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Abstract

Distributed concurrency bugs (DC bugs) are bugs that are triggered by a specific
order of events in distributed systems. Traditional model checkers systematically or
randomly test interleavings but suffer from the state-space explosion in long execu-
tions. This thesis presents DiscoTest, a testing tool for DC bugs in blockchain con-
sensus algorithms. The tool guides the search for schedules that trigger DC bugs by
an evolutionary algorithm (EA). We apply the tool to Ripple’s consensus algorithm
(RCA) and design and evaluate two representations and fitness functions.

We evaluate the representations on locality, redundancy, and scaling, by using
graph edit distance (GED) to calculate the distance between schedules. We find that
delay scheduling and priority scheduling are representations that allow variation oper-
ators of an EA to modify schedules. To evaluate the performance of the representations
and fitness functions, we create a custom bug benchmark for RCA. An empirical com-
parison on the benchmark shows that delay scheduling with time fitness results in a
significantly higher success rate than random search on one bug. Finally, we discover
an in-production liveness bug in RCA.
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Chapter 1

Introduction

The 2007 financial crisis proved to be the kick-start for many innovative ideas. One of these
ideas was Bitcoin. Satoshi Nakamoto invented this cryptocurrency in 2007, and version 0.1
launched on January 9, 2008. Although Satoshi’s real identity is unknown and has since
disappeared from the podium, his intentions were clear: create a currency outside central
banks’ control. Cryptocurrencies have since become mainstream. On July 6, 2022, Bitcoin
had a market capitalization of $384 billion, and all cryptocurrencies combined $909 billion.
El Salvador has even declared Bitcoin a legal currency1. This rising adoption, however, is
not without risk.

In February 2022, the Financial Stability Board published a paper assessing the risk to
the financial stability of crypto-assets, stating: ”Crypto-assets markets are fast evolving and
could reach a point where they represent a threat to global financial stability due to their
scale, structural vulnerabilities and increasing interconnectedness with the traditional finan-
cial system” [10]. These findings emphasize the need for reliable and robust technology.

Blockchain is the driving technology behind Bitcoin and most other cryptocurrencies
that followed. Blockchain is celebrated for its immutability and decentralization. The tech-
nology removes the need for a central trusted authority to execute and monitor transactions.
A blockchain is a form of a distributed ledger where details on transactions and accounts are
stored in blocks that are chained mathematically. Once a block is completed, the transac-
tions contained in that block are final and immutable. Before completing a block, the nodes
participating in the network must agree on the transactions contained in that block. They
achieve agreement through a consensus algorithm.

Consensus algorithms, and distributed systems in general, must function correctly in the
presence of concurrent asynchronous message exchanges, faults, and malicious nodes. In
the execution of a consensus algorithm, the participating nodes execute at arbitrary speeds
and only synchronize and communicate through exchanging asynchronous messages. This
causes the interleaving of internal computations and message exchanges at different nodes
to be non-deterministic. The order in which messages are delivered is called a schedule. Re-
ordering message deliveries can result in a different interleaving and execution of the con-
sensus algorithm. Different executions can bring the system through different state changes,

1https://www.nytimes.com/2021/09/07/world/americas/el-salvador-bitcoin.html
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1. INTRODUCTION

Algorithm 1: Pseudocode of the fictitious consensus algorithm
Data: value, n=0, decided=false, votes = [(value=1)]

1 Loop
2 broadcast(Proposal(value, n))
3 while decided == false do
4 if v has majority(votes) then
5 broadcast(Commit(v, n))
6 decided = true
7 store(v)
8 end
9 end

10 n++
11 decided = false
12 end
13

14 onRecv(Proposal(v, round)):
15 if round == n then
16 votes[v]++
17 end
18

19 onRecv(Commit(v, round)):
20 decided = true
21 if round == n & v has majority(votes) then
22 store (v)
23 end

which might result in bugs. Bugs caused by a specific non-deterministic order of distributed
events are called distributed concurrency bugs (DC bugs) [34].

Algorithm 1 shows pseudocode of a fictitious consensus algorithm containing a DC bug.
Nodes in the system start with an initial value. After every round, all nodes should decide
on the same value or move to the next round. At the start of a round, nodes broadcast a
proposal with their desired value to all other nodes. On receipt of a proposal, a node adds
one to the votes for the value carried in the proposal. Once a node sees a majority vote
(> 1/2 the number of nodes in the system) for a value, it stores this value and broadcasts
a commit message containing this value. On receipt of a commit message, a node makes a
decision. If the commit’s value has a majority vote, it stores this value. Else it moves on to
the next round.

Figure 1.1 shows two executions of a round of the consensus algorithm for three nodes.
p1 and p2 have value 1 (blue), while p3 has value 0 (yellow). Figure 1.1a shows a correct
execution, where all nodes decide on value 1 after the round. Figure 1.1b shows an execution
where p1 and p2 decide on value 1, and p3 decides to move on to the next round. p3 does
not see a majority vote before p2’s commit arrives, forcing p3 to decide to move to the next
round. The subsequent proposal from p1 is ignored, because p3 has already moved on to
2



(a) Correct execution of the consensus algo-
rithm

(b) Execution of the consensus algorithm
triggering a DC bug

Figure 1.1: Two executions of consensus algorithm 1

the next round.
Finding bugs before deployment is critical, especially for blockchain applications. The

blocks in a blockchain are immutable, so they cannot be changed after they are created. For
example, the XRP Ledger is missing its first 32570 blocks due to a bug that corrupted the
headers of these blocks2. Software testing is a way to discover bugs before deployment and
improve the reliability of these implementations.

In this thesis, we test Ripple’s consensus algorithm (RCA) for DC bugs. RCA is the
consensus algorithm driving the XRP Ledger. Its native cryptocurrency XRP has a market
capitalization of $16 billion on July 6, 2022, and is the blockchain system with the largest
market capitalization that uses a voting-based consensus algorithm. Consequently, bugs
might pose a significant financial risk.

Testing for DC bugs poses a significant challenge: the number of possible schedules
is exponential in the number of messages. Therefore, it is impossible to manually test all
schedules in sufficiently long executions. Stateless model checkers are testing tools that
automatically test schedules by systematically or randomly executing different schedules.
However, these methods suffer from state-space explosion; the number of schedules is ex-
ponential in the execution length. [22, 31, 33, 34, 56]

This thesis aims to extend existing research in distributed concurrency testing (DCT)
by employing search-based software testing (SBST) techniques. In particular, we use an
evolutionary algorithm (EA) to guide the search for schedules to ones that trigger DC bugs.
To this end, we (1) design encodings for schedules that allow an EA to change schedules in
a meaningful and direct way, and (2) design fitness functions that guide the EA to schedules
that expose DC bugs.

2https://beincrypto.com/xrps-genesis-block-still-has-no-record/
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1. INTRODUCTION

1.1 Research Questions

The main research question investigated in this thesis is:

RQ1 How effective is an EA for testing blockchain consensus algorithms for DC bugs?

Essential to the effectiveness of EAs are their problem representation, and fitness function
[28]. Our main research questions can be divided in two sub-questions:

RQ2 How can schedules be represented for modification by EAs?

RQ3 What fitness functions provide meaningful guidance to an EA for DCT compared to
random DCT?

To answer these research questions, we design and implement DiscoTest, a DIS-
tributed COncurrency TESTing tool for RCA. The tool reorders message delivery, guided
by an EA. To answer RQ2, we design two problem representations:

1. Delay scheduling: Apply delays to messages to produce new schedules.

2. Priority: Assign priorities to messages and deliver them in order of priority.

We compare their effectiveness on the properties: locality, redundancy, and scaling [52, 53].
To answer RQ3, we build a custom DC bug benchmark for RCA. This bug benchmark

contains manually injected bugs and a previously unknown bug discovered by DiscoTest in
the production RCA software Rippled. We compare the success rate at finding bugs and
the time to finding bugs in this benchmark of DiscoTest with different fitness functions to
random search. We evaluate two fitness functions:

1. Time fitness: The time taken to complete a test case.

2. Proposal fitness: The highest sequence number found in a proposal during a test case.

We use random search as a baseline because fitness functions that provide no meaningful
guidance have equal or worse performance than random search. Random search is often
used in the literature [3, 30] to compare novel algorithms and has even been shown to out-
perform more advanced algorithms in automated program repair [50] and hyper parameter
optimization [9].

The experiment shows that delay scheduling outperforms priority scheduling in success
rate on the bug benchmark. Furthermore, delay scheduling with time fitness has a better
success rate than random search on one bug in the benchmark.

The research contributions of this thesis are:

• Bringing together elements of distributed systems testing and SBST by applying EAs
to DCT.

• The design of a novel effective evolutionary testing algorithm for voting-based
blockchain consensus algorithms and voting-based consensus algorithms in general.

4



1.1. Research Questions

• The design of a bug benchmark for RCA, allowing future research to compare testing
methods and algorithms.

• The application of graph edit distance for comparing trace graphs.

This thesis is organized as follows. In Chapter 2, we present some background informa-
tion and previous work on the topics of this research. In Chapter 3, we describe DiscoTest
in detail. In Chapter 4, we evaluate the problem representations and fitness functions and
attempt to answer the research questions formulated above. Finally, Chapter 5 highlights
the contributions of this thesis, draws conclusions, and suggests future work.

5





Chapter 2

Background

This chapter presents some background information and related work on the different topics
of this thesis. In Section 2.1, we first describe the properties of correct consensus algorithms.
Next, we address several consensus algorithms used in blockchains and distributed systems
and how they differ. In Section 2.2, we introduce Ripple and its consensus algorithm, and in
Section 2.3, we investigate how asynchronous concurrency in distributed systems can cause
bugs and how to detect these. Finally, in Section 2.4, we introduce search-based software
testing, EAs, and related work in SBST.

2.1 Consensus Algorithms in Blockchains

In a decentralized blockchain system, nodes in a network work together to achieve a com-
mon goal. This goal is to immutably store data in a decentralized database. They achieve
this by maintaining and adding to the blockchain. The data contained in the blocks is ap-
plication specific and usually abstracted away from the mechanism for adding blocks. The
most common data types in blockchains are monetary transactions and payment accounts.
In a blockchain system, no single arbiter determines what block to add to the chain next.
Instead, multiple distributed nodes need to reach agreement on what block to add next. This
agreement is reached through a consensus mechanism. According to Cachin et al. [12], a
correct consensus mechanism has the following properties:

1. Termination Every node eventually decides some value.

2. Validity If a node decides a value, then that value was proposed by some node.

3. Integrity No node decides twice.

4. Agreement No two nodes decide differently.

The properties fall into two broader categories: safety and liveness. Informally, safety
properties state that something bad must not happen. Liveness properties state that some-
thing good must eventually happen. Validity, integrity, and agreement are safety properties,

7



2. BACKGROUND

and termination is a liveness property. We use these properties in Section 3.4 to test the
correctness of executions of RCA.

Most blockchain systems are permissionless: Anyone can join and participate in the
network. Consequently, nodes with malicious intent are also able to join the network. Con-
sensus mechanisms for permissioned blockchains need to be resistant to a certain degree
to malicious nodes, also known as byzantine fault-tolerant (BFT). Theoretically, there is an
upper bound on the number of malicious (byzantine) nodes in a network for a consensus
mechanism to function correctly: n = 3 f + 1, where f is the number of byzantine nodes
and n the total number of nodes in the network [32].

There are several types of consensus mechanisms. We distinguish between proof-based
algorithms and voting-based algorithms. Proof of work (PoW) [45] and Proof of stake
(PoS) [35] are proof-based algorithms and require the participants in the network to prove
that they have expended a certain amount of work or that they have put up a certain stake
in order to have the right to add to the blockchain. Voting-based consensus algorithms
work by counting votes of other nodes on their preferred next block. This thesis focuses on
voting-based consensus algorithms.

Practical byzantine fault tolerance (pBFT) [13] is the first practical BFT voting-based
consensus algorithm. Nodes in the network communicate and vote to achieve consensus
through messages. This algorithm is resistant to the theoretical upper bound of byzantine
nodes: n = 3 f +1. The drawback of pBFT is that the number of messages scales quadrat-
ically with the number of nodes in the system. Tendermint [11] reduces this message com-
plexity by changing the termination criterion and only having one mode of operation.

Tendermint is a permissioned (or consortium) blockchain. Permissioned blockchains
differ from permissionless blockchains because not everyone is free to join the network.
Instead, nodes already in the network determine who can join the network. Between per-
missioned blockchains, there is a large variation in accessibility and mechanisms for par-
ticipating in consensus. The consensus mechanisms of these blockchains still need to be
BFT, but they benefit from the typically smaller network size. This allows for more efficient
consensus mechanisms and faster transaction throughput. Other consortium blockchains
include Hyperledger [38], Corda [29], Quorum [58] and Stellar [41].

2.2 Ripple’s Consensus Algorithm

We apply DiscoTest to Ripple’s consensus algorithm. RCA [14] is the algorithm driving the
XRP Ledger. RCA is a permissioned voting-based consensus algorithm. Each node deter-
mines individually what other nodes it trusts. This list of nodes is called the unique node
list (UNL). The UNL solves the quadratic message complexity of pBFT by not requiring
all nodes in the network to communicate directly. Essentially, network-wide consensus is
achieved by overlapping UNLs.

2.2.1 RCA Overview

RCA consists of three separate components: deliberation, validation, and preferred branch.
In deliberation, the nodes try to reach agreement on the set of transactions to apply in the

8



2.2. Ripple’s Consensus Algorithm

next block (ledger). The nodes then individually construct the next ledger by applying
the agreed-upon transaction set on the previous ledger. In validation, nodes try to reach
agreement on the constructed ledger. Preferred branch is the mechanism used to determine
the preferred working branch of ledger history. One round of deliberation consists of three
phases. The open phase, the establish phase, and the accept phase. After a successful
deliberation round, a new ledger is put up for validation, after which it is added to the chain.
Periodic TimerEntry trigger phase transitions in deliberation, see TimerEntry in Figure 2.1.

Figure 2.1: Ripple Consensus Algorithm. Credit: XRP Ledger Developers

Open phase

In the open phase, the nodes collect transactions to include in the next ledger. After some
time, the nodes proceed to the establish phase at a TimerEntry call. The time spent in
the open phase is a trade-off between latency and throughput of transactions. A longer
open phase results in higher transaction throughput but also higher latency because it takes
longer for a round to complete (and the transactions to validate) and vice versa. Transactions
received during subsequent phases are stored for consideration in the next round’s open
phase.

Establish phase

In the establish phase, the nodes attempt to reach consensus on the set of transactions to
be included in the next ledger. The nodes repeatedly send the set of transactions (proposal)
that they believe should be in the next ledger to their UNL. As proposals arrive at a node,
the node creates a list of disputed transactions. Disputed transactions are transactions that
are not supported by a majority of the nodes in the UNL. These include transactions in
a received proposal but not in their own proposal or transactions in their own proposal
but not in the received proposal. When a node sees a disputed transaction, it removes it
from its proposal. After a node updates its proposal, it sends this to the nodes in its UNL.
Transactions become disputed with an increasing threshold through an avalanche protocol.
At the start of the establish phase, transactions become disputed when less than 50% of a
node’s UNL proposals contain it. This threshold increases to 65%, 70%, and finally 95%

9
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2. BACKGROUND

as the duration of the establish phase compared to the previous round’s duration increases.
This improves the liveness of the protocol by preventing the network from not achieving a
quorum for the transaction set. A node declares consensus on the transaction set when the
following conditions are true:

1. 1950 milliseconds have elapsed in the establish phase; this to ensure that slower nodes
have had time to send proposals.

2. At least 75% of the prior round proposers have proposed, or this establish phase is
1950 milliseconds longer than the last round’s establish phase

3. 80% of this node and its UNL share the same position

After they reach consensus on the transaction set, the nodes enter the accept phase.

Accept phase

In the accept phase, the nodes with the agreed-upon transaction set work on creating the
next ledger. They then send the constructed ledger to the nodes of their UNL in the form of
validation messages.

Validation

When a node finishes constructing the ledger, it sends the new ledger’s hash in a validation
message and starts working on the next deliberation round. Concurrently, to the subsequent
deliberation round, a node collects validations from its UNL until it has received the same
validated ledger hash from ≥80% of the nodes in its UNL. The new ledger is then fully
validated, and transactions applied in that ledger are final and irreversible.

Preferred branch

Validation of the new ledger might not succeed by either a quorum validating a different
ledger, or by failing to reach consensus on the validated ledger altogether. A node starts
working with the newly constructed ledger in the next deliberation round before it is vali-
dated. The node must switch its working ledger and restart the consensus process if vali-
dation is unsuccessful. Preferred branch is the mechanism used to determine the preferred
working branch of ledger history.

2.2.2 UNL

The network risks forking by allowing XRP Ledger nodes to choose their own UNL. RCA’s
original design [54] states that to prevent forks, the minimum UNL overlap between any
two nodes u and v, with UNLu and UNLv, must be 20%.

|UNLu∩UNLv| ≥
1
5

max{|UNLu|, |UNLv|}∀u,v (2.1)

10
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Armknecht et al. [8], however, prove that a fork can occur with a UNL overlap of 40%

|UNLu∩UNLv|>
2
5

max{|UNLu|, |UNLv|}∀u,v (2.2)

Chase and MacBrough [14] further constrain this condition to 40% of the average of the
two UNLs

|UNLu∩UNLv|>
2
5

avg{|UNLu|, |UNLv|}∀u,v (2.3)

During the work on this thesis, we have tested RCA under various UNL configurations. Our
observations confirm the bound of 2.3.

For a UNL of n nodes, RCA guarantees correctness for f ≤ (n−1)/5 byzantine nodes
[14].

2.3 Distributed Concurrency Testing

We test RCA for distributed concurrency bugs. This section covers the theoretical basis for
distributed concurrency testing. We first present the theoretical model of a distributed sys-
tem. Next, we define DC bugs, and finally, we introduce related work in testing distributed
systems for DC bugs.

2.3.1 Distributed Systems Model

The theoretical model of a distributed system consists of a fixed number of nodes that main-
tain their own state and only communicate through asynchronous message passing. Let
Nodes be the nodes in the system, and Msgs be the messages in the system. An event in the
system is defined by the triple: ⟨recv,send,msg⟩, where recv,send ∈Nodes and msg∈Msgs.
For an event e, recv(e) is the receiver node, send(e) is the sender node and msg(e) is the
message. Σ is the set of events.

A state of the system is a map s : Nodes→ 2Σ from nodes to enabled events. A transition
consists of picking a node n and an event e= ⟨ , ,msg⟩ ∈ s(n) and executing msg. Executing
an enabled event e = ⟨n,ni,msg⟩ can result in new enabled events ei = ⟨ni,n,msg⟩. The new
state s′ is obtained by removing e from s and adding ei to s for each i enabled by executing
e: s n:e−→ s′. Each ei causally depends on e

An execution is a sequence of state transitions that bring the system from an initial state
to a finishing state:

s0
n0:e0−−→ s1

n1:e1−−→ ...
nn:en−−→ sn+1

The sequence ⟨n0 : e0⟩,⟨n1 : e1⟩, ...,⟨nn : en⟩ is called a schedule. A schedule induces a
partial order on events. This order is defined by the dependence relation D ⊆ Σ×Σ. For
two events ei and e j, (ei,e j) ∈ D iff:

Either (i) ∃k : i≤ k < j, such that recv(i) = recv(k) and e j is transitively

causally dependent on ek

Or (ii) recv(i) = recv( j)

(2.4)

11



2. BACKGROUND

Intuitively case (i) captures the situation where executing an event transitively enables
another event. Case (ii) captures events that might be enabled simultaneously but are exe-
cuted in the same process and therefore dependent, e.g., the execution of one event changes
how the other event is handled and vice versa. Events that are not dependent are indepen-
dent: I, where D∪ I = Σ×Σ and D∩ I = /0.

Changing the order of independent events in a schedule results in a valid and equivalent
execution of the system. This equivalence class of schedules is called a trace.

2.3.2 Distributed Concurrency Bugs

Concurrency bugs are some of the most challenging bugs to discover. These bugs occur due
to specific interleavings of events in concurrent systems. The problem is that the manifes-
tation of these bugs is non-deterministic, sometimes requiring an exact sequence of events.
Local concurrency (LC) bugs manifest in single machine multi-threaded software and have
been the subject of research for many years. Distributed concurrency (DC) bugs [34] are
concurrency bugs that occur in a distributed system and cannot be tackled by traditional LC
testing methods. DC bugs manifest under specific interleavings of distributed events. This
thesis focuses on finding DC bugs. In particular, we focus on bugs that are triggered by
message-message or message-computation reordering.

2.3.3 Testing Distributed Systems for Concurrency Bugs

A common way of testing distributed systems for DC bugs is searching the space of possible
schedules. Previous work has mostly focused on systematic or randomized search. Stateless
model checking systematically explores the space of schedules and comes with the guaran-
tee that, if given enough time, all possible schedules will be executed. A challenge of model
checking and distributed systems testing in general is state-space explosion: The number of
schedules scales exponentially with the length of the execution. Therefore, model checkers
employ state-space reduction techniques. MoDist [62] and dBug [56] are stateless model
checkers that reduce the state space through dynamic partial order reduction (DPOR) [24].
DPOR reduces the state space from all schedules to all traces by tracking dependencies
between events. FlyMC [37] is a white-box model checker that bounds the state space by
utilizing communication and state symmetry. This symmetry occurs in systems that have
multiple nodes with identical roles. The algorithm abstracts from exact node identifiers and
considers only the role of the node in the execution, thereby reducing the state-space.

In addition to reordering messages, many of these testing tools inject failures, crashes,
or network partitions into their executions [22, 33, 37, 62]. The algorithm described in this
thesis is limited to reordering messages.

Despite the advances in state-space reduction techniques, model checkers still rarely
finish testing all possible schedules for large systems in reasonable time. In recent years,
random testing has been shown to be an effective method, mainly due to its theoretical
guarantees of success: for each schedule, there is a minimal probability of that schedule
being picked by the search. Randomized methods prioritize sampling traces over schedules
to effectively get to executions that exercise DC bugs. Ozkan et al. [47] use a notion of bug
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depth and d-hitting families of schedules in their random testing algorithm. Morpheus [63]
is a randomized testing algorithm that leverages partial order sampling (POS) and conflict
analysis. Ozkan et al. [31] later combine the probabilistic guarantees and space reduction
techniques from model checking in a trace-aware random testing algorithm. Cezara Drăgoi
et al. [22] develop a randomized testing algorithm that uses the communication closure
property of distributed systems to reduce the state space for testing consensus protocols.

Instead of enumerating or randomly searching a bounded space of schedules, it is also
possible to intelligently search the space of schedules. Mukherjee et al. [44] use a reinforce-
ment learning technique: Q-learning, to guide the exploration of schedules. They model the
scheduler as an agent and the program state as the environment. At each point, the agent
chooses the next event to execute, after which it observes the environment. The agent learns
from previous event execution and uses that in subsequent event choices. The environment
is not the complete program state but an abstraction of that state. The algorithm is reliant
on a proper state abstraction to perform optimally.

In this thesis, we focus on intelligently searching schedules in consensus protocols for
blockchain systems using techniques from search-based software testing, particularly evo-
lutionary algorithms.

2.4 Search-Based Software Testing

The use of EAs in software testing is thoroughly researched in SBST. This section covers
background information on SBST and the use of EAs in SBST.

2.4.1 Software Testing as an Optimization Problem

Software testing is essential for creating robust and correct software. Writing unit and
integration tests for an extensive software system is resource-intensive, and the effectiveness
of those tests is subject to the programmer’s expertise. Search-based software testing is an
area of software testing where tests for a program are created (partly) automatically. The
first paper on search-based software testing was published in 1976 by Web and Spooner
[43] and describes a method for automatic test-data generation. From the 1990s onwards,
an increasing body of research has been published [42].

SBST treats testing as an optimization problem. It takes a metric as goal and attempts
to improve that metric by searching an input space. The input space is traversed by creating
test cases that execute functionality in the program. This space is often too large to traverse
exhaustively. Therefore, SBST employs intelligent search to create meaningful test cases.

A fundamental trade-off in search algorithms is between exploration and exploitation.
When the fitness landscape of an optimization problem consists of many local optima, ex-
ploration prevents a search algorithm from converging to a local optimum by guiding the
algorithm to new areas in the search space. Exploitation, on the other hand, is the mecha-
nism for converging to strictly better solutions.

The simplest form of search is random search. As the name suggests, it continually
tries random input in an attempt to find a global optimum. Other more intelligent search
strategies are hill-climbing and simulated annealing. Hill-climbing is an iterative algorithm
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that attempts new inputs close to the previous input and moves in the direction of the input
that improves the score. This is an example of an algorithm that utilizes exploitation but
no exploration. Simulated annealing utilizes both. Like hill-climbing, simulated annealing
evaluates inputs close to the previous input. However, instead of deterministically moving
in the direction that improves the solution, there is a probability of choosing a different
direction. This probability, also called temperature, reduces as the search time progresses.
The result is an algorithm with a higher exploration factor at the beginning of the search
and a higher exploitation factor at the end.

2.4.2 Evolutionary Algorithms

EAs are meta-heuristic global search strategies inspired by natural selection in biological
evolution. The principle is continually selecting and recombining the best solutions to a
search problem to reach the global optimum.

An EA consists of several building blocks: a population, fitness function, selection,
variation, and representation. The population of an EA is a set of inputs (individuals) to
the optimization problem, preferably spread across the search space. A fitness function
evaluates the individuals in the population, and the better individuals are selected through
a selection mechanism. The variation operators: crossover and mutation, alter these better
individuals to produce the next generation’s population. This process repeats until the EA
finds a good enough solution or depletes the search budget.

Figure 2.2: Evolutionary Algorithm

Population

Choosing the right population size for a specific optimization problem is complex. A higher
population size results in better search space exploration but also expends more resources
on each generation, as all individuals in the population have to be evaluated.

Fitness function

At every generation, a fitness function evaluates all individuals in the population. This
fitness function awards a score to an individual based on the quality of the solution to the
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optimization problem. Although some problems have straightforward fitness functions, this
is not the case for all applications.

Selection

The selection mechanism of an EA determines the individuals from the population used
for reproduction and variation. Selecting only the best individuals of a population might
converge the EA to a local optimum. Instead, selection mechanisms like proportionate
selection and tournament selection select individuals with a probability proportionate to the
individual’s fitness.

Variation

The individuals selected from the population by a selection mechanism are used to create
the next generation’s population. These individuals are made up of genes. These are the
building blocks that determine the quality of a solution. One-point crossover, as shown
in Figure 2.3, is a crossover operator that takes two individuals (parents), splits them at a
cut-point, and combines the two halves from different parents to create two new individu-
als (offspring). Mutation takes a parent and, with a small probability, changes each gene
slightly.

Figure 2.3: Crossover

Representation

Problem representation allows variation operators to combine two or more parents into new
individuals. There are two types of representation: direct representation and indirect rep-
resentation. Direct representation encodes solutions to the problem in its most “natural”
problem space and designs search operators to operate on this search space. Indirect rep-
resentation encodes solutions in a standard data structure (genotype), such as strings or
vectors, and allows for using standard off-the-shelf variation operators on these genotypes
[53]. The genotype can not be evaluated directly by a fitness function with indirect repre-
sentation. The genotype needs to be mapped to the phenotype space to be evaluated by the
fitness function. The proper choice of this genotype-phenotype mapping is essential for the
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performance of an EA. In the context of DCT, the phenotype is a schedule, and the genotype
encodes that schedule.

An indirect representation has three properties that determine its effectiveness: local-
ity, redundancy, and scaling. The locality of a representation defines how well neighboring
genotypes correspond to neighboring phenotypes. An effective representation has high lo-
cality. This allows the variation operators of an EA to effectively guide the phenotype to
higher fitness values by operating on the genotype. A representation is redundant if the
number of genotypes is higher than the number of phenotypes. On average, more than
one genotype maps to the same phenotype. Redundant representations are not necessar-
ily ineffective. Synonymously redundant representations map neighboring genotypes to
the same phenotype, whereas non-synonymously redundant representations map genotypes
spread over the genotype space to the same phenotype. In the latter case, the search quickly
degrades to random search, whereas in the former case, the search time is increased de-
pending on the rate of redundancy. The scaling of a representation signifies the difference
in the importance of individual genes. For example, if the phenotype is an integer and the
genotype is its binary representation, each more significant bit in the genotype will have an
exponentially larger influence on the integer/phenotype. This causes the genes to be solved
sequentially instead of in parallel and increases the search time.

2.4.3 Related Work in Search-Based Software Testing

Early research in SBST focuses on single-target strategy. Tonella [59] describes a unit test
case generation method for classes, where a single target, e.g., a branch, is chosen, and the
distance to hitting that branch is taken as a metric. This metric is commonly referred to as
branch distance. Single-target approaches are limited by, e.g., targeting an infeasible branch
or spending too much of the search budget on difficult branches. Later research improves
on this by employing multi-target strategies. Fraser and Arcuri [25] evolve whole test suites
instead of single test cases to target all branches simultaneously. Arcuri [5] creates a novel
algorithm MIO tailored explicitly for the properties of test suite generation. Panichella et
al. [48] introduce DynaMOSA: A many-objective sorting algorithm with dynamic target
selection. Test cases are scored on their distance to hitting multiple targets simultaneously,
essentially viewing them as points in multi-dimensional space. They also leverage the struc-
tural dependencies of targets to prioritize target selection better.

The previous works generate tests software written in Java, a statically typed language,
but SBST is applicable to many types of programming languages. Lukasczyk et al. [36]
introduce Pynguin, an automated unit test generation framework for Python, which is a dy-
namically typed language. Recent research [21, 46] focuses on automatically generating test
cases for Solidity: a programming language for implementing smart contracts in Ethereum.

Other work is on system-level tests instead of unit tests. EvoMaster [6] is a tool for
generating system-level test cases targeting RESTful web services.

This thesis differs from the related work mentioned before in several aspects. Most
of the mentioned research is on structural coverage-based testing, whereas this work is on
distributed concurrency testing. We are not optimizing for branch coverage. Instead, we

16



2.4. Search-Based Software Testing

optimize for executions that trigger DC bugs. We search the space of schedules, not the
space of possible inputs to a program.
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Chapter 3

DiscoTest

This chapter presents DiscoTest: the testing tool that implements search-based distributed
concurrency testing for RCA. DiscoTest consists of three main interacting components: the
scheduler, the EA, and the test harness. The scheduler is the component responsible for
delivering messages in a particular order to create a new schedule and execution. The EA
guides the search for these new schedules. The test harness continually runs a test case that
submits transactions and waits for these transactions to be validated.

When the EA wants to evaluate a schedule, it provides the scheduler with a new ’indi-
vidual’ that instructs the scheduler when and in what order to deliver messages. The EA
then instructs the test harness to run a new test case and waits for the test case to complete
with this schedule. Based on the execution of the test case, a fitness function assigns a score
to the ’individual’, and the process repeats.

In Section 3.1, we give an overview of the overall architecture of the tool. In Section
3.2, we elaborate on the problem representation, which allows the tool to modify schedules.
Then, Section 3.3 presents the EA used in the tool. In Section 3.4, we define a test case
in DiscoTest. Next, in Section 3.5, we present several fitness functions and how they are
evaluated. Finally, in Section 3.6, we highlight the technical contributions that DiscoTest
makes and how to modify the tool to test other consensus algorithms.

3.1 Architecture

Before describing the tool’s inner workings, it is important to understand the system’s ar-
chitecture. Ideally, the tool controls the entire system under test. This allows the tool to set
the initial state of the nodes, monitor all internal events that occur at the individual nodes,
and control precisely in what order messages are received. This, however, is difficult to
implement and requires a considerable engineering effort. Furthermore, this reduces the
applicability of DiscoTest to other consensus algorithms.

In DiscoTest’s architecture, nodes are loosely coupled to the tool and are treated as a
grey box. The architecture is pictured in Figure 3.1. Nodes connect to each other through
DiscoTest. Key pairs of all nodes are known to the hub and are used to present itself to the
nodes as other nodes. For each node, a connection is made with all other nodes. Security
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Figure 3.1: Architecture of DiscoTest

checks in the Rippled software that guarantee the identity of other nodes are disabled to
allow the tool to impersonate nodes. As a result, all communication travels through Dis-
coTest, allowing it to monitor and alter messages and their delivery order. The state of the
nodes is monitored through existing client functionality in the Rippled software.

The following section explains how DiscoTest mutates message delivery to create new
schedules.

3.2 Problem Representation

The algorithm’s goal is to uncover DC bugs by searching over the space of possible sched-
ules. The algorithm has to be capable of changing schedules in a meaningful and direct
way. Creating schedules before their execution runs the risk of creating infeasible sched-
ules, e.g., an event might be scheduled at a moment when it is not enabled. Furthermore,
due to the lack of control of the nodes’ initial states, it is impossible to force the execution
of a predetermined schedule. In practice, this means that the messages sent by the nodes
in the network form an initial schedule. This schedule can be changed by reordering the
delivery of messages. A challenge is that this initial schedule is non-deterministic and not
known before executing the schedule. At this time, the algorithm will need to be acting to
change the schedule. Therefore, any changes to schedules need to be made online.

An EA requires a problem representation that enables variation operators to create new
individuals. As introduced in Section 2.4, there are two types of representation: direct and
indirect. Direct representation for schedules entails representing schedules in their most
natural problem space and designing variation operators to work directly on that space. In
the context of DCT, schedules induce partial orders on events that are represented by traces.
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Figure 3.2: Problem representation

Changing independent events in a schedule results in the same trace, whereas changing
traces ensures that the new schedule will result in a different execution. As mentioned
in the previous paragraph, creating schedules before their execution can result in infeasible
schedules. Therefore, this type of representation is impractical without increasing control of
the system. Indirect representation allows us to encode the constraints that define a feasible
schedule and use standardized variation operators. Therefore, we need to design an effective
genotype-phenotype mapping or representation.

DiscoTest employs two representations: priority-based scheduling and delay-based
scheduling. Both representations map the triple: ⟨sender node, receiver node, message
type⟩ to values. These triples closely resemble events as defined in Section 2.3.1. However,
only the message type is mapped instead of the exact message contents. For the remainder
of this chapter, we refer to these triples as events. Figure 3.2 shows how the resulting event
mapping forms a vector of values. A vector genotype allows standard variation operators to
create new individuals. The genotype-phenotype mapping consists of executing a test case
(see 3.4) with the event map genotype, resulting in an executed schedule or phenotype. The
two representations described below are evaluated and empirically compared in Chapter 4.
Table 3.1 shows the message types included in the mapping. These message types influence
the execution of RCA.
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Table 3.1: Message types mapped by the genotype

Message Type Description
ProposeSet0 A ProposeSet message contains the transaction set that the send-

ing node believes should be in the next ledger. It carries a se-
quence number proposeSeq, which monotonically increases with
each subsequent proposal a node sends in one consensus round.
We differentiate between proposeSeq 0-5. Any ProposeSet mes-
sage with a higher proposeSeq will map to ProposeSet0.

ProposeSet1 ProposeSeq = 1

ProposeSet2 ProposeSeq = 2

ProposeSet3 ProposeSeq = 3

ProposeSet4 ProposeSeq = 4

ProposeSet5 ProposeSeq = 5

ProposeSetBowOut When a node switches to a different prior ledger while partici-
pating in a consensus round, it sends a special bowout proposal,
indicating to other nodes that it is no longer actively participating
in this consensus round.

StatusChange A node sends a StatusChange message either when it closes an
open ledger or accepts a new consensus ledger.

Validation A Validation message contains the ledger hash, and ledger se-
quence that a node believes should be validated.

Transaction A Transaction message contains a transaction submitted to the
network.

HaveTransactionSet A HaveTransactionSet message indicates to other nodes that the
sender node has acquired a particular transaction set.

GetLedger A GetLedger message fetches transactions and ledgers from other
nodes.

LedgerData A LedgerData message sends transactions and ledgers to other
nodes.
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(a) Event mapping to priorities

(b) Execution and inbox of the scheduler

Figure 3.3: An example execution of priority scheduling in a network with two nodes:
p1 and p2, and two message types: StatusChange (SC) and Proposal (PR)

Priority Scheduling

Priority scheduling maps events to priorities. The scheduler collects events sent by the
nodes in an inbox and executes these events at a variable rate r. Each time the scheduler
wants to execute an event, the event with the highest priority is picked from the inbox and
executed. The inbox is implemented as a priority queue, sorted in descending order on the
priority of the events. The genotype is a permutation of the sequence (1,2, ...,n), where n
is the number of events, essentially ranking the events.

Figure 3.3 shows an example execution of priority scheduling in a simplified execution
of a network with two nodes and two message types. The event mapping is shown in
Figure 3.3a, and the execution is shown in Figure 3.3b. The vertical lines in 3.3b depict
the moments in time when a new event is picked from the inbox and executed. The events
shown in the inbox are sorted on priority, where the highest in the column has the highest
priority and is executed next. This example changes the initial schedule

sinit = ⟨p2 : PR⟩,⟨p1 : PR⟩,⟨p2 : SC⟩,⟨p1 : SC⟩,

to

snew = ⟨p1 : PR⟩,⟨p2 : SC⟩,⟨p1 : SC⟩,⟨p2 : PR⟩.

The variable rate at which the scheduler executes events is based on two objectives: (1)
to have as many enabled events in the inbox as possible; and (2) to not delay events by too
much. The first objective is to give the scheduler as many reordering options as possible.
The second objective is not to delay events for too long, which will cause the receiver to
ignore the message. The rate r is the number of events executed per second. The base rate
is equal to half the number of events rbase = 1/2 ∗ num events. Each time the scheduler
executes an event, the rate is updated based on the inbox size.
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(a) Event mapping to delays

(b) Execution of the delay scheduler

Figure 3.4: An example execution of delay scheduling in a network with two nodes:
p1 and p2, and two message types: StatusChange (SC) and Proposal (PR)

ri+1 =


min(ri ∗ s,num events), if size(inbox) > target ∗ overflow.
max(ri/s,num events/6), if size(inbox) < target ∗ underflow.
ri, otherwise

(3.1)

Where s is the sensitivity ratio, target is the target size of the inbox, overflow is the percent-
age over the target inbox size, and underflow is the percentage under the target inbox size.
The rate is clamped by num events/6≤ r ≤ num events.

Delay Scheduling

Delay scheduling maps events to a time delay in milliseconds. Applying different delays to
different events will also reorder them and does not require collecting messages in an inbox.
The genotype is a vector of integers representing the time delay in milliseconds applied to
each event. Figure 3.4 shows the same example execution as in Figure 3.3, but instead with
delay scheduling.

3.2.1 The Scheduler

The two types of representations require two different schedulers. Pseudocode of the pri-
ority scheduler is shown in Algorithm 2, and the one of the delay scheduler is shown in
Algorithm 3. The priority scheduler continually listens to messages from nodes in onRecv.
When a message is received, it looks up the priority in the event mapping and stores the
message and its priority in the inbox. Concurrently in priorityScheduler, the loop exe-
cutes every 1/rate seconds. First the message with the highest priority is removed from the
inbox and executed, then the rate is adjusted based on the formula in equation 3.1

The delay scheduler does not have an inbox and rate. Instead, in delayScheduler,
it continually listens to messages from nodes (onRecv). When a message is received, it
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looks up the delay in the event mapping and schedules the execution with schedule. This
function waits for delay milliseconds before executing the message.

Algorithm 2: Pseudocode of the priority scheduler
Data: eventMapping, inbox, rate
/* A message is received from one of the nodes */

1 onRecv(Message(from, to, type)):
/* Get priority from eventMapping */

2 priority← eventMapping(from, to, type)
3 inbox.push(Message, priority) /* Put in inbox based on priority */

4

5 Function priorityScheduler():
6 Loop at rate
7 message← inbox.pop() /* Highest priority event from inbox */
8 execute(message) /* execute event/send message to node */
9 rate← adjustRate() /* Adjust rate based on inbox size */

10 end

Algorithm 3: Pseudocode of the delay scheduler
Data: eventMapping

1 Function delayScheduler():
/* A message is received from one of the nodes */

2 onRecv(Message(from, to, type)):
/* Get delay from eventMapping */

3 delay← eventMapping(from, to, type)
4 schedule(Message, delay)
5 end
6

7 Function schedule(Message, delay):
8 after(delay): /* Wait for delay ms */
9 execute(Message) /* execute event/send message to node */

10 end
11

3.2.2 Distance Metrics for Genotypic and Phenotypic Space

To evaluate the representations mentioned above, we use the three properties: locality, re-
dundancy, and scaling (2.4). Locality is defined as

dm = ∑
dg

x,y=dg
min

|dp
x,y−dp

min|
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Where dp
x,y is the phenotypic distance between phenotypes xp and yp, dg

x,y is the genotypic
distance between the corresponding genotypes, and dp

min, respectively dg
min is the mini-

mum distance between two neighboring phenotypes, respectively genotypes [52]. Lower
dm means higher locality and vice versa.

To calculate dm, we require distance metrics for genotypic and phenotypic space. A
genotype in delay scheduling is a vector of integers and can be viewed as an n-dimensional
vector in Euclidean space. The distance between two vectors u and v in Euclidean space is
defined by

d(u,v) =
√

(u1− v1)2 +(u2− v2)2 + ...+(un− vn)2

This distance metric can directly be applied to delay genotypes.
A genotype in priority scheduling is also a vector of integers, but we treat it as a permu-

tation. Therefore, Euclidean distance is not a suitable distance metric. Kendall tau distance
[16] measures the distance between two permutations based on the minimum number of
swaps required to transform one permutation into the other.

d(p1, p2) =
n−1

∑
i=1

n

∑
j=i+1

{
0, if ∃x∃y, p1(i) = p2(x)∧ p1( j) = p2(y)∧ x < y.
1, otherwise.

A distance metric for phenotypic space is more convoluted. A naive distance metric
for schedules is to use the edit distance on the sequence of events in the schedule. This,
however, disregards the dependence relation as defined in equation 2.4. The distance should
not be measured between schedules but between traces. A trace can be represented as a
graph. The vertices represent events, and edges represent dependence between two events.
Schedules from the same trace will have identical trace graphs.

Graph edit distance (GED) is a distance metric between two graphs. GED is the mini-
mum cost of edit operations to transform one graph into the other.

GED(g1,g2) = min
(e1,e2,...en)∈P (g1,g2)

k

∑
i=1

c(ei)

Where P (g1,g2) is the set of edit operations that transform g1 into g2 and c is a context-
dependent cost function that maps edit operations to a cost. The possible edit operations
are the insertion, deletion, and substitution of vertices and edges. Trace graphs are directed
acyclic graphs (DAGs) with labeled vertices and unlabeled edges. Every edit operation has
a cost of 1.

A standard method for calculating the exact GED builds on the A* algorithm [2]. GED
is known to be an NP-hard problem [64]. The computational complexity is exponential in
the number of vertices in the graph. A trace for one consensus round of RCA with five nodes
frequently exceeds 100 events, and a test case takes several consensus rounds. This results
in a graph with hundreds of vertices and twice as many edges. Therefore, calculating the
exact GED is considered infeasible. Fortunately, many approximation methods exist. An
approximation method that runs in quadratic time and underestimates the GED is Hausdorff
edit distance (HED) [23]. HED compares each vertex from one graph with each vertex from
the other, calculating the edit cost of transforming that vertex and its edges into the other.
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It then sums the optimal match (lowest cost) for every vertex, resulting in a distance less
than or equal to the exact GED. This method enables us to estimate the distance between
phenotypes.

In Chapter 4.1, we use these metrics to reason about the effectiveness of both represen-
tations.

3.3 Evolutionary Algorithm

DiscoTest uses a (µ+λ) evolutionary algorithm [61]. The algorithm (shown in Algorithm
4) starts with a population of λ individuals. The best µ individuals are selected as parents to
breed λ offspring. From the µ parents and λ offspring, the best µ individuals are selected as
parents for the next generation. This process repeats until the search budget is expended or
a bug is found. The evaluation of one schedule takes roughly 20 seconds, so the values for
µ and λ are chosen to be rather small. µ = 4 and λ = 4. Small values for µ and λ are widely
recommended in the literature for expensive fitness functions [1, 15].

Algorithm 4: Pseudocode of the (µ+λ) EA

1 Function EA(µ, λ):
2 parents, offspring← init(µ, λ)
3 while t < search budget do
4 evaluate(offspring)
5 parents← selection(parents + offspring)
6 offspring← recombination(parents)
7 end
8

9 Function init(µ, λ):
10 initial population← sampleGenotypes(λ)
11 evaluate(initial population)
12 parents← selection(initial population, µ)
13 offspring← recombination(parents, λ)
14 return parents, offspring
15

16 Function recombination(parents, λ):
17 offspring← crossover(parents, λ)
18 for individual ∈ offspring do
19 mutation(individual)
20 end
21 return offspring
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3.3.1 Variation Operators

The representation of the problem and variation operators are intertwined. These operators
operate on the genotype to create new individuals. The genotype is a vector of values, for
which many variation operators are known. Since this research focuses on the representation
of schedules and fitness functions, we leave extensive experiments on variation operators
and their parameters to future work.

The recombination function in Algorithm 4 shows how and when the variation oper-
ators act on the parents to create new offspring.

Crossover Operators

The crossover operator recombines two individuals to create new individuals. In Algorithm
4, the function crossover denotes when crossover is applied in the EA.

DiscoTest uses simulated binary crossover (SBX) [18, 19] for delay scheduling. This
crossover operator simulates one-point crossover in binary encoded genotypes for real-
valued genotypes. Two children c1 and c2 are created from two parents p1 and p2 as follows:

c1,k = 0.5[p1,k + p2,k−βk(p1,k− p2,k)]

c2,k = 0.5[p1,k + p2,k−βk(p1,k− p2,k)]

Where c1,k is the kth gene in c1 and p1,k, p2,k is the kth gene in p1 and p2 respectively. βk is
a random number generated from probability density function

p(β) =

{
0.5(ηc +1)βηc , if 0≤ β≤ 1
0.5(ηc +1) 1

βηc+2 , if β > 1

ηc is a user-chosen distribution index. Common values for ηc are between 2 and 5, where
smaller ηc results in child genes further from the parent’s genes and vice versa. DiscoTest
uses ηc = 3. The individual genes are recombined with probability 0.5, otherwise the par-
ent’s genes are copied to the children.

DiscoTest uses partially mapped crossover (PMX) [4, 26] for priority scheduling. In
PMX, two parents are combined by sampling two random cutting points q1 and q2. Child
c1 inherits the genes between q1 and q2 from parent p1, and the genes < q1 and > q2 from
parent p2. PMX is a permutation crossover of the sequence 1...n, so any doubly mapped
genes from outside the cutting points are swapped with the genes at the same index in p2.
Figure 3.5 shows an example where two parents p1 = [1,4,3,2] and p2 = [2,1,3,4] are
recombined with cutting points q1 = 1 and q2 = 3.

Mutation Operators

The mutation operator changes individuals slightly to improve exploration. In Algorithm
4, the mutation function denotes when mutation is applied to an individual. DiscoTest
uses Gaussian mutation [20] for the mutation operator on delay genotypes. A gene xi is
mutated by adding a sample from a Gaussian distribution N (µ,σ2), where µ = xi and σ =
(bi−ai)/100, ai ≤ xi ≤ bi [20]. The mutation probability is set to 1

n , so that, on average, one

28



3.4. Test Cases and XRP Ledger Transactions

Figure 3.5: PMX example

gene gets mutated per genotype per generation. This probability is most commonly used in
the literature [20].

DiscoTest uses swap mutation for the mutation operator on priority genotypes. With a
probability of 1

n , the priorities of two genes in the genotype are swapped. On average, every
individual in the population undergoes one swap mutation.

3.4 Test Cases and XRP Ledger Transactions

A schedule needs to be executed by RCA to determine the fitness of that schedule. There-
fore, it is important to define when a schedule starts and ends, i.e., what constitutes a sin-
gle test case. In DiscoTest, a test case consists of submitting transactions to the network
and waiting for these transactions to be validated. After every test case, DiscoTest checks
whether the execution adhered to the consensus properties as defined in Section 2.1. Specif-
ically for RCA, the consensus properties can be violated as follows:

• Termination Every node eventually decides some value.

In order to prove the violation of this liveness property, we need to show that there
is an infinite scheduling of RCA where nodes never decide on the next validated
ledger. In practice, this is extremely difficult without manually analyzing the execu-
tion. Therefore, we test for bounded liveness using parameters of RCA to determine
a reasonable upper bound on the duration between two validated ledgers. We base
this bound on the following parameters:

1. ledgerIDLE INTERVAL = 15 seconds. The maximum duration a ledger may
remain idle before closing

2. ledgerMAX CONSENSUS = 10 seconds. The maximum duration to spend paus-
ing for laggards
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3. proposeFRESHNESS = 20 seconds. How long a proposal is considered fresh

4. validationFRESHNESS = 20 seconds. How long a validation is considered fresh

We get an upper bound of 65 seconds between two validated ledgers by summing
these parameters. Under normal circumstances, RCA validates a ledger every four or
five seconds, which is significantly faster than our upper bound.

• Validity If a node decides a value, then that value was proposed by some node.

Violation of this safety property happens in three ways:

1. A node declares consensus on a transaction set containing a transaction that was
never proposed by any node in that consensus round

2. A node sends a validation message for a ledger that was not constructed by any
node

3. During ledger switching, a node switches to a ledger chain that is not supported
by any node

• Integrity No node decides twice.

Violation of this safety property happens in two ways:

1. In one consensus round, a node declares consensus on the transaction set twice.

2. A node sends a validation message for a ledger with a sequence number for
which it has already sent a validation.

• Agreement No two nodes decide differently.

Violation of this safety property happens in two ways:

1. Two nodes declare consensus on two different transaction sets.

2. Two nodes validate two different ledgers.

XRP Ledger Transactions

Each transaction submitted during a test case is a payment transaction1 and is defined by
tx = {n, t,a,b,amount}, where:

n: The node to submit the transaction to

t: The time (ms) after test case start to submit the transaction at

a: The XRP Ledger sender account

b: The XRP Ledger receiver account

amount: The amount in XRP

1https://xrpl.org/payment.html
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All payment transactions must pay a fee to be submitted to the network. There can be
many different results from submitting a transaction2, and the result of a transaction is only
final when included in a validated ledger. When submitting a transaction to a node, this
node gives a preliminary result code based on its knowledge of the latest validated ledger.
If the result code is tesSUCCESS, the node will attempt to disseminate this transaction to
other nodes in the network and propose it in a consensus round. This transaction may still
fail and may or may not end up in a validated ledger. Whether a transaction will end up in
a validated ledger depends on whether the transaction fee is destroyed. A failed transaction
(a result code with tec prefix) can also end up in a validated ledger.

Transactions in the XRP Ledger carry a sequence number. This sequence number is
tied to the sender account and must be exactly one more than the sequence number found in
that account’s previous outgoing transaction. This mechanism is designed to avoid double
spending. In order to increase the probability of finding schedules that violate the correct-
ness properties of RCA, DiscoTest can submit transactions that attempt to double spend.
For example, if an account a owns 80 XRP, two transactions tx1 = {1,1s,a,b,80} and
tx2 = {2,1s,a,c,80} can be submitted to the network. Exactly one of tx1 and tx2 can be
successfully added in a subsequent validated ledger. Since these transactions are submit-
ted at the same time to two different nodes 1 and 2, the nodes will likely initially propose
conflicting transactions. This requires the nodes to agree on which transaction to add to
a ledger. tx1 and tx2 can either carry the same sequence number, or subsequent sequence
numbers. For the former, if tx1 is validated, tx2 should be rejected and vice versa. For the
latter, both tx1 and tx2 should be added to a validated ledger; only tx2 should be added with
a failed, tecUNFUNDED PAYMENT result code because the account has insufficient balance to
execute both transactions.

Test Case

The execution of a test case with schedule s is denoted by TC(s). TC has a set of submitted
transactions

Txsub = {tx1, tx2, ..., txn},

a set of fully validated transactions

Txval ⊆ Txsub,

and a set of failed and cancelled transactions

Tx f c ⊆ Txsub,

where Txval ∪ Tx f c = Txsub and Txval ∩ Tx f c = /0. A test case TC defines rules over the
transactions contained in Txsub, Tx f c and Txval , that determine whether TC has passed or
failed. For example, if Txsub contains two transactions that attempt to double spend, only 0
or 1 of the transactions contained in Txsub are allowed in Txval for TC to have passed.

Algorithm 5 shows pseudocode of the test harness responsible for executing a test case.
It takes as input a test case, defining starting balances, transactions to submit, and rules over

2https://xrpl.org/finality-of-results.html
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Algorithm 5: Pseudocode of the test harness in DiscoTest
Data: starting balances, Txsub, Txval , Tx f c, rules

1 Function execute():
2 setupBalances(starting balances)
3 for tx ∈ Txsub do
4 submit(tx)
5 end

/* result contains all data on the execution of TC */
6 result← inProgress
7 while result = inProgress do
8 Txval , Tx f c← pollLedger()
9 result← checkRules(rules, Txsub, Txval , Tx f c)

10 end
11 return result

the results of the submitted transactions. Before starting the test case, the test harness sets
up the initial balances of the accounts in the function setupBalances by utilizing client
functionality of Rippled. First, it checks the current balances of the account. Second, it
sends payment transactions to the network to achieve the required starting balances. Finally,
it waits for these transactions to be validated.

After the balances are set up, the test case starts by scheduling the submission of the
transactions. After every validated ledger, function pollLedger checks what transactions
(if any) are included in that ledger. Subsequently, function checkRules checks whether
the rules of the test case are satisfied. After every test case, the consensus properties are
checked. If there is a violation of the consensus properties, DiscoTest stores information
on the test case. This information includes: the violated consensus property, the logs of the
Rippled nodes, the execution, the trace graph, and the delay/proposal genotype.

3.5 Fitness Function

DiscoTest employs a form of guidance for creating schedules that are more likely to expose
a bug. A fitness function provides this guidance by assigning a score to a schedule and
awarding a better score to schedules closer to finding a bug.

Determining the proximity to finding a bug is difficult. Bugs come in many variations,
each having different characteristics and symptoms. The defining characteristic of DC bugs
is the cause: a specific interleaving of events, not the result. Therefore, it is impossible to
directly encode proximity to a DC bug in a fitness function.

As mentioned earlier in Section 2.3.3, Mukherjee et al. [44] also guide their search
of schedules. Their Q-learning algorithm favors schedules more likely to result in unseen
program states. In other words, they guide the algorithm to schedules that result in program
states that differ from the states reached by many common schedules. This same principle
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can be applied to RCA by designing fitness functions that reward schedules resulting in
rarer and more complex executions.

Given the space of schedules S, a fitness function

f : S→ R,

maps every schedule s ∈ S to a real number. This real number depends on the result of a test
case TC execution.

Time fitness

Time taken to complete the test case is a straightforward fitness function. Intuitively, as the
nodes take longer to validate the submitted transactions, the schedule could have resulted
in a more complex execution. In addition, this fitness function directly rewards schedules
closer to violating RCA’s termination property.

ft(s) = TC(s)time

Proposal fitness

Proposal fitness utilizes the sequence number carried in proposal messages. As nodes have
more difficulty reaching agreement on the transaction set, they send more proposal mes-
sages in a single consensus round. Each subsequent proposal message from a node carries
a higher sequence number. A fitness function that rewards schedules with higher maximum
proposal sequences can guide the algorithm towards schedules that result in more complex
establish phases and deliberation rounds.

A bowout proposal contains a sequence number of 4294967295 (The highest unsigned
32 bit number), which would by definition reward a TC(s) with e = ⟨ , ,prop.bowout⟩ ∈ s,
the highest possible fitness value. This is undesirable, but we do want to use this informa-
tion in the fitness function. Bowout proposals indicate a node switched ledgers during
consensus, which does not happen frequently in common executions. Therefore, we add
the number of bowout proposals in the schedule to the fitness function. To preserve the rel-
ative influence of both parts of the fitness function, we scale the highest proposal sequence
number by the number of nodes n in the network. The function below excludes bowout
proposals from prop and denotes these as bowout.

fp(s) = n∗ max
e=⟨ , ,prop⟩∈s

prop.seq+#{e | e = ⟨ , ,bowout⟩ ∈ s}

3.5.1 Fitness Evaluation

This section entails a description on how the individual components of DiscoTest combine
to evaluate the fitness of schedules.

Algorithm 6 contains high level pseudocode of DiscoTest. The inputs are a test case
TC and a fitness function f. First, the Rippled nodes are started in function initNetwork.
The nodes run in individual docker containers. Then, the accounts used in the test case are
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created. Next, the EA (see Algorithm 4) and scheduler (see algorithms 2 and 3) are started
with the desired representation. The EA calls function evaluate whenever the individuals
in the offspring need to be evaluated. For each individual in the offspring, the resulting
event mapping is sent to the scheduler. Next, test case TC is executed (see Algorithm 5),
and the consensus properties are checked. If there is a violation of the consensus proper-
ties, DiscoTest stores information on the test case. This information includes the violated
consensus property, the logs of the Rippled nodes, the execution, the trace graph, and the
delay/proposal genotype. Finally, the fitness function calculates the individual’s fitness over
the test case results.

Algorithm 6: High level pseudocode of DiscoTest
Data: TC: Test Case, f: fitness function

1 initNetwork() /* Start rippled containers and make connections */
2 setupAccounts() /* Create ripple accounts necessary for TC */
3 EA(µ, λ) /* See Algorithm 4 */
4 scheduler() /* Priority scheduler (2), or delay scheduler (3) */
5 Function evaluate(individuals): /* See Algorithm 4 */
6 for individual ∈ individuals do

/* Send the new eventMapping to the scheduler */
7 sendScheduler(eventMapping(individual))
8 TC(s)← TC.execute() /* See Algorithm 5 */
9 checkConsensusProperties()

/* f uses TC(s) to calculate f (s) */
10 individual.fitness← f (s)
11 end
12 return individuals

3.6 Technical Contribution

DiscoTest, at its core, is a test bed for voting-based consensus algorithms. We apply it to
RCA (1) for evaluation purposes and (2) because, to our knowledge, this is the first applica-
tion of DCT to a voting-based blockchain consensus implementation. However, DiscoTest
is generalizable to other voting-based consensus algorithms. The loose coupling allows for
different systems to connect through DiscoTest. The tool design allows for domain-specific
fitness functions, data, and test cases.

The following components of DiscoTest potentially need to be modified to test another
consensus algorithm.

• Docker: On startup, DiscoTest starts each Rippled node in a separate Docker con-
tainer and subsequently connects to these containers. The environment in which the
nodes of a different consensus algorithm run is unimportant. What matters is that Dis-
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coTest can connect to the nodes individually and that the nodes cannot communicate
with each other without going through DiscoTest.

• Peer Protocol: Rippled implements a custom handshake and peer protocol. During
the handshake, nodes connect using TLS and use the low-level session signature to
guarantee each other’s identity, thereby preventing a man-in-the-middle attack. The
peer protocol describes a custom message format that extends and translates to Pro-
tocol Buffer messages. How another consensus implementation makes connections
and communicates will likely be different.

• Serialization: Rippled uses custom serialization logic for the contents of Transaction,
LedgerData and Validation messages on top of Protocol Buffers. Deserializing
these messages is not essential for the functioning of DiscoTest, although it eases
debugging.

• Client: DiscoTest tracks node states through client functionality offered by Rippled
nodes. Rippled receives client commands over WebSocket and JSON-RPC. Dis-
coTest relies heavily on the subscription client feature3, which is a push-based system
for notifying clients of internal events. These events include new validated ledgers
and (un)validated transactions.

• Consensus Properties: The consensus properties as defined in Section 3.4 are only
applicable to RCA. The implementation of the consensus properties depends on the
context of the application.

• Test Harness: A test case is defined in a text file, which is parsed by the test harness.
Other blockchain consensus algorithms will need to modify the test harness slightly
to handle custom transactions and their results.

DiscoTest uses the genevo package4 for the building blocks of the EA. Most notably, we
use their implementation of PMX and swap mutation. Fitness functions are easy to define.
A new fitness function needs to implement the function run harness, which is responsible
for starting the test case. In this way, fitness functions can record the state before and after
the test case.

We encourage others to modify DiscoTest and apply it to other voting-based consensus
algorithms!

3https://xrpl.org/subscribe.html
4https://docs.rs/genevo/latest/genevo/
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Chapter 4

Evaluation and Results

In this chapter, we attempt to answer the research questions stated in Section 1.1. We
investigate RQ2 by evaluating the two problem representations on locality, redundancy,
and scaling. We investigate RQ3 by empirically evaluating DiscoTest with different fitness
functions on a custom bug benchmark.

All experiments in this chapter are performed with a network of 5 nodes, running Rip-
pled version 1.7.21. The maximum delay in delay scheduling is 4000 ms. This delay allows
the network to reliably make forward progress while providing the scheduler with a large
enough window to reorder events. The following test case is used in all experiments:

TC = {T xsub, |T xval|= 0∨1∧|T x f c|= 3∨4},

where T xsub = {tx1, tx2, tx3, tx4}, with

tx1 = {1,2000,1,2,80}
tx2 = {2,2000,1,3,80}
tx3 = {3,2000,1,3,80}
tx4 = {4,2000,1,2,80}.

There are three accounts (excluding the genesis account), where account 1 has a starting
balance of 80 XRP and attempts to spend its balance four times (twice to account 2 and twice
to account 3). Transactions 1 through 4 are submitted to nodes 1 through 4, respectively.
They are submitted simultaneously 2000 ms after the start of the test case.

In Section 4.1, we evaluate the two representations: priority and delay scheduling. In
Section 4.2, we detail the bug benchmark and the setup of the fitness function experiment.
In Section 4.2.1, we present the results of the fitness function experiment. Section 4.3
discusses the threats to the validity of the experiment. Finally, Section 4.4 describes an
in-production liveness bug found in RCA by DiscoTest.

1https://github.com/ripple/rippled/releases/tag/1.7.2
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4.1 Representation

In this section, we investigate RQ2: How can schedules be represented for modification by
EAs? We evaluate delay scheduling and priority scheduling on three properties: locality,
redundancy, and scaling.

4.1.1 Locality

The locality of a representation describes how well neighboring genotypes correspond to
neighboring phenotypes. Locality is defined as:

dm = ∑
dg

x,y=dg
min

|dp
x,y−dp

min|

In Section 3.2.2, we defined Euclidean distance for the delay genotype:

dg−del
x,y =

√
(xg

1− yg
1)

2 +(xg
2− yg

2)
2 + ...+(xg

n− yg
n)2

Kendall tau distance for the priority genotype:

dg−prio
x,y =

n−1

∑
i=1

n

∑
j=i+1

{
0, if ∃x∃y, p1(i) = p2(x)∧ p1( j) = p2(y)∧ x < y.
1, otherwise.

And GED for the phenotype:

dp
x,y = GED(xp,yp) = min

(e1,e2,...en)∈P (xp,yp)

k

∑
i=1

c(ei)

The minimum distance in genotypic space: dg
min for the delay genotype is the minimum

distance in Euclidean space. The delay genotype is a vector of integers. Therefore, the
minimum distance between two delay genotypes is dg−delay

min = 1. The minimum distance
between two priority genotypes is the minimum Kendall tau distance: dg−priority

min = 1. The
minimum distance in phenotypic space is the minimum GED, which is the cost of one edit
operation: dp

min = 1.
The genotypic space is too large to compare every neighboring genotype of every geno-

type. A genotype for a schedule with five nodes and 13 message types has 5 * 4 * 13 = 260
genes. Each genotype has 260 neighbors. Instead, we sample genotypes along the geno-
typic space. To reliably sample the space, we sample ten genotypes, each with a distance
of 1/4 of the maximum distance to all others. For each genotype, we compare ten random
neighbors. We perform this experiment for both representations.
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The produced schedules vary in length, so we normalize the calculated distance by:

dpn
x,y = dp

x,y/dpmax
x,y ,

where

dpmax
x,y = max(|Nx|, |Ny|)+ |Ex|+ |Ey|

The estimated locality for delay scheduling is: dpn
x,y = 0.2003 with standard deviation (0.0292),

and for priority scheduling is dpn
x,y = 0.1961 (0.0204). The resulting locality scores are rel-

atively high. The high locality is attributable to the non-deterministic initial schedule pro-
duced by the nodes in the network. Two test cases with the same genotype will likely result
in two different executions. Reducing this non-determinism requires increasing control over
the individual nodes’ internal state and execution.

4.1.2 Redundancy

Redundancy measures the amount of redundant information in the encoding. We differenti-
ate synonymously versus non-synonymously redundant representations. Synonymously re-
dundant representation is not necessarily an issue, neighboring genotypes map to the same
phenotype. Non-synonymously redundant representation degrades the search to random
search because neighboring genotypes map to very different phenotypes.

Intuitively, priority scheduling has less redundancy than delay scheduling. Every varia-
tion in priority scheduling will reorder events differently. In delay scheduling, the smallest
variation might increase or decrease the delay applied to one event by 1 ms, which might
not reorder the event. Therefore, we expect delay scheduling to be more synonymously
redundant. Given the non-determinism in the representation, this is hard to evaluate.

The advantage of delay scheduling is that more fine-grained control over the delivery
of messages also allows the scheduler to implicitly reorder message delivery with internal
events in the nodes.

4.1.3 Scaling

Scaling defines the importance of specific genes over others. Uniformly scaled genes will
cause all genes to be solved in parallel. Exponential scaling will cause a sequential solving
of the genes, resulting in an increased time to convergence. In context, certain messages
might be sent more frequently, resulting in over-representation in the schedules. Therefore,
changing the priority/delay for a particular message type might have more influence on the
resulting schedule than for another message type.

Additionally, some message types in a schedule might have a more significant impact
on the fitness function. There are two factors in the scaling of representations: genotype-
phenotype mapping and phenotype-fitness mapping. We focus on genotype-phenotype scal-
ing because the fitness landscape of the phenotype is unknown.

Genes that map more frequent message types are more salient than others. To estimate
the scaling of the representations, we measure the frequency of message types in a produced
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Table 4.1: Message type frequency

Message Type Priority Delay
ProposeSet 0.213 (0.040) 0.116 (0.025)

StatusChange 0.078 (0.014) 0.046 (0.010)

Validation 0.124 (0.024) 0.075 (0.017)

Transaction 0.044 (0.001) 0.021 (0.006)

HaveTransactionSet 0.050 (0.001) 0.025 (0.008)

GetLedger 0.259 (0.053) 0.380 (0.049)

LedgerData 0.232 (0.049) 0.337 (0.051)

schedule. To estimate this frequency, we produce 500 schedules by running 500 test cases
for both representations with random genotypes. For each schedule, we calculate the rela-
tive frequency of the message types. We then calculate the mean and standard deviation of
these relative frequencies. Table 4.1 shows the results.

There is a large discrepancy in the frequency of message types between different mes-
sage types and the two representations. We first examine the results for delay scheduling.
The GetLedger and LedgerData messages combined constitute over 2/3 of all messages
in the schedules. Transaction and HaveTransactionSet combined only constitute 5%
of all messages in the schedules. RCA’s mechanism for communicating transactions can
explain this discrepancy. A Transaction message is only broadcast by a node when a
transaction is first submitted to that node or when that transaction becomes disputed. This
Transaction message is discarded if it is delivered to a node with a conflicting transaction
in its open ledger. When a ProposeSet message containing that transaction is subsequently
delivered, the node will try to re-acquire that transaction through GetLedger messages
broadcast every 250ms until the transaction is acquired. These GetLedger messages create
LedgerData messages as a response from other nodes. Furthermore, the GetLedger and
LedgerData messages serve another purpose besides transaction communication. They
send entire ledgers to nodes that have fallen behind or are on a different preferred branch.

The difference between representations is attributable to the average delay applied to
messages. As mentioned in the previous paragraph, the number of GetLedger and LedgerData
messages in a schedule quickly grows as the delay increases. The average delay for delay
scheduling is (max delay−min delay)/2, because the values are uniformly sampled be-
tween min delay and max delay. The parameters for this experiment are set to min delay=
0 ms and max delay = 4000 ms. Therefore, the average delay is 2000 ms. For priority
scheduling, this average delay is much lower. Messages are delivered at a variable rate of
r. In the case of a congested inbox, the value for r should result in not delaying messages
by too much (< 4000 ms). The rate at which the nodes send messages is not constant and
varies substantially. Therefore, in the case of average inbox congestion, r causes the average
delay to be lower than 2000 ms.

The impact of the discrepancy in message type frequencies on the scaling of the repre-
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sentations is limited. The nodes will largely ignore the additional LedgerData and GetLedger
messages after delivery of the first message containing the data they are seeking.

4.1.4 Discussion

Given the above evaluation of both representations on locality, redundancy, and scaling,
we conclude that both representations are suitable for modification by EAs. Although the
locality scores of the representation are high, this is attributable to the non-determinism
caused by the lack of control over individual nodes. We leave investigations on the degree
of non-determinism and methods to remedy this to future work.

4.2 Fitness Function Experiment

In order to answer RQ3: What fitness functions provide meaningful guidance to an EA
for DCT compared to random DCT?, DiscoTest is evaluated on three versions of RCA
containing bugs: B1, B2, and B3. B1 and B2 are manually injected bugs. B3 is a bug found
by DiscoTest in the production Rippled software (see 4.4). The bugs cause violations of
consensus properties in executions of particular schedules.

B1 Proposal bug: Nodes will not check the monotonicity of the sequence number carried
in proposal messages from other nodes. This allows an older proposal to override a
more recent one, enabling nodes to declare consensus on different transaction sets
more easily, which violates the agreement property (1).

B2 Validation threshold bug: By changing the validation quorum threshold from 80%
to 40%, two nodes can validate two different ledgers, which violates the agreement
property (2).

B3 Liveness bug: When a node receives a proposal containing a transaction it does not
have, it tries to acquire this transaction set. If this transaction is not acquired suc-
cessfully after 5250 ms, subsequent proposals containing this transaction will not
be processed correctly, causing the network to stall, which violates the termination
property.

DiscoTest is evaluated on three versions of the Rippled software, each containing one of
the bugs mentioned above. The base Rippled software version is 1.7.22. The versions with
B1 and B2 are patched for bug B3. We perform the experiments on virtual machines with 2
Intel Xeon vCPU’s @2.6GHz and 4GB memory. We run a network of 5 Rippled nodes in
docker containers, where each node has all other nodes in its UNL.

We compare time fitness and proposal fitness against random search. We evaluate both
representations for each fitness function and random search. Random search samples a
random priority/delay genotype for each test case. Each evaluation has a search budget of
one hour per bug.

2https://github.com/ripple/rippled/releases/tag/1.7.2
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The number of evaluations for each configuration n = 10. This is a low sample size,
but we deem it necessary considering that the run time of one configuration is one hour. the
maximum run time of the experiment is 6 configurations * 3 bugs * 10 evaluations = 180
hours. The experiments cannot be accelerated by more powerful hardware, as the bottleneck
is the consensus round duration of RCA.

We obtain two types of results. (1) The success rate of detecting the bug, and (2) the
time to detect the bug. We measure the time to detect the bug instead of, e.g., the number
of test cases or fitness evaluations, because due to the consensus round duration, time is
mainly independent of the hardware used in the experiments [3]. We use statistical tests
to determine whether there are statistically significant differences between fitness functions
and random search on these measures. Using statistical tests for significance, combined
with effect size measures, is recommended by existing guidelines for empirically evaluating
randomized algorithms [7].

For the success rate, we use Fisher’s exact test [57] to measure the significance and
the odds ratio [27] to measure the effect size. We use these tests because detecting/not-
detecting a bug is a dichotomous outcome. The odds ratio measures the magnitude of the
difference between the two compared configurations. A value of OR = 1 indicates that the
success rates of the two configurations are equal. A value of OR > 1 indicates that the first
configuration has a higher success rate than the second configuration and vice versa.

For the time to bug detection, we use the Wilcoxon rank-sum test [17] to measure the
significance and the Vargha-Delaney statistic (A12) [60] for the effect size. We use Wilcoxon
rank-sum test because it is a non-parametric test, and a Shapiro-Wilk test [55] indicates that
the time data distribution is not normally distributed. The Vargha-Delaney statistic measures
the magnitude of the difference between two distributions. A value of A12 = 0.5 indicates
that the two compared configurations perform equally. A value of A12 < 0.5 indicates that
the first configuration found the bug in less time than the second distribution and vice versa.

All statistical tests and analyses are performed in R [51], with significance level α =
0.05. The hypotheses in this experiment are two-tailed since we do not have a sufficient
theoretical basis for assuming that fitness functions will outperform random search or vice
versa.

4.2.1 Results

This section outlines the results of the experiment. Table 4.2 shows the results of the differ-
ent DiscoTest configurations on the bug benchmark.

Priorityt Priorityp Priorityrand Delayt Delayp Delayrand

B1 3 6 1 10 10 10
B2 0 0 0 8 5 3
B3 0 1 0 6 5 7

Table 4.2: Number of runs out of 10 where DiscoTest discovered the bug with different
fitness functions and random search on the bug benchmark
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Delay Priority

Found 64 11
Not found 26 79

Table 4.3: Contingency table for bugs found in delay scheduling vs. priority scheduling

The data shows that the success rate on the bug benchmark of DiscoTest with delay
scheduling configurations is significantly higher than of DiscoTest with priority scheduling.
To test this hypothesis, we combine the results for delay scheduling with all fitness functions
and random search on all bugs, and priority scheduling with all fitness functions and random
search on all bugs. Table 4.3 shows the contingency table. The hypotheses are:

Hs
0 : The success rate on the bug benchmark of DiscoTest with delay scheduling is the

same as the success rate of DiscoTest with priority scheduling.

Hs
1 : The success rate on the bug benchmark of DiscoTest with delay scheduling differs

from that of DiscoTest with priority scheduling.

The results of Fischer’s exact test [57] are p-value = 3.412e− 16 and odds ratio =
17.313. From this, we can reject the null hypothesis Hs

0 and conclude that delay scheduling
has a different success rate. The odds ratio shows a significantly higher success rate for
delay scheduling at finding bugs in the benchmark. We can conclude that delay scheduling
outperforms priority scheduling in terms of success rate.

To answer RQ3, we restrict the experiment to the better representation: delay schedul-
ing. We run 20 additional delay scheduling evaluations for both fitness functions and ran-
dom search to achieve higher statistical significance. Table 4.4 and Figure 4.1 show the
results.

Bug B1 is found every time for all configurations. Therefore, we compare the success
rate of the fitness functions only on B2 and B3.

We compare time fitness with proposal fitness and random search, and proposal fitness
with time fitness and random search. We create a contingency table similar to Table 4.3
for each comparison and use Fisher’s exact test to calculate the p-values and odds ratios.
The p-values are for the null hypothesis: the odds ratio is equal to 1, and the alternative
hypothesis: the odds ratio is not equal to 1.

Delayt Delayp Delayrand

B1 30 30 30
B2 21 17 10
B3 23 16 20

Table 4.4: Number of runs out of 30 where the bug was discovered by delaying schedul-
ing DiscoTest with different fitness functions and random search on the bug benchmark
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Figure 4.1: Bar charts showing the number of times the bug was found or not

Table 4.5 shows the resulting p-values and odds ratios. On B2, time fitness outperforms
random search with p-value= 0.009 < α and OR = 4.537. All other comparisons do not
give significant results. Interestingly, the fitness functions seem to have a higher success
rate than random search on B2 but have no impact on B3.

Success rate
Random Time Proposal

p-value OR p-value OR p-value OR

B2
Time 0.009* 4.537 - - 0.422 1,767
Proposal 0.119 2.572 0.422 0.566 - -

B3
Time 0.567 1.630 - - 0.103 2.823
Proposal 0.430 0.577 0.103 0.354 - -

Table 4.5: p-values and odds ratios of the success rate. A row contains the comparison
of that row’s configuration to each column’s configuration. * indicates a statistically
significant p-value
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Figure 4.2 shows a box-plot with, for each bug, the time taken to find the bug. This plot
includes unsuccessful runs with the maximum time of 3600 seconds. Figure 4.3 shows the
same box-plot with data for only the successful runs.

Figure 4.2: A box-plot showing the efficiency of different configurations on the bugs

Figure 4.3: A box-plot showing the efficiency of different configurations on the bugs
for only the successful runs

45



4. EVALUATION AND RESULTS

Panichella et al. [48, 49] recommend comparing time to reach the maximum test ef-
fectiveness (bug detection in our case) when there is no significant difference between the
success rate of two configurations. This mainly applies to B1 and B3, but we compare every
bug for completeness. We only use the data from the successful runs as shown in Figure
4.3. Table 4.6 shows the resulting p-values of the Wilcoxon tests, and the A12 statistics.
No tests show any significant difference between the different configuration’s time to bug
detection. Since we are only using the data of successful runs, our sample size for B2 and
B3 is smaller than for the success rate experiment.

Efficiency
Random Time Proposal

p-value A12 p-value A12 p-value A12

B1
Time 0.416 0.562 - - 0.728 0.473
Proposal 0.297 0.579 0.728 0.527 - -

B2
Time 0.486 0.553 - - 0.481 0.569
Proposal 0.670 0.553 0.481 0.431 - -

B3
Time 0.855 0.517 - - 0.400 0.582
Proposal 0.435 0.422 0.400 0.418 - -

Table 4.6: p-values and A12 effect sizes of the efficiency. A row contains the compari-
son of that row’s configuration to each column’s configuration

4.2.2 Discussion

This section discusses the results of the fitness function experiment.
The result of the success rate experiment for the two representations is surprising. Delay

scheduling outperforms priority scheduling. DiscoTest with priority scheduling is unable to
find B2 in any configuration. The difference in average delay can potentially explain this
(see Section 4.1.3). It would be interesting to investigate how decreasing the rate r for
priority scheduling influences the success rate.

We limit the evaluation of fitness functions to delay scheduling to simplify the evalua-
tion, allowing for more data and statistical significance. A notable observation from Table
4.5 is the difference in success rate between bugs in the bug benchmark. It appears that for
B2, DiscoTest with fitness functions outperforms random search (significantly with time
fitness), while for B3, this is not the case. B3 (Section 4.4) is found by applying large de-
lays on GetLedger and LedgerData messages. The combined delay of both message types
should be more than 5250 ms. The number of generations it takes for an EA to find the
required delays largely depends on the initial population. If most individuals in the initial
population have low delays for these message types, it will take more generations for the
EA to increase delays to the required values.

The consensus properties can explain the difference in the success rate between B1
and B2. The consensus property violation for B1 is agreement(1), reaching consensus on
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two different transaction sets. B2 requires violating property agreement(2): validate two
different ledgers. Validating two different ledgers should only be possible when two nodes
apply different transaction sets to their ledgers, essentially making B2 a subset of B1, where
breaking agreement(1) is made even easier due to the inserted bug.

The tests comparing the configurations on time taken to detect the bug yield no statis-
tically significant results. We cannot reject the null hypotheses that the compared configu-
rations take equal time to find the bug. This could be due to the search budget of one hour
combined with the expensive fitness evaluations (≈ 20 seconds). Each run will only allow
for approximately 180 evaluations, which is low, even for a (4 + 4) EA.

The results of the fitness function experiment allow us to answer RQ3: What fitness
functions provide meaningful guidance to an EA for DCT compared to random DCT? Time
fitness significantly outperforms random search on bug B2 and performs no worse than
random search on B1 and B3. Proposal fitness, on the other hand, shows only marginal
improvement in success rate over random search on B2. However, the statistical significance
does not allow us to draw conclusions on proposal fitness.

4.3 Threats to Validity

4.3.1 Internal validity

We cannot guarantee that DiscoTest functions correctly. Bugs may exist in DiscoTest, al-
though we have reduced the probability of bugs through unit testing. Additionally, Dis-
coTest is written in Rust [40], a programming language renowned for its safety.

DiscoTest is a randomized testing algorithm. Both with fitness functions and random
search. There is also non-determinism in the initially created schedule, which means we
can not exactly reproduce the results for the same experiment, even when using the same
random seed. We have repeated the evaluation 10 times for the representation comparison
and 30 times for the fitness function comparison to reduce the effect of randomness.

We conclude that delay scheduling outperforms priority scheduling in terms of success
rate. We have not extensively optimized the parameters of priority scheduling, which may
impact its performance. The parameters for the execution rate are chosen based on manual
observations during development and can likely be improved.

Lastly, the experiments are performed on virtual machines at cloud provider DigitalO-
cean with virtual CPU’s. We have no control over other processes running on the same
machine that could influence the performance of DiscoTest and the Rippled nodes.

4.3.2 External validity

The decision to only evaluate fitness functions with delay scheduling is a trade-off. While
evaluating fewer configurations gives us higher statistical significance, it also decreases the
generalizability of the conclusions. Time fitness improves performance with delay schedul-
ing, but not necessarily with a different representation.
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We do not know if the bugs in the benchmark provide an accurate and broad repre-
sentation of DC bugs in real-world systems. Given that there are only three bugs in the
benchmark, there is a high probability of bias toward a specific type of DC bug.

4.4 Bug in Production

4.4.1 Liveness bug

We discovered an in-production bug during experimentation with DiscoTest using delay
scheduling and time fitness. The bug causes the nodes to get stuck in the establish phase
indefinitely, violating the termination property.

Figure 4.4: Execution triggering the liveness bug

Figure 4.4 shows a simplified version of the buggy execution with two nodes and a
client that triggers the bug. The nodes start in the open phase. A client sends two conflict-
ing transactions tx1 and tx2 that attempt to double spend. tx1 (in blue) is sent to p1 and tx2
(in yellow) is sent to p2. The nodes receive the conflicting transactions from each other but
do not include them in their open ledger as they have already included the other transaction.
The nodes then proceed to the establish phase and send their proposals. On receipt of the
proposals, they discover that they do not have the transaction included in them and are un-
able to create transaction disputes. In turn, they internally create a TransactionAcquire
(TA) object responsible for acquiring the transaction from the network. This TA object
periodically broadcasts GetLedger (GL) messages in an attempt to acquire the missing
transaction. Nodes receiving the GL message that have the referenced transaction will re-
ply with a LedgerData (LD) message containing the transaction. Normally, on receipt of
the LD message, the transaction will be acquired, disputes can be created, and consensus
proceeds as normal.

A TA object lives only for 5250 ms, after which it times out. The problem arises when
the LD message for the transaction arrives after the TA object has timed out. The LD mes-
sage is ignored, and the node cannot acquire the transaction. Subsequent proposals con-
taining the transaction cannot be used to create disputes. The nodes resend their proposals
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every 12 seconds as a way to keep their proposal fresh but cannot make forward progress.
The nodes are stuck indefinitely.

The bug has been reported to Ripple’s development team and is currently under investi-
gation.
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Chapter 5

Conclusions and Future Work

This chapter gives an overview of this thesis’ contributions. After this overview, we draw
some conclusions based on the findings of the performed experiments and evaluations. Fi-
nally, we discuss some ideas for future work.

5.1 Contributions

We divide the contributions of this thesis into research and technical contributions.

5.1.1 Research Contributions

This thesis bridges a gap between the field of SBST and distributed systems testing. To
our knowledge, little research exists on search-based algorithms for testing distributed sys-
tems, specifically consensus algorithms, for DC bugs. In particular, we show that EAs are
effective for DCT of blockchain consensus algorithms.

DiscoTest contains a novel testing algorithm for finding DC bugs. Traditional methods
for DCT require a high level of control over the system under test, allowing these methods
to systematically or randomly test exact schedules. This thesis shows that reducing the level
of control over the system under test can still provide meaningful tests that find bugs while
maintaining generalizability to a wide array of consensus algorithms.

The RCA bug benchmark is a first step in creating a standardized benchmark for com-
paring the performance of new and existing DCT techniques on voting-based blockchain
consensus algorithms.

To our knowledge, this is the first work that tests voting-based blockchain consensus
algorithms for DC bugs.

We evaluate the representations of schedules by calculating the distance between trace
graphs with GED. This method can be used in future research to evaluate new representa-
tions and to investigate the degree of non-determinism in the genotype-phenotype mapping.
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5.1.2 Technical Contributions

DiscoTest, at its core, is a test bed for voting-based consensus algorithms. Its interception
layer can be used to test other distributed systems. Furthermore, it is extensible to other
DCT methods that, e.g., implement network partitions and individual node faults. The
transactions in DiscoTest’s test cases are payment transactions due to the cryptocurrency
application of RCA in the XRP Ledger. The XRP ledger can be viewed more generally as
a distributed ledger or even a distributed database. Transactions in a test case can be altered
to represent transactions in distributed databases. Therefore, DiscoTest’s core functionality
applies to a wide array of distributed databases and consensus algorithms.

5.2 Conclusions

This thesis aims to answer RQ1: How effective is an EA for testing blockchain consensus
algorithms for DC bugs? We answer the main research question through two sub-questions

RQ2 How can schedules be represented for modification by EAs?

RQ3 What fitness functions provide meaningful guidance to an EA for DCT compared to
random DCT?

In Section 4.1, we answered RQ2 by evaluating the representations designed in Chapter
3.2. The results show that, while the designed representations are effective for EAs, the
non-determinism in the genotype-phenotype mapping is a limiting factor. The influence
on locality and redundancy is significant, and future work should focus on designing novel
scheduling methods and representations that reduce this non-determinism while maintaining
DiscoTest’s loose coupling. We answer RQ2 with: Both priority and delay scheduling are
effective representations for modification by EAs.

In Section 4.2, we answered RQ3 by evaluating the fitness functions designed in Chap-
ter 3.5. To this end, we designed a bug benchmark and an experiment to measure the
success rate and efficiency of DiscoTest with proposal fitness and time fitness against ran-
dom search. There are three key findings: (1) delay scheduling has a significantly better
success rate on the bug benchmark than priority scheduling; (2) time fitness has a better
success rate than random search on B2; and (3) there is no difference in efficiency between
different configurations. We answer RQ3 with: Delay scheduling with time fitness provides
meaningful guidance to and EA for DCT compared to random DCT.

Based on our findings for the two sub-research questions, we can answer RQ1: How
effective is an EA for testing blockchain consensus algorithms for DC bugs? An EA with
delay scheduling and the time fitness function provides a significantly higher success rate
than a random search on a bug benchmark. Furthermore, this EA can indeed find a bug in a
production blockchain consensus algorithm.
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5.3 Future work

This section details future work on the different topics of this thesis.
The EA used in DiscoTest is quite simplistic. A (µ+λ) EA is used due to the cost of

one fitness evaluation. The use of multi-objective EAs like SPEA2 [66], MOEA/D [65],
and UHV-GOMEA [39] can prevent optimizing to local optima. To illustrate, with delay
scheduling and time fitness, given enough time, the EA can converge to maximum delays
for all genes. Minimizing total delay as a second objective can prevent this behavior.

The design of DiscoTest allows for experimentation with new fitness functions. During
the work on this thesis, we implemented several other fitness functions but included only
two for simplicity of evaluation. We encourage further work on the design of new general
and application-specific fitness functions.

This thesis covers two representations: delay scheduling and priority scheduling. Fu-
ture work can focus on designing new representations that decrease the non-determinism
in the genotype-phenotype mapping. Additionally, researchers can develop a method for
comparing the degree of non-determinism of representations to improve their evaluation.
Furthermore, fine-tuning the rate parameter of priority scheduling will potentially improve
the performance of priority configurations.

Improving and adding to the bug benchmark will increase the quality of the fitness func-
tion experiment. A relatively simple approach is adding old Rippled DC bugs; however, the
public GitHub repository lacks the documentation to find these bugs. Future work can in-
vestigate the family of schedules that trigger the bugs to improve the quality of the existing
bugs in the benchmark. Knowledge of these schedules can provide insight into the progres-
sion of DiscoTest during a run by calculating the distance to the schedules that trigger the
bug.

DiscoTest, in its current form, tests for DC bugs triggered by message-message reorder-
ing and message-computation reordering [34], limiting the tool’s ability to find bugs to
these triggering conditions. By extending the scheduler’s functionality to include network
partitions and node faults in a schedule, DiscoTest can also target DC bugs triggered by a
particular order of these events and messages. These additional events will require a new
type of representation. The current scheduler implementation does not consider the different
types of network links in a distributed system. It assumes partially synchronous communi-
cation. Future work can restrict the link types to incorporate properties like FIFO and buffer
bounds. The system under test in this thesis is RCA, but DiscoTest is generalizable to other
voting-based consensus algorithms. It would be interesting to see how DiscoTest performs
on other consensus algorithms like leader-based consensus algorithms.
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