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Abstract 

Introduction: Fractures in the forearm are common and sometimes result in limitations of pronation/supination. Besides 

malunion as a possible cause, soft tissue involvement may play a more significant role as well. More insight in both 

causes of impaired forearm rotation could help to treat patients in the least invasive way as possible, potentially avoiding 

invasive corrective osteotomies in some patients. 

Objectives: This study aimed to provide a deep-learning based framework for automated segmentation of anatomical 

structures involved in pronation/supination of the forearm on magnetic resonance (MR) images. This approach allows for 

visualization and quantitative analysis of the patient-specific anatomy, enabling efficient identification of soft tissue 

structures that may contribute to impaired forearm rotation. 

Methods and materials: Manual ground truth annotations of six anatomical structures (radius, ulna, interosseous 

membrane, m. pronator quadratus, m. pronator teres, m. supinator) were performed on 24 fast-recovery fast spin-echo 

T2-weighted (FRFSE T2) in-phase Dixon images of the forearm. The dataset contained an equal distribution between 

affected and unaffected, and left and right forearms. Two nnU-Net configurations (2D and 3D) were trained on 20 

manually segmented forearms using 5-fold cross-validation for segmentation of the six structures. An ensemble was 

created by combining predictions from both fully-trained models. A hold-out test set of 4 forearms was used to evaluate 

segmentation performance using the Dice similarity coefficient (DSC) and the average symmetric surface distance 

(ASSD) metrics. Additionally, relative volume difference (Δrel) between ground truth and predicted segmentations were 

computed to assess under- or oversegmentation.  

Results: The 3D model achieved the best segmentation performance, with a median DSC score of 0.894 (IQR=0.094) 

and a median ASSD of 0.324 (IQR=0.386) mm. It slightly undersegmented the anatomy, with a median relative volume 

difference of -2.7% (IQR=7.1%). Qualitative results revealed that the 3D model produced segmentation masks that 

contained fewer and less severe segmentation errors compared to the 2D model and ensemble. Minor segmentation errors 

were observed in the interosseous membrane, the proximal part of the m. pronator quadratus and the insertion of the m. 

pronator teres in some cases. 

Conclusion: The 3D nnU-Net model has proven its suitability for clinical use, enabling fast, reproducible and precise 

segmentation of structures involved in pronation/supination of the forearm. This approach facilitates bilateral 

comparisons of soft tissue structures through visual assessment and quantitative analysis, supporting patient-specific and 

minimally invasive decision-making. 
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1. Introduction 

1.1 Background 

Fractures of the radius and/or ulna are common in children aged 5 to 14 years, accounting for approximately 34% of all 

pediatric fractures. [1] In this group, fractures are most frequently caused by axial loading applied to the forearm, 

typically resulting from a fall onto an outstretched hand. Although more prevalent in children, forearm fractures also 

occur in adults, primarily due to motor vehicle accidents, athletic injuries, and falls from height. Forearm rotation makes 

it possible to position the palm upward (i.e. supination) or downward (i.e. pronation) and is commonly used for carrying 

out tasks associated with daily life activities such as eating, writing, typing or accepting monetary change [2]. Pronation 

and supination involve a combination of rotation and translation of the radius, ulna and interosseous membrane (IOM) 

[3]. Forearm fractures can result in impaired rotation, hindering daily life activities. Movement is considered limited 

when the range of motion (ROM) for pronation/supination is reduced to less than the functional arc of 50 degrees in each 

direction [4], which patients often compensate for by using the ipsilateral shoulder. 

Although malunion is frequently reported as a cause of limited pronation/supination following forearm fractures, its exact 

role remains a topic of debate in the literature. Several studies suggest that malalignment in angulation, translation and/or 

rotation in the forearm bones can lead to restricted pronation/supination due to mechanisms such as bone impingement 

[5]-[10]. However, others have claimed that there is no clear association between malunion and rotational limitations 

[11]-[15]. This perspective is supported by studies showing that corrective osteotomies for malunited forearm fractures 

did not consistently resolve limitations [14], [15]. Over time, there has been growing emphasis on the role of soft tissues 

in posttraumatic restriction of pronation/supination. Scarring of the injured soft tissue could result in contractures, which 

likely play a significant role in these limitations [16]. Furthermore, contractures of certain structures may lead to disuse 

and atrophy of other structures, potentially restricting motion even further. Several studies have demonstrated that 

surgical interventions targeting these constraints showed potential for improving function [17]-[20]. Currently, corrective 

osteotomies are often the therapy of choice for patients with malunion in case of rotational impairment, instability of the 

distal radioulnar joint (DRUJ) and/or pain, with the aim of restoring anatomy and improving function [21], [22]. This 

invasive procedure is generally considered only after conventional treatments such as physiotherapy and bracing have 

been attempted and proven ineffective. However, for patients with malunion causing only functional impairment, or in 

cases where functional impairment occurs without malunion, the focus could probably shift toward assessing the role of 

soft tissues in the limitation and addressing these issues, whether through surgical interventions or continued 

conventional therapies. 

Magnetic resonance (MR) imaging is one of the most important imaging modalities in the field of orthopedics. This non-

invasive technique can produce high-resolution images with excellent soft tissue contrast. While direct interpretation of 

these images is subjective, quantitative analysis may offer a more standardized and reproducible alternative. To date, no 

method has been published for performing quantitative analysis of soft tissue structures involved in pronation/supination 

of the forearm. Semantic segmentation offers a promising solution to address this challenge, involving the process of 

partitioning images into regions of interest (ROIs) by classifying each pixel or voxel into specific classes. While manual 

segmentation is time-consuming and subject to significant intra- and inter-observer variability, automating the process 

offers the potential for high speed and reproducibility. Deep learning, a subfield of machine learning, has emerged as a 

leading approach for automating segmentation tasks. Specifically, convolutional neural networks (CNNs) are designed to 

automatically identify patterns within images through convolution operations. These networks consist of multiple layers, 

including convolutional, pooling and fully connected layers, which work together to predict pixel or voxel labels and 

generate segmentation masks. Deep learning-based methods have significantly enhanced accuracy, efficiency and 

adaptability to diverse image modalities, providing a more reliable and reproducible alternative to manual approaches 

[23]. Automated segmentation enables the extraction of detailed quantitative metrics related to soft tissue morphology, 

such as volume, length and structural integrity. By comparing these metrics bilaterally, a deeper understanding of how 

soft tissues may contribute to the restrictions can be gained, facilitating patient-specific and minimally invasive decision-

making. 
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1.2 Related work 

Several studies have explored the application of deep learning-based techniques for automated segmentation of 

musculoskeletal structures on MR images [25]-[45]. Among these, U-Net has emerged as the most widely used 

architecture. Originally developed for biomedical image segmentation by Ronneberger et al., this CNN  features an 

encoder-decoder structure [24]. The encoder captures hierarchical features from the input image through a series of 

convolutional layers, progressively downsampling the image. The decoder then reconstructs the segmentation mask by 

upsampling the encoded features, combining them with high-resolution features from the encoder through skip 

connections, which helps in precise localization and accurate segmentation.  

The majority of research in this field has focused on segmentation of structures in the knee joint, with numerous studies 

using 2D U-Nets for segmentation of bones and cartilages in the knee on sagittal double echo steady state (DESS) 

images. Among these, Almajalid et al. reported a Dice similarity coefficient (DSC) score of 0.970 [25], Kim-Wang et al., 

achieved 0.984 [26], and Deng et al. reached 0.987 for segmentation of knee bones [27]. Latif et al. utilized an ensemble 

of 2D and 3D U-Nets for the same task, also attaining a DSC score of 0.987 [28]. Ambellan et al. combined 2D and 3D 

U-Nets with a statistical shape modeling (SSM) step and achieved a DSC score of 0.986 for segmentation of the femur 

and tibia [29]. Kemnitz et al. used a 2D U-Net for segmentation of both knee bones and muscles on axial T1-weighted 

MR images. They reported DSC scores of 0.970 and 0.956 for segmentation of knee bones and muscles, respectively 

[30]. Additionally, Flannery et al. conducted three studies targeting the anterior cruciate ligament (ACL). The first used a 

2D U-Net for automated segmentation of the ACL on sagittal constructive interference in steady state (CISS) images. The 

second repurposed the same model for segmenting repaired ligaments and grafts, and the third adapted it for ACL 

segmentation on T2* images. DSC scores of 0.840, 0.800 and 0.760 were reported for these studies, respectively [31], 

[32], [33]. 

Substantial other work has been done in segmenting musculoskeletal structures in the shoulder region. Alipour et al. 

employed 2D U-Net models with different loss functions for automated segmentation of the rotator cuff muscles on 

oblique sagittal T1-weighted images of the shoulder. Their best-performing model employed the binary cross-entropy 

loss function, achieving a DSC score of 0.810 [34]. In a similar study, Medina et al. used sagittal T1-weighted images 

and achieved 0.963 [35]. Riem et al. also used sagittal T1-weighted images, adopting a 3D U-Net to segment rotator cuff 

muscles and shoulder bones, obtaining DSC scores of 0.905 and 0.932 for muscles and bones, respectively [36]. 

Beyond the knee and shoulder regions, another considerable amount of research has targeted the spine region. Three 

studies focusing on vertebrae segmentation on axial T2-weighted SPACE images using a 3D U-Net reported DSC scores 

of 0.925 by Zhu et al. [37], and 0.925 and 0.914 by Chen et al. [38] and Su et al. [39], respectively. Van der Graaf et al. 

conducted a similar study using sagittal T1- and T2-weighted images, achieving DSC scores of 0.930 and 0.920, 

respectively, for segmentation of vertebrae on both sequences [40]. Wesselink et al. adopted a 2D U-Net to segment the 

lumbar paraspinal muscles on axial T2-weighted images, achieving a DSC score of 0.921 [41]. 

While U-Net is widely regarded as state-of-the-art, achieving good results requires careful tuning of several network 

parameters, which can vary significantly depending on the segmentation task. To address the complexity and resource 

intensive nature of this tuning process, Isensee et al. introduced nnU-Net (‘no-new-U-Net’) as a self-configuring variant. 

[42] This framework automatically adapts to each dataset by configuring a U-Net based segmentation pipeline, 

determining data-dependent parameters –such as resampling strategy, image normalization scheme and batch size– that 

best match the data. This configuration process relies on a set of heuristic rules and a data fingerprint that contains data-

specific properties, including image sizes, pixel spacings and intensity information. As a result, the need for expert 

knowledge and high computational costs is eliminated, providing nnU-Net with the user-friendly nature that it is 

renowned for. 

Studies adopting nnU-Net for segmentation of musculoskeletal structures on MR images are still limited, likely 

attributable to its recent introduction. Li et al. adopted 2D and 3D nnU-Net for segmenting the mandibular condyle on 

sagittal PD-weighted images, reporting metric outcomes both in detected 2D slices and 3D volumes. The highest DSC 

value of 0.940 was reported for the 3D network when evaluated on 2D slices [43]. Hess et al. segmented rotator cuff 

muscles and shoulder bones using 2D and 3D nnU-Nets, as well as an ensemble, on axial, sagittal and coronal T1-

weighted images. Their best performing model was the 3D network, which achieved DSC scores of 0.900 for muscles 

and 0.945 for bones [44]. A similar study by Kim et al. used 2D and 3D nnU-Net models for segmenting the same 

structures along with cuff tendons on axial T2-weighted images. Additionally, they compared the performance of both 

models with and without the use of a secondary labeling process, during which a secondary labeled dataset was created 

using the false-positive segmentation results and the manual annotations. The best performing model was the 3D nnU-
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Net with secondary labelling, achieving DSC scores of 0.797, 0.978 and 0.801 for segmentation of muscles, bones and 

tendons, respectively [45]. Kamphuis et al. utilized an ensemble of 2D and 3D nnU-Nets for segmentation of femoral and 

acetabular bone in the hip joint using in-phase and water-only Dixon sequence images, and reported an average DSC 

score of 0.930 [46]. 

While most studies in this research field have focused on the lower extremity, spine or shoulder regions, similar research 

involving the forearm as anatomical region remains scarce. This explorative study serves as a pioneering effort to address 

this gap, aiming to provide a framework for the automated segmentation of anatomical structures involved in 

pronation/supination of the forearm on MR images using nnU-Net. This approach enables efficient identification of soft 

tissue structures that may be involved in posttraumatic restriction of pronation/supination through visualization and 

quantitative analysis of the patient-specific anatomy. 

 

2. Methods and materials 

2.1 Dataset and annotation procedures 

The dataset used in this study consisted of MR scans of forearms both affected and unaffected by trauma from 28 

patients, including children and adults (ages 7-35 years, 15 male, 13 female). Malunion was present in the affected 

forearms due to improperly healed fractures. These data were collected between 2019 and 2023 in a study approved by 

the medical ethics review committee. All images were acquired by 3.0T SIGNA scanners (GE Healthcare, Waukesha, WI, 

USA) via repeated scans in the axial planes of the forearm using a fast-recovery fast spin-echo T2-weighted (FRFSE T2) 

Dixon sequence (in-plane resolution: 0.3516 mm x 0.3516 mm, slice thickness: 4 mm, no interslice gap, flip angle: 111°, 

repetition time: 9480-13350 ms, echo time: 45-55 ms). Each patient had four different Dixon outputs available: in-phase, 

out-of-phase, water-only, and fat-only images. After exclusion of five patients due to poor scan quality or presence of 

severe artifacts, manual annotations were performed on 24 forearms from 23 patients. This set included 12 affected and 

12 unaffected forearms, with an equal split between left and right to ensure diversity in the data. 

Annotations of the radius, ulna, interosseous membrane, m. pronator quadratus, m, pronator teres and m. supinator were 

performed on axial in-phase images using 3D Slicer 5.2.1 [47]. Out-of-phase images were not eligible for this purpose 

due to chemical shift artifacts; however, they, along with water-only images, were occasionally referenced for guidance 

during the annotation process. Fat-only images were specifically used to minimize the inclusion of extramuscular fat 

during the annotation process. Given that all structures of interest are relatively elongated, segmentation was performed 

by annotating every other slice (i.e. annotating one slice and skipping the next), with the remaining slices filled in using 

interslice interpolation. The origin of the m. supinator on the distal humerus was not annotated as this region was not 

clearly visible on the scans. The interosseous membrane was annotated as a single continuous structure without 

differentiating its individual ligaments, as the relatively high slice thickness obscured finer details. Sagittal and coronal 

image representations were referenced to validate the axially annotated slices, ensuring proper alignment and accuracy of 

the annotations across all planes. A 2D median smoothing filter with a kernel size of 3.00 mm was applied to acquire 

smooth segment contours. To ensure quality and consistency, all 24 annotated forearms were reviewed and validated by 

an experienced musculoskeletal radiologist. A visual representation of the manual annotation procedure is provided in 

Figure 1. 

The annotated dataset was converted to NIfTI format and divided into two subsets. The training set consisted of 20 

manually segmented forearms, which was used in the training process of the networks. The test set, containing 4 

forearms, was reserved exclusively for a final evaluation of the networks upon completion of the training process. Both 

sets maintained an equal distribution of affected and unaffected, as well as left and right forearms. 
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Figure 1. Manual annotation procedure. (A) Axial in-phase images were annotated at regular intervals. (B) Sagittal and (C) coronal image 

reconstructions were referenced to validate the axially annotated slices. (D) Interslice interpolation was used to fill in the remaining slices, resulting in 
the final segmentation mask. Green: radius, light blue: ulna, purple: interosseous membrane, red: m. pronator quadratus, yellow: m. pronator teres, dark 

blue: m. supinator. 

 

2.2 Experiments and validation 

To segment the forearm structures, two different configurations of nnU-Net were used. The first was a 2D network, 

where input and output are two-dimensional arrays, and convolution operations are performed in 2D. The second was a 

3D full-resolution network, which processes volumetric data and performs convolution operations in 3D. As mentioned 

earlier, nnU-Net uses data-specific properties and a set of heuristic rules to infer data-dependent parameters. These, along 

with a set of fixed parameters, are used to create the pipeline fingerprints for both networks. A flowchart of the 

configuration pipeline is provided in Figure 2.  

 

Figure 2. Flowchart of the automated nnU-Net configuration pipeline. A data fingerprint with data-specific properties is extracted from the image data. 

Based on this fingerprint and a set of heuristic rules, data-dependent parameters are automatically inferred to match the data. Along with a set of fixed 

parameters, the pipeline fingerprints are created. The 3D cascade network (3DC) was not considered in this study. 
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The 2D and 3D networks were trained for a fixed length of 1000 epochs, each consisting of 250 iterations. Patch sizes of 

512x512 and 40x224x192 were used for 2D and 3D training, respectively, with batch sizes set to 12 and 2. Both models 

used the stochastic gradient descent (SGD) optimizer with Nesterov momentum of 0.99. The initial learning rate was 0.1, 

which was adjusted by a polynomial learning rate decay scheme (PolyLR). A combined cross-entropy and Dice loss 

function was used to optimize the models. To enhance generalization, data augmentation was used on the fly during 

training, including rotation, scaling, Gaussian noise and blur, brightness, contrast augmentation, simulation of low 

resolution, gamma correction, and mirroring. Intensity normalization was performed using a z-score normalization 

scheme. The models were trained for multi-class segmentation (six anatomical structures + background) using a 5-fold 

cross-validation scheme (i.e. five models were trained using 4/5 of the training set, with performance evaluated on the 

remaining 1/5). The best weights, minimizing the loss for each fold, were retained as the final weights for the model 

corresponding to that fold. An ensemble was created by combining predictions from both fully-trained models to 

determine whether the collective strengths of both models contributed to improved segmentation results when combined. 

Post-processing steps were applied to the 20 predicted segmentation masks resulting from the five validation sets (or 

ensembling). This included the process of removing all but the largest component for a specific ROI if it resulted in an 

improved DSC score. If this process improved the average DSC for a specific ROI, it was retained during inference. 

The segmentation performance of both networks (2D and 3D) and their ensemble were evaluated on the test dataset to 

provide insight into how they performed on unseen data. For the 2D and 3D model inference, the five models resulting 

from training five different folds were used as a natural model ensemble for predicting test cases. The same pre- and 

post-processing steps that were applied during training were also applied during the inference process. 

 

2.3 Evaluation metrics 

To evaluate segmentation performance, the DSC was used as the primary metric [48]. The DSC is a widely used overlap-

based metric that quantifies the proportion of overlap between the predicted and ground truth segmentations, and is 

calculated as shown in Equation 1. However, since single-pixel differences can significantly impact the metric’s outcome, 

especially in smaller structures [49], the average symmetric surface distance (ASSD) metric was also used [50]. The 

ASSD is a distance-based metric that measures the average of shortest distances from each point on the surface of the 

predicted segmentation to the closest point on the surface of the ground truth segmentation, and vice versa. This 

symmetric approach ensures that the metric is not biased towards one surface. It is defined as shown in Equation 2. 

ASSD values were calculated in Python using the seg-metrics package developed by Jia et al [51].  

Additionally, the volumes of the ground truth and predicted segmentation for each ROI were compared. The relative 

difference (Δrel) was computed to quantify fractional the difference between both volumes, providing insight into the 

extent and direction of potential under- or oversegmentation.  

All quantitative results are reported as median values with interquartile ranges (IQR) to ensure robustness to potential 

outliers. This approach provides a more reliable summary of central tendency and variability in small sample settings, 

where individual deviations can disproportionately influence mean-based statistics. 

 

 
𝐷𝑆𝐶 =  

2 × |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

 
(1) 

Where sets A and B represent the ground truth and predicted segmentations, respectively, TP is the true positive count, FP 

is the false positive count, and FN is the false negative count. The DSC ranges from 0, indicating no overlap between the 

sets, to 1, indicating complete overlap. 

 

 

𝐴𝑆𝑆𝐷(𝐴, 𝐵) =
1

|𝐴| + |𝐵|
(∑ min

𝑏∈𝐵
𝑑(𝑎, 𝑏) + ∑ min

𝑎∈𝐴
𝑑(𝑏, 𝑎)

𝑏∈𝐵𝑎∈𝐴

) 

 

 

(2) 
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Where a and b are points from sets A and B, representing the ground truth and predicted segmentations, respectively, and 

d is the Euclidian distance between points a and b. A smaller ASSD value indicates more overlap between the sets. ASSD 

is measured in millimeters. 

 

3. Results 

3.1 Quantitative results 

Table 1 summarizes the median DSC and ASSD scores on the unseen test dataset (n=4), along with IQR values, for all 

separate ROIs across the three networks. Detailed results are provided in Appendix II. On the test set, the 3D network 

achieved the highest overall median DSC score of 0.894 (IQR=0.094), with individual ROI scores of 0.949 (IQR=0.006) 

for the radius, 0.942 (IQR=0.002) for the ulna, 0.739 (IQR=0.140) for the interosseous membrane, 0.855 (IQR=0.014) 

for the m. pronator quadratus, 0.896 (IQR=0.013) for the m. pronator teres and 0.875 (IQR=0.048) for the m. supinator. 

The 3D network achieved the highest median DSC for all ROIs except the interosseous membrane, where the ensemble 

performed slightly better with a score of 0.744 (IQR=0.129). Cross-validation DSC results are provided in Appendix I.  

Similar to the DSC, the 3D network also achieved the lowest overall median ASSD of 0.324 (IQR=0.386) mm, with 

individual ROI scores of 0.116 (IQR=0.038) mm for the radius, 0.254 (IQR=0.120) mm for the ulna, 0.426 (IQR=0.725) 

mm for the interosseous membrane, 0.585 (IQR=0.154) mm for the m. pronator quadratus, 0.367 (IQR=0.221) mm for 

the m. pronator teres and 0.441 (IQR=0.311) mm for the m. supinator. It outperformed the 2D network and the ensemble 

for all ROIs, except for the m. supinator, where the ensemble achieved a slightly lower ASSD of 0.436 (IQR=0.264) mm. 

 

Table 1. Dice similarity coefficient and average symmetric surface distance results on the test dataset, quantifying the level of agreement between 

ground truth and predicted segmentations.  

 2D 3D Ensemble 

ROI DSC ASSD (mm) DSC ASSD (mm) DSC ASSD (mm) 

Radius 0.941 (0.008) 0.202 (0.138) 0.949 (0.006) 0.116 (0.038) 0.946 (0.003) 0.147 (0.073) 

Ulna 0.928 (0.017) 0.458 (0.240) 0.942 (0.002) 0.254 (0.120) 0.940 (0.009) 0.298 (0.077) 

IOM 0.737 (0.122) 0.459 (0.690) 0.739 (0.140) 0.426 (0.725) 0.744 (0.129) 0.438 (0.702) 

MPQ 0.841 (0.024) 0.614 (0.305) 0.855 (0.014) 0.585 (0.154) 0.849 (0.009) 0.587 (0.114) 

MPT 0.877 (0.019) 0.619 (0.229) 0.896 (0.013) 0.367 (0.221) 0.884 (0.010) 0.443 (0.212) 

MS 0.864 (0.038) 0.520 (0.214) 0.875 (0.048) 0.441 (0.311) 0.869 (0.047) 0.436 (0.264) 

Total 0.873 (0.096) 0.502 (0.380) 0.894 (0.094) 0.324 (0.386) 0.884 (0.095) 0.371 (0.364) 

Note: Results are presented as median (IQR). The best performance for each metric, per ROI and for the total, across the three networks is highlighted 

in bold. DSC=Dice similarity coefficient, ASSD=average symmetric surface distance, IQR=interquartile range, ROI=region of interest, 

IOM=interosseous membrane, MPQ=m. pronator quadratus, MPT=m. pronator teres, MS=m. supinator. 

 

Based on the median relative volume difference 

values, the 2D, 3D and ensemble networks 

undersegmented the anatomy with -5.5% 

(IQR=11.4%), -2.7% (IQR=7.1%) and -3.9% 

(IQR=9.0%), respectively. The 3D network 

achieved the lowest overall absolute score, 

indicating the best performance related to volume 

estimation. It achieved the lowest absolute score 

for the radius (+0.5%, IQR=1.3%), the m. 

pronator teres (-5.1%, IQR=7.0%) and the m. 

supinator (-8.6%, IQR=16.0%). The ensemble 

showed the best performance for the ulna (-3.0%, 

IQR=2.4%) and the interosseous membrane (-

2.6%, IQR=4.4%), while the 2D network did for 

the m. pronator quadratus (-7.2%, IQR=19.7%). 

These results are summarized in Table 2, with 

detailed results provided in Appendix III.  

Note: Results are presented as median (IQR). The lowest absolute value, per ROI and for 

the total, across the three networks is highlighted in bold. Δrel=relative volume difference, 

IQR=interquartile range, ROI=region of interest, IOM=interosseous membrane, MPQ=m. 

pronator quadratus, MPT=m. pronator teres, MS=m. supinator. 

 

Table 2. Relative volume difference scores quantifying the fractional difference between 

ground truth and predicted segmentation volumes of the test dataset. 
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Figure 3. Segmented cases from the test dataset. The first column shows the manually annotated ground truth segmentation masks, while the second, 
third and fourth columns display the segmentation masks predicted by the 2D model, 3D model, and ensemble, respectively. Green: radius, light blue: 

ulna, purple: interosseous membrane, red: m. pronator quadratus, yellow: m. pronator teres, dark blue: m. supinator. 

 

3.2 Qualitative results 

Figure 3 displays the segmented test cases predicted by the three different networks, along with the corresponding ground 

truth segmentations. Overall, the masks predicted by the 3D model showed the fewest and least severe segmentation 

errors compared to those generated by the 2D model and ensemble, which is consistent with the quantitative results. This 

is particularly evident in case 2 (left, affected forearm), where the 2D model and ensemble contained significant 

segmentation errors in multiple structures. While all three models made notable errors in segmenting the interosseous 

membrane in two cases, the mistakes in the 3D model’s predictions were less pronounced and more confined, containing 

fewer irregularities. Additionally, the three models exhibited minor difficulties in accurately segmenting the proximal 

part of the m. pronator quadratus and the insertion of the m. pronator teres in some cases, with some inconsistencies 

across the predictions. The models were able to effectively exclude extramuscular fat tissue during the segmentation 

process. Figure 4 shows example slices from a test case segmented by the 3D model, shown alongside the corresponding 

ground truth slices. 



 

8 
 

 

Figure 4. Example segmentation from the test dataset (case 1: right, unaffected forearm). (A) Five representative cross-sectional slices shown from 

distal to proximal, illustrating the manually segmented ground truth. (B) Corresponding slices segmented by the 3D nnU-Net model, shown in the same 

order. Green: radius, light blue: ulna, purple: interosseous membrane, red: m. pronator quadratus, yellow: m. pronator teres, dark blue: m. supinator. 
 

4. Discussion 

With its robust capabilities, nnU-Net has proven highly effective in segmenting the forearm anatomy both affected and 

unaffected by trauma. To the best of our knowledge, this study marks the first successful application of these methods to 

the forearm, representing a significant breakthrough in the literature for this specific anatomical region. Compared to its 

2D counterpart, which offers lower computational and memory demands but suffers from discontinuity along the z-axis, 

the 3D model captures spatial patterns across the full volume of the image, providing a more comprehensive 

representation of anatomical structures [52]. Although ensembling of the two networks was explored, it did not improve 

either quantitative or qualitative performance. As a result, the 3D nnU-Net model was identified as the most suitable 

configuration for clinical implementation. Compared to the time-consuming and labor-intensive manual approach, which 

requires at least six hours, this automated method demonstrated sufficiently accurate segmentation within seconds. This 

enables bilateral comparisons of soft tissue structures through visual assessment and quantitative analysis, based on 

properties such as volume, length and texture-based features. Based on these analyses, it may be possible to identify 

whether impairment of forearm rotation is potentially caused by soft tissue alterations rather than bony malunion. In such 

cases, invasive corrective osteotomies could probably be avoided if treatment is focused primarily on soft tissue 

pathology, such as through physiotherapy and/or bracing. 

The 3D model achieved median DSC scores of 0.949 (IQR=0.006) and 0.942 (IQR=0.002) for segmentation of the radius 

and ulna, respectively. These were the highest DSC values among all segmented structures, indicating the model’s 

particularly strong performance on the bones. These results are in line with previously reported values in the literature. 

For example, Kamphuis et al. used an ensemble of 2D and 3D nnU-Nets to segment femoral and acetabular bone in the 

hip joint, along with cartilage, using Dixon sequence images [46]. Their work compared the performance on different 

image combinations, including water-only, in-phase plus water-only, and fat-only plus water-only images. They reported 

DSC scores of 0.961, 0.967 and 0.950 for segmentation of femoral bone, respectively, and 0.886, 0.893 and 0.896 for 

segmentation of acetabular bone. Hess et al. applied 3D nnU-Net to segment shoulder bones on T1-weighted images, 

achieving a DSC of 0.945 [44], while Kim et al. reported 0.987 using T2-weighted images [45]. These results are 

comparable to the DSC scores for segmentation of the forearm bones achieved in the present study, reinforcing the 

effectiveness of nnU-Net in segmenting osseous structures. 

For segmentation of the three muscles, the 3D model achieved the following median DSC scores: 0.855 (IQR=0.014) for 

the m. pronator quadratus, 0.896 (IQR=0.013) for the m. pronator teres and 0.875 (IQR=0.048) for the m. supinator. 

Reported DSC values for muscle segmentation vary considerably across the literature. In the previously mentioned 

studies, Hess et al. achieved a DSC of 0.900 for segmentation of the shoulder muscles [44], while Kim et al. reported 

0.797 [45]. Alipour et al. and Medina et al. used conventional 2D U-Net models and T1-weighted images for this 

purpose, and obtained DSC scores of 0.810 [34] and 0.963 [35], respectively. The results achieved in the present study 



 

9 
 

fall within this reported range, highlighting the comparability and robustness of the 3D nnU-Net approach for muscle 

segmentation. The relatively lower score of the m. pronator quadratus may be attributed to two possible factors. First, the 

proximal part of this muscle was often difficult to visualize, which led to the manual annotation of this area requiring 

some degree of estimation. As a result, this may have introduced inconsistencies into the training data. Second, as 

mentioned earlier, the DSC metric is sensitive to small discrepancies, and even minor deviations can significantly affect 

scores in smaller structures. However, the ASSD and relative volume difference results provide further insight, with this 

muscle achieving the poorest scores across both, consistent with qualitative observations where it appeared slightly 

undersized in some cases. Another issue, not clearly reflected in quantitative results, involved the insertion of the m. 

pronator teres. Like the proximal m. pronator quadratus, this region was difficult to annotate accurately and frequently 

showed incomplete or imprecise segmentation in qualitative assessments, despite minimal impact on overall scores. 

Segmentation of the interosseous membrane yielded a median DSC score of 0.739 (IQR=0.140), the lowest among the 

six structures. Although lower than the scores obtained for segmentation of bones and muscles, it still exceeds the 

commonly cited threshold of 0.700 for acceptable segmentation overlap [53]. This relatively lower performance is also 

consistent with previous studies reporting lower DSC scores for fibrous structures compared to osseous and muscular 

structures. For example, Kim et al. achieved a DSC of 0.801 for segmentation of rotator cuff tendons in the study 

mentioned earlier [45], while Flannery et al. achieved 0.760 for segmentation of the ACL on T2* images using a 2D U-

Net [33]. Similar to the proximal m. pronator quadratus and the insertion region of the m. pronator teres, the structure 

itself was more challenging to manually segment, as it was occasionally difficult to visualize on individual slices. This 

may again have affected the quality of the training data. Additionally, the main limitation of the DSC metric discussed 

earlier may also help explain the lower score. Although the ASSD and relative volume difference scores did not rank the 

interosseous membrane as the lowest, the qualitative results revealed that the model faced challenges in accurately 

segmenting this structure, as evidenced by incomplete segments with visible gaps in two cases. It is worth noting, 

however, that these gaps appeared in regions where the structure was also difficult to annotate manually. Despite the 

inaccuracies, the overall volumes were still reasonably well matched, explaining the low relative volume difference. As 

for the ASSD, similar to the DSC, this structure had an IQR that was significantly greater than that of the others, 

indicating greater variability in segmentation performance, which helps explain the difference in its ranking across both 

metrics. 

While the 3D network consistently achieved the highest DSC results for segmentation of most structures, its median 

score of 0.739 (IQR=0.140) for the interosseous membrane was slightly lower than that of the ensemble, which reached 

0.744 (IQR=0.129). However, this structure exhibited the largest DSC IQR across all six structures in both 

configurations, suggesting that the segmentation results were less consistent. Similarly, for the ASSD metric, the 3D 

network achieved the lowest scores for all structures except one. It reached an ASSD of 0.441 (IQR=0.311) for the m. 

supinator, while the ensemble obtained a slightly lower 0.436 (IQR=0.264). This structure had the second largest IQR for 

ASSD among all six structures in both networks. Although these differences are worth noting, they are minimal and may 

be coincidental. As no formal statistical test was performed, their significance remains uncertain. This also applies to the 

relative volume difference results, where the 3D model did not achieve the lowest absolute scores for the ulna, 

interosseous membrane and m. pronator quadratus. 

The second case in the test set involved an affected left forearm. Both the quantitative and qualitative results 

demonstrated that all models faced difficulties in accurately segmenting the anatomy in this case. This was particularly 

evident in the 2D and ensemble networks, where large holes were present in the interosseous membrane and m. pronator 

teres, and even the radius and ulna contained visible segmentation errors. This case involved an arm which was severely 

damaged by trauma, resulting in anatomical changes that may not have been well-represented in the training set. The 

scan also contained some motion artifacts, though not severe enough to warrant exclusion. While the 3D model achieved 

better results for this case than the 2D and ensemble approaches, a noticeable gap remains in the interosseous membrane. 

This observation may suggest that this model could potentially underperform for segmentation of this structure in cases 

with more extensive anatomical changes due to trauma. However, a visible hole was also observed in the third case, 

which involved an unaffected left arm. As a result, it remains unclear whether segmentation inaccuracies are due to 

anatomical alterations caused by trauma. 

This work has a number of limitations. Although internal validation yielded satisfactory results, no external validation 

was performed using an independent test dataset. External validation would have provided further insight into the 

model’s ability to generalize beyond the specific dataset used for training, ensuring its applicability in other clinical 

contexts. Two additional limitations arise from the small size of the (test) dataset. First, no statistical analyses were 

performed to determine whether the segmentation performances of the three networks significantly differed from each 
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other. While the 3D model consistently achieved the best median metric scores across most ROIs, it did not outperform 

the other two in some cases. Although the differences are minimal and may be coincidental, it is difficult to draw 

definitive conclusions regarding their significance without statistical testing. The small size of the test dataset also limited 

the ability to compare segmentation performance between affected and unaffected forearms, as noted earlier. This 

distinction would have been particularly valuable for clinical implementation, as it could offer insight into the potential 

inaccuracies specific to each side. Future work should focus on expanding the dataset, particularly by increasing the 

number of test cases. Additionally, incorporating a broader range of anatomical presentations, such as cases with 

congenital abnormalities or post-surgical changes, could enhance the model’s generalizability and clinical applicability. 

To further strengthen the findings, external validation and statistical analyses should be considered. 

  

5. Conclusion 

In this study, nnU-Net was employed as a deep-learning based method for automated segmentation of anatomical 

structures involved in pronation/supination of the forearm on MR images. Among the three different configurations 

compared, the 3D network achieved the most accurate results. The model demonstrated the ability to perform fast, 

reproducible and precise segmentation, offering significant potential for efficient visualization and quantitative analysis 

of the forearm anatomy. This approach enables patient-specific and minimally invasive decision-making by 

differentiating soft tissue from osseous pathology as (main) cause for impaired forearm rotation. Given the limited focus 

on the forearm in existing literature, this work serves as a pioneering effort, laying the foundation for future 

advancements in both clinical practice and research.  
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Appendix I. DSC results (cross-validation) 
 

Supplemental Table 1. Mean Dice similarity coefficient results for each cross-validation fold, quantifying the average level of 

agreement between ground truth and predicted segmentations in each fold’s validation set. Averaged results across all folds are 

included, both before and after post-processing. 

  2D 3D Ensemble 

Fold ROI DSC DSC DSC 

0 Radius 0.924 0.932 - 

 Ulna 0.917 0.926 - 

 IOM 0.678 0.666 - 

 MPQ 0.813 0.845 - 

 MPT 0.880 0.884 - 

 MS 0.865 0.878 - 

 Mean 0.846 0.855 - 

1 Radius 0.921 0.928 - 

 Ulna 0.917 0.924 - 

 IOM 0.680 0.694 - 

 MPQ 0.842 0.866 - 

 MPT 0.868 0.888 - 

 MS 0.841 0.858 - 

 Mean 0.845 0.859 - 

2 Radius 0.941 0.941 - 

 Ulna 0.919 0.928 - 

 IOM 0.737 0.736 - 

 MPQ 0.874 0.864 - 

 MPT 0.888 0.904 - 

 MS 0.858 0.881 - 

 Mean 0.870 0.876 - 

3 Radius 0.915 0.931 - 

 Ulna 0.914 0.920 - 

 IOM 0.733 0.760 - 

 MPQ 0.759 0.829 - 

 MPT 0.855 0.882 - 

 MS 0.855 0.873 - 

 Mean 0.839 0.866 - 

4 Radius 0.933 0.920 - 

 Ulna 0.925 0.926 - 

 IOM 0.709 0.745 - 

 MPQ 0.832 0.857 - 

 MPT 0.837 0.887 - 

 MS 0.856 0.872 - 

 Mean 0.849 0.868 - 

All Radius 0.927 0.930 0.932 

 Ulna 0.918 0.924 0.925 

 IOM 0.707 0.720 0.718 

 MPQ 0.824 0.852 0.840 

 MPT 0.866 0.889 0.876 

 MS 0.855 0.872 0.866 

 Mean 0.850 0.865 0.859 

All (PP) Radius 0.927 0.934 0.932 

 Ulna 0.918 0.924 0.925 

 IOM 0.707 0.720 0.718 

 MPQ 0.824 0.852 0.840 

 MPT 0.866 0.889 0.876 

 MS 0.855 0.872 0.866 

 Mean 0.850 0.865 0.859 
Note: Values highlighted in bold indicate cases where post-processing improved the DSC score by removing all but the largest component. DSC=Dice 

similarity coefficient, ROI=region of interest, IOM=interosseous membrane, MPQ=m. pronator quadratus, MPT=m. pronator teres, MS=m. supinator, 

PP=post-processing.  
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Appendix II. DSC/ASSD results (inference) 
 

Supplemental Table 2. Dice similarity coefficient and average symmetric surface distance results for each case in the test dataset, 

quantifying the level of agreement between ground truth and predicted segmentations. 

    2D 3D Ensemble 

Case A/U L/R ROI DSC ASSD 

(mm) 

DSC ASSD 

(mm) 

DSC ASSD 

(mm) 

1 U R Radius 0.946 0.132 0.951 0.110 0.950 0.115 

   Ulna 0.944 0.166 0.942 0.175 0.945 0.163 

   IOM 0.783 0.173 0.794 0.129 0.787 0.162 

   MPQ 0.855 0.456 0.849 0.724 0.855 0.608 

   MPT 0.872 0.436 0.897 0.308 0.884 0.369 

   MS 0.853 0.549 0.842 0.583 0.851 0.534 

   Median 

(IQR) 

0.864 

(0.073) 

0.305 

(0.283) 

0.873 

(0.087) 

0.242 

(0.374) 

0.870 

(0.078) 

0.266 

(0.331) 

2 A L Radius 0.932 0.325 0.954 0.113 0.945 0.178 

   Ulna 0.923 0.539 0.938 0.390 0.937 0.314 

   IOM 0.508 1.865 0.567 1.675 0.533 1.714 

   MPQ 0.833 0.714 0.864 0.519 0.851 0.566 

   MPT 0.847 0.707 0.894 0.340 0.873 0.511 

   MS 0.819 0.920 0.855 0.582 0.834 0.653 

   Median 

(IQR) 

0.840 

(0.082) 

0.711 

(0.288) 

0.879 

(0.070) 

0.455 

(0.214) 

0.862 

(0.083) 

0.539 

(0.268) 

3 U L Radius 0.944 0.142 0.947 0.118 0.947 0.116 

   Ulna 0.933 0.377 0.943 0.298 0.942 0.281 

   IOM 0.701 0.637 0.684 0.651 0.700 0.647 

   MPQ 0.848 0.513 0.843 0.651 0.846 0.526 

   MPT 0.895 0.530 0.921 0.394 0.914 0.374 

   MS 0.874 0.491 0.894 0.300 0.886 0.337 

   Median 

(IQR) 

0.885 

(0.069) 

0.502 

(0.120) 

0.908 

(0.082) 

0.347 

(0.288) 

0.900 

(0.079) 

0.356 

(0.193) 

4 A R Radius 0.938 0.262 0.942 0.247 0.943 0.221 

   Ulna 0.906 0.639 0.941 0.210 0.922 0.373 

   IOM 0.772 0.281 0.795 0.200 0.787 0.228 

   MPQ 0.805 1.072 0.860 0.506 0.833 0.855 

   MPT 0.881 0.820 0.877 1.030 0.884 0.804 

   MS 0.909 0.240 0.918 0.186 0.917 0.189 

   Median 

(IQR) 

0.894 

(0.084) 

0.460 

(0.508) 

0.898 

(0.071) 

0.229 

(0.239) 

0.901 

(0.075) 

0.301 

(0.474) 

   Total median 

(IQR) 

0.873 

(0.096) 

0.502 

(0.380) 

0.894 

(0.094) 

0.324 

(0.386) 

0.884 

(0.095) 

0.371 

(0.364) 
Note: A/U=affected/unaffected, L/R=left/right, DSC=Dice similarity coefficient, ASSD=average symmetric surface distance, IQR=interquartile range, 

ROI=region of interest, IOM=interosseous membrane, MPQ=m. pronator quadratus, MPT=m. pronator teres, MS=m. supinator. 
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Appendix III. Relative volume difference results (inference) 
 

Supplemental Table 3. Relative volume difference scores for each case in the test dataset, quantifying the fractional difference 

between ground truth and predicted volumes. 

     2D 3D Ensemble 

Case A/U L/R ROI GTV 

(cm3) 

PRV 

(cm3) 

Δrel PRV 

(cm3) 

Δrel PRV 

(cm3) 

Δrel 

1 U R Radius 26.503 26.388 -0.004 26.228 -0.010 26.311 -0.007 

   Ulna 32.067 31.055 -0.032 31.505 -0.018 31.235 -0.026 

   IOM 3.236 3.059 -0.055 3.001 -0.073 3.029 -0.064 

   MPQ 6.913 5.839 -0.155 5.669 -0.180 5.790 -0.163 

   MPT 15.411 14.568 -0.055 15.576 +0.011 14.884 -0.034 

   MS 14.174 11.691 -0.175 11.609 -0.181 11.630 -0.180 

   Median 

(IQR) 

- - -0.055 

(0.092) 

- -0.046 

(0.141) 

- -0.049 

(0.110) 

2 A L Radius 37.511 36.461 -0.028 37.885 +0.010 37.264 -0.007 

   Ulna 41.070 40.761 -0.008 39.162 -0.046 39.947 -0.027 

   IOM 2.470 2.253 -0.088 2.899 +0.174 2.435 -0.014 

   MPQ 7.293 7.375 +0.011 7.300 +0.001 7.327 +0.005 

   MPT 19.308 16.872 -0.126 18.698 -0.032 17.633 -0.087 

   MS 19.797 15.164 -0.234 16.599 -0.162 15.566 -0.214 

   Median 

(IQR) 

- - -0.058 

(0.104) 

- -0.016 

(0.050) 

- -0.021 

(0.063) 

3 U L Radius 32.686 33.664 +0.030 33.053 +0.011 33.505 +0.025 

   Ulna 39.964 37.772 -0.055 39.228 -0.018 38.637 -0.033 

   IOM 4.226 4.123 -0.024 4.081 -0.034 4.064 -0.038 

   MPQ 6.271 6.367 +0.015 5.867 -0.064 5.949 -0.051 

   MPT 25.971 21.856 -0.158 24.155 -0.070 22.802 -0.122 

   MS 18.574 16.717 -0.100 18.645 +0.004 17.276 -0.070 

   Median 

(IQR) 

- - -0.040 

(0.094) 

- -0.026 

(0.055) 

- -0.045 

(0.031) 

4 A R Radius 36.036 35.215 -0.023 36.045 0.000 35.281 -0.021 

   Ulna 40.410 34.998 -0.134 38.015 -0.059 36.179 -0.105 

   IOM 4.723 5.129 +0.086 4.618 -0.022 4.913 +0.040 

   MPQ 6.883 4.988 -0.275 5.597 -0.187 5.260 -0.236 

   MPT 23.835 20.671 -0.133 20.176 -0.154 20.553 -0.138 

   MS 18.583 17.548 -0.056 18.400 -0.010 17.859 -0.039 

   Median 

(IQR) 

- - -0.095 

(0.103) 

- -0.041 

(0.117) 

- -0.072 

(0.104) 

   Total median 

(IQR) 

- - -0.055 

(0.114) 

- -0.027 

(0.071) 

- -0.039 

(0.090) 
Note: A/U=affected/unaffected, L/R=left/right, GTV=ground truth volume, PRV=predicted volume, Δrel=relative volume difference, IQR=interquartile 

range, ROI=region of interest, IOM=interosseous membrane, MPQ=m. pronator quadratus, MPT=m. pronator teres, MS=m. supinator. 


