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ABSTRACT: Hydraulic fracturing has transformed the interna-
tional energy landscape by becoming the go-to method for the
exploitation of natural gas from unconventional shale reservoirs.
However, in the recent years, the search for an alternative method
of shale-gas exploration has intensified, because of various
problems (e.g., contamination of ground and surface water,
overexploitation of precious water resources, air pollution, etc.)
associated with the usage of water-based fracturing techniques. The
use of CO2 for shale gas exploitation has emerged as a better
alternative to aqueous-based gas exploration techniques. CO2
when injected into deep shale reservoirs, transitions into
supercritical CO2 (SC-CO2) when temperature and pressure
condition exceeds the critical point, i.e., 31.1 °C and 7.38 MPa. In
this paper, we comprehensively review the impact of SC-CO2 on shale gas reservoirs during the different stages of shale-gas
exploration, i.e., (i) drilling, which involves the superiority of SC-CO2 over water-based drilling fluids, in terms of achieving under-
balanced well condition, higher rates of penetration, and resistance to formation damage; (ii) fracturing, which involves factors
affecting the tortuosity of fractures created by SC-CO2 fracturing, breakdown pressure, and proppant-carrying capacity; and (iii)
injection, which involves the twin-headed benefit of enhanced recovery due to CO2/CH4 competitive adsorption and geological
sequestration, CO2 vs CH4 excess sorption as a function of pressure, etc. Several research works have indicated discrepancies on how
SC-CO2 impacts different shale properties. Some studies show low-pressure N2-gas-adsorption-derived surface area and total pore
volume to be increasing with SC-CO2 imbibition, while others show a decreasing trend for the same. Similarly, for some shales, the
quartz content, along with the clay mineral contents, decreased as the exposure to SC-CO2 increased, while in some other studies,
with similar long-term exposure to SC-CO2, the quartz content was observed to increase along with the decrease in clay content and
vice versa. Essentially, the increased exposure to SC-CO2 results in the dissolution of primary porous structures and fractures, and
reformation of newer porous structure and conduits in shales. Nonetheless, these changes in the mineralogy weaken the
microstructure of the rock bringing significant changes in the mechanical properties of the shales with implications on the wellbore
stability and fracturing efficiency. The mechanical properties such as uniaxial compressive strength (UCS), Young’s modulus, and
tensile strength decrease as the SC-CO2 saturation period increases. However, some studies have shown factors like bedding angle
and phase-state of CO2 having varying effect on the strength behavior of the shales. Moreover, changes in the structure of shales
caused by the creation of fractures and the reduction of their strength can also pose major risks, because of potential leakage of CO2
through these created pathways. How these processes would interact at field scale would control the sealing capacity, especially at
field-scale for addressing long-term seepage of CO2.

1. INTRODUCTION
To meet the global energy requirements of large and developing
populations, the past few decades have seen increased
application of fossil fuels globally.1 While fossil fuels have
primarily contributed toward improvement in the quality of life,
its combustion has also resulted in a sharp increase in emission
of greenhouse gases (GHGs) to the atmosphere. This increased
contribution from the fossil fuels toward atmospheric emissions,
has been identified as one of themajor causes for global warming
and climate change in the recent years.2 Time and again,
conventional fossil fuel sources such as coal, petroleum, and

others have been highlighted to be the major contributors
toward GHG emission. For example, fossil fuel-based power
plants, contributes almost 1/3 of the total CO2 release/year
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globally.3 In comparison to the burning of coal and oil, the usage
of natural gas has been seen to be a greener energy option as it
induces approximately 45% lower CO2 emissions.

4 Unconven-
tional shale petroleum systems and other tight gas systems, have
thus received renewed tremendous research impetus in recent
years for its emergence as a vast and cleaner energy option, and
also for their gas storage properties.5−7 However, the rising
anthropogenic contributions to atmospheric CO2 leading to fast
environmental changes has been identified globally. In 2015, in
one of the most ambitious climate change meetings held at
France, with representatives of 190+ countries, the 2015 Paris
Climate Agreement (PCA) was signed with the objective to
prevent global temperature increase to 2 °C above preindustrial
levels, and make strides en route for attaining 1.5 °C
temperature stabilization.8

It is self-explanatory that, for the progress of civilization,
utilization of available energy resources cannot be terminated,
and to accommodate this with the PCA objective, negative
GHG emissions is to be achieved in the coming decades.9−12

Luderer et al.13 estimated that, even after phenomenal efforts by
several countries, the fossil fuel contribution to emission until
the end of century would remain∼1000 Gt CO2. In this context,
carbon capture and storage (CCS) in geological reservoirs has
been identified as a feasible near-term option to combat the
rising GHG emissions.8,14−20

Injection of CO2, for enhanced oil recovery (EOR), is an
interesting option and has been in place for the last several
decades. Orr and Taber21 reviewed the applicability of CO2
injection in conventional oil reservoirs and the principal
mechanisms that are operative for EOR. They correctly
predicted large-scale worldwide usage of CO2 injections for
EOR in the future. Since the early 1990s, several small and large-
scale field-based projects have been executed inmultiple nations,
which has explored and helped in improving the understandings
on storing CO2 in conventional reservoirs.

18,19 One of the major
reasons why deep conventional reservoirs have worked as well-
defined targets is the presence of impervious or low-permeability
cap-rocks, which arrests the flowage of CO2 to shallower levels.

22

The emergence of unconventional reservoirs, especially shale
petroleum systems, has not only altered the “geopolitics” around
global oil and gas supply need, but has also been recognized as a
promising target for CCS.5,23 As established, shale hydrocarbon
systems are a source as well as a reservoir for hydrocarbons, and
the hydrocarbons are primarily stored through the basic
mechanism of “adsorption”, in addition to existing in free and
dissolved states.25 In addition to the enormous hydrocarbon
reserve that unconventional shales petroleum systems have,
their ability to store hydrocarbons has triggered the interest of
many as potential targets for CCS.25−29 The type, amount, and
maturity of organic matter (which generates hydrocarbons and
stores them primarily), mineral matter (stores hydrocarbons
secondarily), pore structural properties (viz. surface area, pore
volume, pore heterogeneity, fractal dimensions, etc.), depth of
occurrence and thickness of the deposits, are identified as the
critical factors considered from evaluating hydrocarbon
producibility and CO2 storability in shales.

5,28,30−34 Because of
their large resources, cleaner energy option, and CCS potential,
unconventional shales have been identified as a possible bridge
toward our transition to renewable energy resources.34

The CO2, when injected in deep shale or other reservoirs,
undergo phase transition to supercritical state beyond its critical
point at 31.1 °C and 7.38 MPa, and is known as supercritical
CO2 (SC-CO2). Figure 1 displays the phase transition diagram

of CO2.Different researchers have demonstrated the interaction
mechanism of SC-CO2. By virtue of its distinctive properties, the
main mechanisms through which SC-CO2 affects shale reservoir
are, through extraction of organic matter, adsorption-induced
swelling, and mineral dissolution.35 These interactions cause the
creation of wider and extended fractures, and they enhance
hydrocarbon recovery. SC-CO2 has much higher penetration
capacity, in comparison to water-based fracking fluids. Even
further, the degree of clay swelling is also lower when shales are
exposed to SC-CO2, resulting in low or minimal damage to the
reservoir and enhanced production.34,37−39 Therefore, SC-CO2-
based fracturing has emerged as a critical option, for extracting
additional hydrocarbons through increased fracture creation.
Moreover, with preferential adsorption of CO2 and desorption
of CH4, SC-CO2-based unconventional-play development can
further sequester additional CO2.

22,34,40,41 In the recent past, the
importance of SC-CO2 has been identified, and, consequently, a
lot of research has focused on SC-CO2 and shale/coal
interaction.
Although research on SC-CO2 interaction with shale has been

gaining momentum the past few years, a comprehensive
explanation about the change in geochemical, geomechanical,
petrophysical, and pore attributes is lacking. Most experimental
studies focus on a specific aspect of SC-CO2−shale interaction
and thus, lack the bigger picture. In the case of simulation-based
studies, although reservoir scale changes in shale properties are
considered, such approaches lack experimental validation. This
study attempts to summarize findings of research efforts on SC-
CO2−shale interaction and provide critical insights on the
shortcomings of current approach and future scope of research
in this domain. Implementing interdisciplinary approaches and
amalgamation of experimental and simulation techniques will
enhance the understanding and thereby expedite commercial-
scale CO2 storage operation through enhanced gas recovery in
shales.

Figure 1. Phase transition diagram of CO2 [adapted with permission
from Yang et al.36].
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2. PROBLEMS WITH HYDRAULIC FRACKING
To economically produce hydrocarbons from the “difficult to
develop” low-permeability horizons such as shale, advanced
technologies such as horizontal drilling and multistage hydraulic
fracturing has played a significant role.42−45 In comparison to
conventional wells where only a vertical hole is drilled, for
unconventional reservoir development first, a vertical well is
drilled to typically depths of 1500−3500 ft, followed by
horizontal drilling from that depth from distances up to several
thousands of feet.43 Hydraulic fracturing is induced by forcing
great volumes of “propping” agent bearing fracking fluids at high
pressures, which creates fracture within the target horizon. Once
the fractures are created, the hydrocarbons (gas and oil) desorb
(due to lowering of pressure), and they flow out and are
collected at the vertical wells.43

Although successful and has revolutionized the international
energy landscape, exploitation of shale resources and the
technique of hydraulic fracking has drawn severe concerns and
criticisms for its impact on several environmental fronts. An
intense debate and concern among the public has been triggered
regarding the possible environmental and human health
implications and effects that are being caused or likely to be
caused due to the rapid expansion, development and extraction
of this unconventional energy.46 Some primary concerns include
groundwater and surface water contamination, air pollution,
greenhouse gas emissions, and radiations.4,46−56 Possible
contamination of (a) shallow aquifers with hydrocarbon gases
from deeper sources, (b) surface and shallow groundwater from
improperly treated shale wastewater, and (c) addition of toxic
elements, including radioactive elements, in soils near poorly
treated disposal sites or spills, have been identified as possible
sources of contamination. The involvement of huge volumes of
water for hydraulic fracking has also been a point of serious
concern for industry, policy makers, and other stakeholders,
particularly for water-scarce areas.43,46,57 It has been docu-
mented that deleterious products may be formed due to the
interactions between the chemicals present in the injected fluid
and the organic matter, radioactive elements within shales, and
some part of these eventually flows back to the surface, and
during the journey may contaminate water resources at
shallower levels.50,58,59 Chemistry of flowback water and
produced water helps in understanding the degree of
contamination that occurs due to the impact of hydraulic
fracturing.46 Generation and addition of CH4, CO2, and other
volatile organic chemicals (VOCs) to air from shale hydro-
carbon handling plants and trucks has been cited for causing air
pollution around the Marcellus Shale boom.47

In addition to issues pertaining to those mentioned above,
fracking-induced seismicity has also been raised to be a point of
serious concern, which can potentially impact the integrity of
surface structures, subsurface infrastructure and wellbore
stability.46,51,60−62

In addition to the use of large volumes of water, possible
contamination of the same and shallower groundwater sources,
application of water-based fracking techniques has also been
identified to be detrimental toward continued hydrocarbon
recovery from shale reservoirs. Specific clay minerals in shales
can take up substantial amounts of water in their structures
during shale−water interactions, resulting in their volumetric
expansion, and subsequently results in closure of pre-existing
and created fractures. This self-annealing feature of shales owing
to presence of mixed layer clays, results in reduction of

permeability and flowage of hydrocarbons. With increasing
water saturation, permeability of clay-rich shales decreases.63−67

With the view of tackling the above-mentioned problems, in
recent years, nonaqueous based fracturing using CO2 (see
section 4) has emerged as a better alternative to water-based
fracturing while presenting immense possibility of increasing
carbon neutrality and achieving negative GHG emissions
through geological sequestration.22,40,68−71 Before the fracturing
process, SC‑CO2 can also be used as drilling fluid (see section 3)
and has several advantages over other water-based fluids in
formations where achieving underbalanced condition near the
bottom hole becomes necessary in order to avoid formation
damage.72

3. SC-CO2-BASED DRILLING
Traditionally, water-based fluids were used for drilling tight gas
reservoirs for the recovery of oil and gas resources.40,73 However,
unconventional reservoirs vulnerable to formation damages are
not ideal to drill with water-jets because it can cause excessive
overbalance condition near the bottom hole, resulting from the
hydrostatic pressure exerted by the produced mud.74 In such a
scenario, underbalanced drilling (UBD) is helpful because, in
place of heavy drilling fluids and muds, a light mineral oil,75

nitrogen foam,76 and sometimes compressed air77 are used to
achieve underbalanced well conditions and the low density of
such drilling fluids will cause the hydrostatic pressure in the
wellbore to be lower than the internal fluid pressure of that
formation, resulting in the production of reservoir fluids while
drilling.78 However, the density of these fluids is not sufficient
enough to generate enough torque for the bottom-hole motors
to rotate at its maximum efficiency.79 Fortuitously, SC-CO2,
because of its liquidlike density, is able to provide sufficient
power to rotate the down-hole motor. Moreover, the low
viscosity of SC-CO2, compared to conventional drilling fluids,
help in lowering the frictional head loss.80

SC-CO2 drilling, because of its above-mentioned special
physical properties, can achieve higher rates of penetration and
lower threshold pressure, thus enabling it to have incomparable
technical advantages over other drillings techniques.74 Typical
SC-CO2-based drilling process involves storage of liquid CO2 in
a high-pressure tank.81 A high-pressure pump is used to pump
liquid CO2 to the bottom hole. At deeper depths, when the
pressure and temperature in the underground environment
exceeds the critical ones, the CO2 transfers to a supercritical
state. Obviously, different geological basins will have different
geothermal and pressure gradients, so the depth at which CO2
would attain the supercritical state will vary. The SC-CO2 fluid
passes through the drill bit generating SC-CO2 jet. The drilling is
followed by SC-CO2-based fracturing (see section 4). The SC-
CO2 fluid can then be sequestered into the reservoir either
during the fracturing phase or via injection after the depletion of
the reservoir.40

Initial laboratory experiments compared the penetration
depth and threshold pressure of CO2 with that of water under
the same conditions in granite and shale rocks.72 The results
show the penetration depth with CO2 to be higher than that of
water. The threshold erosion pressure was observed to be less
than half that of water in shale and two-thirds that of water in
granite. Moreover, as explained earlier, when water-based
drilling fluids were used to exploit unconventional shale
reservoirs, an overbalanced condition occurs at the bottom
hole. This pressure difference causes the solid particles in drilling
fluids (barite and clay) to enter easily into the formations, thus
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plugging the pore throats.82 Also, severe plugging of pore throat
can occur due to invasion of mud filtrate into the formation.83,84

This causes an increase in the gas and oil flow resistance. SC-
CO2 fluid does not pose this problem, since there are no solid
particles or liquid in it. SC-CO2 has some moderate to strong
influence on rock mechanical properties as well (see section 6).
Consequently, the above-mentioned problems can be mitigated
when SC-CO2 is used as a drilling fluid. Additionally, large
density of SC-CO2 fluids dissolves the organic matter

85 and
heavy oil components near the wellbore.86 To control the
dissolving capability, the density of SC-CO2 can be changed by
changing its pressure and temperature.87 The dissolving
capability of SC-CO2 varies greatly as a function of the
substance to be dissolved. It is related to the polarity, boiling
point, and molecular weight of the substance.88 This character-
istic of SC-CO2 helps reduce damage near the wellbore and
decreases the skin factor, thereby reducing the oil and gas flow
resistance. Haizhu et al.89 prepared a mathematical model based
on the special physical properties (density, viscosity, thermal
conductivity, heat capacity, etc.) of supercritical CO2 to study
the influence of formation water invasion on the distribution of
temperature and pressure in the wellbore during SC-CO2
drilling. They found temperature of the wellbore fluid to
increase with increasing rate of formation water invasion. The
wellbore annulus pressure was also found to be directly
proportional to the rate of invasion of formation water. Various
other aspects of SC-CO2-based drilling were analyzed

90,91 to
optimize the drilling process for efficient recovery of hydro-
carbons from unconventional sources. Long et al.90 used
computational fluid dynamic (CFD) model to simulate the
effects of inlet temperature and inlet pressure on the mass flow

rate and the impinging SC-CO2 jet flow characteristics. They
observed that a slight increase in the inlet temperature resulted
in the reduction of both the mass flow rate and the impact of the
carbon dioxide jet, whereas, high inlet pressures resulted in their
increase. Huang et al.91 conducted an experimental study to
analyze the rock erosion characteristics (erosion area and depth,
erosion intensity evaluated by mass loss, and erosion rate) of
self-excited oscillation pulsed SC-CO2 jet (SOPSJ). They
employed a Helmholtz oscillation nozzle to generate SOPSJ.
They observed that unlike the continuous jets, for the initial
several stand-off distances, the SOPSJ’s created erosion areas
remained constant and then decreased slowly with the growing
standoff distances, while the erosion depths first increased and
then decreased.Moreover, SOPSJ’s resulted in larger mass losses
than the continuous jets.
Despite some clear advantages of SC-CO2-based drilling over

other drilling fluids, it has its own set of problems. Ansaloni et
al.92 reviewed the influence of high-density CO2 on elastomers
that are used within the CO2 transport process. They learned
that liquid-phase CO2 is a good solvent and by using Hansen
solubility parameters, the interaction between polymers and
solvents could be accounted. Differences in the solubility
parameter below two digits lead to substantial absorption of the
solvent into the polymer resulting in significant swelling.
Therefore, the high-pressure motor of a CO2 drilling system
requires its sealing element i.e., elastomers (a natural or
synthetic polymer, e.g., rubber, typically used as sealingmaterials
in CO2 drilling system) designed in such a manner that it is
compatible with supercritical CO2.

74 On the other hand, the
issue of solids transportation, for example, its poor cuttings
carrying ability associated with the low viscosity of SC-CO2 is a

Figure 2. Advantages of SC-CO2-based fracturing over hydraulic fracturing and the effect of SC-CO2 imbibition that brings changes in the physical-
chemo-mechanical properties (adapted from Pan et al.35).
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key issue that to a certain extent has hindered its application in
the oil and gas industry.93,94 However, the cuttings carrying
ability of supercritical CO2 can be easily increased using
additives such as fluoroether disulfate telechelic ionomer.34 In
addition to this, increasing the density of SC-CO2 could be
helpful in increasing its cutting-carrying ability. Shen et al.86 built
a mathematical model to describe the cuttings-carrying process
in the horizontal eccentric annulus with SC-CO2. On the basis of
simulation results, they suggested that by controlling the
wellhead back pressure the density of SC-CO2 can be controlled
to meet the requirement of cuttings carrying. SC-CO2 drilling
with its several advantages over other drilling methods is a
promising technology that still awaits large-scale field
implementation in a wide range of basins all over the world.

4. SC−CO2-BASED FRACTURING
Fracturing of unconventional rock formations using nonaqueous
fluid such as SC-CO2 has several advantages over fracturing
based on aqueous fluids:
(1) Low viscosity and high diffusivity of SC-CO2 fluid makes

it comparatively easier than aqueous fluids to generate
complex fracture networks;95−97

(2) Sharp alleviation of formation damage due to high flow-
back rate and little swelling of clay, in comparison to
hydraulic fracturing;98

(3) Enhanced production due to its higher adsorption
capacity to shale than CH4, resulting in the displacement
of preadsorbed CH4;

99,100

(4) Minimizes environmental pollution and saves precious
water resources.38,101,102

Figure 2 displays the advantages that SC-CO2-based fracturing
has over hydraulic fracturing and how SC-CO2 saturation brings
changes in the physio-chemo-mechanical properties of shales.
Zhang et al.103 conducted the simulation experiment to study
SC-CO2 fracturing in shales. They employed acoustic emission
and high-energy CT scanning techniques to monitor the
progress of fracturing and its morphology, respectively. Results
of CT scanning displayed numerous irregular cracks induced by
SC-CO2 fracturing. These cracks formed complex fracture
networks after connecting with the bedding and the natural
fractures. The volume of rock fractured by SC-CO2 fracturing
was several times higher than hydraulic fracturing. They also
found differences in the magnitude of maximum and minimum
horizontal stresses causing changes in the patterns of the main
fracture. With low horizontal ground stress differences, the
fractures were mainly distributed around the simulated drill hole
while connecting with the natural fractures and beddings,
whereas the fractures went straight through the bedding plane,
forming a single main crack when the stress difference was large.
Wang et al.104 studied the effect of SC-CO2-based fracturing on
Niobrara shale with pre-existing fractures. To induce fractures,
they injected SC-CO2 into the center of the shale samples under
triaxial stresses. Results show that SC-CO2 injection caused
instantaneous initiation and propagation of SC-CO2-induced
fractures to the rock boundary. They also observed CO2
expansion helping alleviate the fluid pressure drop and further
promotion of fracture propagation as the required propagation
pressure decreased with enlarging fracture size. Wang et al.105

used simulation models to compare variations in the induced
fractures caused by different fracturing fluids (water, oil, and SC-
CO2). The results show SC-CO2 exhibiting the lowest
breakdown pressure (the pressure at which the rock matrix

begins to fracture), followed by water and oil. This agrees with
the laboratory experiments conducted by Ha et al.106 on mortar
specimens. Moreover, SC-CO2-induced fracture geometry was
observed to have higher tortuosity than those by water and oil.
Ishida et al.107 conducted fracturing experiments on cubic
granite specimens using water, viscous oil (viscosity of 0.051−
336.6 mPa.s), SC-CO2, and liquid CO2 as fracturing fluids in
order to investigate how fluid viscosity affects the hydraulic
fracturing process and crack properties. The results demon-
strated the fracturing fluid with the lowest viscosity, in this case,
SC-CO2 had the lowest breakdown pressure, compared to
others. Extensive three-dimensional (3D) cracking was induced
by low-viscosity fluids while high-viscosity fluids have a
tendency to induce two-dimensional (2D) cracks. Moreover,
fractures induced by low-viscosity fluids were shear-dominated
fractures, whereas the ones induced by viscous fluids were
tensile-dominant. The success or failure of fracturing is
dependent on the stimulated reservoir volume (SRV). Bennour
et al.108 used three different fracturing fluids with different
viscosity (oil, water, and liquid CO2) to induce fractures in shale
and granite samples, so that the variations in the resulted SRV
can be studied. The results show the fracturing fluid with lowest
viscosity (liquid CO2) would be capable of achieving more
productive fracture network with better SRV. However, the low
viscosity of SC‑CO2 does not work in its favor when its proppant
carrying capacity is compared with the water-based fracturing
fluids.109 Proppants are vital to the fracturing process because
they are required to keep the created fractures open after
removal of the injection pressure in order to avoid reclosure due
to high overburden pressure.110 Although the SRV created by
SC-CO2 fracturing are larger than the water-based fracturing
fluids, the transport of proppant into the created fractures is
severely limited when opted for SC-CO2 fracturing. Zhang et
al.111 reviewed that, apart from viscosity, the proppant carrying
capacity is also dependent on the flow velocity of the fracturing
fluid. Increasing the flow velocity alters the flow phase from
laminar flow to turbulence flow. Under these conditions, fluid
viscosity has almost no influence on the drag force. Therefore, it
is suggested that during SC-CO2 fracturing enough proppants
can be carried into the created fractures if higher pump rates are
used. However, the velocity of the fluid decreases when it
reaches the far end of the fractures. This decrease in velocity
again changes the flow phase from turbulent flow to laminar flow
restricting proppant distribution at the far end of the fractures.
The uncertainty over distribution of proppants using SC-CO2
and the closure of narrow unpropped fracture apertures due to
high effective closure stresses results in the wastage of the
comparatively greater SRV created by SC-CO2. Therefore, Ahn
et al.,112 in their study, regarded the Propped Stimulated
Reservoir Volume (PSRV) as the original or effective volume of
the reservoir. Microproppants with high portability enhance
proppant concentrations at far ends of the fracture network
created by SC-CO2 fracturing which helps in narrowing down
the difference between SRV and PSRV. The high portability of
microproppants makes it susceptible to form multilayers.111 A
protective layer is formed by the outermost proppant layer
against proppant embedment for inner layers.More importantly,
proppant embedment is reduced due to lower stress
concentration between microproppants and fracture surfaces
of shale. Microproppants prevent the closure of fracture under
high stress due to higher crushing resistance, thanks to the
presence of fewer internal defects.113 With all its advantages, the
use of microproppants during SC-CO2 still lacks wide-scale field
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implementation, particularly because of the high cost and
potential safety issues involved.
Perforation hole plays an essential role as a channel between

the wellbore and reservoir.114,115 The density and orientation of
perforation holes decide the magnitude of the breakdown
pressure and has an effect on the complexity of the induced
fractures.116,117 Chen et al.98 conducted a series of fracturing
experiments using SC-CO2 and water as fracturing fluids to
investigate the influence of perforation orientation on fracture
initiation and propagation process. They found that (a) for both
SC-CO2 and hydraulic fracturing, breakdown pressure de-
creased with increasing perforation angle; (b) results of acoustic
emission demonstrated magnitude of energy release rate from
SC-CO2 fracturing was 1−2 orders of magnitude higher than

that of hydraulic fracturing. Essentially, it indicates that more
fractures were induced by SC-CO2 fracturing than hydraulic
fracturing; (c) in SC-CO2, the fracture initiation and extension
followed the direction of maximum principal stress when the
perforation angle was <45° and becamemore andmore complex
at higher perforation angles (>60°); and (d) the fracture
propagation direction had little dependence on the perforation
angle. Wang et al.118 investigated the influence of key
parameters, such as jet standoff distance and jet pressure, fluid
temperature, and ambient pressure, on the perforation ability of
the SC-CO2 jet. They observed ambient pressure having no
substantial effect on perforation under fixed jet differential
pressure conditions. Moreover, increasing the confining
pressure from 5 MPa to 15 MPa resulted in 5.7% and 18.6%

Table 1. Factors Influencing SC-CO2 Fracturing on the Basis of Breakdown Pressure

fracturing
fluid

influencing
parameters

breakdown
pressure, Bp
(MPa) major observations reference(s)

Viscosity (mPa s)
SC-CO2 0.051 9.10 the lower viscosity of SC-CO2 fluid resulted in lowest breakdown pressure helping in easier fracture

propagation, compared to other fracturing fluids
Ishida et
al.107liquid

CO2

0.097 11.96

water 0.774 12.96
oil 316.0 23.07

Viscosity (mPa s)
liquid
CO2

0.10 6.81 fluid with lowest viscosity used forHF of shale reservoirs can achievemore productive fracture network with
better SRV

Bennour et
al.108

water 1.00 8.86
oil 270.00 16.44

Dynamic Viscosity (μfracturing fluid/Pa s)
SC-CO2 4.04 × 10−5 8.44 dynamic viscosity of SC-CO2 has a similar effect as static viscosity, resulting in better fracture network

formation
Wang et
al.105water 0.79 × 10−3 12.8

oil 316.8 × 10−3 13.0
Perforation Angle (deg)

SC-CO2 0 12.89 perforation angle has significant effect on the fracture propagation in shales; compared to water, SC-CO2
fracturing was observed to be better than SC-CO2 for fracturing through different perforation angles

Chen et
al.9830 13.21

45 15.38
60 16.03
90 16.27

water 0 14.5
30 14.27
45 14.07
60 16.81
90 18.01

SC-CO2 25 20.21 SC-CO2 becomes less viscous with increasing temperature, resulting in easier fracture propagation due to
lower breakdown pressure

Zhou et
al.12040 17.82

55 16.78
70 16.53
85 13.36
100 13.24

Bedding Plane Angle (deg)
SC-CO2 0 40.51 fracturing with SC-CO2 becomes easier with increasing bedding plane angle; this is consistent with the

observations made byHe et al. 2018, who found that fracturing with both SC-CO2 and freshwater became
easier with increasing orientation angle, but the Bp value of samples fractured with freshwater was higher
than those fractured using SC-CO2

Zhang et
al.12215 36.38

30 34.42
45 35.89
60 32.31
75 34.49
90 31.09

Injection Rate (mL/min)
SC-CO2 10 55.42 fracture creation becomes difficult with increasing fluid injection rate Jia et al.123

15 52.26
20 55.22

Energy & Fuels pubs.acs.org/EF Review

https://doi.org/10.1021/acs.energyfuels.2c01894
Energy Fuels 2022, 36, 9882−9903

9887

pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.2c01894?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


decreases in the hole depth and diameter, respectively. On the
other hand, with increasing jet temperature (40−100 °C) and
standoff distances (4−10 mm), the hole depths increased by
3.8% and 12.0%, respectively. High temperature lowers the
viscosity of SC-CO2, causing it to permeate easily into the
microcrack tip and encourage fracture propagation.34,119 Zhou
et al.120 studied the effect of temperatures (varying between 25
°C to 100 °C with an interval of 15 °C) on the SC-CO2
fracturing of artificial specimens. Results demonstrated a linear
decrease in the breakdown pressure of SC-CO2 fracturing with
increasing temperatures. At temperatures above 85 °C, the
phase change of SC-CO2 within the fractures promoted
branched or crossing fractures around the main fractures
resulting in the formation of a fracture network. However, the
prediction of the phase change of CO2 can be a complicated
process.121 Therefore, during liquid CO2 fracturing, monitoring
of pressure changes is very important to get clear idea about the
phase change at each stage. Table 1 summarizes various factors
influencing SC-CO2 fracturing on the basis of breakdown
pressure.
Field implementation of this fracturing technique is still

lacking. Fluid injection can lead to changes in rock stress field
and induce microseismicity which, if felt, may result in negative
public perception about the project and may also endanger
wellbore stability.124 Therefore, detailed mapping and evalua-
tion of microseismic response after SC-CO2 fracturing of a range
of shale formations is required to evaluate the true potential of
the technique in better fracture network development over
others.34 Nevertheless, review of the current literature suggests
that SC-CO2 still faces certain challenges (e.g., poor cuttings
carrying ability and proppant carrying capacity) in replacing
slick water as the primary drilling and fracturing fluid.

5. CO2 ADSORPTION VERSUS CH4 DESORPTION:
Vis-à-Vis CO2 SEQUESTRATION

As already mentioned, one of the advantages of using SC-CO2
for fracturing shale petroleum systems is the possibility of
permanently sequestrating CO2 in deep shale reservoirs. When
injected, CO2 is preferentially adsorbed over the preadsorbed
CH4, as both mineral matter and organic matter within shales
show more affinity toward CO2 than CH4.

27,125 In fact, the
enhanced recovery of CH4 and simultaneous sequestration of
CO2 is seen as the first step for CCS to ease the financial burden
with CO2 capturing and handling.

11,126 The fact that CO2
displaces CH4 and is adsorbed by shale pores is similar to the
process that operates in coal bed methane systems, and has been
proved by both experimental studies and numerical simu-
lations.124,127−129 In addition to displacing the adsorbed CH4
from porous structures within the shale reservoirs, pre-existing
fractures and created fracture networks also provide additional
sites for CO2 adsorption.

27

Different researchers have simultaneously performed CO2
and CH4 adsorption experiments on shales. Weniger et al.

130

observed that CO2/CH4 adsorption capacity ratio to vary
between 1.9 and 6.9, for Permian and Devonian coals and shales
from Brazil. Heller and Zoback125 observed the volume of CO2
adsorbed by pure minerals and the U.S. shale samples to be 2−3
times higher than the volume of CH4 adsorbed. Chareonsuppa-
nimit et al.,131 on their work on New Albany shales, observed
CO2 adsorption capacities to be several times higher than the
CH4 adsorption capacity. Results from these and several other
studies24,132,133 show the influence of total organic carbon
(TOC) content on gas adsorption capacity of shales, as gas in
shale reservoirs are primarily stored through adsorption on the
organic matter pores.24,134 In another work on Woodford and
Caney shale plays, Chareonsuppanimit et al.135 observed that, at
∼7MPa, the adsorption ratio of N2, CH4, andCO2 to be 1:(2.9−
3.5):(6.1−30.1), with the CO2 preferential adsorption over CH4

Figure 3. Schematic of three gas place origins of methane and competitive adsorption in shale reservoirs (adapted fromMiddleton et al.40 andGodec et
al.127).
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being stronger for high ash shales, indicating the important role
of mineral matter on gas adsorption. Gasparik et al.136 observed
low-TOC Palaeozoic and Mesozoic shales from The Nether-
lands to have higher sorption capacities than high-TOC shales,
with the sorption capacity being correlated with clay contents.
Hazra et al.,137 in their work on Permian shales from India,
observed positive role of clayminerals on CH4 sorption capacity,
although TOCs were observed to principally control gas storage
capacity.
Competitive adsorption of CO2 in place of CH4 is

fundamentally related to the sizes of CO2 and CH4
molecules,138−140 and also the molecular weights of the gases.
CO2, because of its smaller dynamic diameter of 0.33 nm,
accesses finer pores and narrower pore areas, in comparison to
CH4(molecular diameter of 0.38 nm). Consequently, when CO2
is injected, a volumetric sweep is achieved, by removal of CH4
and adsorption of CO2 in place. Figure 3 shows three gas place
origins of methane and competitive adsorption in shale
reservoirs. SC-CO2, because of its liquid-like density and
capacity to access greater organic nanopore areas, can displace
greater amounts of CH4. Simultaneously greater volumes of CO2
can be sequestered within shale horizons, as the SC-CO2 has
access to greater amounts of sorption sites.140

Among different properties viz. temperature,141 moisture
content,133 the role of organics in shale reservoirs is of primary
significance, as the organic matter primarily stores the
hydrocarbons and similarly their role in storing the CO2 is
primary. Kerogen within shales, depending on the type and
thermal maturity level, can show development of nanoporous
structures, which offers high surface areas and thereby adsorbs
huge volume of gas.7,32 The large hydrocarbon storage capacity
of kerogen within shales makes them interesting targets for CO2
sequestration. Different researches have documented the strong
role of TOC and thermal maturityon CH4 and CO2 sorption
capacity of shales (see Wood and Hazra,7 and references
within). Organic-hosted porosity is one of the most critical
elements in successful shale plays. Different techniques viz.,
imaging (e.g., broad ion beam-scanning electron microscopy,
and focused ion beam-scanning electron microscopy), gas
adsorption (low pressure and high pressure gas adsorption
techniques), mercury intrusion porosimetry, neutron scattering
(e.g., ultrasmall/small angle neutron scattering), etc., are used to
assess shale porosity.7,24,32,142−163 In addition to several factors,
such as the presence of surface functional groups, the mesopores
and micropores, and the specific surface area, etc., thermal
maturity levels have been identified to strongly control the
development of organic porosity and, hence, the gas adsorption
capacity of shales and carbonaceous matter.164−167 Loucks et
al.167 observed organic nanopore development to be strongly
dependent on the thermal maturity levels of the samples and
inferred that this is essentially caused by the conversion of
kerogen to hydrocarbons and the formation of pores within the
organic matter in the process.
The type of kerogen also strongly influences the gas

adsorption capacity of shales. Zhang et al.168 observed small
but systematic differences in the sorption capacity of U.S. shales,
with type III kerogen-bearing shales showing highest sorption
capacity followed by type II and type I shales. They related this
with the inherently higher aromaticity of type III kerogen. Hazra
et al.137 observed CH4 adsorption capacity of vitrinite (type III
kerogen)-rich Permian shales from India to be higher than those
shown by inertinite (type IV kerogen)-rich shales. The presence
of reactive or inert organic matter in shales, and their

corresponding response to thermal maturation, controls the
porosity development and gas adsorption capacity of shales.
Loucks et al.167 documented that, for reactive organic matter,
with progressive thermal maturation, pores are formed as
hydrocarbons are released. On the other hand, for nonreactive
organic matter (type IV kerogen), because of their inherently
lower hydrocarbon generation capacity, little or insignificant
changes in organic porosity is observed with maturity enhance-
ment.167

Generally, laboratory experimental data generated by several
researchers clearly demonstrate that, with increasing pressure,
CH4 adsorption capacity increases monotonously, and then
reaches a more or less constant value at higher pressures (see
Klewiah et al.140 and references within). A similar response is
also seen when CO2 is used as the adsorbate, but only until the
pressures of up to supercritical transition point. At the
supercritical state, the CO2 adsorption amount reaches maxima,
and thereafter reduces systematically. Obviously, this super-
critical transition point is dependent on the temperature at
which the laboratory experiments are conducted. For example,
Weniger et al.130 observed the CO2 adsorption maxima and
thereafter reduction on Permian and Devonian coals and shales
from Brazil between 8 and 10 MPa, when the adsorption
experiments were performed at 45 °C. On the other hand,
Merey and Sinayuc169 observed the similar maxima and
subsequent reduction on shales from Dadas Formation, Turkey,
at 6.43 MPa at 25 °C. Figure 4 shows the CO2 vs CH4 excess

sorption as a function of pressure for a high-TOC shale from
Irati Formation, Brazil.130 The supercritical behavior of CO2 at
higher pressure render the Langmuir theory to be inapplicable,
and, instead, other models, viz. the Ono-Kondo monolayer and
three layer models for laboratory measurements.169 Langmuir
model generally is more appropriate for low-pressure systems,
and presents limitations at higher pressures, especially due to the
unusual behavior of CO2 at higher pressures.

130,169 On the other
hand, the Ono-Kondo model has been observed to be
particularly useful in determining the volume of gas adsorbed
from the experimental data, which is generally overlooked when
using the Langmuir model.169

Figure 4. CO2 vs CH4 excess sorption, as a function of pressure for a
high-TOC shale from Irati Formation, Brazil (redrawn and adapted
from Weniger et al.130).
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6. INFLUENCE OF SC-CO2 ON SHALE PETROPHYSICS,
GEOMECHANICS, AND WETTABLILITY

After SC-CO2 injection, the interaction between the formation
rock and the adsorbed CO2 intensifies over time bringing
changes in the strength properties of the host rock.170−172 This,
in turn, affects the wellbore stability, fracturing efficiency, and
geological storage.173 On the other hand, accurate evaluation of
the mechanical properties of the formation can enable successful
implementation, as well as optimization of drilling, completion,
and hydraulic fracturing in shale reservoirs.174 Several
researchers have examined this issue.175−178 The studies
primarily involved the immersion of rock samples in SC-CO2
for a certain time period to examine the variations in the strength
properties after CO2 saturation. It has been observed that the
tensile strength, triaxial compressive strength, and elastic
modulus (E) of shales decreased after SC-CO2 imbibition. Yin
et al.175 conducted laboratory experiments to study the impact
of subcritical CO2 (sub-CO2) and SC-CO2 imbibition on the
mechanical properties of organic-rich shales. They observed
CO2 saturation caused loss of strength in shale due to
microscopic damages. The extent of the damage was related to
the phase-state and gas pressure of CO2. Sub-CO2 saturation
(gas pressures of 4 and 6MPa) caused reductions in the uniaxial
compressive strength (UCS) and E of the samples, by 22.86%
and 23.10%, respectively. On the other hand, SC-CO2 saturation
(gas pressures of 8, 12, and 16 MPa) at 33.89% for UCS and

33.97% for E caused more significant reduction than sub-CO2
saturation. Moreover, the results demonstrated a slight increase
in the mechanical parameters over a pressure range of 12−16
MPa, primarily because of the compression effect due to higher
pressure of the fluid. Similar observations from the previous
studies are displayed in Figure 5. Zou et al.176 investigated the
impact of CO2−brine−rock reactions on the petrophysical and
mechanical properties of shales. They observed that mineral
dissolutions during static soaking experiment caused up to a 1-
order-of-magnitude increase in the permeability and porosity,
and decreases of up to 71.3% and 9.8% in tensile strength and
surface friction coefficient of the shale samples, respectively.
Apart from this, saturation time has great impact on the
mechanical properties.181,182 Table 2 provides the summary of
the observed changes in the mechanical properties of shales with
respect to SC-CO2 treatment time.
Lyu et al.179 conducted UCS experiments on shale samples

with low clay constituent immersed in (sub-CO2) and SC-CO2
fluids for variable time periods. They employed acoustic
emission (AE) and scanning electron microscopy (SEM) to
understand effect of adsorption time on microscale variations
and crack propagation, respectively. The results show the
following:

(1) From 10 day imbibition to 30 day imbibition, UCS and E
of sub-CO2/SC-CO2 saturated samples demonstrated

Figure 5. Reduction of (A) uniaxial compressive strength (UCS) and (B) elastic modulus (E) after saturation in subcritical and supercritical CO2.
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reductions from 8.79%/12.96% and 16.05%/20.23% to
23.03%/29.95% and 32.61%/37.79%, respectively;

(2) The peak cumulative AE, depicting unstable crack
propagation stage, increased as the adsorption time
increased;

(3) New pores appeared on the sample surface and an
increase in carbon content after sub-CO2/SC-CO2
saturation was observed using SEM and energy-dispersive
X-ray spectroscopy analysis, respectively.

Zhou et al.190 conducted similar experiments to evaluate the
impact of adsorption time on the permeability and the
corresponding stress sensitivity of fractured shale. The results
indicated that the stress sensitivity of shale permeability after
CO2 saturation were amplified due to the weakening effect
caused by CO2−shale interaction. Choi et al.,178 in their
experiment consisting of saturation of shale specimens with SC-
CO2 + brine for 63 days, found significant weakening of strength
properties of the shale. However, with only SC-CO2 as a
treatment fluid, a self-healing effect was observed, which was
caused by the precipitation of secondary sediments, leading to
an increase in the strength and elastic properties. Feng et al.184

evaluated the effect of adsorption periods as well as layer
orientations on the strength properties of the shale samples.
Results revealed reduction in the Brazilian splitting strength
(BSS) and Brazilian splitting modulus (E) of shale samples with
increasing adsorption time. Adsorption for 10, 30, and 60 days
resulted in the BSS reduction of 11.30%, 40.66%, and 45.68%,
compared to the samples without adsorption, respectively. For
inclination angle range 0 ≤ θ ≤ 45°, the BSS of the samples
increased and for range 45° ≤ θ ≤ 90°, it decreased. The
variations in the strength characteristics for samples with
different adsorption time revealed similar change trends with
the bedding orientation angle. The effect of SC-CO2 imbibition
for 30 days on the triaxial compressive strength of low-clay
samples was investigated by Lyu et al.191 They observed increase
in the axial stresses with increasing confining pressures with or
without SC-CO2 saturation. However, axial stresses of samples
with the same confining pressure revealed losses in strength and
rigidity, because of SC-CO2 imbibition. Results of cohesion and
internal friction angles of the samples treated with or without
SC-CO2 revealed minor differences, indicating the applicability
of Mohr−Coulomb criterion in both cases to be valid. Similarly,
Ao et al.183 evaluated the strength properties of shale treated
with SC-CO2. The results demonstrated decrease in the triaxial
compressive strength, tensile strength, and E of the samples after
SC-CO2 treatment. Here, also, the weakening effect intensified
as the treatment time increased. Based on X-ray diffraction
(XRD) analysis, they explained that the changes were due to the
enlargement of pore size caused by the dissolution effect of CO2.
According to the results obtained by them, fracturing fluids
induced mineral reactions are the primary cause for the loss of
rigidity of shales. On the other hand, in a laboratory experiment
conducted by Song et al.189 found that while the elastic modulus
of the shale increased by 32.2%, whereas, the Poisson’s ratio
decreased by 40.3% after SC-CO2 saturation for 2 h at a
temperature of 335.15 K. The increase in E was attributed to the
lesser organic content in the shale, compared to the inorganics.
It is known that shales, in terms of mineralogical composition,

vary spatially.192 Therefore, the overall mechanical response of
shale will be dependent on the strength properties of the
individual mineral phases.193 Shi et al.186 conducted nano-
indentation tests on shale samples to determine the mechanical

strength differences in the clay-rich and quartz-rich areas of shale
samples before and after SC-CO2 imbibition. The results
demonstrated substantial decreases in the mechanical strength
of clay-rich area, as a consequence of CO2 adsorption and
mineral dissolution, whereas very small change in quartz-rich
area was observed due to little effect on quartz caused by CO2
imbibition.
As SC-CO2 is capable of penetrating deep into the

microstructure of shales and dissolving polar and weakly polar
substances, it can bring substantial changes in the micro-
structures of the shale rock. The important microstructural
properties of shales are as follows:
(i) Mineralogical composition: the key mineral constituents

of shale rock are clay, quartz, and calcite, but traces of
feldspars, carbonates, and pyrite also exist.24 Character-
ization of the mineralogical composition of shale is
important for distinguishing the clay and nonclay portions
as both demonstrate significant differences in morphology
and chemical composition.194 Also, the alteration in the
wetting behavior of shale caprock caused by CO2
sequestration is dependent on the composition of the
clay and nonclay portions.195,196

(ii) Organic matter: precise evaluation of the composition,
thermal maturity, and quantity of organic matter in shale
rock is important because it governs the hydrocarbon
generation potential of the reservoir.197,198

(iii) Porosity: the gas storage capacity of shale rock is
determined by its porosity.196 There are three types of
shale porosities: inorganic porosity (due to minerals),
organic porosity (due to organic matter), and fracture
porosity.143,160 The shale matrix is mainly composed of
micropores (<2 nm in diameter), mesopores (2−50 nm in
diameter), and macropores (>50 nm in diameter).199

(iv) Permeability: the flow of gas and oil in the shale is
determined by its permeability.196 It plays a critical role,
because shales have extremely low permeability (in
nanodarcies).200

In recent years, some researchers have focused on the same. A
comparative study of gaseous CO2 and SC-CO2 saturation
reported that the effect of adsorption and swelling governs the
change in pore attributes during gaseous CO2 treatment,
whereas SC-CO2 saturation facilitates the dissolution of
minerals.10,11 Generally, SC-CO2 can induce easy dissolving
and extraction of low-molecular-weight substances.201 Table 3
summarizes observations of different researchers related to pore
structural changes caused in shales due to SC-CO2 exposure.
Jiang et al.201 observed a host of changes induced in shales, in
response to exposure to SC-CO2 under variable time, temper-
ature, and pressure. Using SEM, they observed that, with
exposure to SC-CO2, clay minerals in shales progressively
released the “crystal water” and concomitantly became smaller
in size, whereas, on the other hand, the organics were dissolved
with the primary porous structures and fractures undergoing
transformation. New porous structures were formed in place,
which they interpreted would increase pore-fracture connectiv-
ity. Furthermore, using MIP, they observed both surface area
and porosity of the shales to increase with SC-CO2 exposure
time and pressure.
Yin et al.,95 in their work on Longmaxi shales in China,

observed the dissolution and/or removal of organics and some
minerals (such as kaolinite, calcite, and montmorillonite). They
also observed that specific surface area, pore volume, and fractal
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dimensions decreased with the increasing exposure to SC-CO2,
while the average pore dimension increased. In their study,
however, the variation in TOC (2.98−4.18 wt %) and thermal
maturity (all samples overmature; Ro = 1.97−2.54%) of the
shales were minimal. Interestingly, using low-pressure N2 gas
adsorption, they did not observe any significant changes in the
pore morphology of shales after SC-CO2 exposure, which
contradicts the findings of Sanguinito et al.,205 where the authors
reported changes in pore morphology that were due to etching
on the pore surface through cyclic dissolution and precipitation
of carbonates. They attributed this change to the effect of
dissolution and CO2-induced swelling behavior. Similar
observation was reported in studies conducted by several
researchers,183,206,207 where they also inferred that the change in
pore volume due to swelling and dissolution also causes
reductions in the mechanical properties of shale and the extent
of change is proportional to the time of SC-CO2 saturation. A
detailed investigation of elemental mobility in shales post-SC-
CO2 and water treatment

208 reveals that the primary dissolution
happens in the carbonates, mobilizing Ca and Mg elements,
whereas the secondary preference is given to clay minerals,
mobilizing Na, K, and Al elements. Contrary to previous studies,
they reported a minor change in pore morphology, inferred
through the change in hysteresis behavior of N2 LPGA
isotherms. Meng et al.,187 although focused on SC-CO2-induced
geomechanical changes in shales from Songliao Basin, China,
noted that themineral matter content, especially calcite, strongly
decreased, because of dissolution, with increasing exposure to
SC-CO2. Similar to other researches, they observed the primary
porous structures and fractures to be dissolved and replaced by
newer structures formed because of exposure. On the other
hand, in another work, Ozotta et al.204 observed the quartz
content to increase in Upper Bakken shales and decrease in
Lower Bakken shales , because of shale−SC-CO2 interaction,
while all minerals decreased in content in both the formations.
Interestingly, time of exposure showed a very strong influence in
their work. The specific surface area and fractal dimensions of
the shales initially increased until 8 and 16 days, and then
showed a decreasing trend, while the overall pore volume
displayed a decreasing trend. ForMiddle Bakken shales,Wang et
al.209 observed that the mesopores were largely impacted,
because of SC-CO2 exposure, while the micropores and
macropores did not show changes with SC-CO2 exposure. Hui
et al.210 observed variable results for Sichuan and Ordos Basin
shales. For the oil-window mature shale (TOC > 5 wt %), they
observed a marginal increase in low-pressure N2-gas-adsorption-
derived specific surface area, while a substantial increase was
observed in CO2-derived micropore surface area. In contrast, for
the overmature shales, they noted a decrease in both N2 and
CO2 surface areas with exposure to SC-CO2. In their research,
they noted little or no changes in the mineralogy of the shales
with exposure to SC-CO2. It is also noteworthy to mention that
the effect of SC-CO2 saturation alone on shale pores is
completely different from the combined effect of SC-CO2 and
brine. The presence of CO2 in brine changes the pH of the
solution, resulting in HCO3

− formation, facilitating the
deposition of kaolinite, gypsum, amorphous globule,211 and
dissolution of feldspars. The combined effect of such chemical
alterations results in almost a 4% increase in porosity, whereas
dry SC-CO2 treatment can cause up to 20% reduction in total
pore volume and 36% reduction in surface area.212

The surface wettability of shales (and any other reservoir) is
another important petrophysical property that is influenced byT
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SC-CO2 and affects the overall performance of the reservoir,
especially for sequestration.195,214−220 The capillary forces,
which are crucial for the evaluation of storage potential, are
mainly controlled by surface wettability.219 Qin et al.87

conducted laboratory experiments to determine the influence
of SC-CO2 on shale water wettability. They found that the water
wettability of shale decreased after SC-CO2 treatment, resulting
in increased diffusion of CO2 into the shale matrix, which
ultimately favors the CO2 adsorption and CH4 desorption
capacity of the shale. Kaveh et al.221 in their study evaluating
CO2 wettability of silty shale caprocks found that the contact
angle between CO2 and silty shale was low, indicating a strong
water-wet caprock system, making it favorable for CO2 storage.
Fatah et al.222 evaluated the wettability of two mineralogically
distinct shales after SC-CO2 treatment. The results obtained
indicate that the shale/water contact angle alteration was
mineralogy-dependent. The clay-rich shales were observed to
have transitioned to being CO2-wet, compared to the quartz-rich
shales, which remained strongly water-wet after SC-CO2
treatment. In a different study conducted by Fatah et al.,223

they compared the shale/water contact angles of three type of
shales (Eagle Ford, Wolfcamp, and Mancos) with various
mineralogy exposed to SC-CO2 at different durations, pressures,
and temperatures. They observed that, for clay-rich shales (Eagle
Ford andWolfcamp), the CO2/shale contact angle continuously
increased with increasing treatment time and pressure, caused
by dissolution of clay and carbonate minerals, whereas, the
quartz rich shales (Mancos) stayed strongly water wet in similar
condition. The temperature effect was observed to be
insignificant on the hydrophilicity of shale surface. Guiltinan
et al.224 studied the effect of SC-CO2 on the wettability of shales
with varying TOC and thermal maturity. They observed that the
shale samples continued to be highly water-wet, despite the
changes in the concentrations of organic matter and thermal
maturities, because it was the mineralogy of the shale that
dominated the wetting behavior. This indicated reservoirs,
consisting of organic-rich caprocks, may be suitable for CO2
sequestration. However, they concluded that the concentration
of the organic matter must be below the percolation threshold
(minimum porosity required to form connected pathways across
a porous medium) for the organic matter to not have any
influence on the wetting behavior.

7. CHALLENGES AND PERSPECTIVES
7.1. Changes in Porosity andMineralogyDue to Shale-

SC-CO2 Interactions.One common observation from all of the
above studies is the dissolution of primary porous structures and
fractures, and reformation of newer porous structures and
conduits in shales with increasing exposure to SC-CO2.
However, the changes in mineralogy and specific surface area
can be observed to be variable for different researches. One of
the limitations in the above studies is the variability of shales in
terms of their organic composition, content, and thermal
maturity levels, as in most of the studies, the shales can be
observed to have minimal variation. For example, a molecular
dynamics (MD)-based study of mineral-SC-CO2 and OM-SC-
CO2 interaction has shown that the solid−liquid friction is
lowest for OM-SC-CO2, resulting in a larger slip length, which
allows SC-CO2 to penetrate even smaller micropores in shales
very easily.213 Therefore, studies focusing on shales with a range
of TOC content and thermal maturity level can provide more
insights toward the shale-SC-CO2 interactions. Another critical
factor that could possibly influence the interactions is the type of

kerogen present within the shales. Laboratory investigations
focused at the microscale have also revealed significant changes
in elastic modulus of organic matter and minerals in shales after
SC-CO2 exposure.

226 The effect of SC-CO2 could change,
depending on the type of kerogen, and studies have shown that
the change in micropore structure in shales for Type I kerogen is
mostly due to adsorption-induced swelling. However, for Type
II kerogen (TOC < 3%), the change is governed by pore
framework reorganization due to dissolution of minerals.203

Thus, because of their different chemistries and structure,
different kerogens behave differently when studied in different
environments,227,228 and it is likely that, depending on the
degree of aromatization, aliphatic content, and stability, the
kerogens would respond uniquely when exposed to SC-CO2.
7.2. Implications for CO2 Sequestration. Several factors

and interaction of processes must be considered and evaluated,
especially when considering the advantages presented by SC-
CO2 for long-term sequestration of CO2 in shale reservoirs. SC-
CO2, on one hand, aids in the creation of larger pores and
pathways by dissolution of primary porous structures, minerals,
organic matter, and creation of new conduits, which allows
extraction of methane and distribution of CO2 underground
(favorable for CO2 sequestration). On the other hand, changes
in the structure of the shales caused by the creation of fractures
and reduction of their strength (as seen in almost all studies) can
pose major risks, because of potential leakage of CO2 through
these created pathways. In contrast to the observations of several
researchers, that SC-CO2 increases the permeability of shale
reservoirs, Zhou et al.229 observed CO2-adsorption-induced
shale matrix swelling. Similar observations on the swelling of a
shale matrix due to SC-CO2 have also been made by Memom et
al.230 Generally, the preferential adsorption of CO2 in organic
matter is accompanied by the swelling of organic matter due to
multilayer adsorption in smaller pores exerting pressure on the
pore walls, thereby resulting in their outward expansion.231

Dissolution of organic matter and minerals, creation of fractures
on one hand, and swelling of organic matrix due to CO2
adsorption, thus indicates that a complex set of processes
would be effective, especially when long-term sequestration of
CO2 is considered in deep reservoirs. Interaction of these
processes would likely control the sealing capacity of shales,
especially at field-scale. This point becomes especially critical
when the duration of study in the laboratory, generally <30 days,
is considered. A period of up to 40 years may be needed for a
shale gas well, while the sequestered CO2 needs to be stable for
thousands of years.34 Consequently, future studies should focus
on the simulation and development of models for predicting the
long-term storage potential of CO2 in shale reservoirs.
Wettability of shales also presents certain critical aspects for

them to be considered for CO2 sequestration. Fatah et al.,
195 in

their review of the CO2/shale interactions on the shale
properties, documented that the CO2-wet shales can translate
into a dramatic reduction of CO2 storage capacity and sealing
efficiency of the caprock. It is attributed to the increase in the
contact angle between the CO2 and shale, resulting in decreased
capillary force and upward movement of CO2 by the buoyancy
forces, which ultimately increase the likelihood of capillary
breakthrough. In contrast, when the shale caprock is strongly
water wet, the upward movement of the sequestered CO2 is
restrained, because of the high capillary forces in the pore
structures of the shale.195,217 TOC and mineralogical
composition play an important role in influencing the wettability
alteration of shales. Shale−caprocks rich in clay minerals
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become CO2-wet, whereas the quartz-rich shales remain
strongly water-wet. Whether the wettability of TOC-rich shale
be CO2-wet or not is dependent on the percolation threshold.
The theory of percolation threshold predicts that, in a medium
of randomly distributed porosity, this threshold is met at
∼12%.232 However, if the organic matters present in the shales
are in thin laminations, then the percolation threshold would be
higher across lamination and lower in the direction perpendic-
ular to it.233−235 Therefore, it suggests that even if the
percolation threshold is below or above 12%, the alteration in
shale wettability would also be dependent on the direction of
organic matter laminations, with respect to the direction of the
upward-moving CO2. Similarly, the presence and distribution of
functional groups within shale surfaces have been observed to
strongly influence the shale wettability behavior.236 Future
studies should evaluate these aspects. In a summary, the key
parameters that affect the wettability of the shales are pressure,
temperature, TOC, mineralogical composition, organic matter
connectivity (percolation threshold), distribution, fluid proper-
ties, and surface chemistry.195,217,237,238 However, further
research is necessary in order to gain insights about the
alteration of shale wettability when reservoir scale operations are
considered.

8. CONCLUSION
The following conclusions are reached for this work:

• Hydraulic fracturing dominates the shale-gas extraction
industry but its continued usage can negatively impact the
environment and human health. CO2 can be a better
alternative to water at all stages of shale-gas exploration
(i.e., drilling, fracturing, and injection), especially after its
transition to a supercritical phase (also known as SC-
CO2) at 7.38 MPa and 31.1 °C.

• CO2-based shale gas exploration presents dual benefits in
the form of (a) being beneficial for enhanced production
of shale gas, and (b) CO2 geological sequestration,
because of the preferential desorption of CH4 by CO2. In
addition, SC-CO2 is better at achieving a higher
penetration rate during drilling, and it is capable of
creating complex fracture networks with better stimulated
reservoir volumes during fracturing.

• Some limitations of SC-CO2, such as the poor cuttings
and proppant carrying capacity, exist, predominantly due
to its low viscosity. Chemical additives can be used to
enhance the cuttings carrying ability, whereas the
proppant carrying capacity can be increased using
microproppants.

• The interaction of SC-CO2 with the reservoir brings
remarkable changes in the shale properties. The induced
changes such as increase in surface area, fractal
dimensions, formation of new porous structure, etc., are
mostly favorable to the gas extraction and sequestration
process. However, there still remains some level of
ambiguity involved with such variations.

• The increase/decrease in the composition of some
minerals, surface area, and fractal dimensions of the
shale with increasing exposure to SC-CO2 can be
attributed to the variability of shales, in terms of their
mineralogical composition, organic composition, and
content, and thermal maturity levels. Future research
works focusing on variety of shales with a range of TOC
contents, kerogen types, and thermal maturity levels

would provide more insights toward shale−SC-CO2
interactions.

• The change in the mechanical properties of shales with
increasing exposure to SC-CO2 is due to the weakening of
the microstructure of the shale primarily caused by
mineral dissolution. The other factors include phase state
of CO2 and bedding angle. Again, because of the highly
variable nature of shales, future studies shall focus more
on the micromechanical variations of different mineral
and organic matter phases within the rock using
techniques such as nanoindentation, atomic force
microscopy, etc.
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