARC64 CPU and several other chips pack-
aged on a silicon substrate multi-chip module. The HaL SPARC64 CPU uti-
lizes a checkpointing mechanism similar to the one presented by Hwu and
Patt [46] to restore the CPU state when errors and exceptions are detected
while an instruction is executed. In case an error is detected, it is immediately
reported to the precise state unit in the CPU, which stops issuing new instruc-
tions, kills all currently executing instructions, and brings the processor to the
oldest checkpoint state. The processor enters the special Reset Error and De-
bug (RED) state, and the diagnostic processor is initiated, which runs recovery
software. The RED state means that the processor runs in a restricted and de-
graded mode, without speculation. The execution is in-order and all caches are
disabled. If a catastrophic error occurs in the RED state, the system halts, but
the processor’s internal state can be read by the diagnostic processor for analy-
sis. Except the parity-protected level-0 instruction cache, most error detection
mechanisms in the HaL-R1 computer are implemented outside the CPU, at the
chip interface. No FT features are integrated into the CPU’s functional units.
The chip crossing signals arriving to the CPU from the instruction and data
caches and the memory management unit, residing on separate chips, are pro-
tected by parity checks. Other chip crossing signals are protected with ECC.
The HaL SPARC64 contains a programmable watchdog timeout mechanism,



2.2. TAXONOMY OF FAULTS 13

which protects the CPU against a hang condition. If no instructions have been
committed in a specified number of clock cycles, the system can optionally be
brought to the RED state, and control is given to the special software running
on the diagnostic processor, which takes control over the recovery actions. Dif-
ferent classes of memory cells on the cache chips are protected with different
techniques, or have no protection at all. The large storage cells, that keep state
information, are considered not vulnerable to alpha particles, so they are not
protected. The cells keeping the least recently used information are also not
protected, since their failure does not affect the functionality, but only corrupts
the cache line replacement. The cache data array uses SEC-DED codes. The
tag is protected by parity. If an error in a data store is detected, the CPU issues
a retry command. If the error is not correctable, the system is put into the RED
state. The memory system is protected with SEC-DED for transient failures,
and fault-secure code, which uses only 8 check bits for 64 data bits. This code
is derived from the SEC-DED-S4ED code [47]. This code prevents ECC mis-
correction when an 8-bit DRAM chip fails. A detailed description of the FT in
the memory management unit is given in [48].

2.2 Taxonomy of Faults

Figure 2.1 classifies existing faults according to Avizienis [1]. This disserta-
tion focuses on (mostly operational) natural hardware faults, transient and in
several cases permanent. In some cases other classes of faults (such as de-
velopment and human-made faults) can also be addressed by the proposed FT
methods, but only partially.

Natural hardware faults can be caused by both internal and external phenom-
ena. Internal processes causing physical deterioration can result in internal
faults, such as cross talk between wires, wire wearing-out etc. External pro-
cesses originating outside the system and physically interfering with it, possi-
bly penetrating into the system, can result in external faults. This can be, for
example, radiation, external magnetic fields, thermal influence, etc. Internal
as well as external sources can lead to both transient and permanent hardware
faults in the system. More information on the taxonomy of faults can be found
in [1].
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Phase of creation
or occurrence

System boundaries

Phenomenological 
cause

Dimension

Objective

Intent

Capability

Persistence

Faults

Development faults
Occur during: (a) system development, (b) maintenance during the use phase, 
and (c) generation of procedures to operate or to maintain the system.

Operational faults
Occur during service delivery of the use phase.

Internal faults
Originate inside the system boundary.

External faults
Originate outside the system boundary and propagate errors into the system
by interaction or interference.

Natural faults
Caused by natural phenomena without human participation.

Human-Made faults
Result from human actions.

Hardware faults
Originate in, or affect, hardware.

Software faults
Affect software, i.e., programs or data.

Malicious faults
Introcduced by a human with the malicious objective of causing harm to the 
system.

Non-Malicious faults
Introduced without a malicious objective.

Deliberate faults
Result of a harmful decision.

Non-Deliberate faults
Introduced without awareness.

Accidental faults
Introduced inadvertantly.

Incompetence faults
Result from lack of professionall competence by the authorized human(s),
or from inadequacy of the development organization.

Permanent faults
Presence is assumed to be continuous in time.

Transient faults
Presence is bounded in time.

Figure 2.1: Faults classification according to Avizienis [1].

2.3 Conventional FT Techniques

FT is based on some form of redundancy. It can be in the form of space, infor-
mation, or time redundancy. Space redundancy adds extra hardware resources
to achieve FT. It usually leads to significant cost increases, but avoids per-
formance degradation. Information redundancy adds some extra information,
such as parity bits, for FT purposes. It needs additional resources and/or time
to generate and use this information. Time redundancy performs an operation
multiple times sequentially and compares the results. It does not increase the
system cost, but significantly degrades performance. Any type of redundancy
can appear in the form of additional hardware and/or software, which veri-
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fies the functionality of the system. Different forms of redundancy are often
combined to achieve the optimal result with the minimum overhead.

The cheapest form of FT is active redundancy, which is based on error detec-
tion followed by appropriate actions. For example, the faulty hardware unit
can be disabled and its standby spare enabled, if it exists (otherwise, graceful
degradation happens). The system will perform as long as at least one working
unit is available. This approach typically does not correct the detected error,
thus it is suitable only for systems that can tolerate a temporary erroneous re-
sult and is often used in long-life and high-availability systems. Error detection
can be achieved by various techniques such as duplication with comparison,
error detection codes, self-checking logic [33], watchdog timers, consistency
and capability checks, and others [3, 35, 36].

The more expensive passive redundancy employs fault masking techniques,
such as N-Modular Redundancy, ECC, masking logic, etc. Passive redun-
dancy is more suitable for critical applications since it does not allow faults
to propagate to the outputs.

The most expensive and the most effective is the hybrid form incorporating
both passive and active redundancy. For example, the hybrid redundancy can
use multiple identical hardware units verifying each other (providing fault
masking), and spare unit(s). When a unit fails, it is replaced with a spare
one, keeping the system protected. Figure 2.2 classifies the discussed types of
redundancy.

The concept of Triple Modular Redundancy (TMR), one of the basic FT
masking techniques, was developed and analyzed by John von Neumann in
1950s [31]. This scheme involves three identical blocks receiving the same
inputs, which are expected to produce the same outputs. All the outputs are
directed to a voter, which assumes that two or three matching values present
the correct output, and masks the third one if it deviates, considering it to be
faulty. TMR is able to detect multiple errors, as long as two outputs do not
agree on a wrong value, and correct one error.

A reduced version of TMR is duplication with comparison, which is only able
to detect errors, provided these errors do not affect the outputs of both blocks
in the same way. TMR can be extended to N-Modular Redundancy, which uses
N identical blocks, and performs a majority voting on the results. In TMR, N
equals 3, and in duplication with comparison N equals 2.

The N-Modular Redundancy technique can be applied at any level, from dis-
crete transistors to whole systems, as well as for any redundancy method
(space, information, and time redundancy in hardware or software). The only
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Fault Tolerance

Space Redundancy
Additional HW

Information Redundancy
Additional data, may be HW

Time Redundancy
Performance penalty

Active Redundancy
Error detection, enabling

standby spares. For
long-life high-availability

systems.

Passive Redundancy

N-modular redundancy,
 ECC etc. For long-life

High-availability systems.

Hybrid Redundancy
Combines active and
passive redundancy.
The most expensive

and effective method. 

Figure 2.2: Protective Redundancy Types.

practical application of component-level redundancy (the discrete transistor
level) is found in the PPDS computer used in NASA’s Orbiting Astronomical
Observatory (OAO-2) satellite launched in 1968 [49]. It is one of the latest
computers assembled from discrete transistors [12]. PPDS utilizes masking
(quadruple) redundancy at component level: instead of one transistor of a non-
redundant system, there are four of them, implemented in such a way that a
failed transistor is masked by the others. This technology is not adequate for
integrated circuits because the independence of adjacent components’ failures
cannot be guaranteed. N-Modular Redundancy in software takes the form of
N-version programming [50] (see Section 2.5 for details).

The weak spot of N-Modular Redundancy is the voter, which must provide a
reliability level appropriate for the multiplicated module whose functionality
it verifies. A weak voter makes N-Modular Redundancy useless because the
output of multiple modules is not reliable. The reliability of voters has been
studied [51] and some effort has been made to improve it. This is achieved,
for example, by creating self-testing voters [52, 53] and by using a transis-
tor redundancy approach [54], in which faults in the voter are masked at the
transistor level. A voter which compares whole output words rather than sep-
arate bits has been proposed to minimize the risk of an improper agreement
report [55]. In addition to the vulnerability of the voter, all pure N-Modular
Redundancy techniques are susceptible to common failures [32]. Common
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failures affect the outputs in the same way, so that all the modules produce the
same erroneous output, which is accepted by the voter.

The basic form of time redundancy is recomputing (performing the same com-
putation multiple times) with results comparison. This scheme aims at detect-
ing transient (temporary) faults only. The problem of recomputing on hardware
with a permanent fault is the same as that of simultaneous computing on multi-
ple hardware units with common faults: the faults affect the results in the same
way, the outputs match, so the error is not detected. However, there exist space
redundancy schemes covering common faults, and time redundancy schemes
covering permanent faults. These schemes change the form of the inputs (en-
code them) and expect to get matching results after performing an appropri-
ate compensating transformation (decoding) of the output. These transforma-
tions guarantee that common and permanent faults affect results in different
ways. Examples of such techniques are alternating logic [56], alternate-data
retry [57], recomputing with shifted operands [58], recomputing with rotated
operands [59], and recomputing with swapped operands [3]. There are also
hybrid schemes combining hardware and time redundancy, such as recomput-
ing using duplication with comparison [60] and its enhancements [61, 62].

In order to minimize the cost of the applied redundancy, Huang and Abra-
ham [63] proposed algorithm-based FT, which utilizes the properties of partic-
ular algorithms. Algorithm-based FT designs provide a high level of FT at an
extremely low cost compared to the universal methods discussed above. How-
ever, algorithm-based FT methods need to be designed specifically for every
algorithm. Huang and Abraham [63] considered matrix operations as an exam-
ple. Input matrices are encoded by adding a column and/or row containing the
sum of all the elements in the corresponding row/column. Matrix operations
are performed on these encoded matrices. The results are decoded, providing
error detection and location.

For more information on traditional FT techniques we refer to [3, 35, 36].

2.4 POFT Techniques

In the late 1980s a new trend in the research on FT appeared. Researchers
avoid introducing new hardware (space) redundancy. Instead, they introduce
time redundancy and try to minimize the performance overhead by efficiently
using the available but unutilized or underutilized hardware resources. We re-
fer to these techniques as Performance-Oriented Fault Tolerance (POFT) tech-
niques. This is possible with some modern architectures, such as superscalar,
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Table 2.1: POFT Techniques for Different Architectures.
Target Architecture POFT Techniques

VLIW Using idle instruction slots.
[64–67].

Superscalar Using resources which are idle due to
insufficient ILP.
[67–78],
[79, 80].

SMT Duplicate thread verifies the results produced
by the original thread.
[81–86].

VLIW, and multicores, because most applications are not able to effectively
utilize all available resources. For example, when running applications with-
out sufficient thread-level parallelism, some cores in multiprocessor systems
might not perform any useful work.

Table 2.1 characterizes the POFT techniques used for different machine orga-
nizations: VLIW, Superscalar, and SMT. Table 2.2 presents an overview of
different POFT techniques, which are discussed in detail in subsequent sec-
tions.

Table 2.2: Overview of POFT Techniques.

Technique Verification
target

Method

[64], [65],
[66].

VLIW datap-
ath.

Duplicate VLIW instructions in soft-
ware. [66] compares the results in hard-
ware.

ARC [67]. Control flow in
superscalar or
VLIW.

Watchdog task checks control flow
concurrently using signature in a spe-
cial register.

Continued on Next Page. . .
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Table 2.2 – Continued
Technique Verification

target
Method

[68]. FUs, possibly
also other
parts. Covers
permanent
faults.

Instruction duplication using
RESO [58] for the duplicates.

[69]. FUs and pos-
sibly dynamic
scheduler.

Instruction duplication.

[70]. Caches, fetch
and decode
units, dynamic
scheduler, reg-
ister file, result
bus.

Various techniques.

[72]. Datapath in
multiscalar
architec-
tures [87].

Task re-execution.

O3RS [73]. Different parts
in superscalar
architectures.

Instruction duplication. ECC protec-
tion of the instruction decoder, ROB,
RAT, fetching and write-back mecha-
nisms.

[74]. Superscalar
datapath.

Execute instructions multiple times.
Using mechanisms for speculative out-
of-order execution to recover.

SHREC [75]. Superscalar
datapath.

Redundant threads.

[76]. Superscalar
datapath.

Instruction duplication. When possi-
ble, using instruction memoization in-
stead of duplication.

[77]. Partial cov-
erage in
superscalar
datapath.

Instruction duplication when idle slots
are available, or memoization.

Continued on Next Page. . .
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Table 2.2 – Continued
Technique Verification

target
Method

[78]. FUs, partial
permanent
fault coverage.

Instruction duplication. When possi-
ble, using instruction precomputation
instead of duplication.

[79]. Datapath. Using the properties of self-checking
and semi self-checking instructions.

DIVA [71, 88–
90].

Whole proces-
sor, also per-
manent faults.

Simple watchdog processor perform-
ing equivalent task.

[91], AR-
SMT [81],
SRT [82],
SRTR [83],
CRT [84], Slip-
stream proces-
sors [85, 86].

From FUs to
the whole data-
path.

SMT-based redundant threads.

2.4.1 FT in VLIW Architectures

VLIW architectures feature several operations in each instruction word. Only
data-independent operations can appear in different slots of a single instruc-
tion. Furthermore, in many cases only a certain type of operations (utilizing a
certain type of FU) is allowed to occupy each slot within an instruction word.
These constraints often lead to a large number of unused slots in VLIW in-
structions, even when the application is reasonably optimized. The unutilized
instruction slots can effectively be used for FT purposes, for example, by re-
peating operations and comparing the results. However, even if an operation
is duplicated and scheduled in parallel with the original operation (in the same
instruction but in different slots), the results should be compared and an error
signal triggered in case of a mismatch. It is impossible to do so within the
same instruction without changing the hardware. Thus, the comparison must
appear later, occupying a certain amount of resources and likely decreasing
performance.

Holm and Banerjee [64] are the first to propose to duplicate ALU instructions
for error detection in a VLIW datapath. Bolchini [65] presents a similar dupli-
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cation and comparison technique, which attempts to use only idle instruction
slots for duplicates and checking operations, if possible. This reduces the per-
formance penalty. Hu et al. [66] propose a compiler-directed instruction du-
plication scheme which duplicates instructions only if this does not exceed the
maximum permitted performance degradation. To avoid additional compari-
son instructions, additional hardware support is used to compare the results of
duplicated instructions.

Schuette and Shen [67] propose a technique called Available Resource-driven
Control-flow (ARC) monitoring. Although the authors conduct experiments
with a VLIW architecture, the technique is also applicable to superscalar sys-
tems. ARC creates a watchdog task which checks an application’s control flow
concurrently. The program is extended with instructions that regularly update
a special register holding a “key” value. Other embedded instructions compare
this value against the correct one generated by the compiler. Illegal execution
sequences are detected when wrong key values appear. The watchdog task
runs on the same processor and an effort is made to schedule its instructions to
occupy only otherwise idle execution resources, in order to avoid introducing
performance overhead. These idle resources can be both empty slots in VLIW
as well as stalls in superscalar architectures. Several similar software-based
techniques are presented in Section 2.5.

2.4.2 FT in Superscalar Architectures

In superscalar processors, FUs are typically deeply pipelined, and sometimes
multiple instances of them are present. Some of these resources have a good
chance of staying idle during stall cycles due to data dependencies between
instructions.

Superscalar architectures have gained more research attention in the FT con-
text than VLIW processors. One of the early works in this field, before the
superscalar era, is performed by Sohi et al. [68]. For each instruction, a com-
panion instruction is created using the Recomputing With Shifted Operands
(RESO) technique [58]. Different strategies (places where the companion in-
structions can be generated, ways to compare results etc.) are analyzed. The
strategy which is found to be the best for the considered single-issue scalar ar-
chitecture extends the hardware of each FU to duplicate instructions, updates
the register file as soon as (possibly incorrect) results are available to avoid
stalling while waiting for a duplicate result, and degrades performance by only
0.21% on average.



22 CHAPTER 2. AN OVERVIEW OF FT IN COMPUTING SYSTEMS

One of the early works on incorporating FT features into superscalar proces-
sors is done by Franklin [69] in 1995. The author investigates ways to dupli-
cate instructions at runtime and to compare the results to detect errors. Two
places where instructions can be duplicated are presented and analyzed: (1)
in the dynamic scheduler after an instruction is decoded, and (2) in an FU
when it executes an instruction. Duplicating in the dynamic scheduler is pre-
ferred, since it incurs a smaller performance degradationand provides better
fault coverage (the duplicate instructions can be executed on different FUs).
The performance evaluation shows that with a superscalar issue width of four,
the introduction of FT incurs a larger performance penalty than with an issue
width of eight, because more instruction slots are wasted in an organization
with a larger issue width.

In [70] Franklin continues his work on FT in superscalar processors, analyzing
ways to deal with errors occurring in different parts of the processor: in the
instruction and data caches, fetch and decode units, the dynamic scheduler, the
register file, and the result bus. The FUs are not considered. Several FT tech-
niques are proposed and evaluated from the fault coverage and performance
points of view. The techniques do not require any changes to the instruction
set architecture and compiler, and incur a low hardware and performance over-
head. Among the proposed techniques is to keep the instructions’ ECC bits
in a separate instruction check bit cache rather than in the instruction cache
itself. Two distinct address decoders are used to access a cached value and its
ECC bits. At the commit stage, an instruction is re-encoded (performing the
reverse of the instruction decoder operation), and verified using the check bits.
In addition to detecting a value corruption in the instruction cache, fetch unit,
and decoder, this technique is able to catch addressing errors, when the in-
struction cache returns an incorrect value (from a wrong address) to the fetch
unit. The technique eliminates the need for a signature-based control flow
checking which involves object code modification. Following the technique
used in many IBM mainframes, Franklin proposes to use a register check bit
file with ECC values protecting the contents of the register file. Similarly, the
ECC check bits for the contents of the data cache are kept in data check bit
cache. If an instruction’s register operands are verified at the commit stage
by recalculating the ECC bits and comparing them with the contents of the
RCBF, several types of decoder, dynamic scheduler, and register file errors can
be detected and/or corrected.

Rashid et al. [72] incorporate FT into multiscalar architectures [87]. Multi-
scalar architectures feature multiple parallel processing units that execute tasks
derived from a single program. In [72], tasks are re-executed for error detec-
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tion purpose. Static and dynamic task re-execution schemes are assessed. In
the static scheme, a certain number of processing units are assigned a priory
for the original task, and the others – for its duplicate task, whose results are
compared to detect faults. In the dynamic scheme, the resources are distributed
dynamically, giving priority to the trailing tasks when necessary. Simulation
results demonstrate a performance degradation of 5%-15% due to the intro-
duction of FT. The approach targets both transient and permanent faults.

Mendelson and Suri [73] introduce the Out-Of-Order Reliable Superscalar
(O3RS) architectural approach, which uses time redundant FT technique for
error detection and recovery. The approach mainly targets high performance
with the minimum possible FT overhead. The authors suggest minimization of
the FT enhancements in a superscalar processor, using traditional ECC when
possible. It is argued that the lookup table-based instruction decoder, Re-Order
Buffer (ROB), Register Alias Table (RAT), execution units, fetching and write-
back mechanisms do not need any special FT enhancements except the ECC.
Only the retirement mechanism needs to be extended to perform voting on the
duplicated instructions’ results. The ROB is modified in such a way that every
instruction except loads and stores is executed twice and the results are com-
pared. If the results of two instances of a duplicated instruction do not match,
the instruction continues executing until the last two instances agree on the re-
sult (the complete results history is not kept to reduce hardware costs, so only
the last two results can be compared). The approach actually addresses only
transient errors in FUs.

Ray et al. [74] investigate a time-redundant FT technique for superscalar pro-
cessors. The authors suggest that existing mechanisms for speculative out-of-
order execution can be used for cheap transient fault detection and recovery.
The register renaming hardware is adapted to issue multiple (two or more)
instances of a single instruction, and their redundant results are compared in
ROB before retiring to detect errors. The work extends the idea of duplicating
instructions to issuing two or more instances of every instruction, and consid-
ers employing the voting mechanism on the differing outcomes when possible.
If an error is detected, and the voting is not applied, the existing instruction-
rewind mechanism is used for recovery, reverting to the last correct stage. The
performance penalty of this recovery scheme is only on the order of tens of
cycles. The performance impact of the proposed technique is evaluated both
analytically and by simulation. The simulation results show that the instruc-
tion triplication scheme with majority voting on the results outperforms the
instruction duplication scheme with the rewind-based recovery only for very
high error rates. In addition, the simulation results demonstrate that in the ab-
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sence of faults, integration of the proposed FT techniques causes a 2% to 45%
reduction of the throughput.

Smolens et al. [75] analyze the performance bottlenecks of the redundant
threads execution in superscalar pipelines. Based on the obtained results, they
propose the SHREC (SHared REsource Checker) architecture which reduces
the performance overhead by efficiently sharing resources. One of the key
SHREC features is that the input operands are provided to the instructions in
the redundant thread by the main thread. The redundant thread is managed by
a separate in-order scheduler. This restores the full capacity of the issue queue
and reorder buffer to the main thread, without physically enlarging them. In
addition, the main and redundant threads can stagger elastically, up to the size
of the reorder buffer. This reduces the resource contention between the threads,
allowing the redundant thread to use the resources left idle by the main thread,
rather than competing for the busy ones.

Parashar et al. [76] improve the performance of the instruction duplica-
tion approach [69, 74] by employing instruction reuse (also called memoiza-
tion) [22, 92]. This technique avoids redundant computation, when possible,
by reusing the previously saved results for the duplicated instructions. The
original instructions are always executed normally, providing at the same time
verification of the reuse buffer itself. Simulation results demonstrate an aver-
age reduction of 23% in the IPC loss compared to the full redundant computa-
tion (re-execution of all the instructions).

Gomaa and Vijaykumar [77] further reduce the performance degradation due
to fault detection by issuing duplicated instructions only when idle computa-
tional resources are present in the system (low-ILP phases). They combine
this with instruction reuse [76] when possible (when results are available in
the reuse buffer). This way, a certain fault coverage is gained almost without
any performance degradation.

In this dissertation (Chapter 5, also in [78]) the instruction precomputation
technique [19] is used to improve the performance and fault coverage of in-
struction duplication, in a way somewhat similar to how memoization is used
in [76]. Instruction precomputation is a work reuse technique involving off-
line application profiling. The profiling data (instruction opcodes with input
operands and corresponding results) is stored together with the application
binary code. Prior to execution, the profiling data is loaded into a special
hardware buffer, and the stored results are used when possible, avoiding re-
computation. The precomputation-based technique improves the long-lasting
fault coverage of the memoization-based technique [76], and outperforms it for
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some benchmarks. In Chapter 5 (and in [93]) instruction precomputation and
memoization are combined to reduce the fault detection overhead, achieving
better performance than any of these techniques achieves alone.

Kumar and Aggarwal [79] introduce self-checking and semi self-checking in-
structions. They observe that many instructions (38% on average for the simu-
lated benchmarks) produce results that are identical to at least one of the input
operands. An example of such an instruction is addition with zero as one of
the operands. These instructions are called self-checking, because to verify the
correctness of the output, it is sufficient to compare the input operand with the
produced result. Semi self-checking instructions have at least one operand of
a small size (only a few least significant bits are non-zero). In the proposed
scheme, result verification for the self-checking instructions is performed af-
ter the first execution by comparing the output with the input operand. For
the semi self-checking instructions, the upper bits of the result are compared
against the input operand, and the lower bits are recomputed by a dedicated
hardware. The other instructions are executed redundantly. The experimental
results report the recovery of 51% of the performance and 40% of the energy
consumption overhead due to redundancy.

This dissertation (Chapter 3, also in [80, 94]) presents an approach called
Instruction-Level Configurability of Fault Tolerance (ILCOFT). It is based on
the observation that different instructions often have different reliability re-
quirements in a program. Consider, for example, a loop performing matrix
addition. If the addition itself produces a wrong result, only one of the re-
sulting matrix elements will be wrong. In large images, however, one wrong
pixel value is tolerable. If, on the other hand, a fault affects the loop index
calculation, a large portion of the resulting matrix will be corrupted, or the
application will even crash. ILCOFT gives a programmer the opportunity to
define the required FT degree for single or groups of instructions. ILCOFT-
enabled version of EDDI [95] (see Section 2.5 for details), which duplicates
only the critical instructions, is compared against the pure EDDI in the con-
tents of several multimedia kernels and JPEG encoding application. Only one
of the most computationally intensive kernels in the JPEG encoder is enhanced
with ILCOFT. Both the performance and energy consumption are improved by
up to 50% at the kernel level and 16% at the application level. This disserta-
tion (Chapter 4) also introduces the notion of Instruction Vulnerability Factor
(IVF). Using fault injection experiments, IVF evaluates how much of the final
application output is corrupted due to faults in every instruction. This informa-
tion is then used in ILCOFT-enabled system to assign appropriate protection
level to every instruction.
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2.4.3 Dynamic Implementation Verification Architecture

Austin [71] presents a novel microarchitecture-based FT technique called the
Dynamic Implementation Verification Architecture (DIVA). The technique
does not actually utilize the available redundancy, but applies the watchdog
concept to superscalar processors. The DIVA consists of a speculative and
a dependable part. The robust part, the DIVA checker, is meant to provide
dependability of the whole system, checking and correcting the operation
of the deeply speculative part, the DIVA core. The DIVA core is a high-
performance microprocessor without the retirement stage, which delivers its
speculative results (completed instructions in program order, along with their
input operands) to the DIVA checker for verification. The DIVA checker re-
executes the instructions, checking separately the FUs results and register and
memory communication. If all checks succeed, the DIVA checker commits the
results. If an error has occurred, the DIVA checker corrects the results, flushes
the pipeline in the DIVA core, and resumes execution from the following in-
struction.

Because the DIVA core delivers the instructions together with their operands,
the DIVA checker does not face dependency problems, hence its pipeline can
be very simple and fast. Because of this, the system performance is not af-
fected very much. The experimental results show that the average slowdown
caused by the DIVA checker is only 3%. With some additional hardware en-
hancements, the slowdown even drops to 0.03%.

Austin argues that the simplicity of the DIVA checker and its fault avoidance
techniques should make its design and production significantly cheaper than
incorporating FT into a whole high-performance processor. At the same time,
the presence of the dependable DIVA checker makes it possible to be less
concerned about the dependability of the DIVA core, thereby decreasing its
cost.

Subsequent work [88] analyzes the performance overhead caused by intro-
ducing the DIVA checker, and proposes several improvements to decrease it.
Mneimneh et al. [89] propose a strategy for a formal verification of the DIVA
checker. Verifying the correctness of the DIVA checker is sufficient for the
whole DIVA system, since the checker corrects the errors occurring in the
other part. Weaver and Austin [90] further analyze the performance impact of
the DIVA checker, present its detailed design, and assess the area and power
requirements. The results demonstrate virtually no performance penalties, and
less than 6% area and 1.5% power overhead.
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2.4.4 FT Based on Simultaneous Multithreading

Another proposed approach utilizes the Simultaneous Multithreading
(SMT) [96] technique for FT purposes. Originally, SMT has been proposed
to increase the utilization of the available resources in superscalar processors.
When a single thread lacks sufficient ILP to utilize all resources, another thread
can use them. An SMT processor executes multiple independent threads in the
same clock cycle, using different FUs.

In a fault tolerant SMT processor, the original program is run as one thread,
while its duplicate is executed as an independent redundant thread, and the
results are compared. This scheme provides several advantages over con-
ventional hardware replication (when two processors run the same program
and compare results). First, it requires less hardware, because the proces-
sor does not have to be fully duplicated. Second, one thread can assist the
other by prefetching data and providing branch prediction. Furthermore, as
noticed in [91], the multithreaded approach can target both high-performance
and high-reliability goals, if reconfiguration to either high-throughput or fault
tolerant modes is allowed.

The potential of integrating low-cost FT into multithreaded processors by re-
dundantly executing several identical threads is first recognized by Saxena and
McCluskey [91]. They estimate the performance overhead at 20% for dupli-
cated and 60% for triplicated thread.

Rotenberg [81] introduces the Active-stream/Redundant-stream Simultaneous
Multithreading (AR-SMT) technique, which duplicates instructions when they
reach the execution pipeline stage. The two instruction streams are processed
separately in the SMT manner, and their results are compared. The technique
mostly targets transient faults. Permanent faults are unlikely to be discovered
as both instruction streams are executed on the same resources. The perfor-
mance overhead of AR-SMT is evaluated for a trace processor [97] with four
processing elements. A performance penalty of 12% to 29% is reported.

Reinhardt and Mukherjee [82] further investigate the FT capability of SMT
processors, deriving a Simultaneous and Redundantly Threaded (SRT) pro-
cessor. The work introduces the concept of sphere of replication, which ab-
stracts both the physical and logical redundancy and helps to estimate the fault
coverage of a system (determines what parts are protected and what parts are
not). Two different spheres of replication for SRT processors are analyzed
and some problems identified. Several hardware solutions addressing these
problems and the performance overhead are proposed. The experimental re-



28 CHAPTER 2. AN OVERVIEW OF FT IN COMPUTING SYSTEMS

sults demonstrate that an SRT processor is able to deliver an average perfor-
mance improvement of 16%, with a maximum of 29% compared to an equiva-
lent hardware-replicated lockstepped solution, while providing a similar tran-
sient fault coverage. Vijaykumar et al. [83] extend the SRT with transient
fault recovery capabilities and some hardware enhancements, introducing Si-
multaneously and Redundantly Threaded processors with Recovery (SRTR).
Later, Mukherjee et al. [84] further investigate the SRT approach, applying it
to single- and dual-processor simultaneous multithreaded single-chip devices.
A more detailed processor model than in the previous work is used, revealing
some issues in a single-processor device that were not addressed in [82]. The
results show that the actual performance overhead caused by creating a redun-
dant thread is on average 32% rather than 21%, as reported before. The paper
extends the original SRT design with some performance optimizations, and a
technique which increases the permanent fault coverage by forcing duplicated
instructions to use space redundancy rather than time redundancy whenever
possible (if multiple hardware resources exist). In addition, the work presents
a new technique called Chip-level Redundant Threading (CRT), which applies
the SRT approach to a CMP [98] environment, forcing the redundant streams
to run on different cores. On single-thread workloads, when there is only one
(leading) thread of each application, CRT is similar to lockstepping in that
each core runs a single thread, and it achieves similar performance. When two
redundant threads represent each of the two applications, every core runs the
leading thread of one application and the trailing thread of the other. In this
case, CRT outperforms the lockstepped solution by on average 13%, with a
maximum of 22%.

2.4.5 Slipstream Processors

Sundaramoorthy et al. [85, 86] introduce slipstream processors, primarily tar-
geting high performance, but also incorporating some FT capabilities. Slip-
stream processors utilize the unnecessary redundancy, repetition, and pre-
dictability that are observed in general purpose programs. The background
work [99] defines ineffectual instructions, which can be removed from a pro-
gram without affecting the final output. Examples of ineffectual instructions
are those that write values to memory or registers that are never used later,
write the same values which are already present at the destination, and highly
predictable branches. These ineffectual instructions, and the whole compu-
tation chains leading to them (ineffectual regions), can be eliminated from a
program, significantly reducing the amount of computations needed. In some
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cases a reduced instruction stream can comprise only 20% of the original,
equivalent instruction stream [99].

In slipstream processors, for each user program, two processes are created by
the operating system. These redundant processes are executed simultaneously
on a CMP or SMT system. The leading process (advanced stream, A-stream)
runs slightly ahead of the trailing process (redundant stream, R-stream). Spe-
cial hardware, the instruction-removal detector, monitors the R-stream and
identifies the ineffectual instructions that might be eliminated in the future.
The instruction-removal detector delivers this information to the instruction-
removal predictor, which determines the reduced set of instructions to be ex-
ecuted in the A-stream at the future dynamic instances of these instructions.
The A-stream performs fast because of the reduced number of instructions it
has to process, and the trailing R-stream is sped up by the control and data flow
outcomes provided by the A-stream. As a result, the two redundant streams
run faster than each of them can do alone. The experimental results reported
in [85] demonstrate an average performance improvement of 7% on a CMP.
In [86], an improvement of 12% is achieved for a CMP, and 10% to 20% for
an 8-way SMT.

Because of the speculative nature of the process which determines ineffectual
instructions, necessary instructions can be skipped by the A-stream, corrupting
its results. If the R-stream detects deviations in the A-stream, the architectural
state of the R-stream is used for recovery of the A-stream. Thus, the R-stream
plays the role of a watchdog processor. Faults occurring in the instructions
executed redundantly in both the A-stream and the R-stream can be detected
and corrected. However, not all the instructions appearing in the R-stream are
also executed in the A-stream, so the fault coverage is partial. Flexibility is
provided to the user or operating system, allowing to trade performance and
fault coverage.

2.5 Software Fault Tolerance

Table 2.3 presents an overview of several software FT techniques. Software ap-
proaches to FT can be classified into those that target software (design) faults,
and those that aim at detecting and/or tolerating hardware faults. Subsequent
sections discuss them in detail.
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Table 2.3: Overview of Software FT Techniques.

Technique Verification
target

Method Hardware
support

Recovery
blocks [100],
N-version pro-
gramming [50].

Software
design faults.

Multiple independent but
functionally equivalent
implementations.

No

CATCH [101],
[102].

Depends on
fault detection
technique used.

Checkpointing performed by
compiler.

No

SIS [103],
CCA [104],
ECCA [105],
CFCSS [106],
ACFC [107],
YACCA [108].

Control flow
faults.

Control flow signatures. No

BSSC and
ECI [109].

Control flow
faults.

Control flow signatures, sig-
naling instructions in invalid
memory locations.

Possibly
a watch-
dog
timer.

[110], [111],
SIC [112],
[113].

Control flow
faults.

Watchdog processor check-
ing the sequence of check-
points (labels) reached by the
controlled processor.

Watchdog
proces-
sor.

[114], [115],
[116].

Hardware
faults (mostly
transient),
control flow
faults.

Duplication of all high-level
language statements, vari-
ables, function arguments etc.
Control flow signatures.

No

SPCD [117]. Hardware
faults (mostly
transient).

Duplication of all high-level
language statements in a pro-
cedure, or of the procedure
call.

No

EDDI [95],
SWIFT [118].

Hardware
faults (mostly
transient).

Duplication of all assembly
instructions (and data mem-
ory in EDDI).

No

Continued on Next Page. . .
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Table 2.3 – Continued
Technique Verification

target
Method Hardware

support
CRAFT [119]. Hardware

faults (mostly
transient).

Duplication of all assem-
bly instructions (based on
SWIFT [118]). Hardware
support to check load and
store instructions.

Yes

ED4I [120]. Hardware
faults (also
permanent).

Duplication of the whole pro-
gram (executing twice). In
the duplicate program all
variables are multiplied by a
factor of k .

No

[121]. Hardware
faults in mem-
ory.

ECC in memory blocks, peri-
odic scrubbing.

No

[122]. Burst hardware
faults in mem-
ory.

Duplication of the whole ap-
plication.

No

[123]. Illegal memory
references.

Watchdog processor per-
forms capability checking
(if a memory request has
sufficient permissions).

Watchdog
proces-
sor.

[124]. Application
crashes or
hangs.

Watchdog module sending
“alive report” requests,
checkpointing.

No

2.5.1 Approaches Targeting Software Design Faults

Approaches targeting software design faults are based on redundancy in the
form of multiple modules performing the same function, but exploiting as
much design diversity as possible. The recovery blocks approach [100] divides
a software application into multiple modules, possibly with several levels of
nested modules. Each module (“recovery block”) has an alternative module
which performs the same function, but is implemented independently to en-
sure design diversity. The independent implementation of the alternative mod-
ule increases the probability that the modules will not fail in the same way.
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After finishing execution, each recovery block runs acceptance test(s) to verify
correctness of the results. The acceptance tests are not required to provide an
absolute correctness guarantee, they use approximation. This is because the
complexity of exhaustive tests can easily become comparable to the complex-
ity of the tested code. If the acceptance test is passed, the execution progresses
to the following module. Otherwise, if a fault is detected, an alternate attempts
to perform the function. If all the alternates of a recovery block fail, the higher-
level recovery block is declared to fail, and an alternative higher-level recovery
block is executed. This scheme is analogous to the standby sparing in hardware
(see Section 2.3).

N-version programming [50] creates multiple versions of a software applica-
tion, preferably by different developer teams, using different programming lan-
guages. The results produced by the different versions are compared against
each other. This scheme corresponds to the N-Modular Redundancy in hard-
ware.

2.5.2 Approaches Targeting Hardware Faults

Many pure software techniques detecting hardware faults have been proposed.
Although they typically introduce a larger performance overhead than pure
hardware and hardware-assisted software (hybrid) techniques, they are cheaper
to implement. No hardware modifications are required, thus the cost and de-
sign time are reduced.

Several software schemes for generating checkpoints have been proposed.
Checkpointing refers to saving the active state of a running process so that,
upon error detection, the process can be rolled back to the known good state
and its execution can be restarted from there. The major problem facing such
schemes is checkpoints distribution, i.e., finding optimal locations for check-
points. If checkpoints are generated very often, it will introduce a huge per-
formance penalty. On the other hand, the fewer checkpoints are inserted, the
more computations are lost on a rollback, thus the recovery overhead increases.
Li and Fuchs [101] introduce Compiler-Assisted Techniques for Checkpoint-
ing (CATCH). A compiler extends an application with instructions that exam-
ine the clock value and, if a sufficient time passed since the previous check-
point, establish a new checkpoint. Long et al. [102] propose a static compiler
scheme, in which profiling results are used to choose the appropriate locations
for checkpoints.

The Signatured Instruction Stream (SIS) technique [103] proposed by Schuette
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and Shen checks the correct sequencing of executed instructions. A program
is partitioned into blocks in which there exists only a single valid path from the
entry to the exit point. A compiler generates the instruction sequence signa-
ture for each valid path and embeds it into the exit point. The same signatures
are generated at runtime and compared with the expected ones. A mismatch
signals an error. To minimize the memory overhead introduced by storing sig-
natures, the Branch Address Hashing (BAH) technique is used, which encodes
a block’s signature into the target address of a branch instruction at the exit
point (if it exists).

Miremadi et al. [109] describe two software fault detection techniques examin-
ing application control flow. Block signature Self-Checking (BSSC) partitions
an application code into basic blocks without outgoing (conditional jumps)
and incoming (jump targets) branches in it. Every basic block is extended with
instructions setting the current signature in the beginning and checking this
signature at the exit of the block. A wrong signature signals a control flow
error. In addition, the Error Capturing Instructions (ECI) technique inserts in-
structions triggering an error signal into memory locations which are never
executed in normal conditions. A jump to such a location identifies a control
flow error. The authors propose to use these techniques in combination with a
watchdog timer to enlarge the error coverage. A watchdog timer can detect the
cases when a CPU is unable to continue execution, enters infinite loop, etc.

McFearin and Nair [104] introduce a similar technique called Control-flow
Checking using Assertions (CCA). An application is partitioned into Branch
Free Intervals (BFIs), each with a unique Branch free interval IDentifier (BID).
In addition, every BFI keeps a Control Flow IDentifier (CFID), which is iden-
tical for the leaves of a common parent. When execution enters a BFI, the
new BID is saved in a special variable, and the new CFID is enqueued in a
two-element queue. When execution exits a BFI, the current BID is tested,
and the previous CFID is retrieved from the queue and verified. CCA is later
extended with Enhanced CCA (ECCA) [105]. In ECCA, several BIDs can be
grouped into a single block. The more BIDs are incorporated in a single block,
the less overhead is introduced, and the longer the fault detection latency is. In
addition, the number of instructions used in the entry and exit points of each
block is reduced compared to CCA.

Huang and Kintala [124] introduce three software modules that can be inte-
grated in applications to enhance their FT. The modules detect faults in a mon-
itored process and restart it, periodically checkpoint critical state information,
and replicate and synchronize files used by the process. The scheme detects
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when an application crashes or hangs, and is based on the watchdog principle:
a module periodically sends “alive report” requests to the checked application.
The modules can be used in Unix software and require a minimal programming
integration effort.

Rebaudengo et al. [114, 115] propose a high-level language redundancy
method. Every variable has a shadow copy which must always be consis-
tent with the original. A set of rules is defined for every type of a language
construct. For example, each assignment statement is executed for both the
original and the shadow variables, and the result is compared. All arguments
provided to a function are duplicated, as well as the function return value. In
addition, to verify the control flow, the code is partitioned into branch-free
basic blocks similar to [109]. The first instructions in each basic block as-
sign its associated signature to a special variable, which is checked at the exit
from the block. Every branch statement is followed by a check determining
if its condition was tested correctly. Every procedure is assigned an identifier,
which is written to a special variable. After a procedure returns, its identi-
fier is checked. To guarantee a proper compilation, all the compiler optimiza-
tions must be disabled when processing the source code instrumented with this
method. Preliminary experimental results demonstrate that the technique in-
creases the executable code size by a factor of 2, and introduces a performance
overhead by a factor of 5.

Shirvani et al. [121] consider using error detection and/or correction codes for
memory blocks in software. A direct mapping of a similar hardware method,
when every word written to memory is encoded and every word read from
memory is decoded, is not considered feasible for software, since it intro-
duces a very substantial overhead. To avoid this, the authors propose to protect
(encode) only read-only memory parts, such as code segments. A periodic
scrubbing is performed to detect and/or correct possible errors. In addition,
a special interface can be devised which the protected software can use to en-
code/decode the necessary memory parts at appropriate time. When protection
of a certain memory area is requested, the error detecting and correcting pro-
gram receives its address and size, encodes the data and stores the check bits
in a separately allocated memory region.

Error Detection by Duplicated Instructions (EDDI) [95] duplicates all instruc-
tions in the program assembly code and inserts checks to determine if the orig-
inal instruction and its duplicate produce the same result. More precisely, the
registers are partitioned into two groups, one for the original instructions and
one, called the shadow registers, for the duplicate instructions. After the execu-
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tion of a duplicate instruction, the contents of the shadow register(s) it affects
should be identical to the contents of the original destination register(s). A
mismatch signals an error. Instead of comparing the registers after the execu-
tion of every duplicate instruction, EDDI allows faults to propagate until the
point where the value is saved to memory, and detects them just before saving.
In other words, EDDI compares the registers only before their values are stored
in memory. This minimizes the number of checking instructions needed, and
thus, reduces the performance penalty, while data integrity is still guaranteed.
EDDI also duplicates the data memory. This means that the data memory has
a shadow copy which is referenced by the duplicate load/store instructions.
Thus, after any duplicate store instruction, the contents of the shadow data
memory must be the same as the original data memory. From the performance
point of view, the main idea behind EDDI is that most applications cannot fully
exploit wide-issue superscalar processors because they do not exhibit sufficient
ILP [125]. Because the original instructions and the duplicate instructions are
independent, applying EDDI will increase ILP and, therefore, detect errors
with a minimal or reasonable performance penalty in superscalar processors.
Experimental results demonstrate a performance overhead of 13% to 106% on
a 4-way superscalar processor.

Oh and McCluskey [117] introduce a technique called Selective Procedure
Call Duplication (SPCD), which minimizes the energy consumption overhead
of protective redundancy. For every procedure, SPCD either duplicates all its
statements in the high-level language source code (similar to [114, 115]), or
duplicates the call to the whole procedure, comparing the results. The deci-
sion is based on the error latency constraints imposed. A heuristic algorithm
using the program call graph is proposed for that. If the latency of calling a
procedure twice and checking the results is lower than the accepted error la-
tency, the whole procedure call can be duplicated instead of every statement
in it. Procedure-level duplication is a coarse-grain version of the fine-grain
statement-level duplication. It reduces the energy and performance overhead
by decreasing the number of checks executed. Procedure-level duplication
also substantially reduces the code size compared to the statement-level dupli-
cation, because the same procedure is called twice instead of duplicating every
static instruction in it. Experimental results report a maximum energy savings
of 26.2% for SPCD compared to EDDI [95] and the instruction duplication
approach in VLIW architectures presented in [64].

Oh et al. [106] introduce the Control-Flow Checking by Software Signatures
(CFCSS). Similar to [109], this is a pure software control flow error detection
technique which does not require a watchdog processor or multitasking. Each
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node in the program graph has a unique signature, which is embedded into the
compiled application together with error detection instructions. When execut-
ing, the embedded signatures are compared to the ones generated at run-time.

Oh et al. [120] propose a technique called Error Detection by Diverse Data
and Duplicated Instructions (ED4I). ED4I implements instruction duplication
at the high-level language level by copying a whole program. The original and
duplicate programs compare the results after execution. To address perma-
nent faults, when creating the duplicate program, all the variables are changed
(multiplied by a factor of k ). When comparing the results, the appropriate
adjustments are made to the result of the duplicate. This ensures that perma-
nent faults affect the redundant program copies in different ways, producing
different (detectable) results. Optimization of the k factor improving the fault
coverage of ED4I is discussed in detail.

A control flow verification technique called Assertions for Control Flow
Checking (ACFC) is proposed by Venkatasubramanian et al. [107]. ACFC
adds special instructions to every application basic block. These instructions
calculate the execution parity of the block. When the precomputed parity does
not match the parity calculated at run time, an error is detected. A preproces-
sor has been developed that instruments a C program with the necessary asser-
tions. Another assertion-based control flow verification technique called Yet
Another Control-Flow Checking Using Assertions (YACCA), is proposed by
Goloubeva et al. [108]. Nicolescu and Velazco [116] propose an error detection
scheme using a high-level language variables redundancy, similar to [114,115],
and a control flow verification method similar to others discussed above.

Reis et al. [118] combine EDDI [95] with CFCSS [106], producing a tech-
nique called Software Implemented Fault Tolerance (SWIFT). Unlike EDDI,
SWIFT does not replicate memory, but relies on ECC or other appropriate
memory protection methods. SWIFT improves the fault coverage and per-
formance of the previously proposed techniques. A SWIFT-based hybrid (in-
volving hardware modifications) technique named CompileR-Assisted Fault
Tolerance (CRAFT) [119] increases reliability and performance of the pure
software techniques.

Saha [122] proposes a software-only technique capable of detecting and toler-
ating burst memory errors. It uses two or more copies of an enhanced appli-
cation code. A performance penalty of about 2.7 times is introduced for the
error-free scenario.
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2.5.3 Software Techniques Using Watchdog Processors

Some SIFT techniques involving additional processors (watchdog processors)
are presented in this section. They are not purely software, but hybrid meth-
ods, involving both software and hardware units called watchdog processors.
Watchdog processors concurrently check some aspects of the functionality of
the main processor [126]. For example, possessing the correct control flow
information of the application running on the main processor, a watchdog pro-
cessor can compare the actual control flow with it, declaring an error on any
deviation. The effect of a carefully designed watchdog processor to the fault
detection in a system is similar to the effect of a full replication. Watchdog
processors are typically significantly smaller and cheaper than the processors
which they control, and enjoy several other advantages. Because the design of
watchdog processors usually differs from the design of the checked hardware,
the watchdog concept provides design diversity [13,127], and has the potential
to detect not only hardware, but also software and design errors.

One of the early works on this topic is presented in [110]. Using a check-
ing program running on a watchdog processor (called observer), the control
structure of the application running on the main processor (worker) is veri-
fied at run-time. Certain checkpoints are embedded into the worker. While
the worker runs, it sends the checkpoint information to the observer, which
checks if the sequence composed by the previous and the current checkpoints
is valid. For example, if every procedure has a checkpoint, the correctness of
the procedures sequence can be verified by the observer.

The use of a watchdog processor is recommended by Yau and Chen for the
concurrent control flow checking approach presented in [111]. An application
is partitioned into basic blocks. The path information for each of these blocks
is available for the checker, which compares it with information delivered at
run-time. In this manner, any error resulting in illegal branch in a loop-free
block is detected.

In Structural Integrity Checking (SIC) proposed by Lu [112], the controlled ap-
plication incorporates labels which are sent to the checker running on a watch-
dog processor. The checker program is structurally similar to the checked one,
has the same labels in appropriate control paths, but does not include the ac-
tual computations (that is why it requires less computational resources). While
running, the controlled application sends to the checker the labels in the or-
der as they appear. In the absence of faults, the labels sent by the controlled
application must match those in the checker. Because the checker does not
compute variables which determine the control flow, when coming to condi-
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tional branches, it does not know which path has to be followed, and can only
check if one of the possible paths is taken (but it is possible to extend SIC with
conditional branch prediction). In addition, SIC makes sure that a return corre-
sponds to every function call. In SIC, a programmer does not need to provide
any abstract description of the application. The programs running on the main
processor and watchdog processor are directly compiled from the same source
code, using a special compiler preprocessor.

Namjoo and McCluskey [123] propose a capability checking watchdog proces-
sor. This low-cost processor catches illegal memory references issued by the
main processor, by performing capability checking. Capability checking ref-
erences to testing if a code object (for example, a program) issuing a memory
request has appropriate access permissions for the object being targeted.

In the approach of Michel et al. [113], a watchdog processor checks the se-
quence of the control flow graph nodes separately from the instruction stream
inside each node. The main processor provides the watchdog with information
about the current node executed. The watchdog verifies the correctness of the
execution path, and computes and checks the instruction stream signatures for
instructions in the current node.

Mahmood and McCluskey provide a detailed survey and comparison of FT
techniques based on the use of watchdog processors existing by 1988 in [126].

2.6 FT Techniques for Cache Coherence

Current trends in computer architecture demonstrate an increasing interest in
multiprocessor systems [128]. Most of the FT techniques discussed so far are
also applicable to multiprocessors. However, due to some unique features not
present in uniprocessor systems, multiprocessors introduce a new direction for
FT research. This section discusses recent work on FT in a multiprocessor-
specific area, cache coherence, whose correctness is essential for systems em-
ploying it.

Multiprocessors feature a distributed and/or shared memory hierarchy. To en-
hance programmability, the details of the memory structure are often hidden
from the application developer, for whom the memory structure appears as a
single shared memory accessible from all the nodes. This is achieved by em-
ploying cache coherence protocols which guarantee a consistent memory view
for different nodes [125]. Cache coherence plays a very important role in mul-
tiprocessors, providing data integrity. For example, it guarantees that, when
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one processor has changed data at a certain memory address, other processors
in the system fetch a valid copy of these data when they read them. Thus,
faulty cache coherence hardware can lead to data integrity violation. In the
above example, if the cache coherence hardware fails to notify a reading pro-
cessor about the changes another processor has made to the data, it will work
with wrong (stale) data, produce other wrong data on this basis, etc.

Several dynamic cache coherence verification techniques have been proposed.
All of them introduce a certain hardware overhead, and most of them increase
the communication network bandwidth requirements.

In one of the earliest works on this topic, Cantin et al. [129] propose a method
based on the watchdog processor concept. A checker circuit is placed on
each cache and implements a simplified version of the coherence protocol em-
ployed (without the additional optimizing states to reduce the complexity).
The checker maintains its own copy of the tags. When the state of a cache line
changes, the necessary information is sent to the checker. The checker recom-
putes the coherence transaction and verifies the states produced by the cache.
A mismatch signals an error. In addition to local verification, the checker per-
forms global verification. The new state is broadcast to the checkers of other
caches in the system, using a special logical network (which can be a separate
or the existing system network). The other checkers make sure that the new
state of the broadcasting cache does not conflict with their own states. For ex-
ample, multiple caches should not have the same line in the modified state, or
in modified and shared states.

Meixner and Sorin [130] develop the Token Coherence Signature Checker
(TCSC) scheme. TCSC is targeted at memory systems utilizing Token Co-
herence [131], but can also be applied to the traditional invalidation-based
snooping and directory coherence protocols, if they are interpreted in terms
of token coherence. TCSC keeps two signatures on every cache and mem-
ory controller. One signature represents the history of coherence states for all
the blocks in cache or memory, and the other incorporates the history of data
values stored. Periodically these signatures are sent to the verifier(s). Using
the coherence states signatures, the verifier determines if any conflicting co-
herence states appeared in different places and if data propagated incorrectly.
To apply TCSC to a traditional coherence protocol, the MOSI protocol was
interpreted in terms of token coherence. TCSC requires additional informa-
tion to be included in the coherence messages and introduces extra traffic by
submitting the signatures to the verifier. Implementing the snooping MOSI
protocol requires more additional messages. TCSC introduces a theoretical
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worst-case bandwidth overhead of 4.54% for the Token Coherence, 10% to
5% (with some optimizations) for snooping-based protocols, and 15% to 10%
for directory protocols. TCSC also requires additional hardware to compute
the signatures and for the verifier(s).

In a work prior to TCSC, Sorin et al. [132] compute signatures locally and
submit them periodically to a central verifier, similar to TCSC. They use a
different algorithm for computing the signatures and have different signatures
for the coherence and messages history. The technique is limited to snooping
systems and provides slightly less fault coverage than TCSC, but requires less
network bandwidth.

This dissertation (Chapter 6, also [133]) proposes to use independent check-
ers in snooping systems. Every cache has associated checker(s) that keep the
current state information for the cache lines. By snooping the network traffic
sent to and from the checked caches, the checkers maintain their cache line
states and detect almost all coherence errors in the checked caches, as well as
some network errors. The only modification of the original system required
is the addition of a few bits to every network message sent by the checked
cache (3 additional bits in the case of the MESI coherence protocol and 2-way
set-associative caches). These bits pass to the checkers some necessary infor-
mation, such as the current coherence state of the cache line in the checked
cache, and the way at which the cache line is kept in associative cache. Further
the checkers work completely autonomously when connected to the system
snooping network.

Fernandez-Pascual et al. [134] propose a fault tolerant token coherence pro-
tocol capable of tolerating transient errors in CMP interconnection networks.
For example, message loss is handled by the protocol. This is achieved by
running several different timers that start the token recreation process when
a corresponding timeout is detected. In comparison with a non-fault tolerant
token coherence protocol, the proposed protocol incurs a negligible perfor-
mance penalty in the fault-free scenario, and about 15% overhead when up to
250 messages per million are lost.

2.7 Summary

This chapter has introduced the FT in computing systems. A brief history of
FT development and conventional FT approaches have been presented. Then
POFT techniques for different system organizations, such as VLIW and super-
scalar, have been discussed. Software FT approaches, targeting both software
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design faults and hardware faults, have been introduced. Finally, FT tech-
niques to verify the cache coherence operation in multiprocessor systems have
been presented.

In the following chapters several novel POFT approaches and techniques are
proposed, mostly targeting the superscalar organization. In addition, Chapter 6
proposes a cache coherence verification method which outperforms existing
methods at the expense of a slightly reduced fault coverage.





3
Instruction-Level Fault Tolerance

Configurability

T his chapter introduces an approach to FT called Instruction-Level
Configurability of Fault Tolerance (ILCOFT). ILCOFT is based on
the observation that different instructions have various effect on the

reliability of an application. Undetected faults in some instructions can cause
the whole application to crash. Undetected faults in other instructions, how-
ever, only slightly corrupt the final application output, or are even invisible in
the output. This observation indicates that the application developer should
be able to assign various protection levels to individual instructions. ILCOFT
provides the programmer with such a capability. ILCOFT can be applied to
many existing FT techniques, thereby reducing their performance and energy
consumption overhead, and/or improving their reliability.

This chapter is organized as follows. Section 3.1 motivates the ILCOFT ap-
proach. Section 3.2 presents ILCOFT. Section 3.3 presents and analyzes ex-
perimental results at the kernel level, and Section 3.4 at the application level.
Finally, Section 3.5 summarizes this chapter.

3.1 Introduction

In existing FT techniques, there is always a trade-off between FT and cost,
either in performance or resources. System hardware resources are limited,
and the more of them are dedicated to FT, the more performance suffers. Fur-
thermore, the redundancy introduced to provide FT dissipates additional en-
ergy. It is therefore desirable to have a configurable system which is able to
use its resources to improve either FT or performance. Some proposed FT
schemes enable system configuration before an application is run, which al-

43
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lows to choose between higher performance or stronger FT depending on the
application requirements.

Saxena and McCluskey [91] notice that multithreaded FT approaches can tar-
get both high-performance and high-reliability goals, if they allow configura-
tion to either high-throughput or fault tolerant modes, as is the case for slip-
stream processors [85,86]. Breuer, Gupta, and Mak [135] propose an approach
called Error Tolerance, which increases the fabrication yield. This is achieved
by accepting fabricated dies which are not completely error-free, but deliver
acceptable results. The tolerance of multimedia applications to certain errors
is discussed in this context. Chung and Ortega [136] develop a design and
test scheme for the motion estimation process. This reveals that the effective
yield can be improved if some faulty chips are accepted. Reis et al. [118]
present a software fault detection scheme Software Implemented Fault Toler-
ance (SWIFT) which duplicates instructions, compares their results at strategic
places, and checks the control flow. The authors mention that SWIFT can al-
low a programmer to protect different code segments to varying degrees, like
ILCOFT does. Lu [112] presents the Structural Integrity Checking technique
using a watchdog processor [126] to verify the correctness of an application
control flow. “Labels” are inserted into the application at the places where a
check should be performed. The higher the density of the “labels”, the more
checking is done. Thus, a programmer can increase the density of the “la-
bels” at the critical parts of an application, increasing the amount of checking
applied to them.

We propose to leverage the natural error tolerance of certain applications (such
as multimedia) to improve their overall reliability and/or improve their per-
formance and resource consumption. This goal can be achieved by a system
which can be configured to target either FT or performance at the instruction,
rather than the application, level. A developer should be able to configure the
strength of FT techniques applied to particular instructions or blocks of in-
structions in the application. This is useful for applications in which more and
less critical parts (instructions) can be distinguished. For example, as noticed
in [135, 136], for multimedia applications, most of the computations do not
strictly require absolute correctness. Many errors in these computations would
not be noticeable for a human, while others can cause a slight but tolerable
inconvenience. The application parts performing these computations can have
lower or no protection with little risk. This minimizes protective redundancy
which degrades performance and/or increases the system cost. However, other
parts of the same applications can be very critical. For example, if the con-
trol of a multimedia application is damaged, the whole application is likely
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to crash. As another example, a fault in the data assignment to the quantiza-
tion scale can affect the quality of the video significantly. These parts require
strong FT. Moreover, the time and/or resources saved by reducing the redun-
dancy for non-critical parts can be used to enhance the FT of the critical parts
even further. In this case, the overall reliability of the application increases, at
the expense of reduced reliability of non-critical parts. By reducing the protec-
tion of non-critical and increasing it for critical application parts, a developer
can trade-off resources and reliability, fine-tuning it for the particular purposes.

We call the strength of FT features applied to an instruction the degree of FT.
The more efficient FT techniques are applied, the higher the degree of FT
is. The minimum degree of FT corresponds to the absence of any FT tech-
niques. Duplication and comparison of the results has a lower degree of FT
than TMR [3, 31]. A higher degree of FT corresponds to a larger amount of
redundancy, and hence, is more expensive in terms of resources and/or time.

To enable ILCOFT, a system should support several degrees of FT. An appli-
cation developer is able to specify the desired degree of FT for each instruction
or group of instructions. This can be done either in high-level language or in
assembly code. Partially, it could also be performed automatically by the com-
piler. The system applies one of the existing FT schemes to satisfy the needs
of particular instructions, for example, by duplicating or triplicating them in
software or hardware, and possibly comparing the results.

3.2 ILCOFT

This section presents Instruction-Level Configurability of Fault Tolerance (IL-
COFT). ILCOFT allows to apply different degrees of FT to different applica-
tion parts, depending on how critical they are. ILCOFT is a general technique
that can be applied to many existing FT schemes, as will be shown in Sec-
tion 3.2.3. A particular ILCOFT implementation depends on the system archi-
tecture (the FT scheme employed), and the application constraints. ILCOFT
can be applied both to hardware as well as software FT schemes. A certain
hardware support is required in the case of hardware FT schemes. Moreover,
ILCOFT always requires a certain software-level activity to assign degrees of
FT to application parts, as will be discussed in Section 3.2.2. The actions
taken by the system in the case of a fault detection depend on the FT scheme
adapted. For example, FT schemes providing only error detection will termi-
nate the faulty execution unit, possibly performing a graceful degradation, etc.
FT schemes supporting recovery may recover and continue execution. The FT
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characteristics of ILCOFT-enabled FT schemes depend on the FT techniques
which are adapted and on the developer’s instructions ranking in terms of their
criticality.

Section 3.2.1 gives the reasoning behind ILCOFT. Section 3.2.2 discusses pos-
sible ways for an application developer to specify the required degree of FT for
particular instructions or code blocks. Finally, Section 3.2.3 shows how several
existing FT schemes can be adapted to support ILCOFT.

3.2.1 Motivation

Many application domains, such as multimedia applications and software-
defined radio [137], are naturally tolerant to some faults. Some errors are
unavoidable in these domains, and introducing a limited number of additional
similar errors does not seriously affect the operation. For example, many mul-
timedia applications, such as image, video and audio coders/decoders, use
lossy algorithms. After decoding, the stream produced is not perfect. It in-
corporates errors which the human eye cannot notice or can easily tolerate.
For example, if one of more than 307 thousand (640×480) pixels in an im-
age or a video frame has a wrong color, it is likely to be ignored by a human.
Furthermore, if an error occurs in calculations associated with motion com-
pensation in video decoding, it can result in a wrong (rather small) block for
one or a few frames. The number of frames that can be affected depends on
the place where the error appeared and on how far the following key frame is.
Because usually there are 20 to 30 frames per second, the chance that a human
will notice this error is quite low. Moreover, if it is noticed, it will probably
result in less inconvenience than compression-related imperfections. Errors
can be allowed in this kind of computations. If, however, an error occurs in
the control part of a multimedia application, it is very likely that the whole
application will crash. Furthermore, errors in some other parts can lead to a
significant output corruption. Therefore, errors are not allowed to occur in the
latter cases.

To illustrate critical and non-critical instructions, consider the image addition
kernel presented in Figure 3.1. If an error occurs in any of the expressions that
evaluate the pixel value sum, it will result in a wrong pixel in the output image;
this is tolerable. If, however, a problem appears in the statements controlling
the loops, there is a very small chance that it will not crash the application or
seriously damage the results. A normal termination with correct results can
happen in this case if one or both loops performed too many iterations, but
the memory which they damaged was not used (read) later. This scenario,
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however, has a very low probability. It is likely that the application will crash
(due to a jump to an invalid address, invalid memory contents, etc.), or, if the
loop is exited too early, the part of the image which has not been processed
yet will be wrong. The if statement which controls saturation is less critical
than the loops, because if the condition is evaluated incorrectly, only one pixel
is affected. If the branch target address is corrupted, however, the application
will most probably crash. Thus, this if statement can also be considered for a
higher degree of FT.

for( i=0; i<N; i++ )
for( j=0; j<M; j++ )
{

sum = ImageX[i][j] + ImageY[i][j] ;
if( sum > 255 ) /* saturation */

sum = 255;
ImageX[i][j] = sum;

}

Figure 3.1: Image addition.

In ILCOFT, the programmer specifies the required FT degree of every instruc-
tion or group of instructions. In other words, the programmer indicates which
parts of an application are critical and which are not. In Section 3.2.2 we
describe how this can be done by the programmer, and under which circum-
stances it can be performed automatically by the compiler. For example, for the
image addition kernel presented in Figure 3.1, the programmer should spec-
ify the maximum FT degree for the instructions controlling the loops and the
branch target address of the if statement. For the other instructions, which
calculate the pixel values, a lower FT degree is acceptable, and even desirable,
when aiming at performance and resource consumption minimization.

By reducing the degree of FT of non-critical instructions, ILCOFT reduces
the required time or resource redundancy to implement FT. Space redundancy,
which increases the amount of required hardware and energy resources, can
achieve FT without a performance loss, but at the expense of increased re-
sources cost. The amount of hardware is often limited, however, and to achieve
FT under this constraint, time redundancy is used, which degrades perfor-
mance, and keeps energy consumption high. When both resources and time
are limited, which is very common, ILCOFT increases the performance and
reduces the energy consumption at the expense of decreased reliability of non-
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critical application parts. The critical parts, however, are still as reliable as
with a full FT scheme, so the overall application reliability is not affected. Op-
tionally, the time saved can be used to further improve the FT of the critical
application parts by applying more time-redundant techniques to them. In this
case the overall application reliability increases, because its critical parts are
protected better.

3.2.2 Specification of the Required FT Degree

Two possible ways to specify the desired degree of FT applied to an instruction
are to set it in assembly code or in high-level language. Alternatively, the
compiler can perform this automatically.

We do not consider it feasible for large applications that a programmer marks
the required degree of FT for every assembly instruction or high-level language
statement manually. It makes sense to first choose the appropriate policy which
determines the default degree of FT. The default degree of FT is applied au-
tomatically to all unmarked instructions. It can be set to, for example, the
minimum, maximum, or average possible degree of FT, as will be explained
below.

The approach which sets the default degree of FT to the minimum requires a
programmer to mark instructions/statements that should receive a higher de-
gree of FT. This method does not look very practical, because there is a high
chance that many instructions are critical for an application, e.g., an illegal
branch in any place can crash the whole application.

The opposite approach, when the default degree of FT is the maximum, looks
more useful for many applications. In this case, the programmer marks the
instructions or statements that should have a lower degree of FT, and all others
get a higher degree. This is especially suitable for multimedia applications,
many of which spend most of the runtime in small kernels. Decreasing the
degree of FT of a few computational instructions in the most time consuming
kernels can provide a significant application-level performance gains, as we
will demonstrate in Section 3.4.

Finally, the default degree of FT can be assigned some intermediate value.
Then, a programmer has to specify instructions/statements requiring higher
and lower degree of FT.

Next we discuss how an application developer can specify the degree of FT
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in the assembly or high-level language source code, and how it can be done
automatically by the compiler.

In Assembly Code

If the developer specifies the required degree of FT in assembly code, the way
it can be done depends on the employed FT scheme, if it is a hardware or
software technique.

If FT is implemented in hardware, the way the programmer marks instructions
might depend on how the degree of FT is passed to the hardware (see Sec-
tion 3.2.3). When the degree of FT is embedded in the instruction encoding,
the programmer marks instructions using some flags, and the assembler en-
codes the necessary information into every instruction. With special FT mode
configuration instructions, the programmer places these instructions in appro-
priate places. With separate versions of every instruction, the programmer uses
an appropriate version. Alternatively, the assembler can be designed to support
hardware-independent marking, which is translated automatically into the sup-
ported FT degree communication scheme. Then a programmer always marks
instructions in the same way.

In software, the EDDI technique [95] discussed in Section 3.2.3 can be em-
ployed. Adapting EDDI, a programmer can duplicate the critical instructions
manually, taking care about the register allocation, register spilling, possibly
memory duplication, etc. However, an automatic assisting tool would be very
useful. This tool can be based on the compiler postprocessor used in [95],
which automatically includes EDDI into an application. The compiler reserves
registers for duplicate instructions, and the tool duplicates everything. In the
resulting assembly file, the programmer removes the undesired redundancy
manually.

In High-Level Language

Figure 3.2 depicts how programmers could specify the desired degree of FT
for particular statements or blocks of statements in a high-level language. This
is done in the form of a #pragma statement which determines the degree of
FT that should be applied to the following statements, until the next #pragma
statement changes it. The larger the number corresponding to FT DEGREE
is, the higher the degree of FT should be. Each statement is compiled into
instruction(s) whose degree of FT is equal to that of the corresponding state-
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ment. In the case of control statements, the compiler must be able to find their
dependencies and to apply the appropriate degree of FT to them. To be on
the safe side, by appropriate degree of FT here we mean the highest between
the previously assigned degree and the one required for the considered control
statements.

In Figure 3.2, the instructions which are generated for the for statement, should
have the degree of FT equal to 3. The instructions inside the loop (and after
the loop until the next #pragma) should have the degree of FT 1. Obviously,
the loop control depends on the values of the variables i and n, which have
been assigned before. Hence, the compiler should walk backwards to find all
the instructions on which the values of these variables depend, and assign the
degree of FT 3 to them.

#pragma FT_DEGREE 3

for( ; i < n; i++ )
{
#pragma FT_DEGREE 1

c[i] = a[i] + b[i];
}

Figure 3.2: Possible FT degree specification in a high-level language.

Automatically by the Compiler

If a system supports only two degrees of FT, for example, no FT (no FT tech-
niques are applied) and fault tolerant (some techniques are applied), in some
cases the compiler can determine the instructions that need to be fault tolerant
automatically. This saves the programmer from manual work. The automatic
compiler scheme can be based, for example, on the observation that in most
cases, the instructions on which an application’s control flow depends, require
a higher degree of FT. All control flow instructions, such as branches, jumps,
and function calls, are assigned a higher degree of FT. Furthermore, all in-
structions on which these control flow instructions depend should also receive
the higher FT degree. The efficiency of this scheme depends on the compiler’s
ability to perform exact dependence analysis. In the worst case, all instructions
on which a control flow instruction could depend need to be given the higher
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FT degree.

3.2.3 FT Schemes Adaptable to ILCOFT

Fault tolerant systems adapted to support ILCOFT need to provide several FT
techniques of varying strengths, corresponding to different degrees of FT. For
example, a non-redundant instruction execution has FT degree 0 (no FT), du-
plication with comparison of the results can be assigned FT degree 1, and a
Triple Modular Redundancy (TMR) is associated with FT degree 2. Duplica-
tion and triplication assumes either hardware or time redundancy. Hardware
redundancy can take the form of multiple execution units where the copies
are executed simultaneously. Time redundancy is provided by a sequential (or
partially sequential) execution of multiple copies.

Because the main goal of ILCOFT is to optimize performance and energy con-
sumption, we focus on FT techniques with similar objectives. ILCOFT does
not target systems for which only a high level of FT is important, and a large
amount of redundancy is not an issue. There exist several techniques for high-
performance processors that try to minimize the performance overhead created
by protective redundancy. Below we discuss how some of them can be adapted
to support ILCOFT.

The EDDI (see Chapter 2, Section 2.5.2) instruction duplication scheme sup-
ports only one degree of FT: duplication and comparison. It is straightforward,
however, to extend EDDI to allow more redundancy, by implementing, for ex-
ample, TMR. A lower degree of FT (no redundancy) can be easily achieved by
avoiding duplication of certain instructions. From now on we assume that the
user can specify the degree of replication.

In ILCOFT-enabled EDDI, only critical instructions are replicated. As dis-
cussed in Section 3.2.2, the programmer specifies the required FT degree of
all program statements or assembly instructions. Alternatively, it is done auto-
matically by the compiler. During compilation, each instruction is replicated
according to its FT degree and then the results are compared or voted. Mem-
ory replication is not used in ILCOFT-enabled EDDI because all instructions
have to be replicated to maintain a consistent memory copy. Instead, mem-
ory protection can be implemented by using ECC or other popular methods,
preferably in hardware. In Section 3.3 and Section 3.4, the performance and
energy dissipation of ILCOFT-enabled EDDI is compared to those of EDDI.
It will be shown that minimizing the degree of FT for non-critical instructions
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provides a substantial gain. In addition, the fault coverage of these schemes
will be evaluated.

Franklin [69] proposed to duplicate instructions in superscalar processors at
run time and compare the results to detect errors (see Chapter 2). To adapt this
scheme to support ILCOFT, the required FT degree of executed instructions
has to be passed to the hardware. Based on this information, the hardware per-
forms the appropriate FT action, i.e., duplicates the instructions if necessary.
This can be also applied to the scheme proposed in [74].

The DIVA approach [71, 88, 90] uses a simple and robust processor, called
DIVA checker, to verify the operation of the high-performance speculative
core. This approach can also be adapted to support ILCOFT by selecting the
instructions whose results have to be verified by the DIVA checker.

ILCOFT is also applicable to FT techniques based on simultaneous multi-
threading [96], such as those presented in [81–83, 91, 98], slipstream proces-
sors [85], and others (see Chapter 2).

It should be noted that for hardware FT techniques, there must be a way to
set the required FT mode for every instruction. For example, several bits in
the instruction encoding can specify the required FT degree. The number of
bits allocated for this purpose depends on the number of available FT modes
supported by hardware. Alternatively, special instructions can be introduced
which configure the hardware to work in the desired FT degree mode. Finally,
separate versions of each instruction can be created for every supported FT
degree. The last solution does not look promising, however, because it implies
a large overhead.

3.3 Kernel-Level Validation

This section presents experimental results for several kernels. The advantages
provided by applying ILCOFT to an existing FT scheme are evaluated. Due to
the experimental setup limitations, we apply ILCOFT to only one FT scheme,
the software error detection technique EDDI [95]. We adapt EDDI to support
ILCOFT.

The FT features of EDDI and ILCOFT-enabled EDDI are discussed in Sec-
tion 3.3.3. ILCOFT-enabled EDDI limits the sphere of replication of EDDI,
protecting only the critical instructions, and avoiding memory duplication.
Both EDDI and ILCOFT-enabled EDDI reliably protect against transient hard-
ware faults that do not last longer than one instruction execution. To protect
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against faults taking more time, including permanent faults, there should be a
way to ensure that an instruction and its duplicate execute on different hard-
ware units. For example, they can execute on different CPUs of a multiproces-
sor system, or on different functional units of a superscalar processor. In the
latter case, only long-lasting faults in the functional units are covered. Alterna-
tively, to avoid hardware replication, techniques changing the form of the input
operands of the duplicate instruction, such as alternating logic [56] and recom-
puting with shifted operands [58], can be used. However, these enhancements
are expected to have a significant impact on performance.

Four kernels are investigated. Image Addition (IA), discussed in Section 3.2.1
(Figure 3.1), Matrix Multiplication (MM) with rather small input matrices of
the size 20×10 and 10×20 to reduce the simulation time, and Sum of Abso-
lute Differences (SAD) used for motion estimation in video codecs, are kernels
very often used in multimedia applications. The fourth kernel computes the
Fibonacci numbers, which are widely used in science, and even in financial
market trading and music [138].

The kernels are chosen to represent a range of algorithms: from (very) tolerant
to faults to hardly tolerant to faults. IA contains a large number of independent
calculations, which makes it tolerant to faults: a fault in most of the compu-
tational instructions can only affect a single output element. MM has many
independent as well as many dependent operations. The output elements are,
however, computed independently, thus a fault in one of them does not affect
the others. Every Fibonacci number depends on all the previously computed
numbers, and thus, any fault corrupts all subsequent values. SAD outputs a
single value which depends on the whole computation sequence, and is either
correct or wrong. Any fault in SAD leads to a wrong result, thus, SAD is the
most vulnerable kernel.

This section is organized as follows. Section 3.3.1 presents and analyzes the
performance of the considered schemes, Section 3.3.2 the energy results, and
Section 3.3.3 the fault coverage.

3.3.1 Performance Evaluation

To evaluate the performance improvement obtained by applying ILCOFT to
EDDI, performance results of four kernels in non-redundant (i.e. original),
EDDI and ILCOFT-enabled EDDI forms are compared. The sim-outorder
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simulator from the SimpleScalar tool set [139,140] is utilized for performance
simulation. The default SimpleScalar PISA architecture (an out-of-order ma-
chine with the default issue width of 4, 32 KB L1 data and instruction caches,
and 512 KB unified L2 cache) is used.

For each kernel, the C source code is compiled to SimpleScalar assembly code.
The compiler-optimized version of the application (i.e. compiled by GCC with
-O2 flag) plays the role of the “original”, non-redundant application, without
FT.

The EDDI version of the kernel is derived from the original version by hand,
according to the specification presented in [95]. All instructions and memory
structures are duplicated, and the checking instructions are integrated. Check-
ing instructions only appear before a value is stored or used to determine a
conditional branch outcome. Faults are free to propagate within intermediate
results. This scheme has been proposed in [95] to minimize the performance
overhead.

The ILCOFT-enabled EDDI versions are obtained from the original applica-
tion by duplicating only the critical instructions in the kernel and comparing
their results with checking instructions as described above, without memory
duplication. The ILCOFT-enabled EDDI versions are also developed by hand.
The control instructions are considered to be critical. For the IA kernel, these
are the instructions to which the loop control statements in Figure 3.2 are com-
piled, and the instructions on which the control variables depend.

Figure 3.3 depicts the slowdown of EDDI and ILCOFT-enabled EDDI over the
non-redundant scheme for four different processor issue widths. Furthermore,
Figure 3.4 shows the ratio of the number of committed instructions of both
schemes to that of the non-redundant scheme. Without ILP, speculation etc.,
Figure 3.3 is expected to be similar to Figure 3.4. Indeed, the performance
results of Figure 3.3(a) (issue width of 1) are quite consistent with Figure 3.4,
but for larger issue widths, the processor exploits the available parallelism bet-
ter, since the original instruction and its duplicate are independent. Because of
this, the slowdown of EDDI and ILCOFT-enabled EDDI over non-redundant
execution decreases when the issue width increases, unless there are other lim-
iting factors. MM, for example, has a structural hazard: there is only one
multiplier, so the duplicate of a multiplication instruction cannot be executed
in parallel with the base instruction.

Figure 3.3 shows that despite duplication of all instructions and memory in
EDDI, especially for larger issue widths, its slowdown over the original appli-
cation is in most cases smaller than the intuitively anticipated two times (actu-
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Figure 3.3: Slowdown of EDDI and ILCOFT-enabled EDDI versions over the non-
redundant version, for varying issue widths.
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Figure 3.4: Ratio of the number of committed instructions.

ally, more than two because of the checking instructions, duplicated memory,
and register spilling). This happens due to the increased ILP introduced by the
duplicates which are independent on the original instructions. This leads to
a more efficient resource usage and fewer pipeline stalls. ILCOFT-enabled
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EDDI also profits from this feature. Figure 3.3 also shows that ILCOFT-
enabled EDDI is considerably (up to 50%) faster than EDDI. Several factors
contribute to this:

• The number of instructions in ILCOFT-enabled EDDI is smaller than in
EDDI (by about 40% on average, see Figure 3.4).

• EDDI duplicates memory, while ILCOFT-enabled EDDI does not.

• EDDI needs more registers than ILCOFT-enabled EDDI, since ILCOFT-
enabled EDDI duplicates fewer instructions and, hence, reduces register
pressure. Higher register usage leads to more register spilling.

As these factors have different weights for different kernels, the speedup of
ILCOFT-enabled EDDI over EDDI is not constant. For example, for the IA
kernel, the simulation results show that memory duplication contributes 1.3%
to the speedup of ILCOFT-enabled EDDI over EDDI. The contribution of ad-
ditional register spilling (two more registers are saved on the stack for EDDI)
is negligible (less than 1%). The remaining contribution should be attributed
to the increased number of instructions.

3.3.2 Energy and Power Consumption

To evaluate the energy saving of ILCOFT-enabled EDDI, we use the power
analysis framework Wattch [141]. Wattch is an architectural-level micropro-
cessor power dissipation analyzer. It is a high-performance alternative to
lower-level tools which are more accurate, but can only provide power esti-
mates when the layout of the design is available. According to [141], Wattch
provides a 1000 times speedup with an accuracy within 10% of the layout-level
tools. We use the default Wattch configuration. The results for the clock gating
style which assumes that unused units consume 10% of their maximum power
dissipation [141] are considered.

The energy consumption increase of EDDI and ILCOFT-enabled EDDI over
the non-redundant (original) scheme is presented in Figure 3.5. As can be ex-
pected, the energy graphs follow closely the performance graphs of Figure 3.3.
This is because the same factors (number of instructions and used resources)
affect energy consumption as well as performance. Figure 3.5 demonstrates
that ILCOFT is able to significantly (up to 50% with an average of 38%) re-
duce the energy consumption overhead of the EDDI scheme.
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Figure 3.5: Energy consumption increase of EDDI and ILCOFT-enabled EDDI over
non-redundant kernels, for varying issue widths.

The average power consumption per cycle of the different schemes has also
been evaluated. The power consumption does not vary significantly for the
three considered schemes, because their resource utilization is similar. The
maximum variation observed is 10%. As can be expected, the variation is
minimal with lower issue widths (no more than 3% for issue width 1), and
increases with higher issue widths. This can be explained by approximately
equal resource usage with lower issue widths. With higher issue widths, the
resource usage varies for different schemes, due to the difference in the avail-
able ILP, and the power consumption varies accordingly. In most cases EDDI
consumes more power per cycle than the other two schemes, because it exhibits
more ILP, and, therefore, keeps more resources busy.
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Table 3.1: Fault injection results for the non-redundant scheme for the following ker-
nels: image addition (IA), matrix multiplication (MM), Fibonacci numbers generation
(Fib) and sum of absolute differences (SAD).

Kernel # sim.
Detected

(FT scheme)
%

Detected
(simulator)

%

Undetected
%

Application
crashed

%

Escapes
% (max. # faults)

Max. #
injected
faults

Max. #
undetected

faults

Max. output
corruption

%

Av. output
corruption

%

IA 2768 n/a 0 100 0 0 6438 6438 99.66 1.074
MM 621 n/a 0 100 0 43 (9) 50 50 94.75 2.992
Fib 532 n/a 32.33 67.67 0 10.71 (4) 5 5 97.78 53.991
SAD 326 n/a 0 100 0 8.28 (10) 130 130 100 100

3.3.3 Fault Coverage Evaluation

In this section we provide a fault coverage evaluation of ILCOFT-enabled
EDDI. The purpose is to determine how ILCOFT affects the fault coverage
of EDDI.

We simulate hardware faults by extending the SimpleScalar sim-outorder sim-
ulator with a fault injection capability. At a specified frequency (every N in-
structions) a fault is injected by corrupting an input or output register of an
instruction (overwriting its content with a random value). Only integer arith-
metic instructions are affected by the fault injector. This is because the tested
kernels have only integer arithmetic, memory and branch instructions, but the
faults inside memory access and branch instructions are not covered by EDDI
(only their inputs are protected). Thus ILCOFT-enabled EDDI is also not ex-
pected to cover them. Fault injection into an instruction input register simulates
faults in hardware structures passing or generating instruction input operands,
such as instruction memory, bus or register file. Fault injection into an output
register simulates a functional unit fault also. Faults are injected only within
the kernel code, because the main function is not protected in our experiments.

We remark that the fault appearance does not represent a realistic model. The
aim here is to evaluate the fault coverage of the investigated schemes under
different fault pressures (frequencies), and to ensure that as many as possible
of the fault propagation paths within the kernels are examined. By making the
fault injection periodic rather than random, and by varying the frequency for
each of a large number of simulations, we attempt to gain a better control over
the process, and to achieve the mentioned goals. Moreover, we simulate burst
(multi-bit) faults rather than more probable single-bit faults with the purpose
of representing the worst possible case.

Table 3.1, Table 3.2, and Table 3.3 present the faults injection results for the
three different schemes. The first column specifies the used kernels. The sec-
ond column of each table shows the number of simulations executed. The cho-
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Table 3.2: Fault injection results for the ILCOFT-enabled EDDI scheme.
Kernel # sim.

Detected
(FT scheme)

%

Detected
(simulator)

%

Undetected
%

Application
crashed

%

Escapes
% (max. # faults)

Max. #
injected
faults

Max. #
undetected

faults

Max. output
corruption

%

Av. output
corruption

%

IA 13526 86.66 0 13.34 0 0.07 (2) 22 11 0.13 0.012
MM 621 53.62 0 46.38 0 23.19 (5) 15 11 99 3.103
Fib 581 66.44 25.99 7.57 0 0 8 3 96.67 38.232
SAD 340 55.88 0 44.12 0 0.29 (1) 25 18 100 100

Table 3.3: Fault injection results for the EDDI scheme.
Kernel # sim.

Detected
(FT scheme)

%

Detected
(simulator)

%

Undetected
%

Application
crashed

%

Escapes
% (max. # faults)

Max. #
injected
faults

Max. #
undetected

faults

Max. output
corruption

%

Av. output
corruption

%

IA 6025 100 0 0 0 0 2 0 0 0
MM 621 100 0 0 0 0 11 0 0 0
Fib 581 67.81 32.01 0.17 0 0 3 2 96.67 96.667
SAD 340 98.53 0 0.29 1.18 0.29 (1) 23 1 100 100

sen number of simulations differs for each kernel, and depends on the number
of committed instructions. The frequency of injected faults starts from one
fault per 1000 (in some cases 100) instructions, and every new simulation
decreases the fault frequency until it becomes roughly one fault per execu-
tion. In this way we make sure that all situations from frequent down to rare
faults are evaluated, and that random instructions within the kernels are af-
fected. The third column shows how often faults have been detected by the
FT scheme. For example, for the IA, 86.66% simulations were aborted with
an error message by ILCOFT-enabled EDDI, and 100% by EDDI. The fourth
column demonstrates how often errors were detected by the simulator, for ex-
ample, the application was terminated with an illegal memory access reported.
The column labeled “Undetected” contains the percentage of simulations with
undetected fault(s), which shows how often the execution finished without re-
porting errors. The column labeled “Application crashed” demonstrates how
often an application crashed, i.e., did not produce any output. The column
labeled “Escapes” shows how often escapes occurred, i.e. an application de-
livered a correct result despite the presence of (undetected) fault(s). The faults
have not propagated to the output. In parentheses the maximum number of un-
detected faults in this situation is given. The column labeled “Max. # injected
faults” gives the maximum number of faults injected per execution, before the
execution finished either normally or abnormally (was interrupted reporting
errors). There are usually fewer injected faults in EDDI than in other schemes,
because EDDI detects and reports faults, aborting the execution, earlier. The
column labeled “Max. # undetected faults” shows the maximum number of
undetected faults, which were injected but not detected; the execution is then
finished without reporting errors. Most of the times these undetected faults
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result in corrupted application output, except the cases counted in the column
labeled “Escapes”. The columns labeled “Max. output corruption” and “Av.
output corruption” present the maximum and the average output corruption
caused by undetected faults. Only simulations with undetected faults, which
finished without reporting errors, are considered here. This demonstrates how
many undetected faults propagate to the output, and how much they affect the
output. An output corruption percentage is defined as a ratio of the number
of wrong output elements generated by an execution to the total number of
output elements. The average output corruption is calculated as a sum of all
the corruption percentages divided by the number of simulations, i.e., it is the
arithmetic average. The average output corruption is used to emphasize that
a very high maximum output corruption does not necessarily mean that the
output is usually corrupted so much. It can be an exceptional case.

Obviously, ILCOFT affects kernels in very different ways. The difference in
the fault coverage can be explained by the density of the duplicated instruc-
tions in a kernel. The more instructions are duplicated, the higher the fault
coverage is, and the lower the performance and energy consumption gain is.
Among the presented kernels, the worst fault coverage (the largest percent-
age of executions finished with undetected faults) appears in MM and SAD.
This is because in these kernels relatively many unprotected computational
instructions reside between protected control instructions. Depending on the
application, the significant performance increase at the expense of a weaker
fault coverage can be considered acceptable. For example, for SAD used in
motion estimation, a wrong motion vector leads to a wrong block used for
motion estimation, which can usually be tolerated by the user.

The exceptionally high percentage of escapes in MM (with the original and
ILCOFT-enabled EDDI schemes) can be explained by the fact that most of the
results (output matrix elements) are truncated when overflow occurs. Trun-
cation masks faults by assigning the maximum possible value to any (correct
or wrong) larger value. This can also be one of the reasons why MM has a
relatively small percentage of detected faults with the ILCOFT-enabled EDDI
scheme: the faults are masked before they propagate to a checking instruction
which can detect them. With a higher precision (more bits per value), the num-
ber of escapes would drop. EDDI does not have any escapes, because it detects
all faults in MM.

The most important fault coverage characteristic from the user point of view
is the final output corruption. The fact that a certain amount of corruption can
be allowed in some applications is the idea behind ILCOFT. Obviously, this
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is application-specific and depends solely on the algorithm employed. The
IA kernel, computing every pixel value independently, without a long chain
of computations, shows very good results for ILCOFT-enabled EDDI: only a
few pixels (maximum 0.13% of the whole output image) are corrupted. This
is often unnoticed by a user. The maximum output corruption occurred when
a fault was injected into the register which held the base address of an array
representing one input image line (matrix row), and was later used to fetch all
the image data on this line. As a result, garbage was fetched from a random
memory location for every pixel of the rest of the line, and the resulting im-
age line was entirely corrupted from the point where the fault appeared. This
was quite visible in the output image. It could be solved by performing checks
of computed addresses before every load and store, as will be discussed later.
Then, only single pixels would have been affected. In all other kernels, besides
IA, the resulting values depend on a long chain of computations, and even on
each other, so the final output corruption increases dramatically. For exam-
ple, in Fib, every subsequent value depends on the previous one, and thus,
all the values behind the first erroneous one become wrong, independently on
the FT scheme used. This leads to the extremely high final output corruption
even for EDDI (see Table 3.3). However, only one of 581 simulations (0.17%)
finished with undetected errors (2 undetected faults) with EDDI, and 7.57% of
the simulations with ILCOFT-enabled EDDI, while 67.67% of unprotected ex-
ecutions finished with undetected errors. The single error undetected by EDDI
obviously manifested among the first Fibonacci numbers, so all the following
numbers were computed on the base of this error, and thus, about 97% of the
final output was corrupted. The average output corruption of about 97% is
equal to the maximum, because this is the only undetected error. SAD deliv-
ers only one value as a result, which can be either correct or wrong, and any
unmasked fault in the computations leads to an error. Consequently, all the
undetected and unmasked errors in protected and unprotected executions af-
fect 100% of the output. However, the unprotected execution delivered wrong
result in 100% of the simulations, while EDDI-protected did so only in 0.29%
of the simulations. The execution protected with ILCOFT-enabled EDDI, as
expected, falls in between, delivering wrong output in 44.12% cases.

To investigate the behavior under a more realistic fault appearance model, the
same experiments have been conducted with random, rather than periodic,
fault injection. Faults into input or output registers were injected at random
instructions, with varying fault frequency. The general impression from the
results of these experiments is the same as with the periodic fault injection
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presented above. However, a few significant differences have been observed,
which are discussed below.

For IA protected by ILCOFT-enabled EDDI, the maximum output corruption
increased to 21.3%. We explain this by a larger number of faults affecting reg-
isters holding array base addresses. For MM, the maximum output corruption
decreased to 30% for the non-redundant scheme, and to 50% for ILCOFT-
enabled EDDI. With the EDDI scheme, the percentage of detected faults de-
creased to 73.1%, and the percentage of escapes increased to 26.9%. We at-
tribute these differences to a larger number of faults injected before truncation
is performed (the effect of truncation is discussed above). For Fib, the aver-
age output corruption decreased to 41.7% for EDDI. This is because fault(s)
propagated to the output in more than one simulation (1.4% simulations fin-
ished with undetected faults), affecting the output in different ways. For SAD
protected by EDDI, the detected percentage dropped to 86.7%. However, most
of these faults did not propagate to the output (the percentage of escapes in-
creased to 13%).

The experimental results indicate that the fault coverage of ILCOFT-enabled
EDDI can be significantly improved at a relatively low cost. This can be
achieved by protecting the computed memory addresses. For example, as men-
tioned above, it would solve the corrupted output line problem in IA. The pro-
tection can be applied before every load and store instruction, by checking the
value of the register which holds the memory address. Of course, the redun-
dant value must be computed by a chain of duplicated instructions (which can
be done automatically by a compiler). This brings back the trade-off between
performance and fault coverage.

The memory address problem is not relevant to EDDI, because the memory
is duplicated in this scheme. Thus, all loads and stores reference different
memory locations (the original and the duplicates). However, this can be a
point where the fault coverage of ILCOFT-enabled EDDI is stronger than that
of EDDI itself: EDDI does not have any memory address protection, so a
fault in a store instruction can damage any memory location. ILCOFT-enabled
EDDI with memory address protection prevents this.

To minimize the performance loss, only the store addresses can be protected,
assuming that a memory corruption is more dangerous than fetching a wrong
value. But in this case, the IA corrupted line problem discussed above is not
solved.
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3.4 Application-Level Validation

In this section we discuss how ILCOFT can be applied to an entire application
while keeping the programming effort feasible. We estimate the advantages
that using ILCOFT brings and evaluate the price to be paid.

As discussed in Section 3.2.2, it is infeasible that the application developer
manually annotates all (block) statements with the required FT degree. In-
stead, all instructions can be automatically protected, and the programmer can
focus only on some of the most time consuming application parts to minimize
resource consumption at the minimum effort and reliability cost.

The running time of some applications (e.g., from the multimedia domain) is
typically dominated by a few kernels or loops. Furthermore, the most time-
consuming kernels often feature the natural error tolerance on which the IL-
COFT idea is based. Moreover, the most time-consuming kernels are often
relatively small, hence it is feasible to manage their protection manually. Thus
these kernels favor ILCOFT the most, from the points of view of effective-
ness, error tolerance, and minimal programming effort. A significant benefit
is expected if the programmer manually protects only (some of) these kernels,
while the rest of the application is protected automatically.

We apply this strategy to the cjpeg application [142], which compresses an
image file to a JPEG file. We have profiled this application and the results
show that one of the most time-consuming functions on the simulated architec-
ture is jpeg fdct islow, which implements the Inverse Discrete Cosine Trans-
form (IDCT). This function takes from 20.7% to 23.1% of the total execution
time, depending on the issue width. However, this function has a relatively
small (compared to the whole application) number of static instructions, which
makes it easy to manage by hand. We apply ILCOFT-enabled EDDI only to
the IDCT kernel (manually), and assume that the rest of the application is pro-
tected (automatically) by full EDDI. Further we show how this relatively small
programming effort affects the whole application.

The rest of this section is organized as follows. Section 3.4.1 presents and an-
alyzes the performance results, Section 3.4.2 the energy consumption results,
and Section 3.4.3 the fault coverage results of this experiment.

3.4.1 Performance Evaluation

We compare the performance of the three schemes using the SimpleScalar
simulator tool set [139], as was done in Section 3.3.1. Since currently we do
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not have an automatic tool implementing EDDI protection, we only apply the
FT schemes to the IDCT kernel in the simulation. We measure the application
execution time with the non-redundant IDCT kernel, with EDDI and ILCOFT-
enabled EDDI protection. Then we use these results to derive expected results
for the completely protected application. Specifically, let the total running time
of cjpeg be given by

Ttotal = Tidct + Trest,

where Tidct is the time taken by the IDCT kernel and Trest is the time of the
rest of the application. Furthermore, assume that applying full EDDI (using a
tool) to the rest of the application slows it down by a factor of f , then the total
running time of cjpeg protected with EDDI is given by

Ttotal-eddi = Tidct-eddi + f · Trest,

where Tidct-eddi is the measured running time of the IDCT kernel when pro-
tected with EDDI. Similarly, the total running time of cjpeg protected with
ILCOFT-enabled EDDI is

Ttotal-ilcoft = Tidct-ilcoft + f · Trest,

where Tidct-ilcoft is the measured running time of the IDCT kernel when pro-
tected with ILCOFT-enabled EDDI. In other words, for the IDCT kernel we
take the measured running time and for the rest which is protected by full
EDDI we assume an overhead by the factor of f (which is the same for both
Ttotal-eddi and Ttotal-ilcoft). We assume that EDDI incurs an overhead of 100%,
which is quite pessimistic for higher issue widths, because EDDI increases the
amount of ILP, as was shown in Section 3.3.1. Note that the less overhead
EDDI introduces in the rest of the application, the more pronounced benefits
ILCOFT-enabled EDDI attains. 100% EDDI overhead means that the factor f
equals 2 in our estimations.

Figure 3.6(a) presents the slowdown of the IDCT kernel protected with EDDI
and ILCOFT-enabled EDDI over its non-redundant version. The runtime of
all the IDCT function invocations during JPEG encoding is accumulated. This
figure reflects the simulation results. Unlike in Section 3.3.1, this experiment
uses a slightly modified version of EDDI, which does not duplicate memory.
Duplicating (allocating and copying) all the used memory for each invocation
of the IDCT function would incur a significant unjustified overhead in the ap-
plication. This overhead would not reflect the actual EDDI influence, because
in full EDDI some parts of the used memory would be duplicated at other
places, possibly only once instead of on every IDCT function invocation. One
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Figure 3.6: Slowdown of EDDI and ILCOFT-enabled EDDI versions over the non-
redundant version, for varying issue widths.

would expect EDDI to incur a lower overhead than depicted in Figure 3.6(a),
because the duplicated instructions are independent of the original ones, so the
available ILP is increased. However, for the IDCT kernel EDDI introduces an
overhead of larger than 2, for example, 2.59 for issue width 1 and 2.11 for issue
width 4 (see Figure 3.6(a)). This is due to the high register utilization in IDCT.
EDDI halves the number of available integer registers, allocating 13 (out of
32) of them, leading to the need for a large amount of register spilling. Be-
sides the additional memory overhead from register spilling, the stored value
of every store instruction should be checked in EDDI, which significantly in-
creases the number of inserted branch instructions. The poor scaling with the
increased issue width is due to the fact that the original IDCT code has suffi-
cient independent instructions that can be executed in parallel, so the additional
ILP introduced by EDDI cannot be fully utilized due to the lack of computing
resources.

Unlike with EDDI, IDCT is very friendly to ILCOFT (when only the con-
trol instructions are considered critical). There are only two loops in the
jpeg fdct islow function, which are not nested. Therefore, ILCOFT-enabled
EDDI allocates only one register (for shadow copies of the counters), dupli-
cates only a few instructions, and adds only two checks. This redundancy is
very small for a function with about 350 static instructions, which leads to a
negligible performance overhead over the original.
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Table 3.4: Fault injection results for the JPEG encoding.
# sim.

Detected
(FT scheme)

%

Detected
(application)

%

Detected
(simulator)

%

Undetected
%

Application
crashed

%

Escapes
% (max. # faults)

Max. #
injected
faults

Max. #
undetected

faults

ILCOFT 100 0 59 4 35 0 9(4) 9 8
EDDI 100 98 0 27 0 0 0 147 0

Figure 3.6(b) presents the analytically estimated performance overhead for the
whole JPEG encoder. Here the IDCT kernel is protected with either EDDI or
ILCOFT-enabled EDDI, and the rest of the application with EDDI. It shows
that applying ILCOFT to only the IDCT kernel of EDDI-protected JPEG en-
coder is able to deliver a performance gain of 14% on average.

3.4.2 Energy Consumption

Similar to Section 3.3.2, we obtained the energy consumption results with
Wattch [141]. The results show a behavior similar to that of the performance
in Figure 3.6. On average, the JPEG encoder with the IDCT kernel protected
by ILCOFT-enabled EDDI consumes about 14% less energy than with EDDI.

3.4.3 Fault Coverage Evaluation

Finally, we performed experiments similar to those in Section 3.3.3, injecting
faults regularly (from once per 500 thousand to once per 50 million instruc-
tions) into the input and output registers of the instructions within the IDCT
kernel. The fault frequency decreases with each simulation. Table 3.4 presents
the fault injection results for 100 simulations. The presentation is similar to
that of Table 3.1.

Table 3.4 shows that EDDI detected almost all faults (98%). The effects of the
other 2% faults have been masked, did not propagate to the output, or were
detected by the simulator before the FT scheme. ILCOFT-enabled EDDI, on
the other hand, did not detect any faults in our simulation. We explain this by
the fact that the number of checks performed within the kernel is very small
compared to EDDI.

The column “Detected (application)” shows that 59% of the faults in ILCOFT-
enabled EDDI have been detected by the application, reporting an out-of-range
DCT coefficient. Nothing has been detected by the application in EDDI, be-
cause the faults have been caught before by EDDI or the operating system.
The column “Detected (simulator)” demonstrates that for both schemes some
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faults have been detected by the simulator (operating system), reporting, for
example, an illegal memory access. From the column “Application crashed”
it can be seen that the application never crashed due to the faults, neither for
EDDI nor for ILCOFT-enabled EDDI.

It may appear surprising that in the column “Max. # injected faults”, the max-
imum number of faults injected per simulation is much larger for EDDI than
for ILCOFT-enabled EDDI. This is due to the way our error handler works:
when EDDI detects a fault, it reports an error and returns from the running
IDCT function, but does not stop the whole application. In this way we are
able to see if EDDI detects faults in future IDCT invocations. However, unlike
in EDDI, undetected faults in ILCOFT-enabled EDDI easily propagate to the
points where the wrong values are used in loads and stores, which triggers a
simulator (operating system) exception, and the application stops. Thus, the
simulation is shorter, and the fault injector is not able to inject more faults.

   

Figure 3.7: Output corruptions due to the undetected faults in IDCT.

35% of the ILCOFT scheme simulations ended with undetected faults, which
were either masked or propagated to the output. Figure 3.7 depicts one of the
most corrupted output JPEG images produced by our simulations. It was pro-
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duced with a fault frequency of once per 10 million instructions, and this par-
ticular simulation produced the maximum number of undetected faults (equal
to 8). The three areas where we were able to visually recognize corruption
are marked with squares. On the right, the magnified versions of these areas
are shown, in the original image (left column) and the corrupted image (right
column).

In our opinion such output corruptions are quite an acceptable price for the sig-
nificant speedup and energy saving which ILCOFT provides. This is under the
assumption of relatively low requirements to the output image quality, which
can be quite appropriate in embedded systems, PCs, and other systems not
designed for critical missions. For applications with very high requirements
to the output image quality JPEG is not a good choice anyway, because it is
intrinsically lossy. Moreover, relatively low fault rates are anticipated in the
foreseeable future in normal environments (ILCOFT does not target extreme
cases such as environments with high radiation). The low fault rates mean that
most of the time redundancy is not useful, but only incurs overhead. In this sit-
uation, reducing the time and energy overhead, still being guaranteed against
severe crashes, but increasing the chance of tolerable errors, is a valid option.

3.5 Conclusions

In this chapter we have proposed instruction-level, rather than application-
level, configurability of FT techniques. This idea is based on the observa-
tion that some applications pose different FT requirements on their various
parts. For example, in multimedia applications, an error in parts calculating
the value of a pixel, a motion vector, or a sample frequency (sound) is usually
unnoticed or ignored by a human observer. An error in the control (critical)
part, however, will probably lead to a crash of the whole application. This
indicates that it is most important to apply the strongest FT features to the
critical parts, while non-critical parts can be protected with a weaker FT (or
left unprotected) to improve the application performance and reduce energy
consumption. In applications with execution time constraints (e.g. real-time
applications), the time saved by reducing the FT of non-critical parts can be
used to further increase the FT of the critical parts, thus improving the overall
application reliability.

We have shown how several existing FT schemes could be adapted to support
ILCOFT. We also proposed a way for a programmer to specify the desired
degree of FT in a high-level language or assembly code, and indicated how a
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compiler could apply FT techniques to control code automatically.

The experimental results have demonstrated that ILCOFT is able to signifi-
cantly improve an application performance and reduce the energy consump-
tion when applying a higher FT degree to its critical instructions only. At the
kernel level, the performance and energy dissipation improved by up to 50%,
and at the application level by up to 16%. In the application-level experiments,
improvements are achieved by applying ILCOFT to only one of the most time-
consuming kernels, thereby reducing the programmer effort. The results show
that adaptation of only one kernel provides a significant application-level im-
provement.

The price to be paid for the performance and energy gains provided by IL-
COFT is the smaller fault coverage. The experimental results have also shown
that the fault coverage of ILCOFT-enabled EDDI is very application-specific
and is comparable to the fault coverage of full EDDI for applications that
compute independent elements. The fault coverage certainly depends on the
amount of redundancy applied. In some cases the output corruption allowed
by ILCOFT is tolerable, in others it is not. Finally, we have demonstrated that
adding memory address protection in ILCOFT-enabled EDDI could signifi-
cantly improve the fault coverage.

Note. This chapter is based on the following papers:

Demid Borodin, B.H.H. (Ben) Juurlink, and Stamatis Vassiliadis, Instruction-
Level Fault Tolerance Configurability, IC-SAMOS VII: International Con-
ference on Embedded Computer Systems: Architectures, Modeling, and Simu-
lation, pp. 110–117, July 2007.

Demid Borodin, B.H.H. (Ben) Juurlink, Said Hamdioui, and Stamatis Vassil-
iadis, Instruction-Level Fault Tolerance Configurability, Journal of Signal
Processing Systems, Volume 57, Issue 1, pp. 89–105, October 2009.





4
Instruction Vulnerability Factor

T he previous chapter has presented the ILCOFT approach, which en-
ables a developer to assign different protection levels to various appli-
cation parts. The programmer can manually assign the required degree

of FT to instructions or blocks of instructions. This, however, requires signif-
icant effort, and is very error-prone. Alternatively, a compiler can assign the
degree of FT automatically, assuming that only control-flow instructions are
critical. This approach is save only for a limited set of applications, because
faults in data processing instructions can cause completely wrong output in
many applications. Other automatic methods to assign the required degree of
FT are desirable, able to evaluate how critical every instruction is for the final
application output.

This chapter introduces the notion of Instruction Vulnerability Factor (IVF),
which determines how much of the final application output is corrupted due
to fault(s) in every instruction. ILCOFT uses IVF to determine the necessary
degree of FT for executed instructions.

This chapter is organized as follows. Section 4.1 gives an introduction and
motivation. Section 4.2 describes the IVF estimation performed in this work,
and how it is then used to reduce the overhead of the instruction duplication
error detection technique. Section 4.3 presents the experimental results eval-
uating the performance penalty reduction and fault coverage of the proposed
IVF-based ILCOFT technique. Finally, Section 4.4 draws conclusions and de-
scribes future work.

71
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4.1 Introduction

The ILCOFT scheme as presented in Chapter 3 and [80, 94] requires the ap-
plication developer to manually assign the required protection level to instruc-
tions. To process (a large part of) a relatively large application, significant ef-
fort is needed. In addition, this process is error-prone because it entirely relies
on the programmer’s judgment of every instruction’s vulnerability. An alterna-
tive approach is if the compiler automatically assigns the required protection
levels. Because the compiler cannot evaluate the criticality of data processing
instructions, however, this method is feasible if only control flow instructions
need strong protection. Thus, all control flow instructions (branches, jumps,
function calls, etc.) and instructions on which they depend (address calcula-
tions, condition evaluations, etc.) are assigned a high protection level. Sun-
daram et al. [143] discuss such compiler analysis in detail. This automatic
compiler-based method, however, is based on the assumption that no data ma-
nipulating instructions are critical, which is not safe. In many applications
faults in data processing instructions can corrupt the whole application output,
in which case, even though the application does not crash, it is not usable.
This approach can only be safely applied to a very limited set of applications.
A more sophisticated method to assess every instruction’s criticality is required
for most applications.

To address this instruction criticality assessment problem, this chapter intro-
duces the notion of Instruction Vulnerability Factor (IVF). IVF is analogous
to the Architecture Vulnerability Factor (AVF) [144], but addresses applica-
tion instructions instead of hardware structures. AVF estimates the probability
that a fault in a particular hardware structure will result in an error visible in
the final application output. Experiments demonstrate that different proces-
sor structures have different AVFs [144]. For example, unlike faults in ALUs,
faults in branch predictors can only result in a reduced performance, but can-
not damage the final application output. We propose that a similar metric is
applied to the application’s instructions. Faulty results of different instructions
affect the final application output in different ways. IVF measures how much
of the final output is corrupted due to faults in every instruction.

IVF can be used to determine the appropriate protection level that ILCOFT
assigns to instructions. Instructions with a higher IVF should be protected
better, while others can be assigned a weaker protection level to reduce the
overhead.

To compute the IVF for every instruction, off-line profiling is performed. It
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can be done either in a simulation environment or in real hardware capable
of injecting faults. Fault(s) should be injected into every instruction, one per
experiment, and the resulting application output be used to estimate the in-
struction IVF. Multiple experiments per instruction are preferable to obtain
statistically valid results. To reduce the amount of work this process requires,
only the most time consuming application parts can be processed. As will
be shown in Section 4.3, this is able to provide significant application-level
advantages. This procedure has to be performed off-line, only once per appli-
cation. The result (IVF value for all the considered instructions) is then stored
and distributed together with the application binary code. At runtime, every
instruction is protected at the level required by its IVF value.

4.2 IVF and IVF-Based ILCOFT

This section introduces the IVF and demonstrates how it can be used by IL-
COFT to assign the required protection levels to different instructions. Sec-
tion 4.2.1 discusses how the IVF can be estimated. Section 4.2.2 presents
a time redundant error detection scheme which duplicates instructions in the
pipeline and compares results produced by replicas. To decrease the perfor-
mance penalty due to error detection, this instruction duplication scheme is
adapted to support IVF-based ILCOFT in Section 4.2.3.

4.2.1 IVF Estimation

IVF estimation requires monitoring how different faults in every instruction
propagate to the final application output. In other words, how much of the
output is corrupted due to faults in every instruction. This can be achieved us-
ing fault injection experiments, either in a simulation environment or on fault
injection-enabled hardware. Alternatively, this can also be done in software.
To simulate hardware faults in software, the correct machine instructions can
be substituted with other instructions producing wrong results in the same out-
put registers. This software solution can be expected to significantly speed up
the IVF estimation process, but it reduces the fault injection flexibility. Faults
cannot be injected into hardware structures, exploring all the effects they might
have. Instead, only the visible errors triggered by these faults are simulated.

Ideally, all possible faults have to be injected one at a time into every exe-
cuted instruction, and the corresponding output corruption measured. More-
over, some faults in dependent instructions can affect each other, thus combi-
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nations of faults in different instructions should also ideally be examined. This,
however, would require an enormous number of experiments which is not fea-
sible. Our Experimental results (see Section 4.3.4) demonstrate, however, that
injecting several random faults into every instruction provides a sufficiently
accurate IVF estimation. It is desirable to perform multiple experiments with
every instruction to achieve statistically valid results, because different faults
in the same instruction can affect the execution in different ways.

In this work, the IVF estimation is performed using the sim-outorder simulator
from the SimpleScalar tool set [140]. During every simulation, the output of
one instruction execution is assigned a random value, simulating the worst case
(a multi-bit) transient fault. Faults are only injected into instructions producing
results, such as arithmetic operations and memory loads. Memory stores and
jumps are not affected, because the error detection scheme used in this work
does not cover faults in these instructions. The final application output is then
compared to the correct one, and the output corruption is measured. Depending
on the application, this can be the percentage of corrupted bytes in the output
(in an image for instance), or the percentage of corrupted output items, such
as matrix elements. The output corruption percentage is then saved as the
instruction’s IVF. When multiple experiments per instruction are performed,
the average IVF is saved for all the experiments.

The average IVF value is computed for every static instruction within the con-
sidered code segment. This requires a large number of simulations, especially
if multiple experiments per instruction are conducted (as is desirable). This,
however, has to be done only once per application, and can be done off-line.
The collected statistics are then saved together with the application binary code
and used at runtime. For large applications, it is not even necessary to com-
pute the IVF of every instruction. It can be estimated only for the instructions
within the most time consuming application parts, such as multimedia ker-
nels. Section 4.3.3 will demonstrate that this approach achieves significant
application-level performance improvements.

The IVF information can be saved in a program binary code as a separate
table. This table maps application instructions (identified by their PC) to the
corresponding IVF values, or to the required protection levels. Storing the
protection levels is likely to take less space (for example, only one bit is needed
if two protection levels are available), and no logic is needed to determine the
protection level from the IVF value. On the other hand, storing the IVF value
provides more flexibility, since the system can be configured at runtime to
define the threshold IVF values controlling the required protection levels. The
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Figure 4.1: Instruction duplication.

IVF information stored in a separate table needs to be loaded into a special
hardware buffer (possibly simultaneously assigning the protection levels and
storing them instead of IVF values to reduce the storage requirements). Then,
the table must be looked up to determine the proper protection level for every
executed instruction. The table can be compressed. For example, with only
two protection levels available in the system (one of which is the default), only
PCs of instructions with the non-default required protection level have to be
stored. Alternatively, instead of keeping the IVF data in a separate table, it
might be preferable to include a field defining the required protection level in
the instruction format.

4.2.2 Instruction Duplication

In this chapter a hardware ILCOFT scheme is used. Instruction duplication
in the pipeline is used as a time-redundant error detection technique, and its
overhead is minimized using the IVF information collected as described in
Section 4.2.1. The instruction duplication scheme is based on [69] (see Sec-
tion 2.4.2), but executes every instruction twice rather than duplicating them
in the dynamic scheduler. This requires less space in the dynamic scheduler,
but does not protect against faults in it. Figure 4.1 depicts the instruction exe-
cution steps with the corresponding activities performed by every instruction.
A fetched instruction proceeds normally until the execution stage. There the
instruction is kept in the RUU until it has been issued twice. When the results
of both executions are available, they are compared in the Writeback stage,
and the instruction commits if no errors are detected.

What happens if the results do not match depends on the goals of the system.
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A system targeting fail-safe operation would signal an error and halt. If FT
is required, another copy of the questioned instruction could be created and
executed, performing a majority voting on all the obtained results according to
the TMR scheme (see Section 2.3), or a different form of recovery could be
initiated. This, however, is outside the scope of this work.

All instructions except memory stores are duplicated. Stores consist of two op-
erations: effective address calculation and the store itself. The address calcu-
lation is duplicated and verified. However, it does not make sense to duplicate
the store operation itself, because the result cannot be verified.

In the considered implementation, the choice of the FUs used to execute the
redundant instruction copies is only driven by resource availability. Even if
multiple appropriate FUs are present, it can happen that the redundant copies
still execute on the same FU. This means that permanent, long-lasting tran-
sient, and common faults in the FUs and data buses are not always covered,
since the redundant copies might be affected in the same way and produce the
same (wrong) results. In Chapter 5 we present an approach that improves the
long-lasting transient and permanent fault coverage of this scheme.

4.2.3 IVF-Based Selective Instruction Duplication

To support ILCOFT, the FT technique(s) used in the system have to be able to
apply different protection levels to different instructions. The higher the IVF
is (and thus the more critical the instruction is), the stronger the protection ap-
plied to the instruction should be. In the simplest case, only two protection
levels are available: an instruction is either protected or left unprotected. This
case is very practical, because more complex protection schemes with multiple
protection levels can be very expensive. In this work such simple protection
scheme based on instruction duplication is used, called IVF-Based Selective
Instruction Duplication (IVF-SID). Depending on its IVF, an executed instruc-
tion is either duplicated and the result is verified (as described in Section 4.2.2),
or it is executed only once without error detection.

Note that two terms are used in this chapter: IVF-based ILCOFT and IVF-SID.
IVF-based ILCOFT is a general ILCOFT technique which decides how critical
instructions are based on their IVF values. IVF-based ILCOFT can be applied
to many different FT techniques able to protect individual instructions. IVF-
based ILCOFT applied to the instruction duplication error detection technique
is called IVF-SID.

The simple protected/unprotected scheme requires to establish a threshold IVF
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value, further referred to as IVFthr . Instructions with IVF above IVFthr should
be protected, and instructions with IVF below IVFthr are left unprotected.
The IVFthr value should be carefully chosen to guarantee that the amount of
application output corruption it represents is indeed tolerable. Ideally it should
be determined specifically for every application, because different applications
have varying output damage tolerance.

Figure 4.2 shows a histogram of IVF values for different kernels and appli-
cations (the benchmarks are described in Section 4.3.1). The horizontal axis
represents different IVF values from 0% to 100%. The vertical axis shows
the percentage of static instructions in different benchmarks that have the cor-
responding IVF value. Figure 4.2 clearly illustrates that the majority of IVF
values are at the extremes, they are either larger than 99% or less than 1%.
Some kernels (Image Addition and SAD) do not have any instructions with
IVF values in between. Most instructions either corrupt (almost) the whole
output or less than 1% of it. This indicates that 1% is a good IVFthr value.
Damage of 1% of the output can be considered tolerable for many application
domains, including many multimedia applications. Increasing the IVFthr to,
for example, 10% would not lead to significant changes, because most bench-
marks do not have any instructions with an IVF in the range of 1% to 10% (see
Figure 4.2). Thus, an IVFthr value of 1% is used for IVF-SID in this work. In-
structions whose wrong results corrupt less than 1% of the application output
are not protected.

The IVF values distribution shown in Figure 4.2 suggests that a simple pro-
tected/unprotected ILCOFT scheme is sufficient. Multiple available protec-
tion levels would not be very useful for most of the benchmarks shown in
Figure 4.2, because they have only a few instructions with medium IVF val-
ues. On average 44% of the instructions have an IVF below 1%, and 39%
of the instructions have an IVF above 99%. Most of the other instructions
have an IVF below 5% or above 95%. Only the ADPCM encoder and decoder
have a significant number of instructions (10% or more) with an IVF in the
range 40-90%. For such applications, the following scheme could be used:
no or minimum protection for instructions with an IVF below 1%, average
protection for instructions with an IVF between 1% and 99%, and maximum
protection for instructions with an IVF above 99%.
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Figure 4.2: Histogram of IVF values for different applications and kernels.

4.3 Experimental Evaluation

This section experimentally evaluates the proposed IVF-SID method. Sec-
tion 4.3.1 describes the used simulator and benchmarks. Section 4.3.2 explains
the details of the employed IVF estimation method. Section 4.3.3 demonstrates
the performance improvements IVF-SID achieves compared to duplicating all
instructions. Section 4.3.4 evaluates its fault coverage. Finally, Section 4.3.5
compares IVF-SID with a manual ILCOFT method used in Chapter 3.

4.3.1 Experimental Setup

As in Chapter 3, simulations are performed using the sim-outorder simulator
from the SimpleScalar tool set. Section 4.2.1 describes how the simulator
was used to estimate IVF for different benchmark instructions. The machine
configuration, chosen to represent a moderately powerful processor suitable
both for general purpose and embedded computing, is shown in Table 4.1.

Four kernels (same as in Chapter 3, see Section 3.3) and four full applications
are used as benchmarks. Encoders and decoders for JPEG image compression
and ADPCM sound compression are the full applications used, taken from the
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Table 4.1: Processor configuration.
Fetch/Dec./Issue Width 2, 4, or 8
# of Int. ALUs 2, 4, or 8
# of Int. Mult./Div. 1
# of FP ALUs 1
# of FP Mult./Div. 1
RUU Size 64
Memory Latency 112 cycles (first chunk),

2 cycles (subsequent chunks)
L1 Data Cache 32 KB, 2-way set associative
L1 Instruction Cache 32 KB, 2-way set associative
L2 Unified Cache 512 KB, 4-way set associative

MediaBench benchmark suite [145].

4.3.2 IVF Calculation

The IVF is estimated as described in Section 4.2.1. For the full applications, to
reduce the simulation time and demonstrate that it still provides useful results,
IVF-based ILCOFT is applied only to the most time consuming functions. As
in Chapter 3, the applications are profiled and the most time-consuming func-
tions identified (for example, the forward DCT function in the JPEG encoder,
and the jpeg idct islow function in the JPEG decoder). The IVF values are
estimated and are later used by ILCOFT only for the instructions within these
functions. In other parts of the applications all instructions have been dupli-
cated as described in Section 4.2.2.

To calculate the IVF of every instruction, ten fault injection experiments per
static instruction have been conducted for the kernels, and three experiments
per instruction for full applications. To evaluate the accuracy of this method,
an additional experiment is performed with one of the kernels (Matrix Mul-
tiplication). This experiment attempts to approach the ideal (exhaustive) case
taking into account all possible faults and even combinations of faults in differ-
ent instructions (see Section 4.2.1). First, for every evaluated static instruction,
one thousand experiments injecting a single random fault into it are executed.
Then, faults are injected into two different instructions per experiment. This
is achieved in the following way. Each instruction is coupled with every other
instruction in the kernel whose originally estimated IVF (from the first exper-
iment with ten injections per instruction) does not exceed its own originally
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Figure 4.3: Results obtained with the short and large Matrix Multiplication IVF esti-
mation experiments.

estimated IVF. The obtained output corruption contributes to the IVF of the
evaluated instruction. Instructions whose originally estimated IVF is larger
than that of the evaluated instruction are not coupled, because they affect the
output more than the evaluated instruction. Fifty iterations of this double-
injection experiment are performed, resulting in 350 to 1500 simulations per
instruction (depending on the number of coupled instructions).

Figure 4.3 compares the results of the short and large Matrix Multiplication
IVF estimation experiments. The horizontal axis represents different appli-
cation static instructions. The vertical axis shows the output corruption per-
centage due to faults injected into the corresponding instruction. Figure 4.3
shows that the results of the short and large experiments closely follow each
other. The average difference between the obtained IVF values is 0.5%. The
maximum difference is 7% (it is so large only for two instructions). Hence,
the short experiment is sufficiently accurate. The fault injection experiments
described in Section 4.3.4 confirm that a high level of reliability is achieved
using the short IVF estimation experiments.

To provide an insight on the time the IVF estimation process takes, the fault in-
jection experiment simulation time has been measured for one randomly cho-
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sen kernel and one application (on a Pentium 4 machine with 3 GB RAM).
For the Fibonacci kernel, an experiment injecting one fault into one instruc-
tion took 0.8 seconds, and for the JPEG Encoding application it took 136.7
seconds. This is for the case when simulation produces a complete output
(does not crash due to faults). Simulations crashing (or producing incomplete
outputs) due to faults take less time. On the other hand, there are also faults
substantially increasing the simulation time. For example, a fault that signifi-
cantly increases the value of a variable controlling the exit condition of a large
loop can have such effect.

4.3.3 Performance Evaluation

Instruction duplication requires that every dynamic instruction is executed
twice. Since duplicated instructions are independent, they can be executed in
parallel, provided that sufficient computational resources are available. Thus,
instruction duplication increases the amount of ILP available in the application.
Unless the original application has a very limited amount of ILP, instruction
duplication is likely to introduce a significant performance penalty due to the
lack of computational resources available to execute the instruction duplicates.
By avoiding the re-execution of instructions with an IVF smaller than 1%,
IVF-SID reduces the overhead of instruction duplication.

Figure 4.4 shows the performance overhead of full instruction duplication
and IVF-SID over the original execution without any protective redundancy.
The benchmarks are executed on a system with four integer ALUs, and a
fetch/decode/issue width of four. Figure 4.4 demonstrates that for all the
benchmarks, IVF-SID recovers a certain amount of the performance over-
head due to instruction duplication. For example, if full duplication is 80%
slower than the redundancy free execution, and IVF-SID is 40% slower, than
the amount of performance it recovers is 50%. Figure 4.5 shows the amount
of recovered performance for different benchmarks. Three machine configu-
rations are considered: with two, four and eight integer ALUs. To balance the
machine organization, the fetch, decode, and issue width matches the number
of integer ALUs (see Table 4.1).

For the kernels, the recovered performance varies from 1.1% (for Fibonacci,
on a system with eight integer ALUs) to 77.7% (for Matrix Multiplication,
on a system with two integer ALUs). For full applications the recovered per-
formance varies from 1% (JPEG Encoder, system with two integer ALUs) to
58.3% (ADPCM Encoder, system with two integer ALUs). For full applica-
tions, the whole execution time is measured, including the I/O overhead.
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Figure 4.4: Performance penalty of instruction duplication and IVF-SID compared
to redundancy-free execution. System with 4 integer ALUs, and a fetch/decode/issue
width of 4.

The amount of recovered performance depends on the IVF distribution of the
application, the amount of ILP available in the redundancy-free application,
and the processor issue/fetch/decode width. The more instructions with low
IVF are found in the application, the fewer executed instructions are dupli-
cated, and more performance is recovered. The IVF distribution of the bench-
marks is shown in Figure 4.2.

In SAD, almost 86.4% of the static instructions have an IVF of above 99%
(and thus definitely need to be duplicated in IVF-SID), and only 13.6% of the
instructions have an IVF lower than 1% (and thus do not need to be duplicated).
This is because SAD produces only one output, which can be either correct
(100% of the output is correct) or wrong (100% of the output is damaged). Any
fault which propagates to the final SAD output damages 100% of it. Therefore,
only faults that do not propagate to the final output at all (damage unused data,
or faults that are masked) can be tolerated in SAD. We call such faults escapes.
Due to these characteristics, SAD is one of the worst performing benchmarks:
only 3.4% to 10.8% of performance is recovered in IVF-SID, depending on
the processor issue/fetch/decode width.
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Figure 4.5: Performance penalty reduction achieved by IVF-SID over instruction du-
plication on different processor configurations. Fetch/decode/issue width matches the
number of integer ALUs.

A similar situation appears with the Fibonacci numbers generator, for which
IVF-SID recovers from 1.1% to 8.8%. The generator produces a series of
numbers, every one of which depends on the previous values. Thus, an error
appearing in the beginning of the sequence damages all the subsequent num-
bers. Only 6.3% of the static instructions in the Fibonacci numbers generator
have an IVF of below 1%. 50% of the static instructions have an IVF of 99%
or 100%, and 43.8% have an IVF in the range 95%-99% (see Figure 4.2).

The highest performance improvements achieved by IVF-SID are obtained
for Image Addition (58.7% to 77.4%) and Matrix Multiplication (52.2% to
77.7%). In Image Addition, 55% of the static instructions have an IVF of be-
low 1%, and 45% have an IVF of above 99%. In Matrix Multiplication, 67.7%
of the static instructions have an IVF of below 1%, and 22.6% have an IVF
of above 99%. Both these benchmarks produce many independent output el-
ements. When one of them is damaged, it often corrupts less than 1% of the
whole output, which is the used IVFthr value. For large images with millions
of pixels which are common nowadays, one wrong pixel will most probably
not even be visible.
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Figure 4.5 shows that IVF-SID improves the performance of the ADPCM en-
coder much more than the other full applications. This is due to the fact that
the encoding function in the ADPCM encoder, to which IVF-based ILCOFT
is applied, is a substantial part of the whole application. In contrast, the IVF-
enabled forward DCT function in the JPEG encoder is only a part of the whole
application, which also calls many other functions. Thus, the ADPCM encoder
(and also decoder) functions affect the whole application performance much
more than the functions in the JPEG encoder and decoder to which IVF-based
ILCOFT is applied. The ADPCM encoder, however, has significantly more
instructions with an IVF below IVFthr (75.4% of the instructions, compared
to 26% in the decoder), and thus it achieves a much higher performance im-
provement.

Figure 4.5 also shows that in most cases, the performance recovered by IVF-
SID drops when the number of integer ALUs (and the fetch/decode/issue
width) increases. This is due to the larger amount of computational resources
available. The ILP introduced by instruction duplication is utilized more effec-
tively on systems with more integer ALUs. Thus, the reduction of the number
of executed instructions due to IVF-SID does not affect the performance so
much. In contrast, for Image Addition and the JPEG Encoder, IVF-SID re-
covers less performance on a system with two integer ALUs than with four of
them. We attribute this to the issue width, which is insufficient and becomes a
bottleneck in these cases. Increasing the fetch/decode/issue width from two to
four (while keeping two integer ALUs) increases the recovered performance
from 58.7% to 70.3% for Image Addition.

The IVF values distribution in static application instructions cannot be ex-
pected to always perfectly indicate how useful the IVF-based ILCOFT will
be for the program. This is because performance depends on the dynamic be-
havior, on how many times every static instruction with a certain IVF will be
executed.

4.3.4 Fault Coverage

To evaluate the fault coverage of IVF-SID with IVFthr equal 1%, multiple
fault injection experiments have been conducted. Every benchmark has been
executed around 100 times, with one fault in the output of a random instruc-
tion within the kernel to which IVF-SID is applied. To simulate the worst-case
scenario, burst (multi-bit) faults are injected rather than single-bit ones. This
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Table 4.2: Fault coverage statistics.

Benchmark Detected
(%)

Wrong
output

(%)

Escapes
(%)

Max. output
damage (%)

Min. output
damage (%)

Average output
damage (%)

Image Addition 43.16 48.42 8.42 0.06 0 0.05
Matrix Multiplication 59.14 18.28 22.58 0.25 0.25 0.25
Fibonacci 95.92 0 4.08 0 0 0
SAD 95 0 5 0 0 0
JPEG Encoding 76.77 0 23.23 0 0 0
JPEG Decoding 10 78 12 0.03 0 0.01
ADPCM Encoding 33.33 31.31 35.35 0.64 0 0.12
ADPCM Decoding 87.76 0 12.24 0 0 0

is achieved by changing the instruction output to a random value. There are
two reasons to inject only one fault per simulation. First, the current and near-
future fault rates are not very high, and thus, more than one fault in a relatively
small kernel is unlikely. Second, when injecting multiple faults per experi-
ment, the chance that at least one of them will be detected increases. As a
result, other faults that would not have been detected alone are hidden, and
their effect on the output is not investigated.

Table 4.2 depicts the collected statistics. The second column shows the per-
centage of faults detected by instruction duplication. The third column in-
dicates the percentage of simulations finished with a wrong output (with an
undetected fault). The fourth column shows the percentage of escapes, that is,
undetected faults that did not propagate to the output. The subsequent columns
demonstrate the maximum, minimum, and average observed output corruption
percentage due to undetected faults.

Table 4.2 demonstrates that no undetected faults damage more than 0.64%
of the output. For most benchmarks, the maximum output damage is even
smaller. The maximum output corruption of 0.06% in Image Addition means
that in the output image, 1152 pixels out of almost 2 million are wrong. A
visual inspection of the output image did not reveal any difference with the
correct image. We consider the observed output damage in other benchmarks
also tolerable.

SAD, Fibonacci, the JPEG encoder and the ADPCM decoder do not have any
output damage due to undetected faults. All faults in these benchmarks are
either detected or do not propagate to the output (escapes). These bench-
marks have only a few instructions with low IVF values (see Section 4.3.3
and Figure 4.2). Most of their instructions have high IVF values, thus they are
duplicated in IVF-SID, and faults are detected. This high instruction coverage
results, however, in a smaller performance improvement of IVF-SID compared
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Figure 4.6: Comparison of performance penalty reduction achieved by IVF-SID over
instruction duplication and by ILCOFT-enabled EDDI over EDDI.

to full instruction duplication.

4.3.5 IVF-SID Compared to ILCOFT-Enabled EDDI

To compare the manual instruction protection level assignment for ILCOFT
with the automatic assignment based on IVF, this section compares ILCOFT-
enabled EDDI described in Chapter 3 to IVF-SID. Figure 4.6 compares the
amount of performance recovered by IVF-SID and by ILCOFT-enabled EDDI.
Table 4.3 compares the maximum and average output damage observed when
these techniques are used. ILCOFT-enabled EDDI data is taken from Chap-
ter 3. ILCOFT-enabled EDDI duplicates only the critical instructions. Instruc-
tions are categorized manually by a programmer, and are considered critical if
they affect the control flow.

Note that this is not a straightforward comparison. First, these techniques are
very different, one works in hardware, while the other is applied in software.
Second, the processor organizations used in this chapter and in Chapter 3 differ
in some parameters such as memory access latency, cache sizes etc. Both
organizations, however, have an issue width of four and four integer ALUs.
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Table 4.3: Output damage of IVF-SID and ILCOFT-enabled EDDI.
IVF-SID ILCOFT-enabled EDDI

Maximum Average Maximum Average
Image Addition 0.06 % 0.05 % 0.13 % 0.01 %
Matrix Multiplication 0.25 % 0.25 % 99 % 3.1 %
Fibonacci 0 0 96.67 % 38.23 %
SAD 0 0 100 % 100 %

The main message Figure 4.6 and Table 4.3 illustrate is that IVF-based IL-
COFT is able to compete with the manual ILCOFT method. This is clear from
the Image Addition and Matrix Multiplication performance and fault coverage:
IVF-SID slightly improves the performance of Image Addition and reduces its
average output damage, while it reduces the performance of Matrix Multi-
plication and improves its fault coverage. For Fibonacci and SAD, however,
IVF-SID has a serious performance disadvantage. This is due to the fact that
ILCOFT-enabled EDDI considers only instructions affecting the control flow
to be critical. This leads to many undetected faults causing an average out-
put corruption of 38.2% for Fibonacci and 100% for SAD. IVF-SID does not
allow any undetected faults in these two kernels to reach the output, because
it protects all the vulnerable instructions. Thus, IVF-SID is more suitable if
reliability is the primary concern, and ILCOFT-enabled EDDI is preferable if
performance is more important. Furthermore, the most important advantage of
IVF-SID is that it does not require the programmer to assign the necessary pro-
tection level to every assembly instruction manually, which demands a serious
effort and is very error-prone.

4.4 Conclusions

This chapter introduced the concept of Instruction Vulnerability Factor (IVF).
IVF determines how much of the final application output is corrupted due to
faults in particular instructions, and can be estimated using fault injection ex-
periments. It is shown that in most applications, instructions have different IVF
values. Depending on the nature of the application, it may have a large number
of instructions with low IVF values, which means that faults in these instruc-
tions are tolerable. This work proposes to use the ILCOFT principle based on
the application profiling data containing every instruction’s IVF value. Instruc-
tions with higher IVF values are protected better than instructions with lower
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IVF values.

A selective hardware instruction duplication scheme controlled by the instruc-
tion’s IVF values (IVF-SID) was evaluated from the performance and fault
coverage points of view. It is shown that, like in other ILCOFT schemes, both
the performance and fault coverage of IVF-SID depend on the nature of the
application. Like other ILCOFT schemes, IVF-SID recovers maximum per-
formance (and also saves energy) in applications that produce many indepen-
dent output elements. For these applications, faults in many instructions are
likely to affect only a small part of the final output, and thus many instructions
have small IVF, and are not protected. The minimum performance is recovered
in applications producing a single output value, or a set of dependent values.
Any fault propagating to the final output corrupts it completely in these appli-
cations, thus most of the instructions need to be protected. On the other hand,
these applications have a better fault coverage, because most instructions are
protected.

The experimental results demonstrate that for both these types of applications,
IVF is a useful metric which allows to balance the performance and fault cov-
erage. Moreover, IVF can be estimated automatically. It releases application
developers from the need to attribute code for ILCOFT manually. This saves
time, effort, and improves reliability, because manual instruction FT level as-
signment is very error-prone. IVF-based ILCOFT achieves performance im-
provements comparable to those of a manual ILCOFT method. In addition,
as the fault coverage comparison in Section 4.3.5 shows, IVF-based ILCOFT
provides much more accurate results than approaches based on the assumption
that only instructions affecting the control flow are critical. Thus, IVF-based
ILCOFT is much more accurate than other automatic (compiler-based) instruc-
tion attribution methods discussed in Chapter 3.

For future work, we plan to enhance our experimental setup. Currently there is
the following limitation. Both in IVF estimation and fault injection, only the
first dynamic occurrence of every static instruction is processed, because it is
unknown if this instruction will ever be executed later. In most cases this is not
problematic. In rare cases, however, this can lead to inaccurate IVF estimation.
Consider, for example, an instruction which calculates a condition for a branch
controlling a loop. If it produces any non-zero value, the subsequent branch
is taken (or not taken). If at one loop iteration this instruction should produce
a 1, which becomes any other non-zero number due to a fault, the branch still
performs correctly. However, at another loop iteration, this instruction should



4.4. CONCLUSIONS 89

produce a 0, which becomes a non-zero value due to a fault. In the latter
case the branch behaves in the wrong way. Taking into account the dynamic
application behavior would solve this problem when estimating IVF.

A possible future profiling enhancement is to use a timer to detect cases when
faults lead to a significant performance degradation. During IVF profiling,
we have observed several cases when due to a fault, a critical loop iterates
many orders of magnitude more times than it is supposed to. This leads to a
corresponding performance degradation. If such performance degradation is
unacceptable or if a significant profiling duration increase is unacceptable, a
timer can be used to detect these cases. If the application execution takes more
time than permitted, it can be terminated, assigning the maximum IVF value
to the instruction where the fault was injected.

Both problems mentioned above can be solved by the following approach. All
the instructions affecting the control flow can be assigned the maximum IVF,
because they can always lead to application crashes. Then, the IVF is estimated
using profiling only for the remaining instructions. The instructions affecting
the control flow can be identified by the compiler.

IVF estimation as presented in this chapter is suitable for applications with
equally important output values. However, there exist applications whose out-
put consists of different parts of varying importance. For example, in a video
sequence, bytes defining individual pixel values are less important than bytes
defining frame attributes. For such applications the IVF estimation procedure
has to be adapted to take into account the importance of individual output ele-
ments. This can be achieved by assigning different weight to the corruption of
more and less important output elements.

Note. This chapter is based on the following paper:

Demid Borodin and B.H.H. (Ben) Juurlink, Protective Redundancy Over-
head Reduction Using Instruction Vulnerability Factor, Proceedings of the
ACM International Conference on Computing Frontiers, May 2010.





5
Instruction Precomputation and

Memoization for Fault Detection

I nstruction precomputation [19] and memoization [21,22,92] are perfor-
mance improvement techniques based on result reuse. When possible,
they avoid instruction execution by using already available results. These

results are obtained during off-line profiling in the case of precomputation, and
by previous instruction executions with memoization.

This chapter focuses on improving the performance and fault coverage of the
instruction duplication error detection method using instruction precomputa-
tion. Moreover, it shows that precomputation combined with memoization is
much more powerful than either technique in isolation. This is true in the non-
redundant case (without error detection), and is especially evident when used
with instruction duplication.

This chapter is structured as follows. Section 5.1 gives an introduction and
describes related work. Section 5.2 presents the organization details of the dis-
cussed schemes. Section 5.3 presents and discusses the experimental results.
Finally, conclusions are drawn in Section 5.4.

5.1 Introduction

As described in Chapter 2, Franklin [69] proposed to duplicate instructions in
the pipeline to detect errors in FUs, internal buses between the dynamic sched-
uler and the FUs, and some errors in the dynamic scheduler. Every decoded
instruction is duplicated in the dynamic scheduler of a superscalar processor.
The instruction and its duplicate are then scheduled and executed in the reg-
ular way, and their results are compared. Although in general the slowdown
is less than the intuitively anticipated 100% on a superscalar processor, this

91
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method still incurs a significant performance penalty (on average 30% to 40%
in our experiments) and covers mostly short transient faults. If redundant in-
structions execute on the same FU, this scheme in its pure form does not cover
long-lasting transient, permanent, nor common faults in time. Furthermore, if
the copies are executed on different FUs, common faults can still affect both of
them in the same way. By long-lasting transient faults we mean faults that are
present longer than one clock cycle. Common faults are faults affecting two
different FUs in the same way, or (in time) the same FU at different times.

Parashar et al. [76] used the instruction memoization technique to improve the
performance of the instruction duplication scheme based on [74]. Memoiza-
tion (or memoing), also called instruction reuse, avoids redundant computa-
tions by reusing the result(s) of previous executions. The concept was intro-
duced by Michie [20]. Memoization is traditionally used in software, manually
or automatically. For example, a programmer can manually reuse the results
of a previous function invocation. A look-up table with the function return
value(s) corresponding to specific sets of input arguments is created at run-
time, and is consulted on future invocations. Figure 5.1 illustrates a possible
structure of such a function. Automatic memoization is used, for example, for

function ( arguments )
{
if the result for the given arguments is available
reuse the result and quit;

perform computations;
save the result and arguments in the look-up table;

}

Figure 5.1: Manual memoization example.

parsing in compiler technologies [146]. Memoization can be applied at dif-
ferent levels. For example, at the FU level, the FU reuses its previous results
when the inputs match. At higher levels, results of an instruction, a block of
instructions, or a high-level programming language function can be reused.
This work focuses on instruction-level memoization, which reuses the results
of instructions with matching operand values.

Several works proposed hardware schemes utilizing memoization. Richard-
son [21] proposed to save the results of non-trivial floating-point operations
(with operands other than 0.0 and 1.0, for example) in a result cache. The
cache is direct-mapped and indexed by hashed operand values. The result
cache is accessed in parallel with an executing floating-point operation. If a
hit occurs, the result is reused and the full operation is canceled to save time.
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Oberman and Flynn [147] addressed reducing the latency of the floating-point
division operation. They proposed division caches, which are similar to re-
sult caches except that only the results of divisions are stored, and reciprocal
caches. By saving the reciprocals of the divisors, the reciprocal caches convert
the high-latency division operations to lower-latency multiplication operations.
Sodany and Sohi [22] used memoization for all instructions rather than only
for long-latency operations. To increase the benefit for single-cycle operations,
they indexed the reuse buffer using the program counter (PC) instead of the in-
struction operand values. This way the reuse buffer can be accessed earlier
in the pipeline, even when the operand values are not yet available. Citron
et al. [92] used memoization for multimedia applications and focused only on
long-latency instructions.

Parashar et al. [76] avoid the execution of duplicate instructions by reusing
previously computed (memoized) results. Every executed instruction stores
its input operands and output result in a special hardware buffer (which we
call the memo-table). Subsequent original instructions are always executed
normally, while duplicates perform a memo-table lookup and reuse the result,
if available, instead of re-executing. The result of the original instruction is
compared to the re-executed or reused result of the duplicate instruction. Later
Gomaa and Vijaykumar [77] used memoization to verify only the instructions
that hit the memo-table, leaving other instructions unprotected or (when it does
not degrade performance) protected by another fault detection technique.

In this chapter we propose to use the instruction precomputation technique [19]
(further referred to as precomputation), and a combination of instruction pre-
computation with memoization, to improve performance and fault coverage
of instruction duplication. Precomputation is a work reuse technique involv-
ing off-line application profiling. The profiling data (instruction opcodes with
operands and corresponding results) is stored together with the application bi-
nary code. Prior to execution, the profiling data is loaded into the precompu-
tation table (P-table). When an instruction is about to be executed, a P-table
lookup is performed. In the original (performance-oriented) precomputation
scheme [19], if the instruction with the same input operands is found, the re-
sult is reused and the instruction is not executed. In the proposed (FT-oriented)
scheme, the instruction is still executed, and the computed result is compared
to the result from the P-table (similar to how memoization is used in [76]).
Alternatively, if the profiling data and the P-table are sufficiently reliable, the
precomputed result does not need to be re-computed.

Memoization as in [76] improves the fault coverage of instruction duplication
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by covering more long-lasting transient and common faults. This is due to the
time interval which memoization inserts between the first instruction execution
(when the result is memoized) and the subsequent execution (when the result
is compared to the memoized one). Long-lasting faults that disappeared or
appeared during this interval, and thus did not affect both executions, are cov-
ered. Precomputation further improves the fault coverage of memoization by
addressing all these faults, because the profiling is done at a different time and
most likely even on a different system. In addition, for several benchmarks the
precomputation-based scheme outperforms the memoization-based scheme.

Memoization exploits local instruction redundancy, while precomputation ad-
dresses globally dominant instructions. Memoization performs best when
many instruction instances with the same inputs are executed closely in time.
However, if redundant instruction executions are far away from each other,
memoization might evict the previous result from the memo-table before the
next instruction appears. Precomputation serves instructions that are globally
dominant, but spread across the whole application execution, better, because
the P-table holds these instructions and does not evict them.

To exploit the individual advantages of both precomputation and memoization,
an additional contribution of this chapter combines them, achieving higher
overall performance. Precomputation serves the globally dominant instruc-
tions, leaving more space in the memo-table for the locally dominant instruc-
tions. This eliminates conflicts between the global and local redundancy, ex-
ploiting both of them as much as possible. Experimental results demonstrate
that without instruction duplication, precomputation combined with memo-
ization most of the times outperforms both precomputation and memoization
used alone. With instruction duplication, the advantage is even larger, because
instruction duplication increases the pressure on the FUs. Instruction duplica-
tion enhanced with both precomputation and memoization reduces the perfor-
mance degradation of duplication with either precomputation or memoization
by on average 27.3% and 22.2%, respectively. The total hardware overhead
is similar, because we use half-sized memo- and P-tables for the combination
of memoization and precomputation. The performance advantage of the com-
bined scheme over the precomputation scheme comes at the price of a reduced
long-lasting fault coverage, because the P-table size halves, and thus fewer in-
structions hit it. In total, however, the combination protects more instructions
by either precomputation or memoization, improving the coverage of shorter
transient faults. Compared to the memoization-based scheme, the combina-
tion improves the long-lasting and permanent fault coverage, because some
instructions are covered by precomputation, and the total instruction coverage
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is similar.

To summarize, the main contributions of this chapter are:

• Instruction precomputation is used to improve the performance and fault
coverage of instruction duplication. Every instruction executes at least
once, and is either executed again or reused from the P-table. The output
results are compared.

• An additional scheme is proposed which does not execute instructions
that hit the P-table at all. The off-line profiling is assumed to be per-
formed on a highly reliable system, and the P-table is assumed to be
protected with ECC.

• Instruction precomputation is combined with memoization to improve
the performance and fault coverage of both techniques used alone.

5.2 System Organization

The instruction duplication scheme used in this chapter has already been pre-
sented in Chapter 4 (Section 4.2.2). This section presents the implementa-
tion details of the other discussed techniques: precomputation (Section 5.2.1),
memoization (Section 5.2.2), and instruction duplication extended with these
techniques (Section 5.2.4). Section 5.2.3 discusses the table structure both for
precomputation and memoization. The proposed combination of precomputa-
tion and memoization is discussed in Section 5.2.5.

5.2.1 Instruction Precomputation

Instruction precomputation avoids the re-execution of the most frequent in-
structions by using profiling information collected off-line. It was proposed by
Yi et al. [19] to increase ILP. At the profiling stage, the executed instructions
with their unique combination of input operands and output results (further
called instruction instances) are sorted based on their frequency and included
in the application binary code. Prior to the application execution, the profil-
ing data is loaded into the P-table. Figure 5.2 visualizes the precomputation
scheme at run time. An instruction proceeds regularly until the Execute stage.
Then a P-table lookup is performed. If the necessary result is found, it is
reused, and the instruction writes back on the next clock cycle. Otherwise, the
instruction is issued to a corresponding FU, when it is available.
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Figure 5.2: Instruction precomputation.

Note that unfortunately the P-table lookup cannot be performed before the
Execute stage. This is because the instruction operand values are needed,
and they are not guaranteed to be available at the earlier stages. This means
that every instruction that hits the P-table has a single-cycle execution latency.
For this reason, multi-cycle operations benefit more from precomputation (and
also memoization) than single-cycle operations [92]. But in some cases even
single-cycle operations benefit from precomputation and memoization. This
happens when resources become a constraint and the issue of a single-cycle
operation is stalled because no appropriate FU is available. Result reuse elim-
inates the need of FUs for instructions that hit the table, reducing the pressure
on the resources.

The P-table is a hardware buffer of a limited size. It most probably cannot
store all instruction instances seen in a relatively large application. A very
large P-table would consume too much of the chip area, but would not be very
efficient, because the advantage of storing infrequent instruction instances can
be expected to be negligible. The goal is therefore to fill a relatively small P-
table with the most useful instruction instances. Thus, to reduce the application
storage requirements, only a part of the collected profiling information can be
actually stored with the program text. It is only needed to guarantee that there
is a sufficient number of instruction instances to fill the P-table as much as
possible. This can be achieved by sorting the instructions in the profiling data
using a certain criterion which determines how beneficial they are, and filling
the P-table in that order.

The straightforward way is to sort the instruction instances by their fre-
quency of occurrence. Then, only the most frequent instructions occupy
the space in the P-table. However, a single-cycle instruction with a slightly
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Figure 5.3: Performance comparison of three sorting methods of instructions in the
precomputation profiling data. Average IPC increase of different precomputation con-
figurations over the application execution without precomputation.

higher frequency than a multi-cycle instruction can be less beneficial in the
P-table, because every hit will save fewer clock cycles. Thus, it is desir-
able to take into account not only the execution frequency, but also the la-
tency. Figure 5.3 compares three different sorting methods: frequency-only
(by frequency ), equal priority (by frequency × latency ), and frequency-
priority (by frequency × frequency × latency ). The bars depict the av-
erage Instructions Per Cycle (IPC) increase of different precomputation con-
figurations (described in Section 5.3) over the original application execution
(without precomputation). The experimental setup is described in detail in Sec-
tion 5.3. Figure 5.3 shows that the frequency-only and equal priority sorting
methods never improve the IPC over 4.2% (cjpeg) more than the frequency-
priority sorting does. The IPC improvement with the frequency-priority sorting
is by up to 67.3% (art) larger than with frequency-only sorting, and by up to
35.5% (mesa) larger than with equal priority sorting. For these reasons, the
frequency-priority sorting is used in this work.

5.2.2 Instruction Memoization

In our implementation, the memoization-based scheme is similar to the
precomputation-based scheme discussed in Section 5.2.1, with a memo-table
in place of the P-table. The main difference is that instead of performing off-
line application profiling, memoization populates the memo-table dynamically
while executing. Precomputation never updates the P-table after it is filled by
the program loader. Memoization updates the memo-table at the Writeback
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Figure 5.4: Instruction memoization.

stage for every executed instruction, evicting old data if necessary. In our
implementation, the memo-table uses the Least Recently Used (LRU) replace-
ment policy when evictions are required. Figure 5.4 visualizes the instruction
memoization scheme.

Only computational instructions (integer and floating-point) are reused by both
precomputation and memoization. Other instructions such as memory accesses
are not. Memory stores cannot be verified by the reuse methods, because they
do not produce any output values. Loads cannot be reused, because the loaded
value may differ at different times. Note, however, that a memory access in-
struction is split in two parts: address calculation and the memory access itself.
The address calculation part, which is an integer operation, can be reused.

5.2.3 Table Structure

One of the important precomputation and memoization design decisions is the
structure of the P- and memo-table, since it needs a fast access time (one clock
cycle in our organization). Structuring the table as a single large array with
instruction instances (as they appear in the sorted precomputation profiling
list) is not feasible. It would require a sequential access to every instruction
instance in the table and comparison against the requested instruction, which
is very time-consuming for relatively large tables.

In [78] we used a rather complex table structure, which indexed the P-table
by instruction opcodes. We preferred this to indexing by a subset of input
value bits (as some previously proposed memoization schemes do), because
the opcode is often available earlier than the input values. The access to a
table indexed by the opcodes can be started at the instruction decode stage,
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and finished when the input values are known. Indexing by the opcode rather
than the PC as in [22] also allows different static instructions to reuse each
other’s results [92].

The P-table used in [78] contains cache-like sets holding a number of entries
with instruction input and output values. The number of entries per set is de-
termined by the associativity. All the entries in a set correspond to a single
opcode. The experimental results show that among the most frequent instruc-
tions in the profiling data, some opcodes significantly dominate others. Thus,
the table structure should allow an uneven instruction distribution. This can be
achieved by assigning multiple P-table sets to a single opcode. This P-table
structure is shown in Figure 5.5. The opcodes table holds a list of table sets
assigned to the corresponding instruction opcode. When accessing the P-table,
the opcodes table is consulted for the list of sets holding instruction instances
with the required opcode. Then these sets are searched (preferably in paral-
lel to reduce the access time) for the required input values combination. Note
that for commutative arithmetic operations different combinations of the in-
put operands can be checked to improve the hit rate and/or reduce the table
size. Separate P-tables (or sets) might be used for instructions with operands
of different size to optimize the resource usage.

The possible number of P-table sets assigned to a single opcode is limited.
This is because the space in the opcodes table allocated for the list of used sets
is limited. In addition, the requirement to provide a fast (fixed-latency) P-table
access, which searches all the sets (preferably in parallel), limits this number.
On the other hand, the more sets per opcode are allowed, the more instruction
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instances with the most frequent opcodes are likely to be stored. Reducing this
limit severely increases the risk to fill the P-table with less useful instructions,
and thus to decrease the overall benefit in performance and fault coverage.

Note that the P-table lookup performed before issuing an instruction to a FU
could appear on the critical path and affect the cycle time. If this happens,
certain techniques can diminish or solve the problem. For example, the P-
table access can be started at earlier stages, because the instruction opcode
is already available after decoding. Then, the lookup is finished when the
operand values are available. Moreover, the instructions producing the input
operands could initiate the P-table lookup as soon as the values are available.
In [22], the authors also argue that memo-table accesses (which are similar to
P-table accesses) are unlikely to be a serious problem.

The memo-table we used in [78] is similar to the P-table described above.
However, the memo-table differs in that it does not have the opcodes table, and
thus, only one set per opcode is available. This is because unlike the P-table,
the memo-table needs to be updated very often (about every cycle, possibly for
multiple instructions). This would require complex logic, increasing the access
time and cost. We do not consider it feasible to update the memo-table with a
complex structure including the opcodes table so frequently. The memo-table
uses the LRU replacement policy for the entries and the sets (to choose which
set to assign to another opcode when needed).

Subsequent research revealed that the difference between the described P- and
memo-table structure noticeably influences the performance achieved by mem-
oization. The absence of the opcodes table in the memo-table leads to an even
opcodes distribution. However, as mentioned above, some opcodes signifi-
cantly dominate others and need more space in the table. Moreover, due to
some rare opcodes, not all the table space is used in the opcode-based P- and
memo-table configuration. This is because every table set can only hold in-
structions with the same opcode. Figure 5.6 shows the P-table occupation for
different configurations (for every benchmark, the table size increases from
left to right). For most applications larger tables provide a better utilization
percentage, because the same number of empty table slots represent a smaller
part of the whole table. For all applications smaller associativity leads to a
better table occupation, because fewer instruction instances with rare opcodes
are needed to fill all the entries in the set.

To reduce the table structure complexity and solve the problems discussed
above, we reverted to the table indexing based on instruction input values and
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Figure 5.6: Precomputation table utilization (% of the whole table). P-table config-
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(4,4), (4,8), (8,4), (8,8), (64,4), (64,8), (128,4), and (128,8).

tried to improve it in [93]. A possible solution is to perform the exclusive OR
(XOR) operation on the input operand values, and use (a subset of) the result
bits to index the table. The problem of the XORed operand values is that the
table cannot hold different instructions with the same popular input values.
This can be solved by subsequent XORing the result with the instruction op-
code, and thus assigning different P-table sets for these conflicting instructions.
Figure 5.7 compares the performance of three P-table indexing strategies: by
opcode (the table structure used in [78] and discussed above), by XORed in-
put operand values, and by XORed input operand values and the instruction
opcode. Figure 5.7 shows that the opcode-based indexing used in [78] outper-
forms the XORed operands-based indexing, achieving on average 8.2% higher
IPC increase. However, XORing the operands with each other and with the
instruction opcode achieves better performance results than opcode-based in-
dexing, improving the IPC increase more, by on average 15.4%.

Thus, further in this chapter, both the memo- and P-tables are indexed by the
XORed instruction operands and opcode (the result is taken modulo the num-
ber of sets in the table). The cache-like tables consist of sets, each holding a
number of instructions with their input operands and output values. The num-
ber of instructions per set is defined by the table associativity. A P-table with N
sets and associativity equal A will be further referred to as P(N,A). The mem-
oization scheme with a similar memo-table organization will be referred to as
M(N,A).
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Figure 5.7: Performance comparison of three P-table indexing strategies: by opcode,
by XORed instruction operand values, and by XORed instruction operands and op-
code. Average IPC increase (for the table configurations as in Figure 5.6) over execu-
tion without precomputation.

5.2.4 Duplication with Precomputation or Memoization

In this work instruction precomputation and memoization are used in combi-
nation with instruction duplication. Figure 5.8 depicts the scheme employing
both instruction duplication and memoization (D+M). An instruction is al-
ways executed at least once, and executed once more if the result is not found
in the memo-table. The computed result is then compared to the reused or
recomputed result at the Writeback stage. Successful instructions update the
memo-table and commit.

The duplication with precomputation scheme (D+P) could be similar to D+M
(Figure 5.8). However, precomputation differs from memoization in that the
instruction results are computed off-line, only once per application. This sug-
gests that if the profiling data is gathered on a highly-reliable host system and
is protected well, it can provide the reliability of the profiling system on the
target system. Protecting the P-table with ECC and some control logic re-
dundancy would be sufficient for that. The error correcting capability of the
P-table would even bring a partial recovery capability into otherwise fail safe-
only duplication-based system. Given a sufficiently reliable profiling system
and P-table, the execution of the instructions that hit the P-table can be skipped
altogether without any reliability loss. This scheme is referred to as duplication
with precomputation only (D+PO). In [78] we show that D+PO significantly
outperforms D+P with original instruction re-execution (as in D+M). Thus, in
this chapter, only D+PO is used, and D+P further refers to D+PO. D+M al-
ways executes the instructions at least once (otherwise the reliability would
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Figure 5.8: Instruction duplication with memoization (D+M).

have suffered), while D+P (D+PO) does not execute instructions that hit the
P-table at all.

5.2.5 Precomputation Combined with Memoization

In addition to using precomputation for fault detection (D+P), this chapter fo-
cuses on the combination of precomputation and memoization (P+M). P+M
applied to the duplication-based scheme is further referred to as D+P+M.

Figure 5.9 depicts the P+M scheme. P+M assumes that the application has
been profiled off-line for precomputation. At run time, the profiling data is
loaded to the P-table, and precomputation works in the regular way. Precom-
putation has priority over memoization. Instructions hitting the P-table are
reused and are not written to the memo-table. Writing instructions hitting the
P-table to the memo-table is likely to evict useful data, but has no benefit since
these instructions remain in the static P-table for the whole program execution.
The memo-table is reserved only for instructions missing the P-table. These
instructions perform a memo-table lookup. Instructions that hit it are reused,
and the others are executed. This organization allows precomputation to serve
the globally dominant instructions, and leaves as much space as possible in the
memo-table for the locally redundant instructions. For performance reasons,
the P- and memo-table lookups are performed in parallel. If neither one hits,
the instruction is executed normally.

Figure 5.10 presents the D+P+M scheme. The memo-table update step at the
Writeback stage, which is similar to that in Figure 5.9, is omitted for readabil-
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Figure 5.9: Instruction precomputation with memoization (P+M).

ity. Instructions hitting the P-table are considered sufficiently reliable. They
progress to Writeback and Commit without verification. Other instructions are
always executed once and are either reused (from the memo-table) or executed
another time. The results are compared at the Writeback stage, and an error is
signaled on mismatch.

In this work, when comparing P+M-based schemes with the precomputation
and memoization-based schemes, the size of both the memo- and P-table is
always halved in P+M. In other words, the P+M(N,A) scheme has a memo-
and a P-table each with N

2
sets, of the associativity A . Thus, while P(N,A) has

a single table with N × A entries, P+M(N,A) has two tables each of the size
N
2
× A . This ensures that the hardware overhead is similar in the compared

schemes.

5.3 Experimental Results

This section evaluates the performance and fault coverage of the duplication
with precomputation (D+P) scheme, as well as the combination of precompu-
tation and memoization (P+M and D+P+M). P+M is compared to precompu-
tation and memoization, and D+P+M is compared to D+P and D+M.

Several integer and floating-point benchmarks from the SPEC CPU2000
suite [148, 149] are used, as well as the JPEG encoder multimedia applica-
tion. Since with precomputation applications are unlikely to have the same
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Figure 5.10: Instruction duplication with precomputation and memoization
(D+P+M). Memo-table update at Writeback (as in Figure 5.9) is skipped.

input at the profiling and deployment stages, different inputs are used at these
stages.

Section 5.3.1 describes the used simulation platform. Section 5.3.2 discusses
the fault coverage of the considered duplication-based schemes. Section 5.3.3
evaluates the performance of these techniques.

5.3.1 Simulation Platform

The experiments are performed using the SimpleScalar tool set [140]. We
modified the sim-outorder simulator to model instruction precomputation,
memoization, P+M, duplication, D+P, D+M, and D+P+M. The processor con-
figuration used is presented in Table 5.1. In Section 5.3.3, when evaluating
performance, the number of integer ALUs is varied to demonstrate how in-
struction reuse affects the throughput. The configurations (number of sets and
associativity) of the memo- and P-tables are also varied. The benchmark ap-
plications were run, skipping the first 100 million instructions to bypass the
I/O overhead, either until completion or until the next 100 million instructions
committed.

To minimize the resource overhead and keep the cost low, only small to
modestly-sized memo- and P-tables are examined in our experiments. The
number of sets in the tables varies from 8 to 1024, and associativity from 1
(direct mapped) to 4. This means that the total memo-/P-table size varies from
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Table 5.1: Processor configuration.
Fetch/Decode/Issue/Commit Width 8
Branch Predictor Combined, 8K meta-table
BTB Size 1 K, 2-way associative
RUU Size 128
LSQ Size 64
# of Int. ALUs 1 to 4
# of Int. Mult./Div. 1
# of FP ALUs 1
# of FP Mult./Div. 1
Memory Latency 112 cycles (first chunk),

2 cycles (subsequent chunks)
L1 Data Cache 32 KB, 2-way set associative
L1 Instruction Cache 32 KB, 2-way set associative
L2 Unified Cache 512 KB, 4-way set associative

approximately 104 B to 52 KB (assuming that for every instruction the tables
hold one 8-bit opcode and two 32-bit input and one output values, without
protective information).

5.3.2 Fault Coverage

It is difficult to compare (quantitatively) the fault coverage of the considered
duplication-based schemes. Therefore, two indirect methods are used to eval-
uate the fault coverage: the average memo-table instruction lifetime and the
hit rate.

D+M improves the fault coverage of pure duplication by targeting some long-
lasting transient, permanent, and common faults in FUs, data buses etc. D+M
achieves this due to the time gap which it inserts between the execution of the
memoized instruction and its subsequent (being verified) execution. Assume
that an instruction result is memoized at time T1. N clock cycles later it is
compared to the recomputed result at time T2. D+M covers the long-lasting
faults that appeared before T1 and disappeared between T1 and T2, or appeared
between T1 and T2. Other long-lasting and permanent faults cannot be detected
by D+M, because they affect both the memoized and recomputed results in the
same way (if executed on the same FU). Hence, the number N determines
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Table 5.2: Average memo-table instruction lifetime for different D+M configurations
(% of the total execution time).

D+M ammp art equake mcf vortex gcc mesa bzip2 cjpeg
config.
(2,4)
to 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(8,8)

(64,4) 6.0 0.9 8.3 4.6 2.3 11.0 8.6 28.2 17.0
(64,8) 4.7 0.8 6.2 3.2 1.4 8.1 8.6 24.1 12.8
(128,4) 6.0 0.9 8.3 4.6 2.3 11.0 8.6 28.2 17.0
(128,8) 4.7 0.8 6.2 3.2 1.4 8.1 8.6 24.1 12.8

how efficient D+M is in covering long-lasting faults. The greater N is, the
more long-lasting faults are likely to appear or disappear during this time. We
call N the memo-table instruction lifetime, because it determines how long
an instruction resides in the memo-table before it is reused. Note that pure
duplication is also likely to insert a certain time gap between the redundant
instruction executions (a gap of a few clock cycles can be expected). The
advantage of D+M over the pure duplication depends on how much greater the
memo-table instruction lifetime is than the duplication gap.

Table 5.2 presents the average memo-table instruction lifetime for different
D+M configurations. The instruction lifetime is measured in clock cycles, and
presented as a percentage of the total execution time. For the smallest config-
uration D+M(2,4) the average instruction lifetime is 3.5 (ammp) to 8.2 (gcc)
clock cycles. This means that the long-lasting fault coverage of D+M(2,4) is
comparable to that of pure instruction duplication, because a gap of 3 to 8
clock cycles can be expected between the execution of two redundant instruc-
tion copies in the duplication scheme. For all configurations from D+M(2,4)
to D+M(8,8) the average instruction lifetime is up to 0.02% of the total ap-
plication execution time. With larger memo-table sizes, the average instruc-
tion lifetime grows significantly, improving the long-lasting fault coverage of
D+M. However, as Table 5.2 shows, it is between 1.4% and 28.2% of the total
execution time even for the largest memo-tables.

D+M also simplifies the fault location/recovery of the duplication scheme.
When two results do not match in the duplication scheme, either FU involved
in the computation could be faulty. With D+M, the result held in the memo-
table has already been verified by redundant computation before it was saved.
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Thus, if the newly computed and the memoized results do not match, the FU
on which the last computation was performed is most likely to be faulty. The
situation corresponds to TMR [3]. This is, however, only true if the storage
elements in the memo-table provide sufficient reliability, guaranteeing that the
saved result is not corrupted when being reused. This can be achieved, for
example, by protecting the memo-table with ECC.

D+P has all the advantages of D+M, and further improves the fault coverage
by protecting against all the long-lasting transient, permanent, and common
faults. This is due to the fact that the application profiling is performed at
a different time than the actual execution, and most likely even on different
hardware (host machine). Thus, permanent, long-lasting transient, and com-
mon faults cannot affect both the profiling and the actual execution results.

D+P+M improves the long-lasting fault coverage of D+M, because some in-
structions are covered by precomputation instead of memoization. D+P+M
reduces the long-lasting fault coverage of D+P, because with the reduced P-
table size, the number of instructions covered by precomputation diminishes.
The following hit rate evaluation measures the fault coverage gain and loss of
D+P+M compared to D+P and D+M.

Another indirect fault coverage measure is the memo- and P-table hit rates.
The hit rate is defined as the ratio of table hits to the total number of executed
instructions. It determines how many instructions are protected by precompu-
tation or memoization in the D+P, D+M, and D+P+M schemes, and how many
are only duplicated. Unlike performance, the hit rate does not vary signifi-
cantly when the number of FUs in the system changes. The factors on which
the hit rate depends are the memo- and P-table size and configuration. Thus,
only the results for systems with 1 integer ALU are presented.

Figure 5.11 shows the precomputation hit rate, and Figure 5.12 memoization
hit rate of different table configurations. The upper parts of the bars represent
the fraction of reused multi-cycle instructions, and the lower parts the frac-
tion of reused single-cycle instructions. Figure 5.13 presents the memo-table
(the upper part of every bar) and the P-table (the lower part of every bar) hit
rates in the P+M scheme. Figure 5.14 compares the hit rate (average for dif-
ferent table configurations) of precomputation, memoization and P+M. The
bars for every benchmark in Figure 5.11, Figure 5.12, and Figure 5.13 repre-
sent the following configurations from left to right: (8,1), (8,2), (8,4), (16,1),
(16,2), (16,4), (64,1), (64,2), (64,4), (256,1), (256,2), (256,4), (512,1), (512,2),
(512,4), (1024,1), (1024,2), and (1024,4).
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Figure 5.11: Precomputation hit rates for different table configurations. Upper parts
of the bars represent the fraction of reused multi-cycle instructions, lower parts the
fraction of reused single-cycle instructions.
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Figure 5.12: Memoization hit rates for different table configurations. Upper parts
of the bars represent the fraction of reused multi-cycle instructions, lower parts the
fraction of reused single-cycle instructions.

Figure 5.14 shows that for most benchmarks precomputation covers signifi-
cantly fewer instructions than memoization. Thus, although D+P improves the
long-lasting and permanent fault coverage of D+M, it reduces the total number
of protected instructions. Figure 5.14 also shows that the average hit rate of
the P+M scheme is only 0.9% less than the memoization hit rate. This means
that approximately the same percent of executed instructions is protected by
D+P+M and D+M. From Figure 5.13 it follows that on average 36.1% of the
instructions in P+M (and thus also in D+P+M) hit the P-table, and the rest
hit the memo-table. Thus, while about the same number of instructions is
protected in the D+P+M and D+M schemes, the long-lasting fault coverage
of 36.1% of these instructions is improved by precomputation in D+P+M. Fig-
ure 5.14 also shows that P+M hit rate is on average 2.6 times higher than that of
precomputation. Thus, D+P+M protects significantly more executed instruc-
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Figure 5.13: P+M hit rates for different table configurations. Lower parts of the bars
represent the P-table, upper parts the memo-table hits.
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Figure 5.14: Comparison of the average hit rates for different table configurations in
precomputation (P), memoization (M) and P+M.

tions than D+P, by either precomputation or memoization. However, D+P+M
protects on average 10.6% less instructions by precomputation than D+P does
(the others are covered by memoization). These instructions have a reduced
long-lasting fault coverage.

5.3.3 Performance

Figure 5.15 compares the IPC increase of the different schemes over the orig-
inal (non-redundant) execution on a system with 2 integer ALUs. It presents
the average results over the different table configurations. Figure 5.16 com-
pares the IPC increase for a single memo- and P-tables configuration with 512
sets and the associativity of 4 (256 sets in every table of P+M-based schemes).
This table configuration will further be recommended as one of the most op-
timal alternatives. Duplication degrades performance, and thus has a negative
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Figure 5.15: IPC increase of different precomputation (P), memoization (M), and
duplication (D) schemes over the original execution on a system with 2 integer ALUs.
Average for different table configurations.

IPC increase. Note that the shown IPC of the duplication-based schemes is the
number of original instructions (without duplicates) divided by the execution
time in clock cycles, thus it can be compared to the IPC of the non-redundant
schemes.

The performance of P+M is for most benchmarks slightly higher than the per-
formance of memoization (the IPC increase improves by on average 2.6%),
and significantly higher than that of precomputation. D+P achieves better
performance than D+M for some benchmarks, but performs slightly worse
(has 6.5% less IPC increase) on average. D+P+M always outperforms D+M
and D+P, reduces their performance degradation due to instruction duplication
by on average 22.2% and 27.3%, respectively. We explain D+P+M advan-
tage compared to P+M by the doubled FUs requirements of the duplication-
based schemes. In addition, the fact that instructions hitting the P-table are
not executed plays an important role: D+PO reduces the IPC by on average
9% less than D+P (which executes hitting instructions) does [78]. Moreover,
in a few cases D+P+M even outperforms the original execution. For exam-
ple, for mcf running on a system with 1 integer ALU, D+P+M(512,4) and
D+P+M(1024,4) increase the IPC of the original (non-redundant) execution
by 2.8% and 3.5%, respectively. On a system with 2 integer ALUs, bzip2 run-
ning on the configuration D+P+M(512,4) also outperforms the original (see
Figure 5.16).

Both precomputation and memoization improve performance when the num-
ber of FUs is a system bottleneck. Thus, the performance improvement de-
creases when the number of integer ALUs increases. Figure 5.17 shows the
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Figure 5.16: IPC increase of different precomputation (P), memoization (M), and
duplication (D) schemes over the original execution on a system with 2 integer ALUs.
P- and memo-tables have 512 sets and the associativity is 4.
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Figure 5.17: IPC increase of different schemes with different number of integer
ALUs. Average for different table configurations and benchmarks.

average IPC increase (across all the benchmarks) of the considered schemes
for varying number of integer ALUs in the system. With 1 ALU D+P+M re-
duces the IPC decrease, compared to the instruction duplication scheme, by
53.4%, with 2 ALUs by 46.1%, and with 4 ALUs by 22.2%. Compared to
D+M, with 1 ALU D+P+M reduces the IPC decrease by 27.3%, with 2 ALUs
by 22.2%, and with 4 ALUs by 5.2%.

Figure 5.18 shows how the performance of different schemes (across all the
benchmarks) depends on the memo- and/or P-table configuration. To ex-
plore the limits, Figure 5.18 also includes a very large configuration with
64K sets and an associativity of 16 (corresponding to a table of approximately
13 MB). Figure 5.18 demonstrates the importance of the table associativity,
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Figure 5.18: IPC increase for different table configurations. Average for systems with
1, 2 and 4 integer ALUS.

which significantly improves performance for all the configurations. For exam-
ple, D+P+M(16,4) has significantly higher performance than D+P+M(64,1),
and D+P+M(512,2) outperforms D+P+M(1024,1). Figure 5.18 also shows
that the performance improvement diminishes when enlarging larger tables
(with 256 and 512 sets) in comparison with the smaller ones. For example,
D+P+M(1024,4) doubles the size of D+P+M(512,4), while its IPC increase
improves by less than 1%. Thus, D+P+M(512,4) might be a good candidate
for the optimal D+P+M table configuration from the performance vs. hard-
ware overhead point of view. However, the limit has not yet been reached,
as D+P+M(65536,16) still significantly outperforms all the smaller configura-
tions.

5.4 Conclusions

This chapter proposes and evaluates instruction precomputation for error de-
tection purposes. Moreover, it binds the strengths of precomputation and mem-
oization to achieve better performance than any of these techniques achieves
alone. Precomputation focuses on the globally dominant instructions, while
memoization exploits the local redundancy. Applied together, precomputation
exempts memoization from the globally dominant instructions, allowing more
space in the memo-table for the locally dominant ones. The advantage is es-
pecially prominent when this combination is used to improve the performance
and fault coverage of the instruction duplication error detection technique.

D+P+M covers approximately the same number of instructions as D+M, but
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introduces the full long-lasting and permanent fault coverage of on average
36.1% of them. At the same time, D+P+M reduces the IPC penalty of D+M by
on average 22.2%. Compared to D+P, D+P+M covers on average 2.6 times as
many instructions, but on average 10.6% less instructions are covered against
long-lasting and permanent faults. Given the 2.6 times higher total instruction
coverage and the average performance degradation reduction of 27.3% over
D+P, the long-lasting fault coverage loss of 10.6% seems to be an acceptable
price.

In this chapter, precomputation and memoization used equally sized tables to
store instructions. In future we plan to investigate how memo- and P-tables of
different sizes influence the performance and fault coverage of the combined
scheme. We also plan to reduce the number of instructions appearing in both
the P- and memo-tables by using trivial computation detection. In other words,
instructions performing trivial arithmetic operations such as addition with 0 or
multiplication by 1 or 0 will be detected and processed separately, they will
not occupy valuable space in the memo- and P-tables.

Note. This chapter is based on the following papers:

Demid Borodin, B.H.H. (Ben) Juurlink, and Stefanos Kaxiras, Instruction
Precomputation for Fault Detection, DSD’2009: Proceedings of the 12th
Euromicro Conference on Digital System Design, pp. 91–99, August 2009.

Demid Borodin and B.H.H. (Ben) Juurlink, Instruction Precomputation with
Memoization for Fault Detection, DATE’2010: Proceedings of the Design,
Automation and Test in Europe, March 2010.



6
A Low-Cost Cache Coherence

Verification Method for Snooping
Systems

W hile the techniques presented in previous chapters have been eval-
uated on single processor systems, they can also be effectively
applied to individual cores in multiprocessor systems. It is impos-

sible, however, to completely protect multiprocessor systems with techniques
from the unicore world, because multiprocessors introduce some unique relia-
bility issues.

This chapter addresses one of the multicore-specific reliability issues, namely
the cache coherence operation verification. Correctness of the cache coherence
operation is crucial for multiprocessor systems supporting cache coherence.
This chapter proposes a low-cost error detection technique for snooping-based
cache coherence protocols. For the widely used MESI coherence protocol,
the proposed method does not introduce any performance overhead. Only a
limited amount of additional hardware is required. Existing systems can be
easily extended to support the proposed technique. Almost all single faults that
are able to affect data integrity in the system are covered, with the exception
of a few very rare cases.

This chapter is organized as follows. Section 6.1 presents the motivation.
Section 6.2 describes other existing cache coherence verification methods and
compares them to the proposed one. Section 6.3 explains the proposed tech-
nique, discusses possible design options, and gives an example implementation
for the MESI coherence protocol. Section 6.4 analyzes the fault coverage of the
proposed method, and presents the experimental results. Finally, Section 6.5
summarizes this chapter.

115
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6.1 Introduction

Current trends in computer architecture demonstrate an increasing interest in
multiprocessor systems [128]. Multiprocessors feature a distributed and/or
shared memory hierarchy. To enhance programmability, the details of the
memory structure are often hidden from the application developer, for whom
the memory structure appears as a single shared memory accessible from all
the nodes. This is achieved by employing cache coherence protocols which
guarantee a consistent memory view for different nodes [125].

Cache coherence plays a very important role in multiprocessors, since it pro-
vides data integrity. For example, it guarantees that when one processor has
changed data at a certain memory address, other processors in the system get
a fresh copy of these data when they read them. Thus, faulty cache coher-
ence hardware can lead to data integrity violation. In the above example, if the
cache coherence hardware fails to notify a reading processor about the changes
another processor has made to the data, it will work with wrong (stale) data,
produce other wrong data on this basis, etc.

This chapter proposes a concurrent error detection technique addressing cache
coherence in multiprocessors. The concept of watchdog processors [126] is
used. A watchdog processor is external logic that dynamically verifies the
operation of controlled logic based on certain information received from it.
The proposed technique addresses multiprocessors with snooping-based cache
coherence. The operation of the coherence logic and storage elements hold-
ing coherence states in every cache is dynamically verified by external logic
(checker(s)) located on other cache(s) or on special circuit(s) snooping the
system network. Each checker has a local store with tag information for all
the cache lines residing in the checked cache, but not the data. The check-
ers snoop all messages on the network and filter those related to the checked
cache. Based on these messages and the tag information they contain, the
checkers maintain the correct state of each cache line, and check the correct-
ness of its state in the checked cache. Wrong states, which might result in
violated data integrity in the system, are detected and signaled. In addition
to this, the checkers partly verify the operation of the communication logic,
making sure, for example, that every request is answered.

The main features that distinguish our proposal from the related approaches
discussed in Section 6.2 are:

• Low or zero performance overhead. There is no performance overhead
for the MESI protocol verification discussed in this chapter.



6.2. RELATED WORK 117

• Limited hardware overhead, comparable to the cheapest alternatives.

• The design is scalable in that the overhead is linear in the number of
nodes in the system.

• It is relatively straightforward to extend an existing system with the co-
herence checking. The checkers have to be attached to the network, and
a few bits have to be added to the messages. Cache controllers have to
add necessary information to these bits.

• The benefits come at the price of a reduced fault coverage compared to
some other approaches that introduce considerably more overhead.

6.2 Related Work

Several dynamic cache coherence verification techniques have been described
in Section 2.6. Here we focus on the differences between these proposals and
our proposal.

Cache coherence verification techniques differ in the achieved fault cover-
age and the introduced hardware overhead. All existing techniques intro-
duce a certain hardware overhead needed for the additional logic. Further-
more, most techniques increase the communication network bandwidth re-
quirements, which means that they introduce either a performance penalty or
a hardware overhead (the capacity of the network needs to be extended). All
techniques providing full fault coverage, which includes faults in the commu-
nication network such as the loss of coherence messages, introduce a certain
bandwidth overhead. Other proposed methods, even those that do not provide
full fault coverage, also introduce a certain bandwidth overhead.

Unlike previous proposals, our method introduces almost no network band-
width overhead (only a few bits must be added to each message). This, how-
ever, is achieved at the expense of a limited coverage of network faults that
can lead to global errors (conflicts in coherence states of different nodes). We
assure that the communication network is reasonably robust. For example, if a
coherence message is lost (neither reaches the addressed cache nor its checker),
and the system does not detect this, our technique will only detect this fault if
it triggers illegal coherence activities in future. However, some global conflicts
can be detected from the messages received from other caches. For example,
if a checker receives a flush request from a remote cache, it makes sure that the
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corresponding line in the checked cache is in the shared state, otherwise it sig-
nals an error. In addition, in comparison with existing methods, ours requires
minimal effort for incorporating coherence errors detection into a system. The
cache controllers have to be extended to add the required bits to the coherence
messages, and the checkers have to be connected to the network.

Compared to [129] (see Section 2.6), our scheme requires significantly less
hardware and performance overhead. In [129], every state change requires the
controller to submit the new state and some other related information to the
checker. We only require the controller to add a few bits to the broadcast mes-
sages. Furthermore, the global verification in [129] requires a dedicated log-
ical network. This network can use the existing hardware communication re-
sources, increasing the network traffic and potentially introducing performance
overhead. Alternatively, this network can use additional, dedicated hardware
resources, increasing the cost. Our approach does not feature a global verifica-
tion. Consequently, no hardware and/or time is required for that. In addition,
unlike [129], our approach not only verifies the state transitions of cache lines,
but also makes sure that appropriate messages appear on the network.

Token Coherence Signature Checker (TCSC) [130] (see Section 2.6) can be
considered more general than our scheme, since it not only targets snooping-
based coherence protocols. As the proposal described in [129], TCSC per-
forms global conflicts checking, while we do it only to a limited extent. Our
scheme, however, introduces almost no network bandwidth overhead, which
means a minimal cost and no performance overhead. TCSC is scalable in the
sense that the hardware overhead is almost linear in the number of caches.
However, TCSC requires verifiers, which can become a bottleneck in systems
with a large number of caches. In this case, TCSC adds additional verifiers,
possibly creating hierarchies of them. The hardware overhead of our approach
is always linear in the number of caches. In our scheme, however, like in [129],
the hardware overhead per cache depends on the size of the cache, because the
state of the cache lines is kept in the checkers. In TCSC the overhead per cache
does not depend on the size of the cache.

Compared to the work of Sorin, Hill, and Wood [132] (see Section 2.6), the
technique proposed in this chapter requires less bandwidth overhead at the ex-
pense of a weaker interconnect fault coverage. Unlike the work of Fernandez-
Pascual et al. [134], which targets faults in the interconnection network, this
chapter mostly targets faults in the cache coherence logic.
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Figure 6.1: Proposed system structure.

6.3 Cache Coherence Verification

This section presents a design implementing the proposed technique. Gen-
eral design decisions, which are suitable for many snooping-based coherence
protocols, and their motivation are described in Section 6.3.1. A detailed im-
plementation example, specific for the widely used MESI coherence protocol,
is discussed in Section 6.3.2.

6.3.1 General Design Decisions

The cache coherence verification technique proposed in this chapter addresses
multiprocessor systems with a number of nodes, each with a private cache,
connected with a network, such as a bus. Coherence is achieved by means
of a snooping-based protocol [125], such as MESI [150]. The checkers can
reside on other than the controlled caches, or on separate bodies connected
to the network. The checkers should preferably not reside on the controlled
caches, because this increases the coverage of network faults (for example,
network messages not received by the cache might be received by the remote
checker). If the checkers reside on other caches, some logic processing the
incoming messages can be shared between the checker and its host cache, re-
ducing the hardware overhead introduced by the checkers. Thus, such a design
is preferred. Figure 6.1 depicts the proposed system structure with a bus as the
interconnection network. In Figure 6.1, cache number i incorporates a checker
for the cache number i-1. This is not necessary, however, any distribution of
the checkers is possible. Later it will be shown that placing checkers as far
as possible from the controlled caches is even desirable for increasing the net-
work fault coverage.

A checker needs some information about each line of the controlled cache,
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such as its block address and current coherence protocol state. Hence, the
checker keeps the tag of each line, but not the data. Keeping the data pro-
vides no benefit. It implies a large hardware overhead, but does not help error
detection. Verifying the data would require every local processor write to be
broadcast on the network (to inform the checker), which implies a network
traffic overhead that we do not consider feasible. It is more practical to apply
conventional protection methods to the data, such as error detection/correction
codes [9].

The controlled cache could notify the checker about all state transformations
through a special connection between them. However, this would require spe-
cial logic added to the cache, as well as a dedicated communication line be-
tween the cache and its checker. These communication lines would complicate
the final design, requiring to place and route them, and prevent locating check-
ers at arbitrary places. Furthermore, adding extra hardware not only increases
the system cost, but also introduces new potential faulty points. To minimize
the hardware and performance overhead, we aim at making the checkers as au-
tonomous as possible. Any special communication between the caches and the
checkers is avoided. The checker only snoops the network, processing all the
messages related to the data in the controlled cache. Based on this information,
it maintains its own states, and verifies the states on the controlled cache. A
mismatch of the checker’s and the controlled cache’s states for a cache line sig-
nals an error. In addition to this, by snooping the messages from other caches,
the checker makes sure that the states in other caches do not conflict with the
states on the controlled cache. Besides the states, the checkers verify the net-
work transactions, initiated both by the controlled cache and the rest of the sys-
tem (addressed to the controlled cache). For example, it makes sure that every
memory request of the controlled cache is answered, that the controlled cache
does not attempt to write back an invalid cache line, etc. Thus, by connecting
the checkers to the system network instead of a dedicated communication line,
we gain some additional control of the network interface (both of the checked
cache and of other entities communicating with it), and the network itself.

The effectiveness of the proposed checker design can be compared to the tra-
ditional logic duplication with comparison of the results. Inside the cache,
the logic implementing coherence, the coherence protocol state and tags could
be duplicated. Every state transition would require an agreement between the
replicated logic. The independent checker has several advantages over this
scheme. An independent checker is most probably physically located further
away on the die (or on a different die) from the checked logic. This reduces
the probability of common faults. A duplicated logic without modifications
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inherits possible design faults. The checker should be designed independently,
thus it has the potential to detect design and implementation faults. Further-
more, as discussed earlier, the checker can implement additional functionality,
such as verification of the network operation. The price to be paid for these
advantages is a possible increase of hardware cost (if the checker needs more
logic than the duplicated version). If the design requires additional network
traffic, a certain performance overhead is also likely to appear.

The proposed technique is able to detect errors in the cache coherence logic
and in the storage elements where the current states are kept. Upon error de-
tection, depending on the design, the system can be halted, a graceful degra-
dation may take place, or a recovery may be initiated. In the case of grace-
ful degradation, the erroneous node can be switched off in a multiprocessor
environment, and its task is reassigned to a different processor. Optionally,
assuming the fault could be transient, the node can be switched on again and
tested for permanent faults. If the system supports a recovery mechanism, such
as [151, 152], it can restart operation from the last state which is known to be
correct. The technique presented in this chapter does not favor recovery, be-
cause the latency between when the error occurs and when it is detected is not
fixed. Errors are detected when a message holding the erroneous state appears
on the network. Checkpointing requires that at some moment the system state
is known to be correct. Additional activities are required for this in the pro-
posed scheme. For example, the caches can send the current states of all the
lines to the checkers for verification. If the verification result is positive, a
checkpoint can be created.

The proposed technique relies on the correctness of the system network. Faults
leading to network messages loss, for example, are not reliably covered. If a
request from one cache neither reaches another cache nor its checker, the error
is not going to be detected, unless it will lead to further conflicting coherence
actions. This is another reason why it is better to place checkers further away
from the checked caches in the network: the chance that a lost message will
reach at least one of them increases.

6.3.2 Protocol-Specific Implementation

In this section the proposed idea is applied to the widely used MESI cache
coherence protocol [150]. The MESI protocol features four possible states for
a cache line: Modified (M), Exclusive (E), Shared (S), and Invalid (I). In the
M state, a valid copy of the line is present only in the owner’s cache. The local
processor has modified the line and can write it again without notifying the
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other nodes, so it should be invalidated in all the other caches. The E state
means that both the memory and the cache have a valid copy, but other caches
do not. The local processor can write it, switching its state to M, without
notifying other caches. The S state indicates that the line is present in multiple
caches and in memory. The caches use it in read-only mode. A write access
requires sending a notification (invalidation) to other nodes. The I state signals
that the data in the line are invalid.

The implementation of the MESI protocol which is discussed in this work,
with the required state transitions in response to different requests, is shown in
Table 6.1. The first column contains the request, coming either from the local
processor or from the network. The following requests and network messages
appear:

• PrRd – read request from the local processor.

• PrWr – write request from the local processor.

• BusRd – read request snooped from the network.

• BusRdX – read exclusive request from the network.

• BusWB – write back from a cache.

• Flush – flush request snooped from the network.

The second column defines the current state at which the request is received.
The third column shows the resulting state of the transition induced by the re-
quest. The fourth column lists messages that the cache sends to the network
in response to the received request. The fifth column defines the correspond-
ing actions required from the coherence checker of this cache. The following
abbreviations are used:

• == state : make sure the current state is state (else report an error).

• → state : change the state to state.

• Answer : make sure the request is answered.

• No Answer : make sure request is not answered.

• Signal Error : report an error and stop operation.
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Table 6.1: MESI protocol state transitions and corresponding actions of the cache and
its checker.

Request Current State Next State Bus Message Checker Activity

PrRd M M - -
PrRd E E - -
PrRd S S - -
PrRd I E/S BusRd == I; Answer;→ E/S

PrWr M M - -
PrWr E M - -
PrWr S M Flush == S;→ M
PrWr I M BusRdX == I; Answer;→ M

BusRd M S BusWB → S; Answer
BusRd E S BusWB → S; Answer
BusRd S S BusWB Answer
BusRd I I - No Answer

BusRdX M I BusWB → I; Answer
BusRdX E I BusWB → I; Answer
BusRdX S I BusWB → I; Answer
BusRdX I I - No Answer

Flush M - - Signal Error
Flush E - - Signal Error
Flush S I - → I; No Answer
Flush I I - No Answer

Local processor read requests (PrRd) for cache lines in any state except I are
serviced within the node and do not induce any network activity. They also
do not change the states, thus the checker does not need to be notified about
these events. PrRd for an invalid line leads to a BusRd requesting the line
from the memory. Thus, when the checker snoops a BusRd request from the
checked cache, it knows that this request can only appear for an invalid cache
line, and checks if the corresponding line is in the I state in its cache. Fur-
ther, the checker makes sure that the request is answered. The architecture
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discussed here uses the conventional approach in which other caches answer
read requests if possible. If other caches do not contain the requested data, the
memory answers. If the BusRd request is answered by the memory, the cache
line is not present in other caches, so its state becomes E. Otherwise, other
caches share the line, so the state becomes S.

Local processor writes (PrWr) to lines in the state M do not alter the state and
do not produce any bus messages, thus the checker does not perform any ac-
tion. PrWr to a line in the state E is the only event which changes the state
(to M), but which is not associated with any network traffic. The checker can,
therefore, not know about this transition without a special notification from
the checked cache. Thus, a design decision has to be made in this case. The
checked cache could broadcast a special notification message for the checker.
However, this implies that the cache controller has to be redesigned, and some
additional network traffic appears, which could possibly degrade performance
if the network throughput is an issue. There exists another solution, acceptable
in this case. The E to M transition is considered safe, and it is not communi-
cated to the checker. This is reasonable because an erroneous E to M transition
will never affect the data integrity in the system, as can be seen from Table 6.1.
An illegal S to M transition, for example, would lead to an absence of the nec-
essary invalidation (Flush) request on future PrWr. This means that copies
on other caches would not be invalidated, and other processors would read
wrong (stale) data. However, a similar problem propagating to the rest of the
system cannot happen on an illegal E to M transition. Thus, to minimize the
performance and cost overhead, this transition is allowed. If, after a silent E
to M transition in a cache, its checker receives a line in state M instead of the
expected E, it does not signal an error, but changes the state to M to reestab-
lish coherence with the checked cache. If an external request arrives for a line
whose M and E states are not synchronized between the cache and the checker
yet, it is not problematic. As can be seen from Table 6.1, the checker actions
in response to external requests BusRd, BusRdX and Flush are the same for the
states M and E. For the external read requests, the coherence states are changed
to the same one (S in the case of BusRd request and I in the case of BusRdX
request), thus the cache and the checker become coherent again. Hence, no er-
ror will be reported or propagated. PrWr on a line with the S state changes the
state to M and broadcasts an invalidation (Flush) request on the bus. Hence,
when a checker snoops a Flush request from the checked cache, it makes sure
that the old state is S (there are no other states that produce the Flush request),
and updates the state. When a local write miss happens, the cache sends the
BusRdX request, to receive the necessary line and invalidate it in other caches.
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In this case the checker makes sure the current state is I, that an answer arrives,
and changes the state to M.

When the checker snoops a read request (BusRd) for a line which is present and
valid in the checked cache, it changes the state to S if necessary, and makes sure
that the checked cache answers with a BusWB message. If the requested line
is invalid in the checked cache, the checker makes sure it does not answer. On
a BusRdX request for a valid line, the checker invalidates the line, and makes
sure the checked cache sends a BusWB answer. BusRdX for an invalid line
should produce no answer from the checked cache.

Upon receiving a Flush request from the network, the checker invalidates the
corresponding line if it is in the state S, and makes sure the checked cache does
not answer. If a Flush request is received for a line in the M or E state, an error
is reported, because it is an illegal situation: only lines in the S state can send
a Flush request. The checked cache cannot have a line in the M or E state if it
is present in the S state in another cache. Thus, this situation signals an error.

Table 6.1 demonstrates the checker’s actions corresponding to MESI transi-
tions in the checked cache. It only partially specifies the actual checker imple-
mentation, and does not reflect some details like cache line evictions induced
by local misses. A full event-driven implementation specification is given in
Table 6.2. The checker snoops a network message, and if it relates to data con-
tained in the checked cache, classifies it as a checked cache request, answer
for the checked cache, or request from another cache. It is further processed
depending on the particular message, as shown in Table 6.2. The following
additional actions complete the specification of the checker:

• for all messages (requests and answers) snooped from the checked
cache, the checker verifies the current state of the line, if available. This
is the action which actually detects illegal state transitions and reports
errors.

• the checker makes sure that every request from other caches, if it hits, is
answered by the checked cache.

• the checker makes sure that the checked cache never answers with in-
valid data (lines with the state I).

• the checker makes sure that every answer to the checked cache comes in
response to a corresponding request.

There are several necessary design decisions not mentioned so far. To be able
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Table 6.2: Checker actions in response to snooped bus traffic.

Bus Message Checker Activity

Requests from the checked cache:

BusRd or BusRdX == I: the line is either already invalid, or has previously
been evicted and invalidated. Answer.

BusWB → I: this should be an eviction.
If another request follows, make sure it is BusRd or BusRdX.

Flush == S;→ M.

Answers for the checked cache:

BusRd answer from memory → E.

BusRdX answer from memory → M.

BusWB as an answer from another cache If BusRd was requested,→ S. If BusRdX was requested,→ M.

Requests from other caches:

BusRd If state is I: No Answer. If state is not I:→ S; Answer.

BusRdX If state is I: No Answer. If state is not I:→ I; Answer.

Flush == S or I;→ I; No Answer

to check the current state of a line in the checked cache, the checker needs to
receive this state. This could be achieved by letting the cache send notifica-
tions on every state transition to its checker. However, as discussed earlier, for
optimization reasons this is avoided. In this work the problem is solved by
extending the network message with the current state of the addressed cache
line. All messages sent by the cache include the current state information of
the addressed line, which is used by the checker.

Another problem appears if the cache is not direct-mapped, but features asso-
ciativity. Upon a miss, the checker needs to know where the incoming data will
be placed, to maintain the correct information about the lines in the checked
cache. The set can be easily determined by the address which is present in
the request. However, depending on the replacement policy used, the way
number is determined randomly or based on the access history. For line re-
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placement policies such as Least Recently Used (LRU), the checker needs the
whole cache access history to determine the way which will be used. It is not
feasible to send all this information from the cache, thus another solution is
needed. In this work it is solved by further extending the network message
with the way number of the cache line.

Thus, to support the proposed technique, the network message format is ex-
tended with 2 bits for the current MESI state, and a certain number of bits for
the way where a cache line resides (depends on the cache associativity). For
example, 1 bit is sufficient for a 2-way set-associative cache. Hence, a total of
3 additional bits are added to the message for the MESI protocol and 2-way
set-associative caches.

6.4 Fault Coverage

This section discusses the fault coverage of the proposed coherence verifica-
tion method. The MESI-specific design presented in Section 6.3.2 is consid-
ered. Section 6.4.1 analytically evaluates the fault coverage, and Section 6.4.2
presents experimental results.

6.4.1 Analytical Fault Coverage Evaluation

Assuming an error-free communication network, the proposed method detects
all coherence errors visible to the checker. Note that by coherence errors we
mean illegal changes of the coherence protocol states in cache lines. These
errors can be due to faults in the new state generation logic, or faults in the
storage elements holding the current states. In addition, some communication
errors such as the absence of answers to issued requests are also covered.

A coherence state error is visible to the checker when the controlled cache
broadcasts any message related to the corresponding cache line, either a re-
quest or a reply. The message contains the current coherence state of the line,
which is verified by the checker. In addition, the absence of an expected reply
to requests from other nodes in the system can signal errors. For example, an
illegal transition of a valid line to the I state will lead to the absence of a reply
to a read request. Thus, coherence state errors are not detected in the lines
which, after the errors appear, never send and receive requests, and are never
written back to the memory.

Consider a cache line which, after its coherence state becomes erroneous,
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is never addressed by requests from other nodes in the system and is never
evicted. When the node’s task execution completes, this line will be written
back only if it has been changed by the local CPU, i.e. if its current state is
M. The lines in other states do not have to be written back, because they have
a valid copy in the memory. In this situation, the erroneous M state will be
detected by the checker, when the line is written back. Illegal transitions from
the state M to another state will also be detected, because it does not write
back, as expected. Illegal transitions from any state to I will also be detected,
if the local processor tries to access the line, because the corresponding read
request will be issued on the network. If the local processor does not access
the line anymore, it has no influence on the data integrity, and the error can
be safely ignored. Only the illegal transitions from a non-M state to the states
E and S are not covered so far. Their possible combinations and the probable
consequences are listed below:

• Illegal transition from E to S. This transition is harmless, because the
local processor still reads valid data from the line, and does not write to
this line.

• Illegal transition from S to E. This transition is also harmless. The
local processor still reads valid data from the line. If the line is written,
however, its state will silently be changed to M. Then, the line in the
state M will eventually try to write back, and the checker will detect the
error.

• Illegal transition from I to E or S. These transitions are the most dan-
gerous for the proposed method. They can lead to local reads receiving
garbage. On the base of this garbage other (correct) cache lines can be
updated, and the data integrity will be violated. This case will not be
detected if the line is never evicted or referenced again from outside.
Experimental results in Section 6.4.2 demonstrate that this rare situation
is not likely to appear in practice.

To summarize, the proposed method covers all harmful single errors in cache
coherence states, except illegal transitions from state I to state E or S in
cache lines which are never referenced from the memory system and are never
evicted later. Many multiple errors are also covered, except those that assign
back the correct state to the cache line before it is checked.

The undetectable single error cases described above are due to the fact that
the cache never broadcasts any messages related to the erroneous lines. This
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problem could be solved by forcing a broadcast of the line states at a certain
time. Because the local CPU does not know which lines are in erroneous
states, it has to broadcast the states of all lines. The checker then verifies all
the lines. This operation introduces a network bandwidth overhead, and should
be performed as rarely as possible. An error may propagate from a node to the
system only when the node updates the shared memory, i.e., when it writes
back. Thus, a possible solution is to broadcast the states of all the cache lines
at every cache write back.

6.4.2 Experimental Fault Coverage Evaluation

To evaluate the fault coverage of the proposed method experimentally and to
validate its correctness, a cycle-accurate multiprocessor simulator based on
the UNISIM environment [153, 154] has been used. The original simulator
available in the UNISIM public repository has been extended to support the
proposed technique and to inject faults into the cache coherence states. Sim-
ulations have been conducted on a shared memory CMP with two PowerPC
405 32-bit RISC cores. Every CPU has a private data cache, connected to a
bus. The cache contains 128 lines, each of size 32 bytes. The cache is 2-way
set-associative. A DRAM memory is also connected to the bus. The simulator
implements the MESI protocol to maintain cache coherence.

The checkers implementing the logic described in Section 6.3.2 have been de-
signed and integrated into the simulated multiprocessor as shown in Figure 6.1.
A fault injector has been implemented which changes the current coherence
state of a cache line to a different state, chosen randomly. This simulates both
the faults of the cache controller logic which generates the new MESI state
based on a certain transaction, and faults in the storage elements holding the
current state. The injection time and place is controlled by a random number
generator. The injection frequency is controlled by a user-defined injection
period. A synthetic benchmark has been used in which the different nodes per-
form many read and write accesses to shared memory locations. This ensures
that many coherence actions take place. The output produced in the presence
of faults has been compared to the correct output to determine if the faults have
affected the final result, which is of most importance for the end user. The fault
injection frequency was varied from extremely high (roughly one fault per 100
clock cycles) to low (one fault per simulation).

14380 simulations with one or more injected faults have been performed. 6290
times the checker detected the error(s), 2466 times the simulator detected the
error(s), and 5624 times the simulation finished with undetected faults, but the
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faults did not propagate to the output and did not corrupt it (these are escapes).
We see the following possible causes of the escapes: the faults were injected
into cache lines which were never referenced again in such a way that wrong
data propagated in the system (see Section 6.4.1), or the faults were masked,
i.e. the following fault(s) returned the correct state, or the state was changed
by future coherence transactions. None of the simulations finished with un-
detected faults and corrupted output. The theoretically possible situations in
which undetected faults violate the system data integrity and affect the output
(see Section 6.4.1) never occurred in our simulations. This provides additional
evidence that they are, indeed, very rare.

The storage overhead needed for the tags and coherence states of each checked
cache line in the checker for the simulated cache configuration can be calcu-
lated as follows. The 32-bit address consists of a 21-bit tag, a 6-bit index, and
a 5-bit block offset. Only the 21-bit tag and 2-bit MESI state need to be saved
on the checker for each cache line. Since every line stores 32 bytes of data, the
overhead is 21+2

21+2+32·8 = 0.08, which is 8%.

6.5 Conclusions

This chapter has presented a technique to dynamically verify the cache co-
herence protocol operation on snooping-based multiprocessor systems. The
widely used MESI coherence protocol has been analyzed in detail. A careful
design and a limited speculation (such as accepting illegal E to M state tran-
sitions which are considered safe for system data integrity) allowed to com-
pletely avoid any performance overhead for the MESI protocol. This indicates
that applying a similar approach to other protocols can also be done with lim-
ited or no performance overhead. The hardware cost is constant per processing
node: for every cache, a fixed amount of redundant logic (the checker) is re-
quired. Thus, the technique is scalable. In addition, every checker contains
copies of all the tags of all cache lines in the checked cache, which introduces
approximately 8% storage overhead for the simulated architecture. Tags over-
head depends on the cache size, but not on the number of nodes in the system.

Only a few simple changes to an existing system are required to support the
technique. The checkers can be easily integrated by connecting them to the
communication network so that they can snoop all the messages. The message
has to be extended with a few additional bits (3 in case of the MESI protocol
and 2-way set-associative caches). The cache controllers need a simple mod-
ification to integrate the information about the way number and the current
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coherence state into every message they send.

The technique addresses faults in the logic controlling the coherence trans-
actions, and in the storage elements holding cache line states. Almost all
single-fault scenarios are covered, except for a few rare cases described in
Section 6.4.1. Experimental results show that these cases are very rare: none
of over 14 thousand simulations finished with undetected faults leading to cor-
rupted output. Furthermore, the technique can be strengthened by using mul-
tiple checkers per cache if very high error rates are expected.

To provide a full system coverage, the proposed technique is assumed to be
used in combination with other detection and/or correction techniques. These
techniques would cover the faults within the nodes, and the network faults
which are only partly covered by the proposed scheme. Note that while the
logic (except the cache coherence controllers) and memory on all the nodes
need extra protection, the coherence checkers proposed in this work do not
necessarily need to be error-free. This is because the cache controllers are
essentially duplicates of the checkers, thus they check the operation of each
other.

The technique presented in this work aims at a fail-safe operation. To enable
recovery, some modifications are required, because in the fail-safe mode error
detection latency is unpredictable. For example, to implement checkpointing,
the caches can submit the states of all the lines to the checkers for verification.
If no errors are detected, a checkpoint can be made. This, however, is likely to
introduce performance overhead. Extensions of the proposed technique to sup-
port recovery as well as applications to other than MESI coherence protocols
are planned for the future work.

It might be impossible to avoid additional network messages to apply the pro-
posed scheme to other than MESI cache coherence protocols, or to enable fault
recovery. In this case, to avoid performance penalty, it might be useful to inves-
tigate if the additional network messages can be issued only when the network
is free from other messages.

Note. This chapter is based on the following paper:

Demid Borodin and B.H.H. (Ben) Juurlink, A Low-Cost Cache Coherence
Verification Method for Snooping Systems, DSD’2008: Proceedings of the
11th Euromicro Conference on Digital System Design, pp. 219–227, Septem-
ber 2008.





7
Conclusions

T his dissertation has addressed the reduction of the performance (and
in many cases energy consumption) penalty introduced by time re-
dundant FT techniques. Time redundant FT techniques are often pre-

ferred to space redundant methods when designing low-cost non-critical sys-
tems, such as general purpose computers and embedded systems, because the
traditional space redundancy methods, such as replication of the whole system
to verify its results, are too expensive for the considered markets.

This dissertation has proposed several such Performance-Oriented Fault Toler-
ance (POFT) techniques. These are both specific low-cost FT techniques and
universal approaches that can be applied to many different time redundant FT
techniques to reduce their performance (and in some cases energy consump-
tion) penalty. Moreover, these are both approaches that can be used with dif-
ferent system architectures, and techniques targeting particular architectures,
such as snooping multiprocessor systems supporting cache coherence.

This chapter summarizes the work presented in the dissertation. Section 7.1
summarizes the dissertation. Section 7.2 presents the major contributions. Fi-
nally, Section 7.3 proposes future research directions.

7.1 Summary

The current technology trends leading to the need of FT features even in low-
cost non-critical computing systems have been introduced in Chapter 1. The
types of protective redundancy and their associated overhead have been dis-
cussed.

Chapter 2 has presented the background information to introduce the reader
to the subject. The history of FT development has been briefly introduced.

133
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Then, the conventional FT techniques have been described, that function as a
base for the majority of the existing techniques. After that, some previously
proposed FT techniques for different computer architectures reducing perfor-
mance overhead have been discussed. Special attention has been paid to FT
techniques implemented in software, because they are useful for the targeted
low-cost systems. Finally, the focus has been placed on the FT issues specific
for the currently very popular multiprocessor systems.

Chapter 3 has presented a novel approach to FT proposed in this disserta-
tion called Instruction-Level Configurability of Fault Tolerance (ILCOFT). IL-
COFT allows an application developer to assign different protection levels to
various application parts. Chapter 3 has explained why this is useful and has
discussed possible implementation strategies. Then the possible ways to apply
ILCOFT to various existing FT techniques have been discussed. Finally, this
approach has been evaluated from the performance, energy consumption, and
fault coverage points of view.

The most challenging requirement when using ILCOFT is to assign the nec-
essary protection levels to different application parts (instructions or blocks of
instructions). In other words, to decide how critical every instruction is. When
performed manually by the application developer, this task requires a large
effort and is very error-prone. It can be done automatically by the compiler,
but this approach is based on the unsafe assumption that only instructions af-
fecting the application control flow are critical. Data processing instructions
that may often corrupt the whole application output are never protected in this
way. Chapter 4 has proposed another method to evaluate how critical indi-
vidual instructions are. The notion of Instruction Vulnerability Factor (IVF),
analogous to the Architecture Vulnerability Factor (AVF), but addressing in-
structions instead of architectural units vulnerability, has been introduced. A
methodology to estimate the IVF has been proposed in Chapter 4. Then IVF
has been used by the ILCOFT-enabled instruction duplication fault detection
scheme. Instructions with high IVF have been duplicated, while others have
not. Experimental results have demonstrated that this method achieves a sig-
nificant performance improvement, while preserving a good fault coverage.

Chapter 5 has proposed to use instruction precomputation for fault detection
purpose. Instruction precomputation has been used to supplement the instruc-
tion duplication fault detection technique. Experimental results have demon-
strated that this configuration achieves better performance and fault coverage
than instruction duplication alone. It has been shown that precomputation im-
proves the long-lasting transient and permanent fault coverage of the existing
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scheme which uses instruction memoization in a similar manner. In addition,
Chapter 5 has proposed to combine instruction precomputation and memoiza-
tion. It has been shown that the combination achieves better performance than
any one of these techniques alone does. The combination used with instruction
duplication has also been shown to outperform precomputation or memoiza-
tion used with instruction duplication alone.

Finally, Chapter 6 has presented an error detection method to verify the cache
coherence operation in snooping multiprocessor systems. First, a general de-
sign suitable for different snooping-based systems has been presented. Then
it has been applied to systems utilizing the MESI cache coherence protocol.
Experimental results have shown that the proposed method verifies the MESI
coherence protocol operation without any performance overhead. To support
the proposed method, additional checkers have to be connected to the system
network, and a few simple modifications are required in the cache controllers.
This is achieved at the expense of a slight fault coverage limitation, which has
never manifested itself in the experimental results.

7.2 Contributions

The main contributions of this dissertation can be summarized as follows.

• A novel approach to FT called ILCOFT has been proposed. IL-
COFT enables an application developer to protect critical application
parts better than non-critical ones. This allows to trade reliability with
the overhead (performance penalty and energy consumption increase)
reduction. Moreover, if more critical application parts are protected bet-
ter at the expense of the weaker protection of the less critical parts, the
overall reliability can be improved without introducing any additional
overhead.

• The notion of Instruction Vulnerability Factor (IVF) has been in-
troduced. IVF determines how much of the final application output is
corrupted due to faults in every instruction. IVF serves to assign appro-
priate protection levels when using ILCOFT. IVF releases an application
developer from the need to assign protection levels manually, which re-
quires a significant effort and is very error-prone. Unlike the automatic
protection level assignment performed by the compiler, IVF does not
assume that only instructions affecting the application control flow are
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critical, and thus it is more accurate and suitable for a larger range of
applications.

• Instruction precomputation has been proposed to supplement the
instruction duplication error detection technique. Instruction pre-
computation improves the performance and fault coverage of instruction
duplication.

• The combination of instruction precomputation and memoization
has been proposed. The combination of these result reuse techniques
is shown to outperform every one of them used alone. The combination
of these techniques used in conjunction with the instruction duplication
error detection technique outperforms and increases the fault coverage of
precomputation or memoization used with instruction duplication alone.

• A low-cost cache coherence verification method has been proposed.
This method has been shown to have no performance penalty in the case
of the MESI cache coherence protocol. Only a few minor hardware
modifications are required in the system to support the coherence veri-
fication. This is achieved at the expense of a slightly reduced fault cov-
erage (compared to other more expensive methods). This fault coverage
limitation has never manifested itself in the experimental results.

7.3 Possible Future Directions

The author advocates further research on FT overhead reduction. New tech-
niques, possibly based on existing performance improvement methods such as
instruction precomputation and memoization, can be expected to appear.

The author especially recommends the philosophy that not everything needs to
operate perfectly to achieve the desired goal. The ILCOFT approach proposed
in this dissertation is based on this philosophy, allowing some (non-critical)
instructions to be unprotected. This achieves a better overall performance,
cost, and/or reliability. A similar approach can be investigated, for example,
for different hardware units, protecting some of them better than others. Al-
ternatively, the desired protection level can be determined based on the usage
characteristics of hardware units. For example, floating-point FUs are used
rarely compared to integer FUs, thus, their protection can be weaker.

The possible future research directions to improve the techniques proposed in
this dissertation are the following. More metrics (such as IVF) of how criti-
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cal every application instruction is are desirable to be used by ILCOFT. It is
preferable to invent automatic methods to estimate these measures. This would
eliminate the necessity of manual work, which is error-prone. Different pro-
tection level assignment methods can target different objectives. For example,
if it is only important that an application does not crash, the automatic com-
piler assignment proposed in Chapter 3 is most appropriate, because it will
reduce maximum overhead. If more accurate results are necessary, IVF is a
more suitable measure (see Chapter 4).

The IVF estimation method presented in this dissertation (Chapter 4) can be
further improved. First of all, it is desirable to focus on improving the speed
of the IVF estimation process. Furthermore, some enhancements of our ex-
perimental setup are desirable (the details are discussed in Section 4.4). For
example, a timer can be used to detect cases when faults in instructions lead
to significant performance penalties. The following approach can be used: all
the instructions affecting the application control flow should be assigned the
maximum IVF by the compiler, and the other instructions should be evaluated
using profiling. This would both speed up the IVF estimation process, and
solve the problem of faults significantly increasing the application execution
time. In addition, it is desirable to adapt the proposed IVF estimation method
for applications producing output consisting of parts of varying importance.
For example, in a video sequence, bytes defining individual pixel values are
less important than bytes defining frame attributes. The adapted IVF estima-
tion method should be able to assign different weight to the corruption of more
and less important output elements.

The techniques involving instruction precomputation and memoization (Chap-
ter 5) can be investigated to further optimize the proposed system configura-
tions. For example, in the combined scheme in this work, precomputation and
memoization used equally sized tables. It would be interesting to investigate
how memo- and P-tables of different sizes influence the performance and fault
coverage. Moreover, it is possible to reduce the number of instructions ap-
pearing in both the P- and memo-tables by using trivial computation detection,
which can be expected to further improve performance.

The cache coherence verification technique proposed in Chapter 6 currently
supports only error detection. Extension of this technique with error recovery
capabilities appears to be difficult. It requires certain non-trivial modifications
that can be expected to degrade the performance, as briefly discussed in Sec-
tion 6.5. It would be interesting to investigate if such an extension is feasible.
In addition, in the case if introducing additional network messages for cache
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coherence verification/recovery is unavoidable, the performance penalty it in-
curs should be minimized. This can be achieved, for example, by making sure
that the additional messages are only issued to the system network when it has
no other messages, or when additional messages will not degrade its perfor-
mance.



Bibliography

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing,” IEEE
Transactions Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33,
2004.

[2] A. Avizienis, “Fault-Tolerance and Fault-Intolerance: Complementary
Approaches to Reliable Computing,” in Proc. Int. Conf. on Reliable soft-
ware. New York, NY, USA: ACM Press, 1975, pp. 458–464.

[3] B. Johnson, Design and Analysis of Fault-Tolerant Digital Systems.
Addison-Wesley, Jan 1989.

[4] P. I. Rubinfeld, “Managing Problems at High Speed,” IEEE Computer,
vol. 31, no. 1, pp. 47–48, 1998.

[5] J. F. Ziegler, “Terrestrial cosmic rays,” IBM Journal of Research and
Development, vol. 40, no. 1, pp. 19–39, 1996.

[6] T. May and M. Woods, “Alpha-Particle-Induced Soft Errors in Dynamic
Memories,” IEEE Transactions on Electron Devices, vol. 26, no. 1, pp.
2–9, 1979.

[7] A. Avizienis, “Dependable Computing Depends on Structured Fault
Tolerance,” in Proc. 6th Int. Symp. on Software Reliability Engineering,
1995, pp. 158–168.

[8] ——, “Fault Tolerance: the Survival Attribute of Digital Systems,”
Proc. IEEE, vol. 66, no. 10, pp. 1109–1125, Oct 1978.

[9] T. Rao and E. Fujiwara, Error-Control Coding for Computer Systems.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1989.

[10] A. Avizienis, “Fault-Tolerant Computing: An Overview,” IEEE Com-
puter, vol. 4, no. 1, pp. 5–8, Jan 1971.

[11] ——, “Framework for a Taxonomy of Fault-Tolerance Attributes in
Computer Systems,” in ISCA-83: Proc. 10th Annual Int. Symp. on Com-
puter architecture. Los Alamitos, CA, USA: IEEE Computer Society,
1983, pp. 16–21.

[12] D. A. Rennels, “Fault-Tolerant Computing – Concepts and Examples,”
IEEE Transactions on Computers, vol. C-33, no. 12, pp. 1116–1129,
Dec 1984.

139



140 BIBLIOGRAPHY

[13] A. Avizienis, “Dependable computing: From concepts to design diver-
sity,” in Proc. IEEE, vol. 74, no. 5, May 1986, pp. 629–638.

[14] ——, “The Dependability Problem: Introduction and Verification of
Fault Tolerance for a Very Complex System,” in ACM-87: Proc. Fall
Joint Computer Conf. on Exploring technology: today and tomorrow.
Los Alamitos, CA, USA: IEEE Computer Society, 1987, pp. 89–93.

[15] D. P. Siewiorek, “Fault Tolerance in Commercial Computers,” IEEE
Computer, vol. 23, no. 7, pp. 26–37, 1990.

[16] A. Avizienis, “Toward Systematic Design of Fault-Tolerant Systems,”
IEEE Computer, vol. 30, no. 4, pp. 51–58, 1997.

[17] A. K. Somani and N. H. Vaidya, “Understanding Fault Tolerance and
Reliability,” IEEE Computer, vol. 30, no. 4, pp. 45–50, Apr 1997.

[18] A. Avizienis and Y. He, “Microprocessor Entomology: A Taxonomy of
Design Faults in COTS Microprocessors,” Dependable Computing for
Critical Applications 7, pp. 3–23, Jan 1999.

[19] J. Yi, R. Sendag, and D. Lilja, “Increasing Instruction-Level Parallelism
with Instruction Precomputation,” in Euro-Par-02: Proc. 8th Int. Euro-
Par Conf. on Parallel Processing. London, UK: Springer-Verlag, Aug
2002, pp. 481–485.

[20] D. Michie, “Memo Functions and Machine Learning,” Nature 218, pp.
19–22, 1968.

[21] S. Richardson, “Exploiting Trivial and Redundant Computation,” in
Proc. 11th Symp. on Computer Arithmetic, July 1993, pp. 220–227.

[22] A. Sodani and G. S. Sohi, “Dynamic Instruction Reuse,” in ISCA-97:
Proc. 24th Annual Int. Symp. on Computer Architecture. New York,
NY, USA: ACM, 1997, pp. 194–205.

[23] M.N.O.Sadiku and C.N.Obiozor, “Evolution of Computer Systems,” in
Proc. of Frontiers in Education Conf., 1996. FIE ’96. 26th Annual Conf.,
vol. 3, Salt Lake City, UT, Nov 1996, pp. 1472–1474.

[24] W. Carter and W. Bouricius, “A Survey of Fault Tolerant Computer Ar-
chitecture and its Evaluation,” IEEE Computer, vol. 4, no. 1, pp. 9–16,
Jan 1971.



BIBLIOGRAPHY 141

[25] J. Brainerd and T. Sharpless, “The ENIAC,” in Proc. IEEE, vol. 72,
no. 9, Sep 1984, pp. 1203–1212.

[26] G. Candea, “The Basics of Dependability,” Sep 2003, lec-
ture notes, available at http://swig.stanford.edu/∼candea/teaching/
cs444a-fall-2003/notes/basics.pdf (last accessed 18.09.2006).

[27] W. Fritz, “ENIAC - A Problem Solver,” IEEE Annals History of Com-
puting, vol. 16, no. 1, pp. 25–45, 1994.

[28] J. Eckert, J. Weiner, H. Welsh, and H. Mitchell, “The UNIVAC system,”
AIEE-IRE Conf, pp. 6–16, Dec 1951.

[29] M. Hsiao, W. Carter, J. Thomas, and W. Stringfellow, “Reliability,
Availability, and Serviceability of IBM Computer Systems: A Quar-
ter Century of Progress,” IBM Journal of Research and Development,
vol. 25, no. 5, pp. 453–465, 1981.

[30] D. Siewiorek, “Architecture of Fault-Tolerant Computers: An Historical
Perspective,” in Proc. IEEE, vol. 79, no. 12, Dec 1991, pp. 1710–1734.

[31] J. von Neumann, “Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components,” in Automata Studies, ser.
Annals of Mathematics Studies. Princeton, NJ: Princeton University
Press, 1956, vol. 34, pp. 43–98.

[32] J. Lala and R. Harper, “Architectural Principles for Safety-Critical Real-
Time Applications,” Proc. of the IEEE, vol. 82, no. 1, pp. 25–40, Jan
1994.

[33] P. K. Lala, Ed., Self-Checking and Fault-Tolerant Digital Design. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001.

[34] W. E. Carter, H. C. Montgomery, R. J. Preiss, and H. J. Reinheimer,
“Design of Serviceability Features for the IBM System/360,” IBM Jour-
nal of Research and Development, vol. 8, no. 2, pp. 115–126, 1964.

[35] D. Siewiorek and R. Swarz, Reliable Computer Systems: Design and
Evaluation, 3rd ed. A K Peters Ltd, Oct 1998.

[36] D. Pradhan, Fault-Tolerant Computer System Design. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., Feb 1996.

http://swig.stanford.edu/~candea/teaching/cs444a-fall-2003/notes/basics.pdf
http://swig.stanford.edu/~candea/teaching/cs444a-fall-2003/notes/basics.pdf


142 BIBLIOGRAPHY

[37] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and C. Dai, “Im-
pact of CMOS Process Scaling and SOI on the Soft Error Rates of Logic
Processes,” VLSI Technology. Digest of Technical Papers, pp. 73–74,
2001.

[38] C. C. Corporation, “Data Integrity for Compaq NonStop Himalaya
servers,” Apr 1999, white Paper, available at http://www.himalaya.
compaq.com/object/dataigwp.html (last accessed 23.10.2006).

[39] C. Webb and J. Liptay, “A High-Frequency Custom CMOS S/390 Mi-
croprocessor,” iccd, vol. 00, p. 241, 1997.

[40] L. Spainhower and T. A. Gregg, “G4: A Fault-Tolerant CMOS Main-
frame,” in FTCS-98: Proc. The Twenty-Eighth Annual Int. Symp. on
Fault-Tolerant Computing. Washington, DC, USA: IEEE Computer
Society, Jun 1998, pp. 432–440.

[41] L. Spainhower, J. Isenberg, R. Chillarege, and J. Berding, “Design
for Fault-Tolerance in System ES/9000 Model 900,” in FTCS-22: The
Twenty-Second Int. Symp. on Fault-Tolerant Computing, Jul 1992, pp.
38–47.

[42] T. Slegel, R. A. III, M. Check, B. Giamei, B. Krumm, C. Krygowski,
W. Li, J. Liptay, J. MacDougall, T. McPherson, J. Navarro, E. Schwarz,
K. Shum, and C. Webb, “IBM’s S/390 G5 Microprocessor Design,”
IEEE Micro, vol. 19, no. 2, pp. 12–23, Apr 1999.

[43] L. Spainhower and T. Gregg, “IBM S/390 Parallel Enterprise Server G5
Fault Tolerance: A Historical Perspective,” IBM Journal of Research
and Development, vol. 43, no. 5/6, pp. 863–874, 1999.

[44] W. Bartlett and L. Spainhower, “Commercial Fault Tolerance: A Tale of
Two Systems,” IEEE Transactions Dependable Secur. Comput., vol. 1,
no. 1, pp. 87–96, Jan 2004.

[45] N. Saxena, C. Chen, R. Swami, H. Osone, S. Thusoo, D. Lyon,
D. Chang, A. Dharmaraj, N. Patkar, Y. Lu, and B. Chia, “Error Detec-
tion and Handling in a Superscalar, Speculative Out-of-Order Execution
Processor System,” FTCS-25, pp. 464–471, Jun 1995.

[46] W. W. Hwu and Y. N. Patt, “Checkpoint Repair for Out-Of-Order Exe-
cution Machines,” in ISCA-87: Proc. 14th Annual Int. Symp. on Com-
puter architecture. New York, NY, USA: ACM Press, 1987, pp. 18–26.

http://www.himalaya.compaq.com/object/dataigwp.html
http://www.himalaya.compaq.com/object/dataigwp.html


BIBLIOGRAPHY 143

[47] S. Kaneda, “A Class of Odd-Weight-Column SEC-DED-SbED Codes
for Memory System Applications.” IEEE Transactions on Computers,
vol. 33, no. 8, pp. 737–741, 1984.

[48] N. R. Saxena, C.-W. D. Chang, K. Dawallu, J. Kohli, and P. Helland,
“Fault-Tolerant Features in the HaL Memory Management Unit,” IEEE
Transactions on Computers, vol. 44, no. 2, pp. 170–180, Feb 1995.

[49] A. Avizienis, “The Hundred Year Spacecraft,” Proc. First NASA/DoD
Workshop on Evolvable Hardware, pp. 233–239, Jul 1999.

[50] L. Chen and A. Avizienis, “N-version Programming: A Fault Tolerance
Approach to Reliability of Software Operation,” FTCS-8, pp. 3–9, 1978.

[51] C. E. Stroud, “Reliability of Majority Voting Based VLSI Fault-Tolerant
Circuits,” in IEEE Transactions on VLSI Systems, vol. 2, no. 4. IEEE
Computer Society, 1994, pp. 516–521.

[52] C. Metra, M. Favalli, and B. Ricco, “Compact and Low Power On-Line
Self-Testing Voting Scheme,” DFT-97, vol. 00, pp. 137–145, Oct 1997.

[53] J. Cazeaux, D. Rossi, and C. Metra, “Self-Checking Voter for High
Speed TMR Systems,” Journal of Electronic Testing, vol. 21, no. 4, pp.
377–389, Aug 2005.

[54] H. El-Razouk and Z. Abid, “A New Transistor-Redundant Voter for
Defect-Tolerant Digital Circuits,” in Canadian Conf. on Electrical and
Computer Engineering, 2006, pp. 1078–1081.

[55] S. Mitra and E. J. McCluskey, “Word voter: A new voter design for
triple modular redundant systems,” VTS-00: Proc. 18th IEEE VLSI Test
Symposium, pp. 465–470, 2000.

[56] Reynolds and G. Metze, “Fault Detection Capabilities of Alternating
Logic,” IEEE Transactions on Computers, vol. C-27, no. 12, pp. 1093–
1098, Dec 1978.

[57] J. Shedletsky, “Error Correction by Alternate-Data Retry,” IEEE Trans-
actions on Computers, vol. C-27, no. 2, pp. 106–112, Feb 1978.

[58] J. Patel and L. Fung, “Concurrent Error Detection in ALUs by Recom-
puting with Shifted Operands,” IEEE Transactions on Computers, vol.
C-31, no. 7, pp. 589–595, Jul 1982.



144 BIBLIOGRAPHY

[59] J. Li and E. Swartzlander, “Concurrent Error Detection in ALUs by Re-
computing with Rotated Operands,” IEEE Int. Workshop on Defect and
Fault Tolerance in VLSI Systems, pp. 109–116, Nov 1992.

[60] B. Johnson, J. Aylor, and H. Hana, “Efficient use of time and hardware
redundancy for concurrent error detection in a 32-bit vlsi adder,” IEEE
Journal of Solid-State Circuits, pp. 208–215, 1988.

[61] Y. Hsu and E. Swartzlander, “Time Redundant Error Correcting Adders
and Multipliers,” IEEE Int. Workshop on Defect and Fault Tolerance in
VLSI Systems, pp. 247–256, Nov 1992.

[62] T. Ngai, C. He, and E. Swartzlander, “Enhanced Concurrent Error Cor-
recting Arithmetic Unit Design Using Alternating Logic,” in Proc. 2001
IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems. Wash-
ington, DC, USA: IEEE Computer Society, Oct 2001, pp. 78–83.

[63] K-H.Huang and J.A.Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations,” IEEE Transactions on Computers, vol. C-33, no. 6,
pp. 518–528, Jun 1984.

[64] J. Holm and P. Banerjee, “Low Cost Concurrent Error Detection in a
VLIW Architecture Using Replicated Instructions,” in ICCP-21: Proc.
Int. Conf. on Parallel Processing, 1992, pp. 192–195.

[65] C. Bolchini, “A Software Methodology for Detecting Hardware Faults
in VLIW Data Paths,” IEEE Transactions on Reliability, vol. 52, no. 4,
pp. 458–468, Dec 2003.

[66] J. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. Ir-
win, “Compiler-Directed Instruction Duplication for Soft Error Detec-
tion,” in DATE-05: Proc. of the Design, Automation and Test in Europe,
Mar 2005, pp. 1056–1057.

[67] M. Schuette and J. Shen, “Exploiting Instruction-Level Parallelism for
Integrated Control-Flow Monitoring,” IEEE Transactions on Comput-
ers, vol. 43, no. 2, pp. 129–140, 1994.

[68] G. Sohi, M. Franklin, and K. Saluja, “A Study of Time-Redundant Fault
Tolerance Techniques for High-Performance Pipelined Computers,” in
FTCS-19. Washington, DC, USA: IEEE Computer Society, Jun 1989,
pp. 436–443.



BIBLIOGRAPHY 145

[69] M. Franklin, “A Study of Time Redundant Fault Tolerance Techniques
for Superscalar Processors,” Proc. IEEE Int. Workshop on Defect and
Fault Tolerance in VLSI Systems, pp. 207–215, Nov 1995.

[70] ——, “Incorporating Fault Tolerance in Superscalar Processors,” HiPC-
96: Proc. Int. Conf. on High-Performance Computing, vol. 00, pp. 301–
306, 1996.

[71] T. Austin, “DIVA: A Reliable Substrate for Deep Submicron Microar-
chitecture Design,” in MICRO-32: Proc. 32nd Annual ACM/IEEE Int.
Symp. on Microarchitecture, Washington, DC, USA, Jun 1999, pp. 196–
207.

[72] F. Rashid, K. Saluja, and P. Ramanathan, “Fault Tolerance Through Re-
execution in Multiscalar Architecture,” Dependable Systems and Net-
works, pp. 482–491, 2000.

[73] A. Mendelson and N. Suri, “Designing High-Performance & Reli-
able Superscalar Architectures: The Out of Order Reliable Superscalar
(O3RS) Approach,” Dependable Systems and Networks, pp. 473–481,
Jun 2000.

[74] J. Ray, J. Hoe, and B. Falsafi, “Dual Use of Superscalar Datapath for
Transient Fault Detection and Recovery,” MICRO-34, pp. 214–224, Dec
2001.

[75] J. Smolens, J. Kim, J. Hoe, and B. Falsafi, “Efficient Resource Shar-
ing in Concurrent Error Detecting Superscalar Microarchitectures,”
MICRO-37: Proc. of the 37th IEEE/ACM Int. Symp. on Microarchi-
tecture, vol. 0, pp. 257–268, 2004.

[76] A. Parashar, S. Gurumurthi, and A. Sivasubramaniam, “A Complexity-
Effective Approach to ALU Bandwidth Enhancement for Instruction-
Level Temporal Redundancy,” in ISCA-04: Proc. of the 31st Annual
Int. Symp. on Computer Architecture. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 376–386.

[77] M. Gomaa and T. Vijaykumar, “Opportunistic Transient Fault Detec-
tion,” ISCA-05: Proc. 32nd Annual Int. Symp. on Computer Architec-
ture, pp. 172–183, Jun 2005.

[78] D. Borodin, B. Juurlink, and S. Kaxiras, “Instruction Precomputation
for Fault Detection,” in DSD-2009: 12th Euromicro Conf. on Digital
System Design, Aug 2009, pp. 91–99.



146 BIBLIOGRAPHY

[79] S. Kumar and A. Aggarwal, “Self-Checking Instructions – Reducing
Instruction Redundancy for Concurrent Error Detection,” in PACT-06:
Proc. of the 15th Int. Conf. on Parallel Architectures and Compilation
Techniques. New York, NY, USA: ACM, Sep 2006, pp. 64–73.

[80] D. Borodin, B. Juurlink, and S. Vassiliadis, “Instruction-Level Fault Tol-
erance Configurability,” in IC-SAMOS VII: Proc. Int. Conf. on Embed-
ded Computer Systems: Architectures, Modeling, and Simulation, July
2007, pp. 110–117.

[81] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tol-
erance in Microprocessors.” in FTCS-29, Madison, Wisconsin, USA,
Jun 1999, pp. 84–91.

[82] S. Reinhardt and S. Mukherjee, “Transient Fault Detection via Simul-
taneous Multithreading,” in ISCA-00: Proc. 27th Annual Int. Symp. on
Computer architecture, New York, NY, USA, 2000, pp. 25–36.

[83] T. N. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient Fault Re-
covery Using Simultaneous Multithreading,” in ISCA-02: Proc. 29th
Annual Int. Symp. on Computer architecture, Washington, DC, USA,
2002, pp. 87–98.

[84] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed Design
and Evaluation of Redundant Multithreading Alternatives,” in ISCA-02:
Proc. 29th Annual Int. Symp. on Computer architecture. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 99–110.

[85] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream Proces-
sors: Improving Both Performance and Fault Tolerance,” ACM SIG-
PLAN Notices, vol. 35, no. 11, pp. 257–268, 2000.

[86] Z. Purser, K. Sundaramoorthy, and E. Rotenberg, “A Study of Slip-
stream Processors,” in MICRO-33: Proc. 33rd Annual ACM/IEEE Int.
Symp. on Microarchitecture, New York, NY, USA, 2000, pp. 269–280.

[87] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar Proces-
sors,” in ISCA-95: Proc. 22nd Annual Int. Symp. on Computer architec-
ture. New York, NY, USA: ACM Press, Jun 1995, pp. 414–425.

[88] S. Chatterjee, C. Weaver, and T. Austin, “Efficient Checker Processor
Design,” in MICRO-33: Proc. 33rd Annual ACM/IEEE Int. Symp. on
Microarchitecture, New York, NY, USA, 2000, pp. 87–97.



BIBLIOGRAPHY 147

[89] M. Mneimneh, F. Aloul, C. Weaver, S. Chatterjee, K. Sakallah, and
T. Austin, “Scalable Hybrid Verification of Complex Microprocessors,”
in DAC-01: Proc. 38th Conf. on Design automation. New York, NY,
USA: ACM Press, 2001, pp. 41–46.

[90] C. Weaver and T. Austin, “A Fault Tolerant Approach to Microprocessor
Design,” Dependable Systems and Networks, pp. 411–420, Jul 2001.

[91] N. Saxena and E. McCluskey, “Dependable Adaptive Computing
Systems–the ROAR project,” in Proc. IEEE Systems, Man, and Cyber-
netics Conf, vol. 3, Oct 1998, pp. 2172–2177.

[92] D. Citron, D. Feitelson, and L. Rudolph, “Accelerating Multi-Media
Processing by Implementing Memoing in Multiplication and Division
Units,” ASPLOS-VIII: Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, vol. 32, no. 5, pp. 252–261,
1998.

[93] D. Borodin and B. Juurlink, “Instruction Precomputation with Memo-
ization for Fault Detection,” in DATE-2010: Proc. of the Design, Au-
tomation and Test in Europe, Mar 2010.

[94] D. Borodin, B. Juurlink, S. Hamdioui, and S. Vassiliadis, “Instruction-
Level Fault Tolerance Configurability,” Journal of Signal Processing
Systems, vol. 57, no. 1, pp. 89–105, October 2009.

[95] N. Oh, P. Shirvani, and E. McCluskey, “Error Detection by Duplicated
Instructions in Super-Scalar Processors,” IEEE Transactions on Relia-
bility, vol. 51, no. 1, pp. 63–75, Mar 2002.

[96] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous Multithreading:
Maximizing On-Chip Parallelism,” in ISCA-95: Proc. 22nd Annual Int.
Symp. on Computer architecture, New York, NY, USA, 1995, pp. 392–
403.

[97] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace Pro-
cessors,” in MICRO-30: Proc. 30th Annual ACM/IEEE Int. Symp. on
Microarchitecture. Washington, DC, USA: IEEE Computer Society,
1997, pp. 138–148.

[98] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The
Case for a Single-Chip Multiprocessor,” in ASPLOS-VII: Proc. seventh
Int. Conf. on Architectural support for programming languages and op-
erating systems, New York, NY, USA, 1996, pp. 2–11.



148 BIBLIOGRAPHY

[99] E. Rotenberg, “Exploiting Large Ineffectual Instruction Sequences,”
Department of Electrical and Computer Engineering, North Carolina
State University, Tech. Rep., Nov 1999, available at http://www.tinker.
ncsu.edu/ericro/ (last accessed 09.10.2006).

[100] B. Randell, “System Structure for Software Fault Tolerance,” in Proc.
Int. Conf. on Reliable software. New York, NY, USA: ACM Press,
1975, pp. 437–449.

[101] C. C. Li and W. K. Fuchs, “CATCH - Compiler-Assisted Techniques for
Checkpointing,” in FTCS-20. Washington, DC, USA: IEEE Computer
Society, 1990, pp. 74–81.

[102] J. Long, W. K. Fuchs, and J. A. Abraham, “Compiler-Assisted Static
Checkpoint Insertion,” in FTCS-22. Washington, DC, USA: IEEE
Computer Society, July 1992, pp. 58–65.

[103] M. A. Schuette and J. P. Shen, “Processor control flow monitoring using
signatured instruction streams,” IEEE Transactions Computer, vol. 36,
no. 3, pp. 264–277, 1987.

[104] L.McFearin and V.S.S.Nair, “Control-Flow Checking Using Asser-
tions,” in Proc. IFIP Int. Conf. Dependable Computing for Critical Ap-
plications, Sep 1995.

[105] Z. Alkhalifa, V. Nair, N. Krishnamurthy, and J. Abraham, “Design and
Evaluation of System-Level Checks for On-Line Control Flow Error
Detection,” IEEE Transactions on Parallel and Distributed Systems,
vol. 10, no. 6, pp. 627–641, 1999.

[106] N. Oh, P. Shirvani, and E. McCluskey, “Control-Flow Checking by Soft-
ware Signatures,” IEEE Transactions on Reliability, vol. 51, no. 2, pp.
111–122, Mar 2002.

[107] R. Venkatasubramanian, J. Hayes, and B. Murray, “Low-Cost On-Line
Fault Detection Using Control Flow Assertions,” in IOLTS: 9th IEEE
On-Line Testing Symp., Jul 2003, pp. 137–143.

[108] O. Goloubeva, M. Rebaudengo, M. Reorda, and M. Violante, “Soft-
Error Detection Using Control Flow Assertions,” in DFT-03: Proc. of
the 18th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Sys-
tems. Washington, DC, USA: IEEE Computer Society, 2003, p. 581.

http://www.tinker.ncsu.edu/ericro/
http://www.tinker.ncsu.edu/ericro/


BIBLIOGRAPHY 149

[109] G. Miremadi, J.Harlsson, U. Gunneflo, and J.Torin, “Two Software
Techniques for On-Line Error Detection,” in FTCS-22. Washington,
DC, USA: IEEE Computer Society, 1992, pp. 328–335.

[110] J. M. Ayache, P. Azema, and M. Diaz, “Observer: a Concept for On-
Line Detection of Control Errors in Concurrent Systems,” in FTCS-9.
Washington, DC, USA: IEEE Computer Society, 1979, pp. 79–86.

[111] S. S. Yau and F. C. Chen, “An Approach to Concurrent Control Flow
Checking,” IEEE Transactions on Software Engineering, vol. SE-6,
no. 2, pp. 126–137, 1980.

[112] D. Lu, “Watchdog Processors and Structural Integrity Checking,” IEEE
Transactions on Computers, vol. C-31, no. 7, pp. 681–685, Jul 1982.

[113] T. Michel, R. Leveugle, and G. Saucier, “A New Approach to Con-
trol Flow Checking Without Program Modification,” in FTCS-21: The
Twenty-First Int. Symp. on Fault-Tolerant Computing, Jun 1991, pp.
334–341.

[114] M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Violante, “Soft-
Error Detection through Software Fault-Tolerance Techniques,” DFT-
99, pp. 210–218, 1999.

[115] ——, “A Source-to-Source Compiler for Generating Dependable Soft-
ware,” First IEEE Int. Workshop on Source Code Analysis and Manipu-
lation, pp. 33–42, 2001.

[116] B. Nicolescu and R. Velazco, “Detecting Soft Errors by a Purely Soft-
ware Approach: Method, Tools and Experimental Results,” in DATE-
03: Proc. of the Design, Automation and Test in Europe Conference
and Exhibition, 2003, pp. 57–62.

[117] N. Oh and E. McCluskey, “Error Detection by Selective Procedure Call
Duplication for Low Energy Consumption,” IEEE Transactions on Re-
liability, vol. 51, no. 4, pp. 392–402, Dec 2002.

[118] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August,
“SWIFT: Software Implemented Fault Tolerance,” in CGO-05: Proc.
of the Int. Symp. on Code Generation and Optimization, Washington,
DC, USA, 2005, pp. 243–254.



150 BIBLIOGRAPHY

[119] G. Reis, J. Chang, N. Vachharajani, R. Rangan, D. August, and
S. Mukherjee, “Design and Evaluation of Hybrid Fault-Detection Sys-
tems,” ISCA-05: Proc. 32nd Annual Int. Symp. on Computer Architec-
ture, vol. 0, pp. 148–159, Jun 2005.

[120] N. Oh, S. Mitra, and E. McCluskey, “ED4I : Error Detection by Diverse
Data and Duplicated Instructions,” IEEE Transactions on Computers,
vol. 51, no. 2, pp. 180–199, 2002.

[121] P. Shirvani, N. R. Saxena, and E. J. McCluskey, “Software-Implemented
EDAC Protection Against SEUs,” IEEE Transactions on Reliability,
vol. 49, no. 3, pp. 273–284, Sep 2000.

[122] G. K. Saha, “Software Based Fault Tolerant Computing,” ACM Ubiq-
uity, vol. 6, no. 40, pp. 1–1, 2005.

[123] M. Namjoo and E. J. McCluskey, “Watchdog Processors and Capabil-
ity Checking,” in FTCS-12. Washington, DC, USA: IEEE Computer
Society, 1982, pp. 245–248.

[124] Y. Huang and C. Kintala, “Software Implemented Fault Tolerance:
Technologies and Experience,” in FTCS-23. Washington, DC, USA:
IEEE Computer Society, 1993, pp. 2–9.

[125] J. Hennessy and D. Patterson, Computer Architecture, a Quantitative
Approach, 3rd ed. Morgan Kaufmann, May 2003.

[126] A. Mahmood and E. McCluskey, “Concurrent Error Detection Using
Watchdog Processors–A Survey,” IEEE Transactions on Computers,
vol. 37, no. 2, pp. 160–174, Feb 1988.

[127] A. Avizienis, “Fault Tolerance by Design Diversity: Concepts and Ex-
periments,” IEEE Computer, vol. 17, no. 8, pp. 67–80, Aug 1984.

[128] S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski,
and J. Rattner, “Platform 2015: Intel Processor and Platform Evo-
lution for the Next Decade,” Technology@Intel Magazine, Mar
2005, available at http://http://www.intel.com/technology/magazine/
computing/platform-2015-0305.htm/.

[129] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Dynamic Verification of
Cache Coherence Protocols,” in Proc. ISCA Workshop on Memory Per-
formance Issues. New York, NY, USA: ACM Press, Jun 2001.

http://http://www.intel.com/technology/magazine/computing/platform-2015-0305.htm/
http://http://www.intel.com/technology/magazine/computing/platform-2015-0305.htm/


BIBLIOGRAPHY 151

[130] A. Meixner and D. Sorin, “Error Detection via Online Checking of
Cache Coherence with Token Coherence Signatures,” in HPCA-2007:
Proc. IEEE 13th Int. Symp. on High Performance Computer Architec-
ture, Feb 2007, pp. 145–156.

[131] M. Martin, M. Hill, and D. Wood, “Token Coherence: Decoupling Per-
formance and Correctness,” in ISCA: Proc. 30th Annual Int. Symp. on
Computer Architecture, Jun 2003, pp. 182–193.

[132] D. Sorin, M. Hill, and D. Wood, “Dynamic Verification of End-to-End
Multiprocessor Invariants,” in DSN-03: Proc. Int. Conf. on Dependable
Systems and Networks, Jun 2003, pp. 281–290.

[133] D. Borodin and B. Juurlink, “A Low-Cost Cache Coherence Verification
Method for Snooping Systems,” in DSD-2008: 11th Euromicro Conf. on
Digital System Design, Sep 2008, pp. 219–227.

[134] R. Fernandez-Pascual, J. Garcia, M. Acacio, and J. Duato, “A Low
Overhead Fault Tolerant Coherence Protocol for CMP Architectures,”
in HPCA-2007: Proc. IEEE 13th Int. Symp. on High Performance Com-
puter Architecture, Feb 2007, pp. 157–168.

[135] M. Breuer, S. Gupta, and T. Mak, “Defect and Error Tolerance in the
Presence of Massive Numbers of Defects,” IEEE Design and Test of
Computers, vol. 21, no. 3, pp. 216–227, 2004.

[136] H. Chung and A. Ortega, “Analysis and Testing for Error Tolerant Mo-
tion Estimation,” in DFT-05: Proc. 20th IEEE Int. Symp. on Defect and
Fault Tolerance in VLSI Systems, Washington, DC, USA, Oct 2005, pp.
514–522.

[137] F. K. Jondral, “Software-Defined Radio: Basics and Evolution to Cog-
nitive Radio,” EURASIP Journal on Wireless Communications and Net-
working, vol. 2005, no. 3, pp. 275–283, 2005.

[138] “Fibonacci numbers at Wikipedia,” http://en.wikipedia.org/wiki/
Fibonacci number.

[139] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,”
SIGARCH Comput. Archit. News, vol. 25, no. 3, pp. 13–25, 1997.

[140] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure
for Computer System Modeling,” IEEE Computer, vol. 35, no. 2, pp.
59–67, 2002.

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci_number


152 BIBLIOGRAPHY

[141] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” in ISCA-00:
Proc. of the 27th Annual Int. Symp. on Computer Architecture, New
York, NY, USA, 2000, pp. 83–94. [Online]. Available: citeseer.ist.psu.
edu/brooks00wattch.html

[142] “Independent JPEG Group webpage,” http://www.ijg.org/.

[143] A. Sundaram, A. Aakel, D. Lockhart, D. Thaker, and D. Franklin, “Ef-
ficient Fault Tolerance in Multi-Media Applications through Selective
Instruction Replication,” in WREFT-08: Proc. of the 2008 workshop on
Radiation effects and fault tolerance in nanometer technologies. New
York, NY, USA: ACM, 2008, pp. 339–346.

[144] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A Sys-
tematic Methodology to Compute the Architectural Vulnerability Fac-
tors for a High-Performance Microprocessor,” in MICRO-36: Proc. of
the 36th Annual IEEE/ACM Int. Symp. on Microarchitecture. Wash-
ington, DC, USA: IEEE Computer Society, 2003, p. 29.

[145] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communicatons
Systems,” in MICRO-30: Proc. of the 30th Annual ACM/IEEE Int.
Symp. on Microarchitecture. Washington, DC, USA: IEEE Computer
Society, 1997, pp. 330–335.

[146] P. Norvig, “Techniques for Automatic Memoization with Applications
to Context-Free Parsing,” Computational Linguistics, vol. 17, no. 1, pp.
91–98, Mar 1991.

[147] S. F. Oberman and M. J. Flynn, “Reducing Division Latency with Re-
ciprocal Caches,” Reliable Computing, vol. 2, no. 2, pp. 147–153, Apr
1996.

[148] J. L. Henning, “SPEC CPU2000: Measuring CPU Performance in the
New Millennium,” IEEE Computer, vol. 33, no. 7, pp. 28–35, 2000.

[149] “SPEC CPU2000 benchmark suite,” http://www.spec.org/cpu2000/.

[150] M. Papamarcos and J. Patel, “A Low-Overhead Coherence Solution for
Multiprocessors with Private Cache Memories,” in ISCA-84: Proc. of
the 11th Annual Int. Symp. on Computer Architecture. New York, NY,
USA: ACM Press, 1984, pp. 348–354.

citeseer.ist.psu.edu/brooks00wattch.html
citeseer.ist.psu.edu/brooks00wattch.html
http://www.ijg.org/
http://www.spec.org/cpu2000/


BIBLIOGRAPHY 153

[151] D. Sorin, M. Martin, M. Hill, and D. Wood, “SafetyNet: Improving
the Availability of Shared Memory Multiprocessors with Global Check-
point/Recovery,” in ISCA-02: Proc. 29th Annual Int. Symp. on Com-
puter Architecture, 2002, pp. 123–134.

[152] M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-Effective Ar-
chitectural Support for Rollback Recovery in Shared-Memory Multi-
processors,” in ISCA-02: Proc. 29th Annual Int. Symp. on Computer
Architecture, 2002, pp. 111–122.

[153] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard, D. A.
Penry, O. Temam, and N. Vachharajani, “UNISIM: An Open Simulation
Environment and Library for Complex Architecture Design and Col-
laborative Development,” IEEE Computer Architecture Letters, vol. 6,
no. 2, pp. 45–48, 2007.

[154] “UNISIM: UNIted SIMulation environment webpage,” http://unisim.
org/.

http://unisim.org/
http://unisim.org/




List of Publications

International Journals

1. Demid Borodin, B.H.H. (Ben) Juurlink, Said Hamdioui, and Stamatis
Vassiliadis, Instruction-Level Fault Tolerance Configurability, Jour-
nal of Signal Processing Systems, Volume 57, Issue 1, pp. 89–105, Oc-
tober 2009.

2. Asadollah Shahbahrami, B.H.H. (Ben) Juurlink, Demid Borodin, and
Stamatis Vassiliadis, Avoiding Conversion and Rearrangement Over-
head in SIMD Architectures, International Journal of Parallel Pro-
gramming, Volume 34, Issue 3, pp. 237-260, June 2006.

International Conferences

1. Demid Borodin and B.H.H. (Ben) Juurlink, Protective Redundancy
Overhead Reduction Using Instruction Vulnerability Factor, Pro-
ceedings of the ACM International Conference on Computing Frontiers,
May 2010.

2. Demid Borodin and B.H.H. (Ben) Juurlink, Instruction Precomputa-
tion with Memoization for Fault Detection, DATE’2010: Proceedings
of the Design, Automation and Test in Europe, March 2010.

3. Demid Borodin, B.H.H. (Ben) Juurlink, and Stefanos Kaxiras, Instruc-
tion Precomputation for Fault Detection, DSD’2009: Proceedings of
the 12th Euromicro Conference on Digital System Design, pp. 91–99,
August 2009.

4. Demid Borodin and B.H.H. (Ben) Juurlink, A Low-Cost Cache Co-
herence Verification Method for Snooping Systems, DSD’2008: Pro-
ceedings of the 11th Euromicro Conference on Digital System Design,
pp. 219–227, September 2008.

5. Demid Borodin, B.H.H. (Ben) Juurlink, and Stamatis Vassiliadis,
Instruction-Level Fault Tolerance Configurability, IC-SAMOS VII:
International Conference on Embedded Computer Systems: Architec-
tures, Modeling, and Simulation, pp. 110–117, July 2007.

155



156 LIST OF PUBLICATIONS

Local Conferences

1. Asadollah Shahbahrami, Demid Borodin, and B.H.H. (Ben) Juurlink,
Comparison Between Color and Texture Features for Image Re-
trieval, ProRisc’2008: Proceedings of the 19th Annual Workshop on
Circuits, Systems and Signal Processing, November 2008.

2. Carsten M. van der Hoeven, B.H.H. (Ben) Juurlink, and Demid Borodin,
SimpleScalar Macro Tool, ProRISC’2007: Proceedings of the 18th An-
nual Workshop on Circuits, Systems and Signal Processing, November
2007.

3. Demid Borodin, Andrei Terechko, B.H.H. (Ben) Juurlink, and Paulus
Stravers, Optimisation of Multimedia Applications for the Philips
Wasabi Multiprocessor System, ProRISC’2005: Proceedings of the
16th Annual Workshop on Circuits, Systems and Signal Processing,
November 2005.



Samenvatting

I n dit proefschrift richten wij ons op de overheadreductie van fault tol-
erance (FT) technieken. Door technologische ontwikkelingen, zoals de
afnemende afmeting van chip-transistoren en lagere spanningsniveaus,

wordt FT steeds belangrijker in moderne computersystemen. FT technieken
zijn gebaseerd op bepaalde redundantie vormen. Voorbeelden hiervan zijn:
ruimte-redundantie (extra hardware), tijd-redundantie (meerdere uitvoeringen)
en/of informatie redundantie (extra verificatie informatie). Door de redun-
dantie worden de kosten hoger en/of leidt dit tot het afnemen van de prestaties
en dat is in de meeste gevallen niet aanvaardbaar.

In dit proefschrift worden verschillende methodes voorgesteld die de overhead
van de FT technieken reduceren. De meeste technieken hebben tot doel de
overhead, veroorzaakt door tijd-redundantie, te reduceren, hoewel sommige
FT technieken ook geschikt zijn om de overhead van andere vormen van re-
dundantie te verminderen. Veel tijd-redundantie FT technieken zijn gebaseerd
op het herhaaldelijk uitvoeren van instructies. Kopieen van redundante in-
structies worden in hardware of software gemaakt en hun resultaten worden
vergeleken om mogelijke fouten te detecteren.

Dit proefschrift stelt dat er voor verschillende instructies verschillende
beschermingsniveaus noodzakelijk zijn voor een betrouwbare uitvoering
van toepassingen. Er zijn mogelijke manieren onderzocht die geschikte
beschermingsniveaus toepassen op de verschillende instructies, bijvoor-
beeld met behulp van het voorgestelde nieuwe concept van de instructie-
kwetsbaarheidsfactor. Door kritieke instructies beter te berschermen kan
men een aanzienlijke prestatieverbetering, energieverbruik vermindering en/of
systeem kostenbesparing bereiken. Bovendien worden “instruction reuse”
techieken, precomputation en memoization aangedragen om het aantal
noodzakelijke instructies, die meerdere malen herhaald moeten worden voor
de foutdetectie, te reduceren.

Door de recente overtuiging dat instruction level parallelism (ILP) zijn gren-
zen heeft bereikt en door de beperking van het te gebruiken vermogen, hebben
multiprocessorsystemen onlangs veel aandacht gekregen. In een multiproces-
sorsysteem met cache coherency, is het correct functioneren van het cache co-
herency protocol van essentieel belang voor het systeem. Dit proefschrift pre-
senteert een cache coherence verificatie techniek die in vergelijking met eerder
voorgestelde methodes tegen lagere kosten fouten detecteert.

157





Curriculum Vitae

Demid Borodin was born in Samarkand, USSR,
in 1982. In 2003 he received the BSc degree in
aerospace engineering from Tashkent State Insti-
tute of Aviation, Tashkent, Uzbekistan. In 2005
he received the MSc degree in computer engineer-
ing from Delft University of Technology, Delft,
The Netherlands.

Subsequently in 2005 he continued to work in the
Computer Engineering Laboratory as a PhD stu-
dent, under the guidance of Dr. Ben Juurlink.
Currently he is pursuing postdoctoral research at
the same laboratory. The PhD research focuses on

fault tolerance of computing systems. The interests also include application-
specific instruction set architectures, parallel architectures, three-dimensional
integrated circuits, and computer architecture in general.

159


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Acronyms and Symbols
	Introduction
	Problem Statement and Objectives
	Organization and Contributions

	An Overview of FT in Computing Systems
	A Brief History of Fault Tolerance
	Taxonomy of Faults
	Conventional FT Techniques
	POFT Techniques
	FT in VLIW Architectures
	FT in Superscalar Architectures
	Dynamic Implementation Verification Architecture
	FT Based on Simultaneous Multithreading
	Slipstream Processors

	Software Fault Tolerance
	Approaches Targeting Software Design Faults
	Approaches Targeting Hardware Faults
	Software Techniques Using Watchdog Processors

	FT Techniques for Cache Coherence
	Summary

	Instruction-Level Fault Tolerance Configurability
	Introduction
	ILCOFT
	Motivation
	Specification of the Required FT Degree
	FT Schemes Adaptable to ILCOFT

	Kernel-Level Validation
	Performance Evaluation
	Energy and Power Consumption
	Fault Coverage Evaluation

	Application-Level Validation
	Performance Evaluation
	Energy Consumption
	Fault Coverage Evaluation

	Conclusions

	Instruction Vulnerability Factor
	Introduction
	IVF and IVF-Based ILCOFT
	IVF Estimation
	Instruction Duplication
	IVF-Based Selective Instruction Duplication

	Experimental Evaluation
	Experimental Setup
	IVF Calculation
	Performance Evaluation
	Fault Coverage
	IVF-SID Compared to ILCOFT-Enabled EDDI

	Conclusions

	Instruction Precomputation and Memoization for Fault Detection
	Introduction
	System Organization
	Instruction Precomputation
	Instruction Memoization
	Table Structure
	Duplication with Precomputation or Memoization
	Precomputation Combined with Memoization

	Experimental Results
	Simulation Platform
	Fault Coverage
	Performance

	Conclusions

	A Low-Cost Cache Coherence Verification Method for Snooping Systems
	Introduction
	Related Work
	Cache Coherence Verification
	General Design Decisions
	Protocol-Specific Implementation

	Fault Coverage
	Analytical Fault Coverage Evaluation
	Experimental Fault Coverage Evaluation

	Conclusions

	Conclusions
	Summary
	Contributions
	Possible Future Directions

	Bibliography
	List of Publications
	Samenvatting
	Curriculum Vitae

