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Abstract

In PPP-RTK network processing, the wet component of the zenith tropospheric delay (ZTD) cannot be precisely modelled and thus
remains unknown in the observation equations. For small networks, the tropospheric mapping functions of different stations to a given
satellite are almost equal to each other, thereby causing a near rank-deficiency between the ZTDs and satellite clocks. The stated near
rank-deficiency can be solved by estimating the wet ZTD components relatively to that of the reference receiver, while the wet ZTD com-
ponent of the reference receiver is constrained to zero. However, by increasing network scale and humidity around the reference receiver,
enlarged mismodelled effects could bias the network and the user solutions. To consider both the influences of the noise and the biases,
the mean-squared errors (MSEs) of different network and user parameters are studied analytically employing both the ZTD estimation
strategies. We conclude that for a certain set of parameters, the difference in their MSE structures using both strategies is only driven by
the square of the reference wet ZTD component and the formal variance of its solution. Depending on the network scale and the humid-
ity condition around the reference receiver, the ZTD estimation strategy that delivers more accurate solutions might be different. Sim-
ulations are performed to illustrate the conclusions made by analytical studies. We find that estimating the ZTDs relatively in large
networks and humid regions (for the reference receiver) could significantly degrade the network ambiguity success rates. Using
ambiguity-fixed network-derived PPP-RTK corrections, for networks with an inter-station distance within 100 km, the choices of the
ZTD estimation strategy is not crucial for single-epoch ambiguity-fixed user positioning. Using ambiguity-float network corrections,
for networks with inter-station distances of 100, 300 and 500 km in humid regions (for the reference receiver), the root-mean-squared
errors (RMSEs) of the estimated user coordinates using relative ZTD estimation could be higher than those under the absolute case with
differences up to millimetres, centimetres and decimetres, respectively.
� 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The zenith tropospheric delay (ZTD), which is multi-
plied by an elevation-dependent mapping function, is one
of the typical unknowns in GNSS observation equations
(Hofmann-Wellenhof et al., 2008; Teunissen and
Montenbruck, 2017). The hydrostatic component of the
https://doi.org/10.1016/j.asr.2018.04.012

0273-1177/� 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: kan.wang@curtin.edu.au (K. Wang), amir.

khodabandeh@curtin.edu.au (A. Khodabandeh), p.teunissen@curtin.
edu.au (P.J.G. Teunissen).
tropospheric delay, which reaches around 2.3 m in the
zenith direction and is mainly related to the temperature
and air pressure, varies smoothly and slowly in time and
can be precisely modelled with mm-accuracy or even better
based on surface meteorological data (Bevis et al., 1992;
Wang and Li, 2016). In the zenith direction, the wet com-
ponent of the tropospheric delay varies from centimetres
(or less) in the arid regions to as large as 35 cm in the
humid regions (Bevis et al., 1992; Younes, 2016). It is
mainly related to the water vapour and is difficult to be
modelled with high accuracy, since water vapour is not a
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well-mixed constituent of the atmosphere (Resch, 1984). As
a result, the estimation of the wet component of the ZTDs
is important in high-precision GNSS applications (Mousa
et al., 2016; Rothacher and Beutler, 1998).

The PPP-RTK technique, introduced by Wübbena et al.
(2005), is also known as integer ambiguity resolution
enabled Precise Point Positioning (PPP). In the last ten
years, diverse studies were performed in this area
(Collins, 2008; Ge et al., 2008; Geng and Shi, 2017;
Laurichesse and Mercier, 2007; Loyer et al., 2012;
Mervart et al., 2008; Teunissen et al., 2010) with a review
given in Teunissen and Khodabandeh (2015). In PPP-
RTK processing, in order to avoid singularities in the
design matrix, estimable parameters are formed based on
the S-system theory (Baarda, 1981; Teunissen, 1985a).
For small networks, the tropospheric mapping functions
of different receivers to a given satellite are almost equal
to each other due to their almost identical elevation angles
to this satellite (Odijk et al., 2014b; Khodabandeh and
Teunissen, 2015). As a result, an additional near rank-
deficiency exists in the design matrix between the columns
for the estimable ZTDs and satellite clocks (Odijk et al.,
2012). To solve this problem, instead of estimating the
wet ZTD components of each receiver, referred to as
‘‘absolute” ZTD estimation in this contribution, the wet
ZTD component of the reference receiver can be
constrained. The estimable ZTD parameters would then
take between-receiver forms, referred to as ‘‘relative” ZTDs
in this contribution (Odijk et al., 2011, 2012, 2014b;
Teunissen and Montenbruck, 2017).

With the increasing scale of the network, however, the
assumption that the tropospheric mapping functions of dif-
ferent stations to the same satellite are almost equal does
not hold anymore. The unignorable difference in the tropo-
spheric mapping functions leads to mismodelled effect in
case of relative ZTD estimation, which is related to both
the wet ZTD component of the reference receiver and the
between-receiver difference of the tropospheric mapping
functions. Depending on the network scale and the humid-
ity condition around the reference receiver, the mismod-
elled effects could bias the network and the user solutions
in different manners. Since the mean-squared error
(MSE) describes both the influences of the noise and the
mismodelled effect on the estimated parameters, it is used
in this contribution to evaluate the accuracies of the net-
work and user solutions. With the ZTDs estimated abso-
lutely and relatively, the MSEs of different sets of
network and user parameters could response differently
to the network scale and the wet ZTD component of the
reference receiver. In this contribution, we first analytically
compute and compare the MSEs of different network and
user parameters employing both ZTD estimation strate-
gies. The conclusions are then illustrated with numerical
results based on simulation studies using networks with dif-
ferent scales and under different humidity conditions
around the reference receiver. In this contribution, for a
certain set of PPP-RTK network and user parameters, we
aim to show that the difference in their MSE structures
using both ZTD estimation strategies is only driven by
two components, i.e., the square of the reference wet
ZTD component and the formal variance of its solution.
Depending on the scale of the network, the humidity con-
dition around the reference receiver as well as the process-
ing time, comparison of the square roots of these two
components directly gives us the ZTD estimation strategy
that delivers smaller root-mean-squared errors (RMSEs)
of these parameters.

In Section 2, we firstly explain our processing procedure
in terms of linear algebra and apply it to the network and
the user part of the PPP-RTK processing. The strategies of
absolute and relative ZTD estimation are explained in
detail, and the MSEs of different sets of network and user
parameters are derived using both ZTD estimation strate-
gies. With the settings of the network and the user process-
ing introduced, numerical results based on simulation
studies are discussed in Section 3. Simulated networks in
Australia consisting of 3 stations with an inter-station dis-
tance varying from 1 to 500 km are used for the computa-
tion, and a wet ZTD component of the reference receiver
varying from 0 to 3.5 dm is pre-defined to simulate different
humidity conditions around the reference receiver. Using
both ZTD estimation strategies, the RMSEs are evaluated
and compared in Section 3.1 for networks with different
scales and under different humidity conditions around the
reference receiver. The comparison is also performed for
the ambiguity success rates (ASRs) based on simulated
float ambiguities considering also the mismodelled effects
for relative ZTD estimation. In Section 3.2, the RMSEs
of the estimated user coordinates are computed and com-
pared using network corrections under both ZTD estima-
tion strategies. Two cases are discussed with respect to
the RMSE comparison, i.e., using the ambiguity-fixed
and -float network corrections. For each of these two cases,
the choices of the ZTD estimation strategy that supplies
more accurate user coordinate estimates are discussed for
networks with different scales and under different humidity
conditions around the reference receiver. The conclusions
are given in Section 4.

We use the following notation throughout this contribu-
tion. Eð:Þ and Dð:Þ represent the expectation and dispersion
operators, respectively. The operator trð:Þ denotes the trace
of a matrix. An estimator of parameter x is indicated by the
:̂-symbol, i.e. x̂. The covariance matrix of two random vec-
tors x̂ and ŷ is symbolized by Qx̂ŷ . Thus Dðx̂Þ ¼ Qx̂x̂. The

MSE and RMSE of the random vector x̂ are denoted by
MSEðx̂Þ and RMSEðx̂Þ, respectively.
2. Near rank-deficiency of GNSS observation equations

2.1. Near-singular linear models

In the following we discuss the three-component struc-
ture of PPP-RTK (Mervart et al., 2008; Teunissen et al.,



K. Wang et al. / Advances in Space Research 61 (2018) 2955–2971 2957
2010; Wübbena et al., 2005) in the context of linear
algebra. The stated structure is composed of (1) network-
component, (2) correction component and (3) user-
component.

2.1.1. Network-component
As our point of departure we commence with the net-

work observation equations expressed by the following lin-
ear model

EðyÞ ¼ Ax ð1Þ
and its known dispersion

DðyÞ ¼ Qyy ð2Þ
with y and x being the observation and parameter vectors,
respectively. The variance matrix Qyy is positive definite

and the known design matrix A is of full-column rank.
Thus the parameter vector x (and any linear function
thereof) are assumed to be estimable under model (1). Let
us now further assume that there exists a nonzero vector,
say v, for which

� ¼ Av ð3Þ
represents a vector of small values, i.e. � � 0. This
implies that columns of A are almost linearly dependent,
thereby leaving functions of x poorly estimable. To char-
acterize such functions, consider an arbitrary full-column
rank matrix S whose columns, together with v, form a
square and invertible transformation matrix ½v; S�. The
parameter vector x can then be expressed in terms of
its transformed versions a and b through the one-to-
one transformation

x ¼ vbþ S a () ½v; S��1x ¼ ½bT ; aT �T ð4Þ
Substitution into the network model (1), together with

(3), gives

EðyÞ ¼ �bþ AS a ð5Þ
The parameter b is thus weakly linked to the observa-

tion vector y, as the corresponding column vector � is
small. As a consequence, the variance of its Best Linear

Unbiased Estimator (BLUE) b̂ is large and can be shown
to be bounded from below as follows (Teunissen, 1985b)

r2
b̂
¼ 1

��TQ�1
yy ��

P
1

�TQ�1
yy �

ð6Þ

where

�� ¼ �� ASðSTNSÞ�1
STNv; with N ¼ ATQ�1

yy A ð7Þ
According to (6), the smaller the squared-norm

k�k2Qyy
¼ �TQ�1

yy �, the larger the lower bound of the variance

r2
b̂
becomes. In the extreme case when � ! 0, we have

r2
b̂
! 1, i.e. b becomes completely inestimable. Therefore,

any linear function of a combined with b is also poorly
estimable under the assumption � � 0.
We now turn our attention to functions of x which do
not depend on b. Such functions, say z, can be formed by
eliminating the column vector v in (4). Thus with L being
a basis matrix of the null space of vT , i.e. vT L ¼ 0, the stated
functions can be characterized as follows (cf. (4))

z ¼ LT x ¼ LT S a ð8Þ
Since z does not depend on the poorly estimable param-

eter b, its BLUE ẑ is expected to have finite variances. We
are therefore interested to study the ‘accuracy’ of ẑ under
the following two scenarios:

� Scenario A: The unknown parameter b, in (5), is kept as
unknown and is to be estimated together with the a-
parameters. The corresponding solution of z is denoted
by ẑA.

� Scenario B: The unknown parameter b, in (5), is con-

strained to be zero, i.e. b ¼ 0. The corresponding solu-
tion of z is denoted by ẑB.

On the one hand, Scenario A delivers the network solu-
tion ẑA that is unbiased, i.e. EðẑAÞ ¼ z, but it may represent
low precision due to the inclusion of the additional
unknown b. One the other hand, Scenario B delivers the
network solution ẑB that has a better precision-level, but
it becomes biased when b – 0, i.e., EðẑBÞ – z. One may then
use the MSE criterion to measure the solutions’ accuracy,
thereby considering both the ‘precision’ and ‘bias’ of ẑA
and ẑB. The following lemma shows how the MSEs of the
stated solutions are related.

Lemma 1 (MSEs of ẑA and ẑB). Consider the network

observation Eq. (5) and the unknown parameters z given in
(8). Let ẑA and ẑB be the BLUEs of z under Scenarios A and

B, respectively. They follow as weighted least-squares

solutions of z where the inverse variance matrix Q�1
yy is taken

as weight matrix. The MSEs of ẑA and ẑB can then be given as
Scenario A : MSEðẑAÞ :¼ EkẑA � zk2 ¼ trðQẑBẑBÞ þ r2
b̂
hT h

Scenario B : MSEðẑBÞ :¼ EkẑB � zk2 ¼ trðQẑBẑBÞ þ b2 hT h

ð9Þ
with h ¼ QẑBŷBQ

�1
yy �, where QẑBẑB and QẑBŷB are the variance

matrix of ẑB and the covariance matrix between ẑB and the

adjusted observation ŷB under Scenario B, respectively.

Proof. see Appendix A. h

Note the similarity between the MSEs of ẑA and ẑB in (9).
Their difference in structure is only driven by the difference
between the two scalars: the variance r2

b̂
and the squared

bias b2. When b ¼ 0, the solution ẑB outperforms its coun-
terpart ẑA in the MSE sense, i.e. the MSE of ẑB becomes
smaller than that of ẑA. This is, however, not the case when
b2 > r2

b̂
. In that case, Scenario A delivers better solutions in

the MSE sense. Note also, in contrast to the variance r2
b̂
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that becomes very large when � tends to zero, that the MSE
of ẑA remains finite. This is due to the presence of the term

hT h serving as the multiplier of r2
b̂
. When � tends to zero,

the term hT h becomes very small so that the product

r2
b̂
hT h remains finite. In Section 2.2 we will show Scenarios

A and B at work, where a GNSS network model serves as
an example of (5).
2.1.2. Correction-component

Not all the network parameters z and b involved in (5)
are of interest to PPP-RTK users. Apart from orbital cor-
rections, the user only needs to be provided with satellite-
specific corrections (i.e. clock and biases) and (sometimes)
atmospheric corrections. Let such corrections, denoted by
c, be given as

c ¼ F T zþ bb ð10Þ
Thus the known coefficient matrix F and vector b form

the corrections c as functions of the network parameters
z and b. The BLUEs of the corrections (10), under Scenar-
ios A and B, read

Scenario A : ĉA ¼ F T ẑA þ b b̂

Scenario B : ĉB ¼ F T ẑB; ðb̂ ¼ 0Þ
ð11Þ

Note that the solution ĉA is unbiased, i.e. EðĉAÞ ¼ c,
since EðẑAÞ ¼ z and Eðb̂Þ ¼ b. The solution ĉB is, however,
biased when b – 0, i.e. EðĉBÞ – c. The stated bias is given
by

EðĉBÞ � c ¼ EðĉB � ĉAÞ
¼ F TEð̂zB � ẑAÞ � bEðb̂Þ
¼ ðF T h� bÞb

ð12Þ

where the third equality follows from EðẑBÞ ¼ EðẑAÞ þ hb
(cf. Appendix A). Now the question is how the unac-

counted bias ðF T h� bÞb affects the MSE performance of
PPP-RTK user solutions. This will be addressed in the
following.
2.1.3. User-component

Let yu be the user observation vector, having the positive
definite variance matrix Qyuyu

. The user aims to determine

the unknown parameter vector xu that is linked to the
observations yu through the known full-column rank
design matrix Au. The user observation equations, however,
contains extra unknown parameters which make the user
model ‘rank-deficient’ (i.e. not all the unknowns can be
determined by the user observations). Such rank-deficient
user observation equations read

EðyuÞ ¼ Au xu � ðF T zþ bbÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
c

ð13Þ

with DðyuÞ ¼ Qyuyu
. Thus the extra parameters are nothing

else but the network corrections c that have to be a priori
provided to the user. Adding the corrections (11) to yu gives
the corrected user observation equations as follows

Scenario A : Eðyu þ ĉAÞ ¼ Au xu
Scenario B : Eðyu þ ĉBÞ ¼ Au xu þ ½ðF T h� bÞb� ð14Þ

As shown, the bias of the corrections ĉB (cf. (12)) shows
up as a ‘mismodelled’ effect in the corrected user observa-
tion equations under Scenario B. It is a ‘mismodelled’ effect
as the user does not consider them to be present in the
model, thereby remaining unaccounted for.

In practice, the user is not often provided with the vari-
ance matrix of the corrections ĉA and ĉB. The stated correc-
tions are then treated as if they are ‘non-random’. As a
consequence, the user takes the inverse variance matrix

Q�1
yuyu

as weight matrix to compute weighted least-squares

solutions of xu. Such solutions, say x̂uA and x̂uB , do therefore
not represent the BLUEs of xu, but just its weighted least-
squares solutions. Under Scenario A, the least-squares
solution x̂uA is unbiased, i.e. Eðx̂uAÞ ¼ xu. The precision of
x̂uA might, however, be adversely affected by the presence

of the poorly precise solution b̂. Under Scenario B, the
least-squares solution x̂uB is not affected by the variance
r2
b̂
, but it becomes biased when b – 0 due to the presence

of the bias ðF T h� bÞb, i.e. Eðx̂uBÞ– xu. To evaluate the sta-
ted bias, consider the least-squares inverse of Au as

Aþ
u ¼ ðAT

uQ
�1
yuyu

AuÞ�1
AT
uQ

�1
yuyu

with which the user computes

the solutions x̂uA and x̂uB through (14) as

x̂uA ¼ Aþ
u ðyu þ ĉAÞ; x̂uB ¼ Aþ

u ðyu þ ĉBÞ ð15Þ
Taking the expectation of the above equations, together

with (14) and Aþ
u Au ¼ I , gives

Eðx̂uAÞ ¼ xu; and Eðx̂uBÞ ¼ xu þ Aþ
u ðF T h� bÞb ð16Þ

Thus the user solution x̂uB is biased by Aþ
u ðF T h� bÞb

when b – 0. We are interested in a linear function of xu,
say F T

u xu. In an analogous way to (9), a link between the

MSEs of the solutions F T
u x̂uA and F T

u x̂uB can be established.
Here we assume that both QẑBẑB and QẑBŷB from the network

processing are delivered to the users and are thus known

for calculation of the MSEs of F T
u x̂uA and F T

u x̂uB .

Lemma 2 (MSEs of F T
u x̂uA and F T

u x̂uB). Consider the user

observation Eq. (13) in which the observation vector yu is

corrected to ðyu þ ĉAÞ and ðyu þ ĉBÞ using the network-

derived corrections given in (11). The inverse variance matrix

Q�1
yuyu

is taken as weight matrix to compute the weighted least-

squares solutions x̂uA and x̂uB under Scenarios A and B,

respectively. The MSEs of F T
u x̂uA and F

T
u x̂uB can then be given

as

Scenario A : MSEðF T
u x̂uA Þ :¼ EkF T

u ðx̂uA � xuÞk2 ¼ trðF T
u Qx̂uB x̂uB

F uÞ þ r2
b̂
hTu hu

Scenario B : MSEðF T
u x̂uB Þ :¼ EkF T

u ðx̂uB � xuÞk2 ¼ trðF T
u Qx̂uB x̂uB

F uÞ þ b2 hTu hu

ð17Þ
where



Table 1
Estimable GNSS parameters formed by a choice of S-basis at the between-
satellite single-differenced level ð�Þ1s ¼ ð�Þs � ð�Þ1. The ZTDs sr, ambiguities
a1sr;j and satellite biases d1s;j /d

1s
;j are assumed linked in time.

ZTDs ~sr ¼ sr; r ¼ 1; 2; . . . ; n
Satellite clocks d~t1sðtiÞ ¼ dt1sðtiÞ þ d1s;IF ðt1Þ
Ionospheric delays ~i1sr ðtiÞ ¼ i1sr ðtiÞ � d1s;GF ðt1Þ; r ¼ 1; 2; . . . ; n
Sat. phase biases ~d1s;j ðtiÞ ¼ d1s;j ðtiÞ þ ðljd1s;GF ðt1Þ � d1s;IF ðt1ÞÞ � kja1s1;j
Sat. code biases ~d1s;j ðtiÞ ¼ d1s;j ðtiÞ � ðd1s;IF ðt1Þ þ ljd

1s
;GF ðt1ÞÞ; j > 2

~d1s;j ðti>1Þ ¼ d1s;j ðtiÞ � d1s;j ðt1Þ; j ¼ 1; 2
Ambiguities ~a1sr;j ¼ a1sr;j � a1s1;j; r – 1
S-basis parameters a1s1;j; d

1s
;1 ðt1Þ; d1s;2 ðt1Þ

ð�Þ;IF ¼ 1
l2�l1

½l2ð�Þ;1 � l1ð�Þ;2�; ð�Þ;GF ¼ 1
l2�l1

½ð�Þ;2 � ð�Þ;1�.
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Qx̂uB x̂uB
¼ Aþ

u ðQyuyu
þ F TQẑBẑBF ÞAþT

u ; and

hu ¼ F T
u A

þ
u ðF T h� bÞ ð18Þ

Matrix Aþ
u ¼ ðAT

uQ
�1
yuyu

AuÞ�1
AT
uQ

�1
yuyu

is a least-squares

inverse of Au.

Proof. see Appendix A. h

Compare (17) with (9). They are identical in structure.
In both cases, the variance r2

b̂
is accompanied by the mul-

tipliers hT h and hTu hu. In contrast to hT h however, the term

hTu hu does not necessarily tend to zero as � ! 0. This,

namely, means that the MSE of the user solution F T
u x̂uA

can become unboundedly large when r2
b̂
! 1. This is in

contrast to that of the network solution ẑA in (9) which
remains finite when r2

b̂
! 1. Such a difference is due to

the ‘dependency’ of the network correction c, in (10), on
the poorly estimable parameter b. The correction c would,

in turn, make the user parameters F T
u xu dependent on b.

Would the stated dependency be absent, i.e. b ¼ 0, the term

hu would have reduced to hu ¼ F T
u A

þ
u F

T h which tends to

zero as r2
b̂
! 1. To gain a better insight into the depen-

dency of F T
u xu on b, suppose that the column vector b lies

in the range-space of the user design matrix Au, i.e.
b ¼ Auj for some j. With Aþ

u Au ¼ I , the column vector hu
would then be specialized to

hu ¼ F T
u ðAþ

u F
T h� jÞ ð19Þ

According to (19), in case of h � 0, both the MSEs in

(17) are less influenced by r2
b̂
and b2 for linear functions

of xu satisfying F T
uj ¼ 0. In that case, F T

u xu is hardly depen-

dent on b. When F T
uj – 0 however, the MSEs are more

sensitive to r2
b̂
and b2. In the next subsection, we will exem-

plify such functions of the user parameters xu.

2.2. Network and user observation equations

In this subsection the network model (5) and user model
(13) are shown at work. In doing so, observation equations
at the between-satellite single-differenced (SD) level are
considered. As such SD network observation equations
are ‘rank-deficient’ in the sense that not all parameters
are unbiasedly estimable, the S-system theory (Baarda,
1981; Teunissen, 1985a) is first employed to remove the
underlying rank-deficiency. Instead of the original parame-
ters, the resultant full-rank network model contains the so-
called estimable parameters, distinguished from their origi-
nal version by the ~�-symbol (see Table 1).

2.2.1. Network-component

Let the observed-minus-computed (O-C) terms of the
carrier-phase and pseudo-range (code) observations of
the network receiver r (r ¼ 1; . . . ; n), tracked by satellite s

(s ¼ 1; . . . ;m), be denoted by D/s
r;j and Dpsr;j, respectively.
The subscript j (j ¼ 1; . . . ; f ) indicates the frequency on
which the observations are collected. With the between-

satellite SD notation ð�Þ1s ¼ ð�Þs � ð�Þ1, a full-rank multi-
frequency GNSS network model reads (Odijk et al., 2016;
Wang et al., 2017)

EðD/1s
r;jÞ ¼ g1sr ~sr � d~t1s � lj~i

1s
r � ~d1s;j þ kj~a1sr;j

EðDp1sr;jÞ ¼ g1sr ~sr � d~t1s þ lj~i
1s
r � ~d1s

;j

ð20Þ

where ~sr denotes the estimable wet component of the ZTD
accompanied by the Ifadis mapping function gsr (Ifadis,
1986). The hydrostatic ZTD components are modelled as
a priori values. The estimable satellite clock parameter is
denoted by d~t1s. The estimable first-order ionospheric delay,
experienced on the reference frequency f 1, is denoted by ~i1sr .
Thus the corresponding ionospheric coefficient is given as

lj ¼ f 2
1=f

2
j . The frequency-dependent satellite phase and

code biases are represented by ~d1s;j and ~d1s
;j , respectively.

The estimable double-differenced (DD) ambiguities ~a1sr;j are
linked to the observations through the wavelengths kj. All
quantities are expressed in units of range, except the ambi-
guities ~a1sr;j which are given in cycles. The receiver-satellite

geometry and biases like differential code biases (DCBs)
and phase center variations (PCVs) are assumed to be
removed by computing the O-C terms. Here we remark that
the high-order ionospheric delays can reach centimetres and
are influenced by factors like station latitudes, time, solar
cycles and relative geometry of the magnetic field (Hoque
and Jakowski, 2007; Liu et al., 2016). In this contribution,
they are assumed to be ignorable and are not taken into
account in the observation model.

Small-scale networks. For the sake of presentation and
simplicity, our focus is restricted to the single satellite pair
1–s. The observation Eq. (20) then represent an example of

the linear model (1) in which ½D/1s
r;j;Dp

1s
r;j�

T
takes the role of

y. Let us now assume that the network inter-station dis-
tances are short so that the receivers view satellite s from
almost the same direction angle. The tropospheric mapping
functions can then be approximated by those of the refer-
ence receiver r ¼ 1, i.e. gsr � gs1. Thus g1sr � g1s1 ; r ¼ 2;
. . . ; n. Under this assumption, the full-rank model (20) is
shown to be near singular through (compare with (3))
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g1sr �g1s1
g1sr �g1s1

" #
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

�

¼ g1sr ; �1; �lj; �1; 0; kj
g1sr ; �1; þlj; 0; �1; 0

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

1

g1s1
0

0

0

0

2
666666664

3
777777775

|fflffl{zfflffl}
v

;

with x¼

~sr
d~t1s

~i1sr
~d1s;j
~d1s
;j

~a1sr;j

2
6666666664

3
7777777775

ð21Þ

According to (21), there exists a near rank-deficiency
between the estimable ZTDs ~sr (r ¼ 1; . . . ; n) and the satel-
lite clocks d~t1s when g1sr � g1s1 . Applying the transformation
(4), the parameter vector x can be expressed in terms of a-
and b-parameters as follows

~s1
~sr–1

d~t1s

~i1sr
~d1s;j
~d1s
;j

~a1sr;j

2
6666666666664

3
7777777777775

|fflfflfflffl{zfflfflfflffl}
x

¼

0; 0; 0; 0; 0; 0

1; 0; 0; 0; 0; 0

0; 1; 0; 0; 0; 0

0; 0; 1; 0; 0; 0

0; 0; 0; 1; 0; 0

0; 0; 0; 0; 1; 0

0; 0; 0; 0; 0; 1

2
666666666664

3
777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S

~s1r
d~~t1s

~i1sr
~d1s;j
~d1s
;j

~a1sr;j

2
6666666664

3
7777777775

|fflfflfflffl{zfflfflfflffl}
a

þ

1

1

g1s1
0

0

0

0

2
666666666664

3
777777777775

|fflfflffl{zfflfflffl}
v

~s1|{z}
b

ð22Þ
Thus the estimable ZTD of the reference receiver r ¼ 1,

i.e. ~s1, takes the role of the poorly estimable parameter b.
The newly-defined parameters, given in vector a, read

~s1r :¼ ~sr � ~s1; d~~t1s :¼ d~t1s � g1s1 ~s1 ð23Þ
Substitution of (22) into (20) gives the counterpart of the

network model (5) as

EðD/1s
r;jÞ ¼ g1sr ~s1r � d~~t1s � lj~i

1s
r � ~d1s;j þ kj~a1sr;j þ g1s1r ~s1

EðDp1sr;jÞ ¼ g1sr ~s1r � d~~t1s þ lj~i
1s
r � ~d1s

;j þ g1s1r ~s1
ð24Þ

where g1s1r ¼ g1sr � g1s1 . The above reparametrized network
model clearly shows that the ZTD ~s1 is weakly linked to
the GNSS observations when g1s1r � 0. In that case, any lin-
ear combination of ~s1 and a is poorly estimable. For
instance, it follows from the first two rows of (22), i.e.

~sr ¼ ~s1r þ ~s1; and d~t1s ¼ d~~t1s þ g1s1 ~s1 ð25Þ
that the absolute ZTDs ~sr (r ¼ 1; . . . ; n) and the estimable
satellite clocks d~t1s (s ¼ 1; . . . ;m) are poorly estimable,
since they are functions of ~s1. This is however not the case

with the relative ZTDs ~s1r (r – 1) and d~~t1s. Next to the
other a-parameters in (22), they form the parameter vector
z in (8), thereby having solutions with finite variances. The
MSE expressions (9) do therefore hold for any linear func-
tions of z or equivalently a given in (22). Numerical evalu-
ation will be presented in Section 3.1.

2.2.2. Correction-component

We now follow Scenarios A and B to obtain network
solutions of the PPP-RTK correction c. The corrections
include the estimable satellite clocks d~t1s, phase/code biases
~d1s;j =~d

1s
;j and the user slant ionospheric delays ~i1su . The correc-

tion c reads then (cf. (10))

c¼
~d1s;j þ lj~i

1s
u þ d~t1s

~d1s
;j � lj~i

1s
u þ d~t1s

" #
¼

~d1s;j þ lj~i
1s
u þ d~~t1s

~d1s
;j � lj~i

1s
u þ d~~t1s

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F T z

þ g1s1
g1s1

" #
|fflffl{zfflffl}

b

~s1|{z}
b

ð26Þ
in which the estimable user ionospheric delay ~i1su is assumed
to follow as a weighted average of its network counterparts
~i1sr (r ¼ 1; . . . ; n). We note that the estimable ionospheric
delays in Table 1 are contaminated by the hardware biases
and to obtain precise ionospheric products for users, a
dense network might be demanded. Instead of relying on
ionosphere interpolation, Geng and Shi (2017) have also
proposed a composite strategy to accelerate ambiguity res-
olution by simultaneously performing multi-GNSS PPP
ambiguity resolution. In this study, since the GPS-only sce-
nario was applied for the analysis, we assume the user-
specific ionospheric delays are interpolated from those of
the network stations and remark that the approach of
ionosphere interpolation does not influence Lemma 2. As
shown in (26), the correction c depends on the poorly
estimable parameter ~s1 through the estimable satellite

clocks d~t1s ¼ d~~t1s þ g1s1 ~s1. The network-derived solution ĉA
is obtained by keeping the ZTD ~s1 as unknown, while ĉB
is obtained by constraining ~s1 to zero.

2.2.3. User-component

The corrections ĉA and ĉB are to be separately applied to
the user observation equations (compare with (13))

E
D/1s

u;j

Dp1su;j

" # !
¼ G1s

u

G1s
u

" #
D~xu þ

kj
0

� �
~a1su;j þ

g1su
g1su

" #
~su|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Auxu

�
~d1s;j þ lj~i

1s
u þ d~~t1s

~d1s
;j � lj~i

1s
u þ d~~t1s

2
4

3
5þ g1s1

g1s1

" #
~s1

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c

ð27Þ
where D~xu denotes the vector of unknown user coordinate

increments, with the known design matrix G1s
u containing

satellite-to-receiver unit vectors. Thus the user parameter

vector xu ¼ ½D~xTu ; ~a1su;j;~su�T contains D~xu, the estimable



K. Wang et al. / Advances in Space Research 61 (2018) 2955–2971 2961
ambiguities ~a1su;j and the user ZTD ~su. The MSE expressions

(17) do therefore hold for any linear functions of xu. To
exemplify the condition (19), let us assume that the inter-
station distance between the user u and the network recei-
ver r ¼ 1 is short such that g1su � g1s1 . This yields (cf. (19))

g1s1
g1s1

" #
|fflffl{zfflffl}

b

� G1s
u ; kj; g1su

G1s
u ; 0; g1su

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Au

0

0

1

2
64
3
75

|ffl{zffl}
j

ð28Þ

Thus the column vector b almost lies in the range-space
of the user design matrix Au. According to the results pre-
sented in (19), the MSEs of the estimated position incre-

ments D~̂xu and the ambiguities, which hold the condition

F T
uj ¼ 0, are less sensitive to the large variance r2

~̂s1
or the

bias ~s21 compared to those of ~̂su, for which F T
u ¼ ½0; 0; 1�

and F T
uj ¼ 1. We conclude this section by summarizing

our findings as follows:

� Due to the near rank-deficiency between the ZTDs and
the satellite clock parameters of small-scale networks,
any linear functions of a, given in (22), combined with
the ZTD ~s1 (i.e. b) are poorly estimable. Examples of
which are the ZTDs ~sr ¼ ~s1 þ ~s1r (r ¼ 1; . . . ; n) and the

estimable satellite clock parameters d~t1s ¼ d~~t1s þ g1s1 ~s1
(s ¼ 2; . . . ;m).

� The z-parameters (8) do not depend on the poorly estim-
able parameter b (e.g. ~s1) in small-scale networks. The
MSEs of their network solutions under Scenario A do
therefore remain finite. Examples of which are the rela-
tive ZTDs ~s1r and the estimable ambiguities ~a1sr;j (cf.

(22)).
� In contrast to the network parameters z, the MSEs of

user solutions F T
u x̂uA can unboundedly get large when

r2
b̂
! 1. For instance, the MSE of the estimated user

ZTD ~̂suA is largely affected by the variance r2
b̂
(i.e. r2

~̂s1
).

The MSEs of the estimated user positions and ambigu-
ities however, are hardly affected by r2

~̂s1
.

� When the condition r2
b̂
> b2 (r2

~̂s1
> ~s21) holds, the MSE

performance of both the network solutions ẑB (or any

linear function thereof) and the user solutions F T
u x̂uB is

better than that of their counterparts under Scenario
A. One would then constrain the ZTD ~s1 to zero to
achieve better solutions in the MSE sense.
3. Network and user solutions

In this study, only formal analysis was performed and
no real data was used. We simulated ground truth coordi-
nates of network and user stations located in Australia, and
the GPS final satellite orbits for the entire day of June 10,
2017 provided by the International GNSS Service (IGS,
Dow et al., 2009; Griffiths and Ray, 2009; IGS, 2017) were
used for the study. The Curtin PPP-RTK Software was
used to generate both the formal network and user solu-
tions (Odijk et al., 2017; Wang et al., 2017) under GPS
dual-frequency (L1 and L2) scenario with a sampling inter-
val of 30 s. The processing was performed on a 2 h basis
with the starting time of the processing at 0:00, 2:00, . . .,
22:00 in GPS Time (GPST). In case of the network process-
ing, Kalman filtering was employed to compute ‘multi-
epoch’ network solutions. In this regard, the network
ambiguities and ZTDs were assumed to be constant within
the processing interval (2 h in this contribution), while the
temporal behaviour of the satellite biases is modeled by a
random walk process on undifferenced level with the pro-
cess noise of 1 cm/

ffiffiffiffiffiffiffi
sec

p
(cf. Table 1) based on their stable

but non-constant temporal behaviours (Wen et al., 2011).
Both the network ambiguity-float and -fixed scenarios were
considered. In case of the user processing, ‘single-epoch’
user solutions were obtained, i.e. the user parameters were
assumed unlinked in time. The RMSEs of the network and
user solutions are computed and compared under Scenar-
ios A and B. To evaluate the RMSEs of the user solutions,
the user ambiguities were assumed to be successfully
resolved.

The carrier-phase and code data D/s
r;j and Dpsr;j are

assumed uncorrelated, having the elevation-dependent
variances (Dach et al., 2015)

r2
/s
r;j
¼ r2

/

sin2ðesrÞ
; r2

psr;j
¼ r2

p

sin2ðesrÞ
ð29Þ

where r/ and rp denote the zenith-referenced standard
deviation of the carrier-phase and code observations,
respectively. Here we set these standard-deviations to
r/ ¼ 3 mm and rp ¼ 25 cm (Odijk et al., 2014a). The satel-
lite elevation angle from receiver r to satellite s is symbol-
ized by esr with the elevation mask set to be 10 degrees.
The average value

~̂i1su ¼ 1

n

Xn
r¼1

~̂i1sr ð30Þ

is used to provide the ionospheric correction ~̂i1su to the user,
assuming that the user is located at the mean longitude, lat-
itude and height of the network stations. As stated in Bevis
et al. (1992) and Younes (2016), the wet ZTD could range
from centimetres (or less) to 3.5 dm depending on the
humidity condition of the regions. As a result, different
pre-defined ~s1 varying from 0 to 3.5 dm are used for the
tests.
3.1. Network solutions

In this subsection, to illustrate the network part of the
analytical derivations in Section 2 and to show examples
of PPP-RTK network solutions, numerical results are
shown and discussed with respect to the following aspects:



Fig. 1. Simulated networks located in west, north and east of Australia
with inter-station distances varying from 1 to 500 km.
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� The behaviours of rb̂ (6), or equivalently r~̂s1 in small and

large networks under Scenario A (cf. Fig. 2).

� The RMSEs of linear functions of ẑA, denoted as F T
n ẑA,

here as an example the RMSE(~̂s1r) under Scenario A,
in small and large networks (cf. (9), Figs. 3 and 4).

� Change of the biases for F T
n ẑB with ~s1, here as an exam-

ple ~̂s1r, in small and large networks; Comparison

between RMSE(F T
n ẑA) and RMSE(F T

n ẑB), here as an

example the comparison between RMSE(~̂s1r) under Sce-
narios A and B (cf. (9), Fig. 5 and Table 2).

� Change of the mean biases of ambiguities with ~s1 under
Scenario B in networks with different scales (cf. Fig. 6);
Comparison of the network ambiguity success rates
(ASRs) under Scenarios A and B for networks with dif-
ferent scales and different pre-defined ~s1 (cf. Fig. 7).

As shown in Fig. 1, the simulated networks are located
in west, north and east of Australia consisting of three sta-
tions 1, 2 and 3 each. The stations 1 (see the blue points in
Fig. 1) are located at the longitudes of 116, 133 and 147
degrees and the latitudes of �30, �20 and �30 degrees,
respectively, and the stations 2 (see the red points in
Fig. 1) are located in the east direction of the stations 1
with a 3-dimensional distance varying from 1 to 500 km.
The stations 3 (see the green points in Fig. 1) are located
in north of the stations 1 and 2 with the same inter-
station distance between 1–3, 2–3 as between 1–2. The
heights (above ellipsoid) of all stations are 0 m. The station
1 is used as the reference station for each network. We
remark that only the satellites that are observed by all net-
work stations are used for the processing.

As mentioned in Section 2, the variance of ~̂s1 is signifi-
cantly influenced by the near-singularity in the network
design matrix, when Scenario A is applied for small net-
works (6). With the increasing inter-station distance d1r

between stations 1 and r, the term � that contains the
between-receiver and between-satellite tropospheric map-
ping functions g1s1r (21) also increases in magnitude.

Fig. 2a shows the change of g1s1r with respect to d1r using
the networks located in west of Australia at the first epoch
of the test day for the reference satellite G27 and other
commonly observed satellites. For different satellite pairs,
linear change of g1s1r with d1r can be approximated in frame
of this study, i.e., with d1r varying from 1 to 500 km, as:
Table 2
The number of epochs T ðDRMSEð~̂s1rÞ < 0Þ that is needed to turn DRMSEð~̂s1
number of epochs T ðr~̂s1

< ~s1Þ that is needed to let r~̂s1
smaller than ~s1 (35). The

and 500 km are processed for the first two hours of the test day. The values are

~s1; d1r 50 km

T ðDRMSEð~̂s1rÞ < 0Þ T ðr~̂s1 < ~s1)

fixed float fixed flo

0 – – – –
5 cm 20 109 20 10
1.5 dm 4 43 4 43
3.5 dm 1 27 1 27
g1s1r ¼ g1sr � g1s1 � _g1s1 d1r ð31Þ
where _g1s1 represents the derivative of g1s1 with respect to d1r.
With the assumption that the satellites are distributed uni-
formly in the sky and are commonly observed by networks
with different scales, the matrix Qyy in (6) is not assumed to

have major changes as the network scale changes. The stan-
dard deviation rb̂, or equivalently r~̂s1

, is almost inversely

proportional to the inter-station distance d1r (see (A)):

r~̂s1 �
1

d1r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_��ð0ÞTQ�1

yy
_��ð0Þ

q ð32Þ

where _��ð0Þ is given in Appendix A. Fig. 2b shows the for-

mal standard deviations of ~̂s1 using the network with d1r of
1 km divided by a factor q of 500 and those using the net-
work with d1r of 500 km. The results of the first two hours
of the day are processed under Scenario A with fixed and
float ambiguities. Despite of the different numbers (see also
Fig. 3c) and the non-uniform distribution of the satellites,
the r~̂s1

using the network with d1r of 1 km (see the blue

and red lines in Fig. 2b) are approximately 500 times larger
than those using the network with d1r of 500 km (see the
green and magenta lines in Fig. 2b).

Based on the near-proportional relationship between g1s1r
and d1r (31), without major changes in QẑBŷBQ

�1
yy when

changing the network scale (A.5), the term
rÞ between stations 1 and 2 from positive to negative values (34), and the
networks located in west of Australia with inter-station distances d1r of 50
given for different ~s1 and networks with different inter-station distances d1r.

500 km

T ðDRMSEð~̂s1rÞ < 0Þ T ðr~̂s1 < ~s1Þ
at fixed float fixed float

– – – –
9 1 26 1 26

1 13 1 13
1 8 1 8



Fig. 2. (a) The between-receiver and between-satellite tropospheric mapping functions g1s1r at the first epoch of the test day using the networks located in
west of Australia with different inter-station distances and (b) the formal standard deviations of ~̂s1 (rb̂ in (6)) using the networks with inter-station
distances of 1 and 500 km divided by factors q of 500 and 1, respectively. The data is processed under Scenario A for the first two hours on June 10, 2017
with fixed and float ambiguities for (b).
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF T

n hÞT ðF T
n hÞ

q
in (9) for any linear function of z, denoted

as F T
n z, or equivalently F T

n a, is near-proportional to the
inter-station distance d1r (A.5):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF T
n hÞT ðF T

n hÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF T

nQẑBŷBQ
�1
yy �Þ

T ðF T
nQẑBŷBQ

�1
yy �Þ

q
� d1r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF T

nQẑBŷBQ
�1
yy _�ÞT ðF T

nQẑBŷBQ
�1
yy _�Þ

q ð33Þ

where _� contains the term _g1s1 in (31). Taking the relative
ZTDs between receivers 1 and 2 as an example, Fig. 3a

shows the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF T

n hÞT ðF T
n hÞ

q
using the same network

with d1r of 1 km (as in Fig. 2b) multiplied by a factor q

of 500 and that using the network with d1r of 500 km.
The jumps are caused by changes in satellite geometry,
which are shown in Fig. 3c. We see that despite of the
Fig. 3. (a) The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF T

n hÞT ðF T
n hÞ

q
(33) for relative ZTDs between stations 1

distances of 1 and 500 km multiplied by factors q of 500 and 1, respectively. T
GPS satellites for both networks are plotted in (b) and (c). The data is processe
the first 1000 epochs in the small window. The magenta point in (c) marks th
network with an inter-station distance of 500 km.
different numbers and the non-uniform distribution of the

satellites for both networks, the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF T

n hÞT ðF T
n hÞ

q
of

the small network with d1r of 1 km is approximately 500
times smaller than that using the large network with d1r

of 500 km. After multiplying them with r~̂s1
(9), the term

d1r is eliminated based on (32) and (33). As shown in

Fig. 3b, the product r~̂s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF T

n hÞT ðF T
n hÞ

q
is not that sensitive

to the network scale anymore. Based on (9), since changing
the network scales also does not lead to major changes in
r~̂s1rB (see Fig. 4a), the RMSEs of the relative ZTDs under

Scenario A is at the same level for networks with d1r of 1
and 500 km as shown in Fig. 4b. We remark that any linear
combination of a and ~s1 is poorly estimable for small net-
works under Scenario A, provided that the coefficients

before ~s1 are not zero. The parameters ~̂sr–1 and d~t1s (22)
and 2 using the networks located in west of Australia with inter-station
he term r~̂s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF T

n hÞT ðF T
n hÞ

q
(cf. 9, 32 and 33) and the number of the visible

d for the first two hours on June 10, 2017. The lines in (b) are zoomed for
e time point with the same number of rising and setting satellites for the



Fig. 4. (a) The formal standard deviations of the relative ZTDs between receivers 1 and 2 under Scenario B and (b) their RMSEs under Scenario A (9)
using the networks located in west of Australia with inter-station distances of 1 km and 500 km. The data is processed for the first two hours on June 10,
2017.
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are two examples. For the small network with d1r of 1 km,
their RMSEs under Scenario A reach hundreds to thou-
sands of meters at the initialization phase in ambiguity-

float case as that for ~̂s1.
Under Scenario B, the parameter ~s1 is constrained to be

zero. This solves the near-singularity problem in the net-
work design matrix for small networks under Scenario A.
However, the term g1s1r~s1 (24) becomes mismodelled effect.
Depending on the scale of the network, which leads to dif-
ferent sizes of the term g1s1r, and the humidity condition
around the reference receiver, which leads to different val-
ues for ~s1, employing Scenario B could bias the network
and user solutions in a different manner. In Lemma 1, we
note that the structure difference of MSEs for parameters
a (and any linear function thereof) is only driven by r~̂s1

and ~s1. Different from r~̂s1
that is near inversely propor-

tional to d1r (32), ~s1 is not related to the inter-station dis-
tance. As a result, for a certain ~s1, the bias term

~s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF T

n hÞT ðF T
n hÞ

q
is near-proportional to d1r asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF T
n hÞT ðF T

n hÞ
q

does (33). Fig. 5a and d show the bias term

~s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF T

n hÞT ðF T
n hÞ

q
(9), multiplied by a factor q, for the rela-

tive ZTDs between stations 1 and 2 during the first two
hours of the test day with fixed and float ambiguities,
respectively. The solid and dashed lines represent the
cases using networks located in west of Australia with
inter-station distances of 50 and 500 km and factors q

of 10 and 1, respectively. We see that the bias term using
the network with d1r of 500 km is approximately 10 times
larger than that using the network with d1r of 50 km. The
bias increases with the increasing ~s1 and has reached mil-
limetres and centimetres for d1r of 50 and 500 km, respec-
tively. For the small network with an inter-station
distance of 1 km during these two hours, the bias term
is within 2 sub-mm even with ~s1 of 3.5 dm due to the
small h.
The biases directly influence the RMSEs of ~̂s1r under
Scenario B (9). As shown in Fig. 5b and e, the RMSEs

of ~̂s1rB using the network with d1r of 500 km are approxi-
mately 10 times larger than those using the network with
d1r of 50 km after the initialization phase for large ~s1, since
the resulted biases during this time period are dominated in
the RMSEs under Scenario B. During the initialization
phase, or for small ~s1 in ambiguity-float case (see the blue
lines in Fig. 5e), the r~̂s1rB

(see Fig. 4a) have larger ampli-

tudes than the bias terms. The RMSEs are thus dominated
by r~̂s1rB

, and the near-proportional relationship with d1r

does not hold anymore.

Using the RMSEs of F T
n â under Scenarios A and B, their

differences are computed for networks with different scales
and under different pre-defined ~s1 as:

DRMSEðF T
n âÞ ¼ RMSEðF T

n âAÞ �RMSEðF T
n âBÞ ð34Þ
where âA and âB represents the estimated a under Scenarios
A and B, respectively. Using the same networks with d1r of
50 and 500 km located in west of Australia, the RMSE dif-
ferences (multiplied by the factors q) for the relative ZTDs
between stations 1 and 2 are shown in Fig. 5c and f during
the first two hours of the day for ambiguity-fixed and -float
cases, respectively. Note that the near-proportional rela-

tionship between DRMSE(~̂s1r) and d1r only holds, when
the RMSEs under Scenario A is much smaller than those
under Scenario B with the bias terms dominated. For the
network with d1r of 500 km (see the dashed lines in
Fig. 5c and f), the degradation of the RMSEs resulted by
the biases reach centimetres comparing the cases with large
~s1 (see the green and red dashed lines in Fig. 5c and f) and
~s1 of zero (see the yellow dashed lines in Fig. 5c and f).
Based on Lemma 1 (9), the structure difference in the MSEs
of ẑA and ẑB (and any linear function thereof) is only driven
by the terms r~̂s1

and ~s1. We assume that the minimal



Fig. 5. The bias term ~s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF T

n hÞT ðF T
n hÞ

q
(9) multiplied by factor q for relative ZTDs between stations 1 and 2 with (a) fixed and (d) float ambiguities, the

corresponding RMSEs of ~̂s1r under Scenario B (9) and RMSE differences (34) multiplied by q in (b, c) ambiguity-fixed and (e, f) -float cases. The solid and
dashed lines represent the cases using the networks located in west of Australia with inter-station distances of 50 and 500 km with factors q of 10 and 1,
respectively. The data is processed for the first two hours on June 10, 2017.

Fig. 6. The mean biases �b~a of ambiguities under Scenario B (37) for
networks with inter-station distances of 50 km (solid lines) and 500 km
(dashed lines) that are multiplied by factors q of 10 and 1, respectively.
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number of epochs that is needed to turn DRMSEð~̂s1rÞ (34)
from positive to negative values and that is needed to let r~̂s1
become smaller than ~s1 are defined as follows:

T ðDRMSEð~̂s1rÞ < 0Þ ¼ tminðDRMSEð~̂s1rÞ < 0Þ
T ðr~̂s1

< ~s1Þ ¼ tminðr~̂s1 < ~s1Þ
ð35Þ

where tminð�Þ is defined as the minimal number of epochs
that is needed to fulfil the condition in (�). The terms

T ðDRMSEð~̂s1rÞ < 0Þ and T ðr~̂s1
< ~s1Þ are listed in Table 2

for the two networks and different ~s1 used in Fig. 5. Com-
paring the values for the networks with d1r of 50 and 500

km, we see that DRMSEð~̂s1rÞ turns faster from positive to
negative values in the larger network. For each pre-
defined ~s1 and network scale, the same number of epochs

are required to turn DRMSEð~̂s1rÞ from positive to negative
and to let the r~̂s1

become smaller than ~s1 (cf. Lemma 1). If

~s1 is set to zero, DRMSEð~̂s1rÞ is above zero over the entire
processing interval due to the fact that r~̂s1

is larger than

zero.
To compare the network ASRs under Scenario A with-

out mismodelled effect and Scenario B with mismodelled
effect, the integer least-squares ASRs are computed based
on simulations (Li et al., 2014). The deviations of the float
ambiguities from their true values can be formulated for
Scenarios A and B as:
D~̂aA ¼ ~̂aA � ~a ¼ F T
~a ðâA � aÞ

D~̂aB ¼ ~̂aB � ~a ¼ F T
~a ðâB � aÞ

ð36Þ

where F T
~a selects all the estimable ambiguities from the vec-

tor a. 104 samples of the float ambiguity vector D~̂aA are
generated under Scenario A using the variance matrix

F T
~aQâA âAF ~a (A.8). Under Scenario B, D~̂aB are generated with

the help of the variance matrix F T
~aQâB âBF ~a (A.2) and the
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term F T
~a h~s1 (A.9) using a pre-defined ~s1. In Fig. 6, the mean

biases for ambiguities �b~a under Scenario B using networks
with inter-station distances of 50 and 500 km are multiplied
by factors q of 10 and 1, respectively, and are plotted for
the first 30 epochs of the processing. Networks located in
different areas of Australia and all processing intervals

are used to compute the mean ambiguity biases �b~a as
follows:

�b~a ¼
PK

k¼1

PH
h¼1b~aðk; hÞ

K � H ð37Þ

where K and H represent the number of the areas and the
number of the processing time intervals, respectively. The
term b~aðk; hÞ represents the mean absolute biases of ambi-
guities under Scenario B for the network located in area
k during the processing interval h with b~a defined as (cf.
(9)):

b~a ¼ ~s1

P jF T
~a hj

l~a
ð38Þ

where
P jF T

~a hj represents the sum of all the elements jF T
~a hj,

and l~a represents the number of the estimable ambiguities
at the corresponding epoch.

As the bias terms for the relative ZTDs shown in Fig. 5a
and d, from Fig. 6 we see that the mean ambiguity biases
using networks with d1r of 500 km are approximately 10
times larger than those using networks with 50 km. For
large networks with d1r of 500 km (see the dashed lines in
Fig. 6), the mean biases of the ambiguities could reach
deci-cycles to cycles. This could significantly influence the
float ambiguities and the ASRs under Scenario B. The float
ambiguities are resolved with the LAMBDA method
(Teunissen, 1993, 1995) at each epoch, and the ASRs are
calculated for both scenarios with:

P s ¼ P 0

P
ð39Þ

where P 0 represents the number of the samples with all the
resolved ambiguities (after decorrelation) equal to zero,
and P denotes the total number of samples. The mean
ASRs �P s are calculated using the networks located in differ-
ent areas and during all the processing intervals as:

�P s ¼
PK

k¼1

PH
h¼1P sðk; hÞ

K � H ð40Þ

where Psðk; hÞ represents the ASRs for the network located
in area k during the processing interval h. Fig. 7 shows the
�P s (40) during the first 30 epochs of the processing for net-
works with inter-station distances of 50 km and 500 km.
With ~s1 set to 0 m, the �P s under Scenario B (see the blue
lines in Fig. 7) are higher than those under Scenario A
(see the yellow lines in Fig. 7), especially at the initializa-
tion phase. However, with increasing ~s1, the biases could
strongly degrade the ASRs under Scenario B. Using Sce-
nario B for networks with an inter-station distance of 50
km and ~s1 of 1.5 dm (see the green line in Fig. 7a), the mean
ASR turns to be lower than that under Scenario A after 7
epochs. For large networks with an inter-station distance
of 500 km and a pre-defined ~s1 of 1.5 dm, as shown by
the green line in Fig. 7b, the mean ASRs are almost zero
under Scenario B. We remark that the comparison of the
ASRs are different from the comparison of the RMSEs
of the ambiguities, since the biases do not only influence
the diagonal elements, but also the other elements in the

matrix Eðð~̂aB � ~aÞð~̂aB � ~aÞT Þ. This would also affect the
ASRs under Scenario B.
3.2. User solutions

The RMSEs of the user parameter solutions are also
computed and compared using network corrections under
Scenarios A and B with different pre-defined values of ~s1.
As mentioned at the beginning of Section 3, the users are
assumed to be located at the mean longitude, latitude
and height of the network stations. The network correc-
tions are provided to the user at each epoch from the start
of the network processing, and the single-epoch user solu-
tions are evaluated with the ambiguities fixed. To compare
the RMSEs of the estimated user coordinates under both
scenarios, their differences are computed for networks with
different scales and under different pre-defined ~s1:

DRMSEðD~̂xuÞ ¼ RMSEðD~̂xuAÞ �RMSEðD~̂xuBÞ ð41Þ

where D~̂xuA and D~̂xuB represent the estimated user coordi-
nate increments under Scenarios A and B, respectively.
The comparison of the RMSEs of the estimated user coor-
dinates is performed using all tested networks in west,
north and east of Australia and all the processing intervals
during the test day. The mean RMSE differences are com-
puted for each pre-defined ~s1 and each inter-station dis-
tance as follows:

DRMSEðD�̂~xuÞ ¼
PK

k¼1

PH
h¼1DRMSEðD~̂xuÞðk; hÞ

K � H ð42Þ

where DRMSEðD~̂xuÞðk; hÞ represents the RMSE differences
of the estimated user coordinates for network located in
area k during the test time interval h. The mean RMSE dif-
ferences in the estimated user coordinates are shown in
Fig. 8 for pre-defined ~s1 varying from 5 mm to 3.5 dm
and networks with inter-station distances of 300 and 500
km. The results are shown for both the network
ambiguity-fixed (top-panel) and -float (bottom-panel)
cases. The user ambiguities are assumed to be resolved.
In case of the ambiguity-fixed network corrections, we

see that the DRMSEðD�̂~xuÞ (42) are either slightly above zero
for small ~s1 with the amplitude within 0.2 sub-mm (see the
blue lines in Fig. 8a and b), or below zero with their abso-
lute values increasing with the increasing ~s1 and network
scales due to the enlarged biases under Scenario B. For
smaller networks with inter-station distances within 100

km, the absolute values of DRMSEðD�̂~xuÞ with even the lar-
gest ~s1 in our test, i.e., 3.5 dm, are within 1 sub-mm. This



Fig. 7. Simulated mean ambiguity success rates �P s (40) under Scenarios A and B for networks with inter-station distances of (a) 50 km and (b) 500 km.

Fig. 8. Mean RMSE differences (42) of the estimated user coordinates for networks with inter-station distances of 300 km (left) and 500 km (right) where
ambiguity-fixed (top) and -float (bottom) network-corrections are applied. The user ambiguities are assumed to be resolved. We note that in (c) the blue
line is almost overwritten by the red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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indicates that in ambiguity-fixed cases at both the network
and the user side, for networks with an inter-station dis-
tance shorter than 100 km, the choices of the ZTD estima-
tion strategy is not crucial for user positioning results. For
networks with inter-station distances larger than 300 km in
very humid regions (for the reference receiver) with ~s1 of
3.5 dm, as shown by the magenta lines in Fig. 8a and b,
the RMSEs under Scenario B are higher than those under
Scenario A with differences within millimetres.

In case of the ambiguity-float network corrections, when
networks with inter-station distances within 100 km are

considered, the DRMSEðD�̂~xuÞ under different ~s1 are almost
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overwritten by each other and are thus not shown in the
figure. At the initialization phase of the network filtering,
the mean RMSEs of the user coordinates under Scenario
A are higher than those under Scenario B with differences
up to meters. The mean RMSE differences decrease rapidly
from positive to negative values for large ~s1 (see the
magenta lines in Fig. 8c and d), while with ~s1 of 5 mm
for networks with an inter-station distance of 300 km, the

DRMSEðD�̂~xuÞ remain positive during the entire 2 h process-
ing interval (see the blue line in Fig. 8c). If the reference
receiver is located in humid regions with ~s1 of 1.5 dm (see
the green lines in Fig. 8c and d), for networks with inter-
station distances of 100, 300 and 500 km, the RMSEs
under Scenario B after the initialization phase could be
higher than those under Scenario A with differences up to
millimetres, centimetres and decimetres, respectively.

To search for the minimal number of the epochs that is

needed to turn the mean RMSE differences DRMSEðD�̂~xuÞ
from positive to negative values, T 0 is defined as follows:

T 0 ¼ tminðDRMSEðD�̂~xuÞ < 0Þ ð43Þ
In case that DRMSEðD�̂~xuÞ are positive during the entire
processing time interval, i.e., 240 epochs, T 0 is set to be 241
epochs. Using ambiguity-float network corrections, Fig. 9
shows the term T 0 (43) for different pre-defined ~s1 and net-
works with different scales. We see that T 0 decreases with
the increasing inter-station distance and ~s1. As shown by
the blue line in Fig. 9, if the reference receiver is located
in arid region with ~s1 of 5 mm, using Scenario B always
generates smaller mean RMSEs during the 2 h processing
time for an inter-station distance up to 300 km. In regions
with ~s1 of 5 cm, 1.5 dm and 3.5 dm, for networks with an
Fig. 9. Minimal number of epochs that is needed to turn the mean RMSE
differences of the estimated user coordinates DRMSEðD�̂~xuÞ (43) from
positive to negative values. The ambiguity-float network corrections are
used for the processing with user ambiguities assumed to be fixed. The T 0

is set to be 241 epochs (see the black dashed line), if it exceeds the 2 h
processing interval of 240 epochs.
inter-station distance of 100 km, it takes around 90, 40
and 20 epochs to switch from Scenario B to Scenario A,
respectively.

4. Conclusions

The wet component of the zenith tropospheric delay
(ZTD) is one of the unknowns in PPP-RTK processing.
In small networks, the tropospheric mapping functions of
different receivers to the same satellite are almost identical
to each other. In the design matrix, the columns for the
estimable ZTDs and satellite clocks are thus almost linearly
dependent. To solve this problem, in small networks, the
wet ZTD components are often estimated relatively to that
of the reference receiver with the wet ZTD component of
the reference receiver constrained. However, as the net-
work scale and the wet ZTD component of the reference
receiver increase, the mismodelled effect in case of relative
ZTD estimation is enlarged, which could bias both the net-
work and the user solutions. This contribution aimed to
study and compare the accuracies of the network and the
user solutions under.

� Scenario A: Absolute ZTD estimation at the network
processing

� Scenario B: Relative ZTD estimation at the network
processing

The MSE and its square root RMSE, which consider
both the influences of the noise and biases, are used to eval-
uate the accuracies of the network and user solutions.

It was found that for small networks under Scenarios A,
the near-singularity in the network design matrix mainly
influences the MSEs of the estimated wet ZTD component
of the network and the user stations, as well as the original
estimable satellite clocks. The estimates of the relative
ZTDs, the ambiguities, the user coordinates and other
estimable parameters are less sensitive to the near-
singularity in the network design matrix. For these param-
eters, the difference in the MSE structures under Scenarios
A and B is only driven by the square of the wet ZTD com-
ponent of the reference receiver and the variance of its
solution.

These conclusions were illustrated by simulation studies
using GPS dual-frequency 30 s data for networks consist-
ing of 3 stations. In addition to that, simulations were also
performed to compute ASRs under both scenarios consid-
ering also the mismodelled effects. It was found that if the
reference receiver is located in humid regions, using Sce-
nario B for large networks could significantly degrade the
ASRs due to the large biases. Using ambiguity-fixed net-
work corrections, the mean RMSE differences of the esti-
mated user coordinates between Scenarios A and B are
within 1 sub-mm for networks with inter-station distances
within 100 km, even when the reference receiver is located
in very humid regions. For larger networks with inter-
station distances of 300 and 500 km with an extreme ~s1
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of 3.5 dm, the mean RMSEs of the user coordinate esti-
mates under Scenario B are higher than those under Sce-
nario A with differences within millimetres. Using
ambiguity-float network corrections, the RMSEs under
Scenario A are larger than those under Scenario B by
meters at the initialization phase. For networks with an
inter-station distance of 100 km, it takes around 90, 40
and 20 epochs to switch the mean RMSE differences
between Scenarios A and B from positive to negative values
for ~s1 of 5 cm, 1.5 dm and 3.5 dm, respectively. After the
initialization phase, for networks with inter-station dis-
tances of 100, 300 and 500 km and with ~s1 of 1.5 dm, the
RMSEs of the user coordinate estimates under Scenario
B could be higher than those under Scenario A with differ-
ences up to millimetres, centimetres and decimetres,
respectively.

Acknowledgments

We would like to thank the International GNSS Service
(IGS) for providing the orbit products. The orbit products
were obtained through the online archives of the Crustal
Dynamics Data Information System (CDDIS), NASA
Goddard Space Flight Center, Greenbelt, MD, USA.
ftp://cddis.gsfc.nasa.gov/pub/gnss/products/. Special
thanks also go to our colleagues in the GNSS Research
Centre, Curtin University, for the development of the Cur-
tin PPP-RTK Software. P.J.G. Teunissen is recipient of an
Australian Research Council (ARC) Federation Fellow-
ship (project number FF0883188).

Appendix A.
Proof of Lemma 1. We first follow Scenario B and
constrain b to zero. Substitution into (5) gives the
inconsistent linear system

y � AS a ðA:1Þ
With the weight matrix Q�1

yy , the weighted least-squares

solution âB follows from (Teunissen, 2000)

âB ¼ ðSTNSÞ�1
STATQ�1

yy y; with QâBâB ¼ ðSTNSÞ�1

ðA:2Þ
From (8), the least-squares solution ẑB follows as

ẑB ¼ LT SðSTNSÞ�1
STATQ�1

yy y

¼ LT SQâBâBS
TATQ�1

yy y

¼ QẑBŷBQ
�1
yy y

ðA:3Þ

with

QẑBẑB ¼ QẑBŷBQ
�1
yy QŷBẑB ðA:4Þ

in which use is made of the equalities QâB âB ¼ ðSTNSÞ�1
and

QẑBŷB ¼ LT SQâB âBS
TAT , where ŷB ¼ ASâB. Using (5), the

expectation of ẑB reads
EðẑBÞ ¼ QẑBŷBQ
�1
yy EðyÞ ¼ zþ hb; with h ¼ QẑBŷBQ

�1
yy �

ðA:5Þ
The solution ẑB is thus biased by hb when b – 0. Now

consider Scenario A. Including the extra parameter b into
the inconsistent linear system (A.1), i.e.

y � AS aþ �b ðA:6Þ
the least-squares solution âB is adapted to âA as follows
(Teunissen, 2000)

âA ¼ âB � ðSTNSÞ�1
STNv b̂; with

QâA âA ¼ QâB âB þ r2
b̂
fðSTNSÞ�1

STNvgfðSTNSÞ�1
STNvgT ðA:7Þ

From (8), the least-squares solution ẑA follows as

ẑA ¼ ẑB � h b̂; with QẑAẑA ¼ QẑBẑB þ r2
b̂
hhT ðA:8Þ

The MSE expressions (9) follow then from

Scenario A : EkẑA � zk2 ¼ trðQẑAẑAÞ þ ðEðẑAÞ � zÞT ðEð̂zAÞ � zÞ
Scenario B : EkẑB � zk2 ¼ trðQẑBẑBÞ þ ðEðẑBÞ � zÞT ðEðẑBÞ � zÞ

ðA:9Þ
and the equalities EðẑAÞ � z ¼ 0 and EðẑBÞ � z ¼ hb. h

Proof of Lemma 2. Using the equality c ¼ F T zþ bb and
the relation (A.8), one obtains

ĉA ¼ ĉB � ðF T h� bÞb̂; and EðĉBÞ � EðĉAÞ ¼ ðF T h� bÞb
ðA:10Þ

Application of the variance propagation law to
x̂uA ¼ Aþ

u ðyu þ ĉAÞ, together with x̂uB ¼ Aþ
u ðyu þ ĉBÞ, gives

then

Qx̂uA x̂uA
¼ Aþ

u ðQyuyy
þ QĉBĉB þ r2

b̂
ðF T h� bÞðF T h� bÞT ÞAþT

u

¼ Qx̂uB x̂uB
þ r2

b̂
fAþ

u ðF T h� bÞgfAþ
u ðF T h� bÞgT

ðA:11Þ
The MSE expressions (17) follow from

Scenario A : EkF T
u ðx̂uA � xuÞk2 ¼ trðF T

uQx̂uA x̂uA
F uÞ

þ fF T
u ðEðx̂uAÞ � xuÞgTfF T

u ðEðx̂uAÞ � xuÞg
Scenario B : EkF T

u ðx̂uB � xuÞk2 ¼ trðF T
uQx̂uB x̂uB

F uÞ
þ fF T

u ðEðx̂uBÞ � xuÞgTfF T
u ðEðx̂uBÞ � xuÞg

ðA:12Þ
and the equalities Eðx̂uAÞ � xu ¼ 0 and

Eðx̂uBÞ � xu ¼ Aþ
u ðF T h� bÞb. h

Proof of Eq. (32). Note that (7) can also be expressed as

�� ¼ P? �; with P? ¼ I � ASðSTATQ�1
yy ASÞ

�1
STATQ�1

yy

ðA:13Þ
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For the specific case (21), both � and the matrix P? are
functions of the inter-station distance d1r through the map-
ping function g1s1r. Thus we use the notation �ðd1rÞ and

P?ðd1rÞ to show the stated dependency. Expansion of
��ðd1rÞ into a Taylor series at the zero inter-station distance
d1r ¼ 0 gives

��ðd1rÞ � ��ð0Þ þ _��ð0Þd1r ðA:14Þ
where _��ð0Þ is the derivative of ��ðd1rÞ at d1r ¼ 0 and can be
computed as follows

_��ð0Þ ¼ _P?ð0Þ�ð0Þ þ P?ð0Þ _�ð0Þ ¼ P?ð0Þ _�ð0Þ; since �ð0Þ ¼ 0

ðA:15Þ
with _P?ð0Þ and _�ð0Þ being the derivatives of P?ðd1rÞ and
�ð0Þ at d1r ¼ 0, respectively. This, together with
��ð0Þ ¼ P?ð0Þ�ð0Þ ¼ 0, gives

��ðd1rÞ � P?ð0Þ _�ð0Þd1r ðA:16Þ
Substitution into the first expression of (6) gives (32). h
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