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Abstract: In this paper a parameter estimation algorithm is developed to estimate uncertain parameters in 
two dimensional shallow water flow models. Since in practice the open boundary conditions of these 
models are usually not known accurately, the uncertainty of these boundary conditions has to be taken into 
account to prevent that boundary errors are interpreted by the estimation procedure as parameter fluctua- 
tions. Therefore the open boundary conditions are embedded into a stochastic environment and a constant 
gain extended Kalman filter is employed to identify the state of the system. Defining a error functional that 
measures the differences between the filtered state of the system and the measurements, a quasi Newton 
method is employed to determine the minimum of this functional. To reduce the computational burden, the 
gradient of the criterium that is required using the quasi Newton method is determined by solving the 
adjoint system. 
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1 Introduetion 

In trying to understand processes that are associated with water movements  one can make 
use of  a number  of  techniques. The process can be observed or it can be simulated 
numerically.  The applications can vary f rom a study the spread of  pollutants in shallow 
waters to the forecast of  storm surges in coastal areas. Before a numerical  model  can be 
used as an instrument to predict processes accurately, it has to be ascertained that the 
model  is reliable. This can be performed by adjusting the model  such that the model  out- 
come represents a series of  observations as good as possible. The  adjustment of  the 
model  implies that some quantities appearing in the formal equations describing the sys- 
tem dynamics  must  be specified. With respect to these quantities one may think o f  the 
geometry,  o f  boundary conditions, o f  the location o f  the pollution sources and their inten- 
sity or  of  some empirical  parameters. Usually this is called the calibration of  the numeri- 
cal model.  In this paper we will  give no extensive treatment of  the total process of  
developing a model,  but we will  describe a procedure to perform the calibration automat- 
ically. Up till now there was no such procedure. This does not mean that, based on an 
extensive experience, the calibration could not be done accurately by hand. Moreover ,  it 
is not at forehand guaranteed that the calibration results of  a systematic procedure will be 
significantly better. However ,  calibrating a model  by hand is very t ime consuming. 
Furthermore, using an automatic calibration procedure models can also be developed by 
less  experienced users and finally the results of  different calibration sessions can be com- 
pared. This is important since the available measurement  infor~nation is usually too small 
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Figure 1. An amplitude-phase portrait of the M 2 and M4 tidal constituent 

to determine a unique set of values for all the quantities that are not exactly known. One 
of the major difficulties in tuning a model by hand is the lack of  insight into the complex 
behaviour of the model. This is best illustrated by a short description of how the calibra- 
tion is often accomplished (Langerak, personal communication). To a large extent, the 
results of  a tidal model can be expressed in terms of harmonic constants. The calibration 
of a model can therefore be performed by trying to generate a model solution in the data 
observation points whose harmonic constants are equal to the constants of the observed 
data in this point: for each important tidal constituent the amplitude and phase must be 
the same (or the difference has to be minimized). This is graphically illustrated by a 
phase-amplitude portrait, see figure 1. Because of the non-linearity of the dynamics, the 
different tidal constituents can not be treated separately. Moreover this interaction makes 
it hard to find a unique set of parameter values that globally minimize the difference 
between the observed data set and the model outcome. 

We will describe in this paper a parameter estimation procedure to determine a 
number of  system parameters in the presence of uncertain boundary conditions. In case 
the system dynamics are described by the 1-D shallow water equations, in the literature 
some examples are described concerning the estimation of system parameters. Budgell 
(1981) estimates friction coefficients in channel branches off-line by maximizing a log 
likelihood function in combination with state estimation using a Kalman filter. Chao-lin 
Chiu (1978) estimates bottom friction coefficients in steady state channel flow on-line 
using an extended Kalman filter. The last application to be mentioned here is a method 
where the parameters are simultaneously estimated with the state in case of unsteady 
flow in branched estuaries using extended Kalman filtering (ten Brummelhuis et al., 
1988; Heemink and ten Brummelhuis, 1989; Heemink, 1988). For the case the dynamics 
are described by the 2-D shallow water equations, the techniques just described are not 
applicable because of computational limitations (both computational time and memory 
requirements). Therefore we choose to develop an iterative off-line parameter estimation 
procedure. As a consequence of the fact that the procedure will also be applied in cases 
where the open boundary conditions are uncertain, we combine the parameter estimation 
with state estimation. 

At the end of this introduction we give an overview of the contents of this paper. In 
section 2 the shallow water equations are formulated in a stochastic way to account for 
uncertainties in the open boundary conditions. The numerical representation of this sys- 
tem is treated in section 3. The total estimation procedure is described in section 4 (the 
state estimation) and 5 (the parameter estimation). After the presentation of some theoret- 
ical aspects of  the method, results are commented in the sections 6 and 7, where a distinc- 
tion is made between the cases with and without uncertainties in the prescription of the 
open boundary conditions. Finally, section 8 contains some conclusions. 
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2 S h a l l o w  w a t e r  e q u a t i o n s  

-The two-dimensional non-linear shallow water equations to describe the shallow water 
flow in coastal waters are (Dronkers, 1964): 

3u Ou 3u Oh u xx 1 0 P a  
- -  - -  - -  - -  3 r + U O x + V O y  + g o x - f V + ) f f u ' v ) D + h  D+h Pw 3x (1) 

3v 3v 3v Oh v Xy 1 3Pa 
3---t + U-~x + v-~y + g--~y + f u  + )~(u, v) D+h D+h p~, ay (2) 

Oh + ~[u(D+h)] + O[v(D+h)] = 0  (3) 
Ot Ox by 

where: 

h 

U~V 

D 

f 

~x,~y 

Pw 

Pa 

g 

= water-level 

= water velocities in respectively the x and y-direction 

= depth of the water 

= Coriolis parameter 

= bottom friction coefficient 

= Y V2cos~g, 3' VZsin ~ = wind stress in respectively the x and y-direction where: Y 
= wind friction coefficient, V = wind speed, V = wind direction 

= density of water 

= atmospheric pressure 

= acceleration of gravity 

In case the water is rather deep, the non-linearities in the equations (1)-(3) are small and 
it is possible to approximate these equations by the linear ones: 

3u Oh u "Cx 1 OPa 
3"-'t" + g-~x - f v  + L'D D Pw bx (4) 

3v Oh v ~y 1 OPa 
- -  - -  3 t + g o y  + f u + ~ D  - D Pw 3y 

(5) 

Oh 3(uD) . 3(vD_______)_)) = 0 (6) 
O---t + ~ + Oy 

The wave motion is completely described by the non-linear equations (1)-(3) or the 
linear ones (4)-(6) provided that initial values and the dosed  and open boundary condi- 
tions are g~ven. At a closed boundary the velocity normal to the boundary is zero: 

v• = 0 (7) 

There is a considerable uncertainty associated with open boundary conditions. In this 
paper we represent this uncertainty in a stochastic sense, and describe it formally by: 

h = f ( t )  + H ; dH = -~l-ldt + ~adW (8-9) 

Here we note that since cb is constant the stochastic differential equations (8) and (9) are 

the same in the Itd and the Stratonowitz sense and can be manipulated by formal rules 
(Jazwinski, 1970). The statistics of the Brownian motion process W are assumed to be: 
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E{dW(x, t)} = 0 ; E{dW(x b t)dW(x 2, t)} = e-81x~-x21dt (10-1 1) 

As a result the statistics of the coloured noise process H are: 

E{H(x , t )}=O ; E{H(xa, tl)H(x2, t2)}= [o2e-Ctlt2-tll-~lxt-xzl]/2o~ (12-13) 

The colourdness of the stochastic process H is argued by several reasons: One of the 
common ways to describe open boundary conditions like (8)-(9) is to use measurements 
at some points at the boundary and to interpolate them in between. As a result errors are 
introduced. Because we are dealing with a tidal motion problem, the water levels can be 
expressed by a limited number of harmonic constituents which determine the tide to a 
large extent, and a great number of additional harmonic components which are of minor 
importance. Consequently, in the spectrum of the errors at the open boundary condition 
some (low frequent) harmonic constituents will be dominant while the remaining part can 
be approximated by a white noise process. The second form of errors to be introduced at 
the open boundaries originate outside the considered domain when a severe storm creates 
a surge which propagates across the open boundary into the model and which disturbes 
the constituents of very low frequencies. 

In the non-linear case it has to be assumed, to ensure the well posedness of the prob- 
lem, that at inflow boundaries the velocity parallel to the open boundary is zero: 

vii = 0 (14) 

3 Numerical  approximat ion  

The shallow water equations are approximated by using an Alternating Direction Implicit 
(ADI) method. The numerical scheme is developed by Stelling (1983) and is based on the 
well-known work of Leendertse (1967). It is unconditionally stable and lacks artificial 
viscosity. Defining a space-staggered grid G 1 (see figure 2), the finite difference equa- 

tions to approximate the homogeneous part of the linear equations are: 

step 1: 

explicit: 

1 Iv 1 _  ~. g +u k +u k •+T g At /h k - -  hkm,n) + V/MJI.Um-l,n+l m-l,n m+l,n+l Vm,n+l = m,n+l ,- g ' ~ y k  m,n+l 
k 

k ] At~m,n+l 
+ Um+l n) / 1 + 

' Dm_l,n+ 1 + Dm+l,n+ 1 

implicit: 

[ ~+• k+• ] 
l 

k+l ^ .  k+l k+l 1 1 k+-- k+-- 
(ttm+2n _ .km+l n) + g~Av (hm+2n-hm] )-"~AOC(Vm,n2+l+Vm+21,n+l 

, , y ' , 

(15) 

(16) 
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Figure 2. The space-staggered grid G1 

Figure 3. The European continental shelf model 

k+ 1 

1 1 ~m+l nAtUm+2n k+-- k+-- 
+Vm+?,n_l +Vm+2n_l ) + ' , 

Dm+l,n+l+Dm+l,n-1 

step 2: 

explicit: 

= 0 (17) 

1 1 1 [ k+-- A. k+-- k+-- , k+! k+i k+i 
k+l / 2 za~ , ,  2 , 2 ,  

1,1re+l, n = -8-m~e(Vm+l,n-1 +Vra,n-1 +Vm+l,n+l [Um+l,n_g.~y Lnm+l,n_nm.n ) _  " 2 2 2 

+vm,~l) / 1 + ' (18) 
Dm+l,n+l+Dm+l,n-1 

implicit: 

k + l  At  k + i  k+•  ] 
�9 .-rn,n---m,n(hk+l h Z .,'1 + ~ iDrn+l,n+l+Om+l,n_l)Um+?,n - (Om_l,n+l+Dm_l,n 1)Um_12,n I 

+ --4Ay Dm+l'n+l+Om-l'n+l)Vm'n+l. - (Dm+l,n-l+Dm-l,n-1) V . . . .  ] = 0 (19) 

k+! 
- k+l --12 2 _ At rhk+ 1 hk+l \ 1 . . . .  k+l �9 k+l �9 k+l 
LYre,n+1 re,n+1 ) + g ' ~ y  L m,n+l- m,n ) + TzxrJ-tUm-l,n+Um-l,n+l +Um+l,n+l 

"~ A~ k+l 
q_ LI k+l "t + ~'m'n+l~tVm'n+l 

m+l,n+l ] -- 0 (20) 
Om-l,n+ 1 + Om+l,n+ 1 

For the details such as the numerical boundary treatment and the non-linear case we refer 
to Stelling (1983). 

The stochastic differential equation (9) is approximated using the Euler scheme: 
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Figure 4. The estimated coefficients ki. In the d ~ i c a l  equations of this model the bottom friction coef- 
ficient is represented by the Chezy formula: (g~u2+vZ)/k~.,~ 
Figure 5. The r.m.s, in the subdomains ~21 and f24 

H k+l = ( 1 - ( ~ t ) H  k + Ob(Wkm+l-Wkm) (21) 

The meteorological input processes "c x Jy and Pa are available on a grid G 2. Since these 

processes are less spatially variable than the underlying water wave process, G 2 is much 

coarser than the grid G 1 and therefore, interpolation is necessary to obtain these quanti- 

ties in the grid points of G 1. 

4 Kalman filtering 

A state-space representation of the linear model is obtained by defining an n-vector  X k 
that contains the water level and velocities in all the grid points of G 1. The finite differ- 

ence scheme can now be rewritten as a deterministic system: 

k+ L Ruk+2 k+i  
AX  2 = BX  k + ; CX k+l = D X  2 + Ruk+l (22-23) 

Here A, B, C and D are coefficient matrices representing the ADI scheme and u k is the 
meteorological input given on the grid G2. The matrix R represents a sequence o f  linear 

operations to interpolate the meteorological input at the grid points of G 1. Similarly, we 

define the q-vec tor  qk to contain the coloured noise processes introduced in the open 
boundary conditions.The stochastic dynamic model can now be described by: 

~_k+l] ] E~t ~klq-[OAo-1g]uk+l [Rl/Ak+lq-W~k] (24) 

Here E is a coefficient matrix representing the open boundary treatment and W~ contains 

the increments of the Brownian motion processes introduced in the discretised open 
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boundary conditions. The covariance matrix of  W~ can be derived easily from equations 
(10)-(11). Since the model is of the hyperbolic type, the effect of  the initial condition, 
which is often poorly known, vanishes after a limited period of time. Equation (24) can 
be rewritten as: 

A~yk+l = B-yk + U-k+1 + wk+l (25) 

while Q is defined as covariance matrix of B 7k. 
In the non-linear case the stochastic system representation of the model becomes: 

A-y~+l = b-(yk, u~+l) + __Wk+l (26) 

Assuming that measurements of the water level are available at m grid points of G 1, the 
observation equation can be derived easily: 

Z k = MY k + V k (27) 

where the m-vector Z k contains the measurements taken at time kAt and V k is the white 
measurement noise with covariance matrix S. V k and Wk are assumed to be mutually 
independent. In practice, we may assume that the measu--~ement errors at different loca- 
tions are mutually independent and have equal variance, so S is diagonal with elements 
02 . If necessary, equation (27) can be modified to account for the fact that not all meas- 
urements are available at grid points. 

It is desired to combine the measurements taken from the actual system and modeled 
by relation (27) with the information provided by the system model (25) or (26) to obtain 
an estimate of  the system state yk. Let us first consider the linear case. If Y(kll) is 
defined as the least squares estimate of the state yk using the measurements Z 1, Z 2 ..... Z l, 
l -< k, the recursive filter equations to obtain this quantity can be summerized as follows 
(Heemink, 1988): 

A'Y(k+ 1 Ik) = B_Y(k Ik) + d ~+1 (28) 

]~(k+Xlk+l)= ~(k+l Ik)+ K [_Z k+l- MY~(k+I ]k)] (29) 

where the steady state Kalman filter gain K can be determined by the Chandrasekhar- 
type equations to exploit the fact that in our case the dimension q of the system noise is 
very small compared to the dimension n of the state vector (Morf et al., 1974). 

Let us now consider the non-linear model (26). The linearized Kalman filter can in 
this case be summarized as follows: 

A'_Y(k+ 1 Ik) = _b(f(k Ik), _~,+1) (30) 

Y_(k+llk+l)=~(k+llk) + K k+l [zk+l-  M_Y(k+llk) J (31) 

Here the time-varying Kalman filter gain K k+~ is determined by linearizing bf about a 
reference trajectory and by using the filter equations for linear time-varying systems 
(Jazwinski, 1970). In our case the time-variations of K k+l are only caused by the non- 
linearities of b'. However, if the water is rather deep, these non-linearities are relatively ~ 
small and, consequently, the time-variations of K ~+1 are small too. Moreover, since deter- 
ministic boundary conditions usually provide a reasonable description of the tidal eleva- 
tion, the correction produced by the Kalman filter by means of equation (31) is small 
compared to the deterministic results. Therefore a relatively small error in K k+l hardly 
effects the estimates of the filter and we may expect that a constant gain extended Kal- 
man filter produces estimates that are nearly optimal (Safonov and Athans, 1978). This 
filter is based on the linearization of  b about an equilibrium stare'and, as a consequence, 
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in our case this filter is time-invariant: 

A~(k+l Ik) = b(_Y(k Ik), u &+t) (32) 

17(k+l Ik+ l )=  Ir Ik)+ K [Z k + ' -  M__~(k+l Ik)] (33) 

where the steady state Kalman filter gain K is determined by solving the filter equations 
that are based on the linear model (25). 

5 The estimation procedure 

By using the Kalman filter algorithm for the estimation of the states, the errors that are 
due to the uncertain open boundary conditions can be compensated. Because the effects 
of  unknown parameter values are not taken into account the filter estimate will still suffer 
from the errors. Therefore an additional parameter estimation procedure will be applied. 

In this paper we describe an off-line procedure to estimate the values of  the model 
parameters. The essence of the parameter estimation procedure is the iterative minimiza- 
tion of  a socalled error functional F(p), where p denotes the unknown parameters. F(p) is 
a-measure of  the difference betwee~ the mod~l output and the observed data. For' the 
measure we take: 

N2 N= 
F(p_) = y. ~{Zj  k -  (M~(klk,p)j} 2 (34) 

k=Nt j=l 

with: 
Z k 

M 

= measurement vector for t = t k 

= measurement matrix 

NI~/z = time indices, N 1 > 0 and N z < N 

Nm = the number of data observation points 

Within this procedure, it is assumed that the functional F(p) can be locally described by a 
quadratic expression of the form: 

r(p+5_) = + + (35) 

. with G(p) the Hessian. Based on equation (35) a new estimate o fp  can be found accord- 
ing to: - 

p '  = p  - G(p)-a.Vr(p) (36) 

by putting grF(p + 8) = O. 
It can be proved-that, if p is close enough to the real value p* and G (p*) is positive defin- 
ite, the algorithm will snow a second order convergence. The disadv~antages of this itera- 
tive Newton method can be found by denying the above mentioned conditions: If  G(p*) 
is not positive definite or the momentary estimate of p is not close to p*, the iteraffon 
process can diverge. For this reason a Quasi Newton method is usually exploited, in com- 
bination with a line-search. The inverse of the Hessian is recursively approximated by a 
symmetric positive definite matrix H(p). An iteration step (characterized by the index i) 
now consists of two stages (Fletcher, 1980): 
1. Find a search direction s(p i) =-H(Pi)'VF(Pi) 
2. Minimize F(p) along this-direction'~(pi): - 

minF(Pi -I--0~s(Pi)80) with 50 constan-t so that Pi+l = Pi + ~ 
a>O . . . . .  



201 

The difference between the various Quasi Newton methods is the way in which the 
matrix H(p) is recursively updated. In the literature a great number alternatives can be 
found. HeFe the Broyden, Fletcher, Glodfarb and Shanno (BFGS) formula is used. The 
update of H(p) is given by 

H(Pi+l)=H(Pi)+ [ TTH(Pi)2ti ] ~ T  [~TfH(Pi)+H(Pi)"[i~i T 
_ _ 1 +  ~T_yi j ~T_TI - [ ~ (37) 

with ~ =Pi+I -Pi and Ti = VF(Pi+I) - Vl-'(pi). 
It can-be shown that in case the funcfional F(p) is quadratic with respect to p,  the 

number of iterations required to find the minimum'is equal to the dimension o fp .  "How- 
ever, after we implemented the algorithm in this standard form, a serio,us disai~vantage 
appears: it is a general shortcoming of (Quasi) Newton methods that they converge to 
local minima that can differ substantially from the global minimum (Fletcher, 1980). 
Numerous "ad hoc" solutions are known to overcome this difficulty, but these are all 
strongly dependent on the model at hand and the form of F(p). For example, one of the 
suggestions was to use some relaxation to determine a new s~arch direction. After vari- 
ous attempts to make the alogrithm converge with nearly second order rate in all cases, it 
turns out that this can be achieved by normalizing the vector s(Pi), every time it is calcu- 
lated. In doing so, the search for a minimum is performed overan interval in the parame- 
ter space which has a length > 50. 

Concerning the computational requirements, the determination of the gradient VF(p) 
is the most time consuming operation. Therefore, a variational approach is applied to fifid 
VF(p). It requires only one evaluation of F(p) and the solution of the adjoint problem. 
This-method has been introduced by Chavent~nd has the great advantage that the compu- 
tational cost to determine the gradient VF(p) is independent of the dimension of p 
(Chavent, 1979; N'Kaoua, 1984). In short, th'~ approach is the following: Consider th-~ 
dynamic model, equations (32)-(33), and let the state I'~(k+l Ik) depend on a general 
parameter vector p: ~(k+l Ik,'p). In the sequel equation (38) is used as the abreviation of 
equations (32)-(333: 

Ll(k; p)(I~(k+llk+l, p )) = Lz(k; p)(Y_(k Ik, p)) + fk (38) 

Now, Y is equal to the set of functions Y_(k Ik,p) satisfying: 

<v,Ll(k;p)(~(k+llk+l,p)))-Lz(k;p)(~(klk, p)-fk>=O ; k = 0 ,  1 .... ,N-1 (39) 

for all possible discrete constant test function v, or even more general, satisfying: 
N-1 
y, < ~k, L�94 p)(_y(k+l Ik+l, p)) - L2(k; p)(~(k Ik, p)) - fk > = 0 (40) 

k=0 

or: 
N-1 
~., <~k,[Ll(k-1; p)-L2(k; p)](~(klk,p) - fk> - 

k=l 

<~~ p)(_Y(010, p)) - f0  > + <~N,LI(N-1; p)(Y(N IN, p))> = 0 (40') 

with ~k a discrete test function. The left hand side of equation (40) can be added to the 
originally defined criterion, equation (34), that has be minimized. This leads to equation 
(41): 
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Na N= N - I  ^ 
~'(p) = • y~ {(zk)j -- (M~(k Ik, p))j}2 + Z <~k, L(k; p_)(Y(k Ik,p_)) -f_k> 

-- k---Nlj=l k=l 

-- <~0,L2(0; p)(Y(OlO,p))-fo> + <~N,Lt(N-1; p)(IZ(n In, p ) )>  (41) 

where L(k; p) is defined as Lt(k-1;  p)  - Lz(k; p). The variation of l"(p) due to an incre- 

mental change Ap in the l - th  component o fp  i~  
^ N - I  

AF(p_) 

0L 2 ^ ^ 
- < t  ~ --~-pz (Y(O IO,p))AP + L2(O;p_)(AY(OIO, P)) > 

N OLI ^ 
+ <4 ,'=~-pt (Y( N IN, p)Ap + LI(N; p)(AY.__(N IN, p ) )>  

N2 Nm 
-- 2 ~, EMT[(zk)j -- (M~(k Ik, p))j](AI?(k Ik, p))j  (42) 

k=Naj=l 

OF 
Equation (42) can be reduced to an exact expression for the derivative 

0p l '  

OF N-I k 0 ~ /  
= E <~ , (Y(klk,p))> (43) 

~Pl k=l -- -- 

if equations (44)-(47) hold 

<~k, L(k; p )(Y_(k Ik, p ) )> = 

<L* (k; p)(~k), A Y(k Ik, p )>  = <-2MT{Zk-MY(k Ik, p)}, A_Y(k Ik, p )>  (44) 

fo rN 1 < k < N  2 and all A~(klk, p) in the tangent space of Y at~(klk, p) 

<L*(k;p)(~k), A~(klk, p)> = 0  for 0 < k < N  1 andN 2 < k < N - 1  

* 0 ^ <L2 (0; p)(  ~ ), A Y(010,p)> = 0  

(45) 

(46) 

(47) 
B m 

<L; (N-1 ;  p)(~N), AI2(NIN, p )>  = 0 

In equation (44) and (45) L*(k; p)  denotes the adjoint operator of L(k; p) which can be 
determined by solving the adjoinI-problem: 

L*(k;p)(~ k) =-2Mr(Zk-MIr p)) fo rN I < k < N  2 (44') 

L* (k; p)(A~ k) = 0 for 1 < k < N 1 and N 2 < k -< N-1  (45') 

A_Y(010, p)  = 0 (46') 

~N = 0 (47') 

The structure of the adjoint problem is rather complicated. This is mainly due to the spe- 
cial characteristics of the discretization that is ,used to represent the linear shallow water 
equations numerically. Here a time step is divided into different steps. Although the 
equations for the steps are the same, the numerical representations are different, see equa- 
tions (15)-(20). In the adjoint problem, the steps are also present, but the differential 
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equivalents of the difference equations are now not the same for the different steps. 

6 Parameter estimation in deterministic models 

A special case of the calibration of tidal models is to estimate parameters in the absence 
of uncertainties in the open boundary conditions. In terms of the system description, this 
corresponds to the case where K = 0, so the filter is not employed. The example that is 
described here is the identification of parameters in the CSM-16 model of the European 
Continental Shelf. The model equations are the discretized versions of the non-linear 
equations (1)-(3) while the gridsize is 16 km.  At the open boundary condition the astro- 
momical tide is prescribed. The meteorological influences are not taken into account, so 
the only parameters to be estimated are bottom friction coefficients. To illustrate our 
approach we generate measurements by running a truth model. The friction coefficients 
have a distributed nature. Therefore the domain f2 is divided into a number of sub- 
domains f2i, i = 1, 2, 3, 4 where the bottom friction coefficients have a prescribed spatial 

dependence F m.n: 

~'m,n : Fm,n "t- ~i (48) 

for all points (m, n) in f2 i. Here the parameter ~i has to be estimated. In the CSM-16 

model, the four subdomains are quite distinguishable: the area between England and 
France, the southern part the North Sea, the 'open sea' area and an area connected to the 
open boundary, see figure 3. The points where simulated data are generated are indicated 
therein by black dots. These points coincide with real data observation points. It is seen 
that these points are not uniformly distributed over f2. By introducing weighting factors 
cq, F(p) can be determined by the sum of the averaged squares of the residuals in the 

subdomains f2 i. A simple choice would be to take these weighting factors (t  i equal to the 

reciproke of the number of data observation points, present in ~2 i, the subdomain which 

contains the point with coordinates (m, n). The error functional is now described by 
(note that because of the deterministic character of the model, the state is not estimated 
here): 

N 2 N ,  
F(p) = Z Z a i [ Z f -  (MYk)j] 2 (34') 

k--Nlj=l 

Now, by using simulated data from a two days period with a sampling time of a half 
hour, two important aspects of the calibration procedure can be analyzed. The first is the 
parameter estimation itself and second, the development of the standard deviations of the 
residuals (Z~)j - (MYk) j ,  j = 1 . . . . .  N m and k = N 1 .... .  N 2. 

The initial guesses for the bottom friction coefficients deviate largely from the true 
values and causes a root mean square error (averaged over ~ )  of 0.23 [m] with extremes 
of 0.60-0.90 [m]. The effects of these deviations are reflected by incorrect magnitudes 
and circulation of the velocity fields in ~ and great phase shifts and amplitude errors of 
the water levels in the data observation points, see also the figures 7 and 8. The results of 
the parameter estimation are shown in figure 4. It demonstrates a remarkable difference 
between the estimation of ~-1 and ~.2 on the one hand and ~3 and ~-4 on the other (an oscil- 

lating versus a monotonic behaviour): the influence of changes in ~1 and X 2 on F(p)  is far 

greater than changes in ~3 and ~4- This is caused by the reciprocal dependence of the 

bottom friction on the depth, so the friction in f23. 4 is much smaller than in f21, 2 and by 

the fact that the data observation points in ~2 4 are  suited close to the boundary which was 

assumed to be exactly known. Other reasons for the difference are the concentration of 
data observation points in the southern part of the North Sea, especially in f2z, and the 
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Figure 6. The r.m.s errors in the subdomains f~2 and ~3 

Figure 7. The differences between the simulated data and (a) the water levels, calculated with the initial 
guesses for the bottom friction components; (b) the water levels, calculated with the bottom friction com- 
ponents after 1 iteration 

non-linear interactions near the coast, due to local geometrical variations. Nevertheless, 
all the parameters are identified after about 8 iterations, within an accuracy of 2%. After 
a closer analysis of the iterations, it can be shown that the algorithm has some difficulty 
in finding the correct second order properties of the error functional F(p) for some com- 
ponents: it dependents too strong on the initial guess of the curvature, so if this initial 
guess is too large the parameter estimation converges to the wrong value. A last aspect of 
the iteration procedure that is worth mentioning is the way in which the r.m.s errors 
decrease. From the figures 7 and 8 it is clear that the effect of a phase shift is compen- 
sated first (after one iteration the phase shift is almost everywhere disappeared) whereas 
the correct amplitude is found after some more iteration steps with under- and overshoot. 

7 Parameter estimation in stochastic models 

As a first step towards the application of the estimation procedure to the stochastic 
models, we consider a domain with straight coast lines, see Fig. 9, where the dynamics 
are described by the linear equations (4)-(6) and the depth D is constant over the domain 
~.  By prescribing an open boundary condition of the form: 
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Figure 8. The differences between the simulated data and the water levels, calculated with the bottom fric- 
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37t (xm_Xm~/2) (50) Vm,Ok = 0.3sin(o3kAt .-~m), co = 0.000144 [rads-1], (#m - --16Xrna x 

at the northern boundary. Furthermore, the domain ~ is again divided into subdomains 
f2 i, i -- 1, 2, 3, 4 where different bottom friction coefficients are introduced: 7,i, i = 1, 2, 

3, 4. From this truth-model, a set of data is generated. 
To represent an incorrect open boundary condition, in the simulation model a deter- 

ministic open boundary condition: 

= 0.26sin(c0t~+~m) + 0.03sin(2c0tk) (51) Vm ,0 

is assume& ~If the influence of this incorrect open boundary condition is not taken into 
account, the successive estimates of the bottom friction coefficients are used to compen- 
sate this error. A convergent series of estimates is found, but the interpretation of the 
results as physical coefficients is not possible. For instance, they can become negative. 
Moreover, it is not possible to decrease the value of F(p) to a level that can be associated 
with the amount of (artificial) measurement noise that--we introduced to generate simu- 
lated data, which is equal to N'Nmo2m, cr 2 = 0.002 being the covariance of the measure- 

ment error. It is therefore clear that, if one wants to interprete the estimates as some unk- 
nown model parameters, it is necessary to model that there are more sources of model 
errors. In our case this is done by following the derivation from section 2 and by intro- 
ducing a stochastic process q(xm, tk) in the open boundary condition: 
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Figure 10. The estimation of the ~i, i = 1, 2, 3, 4 in case the open boundary is uncertain, with 
~m.n = Fm,n+;ki and k,.~, defined in equations (15)-(20) 

Figure 11. The estimation of y in case the open boundary is uncertain 

Vkm,O = 0.26sin(ootk-~(Xm)) + 0.03sin(2o~tk) + q(xm, tk) (52) 
L 
-:Because of  the elementary nature of  the example we assume that the spatial dependence 
of  q (x  m, tk) is given by: 

xm.x - x m  
q(x  m, t k) = ~mql(tk)  + (1-~tm)q2(tk), ~t m - (53) 

Xm ax 

The difference between the actual and the deterministic open boundary condit ion can be 
described by the processes ql(tk) and q2(tk) which evolve  according to: 

ql,2(tk+l) = 0"9ql,2(tk) + "ql,2, "ql,2 = N(0,O12,2) (54) 

~where r h and ~2 are white noise processes. A consequence of  the introduction of  qx(tk) 

and q2(tk) is that the state vector has to be redefined: 
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yk = IX k, qf ,  q~]r (55) 

and a system- (=147') and measurement noise sequence (=V) have to be introduced: 

Ig' = [0, ~11,T12] T (56) 

to derive the stochastic system representation: 

yk+l = W y k  + V~ ; Z k+l = M Y  k + V (57-58) 

In this model two types of errors are present: errors in the boundary condition and unk- 
nown parameter values. However, the way to treat these errors is not the same because 
the parameters are assumed to be time invariant, whereas the new states ql(tk) and q2(tk) 

are time dependent. The proposed procedure to calibrate the model assumes that the 
effects of these two sources of error are relatively independent, which implies that the 
corrections due to these two types of errors can be calculated separately. Now, the sys- 
tem representation, equations (57)-(58), is a linear one with time independent noise 
sequences. The steady state Kalman filter can therefore be used to estimate the state yk 
(thus also estimating ql(tk) and q2(tk)) by processing the data and correcting the state ~ r  

the inaccuracies due to the errors in the open boundary condition. The effects of the other 
source of  error are compensated by finding suitable values for the parameters which 
minimize the error criterion: 

N 

min F(p); F(p)  = ]~I IZ  k - H ~ ( k l k , p ) t l  2 (59) 
P - -  - -  k = l  

The method that is used here to find the minimum of F(p) with p the parameter vector, 
consisting of 4 bottom friction coefficients and one (global) wifid stress coefficient, is 
described in section 5. The results of the combined filtering and estimation procedure are 
shown in the figures 10 and 11. It is obvious that, although the percentual error in the 
prescription of the open boundary condition is about 23%, the differences that remain 
between the estimations of the parameters and the true values are relatively small. 

8 Conclusions and remarks 

After the proposed estimation procedure is explained and illustrated with some examples, 
we can summarize the results as follows: 

- the parameters, the friction coefficients as well as the wind stress coefficient, are 
reconstructed within a good accuracy. The remaining difference between the final 
values of the estimates and the true values are only small, whereas the minimal 
value of the criterion F(p) apprximates the value that is related to the total amount 
of measurement noise, Ihe simulated data are disturbed with. This point applies 
both for the cases with and without uncertainties in the open boundary prescription. 

- The number of iterations that is required to ensure the iteration process to converge 
is approximately (linear test model) - 8 (CSM-16 model). In the case where the wind 
stress coefficient y was not simultaneously estimated in the linear test model it was 
even less. As already mentioned in the section about the estimation algorithm, the 
BFGS-method converges in (N+I) steps if N is the number of parameters to be 
estimated, the cost function F(p) is purely quadratic and the data are noise free. So, 
if the number of iterations h-rre is 6-7 and the number of parameters that are 
estimated simultaneously is 5, we may conclude that the cost function is nearly qua- 
dratic with respect to ~. and/or y. 
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- The  acceleration that can be found by replacing a first order method (where the 
direction of  search is the opposite of  the gradient VF(p))  through a quasi second 
order one is quite huge, in our case it has turned out to bt-a factor 5. 

- The results that are shown in section 7 shows the possibility of  the filter to compen- 
sate for errors in the open boundary condition: the effect of  the state estimation is 
clear. The  estimation procedure assumes the relatively independence of  the errors in 
the states that were due to the incorrect boundary condition and the errors due to the 
unknown parameters. F rom experience we conclude that this assumption holds. 

- In the introduction we mentioned that a total calibration procedure also included the 
adjusmaent of  the geometry. One of  the straightforward possibilities to include this 
aspect in the estimation procedure is to divide the domain ~ into subdomains 
(which do not necessarily have to coincide with the subdomains for the bottom fric- 
tion) and to represent the depth in a point with coordinates  (m, n) as Din, n = Dg,n + 

D i where Dgm,n is given at forehand and D i is a quantity to be estimated and which is 

constant over  the newly introduced subdomains. 
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