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ABSTRACT: 

This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD). Most existing 

methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser 
scanning often has incomplete data, as street poles for example are only scanned from the road. Moreover, existence of outliers is 
common. Outliers may occur as random or systematic errors, and may be scattered and/or clustered. In this paper, we present a 
statistically robust cylinder fitting algorithm for PCD that combines Robust Principal Component Analysis (RPCA) with robust 
regression. Robust principal components as obtained by RPCA allow estimating cylinder directions more accurately, and an existing 
efficient circle fitting algorithm following robust regression principles, properly fit cylinder. We demonstrate the performance of the 
proposed method on artificial and real PCD. Results show that the proposed method provides more accurate and robust results:  (i) in 
the presence of noise and high percentage of outliers, (ii) for incomplete as well as complete data, (iii) for small and large number of 

points, and (iv) for different sizes of radius. On 1000 simulated quarter cylinders of 1m radius with 10% outliers a PCA based method 
fit cylinders with a radius of on average 3.63meter (m); the proposed method on the other hand fit cylinders of on average 1.02 m 
radius. The algorithm has potential in applications such as fitting cylindrical (e.g., light and traffic) poles, diameter at breast height 
estimation for trees, and building and bridge information modelling.  

1. INTRODUCTION 

Laser scanning has been recognized as an effective and high 
speed survey tool, for direct acquisition of dense three-
Dimensional (3D) spatial data called point clouds. Point clouds 
achieve large metric precision at moderate costs.  Due to the 
complexity and large volume (i.e., big data) of Point Cloud Data 
(PCD), extracting meaningful geometric shapes has an ever-

growing demand. Cylindrical features are one of the most 
encountered geometric primitives in point clouds when collected 
in industrial sites, urban areas, street corridors, but also forest. 
Cylinder fitting is a fundamental task in computer graphics, 
computer vision, image analysis, reverse engineering, pattern 
recognition, photogrammetry and remote sensing for various 
applications like feature extraction (De Guevara et al., 2011), 
surface reconstruction (Schnabel et al., 2007), archaeological 

documentation, street furniture management, building 
information modelling (Kwon et al., 2004), as-built modelling 
(Ahmed et al., 2014),  machine tools quality control, industrial 
plant settings (Su et al., 2016), tunnel monitoring (Gosliga et al., 
2006), and forest inventory (Lalonde et al., 2006), and therefore 
has been studied rigorously.  

PCD are usually partial, unordered, have irregular point density, 

contain various complex structures, and may be noisy. As well, 
the presence of outliers that do not follow the outline of the 
majority of points of interest is common for many reasons such 
as systematic biases or sensor errors, multipath reflections, 
occlusions, unexpected moving objects, environmental disorder 
like snow, rain, dust, and random noise that may appear as off- 
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surface points. Pseudo-outliers that are created by multiple and 
unorganized structures mainly appeared as clustered outliers (cf., 
Nurunnabi et al., 2015). PCD especially from Mobile Laser 

Scanning (MLS) and Aerial Laser Scanning (ALS) are mostly 
incomplete and sometimes locally missing because the 
corresponding scan systems obtain PCD from a particular point 
of view. The same holds often when using Terrestrial Laser 
Scanning (TLS); at many archaeological sites, power plants and 
in industrial settings it is not always possible to scan around the 
objects of interest because of the scene complexities do not allow 
the required physical positioning of the scanners. Therefore, 

robust cylinder fitting for incomplete PCD with outliers has great 
importance and but is also challenging.  

Indeed, much research has been carried for cylinder fitting in 3D 
data (Shakarji, 1998; Marshal et al., 2001; Rabbani and Heuvel, 

2005; Schnabel et al., 2007; Mendez et al., 2014; Tran et al., 
2015). Based on data and applications, developments have been 
made into two main classes; some algorithms work directly on 
raw data without significant pre-processing, others take pre-
processed (e.g., classification and segmentation) data so that 
every part is well-approximated by an appropriate geometric 
shape. RANdom SAmple Consensus (RANSAC; Fischler and 
Bolles, 1981) and the Hough Transform (HT; Duda and Hart, 

1972) are two well-known voting techniques used for shape 
detection and fitting in raw 2/3D data (Schnabel et al., 2007). 
Although the HT and RANSAC can tackle the influence of 
outliers, many people are not happy to use them because of time 
and/or space complexity. Nurunnabi et al. (2014, 1015) showed 
that RANSAC is influenced by the well-known masking effect 
(cf., Rousseeuw and Leroy, 2003).   
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Chaperon and Goulette (2001) proposed a two-step approach; in 
the first step RANSAC is used on a Gaussian sphere to find the 
cylinder’s direction while a second step finds the cylinder’s 
position and size. Beder and Förstner (2006) used RANSAC to 
get a direct solution on the original point cloud for estimating 

cylinder parameters. Schnabel et al. (2007) used the RANSAC 
algorithm for geometric shape (e.g., planes and cylinders) 
detection. The authors mentioned that their method can be 
applied to a large variety of data and is extremely robust, but does 
not find shape proxies for every part of the surface. Vosselman 
et al. (2004) introduced a HT based cylinder detection algorithm 
that uses normals of the data points to get the cylinder direction. 
Rabbani and Heuvel (2005) developed two sequential steps of 

low dimensional HT for detecting cylinders in PCD. Many 
authors (e.g., Tarsha-Kurdi et al., 2007; Deschaud and Goulette, 
2010) made comparisons between HT and RANSAC, and 
showed that HT is less efficient than RANSAC in terms of 
computation time when a model is being fitted to a large data set, 
while, in addition, HT is sensitive to the choice of segmentation 
parameters for segment based modelling. Over the years many 
revised versions of RANSAC have been developed. This paper 

considers RANSAC (Fischler and Bolles, 1981) for comparison 
as it is well-known, and many people (cf., Wang et al., 2016) are 
using it as their first choice, considering its high-quality results, 
robustness and generality.  
 

The methods that do pre-processing before cylinder fitting can 
be grouped into non-linear and linear least squares approaches. 

Linear least squares methods are based on a linearization of the 
Euclidean distance. On the other hand, non-linear methods 
minimize the geometric distance of the points to the surface of a 
cylinder (Marshall et al., 2001). Franaszek (2012) studied the 
variability of cylinder parameters for non-linear fitting. Rahayem 
et al. (2012) fit cylinders followed by ellipse fitting for data 
without outliers.  Kwon et al. (2004) developed a PCA based 
cylinder fitting algorithm without using the normals of the data. 

Lalonde et al. (2006) worked in a similar way (Kwon et al., 
2004), and developed two algorithms based on 2D projection and 
3D fitting for tree trunk segmentation. They showed that results 
from the PCA based 2D projection technique approximately 25% 
better than the results from 3D fitting. The authors (Kwon et al., 
2004; Lalonde et al., 2006) claimed their methods are 
computationally efficient but both of them did not consider yet 
data with gross or pseudo-outliers, which is one of the main 

concerns in this paper. 
 

Existing cylinder fitting methods mainly focused on full data 
without outliers. This paper concentrates on incomplete 3D PCD 
in the presence of outliers. Fig. 1 shows MLS signpost data, 
which is incomplete and has many outlying points in the red 
ellipses [Fig.1(d)] which become visible if we look horizontally 

(top view) through the post. This paper proposes an algorithm 
based on the PCA approach (Lalonde et al., 2006) but it notably 
uses a robust version of PCA to get robust principal components. 
Those will be consecutively used to get cylinder directions and 
2D points by projecting onto two PC based plane. The new 
method couples robust regression with circle fitting to get 
reliable estimates of cylinder parameters. It fits a cylinder model 
to pre-processed partial cylindrical data. Pre-processing could for 

example consist of a segmentation step (Nurunnabi et al., 2016). 
The method is statistically robust and consistent, produces 
reliable results in the presence of a high percentage of clustered 
outliers for incomplete as well as full data.  
 

The remaining of this paper is arranged as follows. The new 

algorithm is described in detail in Section 2. Section 2.1 
discusses technical issues and principles used in the developed 

algorithm.  The algorithm itself is described in Section 2.2. 
Detailed experiments on artificial and laser scanning data are 
evaluated in Section 3.  Section 4 concludes the paper. 
 
 

 
 

Figure 1. (a) Mobile laser scanned signpost; incomplete point 
cloud data, (b) a segment (cylindrical part; front view) of the 

data, (c) cylindrical data; side view, and (d) cylindrical data; top 
view, outliers are highlighted by red ellipses 

 

 

2. PROPOSED ALGORITHM 

The robust cylinder fitting algorithm proposed in this section 
uses robust statistical approaches (robust PCA and robust 
regression) and an existing circle fitting method. We briefly 
include technical issues and principles of the existing tools, and 
then describe the new algorithm in detail.  
 

2.1 Robust Statistical Approaches and Algebraic Circle 
Fitting 

2.1.1 Robust Principal Component Analysis: Principal 
Component Analysis (PCA) presents a set of orthogonal and 
uncorrelated variables, which are linear combinations of the 
mean centered original variables, called Principal Components 
(PCs). For a 3D point cloud, PCs (𝜈𝑖; 𝑖 = 2,1,0) correspond with 

the eigenvalues (𝜆𝑖; 𝑖 = 2,1,0;usually 𝜆2 ≥ 𝜆1 ≥ 𝜆0) of the 

covariance matrix Σ3×3 = 1/𝑛∑ (𝑝𝑖 − �̅�)(𝑝𝑖 − �̅�)
𝑇𝑘

𝑖=1 , where 

𝑝𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) is the i-th point in the point cloud. The eigenvalues 

express the variability of the data along the corresponding 
eigenvectors.  Hence, the first PC (𝑣2) shows the highest (𝜆2%) 
variability of the data. Although PCA has been used successfully 
in point cloud processing, the results from PCA are highly 
influenced by outliers and produce misleading results 
(Nurunnabi et al., 2014, 2015, 2016).  
 

To overcome the sensitivity towards outliers, many Robust 
versions of PCA (RPCA) have been developed over the years 
(e.g., Hubert et al., 2005). We use RPCA (Hubert et al., 2005), 
which is good for lower dimensional (3D) point cloud processing 
(Nurunnabi et al., 2014). It combines the so called projection-
pursuit approach with robust covariance estimation. In RPCA, 
for each point 𝑝𝑖, a measure of outlyingness is defined as 
 

                     𝑤𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣
|𝑝𝑖𝑣

𝑇−𝜇FMCD(𝑝𝑖𝑣
𝑇) |

∑ (𝑝𝑖𝑣
𝑇)FMCD

 ,                    (1) 

 

which is computed by projecting the data onto many univariate 

directions. For every direction, the Fast Minimum Covariance 
Determinant (FMCD; Rousseeuw and van Driessen, 1999) based 
robust centre 𝜇FMCD and covariance matrix ΣFMCD of the 

projected points 𝑝𝑖𝑣
𝑇are computed in Eq. (1).  Next, a majority 

share (ℎ > 𝑛/2) of points having minimum values of 𝑤𝑖 are used 
to construct a robust covariance matrix that is used later for PCA 

and to get robust PCs. Hubert et al. (2005) claimed that the 
resultant robust PCs are location and orthogonal invariant, and 
their method produces accurate estimates for data without 
outliers and more robust estimates for data with outliers.  
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2.1.2 Robust LTS Regression: Consider the standard regression 
model  
                                       𝑌 = 𝑋𝛽 + 𝜀,                                      (2) 

 
where Y is the response variable, X is an 𝑛 × 𝑘 (𝑘 = 𝑚 + 1) 
matrix of explanatory variables including one constant column 
of 1’s, β is a 𝑘 × 1 vector of parameters, and 𝜀 is an 𝑛 × 1 random 

error vector. To estimate the parameters, the well-known Least 
Squares (LS) method minimizes the sum of the squared residuals, 

i.e.,  
 

                                   𝑚𝑖𝑛𝑖𝑚𝑧𝑒�̂�  ∑ 𝑒𝑖
2𝑛

𝑖=1 ,                              (3) 

                                                    

where 𝑒𝑖 = 𝑌𝑖 − �̂�𝑖, �̂�𝑖 = 𝑋𝑖
𝑇�̂�, and �̂� is the vector of estimated 

parameters. Although LS has many good statistical properties, it 
is sensitive to outliers and may produce deceptive results. To 
minimize the influence of outliers, many robust and diagnostic 
regression methods have been developed (cf., Rousseeuw and 
Leroy, 2003). Many authors replace the squared residuals in Eq. 
(3) by some functions of residuals such as M-estimators (cf., 
Wang and Suter, 2003), which are robust, but they are vulnerable 
to leverage in terms of X points and do not achieve a high 

Breakdown Point (BP; the level of outlier tolerance). Rousseeuw 
(1984) proposed two well-known high BP robust regression 
methods: Least Median of Squares (LMS) and Least Trimmed 
Squares (LTS). In LMS, the median of squared residuals is 
minimized, defined as 
 

                             𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒�̂� 𝑚𝑒𝑑𝑖𝑎𝑛𝑖𝑒𝑖
2.                             (4) 

 

LTS minimizes the trimmed sum of squared residuals, i.e., this 
algorithm minimizes the sum of the h (ℎ ≥ 𝑛 2⁄ ) lowest squared 

residuals, i.e.,  
 

                                  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒�̂�∑ 𝑒𝑖
2ℎ

𝑖=1 .                               (5)  

 
LMS and LTS both achieve 50% BP, when h is close to 𝑛 2⁄ . For 

LMS the parameters are solved by non-linear minimization, 
therefore an exact solution cannot be obtained. LMS is 
computationally intensive with low convergence rate. We adapt 
LTS in our algorithm, because LTS is much faster, 
asymptotically normal, and it has better statistical efficiency (cf., 
Rousseeuw and Leroy, 2003; Wang and Suter, 2003).  

 
2.1.3 Hyper Circle Fit: Circle fitting methods consist of mainly 
two groups: (i) geometric, and (ii) algebraic.  The first one 
minimizes the geometric distances, and the second minimizes 
algebraic functions. The geometric fits are computationally 
intensive, and the algebraic fits are faster because they are non-
iterative unlike geometric fits. We emphasize on faster methods 
as we are dealing with large PCD.  Algebraic fits minimize the 

standard function:  
 

                  ℱ = ∑[𝐴(𝑥2 + 𝑦2)+ 𝐵𝑥 + 𝐶𝑦 +𝐷]2,                 (6) 
 

where x, y are the points for circle fitting in 2D space; A, B, C 
and D are the circle parameters with 𝐴 ≠ 0. Eq. (6) can be 

rewritten as  
 

                          ℱ = ∑(𝑧𝑖 +𝐵𝑥𝑖 +𝐶𝑦𝑖 + 𝐷)
2,                      (7) 

 

where 𝐴 = 1 and 𝑧𝑖 = 𝑥𝑖
2 + 𝑦𝑖

2; 𝑖 = 1,2,… , 𝑛. This is a system 

of linear equations which can be solved w.r.t. B, C and D. If 𝑎 =

−𝐵 2𝐴⁄ , 𝑏 = −𝐶 2𝐴⁄  and 𝑟 = √𝐵2 + 𝐶2 − 4𝐴𝐷 2𝐴⁄ , then the 
algebraic parameters can be changed to the geometric 
parameters: centre (a, b) and radius r for the circle that minimizes 
sum of the squared residuals  

           ∑ 𝑒𝑖
2 =𝑛

𝑖=1 ∑ [√(𝑥𝑖 − 𝑎)2 + (𝑦𝑖 − 𝑏)2 − 𝑟]
2𝑛

𝑖=1 ,          (8) 

 

where 𝑒𝑖 is the i-th residual. Based on different parameter 

constraints, many algebraic methods have been developed to 
solve Eq. (7). One of the most efficient is developed by Al-
Sharadqah and Chernov (2009), called ‘Hyper’ that minimizes 

Eq. (7) w.r.t. 𝑨𝑇NH𝑨 = 1, where 𝑨 = (𝐴, 𝐵,𝐶, 𝐷) and NH =
2NT −NP, where NT and NP are the constraints 4𝐴2𝑧̅ + 4𝐴𝐵�̅� +
4𝐴𝐶𝑦 + 𝐵2 +𝐶2 = 1 and 𝐵2 +𝐶2− 4𝐴𝐷 = 1, respectively. 

The authors (Al-Sharadqah and Chernov, 2009) made 
comparisons with many of the algebraic fits, and pointed out that 
their fit outperforms other algebraic fits with less error. We 
adapted the Hyper method because, among other benefits, this 

method produces results that are invariant under rotation and 
translation (cf., Al-Sharadqah and Chernov, 2009).  
 
2.2 Algorithm Implementation  

The cylinder fitting framework proposed in this section 

incorporates RPCA to estimate robust PCs that find cylinder 
position and direction more accurately. 3D cylinder points are 
projected onto the plane fixed by the two first PCs. Ideally, the 
projected points outline a circle. To estimate the radius of the 
cylinder we fit a circle to these projected 2D points. We want to 
use an efficient robust circle fitting method, because the 
projected points in practice may only be approximately circular 
and may contain outliers as we did not remove outliers using 

RPCA. Existing methods however are sensitive to outliers, that 
means they are statistically non-robust. For robust circle fitting 
we couple the LTS regression-principle with the Hyper circle 
fitting method. Using LTS regression, the new algorithm trims 
(𝑛 − ℎ) points having the largest sum of the squared residuals, 

and fits the circle with the most consistent h (ℎ ≥ 𝑛/2) points 

that  are most close  to the circular arc. To estimate the four 
following cylinder parameters: orientation (O), length (L), centre 
(C), and radius (R), we perform the following steps that together 
build the new algorithm.  
 

(i) Apply RPCA to the cylindrical 3D point cloud P, and find 
three robust PCs.  
(ii) As the first PC 𝑣2 corresponds to the highest variability of P, 

which is   the cylinder’s length (assuming that its length is larger 
than its width), we use the first PC to get the orientation of the 
fitted cylinder, i.e., 𝑂 = 𝑣2. Projection of the cylinder points onto 

the first PC is the one dimensional representation of the cylinder.   
(iii) The length of the cylinder is calculated as the distance 
between the maximum and minimum values of the projected 
inlier points onto the first PC. It is defined as  
 

                     𝐿 = 𝑚𝑎𝑥𝑖(𝑝𝑖
𝑇𝜈2) −𝑚𝑖𝑛𝑖(𝑝𝑖

𝑇𝜈2).                       (9) 

 

(iv) The second and third PCs form an orthogonal basis to 
generate a plane. Project the 3D cylinder points 𝑝𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) ∈ 𝑃 

onto the plane defined by these two PCs to produce 2D circular 
points 𝑞𝑖(𝑥𝑖 , 𝑦𝑖) ∈ 𝑄 that represent the circular arc for the 

cylinder ends of the cylinder with equal radii. The  i-th 2D point  
𝑞𝑖(𝑥𝑖 , 𝑦𝑖) is defined as 

 

                      𝑞𝑖(𝑥𝑖 , 𝑦𝑖) = (𝑣𝑜 𝑣1)
𝑇(𝑝𝑖 − �̅�).                         (10) 

 
The 𝑄 is in general not free from outliers as it contains all the 

projected points from 𝑃. We use the Hyper method for circle 

fitting, but, it is as demonstrated in Fig. 2(b), the Hyper method 
does not tolerate outlier effects, even in case of full circle data. 
To reduce outlier effects on circle fitting, we accommodate the 
LTS regression principle, i.e., consider the majority h (ℎ > 𝑛/2) 
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of points that have ordered minimum squared residuals according 
to the Hyper method. We fix ℎ = ⌈𝑛/2⌉, which allows us to 

achieve circle parameters with a high BP of around 50%. To get 
the best h subset (points that are closest to the circle arc) of 
points, we iterate the following Steps (a–c) a number of times 𝐼𝑛, 

which is calculated by the Monte Carlo Probabilistic approach 
(cf., Fischler and Bolles, 1981). 𝐼𝑛 depends on the probability 𝑝𝑟 
of getting at least one outlier-free minimal subset of ℎ0 points 

from data contaminated with an 𝜖 portion (assume 50% in our 

algorithm) of outliers. 𝑝𝑟 and 𝐼𝑛 are related as 

 

                               𝐼𝑛 =
log (1−𝑝𝑟)

log (1−(1−𝜖)ℎ0)
.                                 (11) 

 
A minimal subset for circle fitting consists of three points, and 
we fix a large probability 𝑝𝑟 = 0.999 to get accurate results.   

(a) Fit a circle from a minimal ℎ0-subset, calculate its centre 

(𝑎0 , 𝑏0), radius 𝑟0 and squared residuals 𝑒𝑖
2 as defined in Eq. (8).  

(b) Sort the squared residuals; pick the h points having 
minimum squared residuals. 
(c) Fit a circle with the h points from Step (b); calculate and 

sort the squared residuals in increasing order, and sum the 
squared residuals for the first h sorted squared residuals.  
Repeat the process 𝐼𝑛 times, and chose the h-subset for which the 

sum (for the h sorted squared residuals) in Step (c) is minimal. 
Fit a circle to the final h subset, and estimate the circle 
parameters. The estimated circle centre and radius are the 
required centre C and radius R for the cylinder. Hence, we create 
the robust fitted cylinder with parameters: O, L, C, and R.  
 

 

 
 

Figure 2. Influence of clustered outliers on circle fitting; (a) 
data without outliers, (b) data with outliers (red points) 

 
 

3. EXPERIMENTS AND EVALUATION  

The proposed cylinder fitting algorithm is demonstrated and 
evaluated on several artificial and real point clouds. We evaluate 
the performance of the new algorithm in terms of data 
completeness, robustness, consistency, and size of the cylinder’s 
radius, and compare results with three existing methods: (i) LS 

method, (ii) a PCA based method (Lalonde et al., 2006), in the 
following referred to as Lalonde, and (c) RANSAC.   
 
3.1 Measures of Evaluation 

To evaluate the parameters C, R, L, and O of the fitted cylinder; 
we calculate the Average Distance between the real cylinder 

centres and the fitted cylinder centres AD(�̂�), the estimated 

Average radius A(�̂�), the Average length A(�̂�), and the Average 

bias orientation 𝐴(𝜃)  for a number of samples. These measures 
are defined as  

                                

AD(�̂�)=
1

𝑚
∑ |𝐶𝑖−�̂�𝑖|,
𝑚
𝑖

A(�̂�)=
1

𝑚
∑ (�̂�𝑖)
𝑚
𝑖 ,   

A(�̂�)=
1

𝑚
∑ (�̂�𝑖)
𝑚
𝑖  and

𝐴(𝜃) =
1

𝑚
∑ (𝜃𝑖)
𝑚
𝑖 }

 
 

 
 

,                                 (12) 

 

where �̂�𝑖, �̂�𝑖, �̂�𝑖 and 𝜃𝑖 are the estimates of centre, radius, length 

and bias orientation 𝜃 [see Fig. 3] for the i-th sample, 

respectively, and m is the number of samples (datasets). Bias 
orientation is defined as the angular deviation between the axis 
of the real and the fitted cylinder, i.e., 
 

                               𝜃 = arccos |𝜈2
𝑇�̂�2|,                                  (13) 

 

where 𝜈2 and �̂�2 are the real and the estimated axes of the 

cylinder, respectively. We give priority on the accuracy of 

AD(�̂�) and A(𝜃) above A(�̂�) and A(�̂�) since the fitted cylinder 

should be in the right position and fair to the majority of points. 
It may be the case that the estimated radius and length are equal 
to the real radius and length respectively, but that the cylinder is 
fitted somewhere else, because the presence of similar multiple 
shapes is common in PCD.  
 

 
 

Figure 3. Illustration of bias orientation 𝜃, i.e., angle between 

real cylinder (grey) axis and fitted cylinder (cyan) axis. Black 
dots are cylinder points and red points are outliers 

 
3.2 Artificial Datasets 

We simulate datasets of a straight cylinder with circular ends of 
1000 points, radius R=1meter (m) and length L=10m with axes’ 
end points (0.0, 0.0, 0.0) and (0.0, 0.0, 10.0). Variations among 
the points are created by adding random noise of Standard 
Deviation (StD) 0.15 in all (x, y and z) directions.  As said, the 
main focus of this paper is cylinder fitting for incomplete data in 

the presence of clustered outliers. Clustered outliers are 
generated with mean (-3.0, 0.0, 9.0) and StD (0.3, 0.3, 1.5).  For 
example, a simulated half cylinder with 10% clustered outliers 
(red points) is shown in Fig. 3. Although different positions of 
the outliers w.r.t. the partial cylinder data may result in different 
outcomes of the methods, it is reasonable that we have to 
consider outliers somewhere else apart from the cylinder points. 

 

3.2.1 Fitting Cylinders to Complete and Incomplete Data: We 
check the performance of the cylinder fitting algorithms for 
incomplete as well as complete data in the presence of outliers. 
We simulate cylinders including 10% clustered outliers as 
described above and shown in Fig. 3. To get statistically 
representative results; we generate 1000 datasets of full and 
partial cylinders. As partial cylinders we consider cylinders 
where only half or one quarter of the cylinder is sampled by 

points in the circular direction. We fit cylinders and calculate the 

performance measures: AD(�̂�), A(�̂�), A(�̂�) and A(𝜃) by LS, 
Lalonde, RANSAC, and RLTS methods. Results, in Table 1, 
show that LS and Lalonde perform almost similar for full data. 
Although most of the cases LS is better than Lalonde for   
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Methods 
Full cylinder Half cylinder Quarter cylinder 

AD(�̂�) A(�̂�) A(�̂�) A(𝜃) AD(�̂�) A(�̂�) A(�̂�) A(𝜃) AD(�̂�) A(�̂�) A(�̂�) A(𝜃) 

LS              0.55 1.17 13.20 8.78 1.85 1.34 12.79 1.16 3.76 2.87 12.73 1.48 

Lalonde    0.75 1.31 13.16 7.64 1.41 1.10 12.98 5.64 4.50 3.63 12.99 5.87 

RANSAC   0.40 1.01 12.80 0.96 0.42 1.00 12.80 0.98 0.69 1.19 12.77 1.40 

RLTS         0.08 1.00 10.06 0.25 0.09 1.00 10.07 0.31 0.12 1.02 10.07 0.36 

Table 1. Evaluation of estimated parameters for full, half and quarter cylinders 

[AD(�̂�) = Average Distance between the real cylinder centres and the fitted cylinder centres, A(�̂�) = estimated Average radius, 
A(�̂�) = estimated Average length, and 𝐴(𝜃) = Average bias orientation] 

 
incomplete data, both of them are not acceptable for half and 
quarter cylinders. They produce remarkably larger radii and 

lengths than the real cylinder. For quarter cylinders, Lalonde fits 
a cylinder of on average 3.63 times larger radius than the real 
radius of 1m. Moreover, the fitted cylinder is 4.50m away from 
the real cylinder with bias orientation 5.87o. RANSAC performs 
comparatively better than LS and Lalonde, but significantly 
worse than the proposed method. For all the cases, RLTS 
produces cylinders with almost the same radii and lengths for all 

simulated cylinders while the error values of AD(�̂�) and A(𝜃) 
are very low.     

 
3.2.2 Robustness in the Presence of Outliers: To see the 
robustness of the proposed approach, i.e., influence of the 
presence of outliers in cylinder fitting, we create 1000 quarter 

cylinder datasets with different percentages: 1%, 5%, 10%, 15%, 
20% and 25%, of clustered outliers. We calculate performance 
measures as for the previous experiments for all the cases of 
outlier variations. Results are portrayed on the line diagrams in 

Fig. 4(a), (b), (c) and (d) for outlier percentages versus AD(�̂�), 
A(�̂�), A(�̂�) and  A(𝜃), respectively. From the construction of the 
cylinder datasets and the definition of the performance measures 

it follows that the line diagrams for AD(�̂�), A(�̂�), A(�̂�) and  A(𝜃) 
should be along virtual lines of 0, 1, 10 and 0, respectively. Fig. 

4 shows that none of the existing methods follow the lines 
accordingly, when the outlier percentages increase. However, 
RLTS produces lines that are most close to 0, 1, 10 and 0 lines, 
almost independent of the percentage of outliers. That means that 
the proposed method is indeed not influenced by outliers.  
 

 

Figure 4. Influence of different percentages (1%,5%,10%,15%, 
20% and 25%) of clustered outliers on cylinder fitting methods; 

line diagrams for outlier percentages versus performance 

measures (a) AD(�̂�), (b) A(�̂�), (c) A(�̂�), and (d) A(𝜃) 

In Fig. 5, box plots of �̂�, �̂�, �̂� and  θ are drawn for different 

methods to evaluate the robustness of the estimates based on 
1000 values from 1000 samples with 10% clustered outliers. 
Boxes for the existing methods are larger than RLTS, which 
means their estimates are not as regular as RLTS. Moreover, 
existing methods have many outlying estimates (red ‘+’ signs 
over and/or below the boxes). RANSAC has the maximum 

number of outlying results, whereas the new algorithm produces 
most reliable and robust results with very few outlying cases.  

 

 
 

Figure 5. Robustness of the estimates from different cylinder 

fitting methods; Box plots for performance measures (a) �̂�, (b) 

�̂�, (c) �̂�, and (d) 𝜃 
 

 

3.2.3 Consistency of the Estimates: An estimator is said to be 
statistically consistent when with increasing sample size the 
estimates are closer to the real parameters. To check the 
consistency, we generate quarter cylinder datasets with 
increasing number of points n =100, 1000 and 10000 including 

10% outliers. We fit cylinders using all methods and calculate 
the performance measures accordingly, results are in Table 2. For 
the existing methods, we do not see acceptable improvements. 
Even in some cases results are worse when the sample size is 
larger, for example LS, Lalonde and RANSAC fit cylinders with 

average lengths A(�̂�) =11.16m, 11.42m and 11.22m for n =100, 

and  A(�̂�) = 13.87m, 14.14m and 13.92m for n =10000, 

respectively. For the proposed method all estimates AD(�̂�), 
A(�̂�), A(�̂�), and A(𝜃) are more accurate with  increasing values 
of n =100, 1000 and 10000, while the error value A(𝜃) = 0.82, 

0.24 and 0.09 is decreasing with increasing n =100, 1000 and 
10000 respectively.  
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3.2.4 Cylinders with Different Radii: We simulate cylinders of 
different radii. Although we change the length of the radius, we 
simulate cylinders with a fixed number (100) of points. 
Therefore, the variations among the cylinders’ radii can also be 
considered as the point density variations, when the point density 

is the number of points in a specific area that depends on the 
radius of a cylinder. To examine the effect of point density 
variations and the different sizes of radius on the estimates from 
different methods, we create datasets of different radii i.e., of 
different densities. 1000 quarter cylinder datasets including 10% 
clustered outliers are simulated for each of the radii 0.05m, 
0.10m and 0.50m and with cylinder length 10m. The considered 
algorithms are executed on all datasets, and based on the results, 

the performance measures AD(�̂�), A(�̂�), A(�̂�) and A(𝜃) are 
calculated for all sizes of radii. Table 3 contains the results. The 
table shows that LS produces the worst results for 𝑅 = 0.05 in 

terms of AD(�̂�), A(�̂�) and A(𝜃), while Lalonde produces the 

worst results for 𝑅 = 0.10 and 0.50 in terms of  AD(�̂�), A(�̂�) 
and A(�̂�). RANSAC as a robust approach performs remarkably 
better than LS and Lalonde, but still is not acceptable for reliable 

cylinder fitting. Results show that LS, Lalonde and RANSAC do 
better with a radius of 50cm than other sizes, in other words they 
are not good for smaller radius. For example, RANSAC produces 

AD(�̂�)=119.21 and AD(�̂�)=1.19 for R=5cm and 50cm, 
respectively. The proposed algorithm produces almost the same 

results with the change of radius. That means, RLTS have 
insignificant influence on changes of radius and point density 
variations.  
 
3.3 Real Point Cloud Datasets 

This section evaluates the proposed algorithm, and compares it 
with existing methods through assessment of two real point cloud 
datasets.  
 

3.3.1 Signpost Data: Fig. 6(a) shows a road side signpost point 
cloud, collected by a survey company in Australia using vehicle 
borne MLS system at typical traffic speed.  We call it signpost 
data, which is the same data as shown in Fig. 1. To fit a cylinder, 
we slice a rectangular portion in Fig. 6(a), shown in Fig. 6(b), 
which contains 231 points. A top view of Fig. 6(b) is shown in 
Fig. 6 (c). We see that approximately half of the cylinder is 
scanned. Some points indicated by the red ellipses in Fig. 6 (c) 

are clearly outliers, and do not match with the 

majority of the circular points. We fit cylinders using LS, 
Lalonde, RANSAC and RLTS in Fig. 6 (e–h) respectively. 
Calculated radii and lengths are in Table 4. According to the PCA 
based approach, we get 2D projected circular points in Fig. 6(d), 
and the circles for Lalonde and RLTS as they use PCA. Table 4 

and Fig. 6(d) show that Lalonde makes a larger circle with radius 
10.1cm that considers many outlying points. On the other hand 
RLTS draws a circle with radius 5.8cm that follows the majority 
of the points, and successfully avoids outliers. It is closer to 
circular arc and match with the reality. Fig. 6 (g) shows that 
RANSAC does comparatively better than LS and Lalonde, still 
it fits a larger cylinder   radius and length of 6.9cm and 2.884m 
respectively. Fig. 6 (d,h) explore that fits from the proposed 

algorithm are superior to any other existing method as most of 
the outlying points are ignored, and the outliers stay outside the 
fitted cylinder, while for the existing methods most of the outliers 
are accommodated by the fitted cylinders in Figs. 6(e–g). Fig. 
6(i), which shows all fitted cylinders in one figure, clearly 
expresses that existing methods overestimate radius and length, 
mainly because the existing methods are negatively affected by 
outliers, or were unable to deal properly with incomplete 

sampling of the cylinder boundary.  
 
3.3.2 Bridge-Pole Data: For this experiment we took a TLS scan 
sampling a high-way passing over a bridge, and picked the black 
part (a pole) in Fig. 7(a) to further demonstrate the cylinder 
fitting algorithms. Fig. 7(b), the black part of the bridge, which 
is cylindrical, has 4,282 points and includes some structures (part 
of cables) around the pole considered as outliers. We name the 

data bridge-pole. We perform all the considered cylinder fitting 
methods. To get the cylinder radius, as we are using a PCA based 
approach, we project the data onto a plane spanned by two PCs, 
and fit circles to the resulting 2D data. Results for Lalonde and 
RLTS are in Fig. 7(c). The circle obtained by Lalonde is much 
bigger than the RLTS circle. For better understanding, we extract 
only the RLTS circle in Fig. 7(d), which shows that RPCA based 
RLTS fits accurately to the 2D circular points and rightly avoids 
the points from the surrounding outlying structures. On the other 

hand, PCA based Lalonde fits a circle that is influenced by the 
outliers and therefore overestimates the cylinder parameters. We 
also fit cylinders using the LS and RANSAC methods, resulting 
fitted cylinders are shown in Figs. 7(e) and (g) respectively. LS 
fits a cylinder with a comparatively smaller radius (15.32m) than 

 

Methods 
n=100 n=1,000 n=10,000 

AD(�̂�) A(�̂�) A(�̂�) A(𝜃) AD(�̂�) A(�̂�) A(�̂�) A(𝜃) AD(�̂�) A(�̂�) A(�̂�) A(𝜃) 

LS              3.88 2.98 11.16 2.60 3.77 2.88 12.67 1.52 3.74 2.85 13.87 1.37 

Lalonde    4.66 3.77 11.42 5.90 4.52 3.65 12.93 5.89 4.49 3.61 14.14 5.84 

RANSAC   0.85 1.27 11.22 1.63 0.73 1.21 12.71 1.37 0.59 1.14 13.92 1.26 

RLTS         0.37 1.11 9.80 0.82 0.09 1.01 10.06 0.24 0.03 1.00 10.02 0.09 

Table 2. Evaluation of estimated parameters for cylinders of different number of points 

[AD(�̂�) = Average Distance between the real cylinder centres and the fitted cylinder centres, A(�̂�) = estimated Average radius, 
A(�̂�) = estimated Average length, and 𝐴(𝜃) = Average bias orientation] 
 

Methods 
R = 0.05 R = 0.10 R = 0.50 

AD(�̂�) A(�̂�) A(�̂�) A(𝜃) AD(�̂�) A(�̂�) A(�̂�) A(𝜃) AD(�̂�) A(�̂�) A(�̂�) A(𝜃) 

LS              624.16 553.22 12.16 14.78 592.08 529.96 11.96 16.01 3.18 2.39 12.16 9.36 
Lalonde    390.46 390.45 13.11 7.19 630.54 630.52 13.09 7.08 7.68 7.28 13.00 6.46 

RANSAC   119.21 2.20 12.83 2.19 6.06 3.71 12.76 2.92 1.19 1.01 12.75 1.55 
RLTS         0.09 0.06 10.05 0.04 0.14 0.09 10.08 0.04 0.10 0.51 10.06 0.14 

Table 3. Evaluation of estimated parameters for cylinders with different radii (in metre) 

[AD(�̂�) = Average Distance between the real cylinder centres and the fitted cylinder centres, A(�̂�) = estimated Average radius, 
A(�̂�) = estimated Average length, and 𝐴(𝜃) = Average bias orientation] 
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Figure 6. Cylinder fitting for signpost data; (a) signpost data, 
(b) 3D PCD for cylinder fitting, (c) top view of the cylinder 

data, (d) fitted circles for Lalonde and RLTS, (e) fitted cylinder 
for LS with real points (black), (f) fitted cylinder for Lalonde, 

(g) fitted cylinder for RANSAC, (h) fitted cylinder for RLTS, 
and (i) all the fitted cylinders from different methods in a same 

figure 
 

Methods Radius Length 

LS             0.079 2.885 

Lalonde   0.101 2.885 
RANSAC  0.069 2.884 
RLTS         0.058 2.865 

Table 4.  Estimated radii (m) and lengths (m) of the fitted 
cylinders from different methods for signpost data 

 
Lalonde (18.72m) but with a remarkably larger radius than 
RANSAC (0.49m) and RLTS (0.45m). If we consider the 

estimated lengths for the fitted cylinders, results in Table 5 show 
that all the existing methods overestimate the cylinder’s length. 
Fig.7 (g) indicates that RANSAC is influenced by outliers as the 
fitted cylinder (red) is masked from sight from the real points of 
the data (black). It also shows that the length of the cylinder is 
too high as more of the cable (steel wire) points are included in 
the data. That means, RANSAC is influenced by outliers, as it 
considers outliers as inliers which is the well-known masking 

effect. In contrast, the proposed approach fits cylinder in Fig. 
7(h) more accurately than any other existing methods resulting 
in a length of 12.65m, as the fitted cylinder fits all the inliers 
properly.  
 

 
 

Figure 7. Cylinder fitting for bridge-pole data; (a) bridge-pole 
data in a scene, (b) bridge-pole for cylinder fitting, (c) fitted 

circles for Lalonde (bigger one) and RLTS onto the 2D RPCA 
based plane, (d) 2D points and fitted circle by RLTS, (e) fitted 

cylinder (olive) for the LS with real points (black), (f) fitted 
cylinder (violet) for Lalonde, (g) fitted cylinder for RANSAC 

(pink), and (h) fitted cylinder (feroza) for RLTS 
 

Methods Radius Length 

LS             15.32 13.39 

Lalonde   18.72 13.32 
RANSAC  0.49 13.27 
RLTS         0.45 12.65 

Table 5.  Estimated radii (m) and lengths (m) of the fitted 

cylinders from different methods for bridge-pole data 
 

4. CONCLUSIONS 

In this paper, a robust statistical approach for cylinder fitting is 
proposed for 3D PCD. The new method successfully fits 
cylinders, in case of cylinder data contaminated by outliers, for 
only partially scanned cylinders as well as for full data. Several 
experiments using artificial and real laser scanning data exhibit 
that the new approach is robust towards a high percentage of 
clustered outliers and noise. It is statistically consistent and 
robust when the size of the cylinder’s radius and point density is 
varying. It produces a very small amount of errors when the 

position of the cylinder and orientation is changed. For example, 
for 1000 simulated quarter cylinders with 10% clustered outliers, 
Lalonde (a PCA based approach) fits cylinders with on average 
orientation error 𝜃 of 5.87o, whereas the new RPCA based 

algorithm fits cylinder with on average orientation error of only 
0.36o. In terms of radius Lalonde and RLTS fit cylinders on 
average 3.63 and 1.02 times bigger, respectively, than the real 
radius of 1m. Among the PCA based methods, the method of 
Lalonde over fits because it is using non-robust PCA and 

therefore partial incorrect PCs. The new algorithm has potentials 
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for many applications such as in street furniture management, 
forest inventory, structural health monitoring and machine tools 
quality control. Further study will consider data with more inlier 
variation, cylinders with different diameters at their ends, and 
large-scale data sampling complex scenes exhibiting multiple 

cylinders.  
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