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Abstract

Building scalable and consistent cloud applications is notoriously difficult due to the challenges
of state management and execution consistency in distributed environments. Functions-as-a-Service
(FaaS) platforms offer flexible scalability, but weak execution guarantees forces engineers to mix
business logic with infrastructure concerns, adding error-handling code, retry mechanisms and consis-
tency checks throughout their applications. At the same time, dataflow systems like Apache Flink offer
exactly-once semantics, but their functional APIs often conflict with the imperative, object-oriented
style preferred by mainstream developers.

This work aims to address this disconnect, arguing that modern transactional applications, from
e-commerce to payment systems to business workflows, naturally form stateful dataflow graphs. By
allowing developers to write familiar imperative code that executes on dataflow systems with strong
consistency guarantees, we could eliminate the need to handle many infrastructure concerns explicitly.

To this end, we introduce Cascade, a compiler pipeline and intermediate representation that bridges
the gap by translating imperative Python code into stateful, parallelizable dataflow graphs. Cascade
extends prior work by providing a representation that is both expressive and optimizable, and we
demonstrate optimizations including parallel execution via data dependency analysis and dynamic
value prefetching. Our results show significant performance gains with these optimizations, all while
maintaining the strong execution guarantees of the underlying execution target. Finally, we offer
avenues for future research by discussing further optimization possibilities and extensions within our
proposed framework.
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Chapter 1

Introduction
Building scalable and consistent applications in cloud environments remains a significant challenge

for developers. While cloud technologies offer abundant computational resources, effectively utilizing
these capabilities without compromising reliability introduces complexity that often overwhelms the
actual business logic of applications [3]. Function-as-a-Service (FaaS) platforms provide scalable flexi-
bility, but they shift the burden of managing consistency, state, and failure handling to developers.
These problems are exacerbated by cloud providers offering proprietary APIs that lack standardization,
creating vendor lock-in concerns.

A typical cloud application combines FaaS with external object stores or Backends-as-a-Service
(BaaS) [4], but this arrangement lacks the strong execution guarantees needed for many business
applications. Existing solutions such as AWS Lambda [5] or Orleans [6] attempt to address these
challenges but typically offer only at-most-once or at-least-once processing semantics. As a result,
developers are often forced to handle many consistency issues manually. Meanwhile, most developers
continue using familiar web application libraries like Java’s Spring Boot, Python’s Flask, or JavaScript’s
Next.js, which provide minimal support for distributed execution [7].

Addressing these issues are frameworks such as Cloudburst [8], Hilda [9] and Azure Durable
Functions [10], which improve cloud programming abstractions and integrate state management
whilst providing stronger guarantees. At the same time, modern batch and streaming dataflow systems
such as Apache Flink [11], Apache Spark [12], Naiad [13], and Styx [14] often provide exactly-once
processing guarantees built-in. This allows developers to avoid dealing with many of the challenges of
distributed systems, such as message duplication and partial failures, letting them concentrate on their
application’s core logic instead. However, these systems typically rely on functional programming
APIs that can feel awkward and unnatural to many developers accustomed to traditional imperative
coding styles.

At the core of this problem is a straightforward mismatch: developers naturally write imperative,
object-oriented code, but the systems that provide strong consistency guarantees are designed for
functional programming models. These dataflow systems can deliver exactly-once processing guaran-
tees that would eliminate the need for extensive defensive programming, yet they remain inaccessible
to mainstream development practices.

Previous research in dataflow programming and architecture ([15], [16]) has identified effective
foundations for parallel execution of dataflows, but translating from imperative code to the dataflow
model remained largely unexplored since initial work in the 1990s [17], [18], [19]. However, with the
rise of data-parallel processing frameworks and distributed stream processing systems, there has been
renewed interest in research addressing this translation gap in recent years [20], [21], [22].

This work addresses the disconnect between how developers write code and how distributed
systems execute it. We present Cascade, a compiler pipeline and intermediate representation (IR) that
converts imperative, object-oriented code into parallelized dataflow graphs. User code is executed
on stream processing systems, allowing for low-latency, exactly-once data processing. Through data
dependency analysis, our approach transforms sequential code into parallel execution paths that
modern streaming engines can process efficiently. We extend the ideas introduced by StateFlow [22],
using Apache Flink [11] as an execution target and demonstrate performance improvements while
maintaining strong consistency guarantees.
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1.1 Summary of contributions

A summary of our contributions is as follows:

• We extend StateFlow [22] with an updated intermediate representation suitable for further opti-
mization, and an updated approach to compilation of imperative programs into distributed, stateful
streaming dataflows.

• We optimize configuration for Apache Flink as an execution target for low-latency applications,
benchmarking it on the DeathStar Hotel Reservation benchmark [23].

• We describe an algorithm for increasing the parallelism of existing dataflow graphs and evaluate the
result on the DeathStar Movie Review benchmark [23].

• We describe a more dynamic optimization inspired by traditional compiler optimizations by
prefetching certain values, and evaluate this scheme on a novel NavigationService benchmark.

• We outline several optimization possibilities for future research, including optimizations related to
state size management and handling stateless program sections efficiently.

1.2 Thesis outline

The rest of this thesis is organized as follows. We first provide preliminary background knowledge in
Chapter 2. Chapter 3 provides a description for Cascade’s intermeditae representation (IR). Compila-
tion into this representation is described in Chapter 4. Execution of this IR on Apache Flink is described
in Chapter 5, along with initial experiments to benchmark its performance. We describe and evaluate
two optimizations in Chapter 6, including parallelization in Section 6.1 and dynamic prefetching in
Section 6.2. A discussion and comparison to related work is described in Chapter 7, and a conclusion
with avenues for future work is presented in Chapter 8. Source code for this thesis can be found at
https://github.com/delftdata/cascade.

https://github.com/delftdata/cascade
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Chapter 2

Preliminaries
This chapter summarizes background knowledge that may be necessary for understanding the

concepts and terminology used in the rest of this work. We include background on data streaming
systems, namely stream processing in Section 2.1 and event streaming in Section 2.2. Section 2.3 covers
programming languages, in particular their grammar and syntactical structure used in compilation.

2.1 Stream processing

Stream processing systems such as Apache Flink [11] are designed to process and analyze large volumes
of data in motion, typically in real-time or near real-time. These systems are typically distributed and
designed for high-throughput and low-latency workloads [24]. In a dataflow model, computations are
modeled as directed graphs, where operators (nodes) consume and produce data via first-in-first-out
channels (edges). This model naturally supports parallelism and event-driven execution in low-latency
contexts. Flink’s core abstraction, the DataStream API, enables developers to define event-driven
applications using a functional paradigm. As opposed to more traditional, table-based query systems,
queries are modelled as static building blocks that ingest and process input data.

Data Query Response

Figure 1: Data ingestion and queries in stream processing systems.

Flink supports stateful stream processing, where operators can maintain state across partitions and
recover from failures using distributed snapshots. Flink periodically generates checkpoints, a consistent
snapshot of the current state of an application including operator state, stream offsets and watermark
positions. This allows for exactly-once semantics, meaning each incoming event affects the final result
exactly once, even in the case of machine or software failure.

Flink provides high-level transformations such as map, filter, reduce, window and union. Data can
also be transformed by operators called ProcessFunctions, that provide fine-grained control over event
processing, state management and side outputs. Streams can be partitioned with per-key state using a
KeyedProcessFunction. It should be noted that this operation may require a shuffle: a redistribution
of records so that all records with the same key are sent to the same partition. Because shuffling is
resource-intensive, it remains a key focus point when optimizing stream processing systems [25].

Flink uses a number of optimizations to achieve high performance in stream processing. Some
key optimizations include pruning redundant operations from the dataflow graph, addressing data
skew issues, predicate pushdown, partitioning, data redistribution, operator fusion, and many more.
We consider these to be primarily physical optimizations, falling under the responsibilities of the
execution system itself. In contrast, logical optimizations, such as the ones explored in Chapter 6,
relate directly to the user’s program logic. Most stream processing systems, like Flink, are limited in
the logical optimizations they can perform due to their shallow program context [26].
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2.2 Event streaming

Apache Kafka [27] is a distributed event streaming platform built for high-throughput and fault-
tolerant handling of real-time, replayable data streams. One of the fundamental concepts in Kafka is the
topic, which serves as a logical channel through which events are published and consumed. Within each
topic, partitioning allows Kafka to distribute data across multiple brokers, enabling parallel processing
and improving scalability. Kafka uses a decoupled model of producers and consumers, where producers
publish data to topics and consumers read from them independently.

Kafka’s architecture is centered around a distributed commit log, which provides strong ordering
guarantees within each partition. This model supports horizontal scalability across a cluster of broker
nodes. By replicating data across brokers, Kafka ensures fault tolerance and high availability while
maintaining performance in demanding event-streaming environments. Flink and Kafka together
provide end-to-end exactly-once semantics thanks to Kafka’s support for transactions [28].

2.3 Programming languages

Python is a high-level, interpreted programming language. Example syntax is shown in Listing 1. In
order to compile Python source code, Cascade must parse Python syntax by translating source code
into its abstract syntax tree. Additionally, control flow primitives, such as if, while and for statements
can be analyzed using a control flow graph.

1 def buy_item(user: User, item: Item) -> bool:
2   cost = item.price
3   if cost > user.balance:
4     return False
5   else:
6     user.balance -= cost
7     return True

Listing 1: Example of a Python function.

Python uses many object-oriented programming (OOP) principles, allowing for the use of classes
that encapsulate state through attributes and functionality through methods. It also supports OOP
principles such as abstraction, inheritance and polymorphism.

2.3.1 Abstract syntax trees
An abstract syntax tree (AST) is a tree-structured representation of code that captures its meaningful
components while omitting syntactic details like parentheses or whitespace. It’s used by Cascade’s
compiler to parse code into a structured form that’s easier to analyze and transform than raw text.

As an example, even a simple assignment as in cost = item.price from Listing 1-2 contains multiple
elements that need to represented. The assignment contains the left hand side target, cost, and the
right hand side value, item.price. The right hand side is itself another expression: the attribute price
on the value item. The assignment is represented in the Python AST as in Figure 2.
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target

id ctx

value

value

id ctx

id
ctx

Assign

Name

'cost' Store()

Attribute

Name

'item' Load()

'price' Load()

Figure 2: Python AST representation of cost = item.price.

An if statement would typically be represented as a node with three child nodes: a predicate node
(the condition being evaluated), a body node (the code block to execute if the condition is true), and
an optional orelse node. Each of these children contain their own subtrees representing more complex
expressions or nested statements, allowing the entire structure of the program to be captured hierar-
chically. The if statement in Listing 1-3 creates the branching structure in Figure 3.

predicate
body

orelse

left
op

right

If

Compare

Name

item

Gt() Attribute

user.balance

Return

False

AugAssign Return

user.balance -= cost True

Figure 3: AST representation of the if statement in Listing 1-3.

2.3.2 Control flow graphs
A control flow graph (CFG) is a representation of all possible execution paths in a program. It consists of
nodes representing basic blocks of code and edges representing possible flow of control between them,
enabling analysis of program execution, optimization opportunities, and identifying unreachable code.

A basic block is a sequence of consecutive statements with exactly one entry point (the first
instruction) and one exit point (the last instruction). No jumps or other control flow exist within a
basic block, and execution always flows from start to finish without branching. Basic blocks form the
nodes in a CFG, with edges connecting blocks that can execute one after another.

TrueFa
lse

[1, 2]

[3]

[4][6, 7]
Figure 4: Control flow graph of Listing 1.
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2.3.3 SSA & ANF
Static single assignment (SSA) form is an intermediate representation in which each variable is assigned
exactly once. SSA simplifies data flow analysis by making dependencies between variables explicit,
enabling more effective optimization techniques such as constant propagation, dead code elimination,
and register allocation. When control flow merges, 𝜑-functions are introduced to unify variable values
coming from different branches, preserving correctness while maintaining the single-assignment
property.

A-normal form (ANF) is another intermediate representation where all function arguments are
atomic: either a variable or a constant. As a result, complex expressions are broken down into a
sequence of let-bindings. This form is particularly useful in functional language compilers because it
simplifies the control and evaluation order, making transformations like continuation-passing style
(CPS) conversion or code generation more straightforward.

Cascade uses a combination of these concepts, using SSA to simplify data dependency analysis and
ANF to make the evaluation order of remote calls more explicit for later optimization.

2.3.4 Data dependency graphs
Data dependency graphs represent the flow of data between statements in a program. The graph is
composed of nodes (statements) and directed edges that indicate data dependencies, where the output
of one operation serves as input to another. For example, consider the statement from Listing 1-3.

if cost > user.balance:

This statement is dependant on two other lines, notably:

cost = item.price and def buy_item(item: Item, user: User) -> bool:

These two statements must therefore be evaluated before the first. These dependence relations are
represented in a graph as in Figure  5. Cascade uses dependency graphs in order to expose the
true data dependencies between operations and uncovering opportunities for parallelization between
independent statements.

item

user
cost

def buy_item(user: User, item: Item): -> bool

cost = item.price

if cost > user.balance

Figure 5: Dependency graph of Listing 1, lines 1-3.

2.3.5 Intermediate representations
In modern compilers, intermediate representations (IRs) serve as a bridge between high-level program-
ming languages and machine code. This allows user-written source code to pass through various
optimization passes, in addition to allowing an abstraction away from the specific execution system.

Perhaps the most widely used IR is that of LLVM [29], which has allowed unprecedented interop-
erability between programming languages (e.g. C, Rust, Haskell, Go) and execution targets (e.g. x86,
ARM assembly, RISC-V). As a language-agnostic framework, LLVM’s optimization passes have had a
wide impact across countless programs.
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Cascade has similar aims to LLVM in this regard, offering an intermediate representation that
compiles from Python and is subsequently optimizable. An important distinction is that Cascade does
not compile to execution targets; rather, the IR is interpreted by an execution target via a process
described in Chapter 5.

C, C++ Clang

Rust rustc

Haskell GHC

LLVM IR LLVM optimizer LLVM IR LLVM static compiler

x86

ARM

RISC-V

Figure 6: LLVM overview, adapted from [1].
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Chapter 3

Cascade’s Intermediate
Representation

In this chapter, we introduce Cascade: a Python framework that can be used to compile imperative
code into stateful dataflows. Using Cascade, developers can write and define classes as Python objects,
which are then compiled, optimized and executed on a distributed runtime. Cascade’s primary contri-
bution consists of an intermediate representation (IR) that has two primary requirements. The first
requirement is to be flexible enough to allow the programmer to write and execute any reasonable code
within the Cascade framework. Any reasonable code the developer writes should be easily translatable
into the Cascade IR. Secondly, we want this representation to be subsequently simple and expressive
enough to be both easy to analyze and easy to optimize.

In a broad sense, Cascade’s IR consists of operators (Section 3.1), written as user-defined Python
classes, that may access state and can execute blocks of computation. Functions in Cascade are centered
around a directed graph, the dataflow, which contains a set of nodes described in Section 3.2. Dataflows
are written in code as class methods. Events (Section 3.3) propagate along these dataflows, being routed
by the Cascade runtime, and utilizing operators to perform computations in order to progress.

We discuss compilation into this IR in Chapter 4 and discuss its execution in Chapter 5. These two
components can be referred as to Cascade’s frontend and backend respectively in classical compiler
design nomenclature.

3.1 Operators

Operators are the building blocks of Cascade’s IR. In Cascade, a user-defined class (UDC) can be written
as an ordinary Python class. A class becomes an operator when annotated with @cascade. Some of
these classes contain state in the form of class attributes: these correspond to stateful operators, and
their class methods may read or write their own state. Other classes may only define static methods,
using Python’s @staticmethod decorator, and are stateless. An annotated class’s methods are compiled
into dataflows, and are part of the operator.

In summary, each operator (class) contains a collection of associated dataflows (methods). On
stateful operators, these associated dataflows can access operator state. The translation of how UDCs
are transformed into Cascade’s IR is summarized in Table 1. A class diagram of operators is shown in
Appendix A1.
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Imperative Code Cascade IR
Class Operator

Class attributes Operator state
Method declaration Dataflow reference

Method body Dataflow / CompiledLocalBlocks
Method call Event

Method return EventResult

Table 1: Translation of imperative code to the Cascade IR.

3.1.1 Stateless operators
Stateless operators represent a collection of one or more related, stateless functions. These functions
are represented as dataflows that perform some computation, and which may also call other operators,
stateful or not.

1 @cascade
2 class Calculator:
3     @staticmethod
4     def add(a: int, b: int) -> int:
5         return a + b
6
7     @staticmethod
8     def subtract(a: int, b: int) -> int:
9         return a - b

Listing 2: Stateless operator with two associated dataflows.

Cascade’s IR provides no guarantees that these dataflows will be colocated in the underlying execution
system. This helps with optimization, as the associated dataflows are not tied to a particular state
backend. In fact, certain optimizations could even get rid of these dataflows entirely, opting instead to
inline the function, as described in Section 8.1.1.

3.1.2 Stateful operators
Stateful operators allow for state retrieval and modification in their associated dataflows. A stateful
operator’s state is keyed such that each class instance can access its own state using its unique key. As
such, class methods become dataflows that can read and write operator state. Operator state is repre-
sented as a map of class attributes (represented as strings) to their values. This aligns with how Python
handles state within its classes, as the state map can be easily retrieved using the built-in __dict__
attribute on an object. Note that we discern between two types of state. While stateful operators allow
access to operator state, any operator can also access function state. Function state is saved in Events
rather than in operators, and represents the current values of local variables in the dataflow.

In order to initialize operator state, stateful operators contain a special initialization function. This
is a stateless function that initializes the state of a new class instance, provided some unique key.
In Cascade, this is handled by Python’s __init__() function. The first positional argument provided
(excluding self) will correspond to the key of the instantiated class.
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User Operator
1 @cascade
2 class User:
3     def __init__(self, user_id, balance):
4         self.user_id = user_id
5         self.balance = balance
6
7     def buy_item(self, item: Item):

8         self.balance -= item.get_price()

9         return self.balance >= 0

Item Operator
1 @cascade
2 class Item:
3     def __init__(self, ...):
4         self.item_id = item_id
5         self.price = price
6

7     def get_price():

8         return self.price

Listing 3: Interaction between multiple (stateful) operators.

In the example shown in Listing 3, an instance of User might have the following associated state:

              state = { "user_id": "ca00-fa93-22ef",
                        "balance": 4332 }

This state is retrieved internally by some choice of key, in this example the user_id variable. As we
will see in Section 4.1, the self identifier will be transformed into a state access via Python’s dictionary
implementation. In the case above, the call to self.balance might be replaced with the subscript
state["balance"], where the variable state is provided by the Cascade runtime, and is persisted by
the underlying execution target.

3.2 Dataflows

A dataflow, in the most general sense, can be represented as a directed graph. These dataflows could
also be cyclical, whether directly through control flow primitives, like for or while loops, or indirectly,
through recursive function calls. In this first iteration of the Cascade IR, dataflows consist of five types
of nodes.

CallLocal. These nodes execute local blocks. A local block consists of one or more statements, and
do not contain control flow primitives or remote calls to other entities. These blocks can read or write
function state. On stateful operators, they can also read or write operator state.

CallRemote. These nodes enable nested calling of other dataflows within a dataflow. They contain
information such as what dataflow to call, which variables to use as arguments and which key to use
(when calling to a stateful operator). The CallRemote node also defines what variable to assign the
result to, if any.

IfNode. These nodes allow for branching in the dataflow. Execution will continue in one of two
outgoing edges based on the true/false value of a specified boolean variable (the predicate) in function
state. Predicates of more complex expressions are handled during compilation, by assigning their value
to a temporary boolean variable before proceeding.

CollectNode. These nodes wait on the execution of each of their inputs, acting as a sort of barrier.
Internally, they use operator state to save the function state of incoming events. When all expected
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input events have arrived, the input event’s states are combined and an outgoing event is yielded.
These nodes are used only in parallel execution contexts, and are further explained in Section 6.1.

ReturnNode. This node is always a leaf node of the dataflow. Given a name of a variable in function
state, it ensures that the dataflow returns the value of that variable when the dataflow is completed. As
with the IfNode, return values of more complex expressions are first assigned to a temporary variable
in a preceding CallLocal block.

Consider the buy_item example from Listing  3. It contains a call to item.get_price(), which is
translated into a CallRemote node. A CallLocal node is then needed to update self.balance. This
same node then calculates the return variable expression self.balance >= 0, which is returned by a
ReturnNode. The resulting dataflow is shown in Figure 7. A class diagram of the different types of
nodes is shown in Appendix A2.

CallRemote

CallLocal

Return

User Operator
1 class User:
… …
7     def buy_item(self, item: Item):

8         self.balance -=  item.get_price()

9         return  self.balance >= 0

Figure 7: User’s buy_item dataflow.

3.3 Events

Execution of dataflows is done by routing events through the dataflow graph. Events represent partial
pieces of function execution and contain information such as:

• their associated dataflow,
• the target node they need to go to next,
• active local function variables and their values (function state),
• a call stack, used when calling other dataflows, and
• relevant state keys.

Event execution works by propagating it through the dataflow. A lot of this propagation, for example
propagation related to control flow, is executed by Cascade. Only when a node reaches a CallLocal
or CollectNode does execution context switch to the underlying backend to perform the necessary
(distributed) computation.

Cascade allows nested dataflows through CallRemote nodes. When an event is created, or when-
ever it reaches a CallRemote node, information about the called dataflow is pushed onto the call
stack. When an event reaches the end of a dataflow, the call stack is popped, and the event can resume
execution on the original dataflow by investigating the top of the call stack. A class diagram of Events
and how they relate to the call stack and dataflows is shown in Appendix A3.
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Cascade Execution Target
Handling CallRemote nodes Executing function blocks with CallLocal

Pushing and popping the call stack Operator state persistence
Navigating control flow, e.g. IfNode Handling CollectNode with state

Handling ReturnNode

Table 2: Separation of concerns between Cascade and the underlying runtime.

3.4 Event propagation

CallRemote

CallLocal

Return

CallLocal

Return
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User.buy_item

Event ①
key: "user"

"item": "spoon"

Item.get_price
User.buy_item

Event ②
 key: "spoon" 

Item.get_price
User.buy_item

Event ③
key: "spoon"
"__ret_0": 5

User.buy_item

Event ④
key: "user"

"item": "spoon"
"item_price": 5

User.buy_item

Event ⑤
key: "user"

"item": "spoon"
"item_price": 5
"__ret_1": True

Figure 8: Event propagation for User.buy_item.

Figure 8 shows how event propagation works for
the User.buy_item dataflow from Listing 3. The
initial call to the dataflow creates an event con-
taining the dataflow User.buy_item on the stack,
along with the argument variables (item) and a
state key "user" for the User operator ①.

The event starts out with a CallRemote target
as per the dataflow graph. Cascade interprets this
as a call to the Item.get_price dataflow. As such,
the new dataflow is put on the stack, and the
event is routed to the Item operator with a new
key, taken from local function state ②.

The CallLocal node uses the backend to ex-
ecute the Item.get_price function, which will
retrieve the price from the operator state and save
it in the function state with {"__ret_0": 5} ③.

The ReturnNode reads this value from func-
tion state and assigns it to the specified variable,
in this case "item_price". Since the call to
get_price is over, Cascade pops the dataflow
from the stack and continues execution on the
User.buy_item dataflow with the returned value
saved in function state ④.

The event target is now another CallLocal
node, which handles the rest of the computation:
decrementing the user’s balance and setting the
correct return value ⑤.

Finally, the event reaches another ReturnN-
ode. Once more, Cascade pops the current
dataflow (User.buy_item) from the stack. Since
the stack is now empty, Cascade can return the
final result contained in the variable "__ret_1".
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3.5 Limitations

The current iteration of the Cascade IR described in this chapter represents a minimal IR designed to
test the optimizations in Chapter 6. As such, certain desirable features are currently missing. Support
for while and for loops is missing, and there’s currently no way to query operators with SQL-like
SELECT queries. Further discussion on future extensions to the IR is provided in Section 8.1.
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Chapter 4

Compilation
The Cascade compiler is responsible for transforming ordinary Python source code into a dataflow

described by the IR in Chapter 3. This is achieved by a series of steps outlined in Figure 9. First, the
source code is transformed into its abstract syntax tree (AST) with the klara library. Internally, this
uses the same grammar as the ast library in the Python standard library, while including extra features
such as single static assignment (SSA), used in the preprocessing step (Section 4.1). As well as SSA,
this preprocessing step also transforms some of the code into A-Normal Form (ANF).

This AST can then be transformed into an ordered collection of statements that forms the control
flow graph (CFG) (Section 4.2.1). We then group these individual statements together into a series of
basic blocks (Section 4.2.2), and then split out and highlight the remote calls (Section 4.2.3). Finally, the
CFG is transformed into Cascade’s IR (Section 4.3) so that it can be optimized in later steps.

Source
Code AST Processed

AST

Statement
level
CFG

Block
level
CFG

Split
CFG IR Optimized

IR

Figure 9: High level overview of the Cascade compiler.

This chapter uses a running example to illustrate the compilation process. We compile the
MovieId.upload_movie dataflow below. This is part of the DeathStar movie review benchmark used
to evaluate the parallelization algorithm in Section 6.1.

1 @cascade
2 class MovieId:
3   def __init__(self, title: str, movie_id: str):
4     self.title = title
5     self.movie_id = movie_id
6
7   def upload_movie(self, review: Review, rating: Optional[int]) -> bool:
8     success = True
9     if rating is not None:
10       success = review.upload_rating(rating)
11     movie_id = self.movie_id
12     return success and review.upload_movie_id(movie_id)

4.1 Preprocessing

Using the @cascade annotation, Python classes and their methods are first registered with an initial
pass. This builds a collection of dataflow references, similar to a symbol table. Future passes can
reference the table to distinguish remote calls from ordinary function calls.
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When Cascade is initialized, the collected classes are each compiled, starting with the preprocessing
step. This step transforms the standard Python AST into a form more suited to Cascade’s IR, by
following a series of sub-steps. These sub-steps including transforming the code into SSA, let-binding
of complex expressions, and rewriting state accesses.

4.1.1 SSA
The first step is to transform the source code into single static assignment. This allows for certain sub-
sequent optimizations (especially when doing data dependency analysis, such as during parallelization
in Section 6.1) to be implemented in an easier way.

SSA assigns each variably exactly once, by providing a version number for shadowed variables.
When multiple control flow paths merge, a 𝜑-function determines which value a variable should have
by selecting the appropriate value based on which control flow path was taken. For example, the
following snippet:

1   success = True
2   if rating is not None:
3     success = review.upload_rating(rating)
4   ...
5   return success and ...

is transformed into:

1   success_0 = True
2   if rating_0 is not None:
3     success_1 = review_0.upload_rating(rating_0)
4   success_2 = phi(success_0, success_1)
5   ...
6   return success_2 and ...

4.1.2 Complex expression let-binding
Due to the structure of the IR, certain expressions can only be simple variables or constants, similar
to ANF-based IRs. For example, an IfNode requires an identifier to be a boolean variable, and a
ReturnNode requires an identifier to a simple local variable (see Section 3.2).

As such, this step transforms complex if predicates and return expressions into simple variables,
changing

1   if rating is not None:
2     success = review.upload_rating(rating)
3   movie_id = self.movie_id
4   return success and review.upload_movie_id(movie_id)

into the following:

1   __cond_0 = rating is not None
2   if __cond_0:
3     success = review.upload_rating(rating)
4   movie_id = self.movie_id
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5   __ret_0 = success and review.upload_movie_id(movie_id)
6   return __ret_0

In addition, this will also generate variable names for the results of remote calls. Suppose the following
example where we have two instances of the Item operator.

1 def buy_items(self, item1: Item, item2: Item):
2   self.balance -= (item1.get_price() + item2.get_price())

This will be transformed into:

1 def buy_items(self, item1: Item, item2: Item):
2   __call_0 = item1.get_price()
3   __call_1 = item2.get_price()
4   self.balance -= (__call_0 + __call_1)

Which has the desired property that every remote call will be written on its own line, and makes the
instruction order explicit.

4.1.3 State identification
As explained in Section 3.1.2, Cascade stores state as Python dictionary object. This preprocessing step
transforms calls to self into dictionary accesses:

1 movie_id = self.movie_id

becomes

1 movie_id = state["movie_id"]

The state variable is handled by the Cascade execution engine, and encapsulates the state that’s
originally in self.__dict__. This process happens in the same way for writes.

The result of the preprocessing step, including SSA, complex expression binding, and state identifi-
cation is shown in Listing 4.

1 def upload_movie(state, review_0: Review, rating_0: Optional[int]) -> bool:
2   success_0 = True
3   __cond_0 = rating_0 is not None
4   if __cond_0:
5     success_1 = review_0.upload_rating(rating_0)
6   movie_id_0 = state["movie_id"]
7   success_2 = phi(success_0, success_1)
8   __call_0 = review_0.upload_movie_id(movie_id_0)
9   __ret_0 = success_2 and __call_0
10   return __ret_0

Listing 4: Preprocessed MovieId.upload_movie code.
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4.2 Control flow graph generation

4.2.1 Statement-level CFG
After preprocessing, the resulting AST is analyzed and transformed into a control flow graph. Each line
is transformed into a Statement, and corresponds to a node in the CFG. Statements carry additional
information, such as the variables read and written to, or whether or not it corresponds to a remote
call. Control flow statements, such as if or while statements, create splits and cycles in the control
flow graph.

4.2.2 Block-level CFG
In this step, individual statements are grouped together into their basic blocks. For a given leader
statement, we follow along its path in the CFG either until a branch is detected, or we reach its
immediate postdominator. The path taken creates a block of nodes, where each block is a sequence of
statements without any branching or other control flow.

As an example, the Statements in the preprocessed MovieId.upload_movie method from Listing 4
are grouped together to form the CFG in Figure 10a.

4.2.3 Split CFG
Finally, we analyze the blocks of the block-level CFG, and look for Statements that correspond to
remote calls. These remote calls are put into their own node in the CFG. For example, the remote call
in Listing 4-8 gets split out of the [6,7,8,9] block, as shown in Figure 10b.

True

Fa
lse

[2, 3]

[4]

[5]

[6, 7, 8, 9]

[10]
(a) Block-level CFG.

……

[6, 7]

[8]

[9]

…
(b) Split CFG, zoomed on the [6,7,8,9] block.

Figure 10: CFGs for MovieId.upload_movie, referencing line numbers from Listing 4.

4.3 Dataflow graph generation

From the split CFG, the translation to the IR described in Chapter 3 is rather simple. In the split CFG,
each node falls into three cases:

1. a control flow primitive, e.g. an if statement
2. a remote call to another operator
3. a return statement
4. a grouping of one or more statements, none of which fall into one of the categories above

each of these nodes are then translated into the equivalent nodes in the dataflow graph, respectively:
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1. IfNode
2. CallRemote
3. ReturnNode
4. CallLocal

The result is a directed graph containing the nodes above. The running example in Listing  4 is
transformed in the dataflow in Figure 11. In code, the dataflow also contains meta information, such
as its unique reference, and the definitions of local blocks (Section 4.3.3).

CallLocal [2, 3]

If [4]

CallRemote [5]

CallLocal [6, 7]

CallRemote [8]

CallLocal [9]

Return [10]

MovieId Operator

1
def upload_movie(state, review_0: Review,
rating_0: Optional[int]) -> bool:

2     success_0 = True
3     __cond_0 = rating_0 is not None
4     if __cond_0:

5
      success_1 =

review_0.upload_rating(rating_0)
6     movie_id_0 = state["movie_id"]
7     success_2 = phi(success_0, success_1)

8
    __call_0 =

review_0.upload_movie_id(movie_id_0)
9     __ret_0 = success_2 and __call_0
10     return __ret_0

Figure 11: MovieId.upload_movie (Listing 4) as a dataflow.

4.3.1 If and Return nodes
The transformation to IfNode and ReturnNode is relatively straightforward, as they both only
require a single variable identifier. In the running example, __cond_0 is the predicate variable for the
IfNode (Listing 4-4) and __ret_0 is the return variable for the ReturnNode (Listing 4-10).

4.3.2 Remote calls
CallRemote nodes require a reference to a dataflow, and a variable identifier to assign the answer
to. In the running example at Listing 4-5, the corresponding CallRemote will contain a reference to
the dataflow Review.upload_rating, and will store the answer in the variable "success_1" in local
function state.

In addition, it requires a mapping from local variable identifiers to dataflow arguments. We can
suppose the dataflow being called has the following method signature:

Review.upload_rating(self, rating: int) -> bool

Since the dataflow is being called with the rating_0 variable, the correct variable mapping would be
{"rating_0": "rating"}. Cascade will then be responsible for remapping the local function variable
rating_0 into the argument for the dataflow, rating.

4.3.3 Local blocks
For CallLocal nodes, the compilation process requires the creation of local blocks. These are inde-
pendent functions that perform the computation in the corresponding block by reading and writing
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to function state or operator state. These two pieces of state are passed as arguments to the function,
thus the function itself is stateless.

By analyzing a statement’s read and write sets, we can get the read and write sets of the entire block.
For example consider the block at the start of the function in Listing 4, lines 2 and 3. By analysis of the
statement’s AST, we can extract the read and write sets line by line:

2 success_0 = True } 𝑊 = {𝚜𝚞𝚌𝚌𝚎𝚜𝚜_𝟶}, 𝑅 = ∅

3 __cond_0 = rating_0 is not None } 𝑊 = {__𝚌𝚘𝚗𝚍_𝟶}, 𝑅 = {𝚛𝚊𝚝𝚒𝚗𝚐_𝟶}

Given the read and write information for each statement, we compute the block’s overall read set
by taking the union of the individual read sets; the same procedure applies to the write sets. In the
case above, the block needs to read one variable from function state (rating_0) and it will write two
variables (success_0 and __cond_0). We combine this information with the block’s original statements
to generate the local block as such:

1 def upload_movie_block_0(state, func_state):
2   # read from function state
3   rating_0 = func_state["rating_0"]
4
5   # execute the block's statements
6   succes_0 = True
7   __cond_0 = rating_0 is not None
8
9   # write to function state
10   func_state["success_0"] = success_0
11   func_state["__cond_0"] = __cond_0

There are still some special cases to consider. If a block reads a variable that is first written to in the
same block, then this variable does not need to be read from function state. This is thanks to SSA,
which ensures that the read variable can only ever be written in one place, in this case the current
block. This effectively reduces the read set of a block, as some variables can remain local only within
the block’s scope.

More advanced liveness analysis could also reduce the write set in a similar manner. If a variable
is written to, but never read outside the local block, than we also do not need to write it to function
state. This is related to potential future optimizations that aim to reduce function state discussed in
Section 8.1.1.
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Chapter 5

Execution
Cascade’s IR is designed to be agnostic to the execution target, allowing execution on any dataflow

system such as Apache Flink [11], Apache Spark [12], Naiad [13], or Styx [14]. In this work, we use
PyFlink 1.20.1 as the execution target, combining it with Kafka as a message queue to enable cyclic
dataflow processing.

Item User

Collect

Input Fanout

UUID
Generator

Router

RouterOutput

Internal

Figure 12: A Flink datastream implementing a Cascade program containing three operators.

5.1 Flink as an execution target

This section lists the major components of it Cascade’s implementation of a PyFlink execution
target. Figure 12 summarizes how a collection of operators may be represented in Flink through its
ProcessFunctions.

Operators. In Flink, every StatefulOperator is interpreted by a KeyedProcessFunction, enabling
keyed state storage within the operator. The state is represented as a mapping of class attribute names
to their values, equivalent to Python’s __dict__ attribute for a class instance. On the other hand,
stateless operators are transformed into ProcessFunctions and do not require key-based partitioning.
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Fanout. An ingress ProcessFunction, called the FanOutOperator, is used to ingest and deserialize
Events from the message queue and forward them to the correct operators via several output channels.
Event targets can include both stateful and stateless operators.

CollectOperator. Events directed toward a CollectNode are routed to a FlinkCollectOperator,
implemented as a KeyedProcessFunction. This operator is keyed using a combination of the event’s
unique ID and the node ID of the CollectNode. Events arriving at this node are buffered in the
operator’s state until all expected inputs have been received. Once all required events are available,
the CollectNode will yield the collection of events.

Routing. The outputs of all operator datastreams are unioned to a Router operator before being sent to
a Kafka sink. This operator is responsible for propagating events through the dataflow, setting its next
target, and handling its call stack. This propagation step is handled by Cascade itself and does not need
to be implemented for every execution target - the Router will just need to call the Event.propogate
method. After propagation, the Event will either have a new target (a CallLocal or CollectNode),
or it will have reached the end of its execution path. Depending on the event’s progress through the
dataflow, it is either re-ingested into the system for further processing (via an internal Kafka topic)
or placed into a designated output topic, where it can be read by an external Kafka consumer.

5.2 PyFlink performance benchmark

There are many configuration options available in PyFlink and Kafka that have major impacts on
performance. Notably, the heterogenous nature of PyFlink’s integration with JVM-based Flink creates
inherent performance bottlenecks due to overhead introduced by de/serialization and interprocess
communication.

To help alleviate some of this performance impact, Flink introduced thread mode in version 1.15,
using the PEMJA library (Python Embedded in Java). PEMJA allows Python code to run within the
same thread as the JVM, reducing the overhead associated with traditional interprocess communica-
tion. Despite this promising implementation, significant parallelization challenges persist, primarily
due to Python’s Global Interpreter Lock (GIL). The GIL fundamentally restricts true multi-threaded
execution in CPython, creating a critical bottleneck for parallel data processing. Notably:

• Only one thread can execute Python bytecode at a time.
• Increased parallelization attempts lead to contention and reduced efficiency.
• Complex synchronization requirements limit scalability.

These issues are not present in process mode, which uses an entirely separate Python process per task
slot [30]. In order to determine an optimal setup for further experiments with PyFlink, we compare
thread mode and process mode, using the login function of the DeathStar [23] hotel reservation
workload as a basis for testing.

Additionally, in order to test multi-threaded performance, we attempt to spread parallelization
across multiple taskmanagers by varying the number of task slots per taskmanager. In Flink, task
slots are the primary unit of resource management and scheduling. Theoretically, having a single task
slot per taskmanager would eliminate the problem of GIL contention, but could result in suboptimal
resource allocation due to more distributed task management and more significant network overhead.

In this initial experiment, we keep the parallelism at a constant level (16) while varying how this
parallelism is spread out across taskmanagers and task slots. On one end of the spectrum, we have
the 1x16 configuration, corresponding to one taskmanager with 16 task slots. On the other end we
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have the 16x1 configuration, corresponding to 16 taskmanagers, each with a single task slot. We also
measure intermediate configurations, namely 2x8, 4x4 and 8x2.

5.2.1 Experimental setup
Experiments are executed on a system with two 64-Core processors with 512 GB RAM, running 64-
bit Ubuntu 22.04.5 and Flink version 1.20.1. Each taskmanager is run in its own Docker container,
but shares its resources with the host system, including other taskmanagers. Thus, a job with 16
taskmanagers will have proportionally less resources per taskmanager than a job with 4 taskmanagers.
The amount of combined resources is constant for all experiments. Taskmanagers are coordinated by
a single jobmanager. A single Kafka node is used for the message queue, using 32 partitions for each
of the three required topics (input, output and internal events). Additional PyFlink configuration
settings are described in Appendix B.

5.2.2 Results

Figure 13: User login latency for 1000 requests per second and parallelism of 16.

Results shown in Figure 13 show that thread mode significantly increased performance under the right
conditions. We see that performance in process mode remains relatively constant, with slightly faster
latencies in configurations with lower taskmanagers and more slots. We presume that the cause of this
trend is due to higher overhead because of additional communication requirements between multiple
taskmanagers.

The worst case for thread mode is when one taskmanager shares sixteen slots. We believe this is
due to GIL contention. The best performing configuration overall is thread mode with 16 single-slot
taskmanagers, reducing the median login latency to just 2 ms. As a result, we use multiple, single-slot
taskmanagers in thread mode for all further experiments.

5.2.3 Future implementations
Emerging Python implementations include experimental GIL-free versions¹, which could mitigate
some of the issues with PyFlink thread mode, enabling us to increase the number of task slots per
taskmanager. Other possibilities include switching to a JVM-based Cascade runtime implementation.

¹PEP 703: https://peps.python.org/pep-0703/

https://peps.python.org/pep-0703/
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However, Cascade has the goal to be runtime-independent. As such, other runtimes can be imple-
mented with minimal effort, and could include more suitable runtimes such as Styx or Naiad. Runtimes
with support for cyclical dataflows and exactly-once guarantees could also lead to increased perfor-
mance as they wouldn’t rely on an internal message queue with Kafka.
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Chapter 6

Optimizations
In this chapter, we present some optimizations that are possible with the current intermediate

representation. We focus notably on taking advantage of dataflow’s inherent parallelism, both through
static code analysis in Section 6.1 and a more dynamic approach in Section 6.2. Further opportunities
for optimization are discussed in Section 8.1.1.

6.1 Parallelization

Dataflow programs are often embarrassingly parallel. The data-driven nature of Cascade’s IR inher-
ently exposes opportunities for parallel execution, as each CallLocal block is eligible for execution as
soon as all their required input data (i.e. reads) becomes available. In this section, we provide a method
for the automatic parallelization of these dataflow nodes through a data dependency analysis of their
reads and writes. We run experiments on the DeathStar [23] movie review workload and evaluate its
effectiveness compared to the baseline dataflow.

6.1.1 Method

6.1.1.1 Data dependency analysis
Given a dataflow graph 𝒟 consisting of nodes 𝑁 = {𝑛1, 𝑛2, …, 𝑛𝑚}, we can derive its corresponding
dependency graph 𝐺 = (𝑁, 𝐸) by analyzing the read and write sets of nodes. For each node 𝑛 ∈ 𝑁 ,
we define 𝚆𝚛𝚒𝚝𝚎𝚂𝚎𝚝(𝑛) as the set of variables written by 𝑛 and 𝚁𝚎𝚊𝚍𝚂𝚎𝚝(𝑛) as the set of variables
read by 𝑛. The directed edges in the dependency graph are then defined as

𝐸 = {(𝑛𝑖, 𝑛𝑗) | 𝑛𝑖, 𝑛𝑗 ∈ 𝑁 𝖺𝗇𝖽 𝚆𝚛𝚒𝚝𝚎𝚂𝚎𝚝(𝑛𝑖) ∩ 𝚁𝚎𝚊𝚍𝚂𝚎𝚝(𝑛𝑗) ≠ ∅}.

This creates the dependence graph 𝐺, where an edge from 𝑛𝑖 to 𝑛𝑗 indicates that 𝑛𝑗 depends on 𝑛𝑖
because it reads at least one variable written by 𝑛𝑖.

Thanks to the properties of SSA, for each variable 𝑣 written to by the dataflow, there exists exactly
one 𝑛𝑖 ∈ 𝑁  such that 𝑣 ∈ 𝚆𝚛𝚒𝚝𝚎𝚂𝚎𝚝(𝑛𝑖). Therefore, if two nodes 𝑛𝑖, 𝑛𝑗 read the same variable 𝑣1,
they will both have the same parent 𝑛𝑝 such that 𝑣1 ∈ 𝚆𝚛𝚒𝚝𝚎𝚂𝚎𝚝(𝑛𝑝).

We consider all dependency graphs created this way to be acyclical. Cycles would suggest program-
ming errors, such as reading a variable before it is initialized, and thus are not considered. However,
it’s possible that such graphs are disconnected. Because of potential side effects, all nodes still need
to be executed in the dataflow graph. We solve this issue by adding a CollectNode at the end
of disconnected dataflows, ensuring the dataflow only returns when all nodes have been executed.
Further analysis into side effects could allow for optimizations that delete these nodes entirely, if they
are purely functional. This could be inspired by existing literature such as [31] and [32].

6.1.1.2 Parallelization algorithm
The algorithm for parallelization is based on the dependency graph constructed in the previous section.
The parallelized dataflow will largely follow the dependency graph, with one addition: nodes with
indegree > 1 will be connected via an intermediate CollectNode as shown in Figure 14. In addition,
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dependency graphs that are disconnected will require an additional CollectNode node at the end to
join the separate calculations.

a b

a = item1.price() b = item2.price()

total = a + b

CallRemote CallRemote

Collect

CallLocal

Figure 14: Dependency graph (left) to parallel dataflow (right).

When control flow is introduced, such as with IfNodes, the parallelize algorithm must keep the control
flow structure in mind. Instead of running the parallelize algorithm for the entire dataflow, we can
restrict it to running only on the basic blocks of the dataflow. These dataflow blocks can be considered
sub-dataflows, formed by a subset of the original dataflow. As basic blocks, the CFGs of these sub-
dataflows thus form simple path graphs, consisting of CallLocal or CallRemote nodes, and can
easily be parallelized by the algorithm described in this section.

6.1.1.3 Local block merging
The parallelized dataflows created by the method above also highlights a different opportunity for
optimization. Consider the following example:

1 class User:
2   def apply_discount(self, item: Item):
3     b = self.balance
4     o = self.overdraft
5     price = item.price()
6     b_total = b + o
7     DiscountService.apply(b_total, price)

The dependency graph and parallelized dataflow is shown in Figure 15. We note that this results in
two CallLocal blocks in a row, block [3, 4] and block [6]. These could be merged into a single [3, 4,
6] block, removing a node from the dataflow. The removal of a node can result in performance gains,
the underlying assumption being that one node is incurs lower latency than two due to the overhead
required to travel the edge. In the Flink + Kafka execution target, this results in one less pass through
the Kafka message queue and thus is very effective.
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b; o

b_total

price

b = self.balance  
o = self.overdraft

b_total = b + o

price = item.price()

DiscountService.get_discount(...)

CallLocal

CallLocal

CallRemote

Collect

CallRemote

Figure 15: Dependency graph (left) resulting in two subsequent CallLocal nodes (right).

6.1.2 Benchmark
To evaluate the parallelization optimization, we employ the movie review workload from the DeathStar
benchmark [23]. Specifically, we simulate requests to the /review/compose endpoint by uploading
review data to a Frontend operator. The workload consists of three stateless operators (Frontend, Text,
UniqueId) and three stateful operators (Review, User, MovieId). The Text, UniqueId, User and MovieId
serve as intermediate operators to the Frontend workload, as shown in Listing 5. This dataflow is then
parallelized to run the four remote calls in parallel as in Figure 16.

1 @cascade
2 class Frontend():
3     @staticmethod

4
    def compose(review: Review, user: User, title: MovieId, rating: int, text:

str):
5         UniqueId.upload_unique_id(review)
6         user.upload_user(review)
7         title.upload_movie(review, rating)
8         Text.upload_text(review, text)

Listing 5: DeathStar benchmark workload function.

A summary of the relevant dataflows are shown in Table 3. We define the metric critical path weight
as the source-to-sink path with the highest weight. The weight of a path is the number of operators
that an event must go through during propagation. Note that this includes operators inside nested
dataflows, i.e. with CallRemote nodes. In other words, it is the total number of CollectNode and
CallLocal nodes that an Event travelling through a dataflow will encounter during its propagation
through the dataflow.

Since the baseline frontend calls the four nested dataflows sequentially, its critical path weight has
the property of being the sum of its parts (2 + 2 + 3 + 1 = 8). In contrast, the parallelized frontend
dataflow runs the four dataflows in parallel. This results in a critical path weight of 4; equal to the
maximum critical path weight of the four dataflows, plus one due to the additional CollectNode. The
additional CollectNode also increases the number of operator calls by one relative to the baseline.
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Dataflow Critical path weight Operator calls
UniqueId.upload_unique_id 2 2

User.upload_user 2 2
MovieId.upload_movie 3 3

Text.upload_text 1 1
Frontend: baseline 8 8
Frontend: parallel 4 9

Table 3: Critical path weight and number of function calls for different dataflows.

The benchmark increases the request frequency from 250 to 2500 requests/sec and measures the p50
and p99 round-trip latency of requests. A single request corresponds to an entire run-through of the
dataflow, and therefore requires eight operator calls per request (nine for the parallel dataflow), as per
Table 3. A throughput of 2500 requests/sec therefore corresponds to 20,000 operator calls/sec, most of
which are stateful.

CallRemote

CallRemote

CallRemote

CallRemote

(a) Baseline dataflow.

CallRemote

CallRemote CallRemote

CallRemote

Collect

(b) Parallel dataflow.
Figure 16: Dataflows for Frontend.compose from Listing 5.

6.1.3 Experimental setup
Experiments are executed on a system with two 64-Core processors with 512 GB RAM, running 64-
bit Ubuntu 22.04.5 and Flink version 1.20.1. Due to limitations in PyFlink’s thread mode (Section 5.2),
we run 24 taskmanagers, each with only one task slot, in local Docker containers. To simulate more
realistic distributed conditions, each taskmanager’s resources were limited to 4 CPUs and 8 GB RAM.
They are coordinated by a single jobmanager. A single Kafka node is used for the message queue, using
32 partitions for each of the three required topics (input, output and internal events).

6.1.4 Results
Introducing the additional Collect operator increases the total number of operator calls by one
(Table 3). Nonetheless, Cascade reduces the critical path length from 8 to 4, with the other three paths
being even shorter. Since the parallel dataflow runs the four remote calls in parallel, we can expect
around 4x speedup, assuming each intermediate call has similar latency and the CollectNode latency
is negligeable.
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Figure 17: Frontend latency for baseline and parallel dataflows.

The results depicted in Figure 17 support this hypothesis, demonstrating a 2x speedup at 250 req/s for
the p50 latency, rising to 2.8x at 500 req/s and 3.8x at 750-1000 req/s when compared to the baseline.
From 1000-2000 req/s, the speedup is closer to 2x, and we notice that the speedup drops to around 1.3x
for 2250-2500 req/s. We believe this break in the scaling behavior is a consequence of the backpressure
due to increased time spent in the Kafka queue for both dataflows. There may also be some effects
of key contention, as the number of initialized users and movies does not scale with the increased
requests/second.

The 99p latency also shows some improvement throughout, demonstrating 1.6x speedup for low
throughputs of 250-500 req/s. However, this improvement is not as visible at higher throughputs,
suggesting that parallelization may have some adverse effect on the 99p latency under increased load.

In summary, our key takeaway is that parallelizing computation effectively shortens the critical path
weight, leading to beneficial speedups at scale. We observe speedups for median latencies of up to 𝑃x,
where 𝑃  is the number of parallelized calls.

6.2 Dynamic prefetching

Prefetching is a technique to retrieve data from a cache or external object store by predicting that it will
be used in the future. Since waiting on the results of I/O operations is inefficient, accurate predictions
will be able to perform I/O operations in the background whilst performing calculations in the fore-
ground, making better use of available resources. Through dynamic analysis of a program, one could
start to predict which variables could be used in the future with reasonable accuracy. We introduce the
concept of dynamic prefetching in the context of dataflows by first providing a motivating example.

Consider the NavigationService from Listing 6. It provides directions from an origin location to
a destination through a MapService, and also serves advertisements to some users via an Advertiser
service. A small subset of users are paying costumers, and will not be served ads.
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1 class NavigationService:
2   @staticmethod
3   def get_directions(origin: Geo, destination: Geo, user: User):
4     directions = MapService.get_route(origin, destination)
5     if not user.is_ad_free():
6       recc = Advertiser.get_recommendations(destination, user)
7       return (directions, recc)
8     else:
9       return (directions, None)

Listing 6: NavigationService code.

Suppose we somehow knew that the none of the Users are ad free and thus will always get served
recommendations by the Advertiser service. In this case, the if predicate will always evaluate to
True. In this situation, parallelizing the remote call to Advertiser could be an effective way to increase
performance, as suggested by the parallelization experiment in Section 6.1.

Consider now that 10% of Users are paying and thus ad free. In this case, it might still be worth it
to parallelize these calls, as we will only be doing extra work 10% of the time. As a result, 90% of the
time, the prediction will be correct and we may have saved some time by parallelizing the Advertiser
call. If the parallelism is high enough, the only extra work needed is the overhead induced by the extra
CollectNode, as the calls will be run in parallel anyway. Once the if predicate is reached and the
predicate condition becomes known, Cascade could either continue waiting for the prefetched call, or
discard it if it is not needed.

This is the idea behind dynamic prefetching. It has similarities to branch prediction in computer
architecture, where the branch predictor plays a critical role in achieving high performance [33]. In
this section, we investigate its effectiveness in the context of dataflow execution.

6.2.1 Method
In order to test whether prefetching could be a viable strategy for optimization, we first simulate it
by running two different versions of the same dataflow, shown in Figure 18. In this experiment, the
creation of the prefetched dataflow was done manually. The actual branch prediction is out of scope
for this experimen, but one could refer to elements of literature [33], [34] for inspiration on strategies
to implement the dynamic analysis. We envision some sort of continous probabilistic analysis to be a
good starting point for measuring the expected value of prefetching, as described in Section 7.2.

6.2.2 Benchmark
To test the potential of dynamic prefetching, we benchmark usig the code from Listing 6. This example
contains one stateful operator, User, and three stateless operators: NavigationService, MapService
and Advertiser. The MapService operator is responsible for giving directions between two coordi-
nates. For the purposes of this experiment, this call is mocked and replaced by a waiting time of 10 ms.
The Advertiser operator returns advertisements tailored to the preferences for a certain User around
their destination. The NavigationService combines the two previous operators, giving both directions
and advertisements to the user. However, if the user is a paying member, they will not get served
advertisements.

Figure  18 highlights the difference between the baseline and prefetched versions of the
NavigationService.get_directions dataflow. The baseline dataflow is able to run the calls to
MapService and User in parallel. The prefetched dataflow also includes a call to Advertiser in parallel,
that is saved in the function’s local state but which may or may not be used.
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Figure 18: Baseline dataflow vs prefetching dataflow.

To run the experiment, we initialize 1000 users and vary the ratio of ad free users. This has a direct
impact on the branch probability, as the ratio of ad free users is equal to the probability to take the if
branch in Listing 6-5.

6.2.3 Experimental setup
Experiments are executed on a system with two 64-Core processors with 512 GB RAM, running 64-bit
Ubuntu 22.04.5 and Flink version 1.20.1. We run 8 taskmanagers, each with one task slot, in local Docker
containers. Each taskmanager’s resources are limited to 4 CPUs and 8 GB RAM and are coordinated by
a single jobmanager. A single Kafka node is used for the message queue, using 32 partitions for each
of the three required topics (input, output and internal events).

6.2.4 Results
We vary the ratio of ad free users between 10%, 50% and 90%, and measure the round-trip latency of
500 requests per second over 30 seconds.

The results for the NavigationService workload are summarized in Figure 19. To display these
results, we remove the top 5% latencies, and show the mean latency for the baseline and prefetched
dataflows, similar to a winsorized mean. We justify the removal of tail-end latencies since we expect
a bimodal long-tail distribution. We argue removing the tail-end of latencies and taking the mean
generates a more representative average than simply taking the mean (which would be affected by
extreme values) or the median (which isn’t as representative for bimodal distributions).

We can clearly see the difference in clustering that highlights the difference in approach between the
two experiments. Whilst the prefetched dataflow shows a single cluster and a long tail distribution, the
baseline dataflow sees two clusters of latencies, roughly weighted by the branch probability. The two
clusters of latencies indicate the important difference in round-trip latency depending on the outcome
of the branch predicate. This problem is mitigated by the prefetched version of the dataflow, which,
given some overhead cost, is faster on average when the branch probability is sufficiently high.
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Figure 19: Baseline vs prefetching results for the NavigationService workload.

6.2.5 DeathStar benchmark
As an aside, we also run the experiments on the MovieId workload of the DeathStar benchmark. This is
possible because the call to Review.upload_rating (see Listing 4-5) can be done speculatively, because
in this case a write of None corresponds to a null-op. The branch being tested is therefore Listing 4-4,
and we have used a custom workload that varies the branch probability between 10%, 50% and 90%
by controlling the rating argument. We measure the round-trip latency for 500 requests per second
over 30 seconds. An important distinction is that we add an additional collect node for the baseline
dataflow that isn’t necessary. This is to provide a more direct comparison between the baseline and
prefetched dataflow by eliminating overhead related to the collect operator.

Results, shown in Figure 20, shows a similar trend as the previous experiment, with a relatively
flat prefetch curve that is lower than the mean latency for the baseline at higher branch probabilities.
Noticeably, we observe that there is no obvious bimodal distribution for the baseline dataflow. We
speculate that this could be due to latency numbers being quite low already. When compared to the
previous experiment, the DeathStar benchmark suggests that dynamic prefetching would be effective
at lower branch probabilities compared to the NavigationService workload. This could be due to
the fact that the latency of the Review.upload_rating dataflow is very close the latency of the
Review.upload_movie_id dataflow, resulting in higher relative benefits from parallelization.
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Figure 20: Baseline vs prefetching results for the DeathStar MovieId workload.

6.2.6 Limitations
An important limitation with the current implementation is that the prefetched dataflows cannot
choose to discard unwanted results. By connecting together with a CollectNode, dataflows could be
waiting on a result that they don’t even need, limiting performance if prefetching takes a long time. A
future iteration could allow the dataflow to discard the result of a prefetched node, and immediately
continue execution rather than waiting on a useless result. This could also help alleviate some overhead
induced by introducing an extra CollectNode in some cases.

Further discussion on dynamic analysis and speculative writes is contained in Section 7.2.
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Chapter 7

Discussion

7.1 Parallelization

Our results in Figure 17 show that parallelization can be very effective for workloads with high degrees
of parallelism. Our approach, described in Section 6.1, follows similar to approaches used in compiler
optimization [35]. Both Cascade and other approaches rely on the fundamental theorem of dependence:
any reordering transformation that preserves every dependence in a program preserves the meaning
of that program. While loop-oriented parallelization is common, Cascade aims to be more aggressive,
aiming for parallelization at the block level.

To the best of our knowledge, Cascade is unique in parallelizing dataflows originating from imper-
ative code for execution on stream processing systems. In order to provide a comparison with existing
approaches to parallelization, we refer to elements of research related to parallelizing imperative
programs for parallel architectures, such as multi-core hardware [36], [37], [38] or dataflow hardware
[39]. The approach by Gasmi and Hasanaoui [36] models the problem as a mapping of a dependency
graph to a multi-core computer architecture. The mapping is solved using a Satisfiability Modulo
Theory (SMT) solver that takes into account constraints such as number of processors and optimizes
for execution time. We argue that our problem is simpler, as we do not have limits on parallelization
degree. Cascade targets transactional cloud applications, and thus we consider only applications that
are reasonably parallel. Excessively parallel programs, such as image processing, machine learning,
or scientific computing tasks are more suited to high-performance computing systems, and are not
considered suitable for Cascade.

A significant challenge that was unaddressed in dataflow parallelization involves handling side
effects. Cascade’s current approach does not consider the ordering of side-effects, and considers that
nodes can be safely re-ordered as long as their dependencies are met. Further refinements could incor-
porate side effect analysis techniques as proposed by Callahan and Kennedy [31], and Herhut et al.
[32]. This could also enable aggressive optimizations when nodes are proven to be free of side effects,
for example by eliminating unnecessary nodes, speculative execution, and more flexible reordering of
operations.

7.1.1 Limitations
While the parallelization method presented demonstrates noteworthy performance improvements,
several limitations should be acknowledged.

Critical path optimization. While the approach reduces critical path weight, it does not explicitly
optimize for minimizing the time duration of the critical path, and does not consider varying execution
times of different operations. For example, it may not be worth to parallelize a CallLocal block if it
can be merged with another block instead. The current algorithm does not take this into account.

Control flow complexity. As noted in the chapter, the algorithm is restricted to basic blocks when
control flow is introduced. More sophisticated techniques would be needed to handle complex control
flow patterns while maintaining parallelism. Dynamic prefetching from Section 6.2 is an attempt to
address part of this issue, but this still does not consider loops. Remote calls inside a loop body are a
very good target for parallelization, as the entire loop could be run in parallel in some cases.
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7.2 Dynamic prefetching

The results in Figure 19 show that, in NavigationService case, the prefetched dataflow is faster even
if the branch is taken only half the time. We argue that this might not always be the case, and that
the efficacity of prefetching and branch prediction heavily relies on a numerous factors. For example,
if the prefetched remote call takes a considerable amount of time relative to the dataflow, this would
require a higher branch probability in order for the prefetching to be effective.

Another consideration is the overhead introduced by the CollectNode operator. This example
already included a CollectNode in the baseline dataflow, and thus adding an extra parallel call
introduces minimal overhead. However, introducing a CollectNode call in a different dataflow may
result in too high of an overhead to be worth it, depending on the backend implementation.

A potential solution to these issues is a dynamic approach, that measures both the branch probability
𝑃𝑏 and the latency difference between the baseline and prefetched dataflows as the system is running.
Future versions could calcualte the expected latency reduction in order to determine when prefetching
is worth it:

Expected latency reduction = 𝔼[𝑡base] − 𝔼[𝑡prefetch]

where

𝔼[𝑡base] = 𝑃𝑏𝔼[𝑡true] + (1 − 𝑃𝑏)𝔼[𝑡false]

and we can reasonably assume that all latencies are independent and identically distributed from some
normal distribution

𝑡𝑖 ∼ 𝒩𝑖

and that values for 𝑃branch, 𝔼[𝑡prefetch], 𝔼[𝑡true] and 𝔼[𝑡false] can be approximated dynamically through
continous measurement. Such a system could also adapt to changing branch probabilities and latency
changes in the long term.

This technique is similar to the approach by [40], which occasionally performs profiling on running
programs to determine hot data streams that can be prefetched. Machine learning techniques, perhaps
inspired by [33], could be a starting point for deeper dynamic analysis.

Finally, the example in Section 6.2 only discussed prefetching of values that may or may not be
read. We argue that this technique could also apply to writes as well. One could speculatively write
and update values of an operator when a branch prediction is made, but this would require some
compensating action similar to the saga pattern [41] if the prediction is wrong. A more isolated process,
inspired by techniques in thread level speculation [42], could also be possible in order to increase
consistency at the cost of availability.

7.3 Related work

7.3.1 Dataflow programming
Dataflow programming represents a paradigm where program execution is modeled as a directed
graph. In this graph, nodes symbolize operations that accept inputs and produces outputs, while
directed edges signify the flow of data, channeling the output of one operator as the input to another.
Early research in dataflow programming explored dataflow computer architectures that contrasted
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with the control-flow model prevalent in von Neumann architectures [43]. In von Nuemann machines,
static data is acted upon by a sequence of instructions driven by some control flow. The main benefit
of the dataflow model is that the data-driven nature of its execution inherently exposes opportunities
for parallel processing, as operations become eligible for execution as soon as all their required input
data becomes available.

Early dataflow architectures were designed to exploit the inherent parallelism and implicit synchro-
nization in programs by eliminating the sequential program counter of von Neumann machines.
Dataflow programming semantics were first introduced in the 1970s [44] in order to permit concurrent
execution of independent program parts. The Manchester Dataflow Machine [15] and MIT Tagged
Token architecture [16] compiled functional programs into dynamic dataflow graphs for parallel
execution on specialized architecture. However, the adoption of dataflow architectures never became
widespread, due to issues such as the large overhead of fine-grained parallelism on realistic programs
[45].

A resurgence to the ideas developed in this early era of computing came with the advent of big data.
Software systems like MapReduce [46] express computations that map trivially to dataflow graphs.
Further evolution of the field lead to projects like Apache Flink [11], Apache Spark [12] and Naiad [13],
extending the possibilities of the dataflow graphs with more complex operations (such as joins, stateful
computations and iterations), and embracing continuous stream processing. These novel systems
leverage principles of distributed computing to achieve scalability and fault tolerance, allowing them to
process very large datasets across clusters of machines. These capabilities opened up new application
domains for dataflow programming, such as real-time analytics and complex event processing. With
Cascade, we argue that cloud applications also fall under these application possibilities, and that they
can be expressed as dataflow graphs that can be distributed, scaled and optimized.

7.3.2 Compiling imperative code to dataflows
The systems mentioned above have generally been executed via a functional-style language, such as
through the Tagged Token Id language, or Flink’s Datastream API. Compilation from imperative code
to dataflows was initially explored by the theoretical work of Beck et al. [17], with a focus on execution
on dataflow architectures. Their translation makes both data and control dependencies explicit, and
provides basis for Cascade’s approach to compilation. The end goal of Cascade’s IR is not to execute
on dataflow architectures, but rather to provide a practical, expressive IR that can be optimized and
executed on modern dataflow systems.

More recent approaches, such as Labyrinth [21], compile imperative code to modern stream pro-
cessing systems instead. However, Labyrinth is limited in scope, focused on compilation of imperative
control flow constructs such as while loops. Outside of control flow, Labyrinth retains many charac-
teristics of functional programming. Second order functions such as map, reduce and filter are still
required for describing computation and are not suited for an object-oriented approach to dataflow
programming.

7.3.3 Intermediate representations in parallel dataflow systems
Optimizing dataflows directly in stream processing systems like Flink [11] and Spark [12] is challeng-
ing due to limited program context. Dataflow graphs often contain user-defined functions (UDFs)
which are treated as black boxes, making it difficult to apply optimizations past the physical level.
Many real-life dataflows are dominated by UDFs and some works have attempted to look under these
black boxes, for example through syntactical dataflow modification, dataflow transformations, and
inferring semantics such as read/write sets [26], [47], [48].

Within dataflow systems, IRs have started to emerge as a valuable abstraction layer between high-
level programming languages and underlying execution engines. For example, Emma [49] is an ANF-
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based, embedded domain-specific language in Scala. This gives the Emma IR a much wider program
context, allowing for a separate class of optimizations that would not be possible using systems like
Flink or Spark alone. These optimizations would usually be left to the programmer to find and write,
and include automatic caching, join order optimization, and partial aggregation. Similarly, DryadLINQ
[50] uses LINQ, a domain-specific language that treats data as parallel collections. The Mitos runtime
extends this idea to introduce optimizations for iterative algorithms, such as loop pipelining and loop-
invariant hoisting [21], [51]. However, the scope of these systems remains largely confined to machine
learning and big data analytics workloads, and programming is typically still done in a functional style.

Another example is Tensorflow [2], wherein high-level control-flow constructs are compiled to
dataflow graphs using a handful of primitives. These primitives have some similarities with Cascade’s
IR, such as the Merge operation (CollectNode) or the Switch operation (IfNode). Another primitive,
the Next operator, is used for advancing iterators in for/while loops and could eventually have an
equivalent implementation in Cascade when loops are formally introduced. TensorFlow’s representa-
tion of a while loop is shown in Figure 21. TensorFlow is also responsible for the distributed execution
of the dataflow, mapping nodes in the graph to a given set of devices and partitioning the graph into
subgraphs - something Cascade leaves to the runtime execution engine. However, TensorFlow’s API
uses functions such as cond(pred, true_fn, false_fn) and while_loop(pred, body, inits) to
express control-flow constructs, resulting in a more awkward developer experience. Cascade aims to be
more natural to use for developers accustomed to programming in a more object-oriented style. Unlike
systems that expect user-written dataflow graphs, the Cascade compiler targets standard imperative
code and generates the dataflow, complementing prior work by raising the abstraction level.

Figure 21: TensorFlow’s representation of a while loop, from [2].

Finding a suitable intermediate representation, that is fit for general purpose, remains challenging. A
general-purpose IR, such as LLVM [29], enables efficient execution for a wide set of source languages
and execution models, even when they impose conflicting guarantees or semantics, by offering a
unified and extensible representation. Recently, Flo [52] has attempted to unify stream processing
semantics, recognizing that existing streaming languages do not agree on what constitutes a stream,
and vary in semantics for state persistence. Cascade could benefit from Flo’s approach in order to
provide more formal guarantees, especially when complex optimizations are applied. At the same
time, we also argue that Cascade’s IR serves a purpose that is orthogonal to stream processing. While
execution is done in Flink, a stream processing system, Cascade’s IR is based solely on dataflows, and
its execution model is more closely related to actor models rather than stream processing.
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7.3.4 Stateful computation models
The actor model is a conceptual framework for designing and building concurrent and distributed
systems [53]. It defines a system as a collection of independent software entities called actors, which
interact with each other exclusively through message passing. Each actor contains mutable state
that can only be modified by the actor itself. This framework has been successfully implemented in
distributed systems languages such as Akka [54], Erlang [55] and Orleans [6]. The actor model maps
rather easily to both object-oriented programming and the operators used in dataflow systems such as
Flink. While the Cascade programming model is similar to the actor framework, we differ by applying
program analysis and optimizations at a much finer granularity.

Azure’s Durable Functions [10] is a conceptual framework for designing and building concurrent
and distributed Stateful-Functions-as-a-Service (SFaaS) systems. The key characteristic of the system is
that it enhances FaaS with actors, workflows and critical sections. Durable Functions and Cascade share
similar goals: both attempt to deal with compute-storage separation problems seen in FaaS systems by
incorporating exactly-once processing, synchronization and concurrency control. However, Cascade
aims to be agnostic of the execution target, instead leveraging the execution target for exactly-once
guarantees and persistence, whilst incorporating our own optimizations and providing a general-
purpose intermediate representation.

7.3.5 StateFlow
This work is an extension of StateFlow [22], a compiler pipeline and dataflow system built for
low-latency cloud applications. Cascade improves upon StateFlow by providing an IR that’s more
expressive and easier to optimize. We list some improvements here.

Dataflow optimizations. This thesis has extended StateFlow through automatic optimization of
dataflow graphs, allowing for fine-grained optimization of user code. We introduce two optimizations,
parallelization and dynamic prefetching, and lay the groundwork for other possible optimizations.

Nested dataflows. Cascade’s IR allows for dataflows to call other dataflows without any restrictions
thanks to the inclusion of the Event’s call stack. This means that the IR presented in this thesis is
much closer to what the developer expects, as it parallels with nested function calls in Python. This
also means Cascade allows for recursive functions, something previously impossible in StateFlow’s
framework. Importantly, nested dataflows through CallRemote nodes has allowed for more flexibility
with regards to optimization. Each remote call is seen as a separate node, rather than being inlined in
the original dataflow. These explicit remote calls have allowed for better reasoning about optimizations
such as parallelization. In contrast, StateFlow’s linear dataflow approach fails to exploit the inherently
parallel nature of dataflow graphs, limiting performance in real-world applications.

Backend tuning. StateFlow focuses on showcasing a wide variety of backends, including not also
PyFlink, but also Flink, Apache Beam, AWS Lambda and Cloudburst. This thesis uses only PyFlink
as a backend. In Zorgdrager’s master’s thesis on StateFlow [56], PyFlink is shown to be the worst
performing backend, and was omitted from experiments requiring throughputs of >100 requests
per second. After more extensive performance fine-tuning, not to mention four years worth of
development on PyFlink, this latency was decreased by several orders of magnitude. While a direct
performance comparison is hard to make, the user login function from the DeathstarBench hotel
reservation workload was able to be executed at single-digit millisecond latencies at 1000 requests per
second in Figure 13. In the StateFlow thesis ([56], Figure 6.15), this was >300ms at 10 requests per
second, albeit with a slightly different, but comparable, experimental setup.
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Syntax limitations. We improve upon StateFlow in the compilation step, by providing a preprocess-
ing stage that includes steps to address some of the limitations of StateFlow, such as being able to use
multiple remote calls in a single statement, or using remote calls in if predicates.

System Coding Style
Execution

Model
UDF

Optimization
Domain

Flink Functional Stream
processing No Stream analytics

Spark Functional Batch dataflow No Stream analytics
Durable

Functions Imperative Event-driven
orchestration No Stateful cloud

workflows

Emma/Mitos Functional Runtime-
dependent Yes Big data

processing

Labyrinth Functional with
imperative loops

Runtime-
dependent Yes Big data

processing

DryadLINQ Declarative or
functional Batch dataflow No Distributed data-

parallel execution

Naiad Functional Timely dataflow No Distributed data-
parallel execution

Orleans Object-oriented
imperative Actor model No Distributed

applications

Tensorflow Functional Dataflow Yes AI/Machine
learning

StateFlow Object-oriented
imperative

Linear stateful
dataflow No Transactional

cloud apps

Cascade Object-oriented
imperative Stateful dataflow Yes Transactional

cloud apps

Table 4: Comparison of selected stateful dataflow processing systems.
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Chapter 8

Conclusion
We present Cascade, a compiler pipeline that transforms imperative code into stateful dataflows. We

propose an intermediate representation and demonstrate how static code analysis and optimization can
enhance performance whilst simplifying cloud application development. We improve the performance
of a predecessor system, StateFlow [22], by providing a new IR structure and fine-tuning the PyFlink
backend in Chapter 5. For optimizations, we focus on those that enhance parallelization in order to
take full advantage of the dataflow model. Our experiments show that we can increase performance
up to 3.8x in the DeathStar [23] movie review benchmark by running 4 remote calls in parallel in
Section 6.1. Additionally, we show promising results for dynamic code analysis and branch prediction
optimizations in Section 6.2.

8.1 Future work

We provide avenues for future work below. This section is split into two parts. Section 8.1.1 describes
additional optimizations that could be performed with the IR described in this thesis. Section 8.1.2
describes extensions to the current IR that would allow for more developer flexibility and create further
opportunities for optimization.

8.1.1 Additional optimizations
There are many more opportunities for optimizations with the current IR. We describe a handful here
that we consider to be the most salient.

Stateless function inlining. Consider a small, stateless operator that has a single dataflow that
generates unique ids using uuid4. A call to such a simple dataflow could be directly inlined into existing
blocks, rather than using a CallRemote node. Such an inlining optimization could thus remove a
CallRemote node from dataflows.

Stateless local block dislocation. When a stateful dataflow is split into blocks as in Section 4.2.3,
some of these blocks could happen to be stateless even if the dataflow isn’t. Currently, these blocks
are colocated as normal with the original stateful operator, even though they don’t access any state.
Instead, they could be move to a different, stateless operator, reducing overhead associated with state
access and keyby partitioning.

Function state size reduction. Currently, function state is tied to an Event object that travels through
the dataflow. It saves all variables written to function state but does not delete them. Live variable
analysis could be used to delete dead variables from function state, which could be important for large,
complex functions. This optimization could reduce the size of Event objects, generating speedups in
(de)serialization and network latency.

IfNode removal. Current limitations to the CFG generation algorithm will always create an IfNode
when an if statement is encountered. However this is not necessary when the statement’s branches
do not contain remote calls. In this case, the if statement and its branches could be kept inside a local
block rather than generating an IfNode. An optimization pass could analyze a Cascade dataflow in the
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current IR and determine when this optimization is possible by looking at the branches of an IfNode,
as in Figure 22.

Compilation Optimization

if x == 1:
  y = 2
else:
  z = 3

If

CallLocal CallLocal

CallLocal

Figure 22: Proposed local if block optimization.

8.1.2 IR extensions

Loops. Cascade currently lacks a looping primitive, designed for supporting for and while loops.
This could take inspiration from existing systems such as TensorFlow’s Next operation, responsible
for advancing iterators in loops [2]. We argue that implementing loops is mostly an engineering effort,
but that they open the doors to a wide range of additional optimizations, such as loop-invariant code
motion and loop unrolling/parallelization [57].

SELECT queries. Cascade currently does not support SQL-like SELECT queries. Certain applications,
like the DeathStar [23] hotel reservation benchmark require this type of functionality. The /search/
endpoint requires searching through all hotels and returning those within a certain distance from a
point. A prototype for such a system was explored by saving existing keys in a dedicated Indexer
operator, which could then be queried to return all the keys for a certain stateful operator, essentially
mimicking a SELECT key FROM operator query. However, further work would be required to provide
efficient data retrieval operations that are competitive with existing database-based approaches, and
ideally would support efficient implementations of common query operations such as range selection,
sorting and joins.

To the best of our knowledge, built-in support for secondary indexing in existing dataflow systems
is severely limited. This may be partly due to the unstructured nature of state in dataflow systems, as
building and maintaining indexes can require significant overhead: [58] finds that unstructured data is
a limitation when incorporating efficient indexing into dataflow systems and [59] explores the trade-
off of building indexes in the context of monetary cost optimization for dataflow systems in the cloud.
We argue that state in Cascade is similar to NoSQL systems such as Cassandra [60], MongoDB [61] and
DynamoDB [62], that have flexible schemas. MongoDB defaults to B+ trees for indexing, which follows
the approach of traditional relational databases. However, the optimal data structure for indexing also
depends on the type of query performed, and there are many trade-offs to consider [63]. For example,
WHERE clauses are more suited to hash-based indexing whereas geospatial indexes may be used for
location-based queries [64].

Transactions. Cascade currently lacks support for transactions, which could lead to unexpected
consequences, for example when the same state is accessed and modified by two different dataflows.
Support for transactional workflows could lock pieces of accessed state in critical sections and prevent
such issues. This would serve to isolate concurrent operations from each other and ensure that an event
would see a consistent application state. Maintaining these properties is not always simple. Parallel
dataflows could easily lead to atomicity violations, and durability guarantees are different depending
on the underlying execution target. Orleans [6] is a similar system to Cascade that has implemented
ACID transactions, and has addressed some of these issues.
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Event generation. Currently, dataflows are executed by constructing the necessary Event objects
somewhat manually, and sending them to a CascadeClient object. Future versions could raise the
abstraction level and automatically transform calls such as user.buy_item(item) into an Event sent
to the CascadeClient, through some program analysis. Automatic event generation and sending was
already implemented in StateFlow, and Cascade could take the same approach [56].
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Appendix A

Class Diagrams

A1 Operators and blocks

blocks

dataflows

operator_name

DataFlow

str dataflow_name
str operator_name
dict<int, list<int>> adjacency_list
dict<int, Node> nodes
list<Edge> edges
list<Node> entry
list<str> args
dict<str, CompiledLocalBlock> blocks

Operator
<<abstract>>

dict<DataflowRef, DataFlow> dataflows
str operator_name

StatelessOperator

Type python_class

invoke_block(dataflow, block, function_state)

StatefulOperator

Type<T> python_class

init_class(*args, **kwargs) -> T
invoke_block(dataflow, block, function_state, operator_state: T)

CompiledLocalBlock

str base_name
str class_name
list<str> reads
list<str> writes
MethodCall function

call_block(*args, **kwargs)
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A2 Dataflow node types

Node
<<abstract>>

int id
list<Edge> outgoing_edges

propogate(event: Event) -> List<Event>

ReturnNode

str return_var

IfNode

str predicate_var

CallRemote

DataflowRef dataflow
dict<str, str> variable_remap
Optional<str> assign_result_to
Optional<str> keyby

CallLocal

str block_name

CollectNode

int num_events

A3 Events and the call stack

dataflow

call_stack

dataflow

CallStackItem

DataflowRef dataflow
dict<str, Any> function_state
list<Node> entry_nodes
Optional<str> assign_result_to
Optional<str> key

Event

Node target
dict<str, Any> function_state
DataflowRef dataflow
int _id
list<CallStackItem> call_stack
dict metadata
Optional<str> key

propogate()

DataflowRef

str operator_name
str dataflow_name
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Appendix B

PyFlink Configuration Settings
In order to optimize PyFlink for low-latency, the following settings where used:

1 python.execution-mode: "thread"
2 python.fn-execution.bundle.time: 5
3 python.fn-execution.bundle.size: 1
4 execution.batch-shuffle-mode: "ALL_EXCHANGES_PIPELINED"
5 execution.buffer-timeout: "0 ms"

In addition, internal Kafka sources where given the property:

1 fetch.min.bytes: 1

while internal Kafka sinks set:

1 linger.ms: 0
2 acks: 1
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