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Often the question arises whether Y can be predicted
based on X using a certain model. Especially for highly
flexible models such as neural networks one may ask
whether a seemingly good prediction is actually better
than fitting pure noise or whether it has to be attributed
to the flexibility of the model. This paper proposes a rig-
orous permutation test to assess whether the prediction
is better than the prediction of pure noise. The test avoids
any sample splitting and is based instead on generating
new pairings of (Xi,Yj). It introduces a new formulation
of the null hypothesis and rigorous justification for the
test, which distinguishes it from the previous literature.
The theoretical findings are applied both to simulated
data and to sensor data of tennis serves in an experimen-
tal context. The simulation study underscores how the
available information affects the test. It shows that the
less informative the predictors, the lower the probability
of rejecting the null hypothesis of fitting pure noise and
emphasizes that detecting weaker dependence between
variables requires a sufficient sample size.
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2 CISZEWSKI et al.

1 INTRODUCTION

With the ubiquity of data often the question whether a response Y can be predicted based on
predictors X arises. The rise of highly capable machine learning and deep learning techniques
increases the abilities to fit any kind of data. However, the abilities to fit pure noise are increasing
as well. We propose a method to test whether a model is only fitting noise. It extends testing for
no effect from linear to nonlinear models. No sample splitting is performed so the power of the
test can rely on the size of the whole sample. No nested sequence of models is needed, in fact, no
alternative models are needed at all.

Our method is based on recombining the pairings between predictors and responses through
permutations. In this way artificial reference datasets are created and the performance of the
model on the original data can then be assessed by comparing it to the performances on the arti-
ficial reference datasets. The purpose of our test is to ascertain whether the model is capable of
fitting the data more effectively than mere random noise. Our method is not restricted to linear
models since it is not a test for specific parameters in the model. Rather it tests for the ability of a
model to predict the responses.

The main contribution of this paper is a rigorous formulation of a permutation test for depen-
dence between model predictions and responses. The test uses R2 as test statistic but can be
performed with any measure of goodness of fit in regression analysis. Because of its interpretabil-
ity, R2 is our test statistic of choice, but this can be adapted if necessary. The method generates
new pairings of (Xi,Yj) conditional on the Xi for i = 1, … ,n and Yj for j = 1, … ,n. This paper
introduces a new formulation of the null hypothesis and provides a rigorous justification for a
permutation test that has been described in various forms in the literature, for instance in the
two-sample problem (Commenges, 2003; Good, 2002; Huang, Xu, Calian, & Hsu, 2006; Hutson
& Wilding, 2012), the stochastic dominance problem (Arboretti Giancristofaro & Bonnini, 2008,
2009) or the subgroup discovery problem (Duivesteijn & Knobbe, 2011). The main use case for
this method is in the initial stages of the data analysis to test whether a given model does only fit
noise or is able to capture some essential structure in the data.

The outline of the paper is as follows. Section 2.1 formulates the problem and introduces nec-
essary notation. Section 2.2 contains the formal formulation of the null hypothesis, theoretical
considerations and the succinct description of the method. Section 3.1 contains the application of
the permutation test to sensor data of tennis serves in order to demonstrate the method in prac-
tice and showcase its power in a real-life scenario. Section A presents a simulation study, where
the permutation test is demonstrated in various scenarios for predictors and responses.

2 METHODOLOGY

2.1 Problem description

Consider a regression setting. Given an observed pair (X ,Y ), where X is a random vector and Y
is a real random variable. Y is modeled as:

Y = f (X) + 𝜖,

where 𝜖 is a centered random variable independent of X and (f (X))f∈ for some class of functions
 . An example of  could be a set of all linear functions corresponding to a linear regression
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CISZEWSKI et al. 3

model with fixed number of variables or a set of functions that can be described by a neural net-
work. Nonparametric classes of functions can also be considered, for instance a set of log-concave
functions. For the remainder of the paper, we will focus on R2 as goodness-of-fit measure.

Since the actual relationship between X and Y is not known in practice, a chosen class of
functions  through which that relationship is described does not need to be appropriate. The
class of functions  is misspecified if it does not contain the true f , while if it contains too many
functions, the model might be overfitting by memorizing the noise 𝜖. In a real world scenario, we
are often facing datasets that feature high-dimensional, time-dependent or functional variables.
The question whether there is a relationship between X and Y and which model to choose for
describing it, is crucial. In this paper, we focus on the following aspect:

• can a given class of functions  distinguish Y from pure noise?

Consider this simple example. Let X1,X2 be independent standard normal variables and
Y = X2

1 + X2
2 + 𝜖, where 𝜖 ∼ (0, 0.01). Consider a multilayered neural net as a model of choice

to predict Y using X1 and X2. For small sample sizes shuffling the vector of responses and apply-
ing our prediction model to this shuffled dataset can yield values of R2 higher than values of R2

calculated for the prediction model applied to the original dataset. Ten random samples of size 10
were drawn. Five yielded higher values of R2 for at least one shuffled dataset than for the origi-
nal pairing (we considered 200 shuffles of the sample). In applied settings, where the sample size
is fixed and difficult to increase, this presents an inherent issue. Sample size has an immediate
influence on the credibility of the model and needs to be taken into account.

Related problems have been addressed before in the literature in different settings and with a
variety of solutions. In this paper we focus on the permutation test.

2.2 Permutation approach to testing for no effect

The main appeal of permutation tests stems from the fact that they do not require any distribu-
tional assumptions on the population. The lack of assumptions is increasingly more interesting
to researchers as deep learning methods become more popular since they likewise do not rely on
distributional assumptions. Permutation tests are completely data driven as pointed out by (Berry,
Mielke Jr., & Mielke, 2002). This can be very appealing as the data is the main factor in shap-
ing the distribution of the test statistic, that is, the test statistic can be chosen to be more easily
interpretable without focusing on its distribution.

Our work differs from previous works mostly in the formulation of the null hypothesis. In
the literature different null hypotheses exist. Some involve the concept of exchangeability, for
example, Romano (1990), Schmoyer (1994), Good (2002), Commenges (2003); Huang et al. (2006);
Hutson and Wilding (2012). Some involve equality of means, for example, Zhang (2009) and some
involve zeroing of the coefficients, for example, Cardot, Goia, and Sarda (2004). In contrast to
this, we focus on the concept of independence, which is not widely used for permutation tests.
Permutation tests of independence have existed before, for example, see Bell and Doksum (1967).
However, we do not test independence of two random variables X and Y , but rather we state the
null hypothesis in terms of the model and whether it is able to capture the dependence.

The choice of the null hypothesis can also be directly connected to the model considered in the
problem. For instance, it is natural to use zeroing of the functional coefficient as the null hypoth-
esis when considering a functional linear regression model, for example, see Cardot et al. (2004).
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4 CISZEWSKI et al.

We do not restrict ourselves to any particular model in our work, we only consider the model as
given and the null hypothesis is not specifically tailored to the model.

Our goal is to investigate whether a class of functions  can capture any dependence between
X and Y . We consider a test with null hypothesis stated as follows:

H0 ∶ Y is independent of (f (X))f∈ . (1)

H0 represents the problem as described in Section 2.1. If it were true, then our class of functions
 will not be able to capture the relation between X and Y in a meaningful manner. Considering
a dataset with permuted responses will be no different to class of functions  under H0. If H0 is
false, then the class of functions  will be able to capture some aspects of the relation between X
and Y , although it does not guarantee that the model is suitable and readily applicable.

The null hypothesis H0 as stated in (1) does not guide the choice of the test statistic. In order
to choose a suitable test statistic, further understanding of H0 is needed.

Proposition 1. Let (X1,Y1), … , (Xn,Yn) be an i.i.d. sample of (X ,Y ). If Y is indepen-
dent of (f (X))f∈ , then for all i = 1, … ,n the conditional distribution of

(
(f (Xi),Y𝜏(i))

)
f∈ , (2)

given the empirical measure PX
n of X1, … ,Xn and the empirical measure PY

n of
Y1, … ,Yn is the same for all permutations 𝜏 of set {1, … ,n}.

Proof. Let i ∈ {1, … ,n} be fixed. For a given finite collection of functions
f1, f2, … , fm ∈  and a permutation 𝜏, the conditional joint distribution of
(f1(Xi),Y𝜏(i)), … , (fm(Xi),Y𝜏(i)) given PX

n and PY
n is the same as the joint distribution of

(f1(Xi),Yi), … , (fm(Xi),Yi), (3)

thanks to the assumption of independence of (f (X))f∈ and Y . Note that (3) is
invariant with respect to the permutations of Yi. This statement will also be true if
extended to a joint distribution of (2) thanks to Kolmogorov extension theorem (Kol-
mogorov, 1956), hence the distribution of joint conditional distribution of (2) given
PX

n and PY
n is invariant with respect to the permutation of Yi. ▪

Before proposition 1 is translated into a result in terms of R2, we formally define R2. Consider
n realizations of (X ,Y ) and denote them as (x1, y1), ..., (xn, yn). Let L be a loss function and ̂f be an
empirical risk estimator in the sense that

̂f = arg min
f∈

n∑

i=1
L(f (xi), yi). (4)

Let ̂f (xi) denote the prediction of yi for i = 1, … ,n. Then

R2 = 1 −
∑

i (yi − ̂f (xi))2
∑

i (yi − y)2
, (5)
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CISZEWSKI et al. 5

where y is the mean of the yi. This definition of R2 is the natural one if the loss function L in
Equation (4) is chosen to be the squared error loss. In the context of R2, proposition 1 implies the
following result.

Proposition 2. Let (X1,Y1), … , (Xn,Yn) be an i.i.d. sample of (X ,Y ). Assume that Y is
independent of (f (X))f∈ . Fix a permutation 𝜏 of {1, … ,n} and a loss function L defin-
ing an empirical risk estimator as in (4). Then, conditionally on the empirical measure
PX

n of X1, … ,Xn and the empirical measure PY
n of Y1, … ,Yn, the distribution of R2

calculated based on data {(Xi,Y𝜏(i))} using the aforementioned empirical risk estimator
does not depend on 𝜏.

Proof. Proposition 1 implies that the conditional distribution of
( n∑

i=1
(Y

𝜏(i) − f (Xi))2,
n∑

i=1
L(f (Xi),Y𝜏(i))

)

f∈

, (6)

given PX
n and PY

n is the same for all permutations 𝜏 of set {1, … ,n}. This is a
two-dimensional empirical process indexed by class of functions  . Plugging in the
arg min of the second component into the first component still gives a distribution
that does not depend on 𝜏. Hence, combining the definition (4) of ̂f and (5) of R2, we
conclude that for each permutation 𝜏, R2 calculated for {(Xi,Y𝜏(i))} is sampled from
the same distribution conditioned on PX

n and PY
n . ▪

This allows us to consider R2 as a viable choice for the test statistic. Under the null hypothesis,
the R2 as calculated for (xi, yi) is sampled from the same distribution as the R2 calculated for
(xi, y𝜏(i)) for some permutation 𝜏. The test itself is based on permutations of the pairings (xi, yi).
We reject H0 only if the observed R2 is much larger than “most” of the R2 obtained via random
permutations. Essentially we compare the observed R2 to the distribution of R2 under H0 given
specific realizations of X and Y , but not their pairings. It is notable that R2 can also be replaced
by some other statistic, as long as it can be calculated using the sample {(f (xi), yi)}i. Proposition 1
permits other statistics to be used instead of R2. Taking R2 as the test statistic is equivalent to
taking empirical risk with respect to quadratic loss as the test statistic. In that sense, the other tests
can also be constructed by considering empirical risks with respect to other losses, for example,
absolute loss or Huber loss.

If the class of functions  contains the constant functions and the predictors are optimized
with respect to the quadratic loss, then R2 calculated for a given  is always nonnegative. This
is true, since given set of observations {yi}i=1,… ,N , we can always choose f (X) ≡ 1

N

∑N
i=1yi which

yields R2 = 0. Note that including the constants in  , does not disturb the independence of Y
and (f (X))f∈ , since Y is always independent of a set of constant random variables. While R2 is
always nonnegative in linear regression models (if the intercept is included), that is not the case
for instance in the setting of neural nets.

Given a chosen 𝛼 level,1 the precise implementation of the test is as follows:

1. given original pairings of (xi, yi), calculate the R2 of class of functions  , which we will denote
as r2

0,2

1Default 𝛼 = 0.05.
2The specific method of prediction of ̂Yi is stated in 4.
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6 CISZEWSKI et al.

2. find the distribution of R2 under the null hypothesis conditionally on observed xi and y(i) for
i = 1, … ,n (approximated by the empirical distribution function of R2 values based on a uni-
form sample of permutations of original pairings (xi, yi); for each sample {(xi, y𝜏(i)) ∶ 1 ≤ i ≤
n}, where 𝜏 is a permutation, R2 is calculated; notably, the model is refit for each permuted
sample),

3. if r2
0 > q1−𝛼 , where q1−𝛼 is the 1 − 𝛼 quantile of the empirical distribution of R2 values, then we

reject the null hypothesis, otherwise we do not reject it.

Any tuning parameters used in point (1) and (2) are not adjusted for each permutation. This
implementation assumes that R2 is the statistic of choice, but it can be adapted to suit other
statistics as well. The reason we prioritize R2 is primarily because of its benefits in terms of inter-
pretability and ease of use. It is also important to note that in practice, determining the distribution
of R2 under the null hypothesis will not be exact in most cases. To obtain the exact distribution we
need to run through n! permutations. Even for n > 10 the computational cost of such an operation
is prohibitively expensive and sampling from the true distribution is more reasonable.

R2 is bounded by 1 from above for any model. The proximity of R2 values calculated from the
permuted data or original R2 values to 1 or to each other can provide insight into goodness of
fit of a model. The closer the values of R2 for the permuted data to 1, the greater the capability
of the model to fit to the noise. Close proximity of q1−𝛼 to r2

0 in case of r2
0 > q1−𝛼 and r2

0 small
implies that the model’s predictive ability may not be satisfactory even though the null hypothesis
is rejected by the test. The test is widely applicable, because of its general form and easily adaptable
to different types of models. It also provides an interesting commentary on the predictive abilities
of a chosen model. In the event that the quantile q1−𝛼 for one model, 1, significantly exceeds
the same quantile for another model, 2, we conclude that 1 is either overfitting, indicating a
need for reduction of the set of independent variables or model simplification, or is better able to
extract meaningful information from unrelated data.

We close this section with a continuation of the example from Section 2.1. Let X1,X2 be inde-
pendent standard normal variables and Y = X2

1 + X2
2 + 𝜖, where 𝜖 ∼ (0, 0.01). We consider a

neural net as a model of choice to predict Y using X1 and X2. A random sample of size 10 is
drawn. We conduct the permutation test. As seen in Figure 1, the test rejects the null hypothesis.

F I G U R E 1 Histogram of the distribution of generated R2 using permutation of y values. The model
considered here is a three-layered neural net. The sample size is 10. The red line denotes the observed R2 for the
true pairings of X and Y , the green line denotes the 95%-quantile of the empirical distribution of R2

(approximation using 200 permutations).
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CISZEWSKI et al. 7

However, in the case of 2 out of 200 permutations the model achieves higher R2 than in the case
of the original pairings. Even though the model is capable to capture the relationship between X1,
X2, and Y , there are permutations of the vector of responses that can lead to a better performance
of the model.

3 APPLICATION

3.1 Tennis serve dataset

This section concerns an application of the permutation test to a tennis serve dataset. Seven
professional athletes wearing inertial measurement units (IMUs) performed tennis serves. Each
athlete followed a protocol of first and second serves. Sensors were placed on four body parts:
lower and upper arms, trunk and pelvis as can be seen in Figure 2. Each IMU contained a triax-
ial accelerometer and triaxial gyroscope. The data consists of seven uninterrupted time series of
24-dimensional data (4 body parts × 2 types of sensors × 3 axes). The dataset is further described
in the Master thesis (Faneker, 2021).

Additionally, a dataset containing personal characteristics of the players and performance
characteristics of each serve has been included. The personal characteristics are the sex, age,
height, and weight of the players. The performance characteristics are the ball velocity, an indica-
tion of whether the ball went in or out and the velocity-accuracy index (VA index). The VA index
for a single serve was introduced and motivated by Kolman, Huijgen, Kramer, Elferink-Gemser,
and Visscher (2017) and is defined as follows:

VA index =
(ball velocity (kph))2

100
×

achieved points
9

, (7)

F I G U R E 2 Segment model of right-handed player and racquet (back view, frontal plane).
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8 CISZEWSKI et al.

where achieved points refer to the number of points assigned to a serve based on its closeness
to a target area on the court (see Figure 3). The number of points assigned to a serve is based
on a new Serve Tennis Test adapted from Kolman et al. (2017). Originally, the point system was
devised based on the ellipses in the serve box where aces were hit in male tennis matches during
the Australian Open (Whiteside & Reid, 2017). However, the system has been improved upon
since then. The points are discrete. Nine points are given for hitting the center of the target area.
Six and three points are assigned for areas further from the center. One point is assigned for a
ball much further from the target area, but still a valid ball, while zero points are given to a serve
which did go out. Each participant performed approximately 48 serves. In total, 29.6% of serves
were faults (and as a result had a VA-index 0).

We will use the tennis serve dataset in order to demonstrate an application of the permutation
test to real life data. We will focus on the prediction of ball speed and VA-index prediction. The
functional predictors have been transformed into vectors, using a Fourier basis representation,
in order to be able to use the linear regression model with the class of functions LR and the
neural net with the class of functions NN(300,300, 300). The choice to use Fourier coefficients
as predictors was the most natural way of incorporating information from the time series. First,
a prediction of ball speed was considered. The permutation test rejected the null hypothesis in
cases of both models as seen in Figure 4a,b. The test rejects the null hypothesis for both models,
although higher values of R2 achieved by the neural net for the original pairings suggest greater
capabilities of that model to detect the dependence.

In the case of prediction of the VA-index as defined in (7), the permutation test did not
reject the null hypothesis for the linear regression model with the class of functions LR as

F I G U R E 3 Target areas for the tennis serve. The scenario considered here is a serve in the wide direction.
The points given on each target area correspond to the number of accuracy points needed to calculate the
velocity-accuracy index of the serve.
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CISZEWSKI et al. 9

F I G U R E 4 Results of the permutation test for the ball speed prediction using LR and NN(300,300, 300).
(a) Histogram of the distribution of generated R2 using permutation of y values. The sample size is 46. The red
line denotes the observed R2 for the true pairings of X and Y , the green line denotes the 95%-quantile of the
empirical distribution of R2 (approximation using 200 permutations). (b) Histogram of the distribution of
generated R2 using permutation of y values. The sample size is 46. The red line denotes the observed R2 for the
true pairings of X and Y , the green line denotes the 95%-quantile of the empirical distribution of R2

(approximation using 200 permutations).

well as for the neural net model with the class of functions NN(300,300, 300). Figure 5a shows
results for the linear regression model and Figure 5b shows results for the neural net. The val-
ues of R2 are quite low for both models and for many permutations of y-values the generated
R2 is much higher than the observed R2 for the true pairings. These results convince us that
a good prediction using the linear regression model or the neural net model is not possible at
the moment. The issue may lie with the current size of the dataset or the number of serves per
player or simply because the relation as can be described by the neural net is not strong. The
fact that the number of Fourier coefficients used in this prediction was increased to achieve
more favourable R2 for the original pairings of (xi, yi) (at least in the case of the deep learning
model), shows how complex this task is and additional information is needed in the data to
increase the R2.
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10 CISZEWSKI et al.

F I G U R E 5 Results of the permutation test for the velocity-accuracy (VA) index prediction using LR and
NN(300,300, 300). (a) Histogram of the distribution of generated R2 using permutation of y values. The sample
size is 34. The red line denotes the observed R2 for the true pairings of X and Y , the green line denotes the
95%-quantile of the empirical distribution of R2 (approximation using 200 permutations). (b) Histogram of the
distribution of generated R2 using permutation of y values. The sample size is 34. The red line denotes the
observed R2 for the true pairings of X and Y , the green line denotes the 95%-quantile of the empirical distribution
of R2 (approximation using 200 permutations).

4 CONCLUSION AND DISCUSSION

This paper concerns the theoretical foundations and the application of the permutation approach
for testing whether a model can capture dependence structure between predictors and responses.
The test is a tool to determine whether a model is able to fit the data better than pure noise.
We are mostly interested whether X has any effect on Y and we pursue that interest with the
help of a chosen, fixed model. The null hypothesis is formulated in terms of independence of Y
and (f (X))f∈ and in this form cannot be found in previous literature. Proposition 1 allows us to
consider the test as a permutation test formally and Proposition 2 allows us to consider R2 as a
test statistic. This approach is data-centered and the results of the test depend on just one model
without the need to directly compare between different models. We also do not require sample
splitting thus the test can rely on the power of the whole sample size, which can be vital in datasets
of smaller size. Our findings are supported through an application to the tennis serve dataset. In
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CISZEWSKI et al. 11

this case, it gave evidence that a seemingly well-fitting model is not necessarily trustworthy. The
prediction is either not possible with the given sensor data and model or a larger sample size is
needed to predict the VA-index more accurately.
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APPENDIX A. SIMULATION STUDY

We apply our permutation test in multiple scenarios. This section will specifically focus on simu-
lated datasets to assess the test’s performance on datasets with varying dependence levels between
X and Y and two different class of functions  . An empirical example will be considered in
Section 3.1. In all scenarios we consider the R2-based test.

Two different models will be used to fit the data throughout this section. One of them is a lin-
ear regression model, which models the relationship between a random vector X and a random
variable Y in a linear manner: Y = 𝛽 ⋅ X + 𝜖. The parameter vector 𝛽 will always be estimated
using the least squares method. Regardless of the length of vector X , the class of functions asso-
ciated with this model will be referred to as LR. The other model we consider is a neural net.
A neural net is a collection of neurons arranged into layers, with neurons from different layers
connected to each other. Typically, a neural net consists of an input layer, multiple hidden lay-
ers, and an output layer. The estimation of neural nets’ parameters, the weights associated with
neurons and edges between them, is done by feeding multiple training sets of inputs and outputs
into the net. Weights are adjusted each time based on a predefined cost function. Class of func-
tions associated with neural nets will be referred to as NN with the number of neurons on each
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layer specified as a k-tuple, where k refers to the number of layers, for example, NN(30, 30, 30) is
a neural net with three hidden layers, each of which contains 30 neurons.

In the first two examples, we will compare the permutation test to two existing methods:
Spearman’s rank correlation coefficient (also referred to as Spearman’s 𝜌) and Kendall rank cor-
relation coefficient (also referred to as Kendall’s 𝜏). Both are statistics used to measure the rank
correlation between two variables and both can be used as test statistics in a test for independence
of two variables. Since, our examples have more than one explanatory variable, multiple statistics
will be given. It is worth noting that both statistics are not applicable when there is no natural
ordering in the data, for example, in the case of functional data when datapoints are functions.

Let X1,X2 ∼ (0, 1) and Y ∼ U([0, 1]) be independent random variables. We consider two
models and two classes of functions associated with them: LR and NN(30, 30, 30) and a sample
of size 100. In both cases the null hypothesis is not rejected, see Figures A1a and A2a. We also
consider 1,000 repetitions of the experiment in the same setup to see the behavior of the test on a
larger number of examples. As seen in Figures A1b and A2b, the null hypothesis is rejected in most

F I G U R E A1 Results of the permutation test for LR with data generated in a following manner
X1,X2 ∼ (0, 1) and Y ∼ U([0, 1]). (a) Histogram of the distribution of generated R2 using permutation of y values.
The model considered here is linear regression with the class of functions LR. The sample size is 100. The red line
denotes the observed R2 for the true pairings of X and Y , the green line denotes the 95%-quantile of the empirical
distribution of R2 (approximation using 200 permutations). (b) Scatterplot of the R2 values for the original
pairings against the 95% quantiles of the empirical distribution of R2. The orange line shows the identity function.
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14 CISZEWSKI et al.

F I G U R E A2 Results of the permutation test for NN(30,30,30) with data generated in a following manner
X1,X2 ∼ (0, 1) and Y ∼ U([0, 1]). (a) Histogram of the distribution of generated R2 using permutation of y
values. The model considered here is a three-layered neural net with the class of functions NN(30, 30, 30). The
sample size is 100. The red line denotes the observed R2 for the true pairings of X and Y , the green line denotes
the 95%-quantile of the empirical distribution of R2 (approximation using 200 permutations). (b) Scatterplot of
the R2 values for the original pairings against the 95% quantiles of the empirical distribution of R2. The orange
line shows the identity function.

repetitions for both models, namely 4.7% for the linear model and 4.5% for the neural net. This
shows that the rejection of the null hypothesis can still happen even in case of independence. Most
importantly, the rejection rate is close to the confidence level 𝛼 = 5%. Spearman’s 𝜌 test rejects
the null hypothesis of independence of X1 and Y in 5.2% of all cases and rejects the independence
of X2 and Y in 5% of all cases. Kendall’s 𝜏 test rejects the null hypothesis of independence of X1
and Y in 5.2% of all cases and rejects the independence of X2 and Y in 5.3% of all cases. For both
of these tests, the rejection rate is also close to the confidence level.

Now, let X1 ∼ (1, 1),X2 ∼ (0, 1) be independent and Y = log |X1| + X2
2 + 𝜖, where 𝜖 ∼

 (0, 1) is the noise. Consider a sample of size 100. For both LR and NN(30, 30, 30), the permu-
tation test rejects the null hypothesis, since the values of R2 for the original pairings are much
higher than for any of the permuted pairings. For the behavior of the test in a single example
see Figures A3a and A4a. In this case the neural net outperforms the linear model significantly,
thanks to its complexity. Figures A3b and A4b show that the rejection rate in this case is quite
high when repeating the experiment 1,000 times, close to 95% for the linear model and 94% for
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CISZEWSKI et al. 15

F I G U R E A3 Results of the permutation test for LR with data generated in a following manner
X1 ∼ (1, 1),X2 ∼ (0, 1) and Y = log |X1| + X2

2 + 𝜖, where 𝜖 ∼ (0, 1). (a) Histogram of the distribution of
generated R2 using permutation of y values. The model considered here is linear regression with the class of
functions LR. The sample size is 100. The red line denotes the observed R2 for the true pairings of X and Y , the
green line denotes the 95%-quantile of the empirical distribution of R2 (approximation using 200 permutations).
(b) Scatterplot of the R2 values for the original pairings against the 95% quantiles of the empirical distribution of
R2. The orange line shows the identity function.

the neural net. This particular example illustrates the test’s applicability in the case of a functional
relation between predictors and responses. The model is not just fitting the noise, there is some
relation between predictors and responses. It might not be captured well using a linear regres-
sion model, but the model is still able to capture more than pure noise. Spearman’s 𝜌 test and
Kendall’s 𝜏 test have also been performed in this example, but they show a slight difference from
what we see in the case of the permutation test. Spearman’s 𝜌 test rejects the null hypothesis of
independence of X1 and Y in 99.6% of all cases and rejects the independence of X2 and Y in 9.5%
of all cases. Similarly, Kendall’s 𝜏 test rejects the null hypothesis of independence of X1 and Y in
99.7% of all cases and rejects the independence of X2 and Y in 11.7% of all cases. This shows that
the relationship between X1 and Y is easier to capture than the relationship between X2 and Y ,
and with high probability the test will indicate that X1 and Y are not independent. The relation-
ship between X2 and Y is not as easy to capture using Kendall’s 𝜏 or Spearman’s 𝜌, which is to be
expected due to the application of a nonlinear function with a minimum at the mean of X2 when
defining Y .
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16 CISZEWSKI et al.

F I G U R E A4 Results of the permutation test for NN(30,30,30) with data generated in a following manner
X1 ∼ (1, 1),X2 ∼ (0, 1) and Y = log |X1| + X2

2 + 𝜖, where 𝜖 ∼ (0, 1). (a) Histogram of the distribution of
generated R2 using permutation of y values. The model considered here is a three-layered neural net with the
class of functions NN(30, 30, 30). The sample size is 100. The red line denotes the observed R2 for the true
pairings of X and Y , the green line denotes the 95%-quantile of the empirical distribution of R2 (approximation
using 200 permutations). (b) Scatterplot of the R2 values for the original pairings against the 95% quantiles of the
empirical distribution of R2. The orange line shows the identity function.

For the remaining scenarios in this section, we consider only the linear regression model with
the class of functions LR. We inspect the influence of changing the distribution slightly in the
test in order to ensure the statistical analysis using the test is reliable and accurate. For a ∈ R

let X1 ∼ (a, 1),X2 ∼ (0, 0.1) be independent and Y = log |X1| + X2
2 + 𝜖, where 𝜖 ∼ (0, 0.1)

is the noise. Consider a sample of size 100. Note that the variance of X2 has been decreased in
comparison to the previous example. Only for values of a close to 0, the null hypothesis is not
rejected (Figure A5a). This makes sense, since the logarithm changes most rapidly close to 0 and
for those arguments it is difficult to fit a linear function which describes this relationship well.
This pattern is the same with average rejection rate of H0 when repeating the experiment 100
times for each value of a, see Figure A5b. For values of a greater than 0.6, the H0 is almost never
rejected. When the variance of X2 increases to 0.5, the null hypothesis is no longer rejected for
some values of a larger than 5 (Figure A6). This particular case shows the influence of available
information on rejecting the null hypothesis. The less informative predictors are the more likely
it is not to reject the null hypothesis; we can see that as the parameter a increases, the log |X1|
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CISZEWSKI et al. 17

F I G U R E A5 Results of the permutation test for LR with data generated in a following manner
X1 ∼ (a, 1),X2 ∼ (0, 0.1) and Y = log |X1| + X2

2 + 𝜖, where 𝜖 ∼ (0, 0.1). (a) The plot shows the results of
performing the permutation test for linear regression model with the class of functions LR. The sample size is
100. The blue dots show the observed R2 and the orange dots show the 95% quantile of the empirical distribution
of generated R2 (approximation using 200 permutations). The test has been performed for values of a ranging
between 0 and 10. (b) Average rejection rate of H0 with parameter a varying from 0 to 1. For each a 100
repetitions were made.

becomes flatter slowly losing its predictive value. Meanwhile, the influence of X2
2 on the value of Y

increases and given that the model can only predict linearly in X2, the power of the test decreases.
Figures A7 and A8 show explicitly the influence of the sample size on the test’s capability to

reject H0 for the linear regression model with the class of functionsLR. In the case when H0 is true
(Figure A7), the null hypothesis is rejected at a rate of 2%–8% on average regardless of the sample
size.3 In the case when H0 is false (Figure A8), specifically with Y = log(X) + 𝜖 for 𝜖 ∼ (0, 1),
the null hypothesis is rejected much less for smaller sample sizes and the rejection rate increases
as the sample size increases reaching close to 95% at sample size 300. We can conclude that the
power of our test increases until the sample size of around 300, at which point the type II error is
particularly low. Meanwhile, the rejection of a true null hypothesis is rare, even for the smallest
of sample sizes.

3Again the figure is showing the error rate for Pitman’s test as a function of sample size.

 14679574, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12346 by T

u D
elft, W

iley O
nline L

ibrary on [01/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



18 CISZEWSKI et al.

F I G U R E A6 Results of the permutation test for LR with data generated in a following manner
X1 ∼ (a, 1),X2 ∼ (0, 0.5) and Y = log |X1| + X2

2 + 𝜖, where 𝜖 ∼ (0, 0.1). (a) The plot shows the results of
performing the permutation test for linear regression model with the class of functions LR. The sample size is
100. The blue dots show the observed R2 and the orange dots show the 95% quantile of the empirical distribution
of generated R2 (approximation using 200 permutations). The test has been performed for values of a ranging
between 0 and 10. (b) Average rejection rate of H0 with parameter a varying from 0 to 10. For each a 100
repetitions were made.

Using the bivariate normal distribution with varying correlation, we can empirically detect
the point at which the test rejects H0 for the linear regression model with the class of functions
LR as the variables become more and more dependent. Let 0 ≤ 𝜌 ≤ 1 and X ,Y ∼ N(𝜇,Σ), such
that

𝜇 =

[
0
0

]

,Σ =

[
1 𝜌

𝜌 1

]

.

Figure A9 shows that as the correlation reaches 0.3, the test starts to reject H0 almost always in
case of sample size n = 100.4 We conclude that for sample size n = 100, the dependence is only
detectable reliably by the test when the correlation between variables is greater than 0.3. This
particular example shows that for a given sample size a certain threshold of correlation exists

4Note that this figure is showing the error rate for Pitman’s test as a function of sample size Pitman (1937a, 1937b).
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F I G U R E A7 Results of the permutation test for LR with data generated in a following manner
X ,Y ∼ N(𝜇,Σ), 𝜇 =

[
00
]

and 𝜎 =
[
1 00 1

]
. (a) The plot shows the results of performing the permutation test

for linear regression model with the class of functions LR. The blue dots show the observed R2 and the orange
dots show the 95% quantile of the empirical distribution of generated R2 (approximation using 200
permutations). The test has been performed for sample sizes ranging between 10 and 1000. (b) Average rejection
rate of H0 with sample size varying from 10 to 1000. For each sample size 100 repetitions were made.

at which the test starts to reject the null hypothesis. As the correlation increases the rejection
becomes more and more likely for a given sample size.

Lastly, we present a comparison of our permutation test with a permutation test found in
Pesarin and Salmaso (2010). This is also a test for no effect, but specifically in the linear regres-
sion model. Its formulation requires a sample of n i.i.d. observations {(X1,Y1), … , (Xn,Yn)}
from a bivariate variable (X ,Y ). We assume that the variables are linked by a linear regression
E(Y |X = x) = 𝛼 + 𝛽 ⋅ x, where 𝛼, 𝛽 ∈ R. The null hypothesis considered for this test is 𝛽 = 0,
under the assumption that responses Yi can be permuted with respect to covariate X . The test
statistic is T∗

𝛽

=
∑

i XiYi and the permutation of Yi is used when approximating the distribution of
the test statistic under H0. We refer to this test as the permutation test for linear regression after
the naming convention in (Pesarin & Salmaso, 2010). Note that in practice the only difference
between our approaches is the choice of test statistic. In their case, the choice of the test statistic
is driven by the null hypothesis. In our test, the test statistic can be chosen freely as long as it can
be calculated using the sample {(f (xi), yi)}i, which technically means we could use T∗

𝛽

as the test
statistic. In that sense, we can view our test as the generalization of the test for linear regression.
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F I G U R E A8 Results of the permutation test for LR with data generated in a following manner
X ∼ (5, 1) and Y = log |X| + 𝜖, where 𝜖 ∼ (0, 1). (a) The plot shows the results of performing the
permutation test for linear regression model with the class of functions LR. The blue dots show the observed R2

and the orange dots show the 95% quantile of the empirical distribution of generated R2 (approximation using
200 permutations). The test has been performed for sample sizes ranging between 10 and 300. (b) Average
rejection rate of H0 with sample size varying from 10 to 300. For each sample size 100 repetitions were made.

We continue using bivariate normal variables X and Y . We compare the average rejection
rate of H0 for both tests with parameter 𝜌 varying from 0 to 1. Figure A10 shows the comparison
between the tests. For sample size n = 100, the permutation test for linear regression detects the
dependence for a slightly smaller 𝜌 than our permutation test, but both reach the rejection rate of
1 at 𝜌 ≈ 0.4. We conclude that a context-specific test statistic, in this case T∗

𝛽

, outperforms more
general statistic. At the same time, our test can use T∗

𝛽

as the test statistic.
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F I G U R E A9 Results of the permutation test for LR with data generated in a following manner
X ,Y ∼ N(𝜇,Σ), 𝜇 =

[
00
]

and Σ =
[
1 𝜌𝜌 1

]
. (a) The plot shows the results of performing the permutation test

for linear regression model with the class of functionsLR. The sample size is 100. The blue dots show the observed
R2 and the orange dots show the 95% quantile of the empirical distribution of generated R2 (approximation using
200 permutations). The test has been performed for values of correlation 𝜌 ranging between 0 and 1. (b) Average
rejection rate of H0 with parameter 𝜌 varying from 0 to 1. For each 𝜌 100 repetitions were made.

F I G U R E A10 Average rejection rate of H0 with parameter 𝜌 varying from 0 to 1. For each 𝜌 100 repetitions
were made. Two different tests were considered. Blue line was generated using R2 as the test statistic, while the
orange line was generated using T∗

𝛽

as the test statistic.
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