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Abstract 
 

Urban pluvial flooding occurs when the run-off converted rainfall exceeds the capacity of the 

sewer or stormwater system (Houston et al., 2011). This can result in damage to ecology, 

infrastructure, disruption to human activities, injuries and in the worst-case scenario, loss of life 

(Biniyam et al., 2017). With the expected increase in the world’s population living in urban areas 

to 68% by 2050 (UN, 2018) and a more frequent occurrence of extreme weather events with a 

longer duration and higher intensity in the future (IPCC, 2012), there is a need to improve early 

warning system and disaster management (Restrepo-Estrada et al., 2017). Lopez et al. (2005) 

mentions that one of the key factors in hydrological models to determine accurate flood 

estimates is to have accurate rainfall input. However, many urban areas might lack this 

information because sensors are not available, or the number of sensors is too few to cover the 

entire region with an acceptable resolution (Restrepo-Estrada et al., 2017).  Kidd et al. (2017) 

mentions that the density of rain gauges varies per region, with Europe and Eastern-Asia 

(including Japan) having a decent coverage by rain gauges, while the rest of the world has a 

sparse coverage of rain gauges. Citizen science or community-based monitoring may offer a 

solution to fill in some of the data gaps (Paul et al., 2018). Citizen science is often defined as the 

participation of the general public in the research design, data collection and interpretation 

process together with scientists (Buytaert et al., 2014; Paul et al., 2018). In a study by Eilander et 

al. (2016), where social media like twitter and Facebook were used to follow real-time flood 

events, the limiting factor was the number of social-media users. With the increase of 

population in urban regions (UN, 2018), these might offer good testing grounds for pilot projects 

involving citizen science.  

This study assesses the potential of citizen observatories for improving the spatial 

measurements of rainfall in comparison to a single professional station. Two types of citizen 

observatories are used, semi-professional stations (TU Delft) and citizen weather stations 

(Netatmo), that are located near the city of Rotterdam. In total there are 9 TU Delft stations and 

73 Netatmo stations in a region of 256.7 km2. Based on a spatial variance analysis between these 

two types of citizen observatories and a professional station (KNMI) in the region, weighing 

factors are determined in order to merge and interpolate the data from the citizen observatories 

into a single rainfall map. This interpolated map is then compared to the radar rainfall maps, 

which are bias-corrected based on a network of professional ground stations (Overeem et al., 

2016), and provide rainfall data with a 1x1 km spatial resolution. The baseline for improvement 

comes from the assumption that the rainfall measured by the KNMI station is uniform over the 

entire study area. By comparing the differences between KNMI and radar and citizen 

observatories and radar, it can be assessed whether the citizen observatories are an 

improvement.  

The results show that the interpolated rainfall maps are better at capturing the spatial structure 

of the rainfall event, both on the small-scale (10-minute timestep) and event-scale (total 

accumulation). When it comes to the actual rainfall values, it became clear that rainfall 

intensities  within a 4 km radius from the KNMI station were better represented by the KNMI 

station while after a distance of 8 km, the citizen stations clearly helped give a better 

representation. 
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Nomenclature 
 

List of symbols 

Symbol Unit Definition 

𝑅𝑖(𝑋𝐾𝑁𝑀𝐼)  mm the 10-minute rainfall value at time 𝑡𝑖 from the KNMI station 

Ri(𝑋ℎ)  mm the 10-minute rainfall value at time 𝑡𝑖 from a citizen station. 

𝑋ℎ  x, y location of a citizen station 

𝑋𝐾𝑁𝑀𝐼  x, y location of the KNMI station 

𝛾  mm2 semivariance of a citizen station 

N - number of datapoints per pair 

𝑅(𝑥0)  mm the 10-minute rainfall value to be determined in a pixel 

𝑁, 𝑀, … , 𝑂  - number of stations per type of citizen station 

𝑎, 𝑏, . . . , 𝑧  - type of citizen station 

𝑑𝑖,𝑗,…,𝑘𝑎,𝑏,…𝑧
  m distance of citizen station to a pixel 

𝑅(𝑑𝑖,𝑗,…,𝑘𝑎,𝑏,…,𝑧
)  mm the 10-minute rainfall value of a citizen station 

𝜆𝑖,𝑗,…𝑘𝑎,𝑏,…,𝑧
  mm-2 weight based on distance from pixel 

n+α mm2 sill 

α mm2 partial sill 

n mm2 nugget 

β m pseudo-range 

d m distance to KNMI station 

RMSD mm2 Root Mean Squared Difference 

𝑦𝑖̂  mm mean-value of the difference per pixel 

𝑦𝑖  mm difference per pixel 

𝑛  - number of observations 

𝑝  - Pearson-correlation 

𝑐𝑜𝑣(𝑥, 𝑦)  mm2 covariance between variables 

𝜎𝑥,𝑦  mm2 standard deviation of variables 

𝑂𝑖  mm2 observed semivariance 

𝑀𝑖  mm2 modelled semivariance 

𝑁  - number of citizen stations 
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1. Introduction 
 

In 2018, 55% of the world’s population lived in urban areas. This is expected to increase to 68% 

by 2050 (UN, 2018).  Because of high levels of imperviousness compared to natural systems, 

response times tend to be shorter with higher run-off ratios and consequently higher peak flows 

(Veldhuis et al., 2017). Pluvial flooding occurs when the runoff converted rainfall exceeds the 

capacity of the sewer or stormwater system (Houston et al., 2011). If the system is a combined 

sewer system, this can lead to polluted sewer water to flood the streets, which poses a health 

hazard. In the case there is a combined sewer overflow (CSO), polluted water will enter the 

surface water system, which can lead to death of the marine life. During the heavy rain event of 

May 31st, 2018 in Rotterdam, the rainfall rate exceeded the capacity of the combined sewer 

system, leading to CSO and reports were made of sightings of massive loss of fish in the canals 

(AD, 2018). In addition, extreme rainfall events which lead to flooding can result in damage to 

ecology, infrastructure, disruption to human activities, injuries and in the worst-case scenario, 

loss of life (Biniyam et al., 2017). According to the IPCC (2012), extreme weather events are 

expected to increase in frequency, intensity and duration for many regions in the future. To 

prevent or mitigate future risks, there is a need for dense, high-resolution rainfall measurements 

in highly populated regions (Muller et al., 2015), that can improve early warning systems and 

disaster management (Restrepo-Estrada et al., 2017) as well as flood and urban drainage 

management (Muller et al., 2015). This means that it is important to have accurate and timely 

surface precipitation data (Brouwer et al., 2017). Lopez et al. (2005) mentions that one of the 

key factors in hydrological models to determine accurate flood estimates is to have accurate 

rainfall input. However, many urban areas might lack this information because sensors are not 

available, or the number of sensors is too few to cover the entire region with an acceptable 

resolution (Restrepo-Estrada et al., 2017).  Kidd et al. (2017) mentions that the density of rain 

gauges varies per region, with Europe and Eastern-Asia (including Japan) having a decent 

coverage by rain gauges, while the rest of the world has a sparse coverage of rain gauges. Citizen 

science or community-based monitoring may offer a solution to fill in some of the gaps in data 

(Paul et al., 2018). Citizen science is often defined as the participation of the general public in 

the research design, data collection and interpretation process together with scientists (Buytaert 

et al., 2014; Paul et al., 2018). A study by Eilander et al. (2016), where social media like twitter 

and Facebook were used to follow real-time flood events, the limiting factor was the number of 

social-media users. With the increase of population in urban regions (UN, 2018), these might 

offer good testing grounds for pilot projects involving citizen science.  

This research focusses on various crowdsourced rainfall data, and how their combined use can 

give better insight on the spatial variability of rainfall in urban areas compared to having just a 

single high-quality weather station. This rainfall product will then be compared to radar images, 

since radars can obtain data with a high temporal and spatial resolution (Lopez et al., 2005).  

The main research question therefore is: Can citizen observatories be used to improve 

information on the spatial variability of rainfall? To answer this question, a few sub-questions 

need to be answered. Which citizen observatories stations should be used? This question is 

related to the availability of the data from the stations, in addition to a manual quality control 

on the data. How do we quantify uncertainty of the citizen observatories? Section 2 will explain 

how radar data will be used to assess the data from the citizen observatories. Since the rainfall 

product will be compared to radar, it needs to be known how citizen observatories directly 

compare the radar. How can various data sources be merged into a single rainfall product? Each 
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type of rainfall station has its own quality and uncertainty. This needs to be accounted for when 

creating merged products. And lastly, how does the structure of the rainfall event relate to the 

added value of a network of citizen observatories?  

 

1.1 Context of the study: FloodCitiSense 
This research is done as part of the FloodCitiSense project. FloodCitiSense is a project involving 

many research organisations, a few of which are the Vrije Universiteit Brussel (VUB), Delft 

University of Technology (TUD), Imperial College London and the International Institute for 

Applied Systems Analysis, Ecosystems Services and Management Program (IIASA). The aim of 

the project is the development of an urban pluvial flood early warning service for and by citizens 

and city authorities. Citizens will no longer be seen as potential “victims” of floods but are 

actively engaged in the monitoring and mapping of urban pluvial floods. Figure 1.1 shows the 

concept of the FloodCitiSense project. In this project, citizens are involved in measuring rainfall 

data and making reports of pluvial flooding because of rainfall. By using the citizen data, a model 

can be made to determine a threshold for pluvial floods and a more location-precise early 

warning system can be created.  

The FloodCitiSense project is in its pilot phase and will be tested in three cities, Birmingham, 

Brussels and Rotterdam. This research focuses on the city of Rotterdam. 

 

 

 

1.1.1 Engagement strategies 
One of the challenges in citizens science is the number of citizens participating (Eilander et al., 

2016). What is the correct way to engage these citizens? According to Wehn et al. (2015), three 

aspects need to be considered. Firstly, the goals of the involvement. Secondly, the participants 

themselves. Who are they (Fung, 2006)? What might be their reasons for joining (Goodchild, 

2007)? Lastly, the means through which they are invited. They should be considered active 

coordinators during an incident instead of victims. Buytaert et al. (2014) gives even more insight 

in reasons for participating, some of which are self-driven environmental concern, scientific 

curiosity or local stakeholders. Critically, the participants should feel valued and not patronized. 

Starkey et al. (2017) explains the means with which they reached the people. A workshop was 

given for the local community and key partners (i.e. land owners and residents). Reaching 

participants from a wider range was done by social media, newspapers and leafleting.  

 

Figure 1.1: Concept of FloodCitiSense. (source:ENSUF-full-proposal-
form_FloodCitiSense) 
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In the case of FloodCitiSense, multiple workshops were organized to explain the project, the 

goals and the value of the citizens. In the latest workshop, participants were able to build their 

own sensor, to show the ease with which rainfall sensors can be created. It will also act as a way 

for the participants to feel actively involved and hopefully feel more responsible for the sensor 

with regards to maintenance. Secondly, the workshop will explain the mobile app that has been 

created, which is a way in which the participants can give active feedback and reports. The app 

will also be one of the ways for the participants to receive updates from FloodCitiSense. 

Furthermore, a questionnaire was created for the citizens to give feedback to help and improve 

future workshops and to have a better understanding on how to maintain the interests of the 

participants for a long-term relation. Participants were initially gained by posting on the main 

employee website of the municipality of Rotterdam, which is one of the partners of the 

FloodCitiSense project. Employees of the urban management department were mailed 

additionally. In addition, flyers were posted on the Water Management department of the TUD. 

 

1.2  Guidelines for reading 
In section 2, the study area will be introduced as well as the data and methodology. Section 3 

will show results and findings. Section 4 will discuss the limitations of the study and possible 

future improvements. Section 5 will conclude with a short summary of the study and the most 

important findings. 
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2. Data & Methods 
 

This section will introduce the study area, the data used to conduct the study, the software and 

the methods.  

2.1  Study Area 
The study area is influenced the FloodCitiSense project, focussing on the city of Rotterdam. The 

boundaries of the study area are chosen such, that the radar image covers the entire city. The 

coordinates of the study area are given in table 1.  

 

 

 

 

Table 1: Boundary coordinates of study area 

The total surface area of the study region is 257.6 km2. The total area of the city of Rotterdam is 

125.3 km2. The municipality of Rotterdam is working hard to make the city climate adaptive (RCI 

2008). In order to reach this goal, they have 6 separate subjects, one of which is ‘Flooding due to 

extreme weather events.’ The city of Rotterdam is located in the delta area where the rivers 

Meuse, Rhine and Waal reach the North-Sea. During extreme rainfall intensities the city 

experiences street floods, flooding of the basements and combined sewer overflow. Whenever 

flooding occurs, citizens can make a report to the municipality. A clear relation can be seen 

between reports and the imperviousness of an area in the city of Rotterdam. If an area has an 

imperviousness of 70% or more, the number of reports increases significantly (Bouwens et al., 

2018). Having a better understanding of the spatial variability of rainfall events can help predict 

whether a certain area or district will be flooded, and an early-warning system can be created 

to increase preparedness as well as help post-flood analysis. In the case of property damage, it 

can also help the citizens with their insurance claims. 

 

Figure 2. 1: Map of study area with locations of the citizen observatories used in this research 

 Coordinates 
(EPSG 28992: Amersfoort) 

Northern Boundary 446500 
Southern Boundary 430500 
Eastern Boundary 85400 
Western Boundary 101500 
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2.2 Data  
In this section the different data types are mentioned. The characteristics of the data and why 

the data is used. Table 3 gives an overview of the data. 

2.2.1 Netatmo weather stations 
Netatmo manufactures low-cost citizens weather stations (source: 

https://www.netatmo.com/en-gb/weather/weatherstation/accessories#raingauge) . According 

to the product specifications provided by Netatmo, the rain gauges have a measuring range of 

0.2 to 150 mmh-1 with an accuracy of 1 mmh-1. The rainfall gauge is a tipping bucket with a volume 

of 0.101 mm. The funnel has a diameter of 130 millimetre. The rain gauge sends the data 

wirelessly to the indoor station that can be up to 100 meters away from the station. (source: 

https://www.netatmo.com/en-US/product/weather/weatherstation/specifications, 

specifications smart rain gauges → Sensors and measurements) 

The Netatmo rainfall data is used as part of the citizen observatory data to verify if these stations 

can be used to gain better insight on the information of the spatial variability of rainfall.  

 

Figure 2.2: Netatmo rain gauge (source: 
https://res.cloudinary.com/dxyci1a78/image/upload/c_scale,dpr_1.25,f_auto,q_auto/v1/weather/accessories/landing) 

2.2.2 TU Delft weather stations 
TU Delft is involved with the RainGain project (which is over at this point in time) and the 

climate institute. From this project, there are 15 stations located in and around Rotterdam. 

These stations are maintained about once every 2 months, or if it becomes clear there are big 

discrepancies between them. Unfortunately, six of the stations are no longer active but their  

historical data is still available.  The rainfall gauge is a tipping bucket with a volume of 0.2 mm. 

The rain gauge sends the data wirelessly to the database every minute. (source: 

http://www.raingain.eu/sites/default/files/fs1_tech_spaansepolder_0.pdf) 

According to the manufacturer (Campbell Scientific), the gauges have a measuring range of 0 

to 700 mmh-1 with an accuracy of 2% if the intensity is less than 250 mmh-1 and an accuracy of 

3% if the intensity if larger than 250 mmh-1. The funnel as a diameter of 200 millimetres. (source: 

https://www.campbellsci.com/tb4mm)  

The TU Delft rainfall data is used as part of the citizen observatory data to verify if these stations 

can be used to gain better insight on the information of the spatial variability of rainfall. The 

TU Delft stations are assumed to be of intermediate quality, between amateur and professional 

quality. However, they will be referred to as citizen stations, as they are part of the citizen 

observatories. 

https://www.netatmo.com/en-gb/weather/weatherstation/accessories#raingauge
https://www.netatmo.com/en-US/product/weather/weatherstation/specifications
https://res.cloudinary.com/dxyci1a78/image/upload/c_scale,dpr_1.25,f_auto,q_auto/v1/weather/accessories/landing
http://www.raingain.eu/sites/default/files/fs1_tech_spaansepolder_0.pdf
https://www.campbellsci.com/tb4mm
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Figure 2. 3: TU Delft rain gauge. (source: https://weather.tudelft.nl/photos/Oost/2017-04-10_05_oost.jpg) 

 

2.2.3 FloodCitiSense Intervalometers 
From the FloodCitiSense project, intervalometers provided by Disdrometrics are given to the 

participants. During the workshop, 16 intervalometers were distributed. These rainfall sensors 

are placed and maintained by the citizens. Once a month, the citizens will upload the data to 

the database. The intervalometers measures the time between raindrops that fall on the sensor 

to estimate the rainfall intensity (Giesen et al. 2017).  This means that that when it rains, the 

intervalometer measures the rainfall intensity with a temporal resolution in the order of 

milliseconds. The temporal resolution of the intervalometer can be set by the user (ie. minute, 

hourly, daily, etc.). 

The intervalometer rainfall data is used as part of the citizen observatory data to verify if these 

stations can be used to gain better insight on the information of the spatial variability of rainfall. 

Unfortunately, in the first month after the distribution of the sensors, the Netherlands 

experienced a drought combined with high temperatures. During the rainfall events that 

followed, reports from the participants indicated that the glue had melted due to the heat and 

caused the sensor to no longer be waterproof, as well as the internal battery to expand in some 

cases. This caused sensors to stop functioning. Therefore, not enough data could be collected 

and unfortunately the intervalometers could not be used in this research. 

 

 

Figure 2. 4: FloodCitiSense intervalometer 

 

https://weather.tudelft.nl/photos/Oost/2017-04-10_05_oost.jpg
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2.2.4 KNMI weather station 
The KNMI weather station is located near the Rotterdam-The Hague airport. The KNMI station 

is an automated gauge and is maintained every day. It measures rainfall by means of a heighted 

weighing bucket and can therefore measure both liquid and solid precipitation. The KNMI has 

4 guidelines when installing their weather stations. 1) Within a radius of 25 meters, no crops or 

vegetation higher than 0.5 meters is allowed, 2) within a radius of 50 meters, no crops or 

vegetation is allowed higher than 1.5 meters, 3) within a radius of 100 meters, no obstacles such 

as trees or bushes are allowed and 4) within a radius of 400 meters, no obstacles such as barns, 

buildings and forests are allowed (source: 

http://projects.knmi.nl/hawa/pdf/Handboek_H01.pdf). The open source rainfall data has an 

hourly temporal resolution. However, employees have access to unvalidated 10-minute 

resolution data. Special thanks to Hutten et al. (2018) for providing this data. 

The KNMI weather station will be used as the baseline for this research, which will be explained 

in section 2.3, the methodology. 

 

Figure 2. 5: Sketch of an automated weather station. F) measures rainfall depth and G) measures rainfall duration. 
(source: http://projects.knmi.nl/hawa/pdf/Handboek_H01.pdf) 

2.2.5 Radar 
Meteorological radar has the advantage of being able to cover a wide area with a high temporal 

and spatial resolution (Lopez et al., 2005). Radar samples precipitation by transmitting an 

electromagnetic wave, which interacts with various objects in the atmosphere (usually 

raindrops or other forms of precipitation) and measuring the backscatter. Unfortunately, the 

rainfall estimated by radar can be affected by various reasons: ground clutters caused by 

topographic interference (Espinosa et al., 2005) or errors in reflectivity-rainfall (Z-R) 

relationships (AghaKouchak et al., 2010). Also, systematic errors due to calibration can occur 

(Piccolo et al., 2005).  

The radar data will be retrieved from the ‘Nationale Regenradar’. It is a combined radar product 

using Dutch, German and Belgium radars. It is corrected for bias using all known reliable ground 

stations to give rainfall data with a 5-minute temporal resolution and a 1x1 km spatial resolution 

(Nationale Regenradar, 2013). 

The radar data will be used as validation for the spatial variability of the citizen stations.  

http://projects.knmi.nl/hawa/pdf/Handboek_H01.pdf
http://projects.knmi.nl/hawa/pdf/Handboek_H01.pdf
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2.2.6 Software   
This study makes use of the programming language Python 3.6.5 and Quantum GIS (QGIS). 

QGIS is mainly used for visualization of the rainfall maps and any subsequent maps used for 

analysis as well as some basic distance calculations. Python 3.6.5 is used to download the radar 

data from the Nationale Regenradar using an API provided by Nelen&Schuurmans. The API 

downloads the radar with a 1x1.15 km spatial resolution instead of 1x1 km, which does not 

influence this research. Furthermore, Python 3.6.5 is used for programming, making use of the 

following packages: pandas, numpy, matplotlib.pyplot, os, scipy, pyproj.  

 

2.2.7 Selected rainfall events 
Four rainfall events are manually selected to test the main research question. The events are 

selected based on high rainfall intensities. Table 2 gives and overview of the events. Because the 

KNMI data and the Netatmo data range from October 2015 to October 2017, only events from 

this period will be taken. In appendix B, for each event, the data from the stations and radar is 

plotted. The intensities of the radar, TU Delft stations and Netatmo stations are aggregated to 

a 10-minute resolution, as this is the resolution of the KNMI station.  

 

Event  
Number 

Start event  
(yyyy/mm/dd hh:mm) 

End event  
(yyyy/mm/dd hh:mm) 

Duration 
event 

1 2015-11-29 18:00 2015-11-29 20:50 3 hours 
2 2016-06-22 23:20 2016-06-23 01:50 2.5 hours 
3 2016-11-17 15:00 2016-11-17 22:50 8 hours 
4 2017-07-25 05:00 2017-07-25 07:50 3 hours 
Table 2: Duration and dates of the four chosen events to be used to test the merging method 

Furthermore, the radar data retrieved from the Nationale Regenradar presented some issues. 

One of the issues resulted in some of the radar pixels having an infinite rainfall depth, as can be 

seen in figure 2.6. Before the Nationale Regenradar data is made public, some filters are applied. 

It is unclear what the purpose of some of these filters is, as there is no documentation on them, 

but it caused the radar pixels to have impossibly high values. In finding the four rainfall events, 

it was important that these pixels were not present.  

 

Figure 2.6: Nationale Regenradar showcasing the issue with some radar pixels giving impossibly high values 
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Another issue with the radar, can be seen in Appendix B, figure B4d. There is one pixel that does 

not follow the same trend as the other pixels, giving strange rainfall values. Looking at the 

location of this pixel, it is right above the Waalhaven, which is a location containing radio-

towers which can disrupt the radar signal. This might therefore happen to all radar images and 

not just the Nationale Regenradar. 
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Table 3: Overview of data sources 

 

 

Rainfall datasets 

Name Description Period Application Source 

Netatmo stations Citizen weather stations from 
Netatmo, providing rainfall 
data with a 5-minute 
resolution. A total of 73 
stations. 

1 October 2015 to  
1 October 2017 

Input for the merged 
rainfall product. 

Special thanks to R. Hutten, for providing the 
raw Netatmo data, which was used in her own 
research 

TU Delft stations Weather stations set up as 
part of the RainGain project 
in the city of Rotterdam, 
providing rainfall data with a 
5-minute resolution. A total 
of 9 stations. 

23 April 2013 to  
30 April 2018 

Input for the merged 
rainfall product. 

http://weather.tudelft.nl/csv/ 
 

KNMI weather station Automated weather station 
from the KNMI in the city of 
Rotterdam, giving validated 
rainfall data with a 10-minute 
resolution. 

1 October 2015 to  
1 October 2017 

Baseline to evaluate if the 
merged rainfall product 
improves information on 
the spatial variability as 
well as ‘truth’ to calculate 
the cross-variogram. 

Special thanks to R. Hutten, for providing the 
validated KNMI data, which was used in her own 
research.  

Nationale Regenradar Radar image created by a joint 
effort from the Dutch, 
German and Belgium radar 
and corrected for bias using 
known reliable ground 
stations. Spatial and temporal 
resolution of 1x1.15 km and 5-
minute respectively. 

23 April 2013 to  
30 April 2018 

The radar is used to assess 
whether the merged 
rainfall product improved 
information on spatial 
variability. 

https://demo.lizard.net/api/v3/rasters/730d6675-
35dd-4a35-aa9b-bfb8155f9ca7/data/?\ 
 
 

http://weather.tudelft.nl/csv/
https://demo.lizard.net/api/v3/rasters/730d6675-35dd-4a35-aa9b-bfb8155f9ca7/data/?/
https://demo.lizard.net/api/v3/rasters/730d6675-35dd-4a35-aa9b-bfb8155f9ca7/data/?/
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2.3 Methods 
In order to find out whether citizen stations can improve spatial rainfall estimates, it is 

important to set a baseline against which the citizen stations can be compared. This baseline is 

the KNMI weather station in the north-west of the study area. The rainfall measured by the 

KNMI station is assumed uniform over the study area. Using the radar, the difference per radar 

pixel can be determined. The next step is to use the citizen stations to create a merged rainfall 

map and compare this with the radar. Comparing both difference-maps allows to assess the 

value of having a dense network of citizen stations as opposed to having a single high-quality 

station.   

Usually, before the data from the citizen stations can be used, it is important to apply some 

basic form of quality control. In this study, the data will undergo a manual check, to remove 

malfunctioning stations and obviously wrong data. They will not be subjected to any automatic 

filters or calibration, as the objective is to verify whether they can be used as is. 

The criteria for removal of stations or data points during the manual check will be large data 

gaps, long periods with zer0-measurements while close by stations do measure rainfall and 

impossibly high rainfall values. 

 

2.3.1 Cross-variogram 
The next step is to merge the data together to a single rainfall product. Since this study is making 

use of different types of citizen stations, each with their own quality and uncertainty, this 

uncertainty needs to be quantified before the data can be merged. A cross-variogram (eq.1) 

between the KNMI station and citizen stations is chosen as the means to quantify the 

uncertainty and quality. The main idea behind a variogram is that nearby values tend to be more 

similar than values that are further apart. Therefore, there should be a decreasing correlation as 

a function of distance. By calculating the cross-variogram, a relation between distance and 

dissimilarity can be determined for each of the network of citizen stations. This assumes that 

rainfall data from the KNMI weather station is the ‘truth’ and free of measurement errors. 

 

𝛾(‖𝑋ℎ − 𝑋𝐾𝑁𝑀𝐼‖) =
1

2𝑁
∗ ∑ [𝑅𝑖(𝑋ℎ) − 𝑅𝑖(𝑋𝐾𝑁𝑀𝐼)]2𝑁

𝑖=1  [mm2]   (1) 

 

𝑅𝑖(𝑋𝐾𝑁𝑀𝐼) [mm]  the 10-minute rainfall value at time 𝑡𝑖 from the KNMI station 
Ri(𝑋ℎ)  [mm]  the 10-minute rainfall value at time 𝑡𝑖 from a citizen station. 
𝑋ℎ  [x, y]  location of a citizen station 
𝑋𝐾𝑁𝑀𝐼   [x, y]  location of the KNMI station 
𝛾  [mm2]  semivariance of a citizen station 
N  [-]  number of datapoints per pair 

 

Note that this is not a true cross-variogram, in the strict sense that it does not have two moving 

variables. The location of the KNMI station is constant, therefore only the location of the citizen 

stations is variable. 

The variogram can be characterised by three variables: sill, range and nugget. After a certain 

distance, a variogram levels out. This distance is called the range. After this distance, points are 

no longer spatially correlated. The value at which the variogram decorrelates is called the sill. 
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The nugget is the discontinuity at distance zero. If two identical rain gauges are located at the 

same location, they should have similar measurements, giving a nugget of zero. In the case of 

this research, a professional weather station (KNMI) is compared to a citizen station (Netatmo 

& TU Delft), so a nugget is to be expected.  

Having quantified the uncertainty and quality of each type of citizen station, the method to 

merge the data to a single rainfall product is shown in equation 2. The intensity in the pixel is 

calculated by equation 2. 

  

𝑅(𝑥0) =
∑ 𝜆𝑖𝑎∗𝑅𝑎(𝑑𝑖𝑎)𝑁

𝑖=1 +∑ 𝜆𝑗𝑏
∗𝑅𝑏(𝑑𝑗𝑏

)𝑀
𝑗=1 +⋯+∑ 𝜆𝑘𝑧∗𝑅𝑧(𝑑𝑘𝑧)𝑂

𝑘=1

∑(𝜆𝑎)+∑(𝜆𝑏)+⋯+∑(𝜆𝑧)
 [mm]  (2) 

 

𝑅(𝑥0)  [mm]  the 10-minute rainfall value to be determined in a pixel. 
𝑁, 𝑀, … , 𝑂 [-]  number of stations per type of citizen station. 
𝑎, 𝑏, . . . , 𝑧 [-]  type of citizen station. 
𝑑𝑖,𝑗,…,𝑘𝑎,𝑏,…𝑧

 [m]  distance of citizen station to a pixel 

𝑅(𝑑𝑖,𝑗,…,𝑘𝑎,𝑏,…,𝑧
)  [mm]  the 10-minute rainfall value of a citizen station. 

𝜆𝑖,𝑗,…𝑘𝑎,𝑏,…,𝑧
 [mm-2]  weight based on distance from pixel. 

 

The weights 𝜆𝑖,𝑗,…𝑘𝑎,𝑏,…,𝑧
 are based on the cross-variogram and will be approximated by 𝜆 ∝  

1

𝛾
. 

Where 𝛾 is dependent on the distance of the pixel to the citizen station. Being further away 
from the station results in a higher 𝛾 and therefore a lower weighing factor. In this manner, 
stations closer to the pixel have a higher contribution in calculating the rainfall. The cross-
variogram is calculated as a function of distance between the KNMI station and the citizen 
stations, which means that in order to calculate the weight for a citizen station to a pixel, a 
model is required that describes the cross-variograms. In order to find this model, first the 
variogram needs to be calculated and second a model needs to be fitted. 
 
Possible models, among others, that could fit a variogram are the Gaussian model, the Spherical 
model, the Linear model and the Exponential model. For simplicity, an Exponential model (eq. 
3) will be used to fit the cross-variograms. 
 
 

𝛾 =  𝑛 + 𝛼 ∗ (1 − 𝑒
−3∗

𝑑

𝛽) [mm2]      (3) 

 
n+α  [mm2]  sill 
α  [mm2]  partial sill 
n  [mm2]  nugget 
β  [m]  pseudo-range 
d  [m]  distance to KNMI station 

 

The model will be fitted to the cross-variograms using the non-linear, weighted least-square 

method. However, each pair of citizen-KNMI station has a different number of datapoints (fig. 

2.7 and fig. 2.8) when calculating the semivariance. This difference in number of datapoints is 

added as a weight to the fit in the form of 𝑁
𝑖

1

2, in which 𝑁𝑖 is the number of datapoints per pair. 
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This will mean that semivariance values that are calculated with more datapoints, will have a 

higher impact on the fit. 

 

 

 

 

2.3.2 Assessment of rainfall maps 
The rainfall map of the study area based on eq. 2 will be assessed using two methods. Firstly, 

the RMSD-method (eq. 4). Secondly, the Pearson-correlation (eq. 5). 

 

2.3.2.1 RMSD-method 

The RMSD is defined as ‘the square root of the mean of the squared differences between 

corresponding elements of the forecasts and observations’ (Barnston, 1992). In this research, the 

radar rainfall data are the observations and the rainfall maps based on the citizen stations are 

the forecasts.  

𝑅𝑀𝑆𝐷 =  √∑
(𝑦𝑖̂−𝑦𝑖)2

𝑛
𝑛
𝑖=1  [mm]      (4) 

𝑦𝑖̂  [mm]  mean-value of the difference per pixel 
𝑦𝑖   [mm]  difference per pixel 
𝑛  [-]  number of observations 

 

Figure 2.7: N-datapoints > 0, pair KNMI-Netatmo 

 

 

Figure 2.8: N-datapoints > 0, pair KNMI-TU Delft 

 



 
 

27 
 

The RMSD-method will be applied in two ways. Firstly, the RMSD will be calculated over an 

entire rainfall event. These rainfall events are selected manually, see section 2.2.7. By looking at 

an entire event, a RMSD can be determined for each pixel in the study area. Secondly, the same 

events will be used to determine the RMSD per timestep within the event. This will not give 

value per pixel but rather give a single value for the entire map. Per timestep it will become clear 

which rainfall map produced a better image of the rainfall. 

 

2.3.2.2 Pearson-correlation 

The Pearson-correlation 𝑝 is a measure of the strength of the linear relationship between two 

variables. The value of 𝑝  ranges from -1 to +1, with -1 meaning a perfect negative linear 

correlation and +1 meaning a perfect positive linear correlation. If the correlation is zero, it 

means there is no linear correlation.  

𝑝 =
𝑐𝑜𝑣(𝑥,𝑦)

𝜎𝑥𝜎𝑦
 [-]        (5) 

𝑐𝑜𝑣(𝑥, 𝑦) [mm2]  covariance between variables 
𝜎𝑥,𝑦   [mm2]  standard deviation of variables 

 

We expect there to be a positive correlation, since the radar data and the rainfall maps based 

on the ground stations are estimates of the same process. Table 4 shows the guideline to 

determine whether two datasets have a strong correlation. 

 

 

 Coefficient, p 

Strength of Association Positive Negative 

Small 0.1 to 0.3 -0.1 to -0.3 
Medium 0.3 to 0.6 -0.3 to -0.6 
Large 0.6 to 1.0 -0.6 to -1.0 

Table 4: Guideline to determine strength of correlation 

 
Like the RMSD-method, the Pearson-correlation will be taken over an entire rainfall event 
duration, to show the correlation of each pixel, and the individual timesteps to get a correlation 
for the entire map. 
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3. Results 
 

3.1 Manual Quality Control 
This research will try to use the raw data as much as possible to verify whether they can be used 

as is, without having to go through many filters. The data will undergo a visual check, to remove 

faulty stations or faulty data as explained in section 2.3. 

Based on the visual check, we can identify some stations that have obviously wrong values. 

(example. fig 3.1 and 3.2). It seems that the Netatmo station is not measuring any rainfall, while 

the TU Delft station has a few outliers. The outliers from the TU Delft station are set to not a 

number, while the faulty Netatmo station is removed completely. 

 

 

 

In total there were two TU Delft stations (Ridderkerk and Oost) that were adjusted and three 

Netatmo stations (id354, id385 and id485) that were removed. See appendix A, table A1,  for the 

overview and reasons for the adjustment of the stations.  

 

3.2 Empirical variograms 
To merge the data sources to a single output, the difference in the quality of stations needs to 

be quantified. The cross-variogram is created by comparing the citizen stations to the KNMI 

station. There are nine TU Delft stations, while there are seventy Netatmo stations after quality 

control. Research by Hutten et al. (2018) concluded that citizen stations contain faulty zero 

measurements. The research created filters to flag the faulty zeros, to show the reliability of the 

stations. Therefore, in comparing the citizen stations to the KNMI station, only non-zero values 

are considered, to remove the possibility of faulty zeros.  

Figure 3.3 shows the Netatmo:KNMI cross-variogram. Each point represents the semivariance 

between a single Netatmo station and the KNMI station, based on the distance to the KNMI 

station. Immediately it is clear that there is a lot of noise. This can be explained by the number 

of datapoints between the pair. Most of the noise comes from pairs that have a low amount of 

datapoints. Furthermore, the Netatmo station that is closest to the KNMI station, does not have 

 

Figure 3.1: Faulty Netatmo station, no rainfall 
measured 

 

 

Figure 3.2: Faulty TUdelft station, outliers in rainfall 
data 
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the lowest semivariance. This is unexpected, as stations closer to each other are assumed to 

correlate better. However, this again stresses the importance of the quality of the dataset. 

Additionally, there do seem to be two points with high semivariance values compared to the 

rest. No clear reason can be found as to why these two stations give such high semivariance 

values, as their location and rainfall values don’t show anything out of the ordinary.  

 

Figure 3.4 shows the TU Delft:KNMI cross-variogram. In addition to having much fewer points, 

the stations are also far away from the KNMI station. Therefore, it seems that these points are 

already in the levelled-out part of the variogram. Additionally, this variogram also has the issue 

that the lowest semivariance value does not come from the TU Delft station that is closest to 

the KNMI station. 

 

 

 

Figure 3.3: Cross-variogram Netatmo to KNMI. 10-minute temporal resolution. 

 

 

Figure 3.4: Cross-variogram TUdelft to KNMI. 10-minute temporal resolution 

 



 
 

30 
 

3.3 Fitting the model to the variograms 
In order to fit the model (eq. 3) to the variograms, the three variables (sill, range and nugget) 

need to be considered. By setting boundaries for the variables, the fit will become easier. 

Without setting boundaries, the fit is poor, as shown for the Netatmo stations in figure 3.5. 

 

 

The sill is in the order of magnitude of 600 mm2 with a range of 250,000 km and the nugget has 

a value that is larger than the minimum semivariance of the cross-variogram. Considering the 

cross-variogram, there are issues with all three of the parameters. The sill and range are much 

too high in comparison to the variogram, while the nugget is too large. Per definition, the nugget 

cannot be higher than the minimum semivariance value, which would mean that a station at 

distance x > 0, has a higher spatial correlation than a station at distance x = 0. It should be clear 

that at distance x = 0, the spatial correlation should be the highest and therefore the 

semivariance should be the lowest. 

By imposing boundaries on the variables, specifically on the nugget and sill, the fit can be 

improved. First, the Netatmo:KNMI cross-variogram will be fitted as there are much more 

stations with a better spread over distance.  

3.3.1 Netatmo:KNMI cross-variogram, imposing boundaries on the nugget 
Initially, a boundary was imposed on the nugget, since the nugget has clear boundary conditions, 

namely, {0 < nugget < minimum semivariance}. To test the fit based on the nuggets, a goodness 

of fit test was done by minimizing the median of the absolute difference between the model and 

the observed data (eq. 6). 

 

𝐺𝑜𝐹 = min[𝑚𝑒𝑑𝑖𝑎𝑛{|𝑂𝑖 − 𝑀𝑖|}] 𝑤𝑖𝑡ℎ 𝑖 = [1, 2, . . . , 𝑁] [mm2]    (6) 

𝑂𝑖  [mm2]  Observed semivariance  
𝑀𝑖 [mm2]  Modelled semivariance 
𝑁 [-]  Number of citizen stations 

 

The goodness of fit (eq. 6) resulted in the nugget going towards the minimum semivariance 

value, resulting in a value of 94 mm2 for the sill and 32,000 km for the range. These values were 

 

Figure 3.5: Netatmo-KNMI cross-variogram, fit without boundaries giving a bad fit 

 



 
 

31 
 

once again unrealistically large. Zimmerman et al. (2008) also dealt with the issue of identifying 

the proper value for the nugget for semivariogram (so not a cross-variogram as is the case in 

this research). Their solution was to impose the nugget as the semivariance value at the shortest 

distance, which for the case of a semivariogram will be the lowest value for the semivariance. 

Unfortunately, the semivariance at the shortest distance with the cross-variograms in this 

research are not the lowest values, which means they cannot be used as the nugget. 

3.3.2 Netatmo:KNMI cross-variogram, imposing boundaries on the sill 
Seeing that finding a fit by imposing the nugget is not giving the proper results, the sill will be 

used to fit the variogram. To find the boundary for the sill, it needs to be assumed that the 

variogram levels out within the boundaries of the cross-variogram. By looking at the variogram, 

even though there is quite some noise, a trend can be seen. The sill can be approached by taking 

the median of the levelled-out part of the variogram. By looking at the variogram (fig. 3.3), this 

is estimated by taking all the points at a distance x > 9 km. The fit is calculated by rewriting 

equation 3 (see eq. 7).  

𝑦 = (𝑠𝑖𝑙𝑙 − 𝛼) +  𝛼 ∗ (1 − 𝑒
−3

𝑑

𝛽) [mm2]     (7) 

 

 

This approach resulted in a sill of 0.12, a nugget of 0.02 mm2 and a range of 15.9 km. The 

minimum semivariance of the Netatmo:KNMI variogram is 0.03 mm2, so the nugget satisfies the 

boundary conditions. The range is also reasonable, as it stays within the range of the study area. 

The fitted model is shown in figure 3.6. 

 

 

3.3.3 TU Delft:KNMI cross-variogram, imposing boundaries on the sill 
The same method (eq. 7) is applied for the TU Delft:KNMI cross-variogram (fig 3.4). However, 

the variogram presents three issues: 1) the number of datapoints, 2) the spread over the distance 

and 3) the semivariance values. Considering the first issue, less datapoints means a lower 

precision fit. The second and third issue are related to each other, because there are no TU Delft 

 

Figure 3.6: Exponential fit to the Netatmo:KNMI cross-variogram by imposing the sill 

 

, in which the sill is imposed as the median of the levelled-out part of the variogram. 
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stations near the KNMI station and the variogram shows that the points are already in the 

almost levelled-out section of the variogram. The expectation is therefore that the best fit would 

be a straight line. The fitted model by imposing the sill is shown in figure 3.7. 

  

The value for the sill is 0.12 mm2, the range is 7.8 km and the nugget 0.08 mm2.  This nugget 

value, which satisfies its boundary conditions of being lower than the minimum semivariance 

of the variogram (0.086 mm2), is four times larger than the nugget estimated in the 

Netatmo:KNMI cross-variogram.  This means that if a Netatmo station and a TU Delft station 

would be placed next to each other, the rainfall data from the Netatmo station would be more 

reliable. The Netatmo stations are placed by citizens with little maintenance, while the TU Delft 

stations are maintained every two months or if there is a big discrepancy between the stations. 

A valid expectation is that the TU Delft stations are of a better or at least similar quality than 

the Netatmo stations. This is confirmed by comparing the stations directly to the radar data. 

Only pixels containing both TU Delft and Netatmo stations are used for comparison (fig. 3.8 

and fig. 3.9). In this comparison, all zero-values are removed.  

 

 

Figure 3.7: Exponential fit to the TU Delft:KNMI cross-variogram by imposing the sill 

 

 

Figure 3.8: Netatmo data vs radar, only pixels containing both types of citizen 
stations 
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The TU Delft stations have a much higher correlation with the radar than the Netatmo stations. 

This validates the expectation that the TU Delft station are of a high quality than the Netatmo 

stations and therefore fitting the model by imposing the sill (fig. 3.7) cannot be used. 

Interestingly, when comparing the KNMI to the radar, for the pixel containing the KNMI station, 

it gives an unexpected results (fig. 3.10). The radar-product is bias-corrected by ground stations, 

like the KNMI weather station which is used in this research. If the rainfall data from the KNMI 

station is compared to the radar, a high correlation is expected. However, it gives a lower 

correlation than the comparison between the TU Delft stations and radar (fig. 3.9). This clearly 

shows that there are large discrepancies between radar and ground stations because this doesn’t 

mean that the KNMI station is of a lower quality than the TU Delft stations. It shows that there 

is no linear relation between radar and ground stations. Therefore, validating the quality of the 

ground stations based on this method might not be meaningful.  

 

 

Figure 3.9: TU Delft data vs radar, only pixels containing both types of citizen 
stations 

 

 

Figure 3.10: KNMI data vs radar, pixel that contains the KNMI station 
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But only Netatmo and TU Delft stations located in the same radar pixels are compared to each 

other. Therefore, it will still be assumed that the TU Delft stations have a higher quality than 

the Netatmo stations. Unfortunately, there are no Netatmo or TU Delft stations in the same 

radar pixel as the KNMI station. This could have given a better indication of the relation 

between radar and ground stations. 

 

3.3.4 TU Delft:KNMI cross-variogram, imposing boundaries by using the estimations 

from the Netatmo:KNMI cross-variogram  
Knowing that the TU Delft stations are of a higher quality can be used to estimate the nugget 

to fit the variogram. The TU Delft:KNMI cross-variogram should have a nugget which is lower 

than the nugget estimated in the Netatmo:KNMI cross-variogram. In order to avoid an arbitrary 

estimation of the nugget, this study assumes that both type of stations have the same nugget.  

The estimation of the nugget (eq. 3, with an imposed nugget) resulted in a sill of 0.12 mm2 and 

a range of 6.8 km. The range corresponds with the expectation that all the points on the 

variogram are already within the levelled-out section of the variogram. Noticeably, the range of 

the TU Delft fit is less than halve of the Netatmo fit. Just like the issue with the nugget in section 

3.2.3, the range indicates that the TU Delft stations are worse than the Netatmo stations. Ideally, 

the range from the TU Delft fit should at least be similar to the Netatmo fit.  

However, if the range of the TU Delft fit is increased to match the Netatmo, it is expected that 

the sill of the TU Delft fit will also increase. This is shown in table 5, where both the nugget and 

sill are estimated to be similar to the Netatmo fit (eq.3 with an imposed nugget and range). 

Additionally, table 5 shows the parameters estimated by the fit without boundaries and the 

parameters estimated by the fit where the nugget of the TU Delft:KNMI cross-variogram is 

imposed similar to the Netatmo:KNMI cross-variogram. 

 

  Nugget [mm2] Sill [mm2] Range [m] 

No boundaries 
TU Delft 0.09 128 151487805 

Netatmo 0.04 644 242713908 

Imposed nugget 
TU Delft 0.02 0.12 6834 

Netatmo 0.02 0.12 15890 

Imposed nugget 
& range 

TU Delft 0.02 0.15 15890 

Netatmo 0.02 0.12 15890 
Table 5: Variogram variables for the two station-types when the fit has no imposed boundaries, after imposing the 

nugget of the TU Delft:KNMI cross-variogram to be similar to the Netatmo:KNMI cross-variogram and after imposing 
the nugget and range o the TU Delft:KNMI cross-variogram to be similar to the Netatmo:KNMI cross-variogram. 

 

From table 5, it becomes clear that the lack of TU Delft stations poses a problem in finding a 

proper fit, meaning a lower nugget, a lower sill and a higher range than the Netatmo fit. 

Choosing either of the options, will mean that we underestimate the quality of the TU Delft 

stations. Based on the method with which the merged rainfall maps are calculated (eq. 2), the 

impact of the range is considered to be higher and therefore the variables from the fit where 

both the nugget and rang are imposed will be used to calculate the merged rainfall maps. Figure 

3.11 show this fit. 
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3.4 Creating merged rainfall maps 
Based on eq. 2 and the three variogram variables found from the fit of the cross-variograms 

(table 5), a single rainfall map can be calculated based on the two station-types. Since the range 

is the distance at which the stations no longer have a spatial correlation, if a station is further 

away from a pixel then the range, it will not be considered in the calculation of the rainfall. 

Because the rainfall data from the KNMI weather station has a 10-minute temporal resolution, 

the rainfall maps based on the citizen stations will also have a 10-minute resolution, as well as 

the radar. 

Based on the TU Delft and Netatmo stations, three different rainfall maps are created. The first 

map is based on just the Netatmo stations, the second map based on just the TU Delft stations 

and the third map based on a combination of the two. By doing so, it becomes clear how each 

station type performs and if a combination of multiple station types can produce a better map.  

Figure 3.12 shows a 10-minute timestep of the rainfall radar, with the corresponding rainfall 

maps based on the citizen stations for the event of June 2016. What needs to be noticed is the 

range of the legends. The rainfall map based on the Netatmo stations has a much lower rainfall 

depth compared to the radar. The map based on the TU Delft stations also has a lower rainfall 

depth, albeit less than the Netatmo. There are a few reasons that can explain this: 1) the inherent 

difference between radar and ground stations and 2) the method of interpolation to calculate 

the rainfall maps.  

The difference between radar and ground stations is discussed in section 3.3.3 and shows that 

the ground stations are measuring a lower rainfall intensity than the radar, which explains why 

the interpolated maps have a lower rainfall depth.  

The interpolation process considers the decorrelation-range from the variogram in which the 

nugget and range are imposed (table. 5). However, the range from the Netatmo and TU Delft 

stations is still quite large, which means that many stations will be integrated in the  

 

Figure 3.11: Exponential fit to the TU Delft:KNMI cross-variogram by imposing the nugget and range  to be similar 
as the Netatmo:KNMI cross-variogram 
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Figure 3.12a: Rainfall radar, 2016-06-23 00:00 

 

 

Figure 3.12b: Rainfall map based on TU Delft stations, 2016-06-23 00:00 

 

 

Figure 3.12c: Rainfall map based on Netatmo stations, 2016-06-23 00:00 

 

 

Figure 3.12d: Rainfall map based on both station-types, 2016-06-23 00:00 
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interpolation process and stations that are not within the boundaries of the rainfall event also 

influence the calculation. For this reason, the interpolation process will give, on average, lower 

intensities than the radar within the boundaries of the rainfall event and higher intensities 

outside the boundaries of the rainfall event.  

Another thing that can be noticed is the peak rainfall pixel from the radar and the corresponding 

pixel in the Netatmo map. Figure 3.12a shows that there is a Netatmo station on top of the peak 

rainfall pixel from the radar. Therefore, it is expected that the corresponding pixel in the 

Netatmo map will give a high value as well, as the station is expected to capture this rainfall. 

Unfortunately, the Netatmo station is measuring a depth of 0 mm. With the large weighing 

factor based on the distance to the centre of the pixel, this measurement greatly reduces the 

calculated rainfall depth for that pixel.  

Because of the boundaries of the manual quality control, it is unknown whether this 

measurement is a faulty zero. However, the zeros are not taken out in calculating the rainfall 

maps, since the data is used as is, in calculating the rainfall maps. Removing the zeros in this 

step, will also remove correct zero-values which results in maps that will give an overestimation 

of the rainfall. Keeping the potential faulty zeros will cause an underestimation of the calculated 

rainfall maps, but this in turn shows whether the data can be used as is.   

In order to see the impact of possible faulty zeros, appendix C will include the filter created by 

Hutten et al. (2018) for the Netatmo stations and compare results. However, the filter did not 

recognize the zero measurement from the Netatmo station in the peak rainfall pixel in figure 

3.12a as a faulty zero. Furthermore, the introduction of the filter did not introduce new faulty 

Netatmo stations that needed to be removed. Therefore, if there are only a few stations that 

show faulty zeros out of the seventy stations used for interpolation, the impact will not be that 

significant. The impact of the filter becomes even less during assessment on the event scale (10-

minute timesteps across the entire event), since a larger dataset is used. The impact might have 

been higher if the filter introduced new faulty stations that needed to be removed. 

 

3.5 Assessment of rainfall maps 
In order to assess the rainfall maps, they will be compared to the single professional station 

baseline, assuming the KNMI rainfall is uniform over the entire study area. Table 6 gives 

descriptive statistics for maps of each rainfall event based on the different type of stations.  

From table 6, it is clear that none of the rainfall maps capture the peak intensity measured by 

the radar. But looking at the median, it seems that the rainfall maps come close to the radar on 

the event-scale. Furthermore, if the citizen stations are compared separately to each other, it 

appears that the TU Delft stations measure values closer to the radar than the Netatmo stations, 

even though there are much fewer stations. This shows that the quality of the TU Delft stations 

is better, as was also concluded from figure 3.8 and figure 3.9. Moreover, the Netatmo variogram 

(fig. 3.6) shows that this many stations of citizen-level quality introduces a lot of noise. This 

greatly influences the fitted model, especially the range and sill. On the other hand, having 

fewer higher quality citizen stations (fig. 3.7) introduces a lack of spatial information. The TU 

Delft variogram could not have been modelled without the Netatmo variogram.  
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 Radar KNMI Netatmo TU Delft Combined 

Event (yyyy/mm/dd) min  max  med  min  max  med  min*  max  med  min*  max  med  min*  max  med  

Unit mm/10 min mm/10 min mm/10 min mm/10 min mm/10 min 

2015-11-29 0.0 8.81 0.05 0.0 5.68 0.02 0.0 2.84 0.07 0.0 3.27 0.06 0.0 2.78 0.07 
2016-06-23 0.0 24.5 0.23 0.0 13.12 0.02 0.0 6.45 0.71 0.0 10.09 0.70 0.0 6.44 0.67 
2016-11-17 0.0 5.1 0.15 0.0 0.82 0.15 0.0 1.04 0.11 0.0 1.24 0.13 0.0 1.03 0.12 
2017-07-25 0.0 6.56 0.01 0.0 3.5 0.01 0.0 1.22 0.07 0.0 1.92 0.04 0.0 1.13 0.06 

Table 6: Minimum, maximum and median for the rainfall maps for each rainfall event 

*The minimum is close to zero. Because of the spatial distribution of the stations and the estimated decorrelation-range, all pixels are within the range of Netatmo and TU Delft stations. 
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3.5.1 Comparison with the baseline, 10-minute rainfall maps 
In this section, some 10-minute rainfall maps will be compared to the KNMI station. This will 

be done be comparing the KNMI and citizen rainfall maps to the radar images. This will result 

in a difference map. By comparing these to each other, it can be checked whether the citizen 

stations improve information on the spatial variability of rainfall compared to the KNMI station.  

Figure 3.13 shows four different 10-minute timesteps, one from each event. These timesteps were 

chosen based on the radar images, showing different spatial rainfall structures. The timesteps 

show the rainfall in a straight horizontal line over the KNMI weather station (fig. 3.13a), spread 

over the entire area (fig. 3.13b), covering the northern part of the area (fig. 3.13c) and 

concentrated in the middle of the area (fig. 3.13d). 

No events were chosen where there was no rain on top of the KNMI station.  

 

The difference maps are given in figure 3.14a/d through 3.17a/d. They show the absolute value 

of the difference. 

 

 

 

Figure 3.13a: Rainfall radar, 2015-11-29 19:00 

 

 

Figure 3.13b: Rainfall radar, 2016-23-06 00:00 

 

 

Figure 3.13c: Rainfall radar, 2016-11-17 19:10 

 

 

Figure 3.13d: Rainfall radar, 2017-07-25 05:50 
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Figure 3.14a: Difference between radar and KNMI, 2015-11-29-19:00 

 

 

Figure 3.14b: Difference between radar and TU Delft, 2015-11-29-19:00 

 

 

Figure 3.14c: Difference between radar and Netatmo, 2015-11-29-19:00 

 

 

Figure 3.14d: Difference between radar and both station-types, 2015-11-29-19:00 
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Figure 3.15a: Difference between radar and KNMI, 2016-06-23 00:00 

 

 

Figure 3.15b: Difference between radar and TU Delft, 2016-06-23 00:00 

 

 

Figure 3.15c: Difference between radar and Netatmo, 2016-06-23 00:00 

 

 

Figure 3.15d: Difference between radar and both station-types, 2016-06-23 00:00 
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Figure 3.16a: Difference between radar and KNMI, 2016-11-17 19:10 

 

 

Figure 3.16b: Difference between radar and TU Delft, 2016-11-17 19:10 

 

 

Figure 3.16c: Difference between radar and Netatmo, 2016-11-17 19:10 

 

 

Figure 3.16d: Difference between radar and both station-types, 2016-11-17 19:10 
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Figure 3.17a: Difference between radar and KNMI, 2017-07-25 05:50 

 

 

Figure 3.17b: Difference between radar and TU Delft, 2017-07-25 05:50 

 

 

Figure 3.17c: Difference between radar and Netatmo, 2017-07-25 05:50 

 

 

Figure 3.17d: Difference between radar and both station-types, 2017-07-25 05:50 
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By calculating the RMSD (eq.4) of the difference map and the Pearson correlation (eq.5) 

between the radar maps and interpolated maps, we can assess which map gives an overall better 

picture of the spatial variability of rainfall. This can be seen in table 7. 

 RMSD [mm] Pearson [-] 

Event KNMI TU 
Delft 

Netatmo Combined KNMI TU 
Delft 

Netatmo Combined 

2015-11-29 
19:00 

0.013 0.012 0.011 0.011 0.00 0.64 0.70 0.73 

2016-06-23 
00:00 

0.315 0.224 0.265 0.263 0.00 0.38 0.47 0.45 

2016-11-17 
19:10 

0.001 0.001 0.001 0.001 0.00 0.65 0.77 0.79 

2017-07-25 
05:50 

0.006 0.004 0.005 0.005 Nan 0.52 0.46 0.50 

Table 7: RMSD and Pearson-correlation for the four 10-minute events 

Table 7 shows that there is no correlation between the radar and the KNMI for the 10-minute 

timestep. This makes sense as the point-measurement from the KNMI weather station is 

assumed uniform over the entire area. More interesting is the difference is correlation between 

the TU Delft and Netatmo. Even though the TU Delft ground stations have a higher correlation 

with the radar than the Netatmo ground stations (fig. 3.8 and 3.9), the correlation of the 

interpolated maps based on TU Delft have a lower correlation than the interpolated maps based 

on Netatmo. This is influenced by two things: 1) the underestimation of the quality of the TU 

Delft stations in the fit of the variogram and 2) the structure of the network of Netatmo stations 

compared to the TU Delft stations.  

The underestimation of the TU Delft stations is explained in section 3.2.4, in which the number 

of TU Delft stations was too little to create a proper fit. This resulted in a value for the sill which 

was too high, meaning the quality is estimated worse than it actually is. The structure is about 

the spread of the stations over the area in addition to the number of stations. Since there are 

many more Netatmo stations with a better spatial distribution, they are better capable at 

capturing the rainfall over the area. Does this mean that having many more lower quality 

stations is better? This can be answered by looking at the RMSD. The RMSD for the TU Delft 

map is very similar to that of the Netatmo map. This means that even with a less representation 

of the rainfall structure, the quality of the stations is able to balance out the lack of spatial 

representation of the rainfall structure.  

If both maps are compared to the KNMI, it seems that the interpolated maps outperform the 

KNMI weather station. However just by looking at the difference maps, it seems that the pixels 

in which the radar detects rainfall, have a lower difference when compared to the KNMI than 

to the citizen stations. This would mean that even though the citizen stations better capture the 

structure of the rainfall event, the KNMI station still gives a more accurate value for the rainfall 

when assumed uniform over the area. In order to verify this, the absolute difference is split into 

two categories: 1) the absolute difference between the radar and ground station for radar pixels 

that measure rainfall and 2) the absolute difference for radar pixels that don’t measure rainfall. 

The boundary for measuring rainfall is set to 0.2 mm, which is the capacity of the TU Delft 

tipping buckets.  

Table 8 gives an overview of the median for these two categories.  
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 Median [mm] with Radar >= 0.2 mm Median [mm] with Radar < 0.2 mm 

Event KNMI TU 
Delft 

Netatmo Combined KNMI TU 
Delft 

Netatmo Combined 

2015-11-29 
19:00 

1.33 1.45 1.2 1.24 1.75 0.33 0.53 0.5 

2016-06-23 
00:00 

4.43 3.69 5.37 5 13.06 4.21 3.08 3.24 

2016-11-17 
19:10 

0.18 0.43 0.29 0.3 0.5 0.14 0.28 0.26 

2017-07-25 
05:50 

2.34 0.61 0.54 0.54 3.46 0.93 0.76 0.77 

Table 8: Median of the absolute difference when radar pixels measure rainfall or doesn’t measure rainfall 

From table 8, it is clear that the citizen stations are better when it comes to detecting the 

boundaries of the rainfall field. For the radar pixels that measure rainfall, no clear conclusion 

can be drawn as the median doesn’t conclusively show which map is better. This means that the 

KNMI station doesn’t necessarily give a more accurate value for the rainfall when assumed 

uniform over the area. However, we expect the absolute difference between the radar and the 

KNMI station to become lower when the distance between the pixels and the KNMI station 

becomes less. This should not be the case for the absolute difference between the radar and the 

citizen stations, as these stations are spread over the entire area. In order to see this behaviour, 

figure 3.18 a/d shows a boxplot, with a bin size of 2 km, on how the absolute difference changes 

in relation to the distance to the KNMI station for the first category (radar pixel measures 

rainfall) for each type of difference map (KNMI, TU Delft, Netatmo and Combined).  

A difference can be detected because of the shape of the rainfall event. When the event is 

covering the entire area (fig. 3.18b) or centralized in the area and dissipating outwards (fig. 3.18d), 

the absolute difference between KNMI and radar starts to increase further away from the KNMI 

station. However, in the area wide event (fig. 3.18b), the spread of the difference is becoming 

larger when moving away from the KNMI station, while the spread of the centralized event (fig. 

3.18d) is becoming smaller when moving away from the KNMI station. This is because for the 

centralized event, the rainfall is decreasing evenly when moving away from the KNMI station. 

For the area wide event, the rainfall is measurements are varying a lot, thus causing a larger 

spread in the difference. When the event is covering only a part of the area (fig. 3.18a and 3.18c), 

the absolute difference is unexpectedly decreasing when moving away from the KNMI station. 

This can be explained by looking at the radar images for those events (event 2015-11-29 19:00, fig. 

3.13a and event 2016-11-17 19:10, fig. 3.13c). For event 2016-11-17 19:10, the rain event covers the 

northern halve of the area. Furthermore, outside of the peak rainfall rate, the intensities are 

quite similar for the entire event, causing pixels farther away to have the same absolute 

difference as pixels close by. For event 2015-11-29 19:00, the event is in a narrow horizontal band 

over the KNMI station. This means that there are not that many radar pixels containing rainfall. 

In addition, the radar pixel covering the KNMI station has very similar rainfall values as the 

pixels further away while the peak intensity pixels are close by. This causes the absolute 

difference to decrease when going further away from the KNMI station.  
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Figure 3.18a: Difference, radar vs interpolated maps when the radar is measuring rain, 

2015-11-29 19:00 

 

 

Figure 3.18c: Difference, radar vs interpolated maps when the radar is measuring rain, 

2016-11-17 19:10 

 

 

 

Figure 3.18b: Difference, radar vs interpolated maps when the radar is measuring rain, 

2016-06-23 00:00 

 

Figure 3.18d: Difference, radar vs interpolated maps when the radar is measuring rain, 

2017-07-25 05:50 
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The next step is to compare the absolute difference of the KNMI station to the citizen stations. 

In three of the events (fig. 3.18a,b,c), when the pixels are close to the KNMI station, the KNMI 

has a lower absolute difference than the citizen stations, which was expected. Going further 

away from the KNMI station, the citizen stations start the become able to capture the rainfall 

better or equal to the KNMI station. The more interesting case is event 2017-07-25 05:50 (fig. 

3.18d), where the rainfall is centralized in the study area. This event shows that the absolute 

difference from the citizen stations is already less or equal to that of the KNMI station. This 

would mean that for this particular event, the citizen stations are better than the KNMI, not just 

at capturing the structure of the event over the entire study area, which was already concluded 

from table 7, but also at capturing the rainfall values.  

Considering the entire radar image, not just the pixels containing rainfall, a clear turning point 

can be seen after which the citizen stations begin to capture the rainfall better than the KNMI 

(fig. 3.19a/d). After 4 to 6 km, the citizen stations are starting to become better while after 8 km, 

they are conclusively better than the KNMI station. 

 

 

 

 

 

 

Figure 3.19a: Difference, radar vs interpolated maps, 
2015-11-29 19:00 

 

 

 

Figure 3.19b: Difference, radar vs interpolated maps, 
2016-06-23 00:00 

 

 

 

Figure 3.19c: Difference, radar vs interpolated maps, 
2016-11-17 19:10 

 

 

 

Figure 3.19d: Difference, radar vs interpolated maps, 
2017-07-25 05:50 
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3.5.2 Comparison with the baseline, entire rainfall event 
The previous section showcased the performance of the citizen stations to the KNMI on the 

smallest scale, four 10-minute timesteps. However, the four events (table 2), have a total of one-

hundred 10-minute timesteps. So, it is also important on the event-scale, to compare 

performances.  

This is done by taking the RMSD (eq. 4) and the correlation (eq. 5) per pixel over the entire 

rainfall event.  Table 9 contains the median of the RMSD and correlation. 

 

 Median of the RMSD [mm/10 min] Median of the Pearson correlation [-] 

Event nr.  KNMI TU 
Delft 

Netatmo Combined KNMI TU 
Delft 

Netatmo Combined 

1 
2015-11-19 

1.32 0.66 0.66 0.65 0.53 0.74 0.74 0.75 

2 
2016-06-23 

3.35 2.55 2.9 2.84 0.66 0.71 0.59 0.61 

3 
2016-11-17 

0.28 0.21 0.22 0.22 0.58 0.79 0.74 0.75 

4 
2017-07-25 

0.84 0.48 0.47 0.47 0.44 0.59 0.66 0.65 

Table 9: Median of the RMSD and Pearson correlation for the four events 

 

On the event scale, the 10-minute values across the entire event, it is clear that the citizen 

stations capture the structure of the rainfall event better than the KNMI station, as the RMSD 

is lower and the correlations are higher for the citizen stations. This means that citizen stations 

better represent the spatial variability of rainfall than the KNMI station. 

In comparing the 10-minute timesteps, it became clear that the citizen stations gave a better 

representation of the rainfall than the KNMI station, when the pixels moved further from the 

KNMI station. Figure 3.20 a/d shows a boxplot, with a bin size of 2 km, on how the RMSD 

changes in relation to the distance to the KNMI station to verify if a similar trend can be seen 

on the event-scale. Figure 3.21 a/d show a similar boxplot for the correlation.  

The RMSD of the KNMI behaves according to expectation, which is an increasing RMSD the 

further the pixels are from the KNMI station. This shows the importance of also taking the 

event-scale into account instead of only the 10-minute timesteps (fig 3.18) as they gave some 

counterintuitive results. Comparing the KNMI to the citizen stations, once again a trend can be 

seen in the distance at which the citizen stations start to give a better representation of the 

rainfall than the KNMI. As expected, close to the KNMI station, the KNMI gives a better 

representation of the rainfall than the citizen stations. However, after 4 km, this starts to shift 

and after 8 km, the citizen stations are conclusively better. This is a similar result as the 10-

minute timesteps.  

Looking at the correlation (fig. 3.21), the distance at which the citizen stations have a better 

correlation with the radar than the KNMI station is in the 6 to 10 km range, which is a little 

higher than the RMSD.  
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Figure 3.20a: RMSD per pixel in relation to the distance to the KNMI station, event 1: 

2015-11-29 

 

 

Figure 3.20c: RMSD per pixel in relation to the distance to the KNMI station, event 3:  

2016-11-17 

 

 

 

Figure 3.20b: RMSD per pixel in relation to the distance to the KNMI station, event 2: 

2016-06-23 

 

Figure 3.20d: RMSD per pixel in relation to the distance to the KNMI station, event 4: 

2017-07-25 
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Figure 3.21a: Correlation per pixel in relation to the distance to the KNMI station, event 1: 

2015-11-29 

 

 

Figure 3.21c: Correlation per pixel in relation to the distance to the KNMI station, event 3:   

2016-11-17 

 

 

 

Figure 3.21b: Correlation per pixel in relation to the distance to the KNMI station, event 2: 

2016-06-23 

 

Figure 3.21d: Correlation per pixel in relation to the distance to the KNMI station, event 4: 

2017-07-25 
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4. Discussion 
 

In this section, the limitations of the study are discussed as well as possible improvements. 

 

1. The Netatmo and KNMI data series used in this study ranged from the period of October 

2015 to October 2017. However, the TU Delft stations had a longer available timeseries 

(in most cases), namely April 2013 to April 2018. In calculating the cross-variogram, the 

timeseries of the KNMI station limited the use of the full data from the TU Delft stations. 

Having a longer KNMI timeseries could have given a better semivariance but would not 

have fixed the issues that existed with the TU Delft:KNMI cross-variogram, a lack of 

stations and distribution in distance to the KNMI station. 

 
2. In calculating the cross-variogram, only non-zero values were considered (from both the 

citizen stations as well as the KNMI station) to remove the possibility of faulty zero 

measurements in addition to giving a better picture of the spatial correlation when 

rainfall is measured. However, when creating the interpolated rainfall maps for the four 

chosen events, the zeros are considered. Had the zeros been removed, none of the pixels 

could potentially become zero. When compared to the radar, which has many zero 

pixels, this could negatively influence the assessment of these pixels. In order to verify 

the influence of faulty zeros during this study, appendix C shows the implementation of 

the filter by Hutten et al. (2018) in removing these faulty zeros and compares results. 

However, this did not result in significant changes of the results. 

 
3. The fit of the Netatmo:KNMI cross-variogram resulted in a high decorrelation range of 

16 km. This means that 16 km away from a Netatmo station, there still is spatial 

correlation in rainfall. This range was found by imposing the sill to be the median of the 

levelled-out part of the variogram. However, it was difficult to establish when the 

variogram started to level-out because of the noise. In fitting the TU Delft:KNMI cross-

variogram and using the nugget from the Netatmo:KNMI cross-variogram, the 

decorrelation range was found to be 7 km, which seemed more realistic. But since the 

quality of the TU Delft stations is higher than the Netatmo stations, the range should 

not be lower than found in the Netatmo fit. Ideally, the range from the Netatmo fit 

would be changed to 7 km, as it seemed more realistic. However, this would mean that 

the Netatmo fit would be adjusted according to the TU Delft fit, while the TU Delft fit 

was estimated using the Netatmo fit. This seemed rather arbitrary, and therefore the 

range of the TU Delft fit was changed to match the range of the Netatmo fit as well as 

the nugget.  

However, this meant that two out of the three variogram variables for the TU 

Delft:KNMI cross-variogram fit were imposed as estimated in the Netatmo:KNMI cross-

variogram fit. Since the weights are determined based on the fitted model, it begs the 

question of the significant difference between the two fitted models. Will there be a 

significant difference if the TU Delft stations get weighing factors according to the 

Netatmo:KNMI cross-variogram fit? This should be tested by having a larger network of 

semi-professional stations, in order to find a proper fit. 
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5. Conclusion 
 

This research studied the potential of citizen observatories on improving the spatial 

measurement of rainfall in urban areas. This was done by using a network of semi-professional 

weather stations and a network of citizen weather stations to create interpolated rainfall maps 

and comparing these to a homogeneous field based on a single professional station (KNMI 

weather station) radar images. By doing so, it can be analysed whether a single professional 

station is better than multiple citizen stations spread across the area. 

Looking at the small-scale (10-minute timesteps), there is no significant correlation between 

assuming the rainfall measured by the KNMI station uniformly over the area and the radar. The 

interpolated maps based on the citizen stations have a medium to large correlation with the 

radar, as the correlation is between 0.3 and 1.0. Assessment based on the RMSD show that the 

citizen stations give a better picture of the spatial measurements. However, based on the 

difference maps,  it seemed that the KNMI gave a better representation of the actual rainfall 

values in the radar pixels that measured rain and the citizen stations are better in the case when 

radar pixels don’t measure rain. This would mean that even though the citizen stations are 

better at capturing the spatial structure of the rainfall event over the area, the actual 

measurements for the rainfall are worse. By calculating the median of the absolute difference in 

the radar pixels that contain rainfall, it showed that this was not the case and that the rainfall 

measurements calculated in the interpolated maps are not necessarily worse than that of the 

KNMI station. 

Furthermore, the performance of the rainfall maps was assessed by looking at the absolute 

difference per pixel in relation to the distance at the 10-minute scale. It became clear that the 

radar pixels within 4 km radius from the KNMI station are better represented by the KNMI 

station but that after a distance of 8 km, the citizen stations are conclusively better.   

Looking at the event-scale, once again it became clear that the interpolated maps based on the 

citizen stations provide a better picture of the spatial measurements of rainfall in both the 

RMSD and correlation. Looking at the RMSD per pixel and correlation in regard to the distance 

to the KNMI station, for the RMSD showed that once again within a 4 km range from the KNMI 

station, the KNMI gave a better representation and after a distance of 8 km, the citizen stations 

are better. For the correlation the shift from KNMI to citizen station happened after 6 km with 

the citizen stations becoming conclusively better after 10 km.  

Overall, the interpolated rainfall maps based on the citizen stations captured the structure of 

the rainfall over the area better than the professional station and giving a better representation 

of the actual rainfall values when the pixels are 8 to 10 km away from the KNMI station.  
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Appendix A 
 

This section gives an overview the citizen stations and the arguments for adjusting the data 

during the manual quality control. 

Table A1 shows the citizen stations that were adjusted. Table A2 and A3 show information on 

the TU Delft and Netatmo stations that were used during this study.  
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Results from manual quality control 

Station ID Reason for adjustment 

Ridderkerk This station had a few days in 
which the sum of the daily 
rainfall depth exceeded 100 
mm. These days were 
removed from the dataset 
 

Oost This station had a few days in 
which the sum of the daily 
rainfall depth exceeded 100 
mm. These days were 
removed from the dataset 
 

id354 This station did not measure 
rainfall for 8 months straight. 
This hints to a clogged funnel 
or tipping bucket. The 
station has been removed 
entirely. 
 

id385 This station has a lot of gaps 
in the data-series. The station 
has been removed entirely. 
 

id485 This station has a lot of gaps 
in the data-series. The station 
has been removed entirely. 

Table A 1: Overview of adjusted stations. 

 

 

 

ID Start Date [yyyy-
mm-dd hh-mm] 

End Date [yyyy-
mm-dd hh-mm] 

N-Datapoints % zero 

Bolnes 2015-10-01 00:00 2017-10-01 00:00 86197 94.86 
Capelle 2015-10-01 00:00 2017-10-01 00:00 105250 94.89 
Delfshaven 2015-10-01 00:00 2017-10-01 00:00 105261 94.42 
Lansingerland 2015-10-01 00:00 2017-10-01 00:00 105259 94.88 
Ommoord 2015-10-01 00:00 2017-10-01 00:00 105258 94.82 
Oost 2015-10-01 00:00 2017-10-01 00:00 105253 94.77 
Ridderkerk 2015-10-01 00:00 2017-10-01 00:00 105251 94.91 
Rijnhaven 2015-10-01 00:00 2017-10-01 00:00 105261 96.57 
Spaanse Polder 2015-10-01 00:00 2017-10-01 00:00 105244 94.77 

Table A 2: Overview of all TU Delft stations 
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ID Start Date [yyyy-
mm-dd hh-mm] 

End Date [yyyy-
mm-dd hh-mm] 

N-Datapoints % zero ID Start Date [yyyy-
mm-dd hh-mm] 

End Date [yyyy-
mm-dd hh-mm] 

N-Datapoints % zero 

154 2015-10-01 00:20 2017-10-01 00:00 105256 92.92 369 2015-12-21 14:20 2017-10-01 00:00 91420 93.84 
155 2016-10-30 16:00 2017-09-30 07:00 46552 93.33 370 2016-07-20 14:30 2017-10-01 00:00 60677 94.00 
156 2016-12-14 15:00 2017-10-01 00:00 41794 93.10 372 2016-08-31 18:40 2017-10-01 00:00 56873 94.13 
159 2016-12-02 18:00 2017-10-01 00:00 43187 92.85 373 2015-10-01 04:20 2017-10-01 00:00 100511 93.51 
161 2015-10-01 00:20 2017-10-01 00:00 105192 93.13 375 2015-10-28 16:20 2017-10-01 00:00 100669 92.83 
162 2015-10-01 00:20 2017-10-01 00:00 104238 92.46 377 2015-12-08 16:30 2017-10-01 00:00 95038 94.00 
165 2015-10-01 00:20 2017-10-01 00:00 103813 92.53 380 2015-10-28 14:40 2017-10-01 00:00 99449 92.57 
167 2015-10-01 04:20 2017-10-01 00:00 103612 92.71 381 2017-08-09 21:20 2017-09-30 17:50 5161 90.87 
168 2015-10-01 00:20 2017-10-01 00:00 103444 93.25 382 2015-10-01 00:20 2017-10-01 00:00 97176 94.08 
169 2015-11-05 18:10 2017-10-01 00:00 95529 91.88 384 2017-01-14 11:30 2017-10-01 00:00 37361 93.43 
187 2015-10-01 00:20 2017-10-01 00:00 100812 92.56 387 2016-06-10 13:30 2017-07-19 14:00 58068 94.33 
340 2015-10-01 00:20 2017-03-08 11:00 73873 91.30 388 2015-10-01 00:20 2017-10-01 00:00 104007 92.78 
341 2015-10-01 06:50 2017-10-01 00:00 103551 93.68 389 2015-10-01 00:20 2017-10-01 00:00 102759 93.24 
342 2015-10-01 00:20 2017-10-01 00:00 104513 91.63 477 2016-09-17 09:50 2017-10-01 00:00 54041 93.47 
343 2016-02-09 16:10 2017-10-01 00:00 74951 95.03 480 2016-03-25 15:00 2017-10-01 00:00 79380 93.47 
344 2015-10-01 00:20 2017-10-01 00:00 98987 92.12 481 2015-10-01 00:20 2017-10-01 00:00 97183 92.01 
345 2017-03-18 11:40 2017-10-01 00:00 26933 97.00 482 2017-05-30 10:30 2017-10-01 00:00 17227 86.72 
346 2015-10-01 00:20 2017-10-01 00:00 101700 94.58 483 2015-10-01 00:20 2017-10-01 00:00 105098 92.67 
347 2015-10-01 00:20 2017-04-28 18:20 82111 92.60 484 2017-08-21 10:40 2017-10-01 00:00 5787 90.18 
348 2015-10-01 00:20 2017-10-01 00:00 105188 92.60 487 2015-12-25 12:00 2017-10-01 00:00 92277 92.79 
349 2016-07-13 18:10 2017-10-01 00:00 60317 94.68 489 2017-08-18 20:00 2017-10-01 00:00 6213 90.63 
350 2015-10-01 00:20 2017-10-01 00:00 103606 91.51 491 2015-12-03 16:50 2017-10-01 00:00 95893 93.03 
352 2017-07-03 19:50 2017-10-01 00:00 12842 88.79 492 2015-10-01 00:20 2017-07-21 08:10 94935 92.40 
353 2015-10-01 00:20 2017-10-01 00:00 101529 93.84 493 2015-10-01 00:20 2017-10-01 00:00 105006 93.39 
355 2017-01-02 12:30 2017-10-01 00:00 39083 93.19 494 2015-10-01 00:20 2017-10-01 00:00 100432 92.39 
356 2016-03-12 10:10 2017-10-01 00:00 75095 93.87 496 2017-07-26 13:50 2017-10-01 00:00 9505 91.15 
358 2015-10-01 00:20 2017-10-01 00:00 96064 92.88 498 2016-06-11 08:30 2017-10-01 00:00 68559 94.36 
359 2015-10-01 00:20 2017-04-03 06:20 68072 92.59 499 2015-10-01 00:20 2017-10-01 00:00 103134 92.72 
360 2015-10-01 00:20 2017-10-01 00:00 100471 94.42 500 2015-10-01 00:20 2017-10-01 00:00 105263 92.27 
361 2015-10-01 00:20 2017-10-01 00:00 104943 91.59 506 2016-07-05 16:50 2017-10-01 00:00 64971 93.66 
363 2015-12-05 14:40 2017-10-01 00:00 94073 92.93 507 2015-10-01 00:20 2017-10-01 00:00 104516 94.97 
365 2017-06-20 16:50 2017-10-01 00:00 14725 92.88 509 2017-02-18 10:30 2017-10-01 00:00 27249 94.37 
366 2015-10-15 17:50 2016-01-23 09:10 13656 89.86 510 2015-12-05 19:40 2017-10-01 00:00 84189 92.94 
367 2015-10-01 00:20 2017-10-01 00:00 81638 93.90 511 2015-10-01 00:20 2017-04-20 17:20 57816 95.03 
368 2015-10-01 00:20 2017-09-25 04:50 95106 94.17 514 2016-05-01 11:20 2017-10-01 00:00 65974 93.38 

Table A 3: Overview of all Netatmo stations.
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Appendix B 
 

Visualization of the four events chosen to compare the radar to the rainfall maps based on the 

citizen stations. These events were chosen visually by looking at intervals of the raw radar 

data.  
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Event 2015-11-29 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1a: Rainfall measured by the radar, event 1 

 

 

Figure B1b: Rainfall measured by the KNMI station, event 1  

 

 

Figure B1c: Rainfall measured by the Netatmo stations, event 1 

 

 

Figure B1d: Rainfall measured by the TU Delft stations, event 1 
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Event 2016-06-23 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B2a: Rainfall measured by the radar, event 2 

 

 

 

Figure B2c: Rainfall measured by the Netatmo stations, event 2 

 

 

 

Figure B2b: Rainfall measured by the KNMI station, event 2 

 

 

 

Figure B2d: Rainfall measured by the TU Delft stations, event 2 
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Event 2016-11-17 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B3a: Rainfall measured by the radar, event 3 

 

 

 

Figure B3c: Rainfall measured by the Netatmo stations, event 3 

 

 

 

Figure B3b: Rainfall measured by the KNMI station, event 3 

 

 

 

Figure B3d: Rainfall measured by the TU Delft stations, event 3 
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Event 2017-07-25 
 

 

 

 

 

Figure B4a: Rainfall measured by the radar, event 4 

 

 

 

Figure B4c: Rainfall measured by the Netatmo stations, event 4 

 

 

 

Figure B4b: Rainfall measured by the KNMI station, event 4 

 

 

 

Figure B4d: Rainfall measured by the TU Delft stations, event 4 
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Appendix C 
In this section, the filter that was created in the study by Hutten et al. (2018) is applied on the 

data to filter put faulty zero values from the Netatmo stations. Then the manual quality control 

is applied once more to check if more stations turn out to be faulty. The results are then 

compared to the results from section 3.4 to see whether this additional form of quality control 

contributed to an improvement of the rainfall maps.  

Section C1 will discuss the differences in the step for the quality control and the impact on the 

fits and interpolated rainfall maps. Section C2 will compare the basic statistics, section C3 the 

10-minute rainfall maps with corresponding RMSD and correlation and section C4 the RMSD 

and correlation of the entire events.  

 

C1. Quality control and variogram fit 
Before the manual quality control was applied on the Netatmo stations, the data went through 

the faulty-zero filter. However, in removing stations and data that are obviously wrong during 

the manual quality control, the filter did not reveal new stations. This means that with or 

without the filter, the manual quality control removed the same stations from the dataset.  

This meant that the fit for the Netatmo:KNMI cross-variogram did not change, as the cross-

variogram was already calculated by taking out all the zeros. Consequently, the fit for the TU 

Delft:KNMI cross-variogram remained the same as well. Therefore, the same weighing factors 

could be applied in creating the interpolated rainfall maps. 

The filter will have an impact on the values of the interpolated rainfall maps, as some zero-

values are now removed from the interpolation, which should result in overall higher rainfall 

values. 

 

C2. Descriptive statistics 
Table C1 shows the original statistics while table C2 show the statistics after applying the filter 

on the Netatmo stations. As expected, the interpolated Netatmo and Combined maps have 

higher maximum and median values when the filter is applied. But the difference is very small. 

Consequently, the TU Delft stations still give a better representation of the peaks and performs 

better on the event-scale. 
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 Radar KNMI Netatmo TU Delft Combined 

Event (yyyy/mm/dd) min  max  med  min  max  med  min*  max  med  min*  max  med  min*  max  med  

Unit mm/10 min mm/10 min mm/10 min mm/10 min mm/10 min 

2015-11-29 0.0 8.81 0.05 0.0 5.68 0.02 0.0 2.84 0.07 0.0 3.27 0.06 0.0 2.78 0.07 
2016-06-23 0.0 24.5 0.23 0.0 13.12 0.02 0.0 6.45 0.71 0.0 10.09 0.70 0.0 6.44 0.67 
2016-11-17 0.0 5.1 0.15 0.0 0.82 0.15 0.0 1.04 0.11 0.0 1.24 0.13 0.0 1.03 0.12 
2017-07-25 0.0 6.56 0.01 0.0 3.5 0.01 0.0 1.22 0.07 0.0 1.92 0.04 0.0 1.13 0.06 

Table C1: Minimum, maximum and median for the rainfall maps for each rainfall event using only the manual quality control 

 Radar KNMI Netatmo TU Delft Combined 

Event (yyyy/mm/dd) min  max  med  min  max  med  min*  max  med  min*  max  med  min*  max  med  

Unit mm/10 min mm/10 min mm/10 min mm/10 min mm/10 min 

2015-11-29 0.0 8.81 0.05 0.0 5.68 0.02 0.0 3.10 0.08 0.0 3.27 0.06 0.0 2.99 0.08 
2016-06-23 0.0 24.5 0.23 0.0 13.12 0.02 0.0 7.02 0.75 0.0 10.09 0.70 0.0 7.12 0.73 
2016-11-17 0.0 5.1 0.15 0.0 0.82 0.15 0.0 1.17 0.15 0.0 1.24 0.13 0.0 1.07 0.15 
2017-07-25 0.0 6.56 0.01 0.0 3.5 0.01 0.0 1.45 0.07 0.0 1.92 0.04 0.0 1.41 0.07 

Table C2: Minimum, maximum and median for the rainfall maps for each rainfall event using the faulty zero filter by Hutten et al. (2018) and the manual quality control 
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C3. Comparison with the baseline, 10-minute timesteps 
 

The filter has some effect, but not a lot. Because the interpolation process has 70 available 

stations, if only a few of these stations have faulty zeros, the impact will not be that significant. 

 

 

 

 RMSD [mm] Pearson [-] 

Event KNMI TU 
Delft 

Netatmo Combined KNMI TU 
Delft 

Netatmo Combined 

2015-11-29 
19:00 

0.013 0.012 0.011 0.011 0.00 0.64 0.70 0.73 

2016-06-23 
00:00 

0.315 0.224 0.265 0.263 0.00 0.38 0.47 0.45 

2016-11-17 
19:10 

0.001 0.001 0.001 0.001 0.00 0.65 0.77 0.79 

2017-07-25 
05:50 

0.006 0.004 0.005 0.005 Nan 0.52 0.46 0.50 

Table C3: RMSD and Pearson correlation for the four 10-minue events using only the manual quality control 

 

 

 

 RMSD [mm] Pearson [-] 

Event KNMI TU 
Delft 

Netatmo Combined KNMI TU 
Delft 

Netatmo Combined 

2015-11-29 
19:00 

0.013 0.012 0.010 0.011 0.00 0.64 0.71 0.73 

2016-06-23 
00:00 

0.315 0.224 0.259 0.257 0.00 0.38 0.48 0.45 

2016-11-17 
19:10 

0.001 0.001 0.001 0.001 0.00 0.65 0.82 0.83 

2017-07-25 
05:50 

0.006 0.004 0.005 0.004 Nan 0.52 0.42 0.47 

Table C4: RMD and Pearson correlation for the four 10-minute events using the faulty zero filter by Hutten et al (2018) 

and the manual quality control 
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 Median [mm] with Radar >= 0.2 mm Median [mm] with Radar < 0.2 mm 

Event KNMI TU 
Delft 

Netatmo Combined KNMI TU 
Delft 

Netatmo Combined 

2015-11-29 
19:00 

1.33 1.45 1.2 1.24 1.75 0.33 0.53 0.5 

2016-06-23 
00:00 

4.43 3.69 5.37 5 13.06 4.21 3.08 3.24 

2016-11-17 
19:10 

0.18 0.43 0.29 0.3 0.5 0.14 0.28 0.26 

2017-07-25 
05:50 

2.34 0.61 0.54 0.54 3.46 0.93 0.76 0.77 

Table C5: Median of the absolute difference when the radar pixels measures rainfall or doesn’t measure rainfall, using 

only the manual quality control 

 

 

 

 Median [mm] with Radar >= 0.2 mm Median [mm] with Radar < 0.2 mm 

Event KNMI TU 
Delft 

Netatmo Combined KNMI TU 
Delft 

Netatmo Combined 

2015-11-29 
19:00 

1.33 1.45 1.14 1.19 1.75 0.33 0.58 0.54 

2016-06-23 
00:00 

4.43 3.69 4.74 4.42 13.06 4.21 3.43 3.56 

2016-11-17 
19:10 

0.18 0.43 0.2 0.22 0.5 0.14 0.35 0.32 

2017-07-25 
05:50 

2.34 0.61 0.58 0.95 3.46 0.93 0.88 0.88 

Table C6: Median of the absolute difference when the radar pixels measures rainfall or doesn’t measure rainfall, using 

the faulty zero filter by Hutten et al (2018) and the manual quality control 
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C4. Comparison with the baseline, entire rainfall event 
 

On the event-scale the effect is even lower. However, this is too be expected since a larger 

dataset reduces the impact of outliers (which would be the faulty zeros). The filter could have 

been very impactful had it revealed an increased number of faulty Netatmo stations, therefore 

causing the interpolation to use fewer stations. But since this was not the case, the overall 

impact of the filter during this research was not significant. 

 

 

 

 Median of the RMSD [mm/10 min] Median of the Pearson correlation [-] 

Event nr.  KNMI TU 
Delft 

Netatmo Combined KNMI TU 
Delft 

Netatmo Combined 

1 
2015-11-19 

1.32 0.66 0.66 0.65 0.53 0.74 0.74 0.75 

2 
2016-06-23 

3.35 2.55 2.9 2.84 0.66 0.71 0.59 0.61 

3 
2016-11-17 

0.28 0.21 0.22 0.22 0.58 0.79 0.74 0.75 

4 
2017-07-25 

0.84 0.48 0.47 0.47 0.44 0.59 0.66 0.65 

Table C7: Median of the RMSD and the Pearson correlation of the four events using only the manual quality control 

 

 

 

 Median of the RMSD [mm/10 min] Median of the Pearson correlation [-] 

Event nr.  KNMI TU 
Delft 

Netatmo Combined KNMI TU 
Delft 

Netatmo Combined 

1 
2015-11-19 

1.32 0.66 0.64 0.64 0.53 0.74 0.75 0.75 

2 
2016-06-23 

3.35 2.55 2.88 2.8 0.66 0.71 0.58 0.6 

3 
2016-11-17 

0.28 0.21 0.22 0.22 0.58 0.79 0.74 0.75 

4 
2017-07-25 

0.84 0.48 0.47 0.46 0.44 0.59 0.66 0.66 

Table C8: Median of the RMSD and the Pearson correlation of the four events using the faulty zero filter by Hutten et 

al (2018) and the manual quality control 


