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and René (M. M). van Paassen

Control and Simulation, Faculty of Aerospace Engineering, TU Delft,
2629 HS, Delft, The Netherlands

Abstract: Mathematical human control models are widely used in tuning manual control
systems and understanding human performance. Human behavior is commonly described using
linear time-invariant models, averaging-out all non-linear and time-varying effects, which are
gathered into the remnant. These models are limited in their capability to capture particular
tracking strategies that an experienced subject may learn to use. In this paper, we consider
manual control from a different perspective, namely through investigating the probability
densities of the tracking error for different regions of the target signal amplitude. Results show
that distinct strategies become apparent for compensatory, pursuit and preview tracking tasks.
Effects of these strategies are often averaged-out by current models and can only be captured in
situation-dependent models. Modeling this systematic human adaptation not captured in linear
models could potentially lead to better model fits and explain/reduce part of the remnant.

Keywords: Cybernetics, manual control, system identification, probability theory

1. INTRODUCTION

Human Controllers (HC) are biological control systems
capable of exhibiting an enormous variety in behaviour
(McRuer and Jex, 1967). In 1960, Krendel and McRuer
(1960) introduced their Successive Organisation of Percep-
tion (SOP) hierarchy for human manual control, describing
the development of skill-based manual control in three
stages, compensatory, pursuit/preview, and precognitive
control. Depending on the task variables, mainly the type
of display (the three main types of McRuer and Jex (1967)
shown in Fig. 1), the controlled element (CE) dynamics
and the characteristics (power, bandwidth) of the signal-
to-be-followed (the target ft), human controllers will sys-
tematically adapt their dynamic response to achieve high
tracking performance with limited control effort.

In a recent overview, Mulder et al. (2018) argue that
cybernetics theory has predominantly focused on the low-
est SOP level of human control, compensatory tracking,
culminating in the widely-used and universally-accepted
crossover model (McRuer and Jex, 1967). This model,
and most of those that followed, allows to describe the
steady-state feedback response of operators to unpre-
dictable quasi-random target signals. Until Drop (2016)
and Van der El (2018), universal HC models for tracking
with pursuit and preview displays, which allow the HC
to exert a strong feedforward (and with predictive target
signals even precognitive) response barely existed. Mulder
et al. (2018) concluded that much more efforts should be
put into understanding human control behavior in these
operationally relevant tasks, and strive for describing the
learning, adaptive human capabilities as these are the main
reason humans are still included in the loop.

1 m.mulder@tudelft.nl

re f erence f ollower

e(t)

(a) Compensatory

re f erence
controlled

tar�et

element
output

τp

ft (t)

e(t)

x(t)

(b) Pursuit/Preview

Fig. 1. Compensatory, Pursuit and Preview displays.

Modeling adaptive behavior inevitably means moving
ahead, from the current predominant linear time-invariant
(LTI) models (Zaal et al., 2009) to models that allow
including time-varying or even non-linear behavior. It
also means that our current experimental and theoretical
paradigm, which aims to fit LTI models to data from an
entire experimental run, averaging the human response to
fit LTI model and then assigning the “remaining response”
to a remnant signal, needs to change. Mulder et al. (2019)
argued to first study whether some strategies that follow
from “common sense” heuristics actually exist in tracking
data, strategies that could partially explain the observed
time-varying, nonlinear behavior put into the remnant. An
example strategy with the pursuit display of Fig. 1 would
be to keep the CE symbol (which the HC controls) always
“at the inside” of the tracking symbol, especially when
the latter symbol moves closer to its extreme left/right
positions (Neilson et al., 1988).

In this paper we present a probabilistic analysis of pos-
sible tracking strategies found in the experiment from
Van der El et al. (2020), where the HC adaptation to
target signal bandwidth was studied (and modeled) for
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Modeling adaptive behavior inevitably means moving
ahead, from the current predominant linear time-invariant
(LTI) models (Zaal et al., 2009) to models that allow
including time-varying or even non-linear behavior. It
also means that our current experimental and theoretical
paradigm, which aims to fit LTI models to data from an
entire experimental run, averaging the human response to
fit LTI model and then assigning the “remaining response”
to a remnant signal, needs to change. Mulder et al. (2019)
argued to first study whether some strategies that follow
from “common sense” heuristics actually exist in tracking
data, strategies that could partially explain the observed
time-varying, nonlinear behavior put into the remnant. An
example strategy with the pursuit display of Fig. 1 would
be to keep the CE symbol (which the HC controls) always
“at the inside” of the tracking symbol, especially when
the latter symbol moves closer to its extreme left/right
positions (Neilson et al., 1988).

In this paper we present a probabilistic analysis of pos-
sible tracking strategies found in the experiment from
Van der El et al. (2020), where the HC adaptation to
target signal bandwidth was studied (and modeled) for
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Modeling adaptive behavior inevitably means moving
ahead, from the current predominant linear time-invariant
(LTI) models (Zaal et al., 2009) to models that allow
including time-varying or even non-linear behavior. It
also means that our current experimental and theoretical
paradigm, which aims to fit LTI models to data from an
entire experimental run, averaging the human response to
fit LTI model and then assigning the “remaining response”
to a remnant signal, needs to change. Mulder et al. (2019)
argued to first study whether some strategies that follow
from “common sense” heuristics actually exist in tracking
data, strategies that could partially explain the observed
time-varying, nonlinear behavior put into the remnant. An
example strategy with the pursuit display of Fig. 1 would
be to keep the CE symbol (which the HC controls) always
“at the inside” of the tracking symbol, especially when
the latter symbol moves closer to its extreme left/right
positions (Neilson et al., 1988).

In this paper we present a probabilistic analysis of pos-
sible tracking strategies found in the experiment from
Van der El et al. (2020), where the HC adaptation to
target signal bandwidth was studied (and modeled) for
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and Van der El (2018), universal HC models for tracking
with pursuit and preview displays, which allow the HC
to exert a strong feedforward (and with predictive target
signals even precognitive) response barely existed. Mulder
et al. (2018) concluded that much more efforts should be
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Modeling adaptive behavior inevitably means moving
ahead, from the current predominant linear time-invariant
(LTI) models (Zaal et al., 2009) to models that allow
including time-varying or even non-linear behavior. It
also means that our current experimental and theoretical
paradigm, which aims to fit LTI models to data from an
entire experimental run, averaging the human response to
fit LTI model and then assigning the “remaining response”
to a remnant signal, needs to change. Mulder et al. (2019)
argued to first study whether some strategies that follow
from “common sense” heuristics actually exist in tracking
data, strategies that could partially explain the observed
time-varying, nonlinear behavior put into the remnant. An
example strategy with the pursuit display of Fig. 1 would
be to keep the CE symbol (which the HC controls) always
“at the inside” of the tracking symbol, especially when
the latter symbol moves closer to its extreme left/right
positions (Neilson et al., 1988).

In this paper we present a probabilistic analysis of pos-
sible tracking strategies found in the experiment from
Van der El et al. (2020), where the HC adaptation to
target signal bandwidth was studied (and modeled) for
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In a recent overview, Mulder et al. (2018) argue that
cybernetics theory has predominantly focused on the low-
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culminating in the widely-used and universally-accepted
crossover model (McRuer and Jex, 1967). This model,
and most of those that followed, allows to describe the
steady-state feedback response of operators to unpre-
dictable quasi-random target signals. Until Drop (2016)
and Van der El (2018), universal HC models for tracking
with pursuit and preview displays, which allow the HC
to exert a strong feedforward (and with predictive target
signals even precognitive) response barely existed. Mulder
et al. (2018) concluded that much more efforts should be
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operationally relevant tasks, and strive for describing the
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Modeling adaptive behavior inevitably means moving
ahead, from the current predominant linear time-invariant
(LTI) models (Zaal et al., 2009) to models that allow
including time-varying or even non-linear behavior. It
also means that our current experimental and theoretical
paradigm, which aims to fit LTI models to data from an
entire experimental run, averaging the human response to
fit LTI model and then assigning the “remaining response”
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time-varying, nonlinear behavior put into the remnant. An
example strategy with the pursuit display of Fig. 1 would
be to keep the CE symbol (which the HC controls) always
“at the inside” of the tracking symbol, especially when
the latter symbol moves closer to its extreme left/right
positions (Neilson et al., 1988).

In this paper we present a probabilistic analysis of pos-
sible tracking strategies found in the experiment from
Van der El et al. (2020), where the HC adaptation to
target signal bandwidth was studied (and modeled) for
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Modeling adaptive behavior inevitably means moving
ahead, from the current predominant linear time-invariant
(LTI) models (Zaal et al., 2009) to models that allow
including time-varying or even non-linear behavior. It
also means that our current experimental and theoretical
paradigm, which aims to fit LTI models to data from an
entire experimental run, averaging the human response to
fit LTI model and then assigning the “remaining response”
to a remnant signal, needs to change. Mulder et al. (2019)
argued to first study whether some strategies that follow
from “common sense” heuristics actually exist in tracking
data, strategies that could partially explain the observed
time-varying, nonlinear behavior put into the remnant. An
example strategy with the pursuit display of Fig. 1 would
be to keep the CE symbol (which the HC controls) always
“at the inside” of the tracking symbol, especially when
the latter symbol moves closer to its extreme left/right
positions (Neilson et al., 1988).

In this paper we present a probabilistic analysis of pos-
sible tracking strategies found in the experiment from
Van der El et al. (2020), where the HC adaptation to
target signal bandwidth was studied (and modeled) for
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the compensatory, pursuit and preview displays. Section 2
discusses the main rationale of this analysis, which is based
on (Mulder et al., 2019). Section 3 briefly explains the
experiment of Van der El et al. (2020), and the current
data analysis method. Results will be shown and discussed
in Section 4; the paper ends with conclusions in Section 5.

2. BACKGROUND

2.1 Common Modeling attempts

A plethora of HC models exist and for the sake of brevity
only the ‘universal’ model developed by Van der El (2018)
will be discussed. This model has been shown to accurately
describe HC behavior with all three tracking displays of
Fig. 1 (Van der El et al., 2016, 2020).

Hhc Hce

HC dynamics

e uft
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e
Khc e−jωτhc
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HC dynamics model

+
−

+

+

+

+

x
x

Fig. 2. Block diagram of the pursuit tracking task (top)
and the HC error feedback dynamics as typically
found in compensatory tracking tasks (bottom).

Fig. 2 shows the control scheme for pursuit tracking, where
the HC has three inputs (Wasicko et al., 1966): the target
signal ft and CE output x, shown by the two moving
symbols on the display (see Fig. 1), and the error e, i.e., the
difference between both symbols e = ft − x. Paraphrasing
Mulder et al. (2019), because x is available the HC can ‘see
what she is doing’, can have proper eye-hand coordination
and can explore the CE dynamics. Because ft is available,
the HC can characterize its (stochastic) properties, in case
of simple target signals perhaps even remember (parts of)
the signal, and can try to anticipate its movements. Note
that all these elements, especially the latter ones, form
a problem for cyberneticists to capture with their LTI
models, as will be discussed in the next subsection.

In compensatory tracking only the error e is shown,
which makes the task markedly simpler to analyze and
model. The HC has just one input and does not have all
the benefits a pursuit display offers. With quasi-random
unpredictable target signals the HC can only feed back the
error, successfully captured in McRuer and Jex (1967)’s
crossover model. For tracking with the preview display,
the benefits of the pursuit display can be exploited even
better, as then also the future τp seconds of the target
signal is shown, see Fig. 1 (Van der El et al., 2016).

Van der El (2018) proposes a general model to describe HC
behaviour with all three displays; the ‘pursuit’ version is
illustrated in Fig. 3. In short, he proposes a compensatory
tracking control scheme for all three displays, extended
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controltarget
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output
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human controller

controlled
element

controlled element
output x(t)

disturbance
fd(t)

Fig. 3. Block diagram of the HC, modeled as a compen-
satory controller with a reference “aim point” obtained
by pre-filtering the target signal ft.

with a “target processing” block that describes the way in
which the HC processes the perceived movement of the
target symbol (i.e., signal ft), to self-generate an “error”
signal e⋆ minimized by a compensatory feedback mech-
anism. For the compensatory display this pre-processing
block is not existent, and the self-generated error will be
the same as the presented error e. With a pursuit display,
the pre-processing of ft is simply a scaling with gain Kf ,
see Fig. 3. With the preview display, the pre-processing
block includes this same gain, a low-pass filter to filter out
high-frequency movements of the target signal ft that the
HC is likely to ignore, and a negative delay to account for
the preview of the target signal. This elementary model has
been extensively and successfully validated, as reported
in (Van der El et al., 2016, 2018b,a, 2020). Other recent
models to describe HC behaviour are described in (Zhang
et al., 2017; Sheffler et al., 2019).

2.2 Nonlinear Control Strategies

Mulder et al. (2019) discussed situation-dependent con-
trol strategies with the pursuit display that are a direct
consequence of the way our tracking experiments are set-
up. Basically, one always scales the target signal ft such
that – with the pursuit and preview displays – the target
(=reference) symbol never leaves the screen. In addition,
the target signal is often a sum-of-sinusoids signal, defined
such that it has a quasi-random appearance and is nor-
mally distributed. Whereas the quasi-randomness prevents
the HC to predict or even remember (parts of) ft and
exert precognitive control, the statistical property of being
normally distributed also has an important consequence.
It means that the target symbol will be mostly moving
around the display center, and will only for short times
move to the left or right extremes. A smart HC will quickly
learn to use this property, to improve performance, but
especially to reduce workload (Neilson et al., 1993).

e(t′)

x(t′)

ft(t
′)

(a) Situation 1

e(t′′)

x(t′′)

ft(t
′′)

(b) Situation 2

Fig. 4. Two situations with the same error e = e(t′) =
e(t′′), but which may lead to different HC responses.

Consider Fig. 4, which shows a pursuit display for two
situations, both with the same error e. In Situation 1 the
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target symbol has an extreme position and is close to the
display border, hence, given the way ft is constructed it
is very likely that it will move back to the screen center.
A skilled HC will learn to use this property and not try
to force the CE symbol more to the right. In Situation 2,
however, the target symbol is close to the display center,
and the HC cannot anticipate well in what direction it may
be moving, leaving her with no alternative to control the
CE symbol to the right, closer to the target.

Quoting Mulder et al. (2019), “... the level of predictability
of ft depends on the value of ft itself, and it is likely that a
trained HC will adapt her behavior depending on where the
target symbol is located on the screen.” None of the existing
LTI HC models are able to capture this behavior, as they
include no mechanism to account for this dependency
in a time-varying (that is, situation-dependent, here “ft
amplitude”-dependent) manner. As a result, if the strategy
would indeed exist, any fitted linear model will average-out
the phenomenon and will put all effects which cannot be
captured with the linear model in the remnant signal.

This potential workload-reduction strategy with the pur-
suit display follows from common sense, and can indeed
become an important heuristic for a trained HC. Whether
this strategy can indeed be found in the data, and whether
the same strategy exists for the compensatory and preview
displays, is unknown, however; this forms the topic of this
paper. The next section describes the experiment from
which the data will be analyzed within the current context.

3. METHOD

3.1 Experiment

To validate his empirical HC model Van der El (2018) per-
formed a number of experiments studying human manual
control behavior with compensatory, pursuit and preview
displays. Effects of CE dynamics (Van der El et al., 2018b),
preview time (Van der El et al., 2018a) and target signal
bandwidth (Van der El et al., 2020) have been studied
and the changes in human control behavior captured in
one single model. In this paper only the data from the
target signal bandwidth experiment are studied.

In short, Van der El et al. (2020) describe an exper-
iment with two independent variables: (i) display, and
(ii) target signal bandwidth. Three displays were used:
Compensatory (C), Pursuit (P) and Preview (PR). Three
bandwidths ωi were applied: 1.5, 2.5 and 4.0 rad/s, cor-
responding with the target signals from McRuer and Jex
(1967). The controlled element dynamics were a double
integrator; the preview time in the PR display was fixed
at 2 seconds. A factorial design led to nine conditions.

Nine subjects were instructed to closely follow the target
signal ft: minimize error e between the target ft and CE
output x. The target was constructed using a sum of
sines, yielding a quasi-random (that is: unpredictable for
humans), approximately normally-distributed signal. To
avoid subjects to recognize or remember the target signal,
five different phase sets were used. The variance of the
target signal was fixed at 1.61 cm2 for all conditions. In
addition to the target signal a disturbance signal fd was
added to the CE, of which the phases and variance (0.26

cm2) were fixed for all conditions. In this paper, the HC
response to the disturbance signal will be neglected.

Participants were extensively trained; for each condition
five measurement runs were recorded. Conditions were
ordered using a latin square. Each run lasted 128 seconds,
of which the final 120 seconds were used. Data were
sampled at 100 Hz; each run led to 12,000 data points.
With the nine participants, nine conditions and five runs
per condition the data of a total of 405 runs are available;
for more details, see (Van der El et al., 2020).

3.2 Data analysis

In this paper we focus on just two signals from the
experiment of Van der El et al. (2020): the measured
error signal e(t) and the target signal ft(t). Based on
the discussion of possible nonlinear control strategies in
Section 2 the rationale of our analysis was simple. Consider
Fig. 5(a) which shows the left/right movement of the P/PR
display target symbol on the screen in cm (horizontal axis)
as a function of time (vertical axis), for ωi = 2.5 rad/s.
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Fig. 5. Position of the reference symbol as a function
of time (ft, top); density (bottom, with the Normal
density estimate in red) (bandwidth 2.5 rad/s)

Mulder et al. (2019) argued that human controllers, in due
time, will recognize the approximately normal distribution
of the target symbol position, Fig. 5(b). In our analysis we
will study the probability density of the error signal e(t)
for five different regions of the target signal amplitude:
Regions I, II, III, IV and V in Fig. 5(a). Region III is
centered around the (zero) average of ft and corresponds
to the ±1σ area of the density of ft. Regions II and IV
correspond to the amplitudes of ft that are, respectively,
in-between −2σ and −1σ and +1σ and +2σ. Regions I and
V belong to the amplitudes of ft that are, respectively,
smaller than −2σ and larger than +2σ. For a normal
distribution, Region III has about 68.26% of all ft data,
Regions II and IV together 27.18% and Regions I and V
together only 4.56% of the data.

Now, for each sample ft(t
′) belonging to one of the

five regions we will take the sample of the error signal
e(t′) at that moment t′. Repeating this procedure for all
conditions, averaging out the effects of participants, we
obtain an estimate of the probability density functions of

the error signal in each of the five regions: f̂ēi(e) (with
i = I, II, III, IV, V). When our assumption about HC
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Fig. 6. Densities of the error signal e when the target signal ft amplitude belongs to Regions I, II, III, IV, V and “all”.

heuristics, discussed in Section 2, is correct, these densities
will differ and depend on the type of display (C, P or PR),
likely also on the target ft bandwidth.

Note that the quality of these probability density function
estimates will differ between regions. For Region III we can
use approximately 68.26% of all data; for Regions I and V
only a meagre 2.28% of our data. With 405 available runs
of 12,000 data points each, 1% of the data corresponds to
48,600 samples; for an analysis of each of the 9 experiment
conditions separately this number reduces to 5,400. So

whereas the estimate for f̂ēIII(e) can be based on about

386,604 samples for each condition, the estimate for f̂ēI(e)
is based on only about 12,312 samples. This is an inevitable
consequence of the approach taken.

3.3 Hypotheses

Our main hypothesis is that with the pursuit display the
ft-dependency heuristic discussed in Section 2 will be
the most prevalent, especially when the task gets more
difficult (higher target signal bandwidth). Evidence for
this strategy will be when the data for the different regions
will be distributed in a different way, with non-zero means
for Regions II and IV and especially Regions I and V.

We further expect that this strategy will be less strong
with the preview display, as here the need for the HC to
predict where the target symbol will move vanishes, and
she can aim to maximize performance even in cases where
the target symbol moves to the extreme left/right of the
display. With the compensatory display the heuristic will
not work, the HC only sees “error”, hence we expect the
data to be zero-mean normally-distributed.

4. RESULTS AND DISCUSSION

4.1 Example densities: Pursuit, 4.0 rad/s

Fig. 6 shows the six probability density function estimates
of the error signal corresponding to the target signal being
in one of the five regions of interest (I-V), including the ‘all
regions’ density function. Data are shown for the pursuit
display (bandwidth 4.0 rad/s), to bediscussed first.

The figure clearly illustrates that the density is different
for each Region. For Region III, where the target symbol
is positioned within ±1σ around the center of the pursuit
display, HCs cannot easily predict “where the symbol will
go”, so they steer the CE close to the target symbol at
all times, yielding an almost perfect normal density of the
error signal around zero. In other words, the CE symbol

will be oscillating around the (moving) target symbol when
the target symbol is located within ±1σ.

This dramatically changes when the target symbol moves
farther away from the center display positions, i.e., where
ft(t) belongs to Regions II and IV, and especially when it
moves to its extreme positions, corresponding to Regions
I and V. When considering the estimated error density
functions in the latter two extreme regions, we clearly
see that the average error will be non-zero. The negative
average error for Region I (where ft(t) is negative) and
positive average error for Region V (ft(t) is positive)
are convincing evidence for our main hypothesis, namely
that with pursuit displays operators will learn that it is
beneficial to “keep the CE symbol at the inner side of
the target symbol”. Already in Regions II and IV we can
see that this strategy is activated. This means that – on
hindsight – also Region III could have been split-up in a
left/right region to verify our assumption that the heuristic
is only activated for larger ft amplitudes. With the high-
bandwidth, rapidly-moving target signal (here ωi = 4.0
rad/s) this strategy is likely to be strong. To investigate
effects of display and bandwidth, we need to study all other
conditions as well, which is done in the next subsection.

Fig. 6 shows that the “all regions” density is similar to the
‘Region III’ density, an almost perfect zero-mean normal
density. This follows from the fact that the majority of the
samples belong to Region III, the target symbol moving
close to the display center; any model fit will therefore aim
to approximate these data the best. In addition, the skews
for Regions I and V (and, to a lesser extent Regions II and
IV) are symmetric, adding these data cancels the skews.
The skew in the estimated probability density functions for
data for Regions I and V could be the result from having
only a small number of samples (2.28 %).

4.2 All Density Estimates

Fig. 7 shows the error density function estimates for Re-
gions I (extreme left), III (center) and V (extreme right),
for the three displays (C, P, PR, the columns) and three
three ft bandwidths (1.5, 2.5 and 4.0 rad/s, the rows). The
density functions for the intermediate Regions II and IV
are omitted for reasons of clarity. The results for the pur-
suit, 4 rad/s bandwidth case have already been discussed
above. From Fig. 7 one can directly see the increasing
tracking performance (low error) when moving from the
compensatory (left) to preview (right) displays, with more
and more data closer to the zero average and higher values
of the density functions around zero. This effect becomes
stronger when the target bandwidth increases (from top to
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Fig. 7. Error signal densities when the target ft amplitude belongs to Regions I, III and IV.

bottom). These results are (obviously) in line with those
presented by Van der El et al. (2020). In the following we
will discuss the main results for the pursuit, preview and
compensatory displays, respectively.

Pursuit Display Data Here the error density functions
for Regions I and V are markedly shifted to the left
and right, respectively, an effect that becomes stronger
when the target signal bandwidth increases. Clearly, with
a faster-moving target signal the HC will keep the CE
symbol away from the screen edges; it makes no sense to
try and follow the rapid motions of the target symbol when
it is close to an extreme, also because it is very likely that
the symbol will be moving back to the center anyway.

Preview Display Data The densities are markedly dif-
ferent from those of the pursuit display. Although the
densities for Regions I and V shift in the same direction
(left and right, respectively) as for the pursuit display,
the size of the shift is much smaller, and the average of
all densities remains close to zero. Showing the future of
the target symbol (here, 2 seconds ahead) releases the HC
from the effort of predicting where the target symbol will
move, and also allows her to much more closely follow that
symbol, even when it moves to the extremes of the display.
The certainty of knowing where the symbol will be in the
immediate future, together with the instruction and moti-
vation to track as accurately as possible, persuade the HC
to also try to achieve zero error in extreme cases, leading
to the superior performance with the preview display.

Compensatory Display Data The densities shift in the
same direction for the high-bandwidth condition as for

the pursuit display, shift in the opposite direction for the
low-bandwidth condition, and remain approximately zero-
centered for the intermediate bandwidth condition. Ap-
parently, the HC matches the CE output and target signal
amplitudes in the intermediate condition, undershoots the
target in the high-bandwidth condition and overshoots the
target in the low-bandwidth condition. Keep in mind that
with the compensatory display the HC cannot see either
the target or CE symbols (respectively, ft and x) but
only acts on the presented difference between the two, the
error e. This means that the ‘over’ and ‘under’-shooting
of the target signal happens without the operator knowing
it. An explanation of this finding could be the ‘crossover
regression’ effect, the reduction of the HC gain when the
target signal bandwidth increases (McRuer and Jex, 1967).

4.3 Discussion

Fig. 8 shows the tracking error e variance and remnant
contribution to error en (both normalized with the power
of the ft and fd forcing functions), the estimated gains
Kf , and the Variance Accounted For (VAF) values of the
HC model predictions, for all conditions of the experiment
by Van der El et al. (2020). The contribution of the
remnant to the error variance is lowest with the preview
display, but almost the same for the pursuit display. The
estimated Kf gains are close to 1 for the preview display,
and decrease from 0.75 to 0.55 for the pursuit display for
higher target bandwidths; results which correspond with
our analysis. With the preview display, the HCs maintain a
strategy to fully correct for any visible error, independent
of where the target symbol moves. Apparently, lowering
the Kf gain for the pursuit display sufficiently captures the
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Fig. 8. Variance of tracking error (a); remnant contri-
butions (b); estimated values of the gain Kf (c),
and VAF (d); (average over nine participants, 95%
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HC strategy of maintaining the CE symbol closer to the
display center than the target symbol, also shown by the
VAF values which are high. In other words, the lower Kf

gain allows the LTI model fit to account on average quite
well for the (from the present analysis) evidently time-
varying HC behavior. Recall that because ft is normally-
distributed, the majority of the ft data (and with that,
the HC behavior) remain close to its average.

Future work, with a possible time-varying Kf (e.g., mod-
elling the HC with a gain Kf which depends on the ft
magnitude), should be conducted to study whether any
improvements in HC modeling for the pursuit display are
worth the effort of increasing model complexity. Evidence
could be found in lowering the model remnant (as the HC
behavioral variation can be better accounted for), or a
better reproduction of the operator control signal u (using
VAF-like metrics). In the time-domain, one could consider
the measured and modeled HC control signal u and check
whether indeed it will be less for the phases where the ft
amplitude is large (Regions I, V).

5. CONCLUSIONS

Experimental tracking data were analyzed to investigate
possible heuristics human controllers use to maximize
their performance-to-effort ratio. Results show that these
strategies indeed exist, especially for the pursuit display,
an effect that becomes stronger for higher target signal
bandwidths. The heuristic implies that the HC control
strategy depends on the amplitude of the target signal.
Current models account for this effect through a target
signal pre-processing gain smaller than one, yet average-
out this effect over the entire run. Time-varying models,
where the gain changes as a function of time (or better:
scale with the target amplitude) could better describe

this strategy, increasing accuracy and reducing the (un-
explained) ‘remnant’-part of our HC models.
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