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ABSTRACT

Context. Upcoming science missions to Phobos will potentially provide unprecedented observations of Phobos’s orbit in the form of
orbiter and/or lander tracking data. This will likely require an updating of the dynamical models currently used to invert this data,
with the coupling between the satellite’s orbit and rotation being of particular importance. State-of-the-art ephemerides estimations for
tidally locked satellites rely on a decoupled approach where translational models are combined with a simplified analytical representa-
tion of the moon’s rotation (typically a single-frequency periodic variation superimposed to a synchronous rotation).
Aims. This paper investigates the coupled propagation of Phobos’s translational and rotational dynamics, and assesses the extent to
which the most commonly used uncoupled model can emulate the results of the coupled integration, and what consequences the mis-
modeling has on the products of data inversion.
Methods. We considered two models: a coupled model that propagates Phobos’s translational and rotational dynamics simultaneously,
and an uncoupled model that assumes Phobos to be in a fully locked configuration with a once-per-orbit longitudinal libration. By sim-
ulating the dynamics for about ten years, first in a coupled and then in an uncoupled manner, we compared the results and used the
coupled trajectory as simulated observations for an estimation of the different parameters using uncoupled translational dynamics.
Results. For identical initial states, differences between the coupled and uncoupled trajectories were found to accumulate to 40 m,
most predominantly in Phobos’s direction of motion. Longitudinal librations were misrepresented by the uncoupled model particularly
around the frequencies of the normal mode, where forcings are amplified up to 3.6× 10−3 degrees. Long-term latitudinal librations also
arise from forcings due to coupling-induced changes in orbital inclination. The use of uncoupled models in data inversion results in
true errors in the estimated parameters. In this case, we performed estimations of different lengths up to 1000 days to estimate Phobos’s
initial state, once-per-orbit libration amplitude, and harmonic coefficients C2,0 and C2,2. Errors in dynamical parameters were found to
be on the order of 10−3 degrees for the physical libration amplitude and of 10−5 for the harmonic coefficients (relative errors of around
0.1%).
Conclusions. These true errors are one to three orders of magnitude above the formal errors expected from laser ranging measure-
ments to a Phobos lander, which indicates that the typical single-frequency uncoupled model is not suitable for the proper inversion of
such data. Refined rotation models will therefore be required, either by expanding the uncoupled model to multiple frequencies or by
performing a fully coupled orbital-rotational propagation as proposed in this paper. We discuss the theoretical and practical limitations
of an extended analytical parametrization in the specific case of tidally locked satellites, and advocate for the use of a fully coupled
approach.

Key words. methods: numerical – celestial mechanics – ephemerides – proper motions – planets and satellites: general

1. Introduction
The two Martian moons, Phobos and Deimos, are the only nat-
ural satellites in our Solar System – together with our own –
that orbit a terrestrial planet. Discovered by Hall (1878), they
were repeatedly observed from Earth during the following years
(e.g., Pickering et al. 1879; Keeler 1888; Newall 1895), and they
were found to be in (quasi-)equatorial and (quasi-)circular orbits
(Marth 1879; Woolard 1944). This suggested that the two moons
formed in Mars’ proto-planetary disk. However, observations
from the first Martian orbiters revealed Phobos to have a very low
albedo (Smith 1970), with Phobos’s surface composition very
similar to that of a carbonaceous chondrite (Veverka 1978). This
was indicative of an alternative scenario in which the Martian
moons are captured asteroids. At present, the origin and evolu-
tion of the Martian moons – and in particular of Phobos – is still
unclear (Miranda et al. 2023).

There are three leading theories concerning the origin of
Phobos. A first theory (Bagheri et al. 2021) proposes both
⋆ Corresponding author.

Phobos and Deimos to be the two halves of a past bigger moon
that would have disintegrated near the synchronous orbit, throw-
ing each descendant into orbits of different eccentricity and
therefore different dissipation regime, and leading Phobos and
Deimos into their present day orbits. A second theory focuses on
their asteroid-like appearance and proposes they are small bodies
coming from the outer Solar System that were captured by Mars.
The orbital mechanisms to circularize and de-incline their orbits,
however, require significant tidal dissipation inside the moons
(Miranda et al. 2023). A third scenario is conceptually similar
to the formation of our Moon: a big impact ejects large amounts
of Martian material into orbit, which forms a disk from which
both moons re-accrete. This theory could potentially explain the
orbit of both moons and their low chondrite-like albedo, which
could be a consequence of impactor material being present in
the moons (Rosenblatt et al. 2016). The internal structure and
composition of Phobos would shed light onto potential dissipa-
tion capabilities and/or the presence of Martian material, and
thus enable us to discriminate between these three competing
theories.
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The determination of the geodetic parameters of Phobos is
crucial to constrain its interior structure (Borderies & Yoder
1990; Le Maistre et al. 2019; Zhong et al. 2023), and as a result its
origin and evolution scenarios. In particular, the determination
of its gravitational parameter µ, degree-two spherical harmonic
gravity field coefficients C20 and C22, and once-per-orbit phys-
ical libration amplitude A (which can be directly related to its
mean moment of inertia) provide key information on its inte-
rior. This libration amplitude has been determined to have a
magnitude of 1.1◦−1.2◦ from analyses of camera observations,
as a solve-for parameter when creating a control-point network
(e.g., Duxbury & Callahan 1981; Oberst et al. 2014; Burmeister
et al. 2018). The dynamics of spacecraft flying by or orbiting
Phobos (Pätzold et al. 2014; Yang et al. 2019) directly samples
Phobos’s gravity field, which enables the determination of its
properties from spacecraft radio tracking data. This provides the
best current constraints on Phobos’s µ (Jacobson 2010). Finally,
the dynamics of Phobos itself are sensitive to a combination of
A, C20, and C22 (e.g., Lainey et al. 2007; Jacobson & Lainey
2014).

Phobos is in a 1:1 spin–orbit resonance, so that its orbital
mean motion is, on average, equal to its rotation rate. However,
due to its nonzero orbital eccentricity, torques are exerted on
Phobos, so that its rotation exhibits periodic variations, termed
librations, superimposed onto its mean rotation. Although the
once-per-orbit longitudinal libration A captures the majority
(∼99%) of all deviations from a constant rotation rate (over short
periods), Phobos exhibits a wide range of smaller rotational vari-
ations, as analyzed using analytical methods by Chapront-Touze
(1990) and Borderies & Yoder (1990). The first full three-
dimensional numerical integration of the rotational dynamics
that captures these variations was presented by Rambaux et al.
(2012). Their results show a complicated frequency spectrum
in the three-dimensional rotation of Phobos that is exacerbated
by the fact that Phobos’s proper mode is relatively close to its
once-per-orbit forcing. In this analysis, the ephemeris of Pho-
bos was fixed to that of Lainey et al. (2007), and the impact that
the Phobos’s complex rotation would have on the moon’s trans-
lational dynamics was not considered. The present manuscript
presents a coupled translational-rotational dynamical model,
where back-reactions from changes in rotational dynamics are
directly reflected in the translational dynamics, and vice versa.

Modern orbital ephemerides of the Martian satellites are cre-
ated by fitting (primarily astrometric) data of the satellites to
a numerically integrated model of their orbital dynamics, and
solving for the initial state of Phobos that best fits the data in
a weighted least-squares sense. In this process, properties such
as Phobos’s libration amplitudeA, which has a direct impact on
the gravitational interaction between Phobos and Mars, can also
be estimated. The first numerical ephemeris of Phobos (Lainey
et al. 2007) neglected the influence of libration by assuming a
rotation model with Phobos’s long axis always pointing toward
Mars. Later ephemerides (Jacobson 2010; Jacobson & Lainey
2014; Lainey et al. 2021) considered a single once-per-orbit
longitudinal libration in their dynamical model.

However, A, C20, and C22 each manifest themselves in Pho-
bos’s orbit in a similar manner (to first order), in particular as a
time-linear periapsis precession. Therefore, concurrently deter-
mining more than one of these quantities in the determination
of ephemerides leads to an ill-posed problem. This was noted,
for instance, by Lainey et al. (2007), who obtained nonphysi-
cal results for Phobos’s gravity field when estimating both C20
and C22. Jacobson (2010) estimated Phobos’s libration ampli-
tude in their ephemeris, but fixed C20 and C22 to the values of

Borderies & Yoder (1990), who based these values on a shape
model of Phobos and a homogeneous density assumption. A
similar approach is taken by Lainey et al. (2021), who used the
updated shape model of Willner et al. (2014). Finally, although
tracking data of spacecraft flying by Phobos has been invaluable
for constraining its gravitational parameter µ, the current datasets
are insufficiently accurate to allow an unambiguous determina-
tion of the degree-two coefficients (Yang et al. 2019). In addition,
the radio science data collected during such flybys at present is
not used as input to Phobos’s ephemeris.

The current method of considering Phobos’s rotation in the
determination of ephemerides (fully parametrized by a single
longitudinal libration amplitude A) is sufficiently accurate for
the analysis of existing datasets. However, in the near future
more accurate datasets will be collected, most notably by the
MMX mission (Nakamura et al. 2021). In addition, other poten-
tial future Phobos (pseudo-)orbiters and lander missions will
provide much more accurate data than those currently available
(Marov et al. 2004; Oberst et al. 2012; Le Maistre et al. 2013;
Dirkx et al. 2014; Chen et al. 2022; Guo et al. 2023). When ana-
lyzing the tracking data from such future missions, dynamical
mismodeling must not become a relevant error source, and the
parameterization of the dynamics must be suitable for the prob-
lem at hand. In this manuscript, we focus on the improvement
of models for rotational dynamics that are used in the generation
of Phobos’s ephemerides, in order to permit the incorporation of
effects beyond the once-per-orbit longitudinal libration.

One approach to incorporate higher-accuracy rotation into
the analysis is to extend the set of libration amplitudes that can be
considered. Formulations for such multilibrational models have
been analytically derived for other tidally locked bodies (e.g.,
Baland et al. 2012; Rambaux et al. 2011) from pre-assumed inte-
rior models. More specifically to Phobos, Rambaux et al. (2012)
numerically integrated the rotational equations of motion using
a homogeneous interior model in a prescribed orbit (by Lainey
et al. 2007), and obtained a wide range of librations about the
three axes of Phobos. This model was used by Dirkx et al. (2014)
and Le Maistre et al. (2013) in simulated analyses of Phobos
lander tracking. In both cases, the amplitudes (and phases) of
a large number of libration terms (>50) were estimated in a
simulated least-squares estimation. However, this led to large
correlations between parameters, and a degradation of the qual-
ity of the results. Crucially, the estimation of such a large number
of rotational parameters is not a fundamental requirement, but
rather the result of a choice for a kinematic, precomputed rota-
tion model in the tracking data inversion (Dirkx et al. 2019) if no
measures are taken to constrain the many libration parameters as
proposed by Borderies & Yoder (1990). In addition, the imple-
mentation of a librational model for tidally locked bodies suffers
from numerical artifacts in the implementation (Sect. 2.2). As
a result, even for a limited number of additional libration terms
(where the ill-posedness of the estimation is less of a concern),
the use of a predefined set of librations can be problematic for
high-accuracy applications. This issue is discussed in greater
detail in Sect. 2.5.

In this manuscript, we investigate the coupled orbital-
rotational dynamics of Phobos, and treat the combined dynamics
as an initial value problem. Doing so captures the full dynamical
behavior of Phobos without the need to introduce an excessive
number of free parameters. Such a procedure has been proposed
by a number of authors (Rambaux et al. 2012; Dirkx et al. 2019;
Yang et al. 2020) as a necessary ingredient for data analysis from
future missions to Phobos. From our results, we are able to iden-
tify the exact dynamical effects that exist in the coupled model,
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but which cannot be absorbed by a classical model in which rota-
tion is only modeled kinematically by a single once-per-orbit
longitudinal libration. Moreover, we identify the quantitative
error that occurs in the classical model when estimating grav-
ity field coefficients or libration amplitude, as a result of such
absorption.

Our analysis uses numerical simulations of the translational
and rotational dynamics of Phobos. We first compare a propaga-
tion of the translational dynamics to a propagation of the coupled
dynamics. Subsequently, we fit a dynamical model of the orbit of
Phobos alone to (ideal three-dimensional position) observations
generated from a coupled model. This allows us to quantify the
dynamical coupling effects in the orbit of Phobos that current
state-of-the-art models of Phobos’s ephemeris cannot capture.
In addition, it provides us with a quantitative assessment of the
degree to which these effects could “leak” into the estimation of
C20, C22, andA from ephemerides. Our analysis takes the oppo-
site approach from Yang et al. (2024), who fit a coupled model
of Phobos’s dynamics to existing ephemerides, using a formu-
lation also presented by Mazarico et al. (2017) and Dirkx et al.
(2019). We compare our approach and results with theirs in Sect.
5. Our paper is structured as follows. An overview of the math-
ematical description of Phobos’s dynamics is given in Sect. 2.
This section also provides an in-depth analysis of different con-
siderations of Phobos’s rotational motion, such as normal modes
and librations. Section 3 introduces all definitions and equations
used in this work that concern the estimation problem and data
inversion. Then, results are presented in Sect. 4, with Sect. 5 dis-
cussing the implications of the results. Finally, Sect. 6 focuses on
what these results mean in the context of future work and gather
the main points of this paper.

2. Dynamical model

In this work, Phobos’s translational dynamics are described
through equations of motion (EOM; formulated as a first-order
differential equation). Two different descriptions of Phobos’s
rotational motion are used: a dynamical description and a kine-
matical description. While the former uses torques to numer-
ically integrate the rotational state of Phobos, the latter uses
simplified closed expressions to describe the time evolution of
those variables as an algebraic expression.

We first present the mathematical formulation of the equa-
tions of motion in Sect. 2.1. Then, we discuss the kinematic
descriptions of Phobos’s motion that are most relevant for this
work in Sect. 2.2. The consideration of Phobos’s normal mode
and the generation of a realistic initial state is discussed in
Sect. 2.3. We summarize our coupled and uncoupled dynam-
ical models in Sect. 2.4, and argue for the use of a coupled
orbital-rotational dynamics solution in high-accuracy applica-
tions in Sect. 2.5. For all our analyses, we use the TU Delft
Astrodynamics (Tudat) software1 (Dirkx et al. 2022).

2.1. Equations of motion

The translational state of Phobos we use is defined with respect
to Mars’ center of mass, while the orientation of the inertial
frame has axes along J2000. Each body is assigned a body-fixed
frame or simply body-frame, with origin at the body’s center of
mass and the three axes aligned with the body-fixed axes. These
are typically closely aligned to the principal axes of inertia of the

1 https://docs.tudat.space/en/latest/

body, with the x-axis close the longest axis and the z axis along
the shortest one.

The translational state xt is defined by the position and veloc-
ity vectors, r and u respectively. The rotational state, xr is formed
by Phobos’s rotation quaternion q, and Phobos’s angular veloc-
ity vector ω, expressed in its body-frame. In what follows, we
will use the vector q to represent the list of quaternion entries
q0, q1, q2, q3, which forms part of our rotational state vector
(which is distinct from the mathematical operator q). Our state
vector definition is explained in more detail by Dirkx et al.
(2019).

In this work, all accelerations and torques are assumed grav-
itational in nature. The gravitational acceleration (evaluated in a
non-rotating and non-accelerating frame) exerted by an extended
body A acting on a point mass B is given by

aAB = ∇UA(rAB) (1a)

= RI/A∇AUA(ρAB). (1b)

Here, RI/A is the rotation matrix from the body-fixed frame of
A to the inertial frame (denoted by I) and UA is the gravitational
potential of body A. Subscript A in ∇A indicates that the gra-
dient is taken with respect to coordinates associated with the
body-frame of A. The vector ρAB is a vector going from A to
B expressed in the body-frame of A, which is related to the same
vector expressed in the inertial frame rAB as

rAB = RI/AρAB. (2)

Equations (1a) and (1b) both represent the same acceleration.
However, in the latter the actual procedure of evaluating the
potential is more transparently captured by the formulation: the
potential gradient of body A at the location of body B is evalu-
ated in a frame fixed to body A, and then rotated to the inertial
frame. This is done since the gravity field coefficients of body A
are – in the absence of tides or other time variations – constant
in the frame fixed to this body.

We expand the gravitational potential U in spherical
harmonics:

UA(r, λ, ϕ) =
∞∑

l=0

l∑
m=0

UA,l,m(r, λ, ϕ) (3a)

UA,l,m(r, λ, ϕ) =
µ

r

(R
r

)l

Pl,m(sin ϕ)
(
Cl,m cos (mλ)+S l,m sin (mλ)

)
.

(3b)

Here, the distance to the origin r, longitude λ, and latitude ϕ are
the spherical coordinates (in the body-frame of body A) of the
point at which the potential is computed, µ and R are the grav-
itational parameter and reference radius of body A, Pl,m are the
associated Legendre polynomials of degree l and order m, and
Cl,m and S l,m are the associated cosine and sine coefficients. This
work considers all bodies as rigid bodies, so that these harmonic
coefficients are time-invariant. The impact of tidal variability of
Phobos’s gravity field on its rotational dynamics was shown by
Yang et al. (2020) to be minimal, at least for the purposes of our
analysis. Moreover, we usually split Eq. (3a) into the point mass
contribution (l = 0; represented by an over-bar) and the extended
body contribution (l > 0; represented by a hat), now using the
generic index i to denote the body under consideration:

Ui = Uī + Uî. (4)
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Equation (1a) gives the acceleration exerted by an extended
body on a point mass, in a stationary frame. For the gravitational
acceleration that Mars (body A) exerts on Phobos (body B), two
additional effects need to be considered. Firstly, the influence of
Phobos itself being an extended body needs to be included. Sec-
ondly, since we propagate in a Mars-centered frame (rather than
the barycenter of the Martian system), the gravitational acceler-
ation of Phobos on Mars needs to be incorporated. Considering
both effects, the following expression is obtained (Lainey et al.
2004; Dirkx et al. 2016):

aMP = (µM + µP)
(

RI/P

µM

(
∇MUM̄(ρMP) + ∇MUM̂(ρMP)

)
− ...

... − RI/P
1
µP
∇PUP̂(ρPM)

)
. (5)

In this formulation, we have omitted the figure-figure interac-
tions, which are discussed in more detail by e.g., Dirkx et al.
(2019). Finally, accelerations from third bodies i, evaluated in a
frame centered on Mars, are computed from

aiP = ∇Uī(riP) − ∇Uī(riM). (6)

In our work, we use the point-mass accelerations exerted on Pho-
bos by Deimos, the Sun, the Earth, and Jupiter, in addition to the
mutual spherical harmonic acceleration from Eq. (5).

The torques acting on a body B, (evaluated in a frame fixed
to body B) are in general obtained from

TAB = ρAB ×
(
RB/I aAB

)
. (7)

The gravitational torques acting on Phobos are then obtained
from the other relations in this section, taking into account the
fact that there are no torques acting between point masses. From
this, the torque exerted by any body i on Phobos can be written as

TiP = ρiP × ∇PUP̂(ρPi). (8)

This formulation omits the figure-figure interactions, which are
included by e.g., Rambaux et al. (2012). However, they show
that these terms would only add minor modifications to the
existing rotational behavior, and omitting these terms does not
modify the conclusions we draw in our work.

We can see from the formulations of Phobos’s acceleration in
Eq. (5) and torque in Eq. (8) that they require, on the one hand,
the evaluation of RI/P, the rotation matrix from Phobos’s fixed-
frame to inertial frame and, on the other hand, the evaluation of
ρPi from Eq. (2), the vector going from Phobos’s center of mass
to any body i. This means that computing both accelerations and
torques involves both the translational and rotational states of
Phobos, highlighting the translational-rotational coupling in the
equations.

The full dynamics of Phobos are given by Eq. (9) (e.g., Dirkx
et al. 2019), under the assumption of a time-invariant inertia
tensor I in the Phobos-fixed frame (i.e., Phobos is treated as a
rigid body). We include the accelerations and torques exerted
on Phobos by Mars, Deimos, the Sun, the Earth, and Jupiter, as
well as Phobos’s own gravitational field, with specifics given in
Appendix A.

ẋt =

[
ṙ
u̇

]
=

[
u∑

i aiP

]
(9a)

ẋr =

[
q̇
ω̇

]
=

[
Qω

I−1 (∑
i TiP − ω × (Iω)

)] (9b)

MarsF’

x̂

-ψγ

M
θ

Fig. 1. Librational geometry, where θ and M are the true and mean
anomalies of Phobos in its orbit, ψ is the tidal libration angle, γ is the
physical libration angle, and F′ represents the empty focus of the ellipse.
The angle between the moon-to-empty-focus and the apse lines is equal
to M up to O(e2) (Murray & Dermott 1999). The eccentricity of this
figure has been greatly exaggerated for visualization purposes.

Q =
1
2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 . (9c)

For this work, we numerically integrated these equations using a
10th-order multi-stage method (Feagin 2012) with fixed-step size
of 5 minutes, resulting in less than a millimeter of accumulated
error per year of propagation time.

2.2. Kinematic rotation descriptions

There is a number of ways to kinematically parameterize the ori-
entation of a body (Fukushima 2012). For Solar System bodies,
the most popular manner is by specifying the orientation of the
rotation axis – or pole – by its right ascension and declination
with respect to a frame of inertial orientation, together with the
longitude of the meridian in said frame (see e.g., Archinal et al.
2018; Burmeister et al. 2018). Various closed-form expressions
have been developed for their evolution in time, for a range of
bodies (Duxbury & Callahan 1981; Stark et al. 2017; Archinal
et al. 2018).

Phobos’s pole follows the long-term orientation of the orbital
plane normal (Stark et al. 2017), and Phobos rotates about it at
a frequency that follows the long-term evolution of the mean
motion (Jacobson et al. 2018). For the typical Phobos-fixed
frame (see Sect. 2.1), this means that, averaged over time, Mars’
Phobos-fixed position is constant at a latitude and longitude
of 0. Superimposed on this constant value is a long series of
oscillatory variations known as librations. When limiting this
phenomenon to two dimensions, we have the situation repre-
sented in Fig. 1. The deviation of Phobos’s body-fixed x-axis
(corresponding to its long axis) from the moon-planet direction
is sometimes termed the tidal libration angle (Lainey et al. 2019),
and is denoted ψ in Fig. 1. It is related to the longitude of Mars
in Phobos’s body-frame λ as

ψ = −λ. (10)

For a tidally locked satellite with constant rotation rate in
an unperturbed eccentric orbit, it can be shown that the satel-
lite’s long axis approximately points toward the empty focus of
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the orbital ellipse (to order e2) (Murray & Dermott 1999). This
is a purely geometric effect entirely determined by the satellite’s
eccentricity, and commonly referred to as the optical libration
(denoted by ϕ). In addition, the response of the satellite’s rotation
to forcings induces the so-called physical librations, represented
by the angle γ in Fig. 1. These physical librations are not only
influenced by orbital characteristics, but also by the moon’s iner-
tia tensor, and hence its interior properties. The total libration
angle ψ is given by the combined effect of optical and physical
librations, where the former can be expressed as (see Fig. 1)2

ϕ = γ − ψ = θ − M ≈ 2e sin M, (11)

which is accurate to O(e2). Using the empty focus as reference
direction with respect to which we compute librations is poten-
tially advantageous, since we know that the librations around
this reference direction will be zero in the absence of torques
or orbital perturbation. If one would instead use the vector to the
planet as reference direction, we must still consider the nonzero
optical libration in Eq. (11), even in the absence of any forcing
(when γ = 0).

The use of the empty focus as reference direction does, how-
ever, present a complication related to its implementation in a
numerical model. Because Phobos’s orbit is not perfectly Keple-
rian, the location of the empty focus is not constant, but instead
adjusts itself according to variations in the orbit’s osculating ele-
ments. Therefore, if we assume that the long axis of the body
would always point to the instantaneous empty focus of the
osculating orbit, we would be assuming that the rotation of the
satellite instantaneously responds to orbital perturbations, which
is not true over short timescales (see Sect. 2.3).

Regardless of the choice of reference direction for the com-
putation of the longitudinal rotation angle, we require a model
to compute the physical libration angle γ as a function of time.
The period at which the longitudinal libration undergoes the
strongest forcing is the once-per-orbit one, by virtue of Eq. (11).
Consequently, γ is typically given by Eq. (12) where A is just
the amplitude of the once-per-orbit oscillation – the so-called
libration amplitude. The scaled libration amplitude B can also
be used (Lainey et al. 2019), for which we have

γ = A sin M with A < 0, (12a)

ψ ≈ A sin M − 2e sin M = −Be sin M
with B > 0.

(12b)

The relation between the two libration amplitudes then directly
follows from

A = (2 − B) e. (13)

The value of the physical libration amplitude provides informa-
tion on Phobos’s moment of inertia through Eq. (14) (Murray
& Dermott 1999), where σ = (B − A)/C and A ≤ B ≤ C are
Phobos’s main moments of inertia. Thus, estimation of the
once-per-orbit libration amplitude can help constrain the interior
structure of Phobos, since for rigid bodies we have

A =
2e

1 − 1
3σ

(14a)

2 The sign convention we use for Eq. (11) is the same as that of Lainey
et al. (2019, 2021). Other analyses, such as that by Jacobson (2010),
choose a different positive direction for one or more of the angles.

Fig. 2. Frequency content of the tidal longitudinal libration of an uncou-
pled translational state in which a fully locked configuration of Phobos
has been assumed, together with a once-per-orbit longitudinal libration.

B =
2

1 − 3σ
. (14b)

In our implementation, we follow the model by Lainey et al.
(2019), using B as free parameter. By using the following
equations:

e sin M ≈ e sin E ≈
r · u
|r × u|

(15a)

ψ ≈ −Be sin M ≈ −B
r · u
|r × u|

. (15b)

which are valid to O(e2), we can compute the angle ψ directly.
This offers a very convenient implementation, which is therefore
widely used when modeling the dynamics of natural satellites
(e.g., Lainey et al. 2019; Fayolle et al. 2023). However, the use of
this model leads to the implicit use of the instantaneous location
of the empty focus. This implies that the rotation would follow
the orbit on both short and long time-scales, which results in
minor mismodeling of the rotation (as discussed above). This is
very well illustrated in Fig. 2, where the frequency content of
the once-per-orbit longitudinal tidal libration ψ has been plot-
ted together with the frequency content of the mean motion. As
can be seen, the frequency content of ψ has a main peak at the
average mean motion, and also smaller peaks at other frequen-
cies, corresponding to the frequencies at which the osculating
mean motion n varies – the largest of them occurring at inte-
ger multiples of the average mean motion. This shows that, by
using Eq. (15) for the once-per-orbit libration, we are introduc-
ing a series of additional librations, as undesired artifacts of our
model choice (and the spurious assumption that the rotation will
follow the osculating orbit on short timescales). The largest of
these “unintentional” additional librations occurs at the 2n fre-
quency, and has an amplitude that is around 0.01 degrees (or
about 1% of the once-per-orbit libration). On the other hand, the
coupled approach, by automatically ensuring the complete con-
sistency of the satellite’s translational and rotational dynamics, is
immune to such issues. Although the discussion has focused on
longitudinal librations – oscillations about Phobos’s z-axis – and
the orientation of Phobos’s x-axis in the orbital plane, because
those are indeed the most prominent aspects of Phobos rotational
motion, other oscillations exist about Phobos’s x and y axes,
called wobble and latitudinal librations respectively. Kinematic
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descriptions of the rotation of Phobos usually don’t include them,
and they have rarely been considered in Phobos’s dynamics, with
Borderies (1977) and Rambaux et al. (2012) being works that
were partly dedicated to the study of latitudinal librations. In our
kinematic model, and in agreement with the most typical repre-
sentation of natural satellites’ rotations, we assume that Phobos’s
equator follows the instantaneous orbital plane, removing any
freedom for these types of librations. Nevertheless, an extended
kinematic model for Phobos’s rotation could also include these
terms.

2.3. Normal modes and damping

The rotational equations of motion (Eq. (9b)) can be linearized
for small angles ε around each axis of the Phobos-fixed frame.
This yields Eq. (16a) for the evolution of the (small) longitudinal
libration angle (Rambaux et al. 2010) and an equivalent but cou-
pled system for the other two angles (see e.g., Borderies & Yoder
1990). Here, f is the appropriate component of the torque – the
forcing. In the homogeneous case (for f = 0), this equations still
yields an oscillatory solution, with a frequency of oscillation ωo.
This oscillation is called the rotational normal mode, and there
exists one for each axis of the Phobos-fixed frame. These normal
modes are physical properties of the body itself:

ε̈ + ω2
oε = f (16a)

ε = ε0 sin(ω0t + ϕ0) +
∑ fi

ω2
o − ω

2
i

sin(ωit + ϕi). (16b)

In the general case where f , 0, oscillations appear at an infi-
nite range of frequencies. In the context of moons – and more
specifically Phobos – these oscillations excited by forcings are
called forced librations. These forced librations about each axis
are given, in the linearized case, by the solution to Eq. (16a),
namely Eq. (16b) (Rambaux et al. 2010), where fi and ωi are the
amplitudes and frequencies of all the components that make up
the forcing f . It is important to note that components of the forc-
ing with a frequency close to the normal mode produce a strong
librational response. For Phobos, its longitudinal normal mode
is close to the orbital mean motion, the frequency at which the
forcing is strongest. As a result, forcings are expected close to
the normal modes which, even if weak, still produce a relatively
strong response.

Analytical expressions for the frequencies of the normal
modes are (Rambaux et al. 2012):

ωlon ≈ n
√

3σ (17a)

ωlat ≈ n

√
(1 + 3β + αβ) +

√
∆

2
(17b)

ωwob ≈ n

√
(1 + 3β + αβ) −

√
∆

2
(17c)

∆ = (1 + 3β + αβ)2 + 16αβ (17d)

α =
C − B

A
β =

C − A
B

σ =
B − A

C
, (17e)

where ωlon, ωlat, and ωwob are the longitudinal, latitudinal, and
wobble normal mode frequencies (about Phobos’s z-, y-, and x-
axes, respectively) and A ≤ B ≤ C are Phobos’s main moments

of inertia. Following the analysis of Rambaux et al. (2012) for
Phobos, we provide the latitude libration frequency in the inertial
frame rather than the Phobos-fixed frame, where its frequency
is decreased by n (Rambaux & Williams 2011). Since our work
is aimed at modeling the coupled orbital-rotational dynamics in
inertial space, this choice is the most suitable one for our work.

In practice, the response at the normal mode itself (first
right-hand side term in Eq. (16b)) has typically been damped by
dissipative effects over long timescales. The normal modes can
thus technically be removed from the rotational response. How-
ever, when Eq. (16a) is integrated – and more generally Eq. (9b)
– both the normal modes and the forced response generally arise
as part of the numerical solution. Unless a physically realistic
initial state is used, one needs to forcefully remove the normal
modes from the solution.

For most bodies, the forcing frequencies are far enough from
the normal modes that free librations are easily identifiable in a
Fourier decomposition after integration of the rotational equa-
tions of motion (Eq. (9b)). In those cases, damping the free
modes can be achieved by the removal of the free librations in
frequency space. In the case of Phobos, normal mode frequen-
cies are very close to a range of forcing frequencies, making it
very difficult to distinguish the free modes from the forced libra-
tions, and an alternative needs to be considered. In this work,
we do this in the same way as Rambaux et al. (2012), which
is to introduce a damping algorithm, making use of a virtual
torque in the equations of motion. This virtual torque is com-
puted as to preserve the average rotation of Phobos around its
z-axis while opposing any other rotation. The dynamics are prop-
agated forward in time with the torque, and the final state is used
to propagate the dynamics backward without the torque. This
procedure is performed several times in an iterative process to
generate the initial state used to propagate Phobos’s dynamics.
Specific details on this algorithm and the computation of such a
torque can be found in Appendix B.

2.4. Coupled and uncoupled models

In order to study the couplings between Phobos’s translational
and rotational dynamics, and the limitations of the classical
uncoupled model, the equations of motion (Eq. (18)) were inte-
grated both in a coupled manner and an uncoupled manner –
from now on termed the coupled model and the uncoupled model
respectively. For the coupled model, the state derivatives of the
translational and rotational state vectors from Eq. (9) can be
written explicitly as

ẋt = ft (xt, xr) (18a)

ẋr = fr (xt, xr) , (18b)

clearly indicating that Phobos’s dynamics are dynamically cou-
pled by nature. However, an uncoupled model can be defined that
propagates only the translational equations of motion (Eq. (18a))
by imposing some fixed xr(t) that is not integrated. In such a
case, which we term the uncoupled model, we have

ẋt = ft (xt, xr) (19a)

xr = gr (xt, t) , (19b)

turning the computation of xr into an algebraic equation that
depends on the current xt rather than a differential equation. The
implementation of this algebraic relation for the case of Phobos
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is defined in terms of one or more librations, and is described
in more detail in Sect. 2.2. In a few instances discussed in this
paper, an additional model becomes useful that features Pho-
bos in a fully locked configuration with respect to Mars (fully
locked model). This is to say that Phobos’s long axis is forcefully
aligned with the moon-planet direction at all times.

The typical implementation of gr in the determination of
ephemerides, which is also the one we use here, features only
a once-per-orbit longitudinal libration. Following Eq. (19b), the
rotational state xr of Phobos is not driven anymore by torques,
but rather is completely determined by the translational state xt
and some extra parameters, namely A or B (where we chose to
use the latter as free parameter in our models). We discuss the
disadvantages of uncoupled models, and detailed rationale for
our choice of a coupled model, in the next section.

In the coupled model, we used an initial state for which
the free mode is damped using the damping algorithm dis-
cussed in Sect. 2.3. For consistency, we used the same initial
translational state in our coupled and uncoupled models. In the
uncoupled model, we imposed xr such that Phobos was in a
fully locked configuration (its long axis always pointing directly
toward Mars), upon which a once-per-orbit tidal longitudinal
libration of amplitude Be was superimposed. This angle was
computed as in Eq. (12b), the factor e sin M computed as in
Eq. (15a). We chose the value of B that best reproduces the
once-per-orbit longitudinal libration that was obtained from the
coupled model. To obtain this value, we performed a Fourier
transform of Phobos’s tidal longitudinal librations as computed
by the coupled model, from which we determined the value
of Be.

Finally, it should be understood that the role of librations in
the two models is entirely different. For the uncoupled model,
the libration amplitude (or, when using such an approach as
Le Maistre et al. (2013) or Dirkx et al. (2014), a list of libra-
tion amplitudes and phases) is an input to the model, and a free
parameter that can be estimated. For the coupled model, the
librations are an output of the model: in evaluating the coupled
equations of motion, the concept of librations plays no role (see
Eq. (9)). It is then only in the post-processing and analysis of the
results that librations become relevant (Rambaux et al. 2012).

2.5. Limitations of uncoupled models

The uncoupled model we used in this study, as well as by e.g.,
Lainey et al. (2019), presents two limitations when applied to
high-accuracy applications that will be required in the future:

– The first limitation is the simplification of the parametriza-
tion of the rotational motion, which is reduced to a single
longitudinal libration at the orbital frequency.

– The second limitation is the use of Eq. (15) to compute this
single longitudinal libration angle, which slightly misrepre-
sents the exact behavior that is to be modeled.

Here, we discuss these two issues in detail and argue why the use
of a coupled model, rather than a more detailed multilibrational
model, is a preferred solution for sustainable and practical high-
accuracy ephemeris determination.

The first limitation could be mitigated by expanding the
librational spectrum included in the satellite’s rotational model,
as done by Chapront-Touze (1990). However, this requires an
a priori knowledge of the relevant librational frequencies. Le
Maistre et al. (2013) and Dirkx et al. (2014) chose the relevant
frequencies reported by the numerical integration of Rambaux
et al. (2012). However, these are particular to a given forcing
spectrum as defined by its orbit (Lainey et al. 2007) and a

given inertia tensor, as defined by its interior model (Willner
et al. 2010). The latter point in particular limits the degree to
which a valid spectrum can be determined before an ephemeris
determination, since the relevant libration frequencies depend
on the frequencies of the normal modes. These frequencies in
turn depend on the moments of inertia, which are typically one
of the parameters that can be estimated during an ephemeris
determination. This presents a challenge, since the ephemeris
determination requires the set of relevant libration frequencies
to have been established, but knowing which set of frequencies
are valid requires improved knowledge of the moments of inertia,
which is one of the outputs of the ephemeris determination. Such
circular logic is particularly important for Phobos, where the
frequency of the proper mode ω0 is close to the forcing frequen-
cies, and a slight shift in the former can have a strong impact on
which forcing terms lead to a relevant response (see Eq. (16b)).
Resolving this for an uncoupled model would require an iterative
approach, where the set of frequencies that is considered is rede-
termined after an adjustment of the interior properties during the
estimation of the ephemeris. In a coupled model this dependency
of the response on the interior is automatically captured without
any a priori tuning (Dirkx et al. 2019).

In addition to complications in the selection of relevant fre-
quencies in a multilibrational model, applications with tighter
fidelity requirements in dynamical and observation model would
necessitate the use of models with a large number of librations
(Le Maistre et al. 2013; Dirkx et al. 2014), resulting in a large
number of free parameters to adjust in the data inversion, and
large correlations between them. This is an artifact of the large
number of free parameters, and not an issue for a coupled model
(Dirkx et al. 2019). This problem can be resolved by introducing
suitable interrelations between the libration terms (Borderies &
Yoder 1990), at the cost of significant model tuning.

The second limitation stems from the fact that our libration
model was parameterized by the mean anomaly rather than being
an explicit function of time. A model that is an explicit function
of time is typical in high-accuracy uncoupled rotation models of
e.g., Earth (Petit et al. 2010) or Mars (Le Maistre et al. 2023;
Goli et al. 2024). Using such a model for the rotation of a tidally
locked body during a computation of its orbital dynamics is not
as straightforward, due to the requirement that spin-orbit reso-
nance is to be maintained. In a coupled model this is enforced
dynamically, but in an uncoupled model a change in the trans-
lational dynamics must result in a suitable adaptation of the
rotational state to enforce this resonance. The reason that this
must be strictly enforced is due to the extreme sensitivity of
the spherical harmonic acceleration, the gradient of Eq. (3b), to
small constant shifts in the longitude angle λ. Specifically, even a
small bias in this angle will result in a small but constant along-
track acceleration, resulting in a linear drift in mean motion, a
quadratic drift in along-track position, and a divergence of the
real and modeled orbit. This effect is equivalent to that of a
nonzero S 22 (and tidal dissipation in the planet or moon) in the
situation where the long axis points to the empty focus (Fayolle
2025).

In our model, we enforced consistency between orbit and
rotation by using Eq. (15) to compute the longitudinal libration
angle ψ. Although this ensures that the two always remain in
phase, it introduces spurious librational frequencies by implic-
itly using the osculating mean motion n (Fig. 2). The amplitude
of these spurious oscillations reaches up to 0.01 degrees, which
is the same order of magnitude as the largest of the additional
(e.g., other than once-per-orbit) libration terms. Consequently,
even if we were to add additional libration terms in the model,
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our ability to accurately represent the resulting time evolution
of Phobos’s orientation in space would not improve mean-
ingfully, unless an alternative to Eq. (15) is used to ensure
orbital-rotational consistency. However, ensuring such consis-
tency within a single propagation is not possible, since one must
impose an evolution of the rotation pole and rotation rate that
follows the long-term trend in the orbital evolution. During an
orbital propagation, one cannot readily disentangle the behavior
due to short-periodic variations from the longer-term variations
and trends in the orbit.

Rather than developing and applying an uncoupled model
and associated estimation strategy that overcomes these prob-
lems, we argue that – at the accuracy levels where it becomes
relevant (around 0.01 degrees for Phobos) – it is preferable to
move to a dynamic representation of the rotation. Such a method
does not suffer from these issues, while at the same time ensures
that an estimation of the coupled orbital-rotational dynamics
consistently captures the impact of the degree-two gravity field
coefficients on the orbital dynamics and (through the relation of
these terms to the inertia tensor) the rotational dynamics (Dirkx
et al. 2019).

The use of a dynamic model for coupled orbital-rotational
motion has also been adopted for the Moon. Due to the avail-
ability of LLR data, high-accuracy lunar libration models are
required. As described by Newhall et al. (1983), the use of an
uncoupled rotation model for the Moon led to issues from “the
use of an analytical theory for the computation of lunar libra-
tion, acting as a forcing function for the system through figure
perturbations”. It must be stressed that this does not preclude
the use of uncoupled models. An analysis of LLR data based
on kinematic models is presented by Chapront et al. (1999b),
who used the model by Chapront et al. (1999a) for their fit, an
analytical model complemented with fits to numerical integra-
tions. They showed that this can adequately fit the data, but at
the expense of a complex specific model tailored to one body.
This brief case study of the Moon reinforces our argumentation
above: while it is indeed possible to develop an uncoupled model
with the required level of accuracy, doing so requires significant
body-specific model development. We stress that explicit mod-
els as a function of time with (many) more terms than only the
once-per-orbit libration (Chapront-Touze 1990; Stark et al. 2017;
Jacobson et al. 2018) are eminently useful in many other appli-
cations that require a high-accuracy Phobos reference frames. It
is only for the computation of orbital dynamics that the strict
consistency requirement between orbit and rotation makes their
direct application challenging.

An overview of historical dynamical model development for
the case of Phobos was given by Jacobson & Lainey (2014).
There, the shift from analytical to numerical models for Pho-
bos’s orbit was well described. One of the main drivers toward
a numerical formulation was stated to be the difficulty of fitting
new observations to the analytical model, since this requires a
recomputation of the underlying numerical model (to which the
analytical model is fitted). This is in line with our discussion
above, where retaining an uncoupled model at higher accuracy
requires iterating the orbital model to re-enforce the consistency
between orbital and rotational motion.

3. Estimation

In our analysis, we first quantify the difference between the cou-
pled and uncoupled model when using the exact same model
parameters – initial state, libration amplitude and gravity field.
However, in quantifying how valid it is to use an uncoupled

model in place of a coupled model, it is required to investigate
the extent to which the uncoupled model is able to approximate
the orbital dynamics of the coupled model, and look at what dif-
ferences still remain. We performed such an analysis by means of
estimations. This section explains our estimation methodology
and the rationale in the context of the problem at hand.

We first define our general estimation method in Sect. 3.1.
We then discuss the advantages of using a coupled model instead
of the classical uncoupled formulation in Sect. 3.2, focusing on
the implications for the estimation process and results. Finally,
the two main elements of the estimation are presented, i.e.,
the observations (and observation model) and the estimated
parameters (and estimation model), in Sect. 3.3.

3.1. The estimation problem

Provided a set of observations z either obtained from reality or
generated with a simulation model, a set of differential equations
– hereafter the “estimation model” – can be used to replicate
them, providing the so-called model values h. The governing
equations in this estimation model contain a number of free
parameters, collected in a vector y that determines the value of h,
so that h = h(y ) (for the type of applications under consideration
here, y typically includes one or more initial states, and physical
parameters that influence the dynamics). The estimation can be
understood as the process of finding a vector y ∗ such that the
differences between z and h, called residuals and defined as in
Eq. (20a), are minimized in the least squares sense: i.e., the quan-
tity ε Tε is minimal. The estimator is the method by which the
estimation is performed. In this work, a linearized least squares
estimator is used.

To compute y ∗, the model values are linearized around a
reference ho = h(yo) and one can approximate the residuals as
in Eq. (20b), where H = ∂h (yo) /∂y (usually called the design
matrix) and ∆y = y − yo.

ε = h − z (20a)

ε ≈ ho + H∆y − z = H∆y − ∆z. (20b)

Then, an iterative process begins, each iteration consisting of
computing ∆y ∗i and updating the reference to yi+1 = yi + ∆y

∗
i .

This new reference is used to linearize hi+1 in the next iteration.
The parameter update ∆y ∗i is computed by solving the so-called
normal equations in Eq. (21).(
HT

i Hi
)
∆y ∗i = HT

i ∆zi. (21)

In this work, we consider the estimation to be converged if
the residuals and parameter estimate are stable for several
iterations.

3.2. Influence of the uncoupled model’s limitations

Consider a set of parameters yb (e.g., the initial state xo) with
which the coupled model has been propagated. Using these
parameters, the coupled model produces a state history xc(t, yb).
If an estimation is performed in which the observations, e.g.,
Cartesian positions, are taken from xc(t, yb) and then an uncou-
pled model is used as estimation model (see Fig. 3), the vector
of residuals can be written as in Eq. (22), where ru(t, y) is the
model values produced by the uncoupled model when the set y of
parameters is used. Note that, because the differential equations
that generate xc and xu are different by definition, ε(t, yb) is not
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Fig. 3. Schematic of the work done in this paper.

nil and the solution to the corresponding least squares problem
is some nonzero vector y ∗ = yb + ∆y

∗ , yb.
Replacing h = ru(t, y) and z = rc(t, yb) in Eq. (20), the

residual vector can be rewritten as

ε(t, y) = ru(t, y) − rc(t, yb). (22)

In this equation, ru and rc denote the Cartesian position of
Phobos, as extracted from the solution history for the uncou-
pled and coupled dynamical model, respectively (Fig. 3). The
parameter increment ∆y ∗ appears in order to account for the dif-
ferences in r(t) generated by differences between the coupled
and uncoupled models. In other words, the effect that the lim-
itations of the uncoupled formulation have on the trajectory is
absorbed by this ∆y ∗. This absorption is such that the residuals
are minimized, and although ε(t, y ∗) Tε(t, y ∗) is indeed smaller
than ε(t, yb) Tε(t, yb), it is never 0. Absorption is then said to be
imperfect and some residuals are left, representing a part of the
effects that could not be absorbed by any of the parameters.

However, absorption can lead to misleading results. Absorb-
ing the mismodeled rotation signatures (either caused by cou-
plings or artificially introduced by the uncoupled model imple-
mentation, see Eq. (15)) into the parameters contaminates the
solution and makes it differ from the true yb. This is the

scenario in current state-of-the-art estimations. Phobos’s real
life dynamics incorporate, by definition, all possible couplings,
while state-of-the-art estimation models are uncoupled. In try-
ing to estimate the values of yb through estimation, a solution
y ∗ is instead obtained, which contains the bias ∆y ∗, while yb
remains unknown. One aim of this work is to quantify this bias
∆y ∗. The parameter vector y often includes the once-per-orbit
longitudinal libration angle or Phobos’s gravity coefficients C2,0
and C2,2, all of these containing information about Phobos’s inte-
rior. Mis-estimation of these parameters effectively results in
misinformation about the interior structure of Phobos.

3.3. Estimation settings

We performed estimations using the uncoupled model as esti-
mation model and the coupled model as truth model. This setup
is an idealized representation of the current state-of-the-art in
ephemerides generation, where the “truth model” (physical real-
ity) is described by a coupled model, but the “estimation model,”
used by e.g., Lainey et al. (2007); Jacobson (2010); Jacobson &
Lainey (2014); Lainey et al. (2021) uses an uncoupled model. By
taking this approach (illustrated in Fig. 3), we can isolate and
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analyze the influence of the present-day approach of using an
uncoupled rotational model for Phobos.

This work uses simulated observations z in all the per-
formed estimations, which have been generated using the cou-
pled model. We note that this approach is in contrast to a
seemingly similar analysis by Yang et al. (2024), who simulate
observations from the real ephemeris (uncoupled model) and fit
these to a coupled model using the approach described in more
detail by Mazarico et al. (2017) and Dirkx et al. (2019). We
discuss the distinction between the two approaches in Sect. 5.
Our observations consist of position observables. This means
that the word “observation” in this work is to be understood as
a position vector, more specifically the position vector of Pho-
bos with respect to Mars, with the components expressed in the
J2000 reference frame (see Sect. 2.1), as produced by numeri-
cal integration of the coupled translational-rotational equations
of motion. These observations were generated every 20 min-
utes, starting (arbitrarily) one Julian year after the epoch J2000.
Observations are assumed noiseless and ideal.

The residuals of our estimation represent the remaining
dynamical behavior of the coupled model that the uncoupled
model is not able to mimic in any way. As explained in Sect. 3.2,
estimated parameters are mis-estimated in the process, since
they absorb part of the effect of this coupling. Our simulation
results quantify this effect directly. Four different estimation sets
were performed, estimating different parameters each. These sets
estimate:

– Set 1: initial translational state, xt,o
– Set 2: initial translational state, xt,o, and once-per-orbit lon-

gitudinal libration amplitude, B (like Jacobson 2010 or
Lainey et al. 2021)

– Set 3: initial translational state and Phobos’s (normalized)
degree 2 zonal gravity coefficient, xt,o and C2,0.

– Set 4: initial translational state and Phobos’s (normalized)
degree 2 sectorial gravity coefficient, xt,o and C2,2.

The first set provides a baseline as to how well the uncou-
pled model can emulate the coupled model when the rest of
the parameters are the same. Comparisons of other estimations
with this one quantify how well other dynamical parameters
can absorb the effects of couplings. The other sets represent
variations on typical ephemeris estimation schemes of Pho-
bos in which a physical property is estimated along with the
ephemerides. We note that the estimation of more than one
of these quantities from the ephemerides leads to a near-ill-
posedness in the solution, since each has a comparable impact
on the orbit: primarily a linear rate in the longitude of periapsis
ϖ(= ω + Ω), (specifically Jacobson 2010):

ϖ̇ =
3
2

(R
a

)2 (
−C20 − 2C22

(
5 −

4A
e

))
. (23)

Results of estimation sets 2–4 quantify how well an uncoupled
model can emulate a coupled model – for which residuals have
to be studied – and how much the estimated parameters are
contaminated by the dynamical mismatch of couplings.

4. Results

This section presents the results we obtained from our simu-
lations, which we categorize into three groups: state propaga-
tion (Sect. 4.1), rotation (Sect. 4.1.2), and parameter estimation
(Sect. 4.2). For the state propagation, the effect of couplings was
analyzed by using an identical initial translational state and, for

the uncoupled model, a once-per-orbit libration amplitude that
is identical to that which is obtained from the coupled model
(Sect. 2.4). How couplings impact the results of estimations was
studied through the analysis explained in Sect. 3.2. A flowchart
summarizing the full procedure followed in this work is provided
in Fig. 3.

In the remainder of the text, extensive use is made of the so-
called RSW frame. At any point of a trajectory, one can define a
reference frame formed by the right-handed triad {r̂, ŝ, ŵ}. Uni-
tary vectors r̂ and ŵ are parallel to the instantaneous position and
orbital angular momentum vectors, while ŝ (which, due to the
near-circularity of the orbit, is close to the velocity unit vector)
completes the triad. The RS plane corresponds to the plane of the
instantaneous elliptical orbit (in-plane), while the W direction is
the direction perpendicular to it (out-of-plane).

4.1. State propagation

As a first approach to the study of couplings, the same initial
state was propagated using the coupled and uncoupled models
for a total of 81 920 hours (around 9 years and 4 months). Proper
damping of the normal modes (see Sect. 2.3 and Appendix B)
requires long damping times. The selected propagation time was
the longest that the equipment used could hold in memory. There
are two main areas in which the differences between these two
simulation results were analyzed: translation and rotation.

4.1.1. Translation

The difference in the state propagation using the coupled and
uncoupled model are shown in Fig. 4. Here, Fig. 4a provides
a direct order-of-magnitude context, showing that the norm of
position differences between the coupled and uncoupled trajec-
tories accumulate to about ∼40 m after about 10 years. Here, we
reiterate the fact that the libration amplitude in the uncoupled
model was set to a value extracted from a Fourier transform of
the results of the coupled model. Consequently, the impact of
once-per-orbit longitudinal librations will be (to first order) the
same for the coupled and uncoupled model. Differences between
the two, on the other hand, originate from neglected libration
components and couplings in the uncoupled case, as well as
implementation considerations, as underlined in Sect. 2.4.

The time behavior of all three components of the propagation
difference can be seen in Fig. 4b. The along-track component
shows a secular trend (the uncoupled trajectory gets ahead of
the coupled one) superimposed by oscillations of ever-increasing
amplitude. The radial and out-of-plane components do not show
a secular component, and only oscillate around ∼0 m with a
growing amplitude of up to 4 m at the end of the integration time.
The largest of these oscillations occurs at the orbital frequency,
as seen in Fig. 4c. Oscillations in the order of millimeters are
present at frequencies very close to the latitudinal normal mode
(ωlat = 27.165 rad/day), a frequency close to which Rambaux
et al. (2012) identified a resonant forcing. They noted that these
frequencies are due to oscillations in Phobos’s inclination and
changes in the secular part of the mean anomaly, and the fact
that there exist differences at this frequency between the coupled
and uncoupled model indicates that this libration has a noticeable
influence on the orbit that, although small, cannot be accounted
for by uncoupled rotational models.

It is also interesting to note the presence of peaks at multiples
of the orbital frequency (2n and 3n specifically) in Fig. 4c. These
are indeed not to be automatically ascribed to couplings, but also
result (at least in part) from artificial signatures introduced by
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Fig. 4. Propagation results. The differences in position is studied in different ways: norm (panel a), components (panel b), frequency content
(panel c) and Keplerian elements (panel d). Vertical lines in the bottom left picture represent (multiples of) the mean motion (n) and latitudinal
normal mode (ωlat). Here, the coupled states have been subtracted from the uncoupled ones. Panel a: norm of position difference between the states
propagated by the uncoupled model and those propagated by the coupled model. Panel b: time evolution of the RSW components of the position
differences between the coupled and uncoupled trajectories. Panel c: frequency content of the RSW components of the position differences between
the coupled and uncoupled trajectories. Panel d: differences in inclination between the coupled and uncoupled trajectories.

the traditional implementation of the uncoupled model, which
defines the satellite’s orientation based on its instantaneous orbit
(Eq. (15), see discussion in Sect. 2.2). This inherent limitation
of the classical uncoupled implementation, which oftentimes
remains overlooked, is naturally avoided in the fully consis-
tent translational-rotational solution provided by the coupled
approach.

The main differences in position are seen to be a secu-
lar trend in along-track position and the onset of radial and
out-of-plane oscillations (Fig. 4b). We can see in Fig. 4d that
the difference in orbital inclination of the coupled and uncou-
pled solution does not have a short-periodic component. Instead,
the dominant frequency of the inclination is 0.01 rad/day, driv-
ing the low-frequency oscillations in the RSW components
of the effects of couplings, as mentioned above. The notable
along-track difference demonstrates that including a single
once-per-orbit libration, as done in classical uncoupled formu-
lations, cannot fully account for Phobos’s longitudinal rotational
motion. This implies that the limitations of the uncoupled model
are not limited to the omission of latitudinal components, but
also have a noticeable in-plane effect. The secular along-track
trend in Fig. 4b nonetheless indicates that couplings induce com-
parable signatures on the in-plane motion as the once per-orbit
libration, since all longitudinal librations – once-per-orbit or

otherwise – are bundled together in Mars’ Phobos-fixed lon-
gitude in the evaluation of Phobos’s gravitational potential
(Eq. (3)). This is reinforced by a comparison between the effects
of couplings and the effects of the once-per-orbit longitudinal
libration. Figure 5 shows in red the effect of the once-per-
orbit libration on the orbit, indicated by the differences between
the uncoupled model and the fully locked model. In particular,
Fig. 5a shows that both couplings and the libration have qualita-
tively similar in-plane effects. The out of plane effects (Fig. 5b),
however, are completely different. In the context of parameter
estimation, this points at the once-per-orbit libration amplitude
having a lot of potential in absorbing the effects of couplings,
which means that it will likely be mis-estimated in minimizing
the in-plane components of the residuals generated by couplings
(see Sect. 3).

4.1.2. Rotation

Differences in rotational motion can be divided in two axes:
longitudinal and latitudinal differences. The uncoupled model,
by definition, produces no latitudinal librations because Pho-
bos’s orbital and equatorial planes are always coincident (see
Sect. 2.2). It is still of interest to study the latitudinal librations
produced by the coupled model (see Sect. 2.4). Table 1 collects
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Fig. 5. Comparison of the position differences between the coupled and uncoupled trajectories (blue) and the position differences between the
classical uncoupled model (i.e., with once-per-orbit libration) and fully locked (i.e., no libration) trajectories (orange). Only the final ten orbits of
the nine years and four months have been plotted. Note the different units. Panel a: in-plane projection of position differences. Panel b: out-of-plane
projection of position differences.

Table 1. Strongest components of latitudinal tidal librations from the
coupled model.

Freq. (rad/day) Amp. (mdeg) Origin

27.1547 8.48481 Forcing near ωlat
7.46106 5.09929 Forcing near ωwob
19.7102 0.809964 Forcing at n
12.2326 0.448258 Forcing near ωlon

Notes. Equivalent to Mars’ Phobos-fixed latitude. For reference: ωlon =
12.354 rad/day, ωlat = 27.165 rad/day and ωwob = 7.336 rad/day).

the largest peaks of the frequency spectrum of the tidal latitudi-
nal librations, i.e., Mars’ Phobos-fixed latitude. In studying these
types of librations instead of the physical librations, the low-
frequency orbit-induced effects are removed. In these lines, tidal
latitudinal librations are purely associated with high-frequency
forcings, which are amplified if they are close to Phobos’s nor-
mal modes. It is to be noted that the first two components in
Table 1 correspond to the second and fifth terms tabulated by
Rambaux et al. (2012), associated with different combinations
of the Delaunay arguments and consequence of a forcing occur-
ring at that frequency3. These forcing frequencies are close to
the latitudinal and wobble normal modes (ωlat = 27.165 rad/day,
ωwob = 7.336 rad/day), producing an amplified libration when
integrating the rotational equations of motion. The third term
in Table 1 occurs at the orbital frequency of the mean motion,
while the fourth corresponds to a forcing close to the longitu-
dinal normal mode (ωlon = 12.354 rad/day). On the other hand,
longitudinal librations are present in both the coupled and uncou-
pled models. The largest terms resulting from the coupled model
are provided in Table 2. As a point of reference, the first and
second peaks can be correlated to the second and fifth terms in
Table 4 by Rambaux et al. (2012). The results for the uncou-
pled model are tabulated in Table 3, which corresponds to Fig.
2. As a reminder, the uncoupled model should ideally only con-
tain one single libration at the orbital frequency. However, this

3 Note that Rambaux et al. (2012) used a different angle decomposition
and reference frame than we do here.

Table 2. Strongest components of longitudinal tidal librations from the
coupled model.

Freq. (rad/day) Amp. (mdeg) Origin

39.3887 25.1998 Forcing at 2n
13.5769 3.5805 Forcing near ωlat/2
27.1557 1.5757 Forcing near ωlat
59.0831 0.36885 Forcing at 3n
12.2634 0.25452 Forcing near ωlon

Notes. Equivalent to Mars’ Phobos-fixed longitude. For refer-
ence: ωlon = 12.354 rad/day, ωlat = 27.165 rad/day and ωwob =
7.336 rad/day).

Table 3. Main peaks of the tidal longitudinal libration as computed by
the uncoupled model.

Frequency (rad/day) Amplitude (mdeg)

39.3887 21.5162
27.1557 0.7545
13.5769 0.3672
59.0831 0.23865

Notes. Equivalent to Mars’ Phobos-fixed longitude. Note that all these
librations are artifacts from the implementation of Eq. (15) and should
ideally not exist.

is not the case due to the use of Eq. (15b). Therefore, all addi-
tional frequencies present in the uncoupled libration spectrum
are not physical, but artificial effects of the commonly adopted
implementation strategy. On the other hand, the results of the
coupled model account for the full forcing spectrum and provide
a realistic and self-consistent mapping from forcing to response,
including weak forcing terms at frequencies close to the normal
modes (see Sect. 2.3) which are amplified by this proximity.

The once-per-orbit libration amplitude should be the same
in both models – as explained in Sect. 2.4. Phobos’s once-per-
orbit longitudinal libration amplitude can be extracted from the
results of the coupled model, producing a scaled tidal libration
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amplitude of B = 3.29918 (a physical libration amplitude of
A = 1.12412◦, the one used for the uncoupled model in this
work), which can be compared to the analytical prediction of
Eq. (14), i.e., B = 3.29807 rad. The difference between the two
values is of 0.03%, which translates in an error of 10−3 degrees in
the amplitude of the once-per-orbit physical libration amplitude.
Note that the analytical prediction was developed in the con-
text of uncoupled models, and their predictions matching so well
with the result of a coupled propagation indicates that uncou-
pled models can naturally replicate the once-per-orbit libration
amplitude of the complex coupled dynamics of Phobos.

The origin of librations in the coupled and uncoupled mod-
els is very different. The uncoupled model, through the implicit
use of osculating orbital elements in computing the libration
angle through Eq. (15), shows longitudinal librations at the fre-
quencies at which accelerations naturally occur. In the coupled
model, torques are expected to naturally occur, to a large extent,
at similar frequencies as the accelerations. Their effect on rota-
tion is approximately given by Eq. (16b). Thus, in the coupled
model, the normal modes play a big role in Phobos’s rotational
response: torques that occur close to the normal modes (ωi ≈ ωo)
give rise to large-amplitude forced librations compared to the
amplitude of the forcing. An illustrative example is that of the
longitudinal libration occurring near ∼27.15 rad/day (Table 2).
This frequency is around twice the synodic frequency between
Phobos’s orbit and the Martian rotation, and very close to the lat-
itudinal normal mode. Therefore, this leads to a relatively strong
response in the coupled model. We see a response at an identi-
cal frequency in Table 3 for the uncoupled model. However, the
origin of this response is very different: it is the result of the
use of Eq. (15b) in which fast oscillations in the empty focus
are erroneously mapped to longitudinal librations. Rather than
providing any physical information on its rotation, these results
indicate the limitation of using this particular libration model for
Phobos (Sect. 5.1).

4.2. Parameter estimation

In this section, we present the results from the setup described in
Sect. 3. We simulated observations from a coupled model, and
then estimated the dynamics using an uncoupled model. This
allowed us to quantify how much of the difference between a
coupled and uncoupled propagation (Sect. 4.1) can be absorbed
by adjusting parameters of the uncoupled model. The remaining
effects that cannot be absorbed are observed as estimation post-
fit residuals.

We outline the simulations we ran in Sect. 3.3, which were
performed for different arc lengths up to 1000 days (the max-
imum that the equipment allowed). In assessing the quality of
the estimation, the residuals and estimated parameter difference
from truth were used as figures of merit. The former were studied
both as norms and as RSW components.

4.2.1. Estimation of initial state

First, an estimation of initial state only was performed with
the uncoupled model, using observations generated by the cou-
pled model. In this estimation, focus was put on an analysis
of residuals. These residuals provide insight on what effects
the initial state cannot absorb and represent an upper bound
for residuals of later estimations. Residuals that remain in later
estimations represent effects that additional parameters can-
not absorb, while reduction in residuals represent effects of
couplings that additional parameters can absorb.

Mismodeling in the uncoupled case could be seen to impact
the along-track motion in a more significant way than the R or
W components when comparing the propagation of coupled and
uncoupled dynamics (see Sect. 4.1).

Figure 6a shows how fitting the initial state reduces the dif-
ferences between the coupled and uncoupled models, in terms
of the norm of the position differences between the two. It shows
that differences are reduced by a whole order of magnitude, from
a maximum of around 15 m to below 2 m. Recalling Eq. (22),
the blue line corresponds to |ε(t, yo)| while the red line corre-
sponds to |ε(t, y ∗)|. As expected, the norm of the residuals –
red curve in Fig. 6a – reaches a minimum near the center of
the arc, and increases to reach a maximum at the two ends of
the arc. The difference between the true and estimated orbits are
decomposed into RSW components in Fig. 6b. The S component
is again the largest component of the residuals, reaching 1.5 m
at the ends of the arc, while the W component is the smallest
one and reaches maxima of around 0.5 m. A Fourier decompo-
sition of all three components can be seen in Fig. 6c. Indeed,
the dominant frequency is that of the mean motion n, with con-
tributions at millimeter level of twice the mean motion and half
the frequency of the latitudinal normal mode. Furthermore, there
are also a series of peaks at sub-mm level that, although likely
below the noise floor of near-future observation techniques, can
all be correlated to frequencies close to the normal modes, at
which weak forcings are amplified by resonance and significant
librations were observed. The slow frequencies of the residuals
components have been cropped out of Fig. 6c for clarity, but
they all show large oscillations below 0.1 rad/day and at around
0.01 rad/day, coincident with the long term orbit-induced effects
mentioned in Sect. 4.1.

As a specific example of the impact of the fitting on the
orbital geometry, the inclination difference between the coupled
and uncoupled propagation is indeed reduced by the estimation
(Fig. 6d), but a long-periodic behavior remains. Moreover, a fre-
quency decomposition revealed that both the pre-fit and post-fit
inclination residuals contained a significant peak close to the
wobble normal mode, owing again to the inability of an uncou-
pled model to emulate the resonance properties of the rotational
equations of motion.

For the sake of generalization, it is useful to see how our
results would extrapolate to estimations performed over arcs of
different lengths. To this end, Fig. 7a shows that, regardless
of the arc length, the residual norm increases secularly from
the mid-arc point. In this sense, extrapolation becomes straight-
forward, and one could quite well predict how the residuals of
a 2000-day arc would behave. On the other hand, Fig. 7b shows
the evolution of the error in estimated initial state as a function of
the length of the estimated arc. There are two things to point out.
On the one hand, errors increase monotonically with increasing
estimation duration. On the other hand, true for all arc lengths,
the S component of the position error is the largest of the three.
The R and W components, on the other hand, are comparable to
each other and much lower than the S component.

4.2.2. Estimation of additional parameters

This estimation of initial state described in the previous section
is now used as baseline to assess how different parameters can
absorb the effects of fully coupled propagation. As mentioned in
Sect. 3.3, three separate sets of estimations were performed in
addition to the baseline one, estimating B, C20 or C22 in addi-
tion to the initial state. As shown by Eq. (23), each of these
quantities induces a comparable effect in Phobos’s orbit, and we
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Fig. 6. Residuals of a 1000-day estimation of initial state. A coupled model was used for observations and an uncoupled model for estimation.
Panel a: differences between the coupled and uncoupled trajectories when the same initial state is used and when the best-fit estimated initial state
is used for the uncoupled model. Panel b: time history of the RSW components of residuals. Panel c: frequency content of residual components.
Vertical lines indicate (integer multiples/divisors of) the mean motion (solid) and the three normal modes: longitudinal (dotted), latitudinal (dashed),
and wobble (dash-dot-dot). Panel d: differences in inclination between observed and estimated trajectories.
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Fig. 7. Comparison of the results of estimations of different lengths. All of them only estimate the initial state. All of them have the same true
initial state, with |ro| = 9484 km and |uo| = 2113 m/s. Panel a: residual histories for estimations of different lengths. Panel b: change in estimated
initial state for estimations of different lengths (in days).
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Fig. 8. Results in terms of residuals for an estimation of initial state and once-per-orbit libration amplitude and an estimation of initial state
and gravity coefficients. The observations are generated with a coupled model and estimation is performed with an uncoupled model. Panel a:
component-wise post-fit residual history of an estimation of initial state and libration amplitude. Panel b: frequency content of the S components
of residuals for all three different estimations: initial state, initial state and libration amplitude, initial state and gravity coefficients. Vertical lines
indicate (integer multiples/divisors of) the mean motion (solid) and the three normal modes: longitudinal (dotted), latitudinal (dashed) and wobble
(dash-dot-dot).

therefore study them independently rather than concurrently esti-
mating two or three parameters. Consequently, the residuals of
each estimation were very similar in both time- and frequency-
domain and they are not be presented independently. Figure 8a
shows the residual history of a 1000-day estimation of the initial
state and libration amplitude (being representative for each of
the three cases). Comparison with Fig. 6b shows that the out-
of-plane residuals are indeed not significantly reduced by the
estimation of either B or C2,x, while the radial component is
completely flattened out (oscillations at millimeter level). The
S component, however, shows long-period oscillations at the
centimeter level that the estimation of the additional parameter
cannot account for. Figure 8b shows the residual components
at fast frequencies. There are some that cannot be corrected
by adjusting the libration amplitude or harmonic coefficients,
namely those that are tightly connected with the resonance phe-
nomenon present in rotational dynamics featured in the coupled
model. Particularly the component close to the latitudinal mode
ωlat and half of it (dashed lines) in Fig. 8b are seen at the
same level for the estimation of initial state alone (yellow curve)
and for estimations with additional parameters (blue and purple
curves). These arise from forcings amplified by the rotational
equations of motion contained in the coupled model that the
uncoupled model does not have the ability to amplify in the same
manner, no matter the changes in libration amplitude or har-
monic coefficients. Furthermore, it is noted that some of these
peaks might come from the spurious frequencies introduced by
the secular modeling of the once-per-orbit longitudinal libra-
tion in the uncoupled model (see Eq. (15) and Fig. 2), rather
than from actual physical effects characteristic of the coupled
model. The improvement in residuals between uncoupled and
coupled propagation is driven by the absorption of couplings into
other parameters, namely the libration amplitude and the nor-
malized harmonic coefficients C2,0 and C2,2, whose estimates
consequently contain errors with respect to their true values.
This estimation error has been plotted in Fig. 9 for estima-
tions of different durations. We can clearly see that the results
converge to almost constant values very quickly, with errors
in C2,0 and C2,2 of ∼6.6 × 10−5 and ∼1.1 × 10−5 respectively
(relative errors of about 0.2% and 0.07%). These errors are
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Fig. 9. Errors in estimated parameters for estimations performed with
arcs of different lengths. Observations are generated with a coupled
model and estimation is performed with an uncoupled model. Libra-
tion amplitude errors given in terms of the physical libration amplitude
A (see Sect. 2.2).

several orders of magnitude below the uncertainties obtained
from the shape of Phobos and an assumption of homogeneous
mass distribution (Pätzold et al. 2014). The error in the once-per-
orbit longitudinal libration amplitude seems to quickly stabilize,
and acquires a value of 1.58 × 10−3 deg. This is 4 orders
of magnitude below the formal error reported by Burmeister
et al. (2018), who determine the Phobos libration in their
determination of a Phobos control point network using stereo-
photogrammetric with images obtained by the Mars Express and
Viking missions. As expected, this shows that couplings are not
required for the proper inversion of current data. We reflect on
the implications for future missions in the following section.

A complete comparison between these estimations and those
performed in Sect. 4.2.1 requires assessing the extrapolation
of the results that we show for a 1000-day estimation. The
main difference between those residuals in Sect. 4.2.1 and the
ones of this section is that residuals are now dominated by
the out-of-plane component. As such, extrapolating the residu-
als to longer durations continues to be straightforward, with the
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residual amplitude growing approximately linearly over time. For
shorter estimations, we found through numerical experiments
that the amplitude of the along-track oscillation reduces with the
total estimation time. Consequently, rms residuals over shorter
time spans than the considered 1000 days scale approximately
linearly with total simulation time.

5. Discussion

This section puts the results from this paper in the context of cur-
rent and future missions and data. It assesses the impact of these
results on currently available and future information on Phobos’s
interior.

5.1. Libration mismodeling

The currently most robust procedure for determining the libra-
tion of Phobos, with a single once-per-orbit longitudinal libra-
tion amplitude as a free parameter in the fitting of a control
point network (Burmeister et al. 2018), requires a rotational
model with free parameters to fit. In our analysis, we used an
uncoupled model with a single free parameter for the once-per-
orbit longitudinal libration, which we show (Sect. 4.1) to most
notably neglect latitudinal librations and mis-represent longitu-
dinal librations, as a consequence both of omitting higher-order
longitudinal librations, and the artificial librations induced as
numerical artifacts from the use of Eq. (15b). The strongest lat-
itudinal libration – i.e., Mars’ Phobos-fixed latitude – has an
amplitude of 8.5 × 10−3 degrees at 27.14 rad/day (see Table 1).
The uncoupled model we consider in our analysis can intro-
duce displacements in surface points of up to 2 m. These errors,
arising from a dynamical rotational model, are just below obser-
vational quality indicated by e.g., the resolution of 2.6 m/pixel of
the Super Resolution Camera of Mars Express (MEX) (Oberst
et al. 2014). These librations are therefore not critical in the pro-
cess of currently available data, also considering the fact that
the uncertainty of the once-per-orbit libration from current data
is about 4 times higher (0.03 degrees) than the signature of
latitudinal librations.

On the other hand, MMX will carry TENGOO, an opti-
cal camera with a 0.9 m/pixel resolution (Kameda et al. 2021).
In this new scenario, latitudinal librations produced by cou-
pled models may become significant in studies using these new
images. A possible solution is to include relevant librations at
the appropriate frequencies and estimate their amplitudes in the
same way the once-per-orbit longitudinal libration amplitude is
estimated in current bundle block adjustments. This, however,
presents the complication of identifying what frequencies are
relevant in the frequency spectrum – in particular for frequencies
that will arise at forcings close to the normal modes. This manual
and somewhat forceful introduction of frequencies into the libra-
tional spectrum of a tidally locked body such as Phobos presents
several complications, thoroughly explained in Sect. 2.5.

When using the free parameters of a coupled model in the
determination of a control point network (rather than one or
more libration amplitudes), these issues are mitigated. Specif-
ically, the advantage that coupled models bring in this respect
lies in the fact that 7 independent scalar parameters – the inde-
pendent entries in the initial rotational state vector (see Sect. 2.1)
and mean moment of inertia – can represent the full libration
spectrum in all three directions. This could then be used as an a
priori model for a control point network. However, if one would
want to use the control point network to improve the determina-
tion of the rotational dynamics, this will come at a high cost: the

orbital-rotational dynamics of Phobos would need to be deter-
mined along with (or at least iteratively with) its control point
network in a single inversion.

5.2. Phobos’s interior composition

Equation (24) (Dirkx et al. 2019) provides Phobos’s moments of
inertia as functions of the (unnormalized) gravity coefficients
C2,0 and C2,2 as well as the scaled mean moment of inertia
Ĩ = I/MR2, where M and R are Phobos’s mass and reference
radius. Note that Eq. (24d) relates Ĩ with the once-per-orbit lon-
gitudinal libration amplitude A. With the errors in estimated
harmonic coefficients and libration amplitude from Fig. 9, the
inertia moments can be mis-calculated by ∼6 × 10−4 (0.4%).

Ixx

MR2 =
1
3

C2,0 − 2C2,2 + Ĩ (24a)

Iyy
MR2 =

1
3

C2,0 + 2C2,2 + Ĩ (24b)

Izz

MR2 = −
2
3

C2,0 + Ĩ (24c)

Ĩ =
2
3

C2,0 + 12C2,2

(
1 −

2e
A

)
(24d)

Le Maistre et al. (2019) provided the values of the libration
amplitude, harmonic coefficients and moments of inertia for dif-
ferent interior structures of Phobos – rubble pile, layered, ...
The moments of inertia of different structures differ by ∼15%,
while models are largely indistinguishable among them in terms
of libration amplitude and degree 2 gravity coefficients, with
the exception of the highly fractured and the disrupted-and-
reaccreted bodies (both necessitating a monolithic Phobos at
least at some point in time). In the light of the results of this
paper, couplings will not induce a sufficient shift in estimated
observables to discriminate between categories, or to draw erro-
neous conclusions to this respect. However, the estimation errors
that may be made using an uncoupled model (using one or
more libration terms) may prevent the ultimate science return
of a mission from being achieved, if signatures in the data are
misattributed to the incorrect parameters (Dirkx et al. 2014), as
is observed in Fig. 9. The implications and nuances for future
missions are discussed in Sect. 5.3.

Unlike the uncoupled models, in which one (or more) libra-
tion amplitudes are estimated, from which Ĩ and subsequently
the interior structure is inferred, coupled models offer a different
estimation approach. The libration amplitude itself is not directly
estimated with a coupled model, but the mean moment of inertia
Ĩ can be, without the intermediate determination of the libration.
Similarly, the influence of the degree-two gravity field coeffi-
cients on the inertia tensor, and subsequently the body’s response
to torques, is captured fully and directly by the estimation (Dirkx
et al. 2019).

5.3. Future missions

Attempts at providing constraints on Phobos’s libration ampli-
tude A and harmonic coefficients C2,0 and C2,2 from Phobos’s
orbit have been made from astrometric data (Lainey et al. 2007;
Jacobson 2010; Jacobson & Lainey 2014; Lainey et al. 2021).
However, as noted in their analyses, determination of one of
these quantities requires fixing the other two (while determining
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two of them results in high correlations). As a result, ephemeris
solutions are only sensitive to a linear combination of the three.

The libration amplitude has been independently determined
in the creation of Phobos control point networks (Willner et al.
2014; Burmeister et al. 2018), with the latter achieving a formal
uncertainty at the level of 0.03º. Radio science data from Mars
Express was used by Yang et al. (2019) to estimate Phobos’s C2,0
and C2,2 concurrently, but with low statistical significance, with
the analysis by Pätzold et al. (2014) stating that the signature
of these parameters on the same datasets were not sufficiently
strong to provide proper constraints. Geophysical knowledge of
Phobos is therefore limited by the nature of available observa-
tional data, which is in turn limited by the mission profiles and
instruments of spacecraft that have studied Phobos.

The determination of Phobos’s harmonic coefficients C2,0
and C2,2 will benefit greatly from tracking to a Phobos orbiter.
On the one hand, the signature of these two parameters on
a spacecraft orbiting Phobos is determined by the position of
the spacecraft in the Phobos-fixed frame, most notably by the
orbiter’s Phobos-fixed longitude λ and latitude ϕ (see Eq. (3)).
Although these two coordinates are sensitive to Phobos’s own
librations, they are dominated by the orbiter’s position in its
Phobos-bound orbit. This allows us to de-correlate the estimates
of libration amplitude from the estimates of harmonic coef-
ficients. Furthermore, the two coefficients C2,0 and C2,2 have
unambiguously different signals in the trajectory of a Phobos
orbiter, allowing for further de-correlation of the two.

Overall, (near-)future missions (see Sect. 1), in particular
those with a lander or orbiter segment, promise to change this
situation. With the realization of such missions, we will have the
following datasets that contain information on Phobos’s orbital
and rotational dynamics:
(i) Camera observations of Phobos from which its orientation

can be determined
(ii) Astrometric observations of Phobos for determination of its

ephemeris
(iii) Radio tracking data of spacecraft near Phobos
(iv) Radio (or laser) tracking of a lander on Phobos.
The expected improvement in the quality and quantity of exist-
ing datasets (i)–(iii), and the addition of new datasets (iv) will
allow the dynamics of Phobos, and as a result its interior to
be probed to unprecedented accuracy. At present, dataset (iii)
is limited to flybys, where a pseudo-orbiter would dramatically
enhance the sensitivity to the gravity field (Plumaris et al. 2022).
Direct-to-Earth tracking of both orbiters and landers will be
sensitive to Phobos’s ephemeris, orientation and gravity field,
while lander-to-orbiter tracking are (to first order) insensitive
to the moon’s ephemeris. A lander can further decouple Pho-
bos’s rotational motion in two ways, first by direct observations
of Phobos’s orientation using a star-tracker, and secondly as a
result of the rotation being directly visible in the tracking data,
and not only due to its effect on Phobos dynamics (Le Maistre
et al. 2013; Dirkx et al. 2014). The dynamics of a lander could be
further constrained by measuring its relative dynamics to Mar-
tian orbiters, using methods such as same-beam Interferometry
(Dehant et al. 2017) or in-beam VLBI (Fayolle et al. 2024). The
best and most robust science return will be obtained from a
concurrent consideration of various complementary datasets.

Specific examples of a near future Phobos mission is JAXA’s
MMX (Nakamura et al. 2021; Usui et al. 2020). From this mis-
sion’s data the C̄20 and C̄22 gravity field coefficients could be
determined to an accuracy of 0.1% (Yamamoto et al. 2024), i.e.,
2.9 × 10−5 for C̄20 and 1.6 × 10−5 for C̄22. At such an accu-
racy, our results in Fig. 9 indicate that the coupling of orbit and

rotation becomes necessary to properly propagate these uncer-
tainties (which are obtained from spacecraft tracking) into the
orbital dynamics of Phobos. It has been indicated in this MMX
study, and others (Yang et al. 2019, 2020), that the accurate
determination of Phobos’s gravity field from spacecraft tracking
data will be sensitive to errors in the ephemeris. For instance,
Yamamoto et al. (2024) noted that an error of 10m in the along-
track initial position of Phobos results in 2% and 5% true errors
in the estimated C2,0 and C2,2 respectively, while Yang et al.
(2020) reported true errors in estimated physical longitudinal
libration amplitude in the order of 5 × 10−4 degrees, compara-
ble to the true errors we find in our manuscript. Therefore, a
concurrent estimation of spacecraft and moon dynamics may
be necessary to fully exploit the datasets (Fayolle et al. 2022,
2023). Our results indicate that it may be necessary to consider
the coupled orbital-rotational dynamics in such an approach or,
at the very least, consider a more complex rotational model than
a kinematic one with only a single degree of freedom.

The analyses of more speculative mission concepts involving
direct-to-Earth tracking of landers by Le Maistre et al. (2013);
Dirkx et al. (2014) yielded post-mission uncertainties of down to
10−5 degrees for the once-per-orbit libration. This is well below
the true errors in estimation of libration amplitude reported in
the present paper (see Sect. 4.2.2 and Fig. 9) originating from
rotation mismodeling in the uncoupled approach. This indicates
that couplings will necessarily have to be considered in the inver-
sion of data coming from such missions. On the other hand, we
show that couplings produce a drift in the along-track direction
(see Sect. 4.1 and Fig. 4b), which accumulate to several meters
over ∼50 weeks. The effect of a meter level bias in Phobos’s
ephemeris on the product of inverting Doppler data from a Pho-
bos lander was investigated by Le Maistre et al. (2013), who
found true errors in estimated libration amplitude in the order
of 10−2–10−1 degrees, well above all expected formal errors.
This clearly shows the relevance of using a coupled model when
analyzing lander tracking data.

In their study, Dirkx et al. (2014) used a refined model
of Phobos’s rotation in combination with an uncoupled trans-
lational model, featuring a total of 15 different longitudinal
librations at the frequencies obtained by Rambaux et al. (2012),
as well as 9 librations of Phobos’s right ascension and declina-
tion angles (in reality, the cm-level data they simulated would
require significantly more terms to fully capture all effects,
further exacerbating the issues that would occur in an actual
mission). They estimated all amplitudes of the sine and cosine
term of each libration, which amounted to a total of 66 esti-
mated parameters to determine the orientation of Phobos. They
reported extremely high correlations among them, about which
they noted that it is a consequence of over-parameterizing the
attitude of Phobos, which in principle would require only seven
additional parameters compared to the translational dynamics:
the initial orientation (three independent quantities), the ini-
tial angular velocity vector (with three entries), and the mean
moment of inertia. By modeling the rotation dynamically, the
rotational state is fully determined by the initial state and a dif-
ferential equation of the form of Eq. (18b). The initial state has
only six free parameters: three quantities specifying the orienta-
tion, three specifying the angular rates. Modeling the response to
forcing torques then only requires the addition of a single param-
eter (compared to the translational dynamics), namely the mean
moment of inertia.

The methodology of fitting the coupled orbital-rotational
dynamics has been applied in the processing of Lunar Laser
Ranging (LLR) data (e.g., Folkner et al. 2014), with the

A233, page 17 of 22



Martinez, J., et al.: A&A, 700, A233 (2025)

methodology described in detail by Mazarico et al. (2017)
and Dirkx et al. (2019). The procedure was applied by Yang
et al. (2024), specifically in fitting the coupled orbital-rotational
dynamics to existing models of Phobos dynamics. They used
the ephemeris of Lainey et al. (2021) as reference ephemeris
(observations) to fit different coupled dynamical models with
ever increasing complexity, such as Phobos’s deformability and
higher-degree gravity coefficients, which are not included in
their reference ephemeris. However, the residuals they obtained
(position difference of close to 1 km over a period of 10 years,
primarily consisting of short-period effects) after fitting their
dynamical models to the spice kernels are far higher than those
we obtain here. Unlike the results of Yang et al. (2024), the mag-
nitude and behavior of our residuals are in line with theoretical
expectations of the effect of higher-order rotation effects that
are not captured by our uncoupled model. It is likely that their
much higher residuals are a result of mismatches in the details of
the dynamical models used in the generation of the underlying
ephemeris model, and their fitting model. In doing so, the effect
of translational-rotational couplings on their own is obscured
by these dynamical mismatches, making it very hard to isolate
the effect of couplings – which our manuscript very specifically
addresses. Their high residuals are a sign of the complexities
entailed in ensuring model consistency at the level required for
upcoming missions such as MMX.

6. Conclusions
This paper investigates how couplings between Phobos’s trans-
lational and rotational dynamics affect the propagation of its
dynamics. Furthermore, we show how using a simple, single-
frequency uncoupled model in data inversion could bias the
estimates of geodetic parameters of interest. The solutions of
propagating an initial state with coupled and uncoupled dynam-
ics were directly compared, and the latter model was used to
estimate different parameters from observations generated by the
former.

In addition to providing numerical results for the differences
between the two models, we also discuss their implementation in
detail. Data from future missions will require the dynamical sig-
natures of multiple libration terms to be modeled. Extending the
current uncoupled method to include them is an option, but we
argue for the adoption of a coupled dynamical model in Sect. 2.5.
We reiterate the core of our arguments here:

– The use of the instantaneous empty focus as a reference
direction (see Eq. (15)) induces spurious terms into the
libration, which have an amplitude that is similar to the
higher-order librations (at around 0.01 degrees, Fig. 2).

– Even if the short-periodic oscillations were filtered out of
the libration model, the use of the empty focus as a reference
direction is not a fully correct representation of the physical
effect that is to be modeled, and breaks down at O(e2).

– Creating a model to overcome these issues would be pos-
sible, but would be complicated by the possible need for
iterations between orbital and rotational models, with the
possible issue that this may lead to small errors in the
estimation (or the resulting uncertainties).

– The adoption of a fully time-parametrized kinematic rotation
model is complicated by the need to enforce the spin-
orbit resonance following a change in translational state in
successive steps of the estimation.

Instead of developing higher-order uncoupled models to capture
additional librations and associated estimation strategies that do
not suffer from the issues listed above, the use of a self-consistent

coupled orbital-rotational dynamical model is preferred. It can
be incorporated into an estimation using the models presented by
(Mazarico et al. 2017; Dirkx et al. 2019), and has been used in the
analysis of LLR data for many years (Folkner et al. 2014). Such
a model would be robust for inclusion in estimations well into
the future, up to and including the use of high-accuracy lander
tracking data using laser or radio tracking. Below, we summarize
the quantitative results on when the use of a coupled model (or,
more generally, any model more accurate than a single-libration
model) becomes relevant.

As expected from theoretical predictions, we found that the
dominant effect of the coupled propagation of orbit and rota-
tion is qualitatively similar to the once-per-orbit longitudinal
libration when it comes to motion inside the orbital plane. Dif-
ferences between the coupled and uncoupled trajectories were
largest in the along track direction, with the uncoupled solution
getting ahead of the coupled one as much as 40 m after nine years
and four months. However, a secular component was not present
in the differences in the radial and out-of-plane directions, which
oscillated with a growing amplitude that reached 4 m.

The largest longitudinal and latitudinal librations that the
simplified, single-frequency uncoupled model does not account
for stand at amplitudes of 3.6 × 10−3 and 8.5 × 10−3 degrees,
respectively – displacements at Phobos’s surface of 0.8 and
1.9 meters, respectively. While the additional longitudinal libra-
tions cause a drift in along-track position, latitudinal librations
couple with Phobos’s orbit to produce an ever-growing oscilla-
tion of Phobos’s inclination with a period of about two years,
which in turn induces long-term librations that are not accounted
for by a single-frequency uncoupled model as typically used in
orbital studies of Phobos. Finally, as illustrated in Fig. 2, extra
libration signals at multiples of the orbital frequency are arti-
ficially introduced by the classical uncoupled implementation
(Eq. (15)). These additional signatures are automatically absent
from a fully consistent translational-rotational solution, which
highlights yet another advantage of a coupled propagation.

The largest post-fit residuals were seen to occur mostly in the
out-of-plane direction, in which the once-per-orbit longitudinal
libration and Phobos’s zonal and sectorial gravity coefficients of
degree 2 have little to no effect, and cannot absorb the mismod-
eling of the rotation. They showed the largest values at 45 cm at
the two ends of the 1000-day arc. Along-track residuals showed
a long-periodic oscillation that could potentially outgrow the
out-of-plane components for longer estimations. Further study
is required in this direction.

Finally, mismodeling of the moon’s rotation in the estimation
(which originates from neglected libration components, and/or
translational-rotational couplings) makes the estimated param-
eters deviate from their true values. These true errors should
ideally stay below formal errors. True errors in the amplitude
of the once-per-orbit physical longitudinal libration A and Pho-
bos’s normalized coefficients C2,0 and C2,2 were found to be of
about 1.58× 10−3 degrees, 6.6× 10−5 and 1.1× 10−5 respectively
after 1000 days. All these true errors are well within the error
bars of current inversion products, but are one to three orders of
magnitude above the expected formal errors computed by Dirkx
et al. (2014) for a lander ranging concept. This type of obser-
vation represents the limiting factor in a likely Phobos-bound
mission that provides lander and orbiter range measurements.
These data will be most fruitfully processed together as a sin-
gle observation set. Thus, a proper inversion of these data will
not be possible with the use of the same uncoupled models
that have been customary until now. For this, a more refined
rotational model is necessary. As we argue above, a coupled
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translational-rotational model is best suited for such high-fidelity
applications, as it provides a more robust determination of the
coupled dynamics while ensuring that all physical effects are cor-
rectly captured in the quantification of the post-fit uncertainties
of the interior properties.
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Appendix A: Complete simulation definition

Here, we summarize the specific models we have used in our
equations of motion.

In the evaluation of all the terms in the equations of motion,
the positions of all bodies is required, as well as their gravita-
tional parameters and, in some cases, their harmonic coefficients
as well. The rest of this section will specify the sources of all this
data used in this work.

A.1. Mars

– Gravity field: MRO120D developed by Konopliv et al.
(2016). Mars’ reference radius (R in Eq. (3b)) is
3396.0km and the Martian gravitational parameter is µM =
42828.3750104 km3/s2. All sine and cosine coefficients up
to degree and order 12 have been included.

– Rotation model: The rotation model developed by Konopliv
et al. (2016), used also by Lainey et al. (2021).

A.2. Phobos

– Gravity field: Quadrupole gravity field, using only C2,0 =

−0.029243 and C2,2 = 0.015664, taken from the homoge-
neous model of Phobos by Le Maistre et al. (2019). The
reference radius is 14km and the mass is 1.06 × 1016kg. A
value of G = 6.67259 × 10−11 was used, resulting in µP =
707294.54m3/s2.

– Rotation model: See Sect. 2.4.
– Inertia tensor: Computed with the gravity coefficients as per

Eq. (A.1) (Le Maistre et al. 2019), where Ĩ is the mean
moment of inertia. These moments are normalized with
MR2. In this work, the value of Ĩ was selected to be consis-
tent with the homogeneous model of Phobos. The full tensor
for a gravity field containing all coefficients up to degree
and order 2 is provided in Eq. (23) by Le Maistre et al.
(2019), from which a normalized mean moment of inertia
of Ĩ = 0.2645233 can be inferred.

Ixx =
1
3

C2,0 − 2C2,2 + Ĩ

Iyy =
1
3

C2,0 + 2C2,2 + Ĩ

Izz = −
2
3

C2,0 + Ĩ

Ixy = −2S 2,2

Ixz = −C2,1

Iyz = −S 2,1

(A.1)

A.3. Third bodies

– Sun, Jupiter and Earth: The masses of these bodies are taken
from the INPOP19a (Fienga et al. 2019) ephemerides prod-
uct. Their locations are computed with a combination of the
NOE-4-2020 ephemerides (Lainey et al. 2021) within the
Martian system.

– Deimos: The mass and position of Deimos are computed
with the NOE-4-2020 ephemerides (Lainey et al. 2021).

A.4. Numerical integration

All these equations and terms have been numerically propa-
gated using Tudat (TU Delft Astrodynamics Toolbox), which

offers a wide range of possible integrators, propagators and envi-
ronments, and has been used for a range of analyses related to
the dynamics of natural satellites, and their estimation (Dirkx
et al. 2014, 2016; Plumaris et al. 2022; Fayolle et al. 2022, 2023,
2024). In this work, all simulations have been performed using
the Cowell propagator formulated in Eq. (9) in combination
with an RKF8(10) integrator working in a fixed-step regime of
5 minutes. For reproducibility purposes, Eq. (A.2) provides the
translational and rotational initial states returned by the damping
algorithm discussed in Sect. 2.3 and described in B. The trans-
lational state has been used for both the coupled and uncoupled
models in propagation. We (arbitrarily) set our initial time to the
epoch J2000.

xt,o =



−1991723.0176246795
−8742964.680527888
−3180540.016758049
1843.0987517454296
−43.60246872601227
−1018.5417927808861


(A.2a)

xr,o =



0.7117384685576372
0.3074341368827725
0.0347308749007907
0.6306396516101695

6.2438591968356885 × 10−9

−1.3079675754811962 × 10−7

2.323693355272973 × 10−4


(A.2b)

Appendix B: Damping algorithm

The damping algorithm used in this work is that used by Ram-
baux et al. (2012). This algorithm is heavily particularized for
obtaining an initial state of bodies that are locked in spin-orbit
resonance and present a constant (averaged) rotation around their
z axis. Such a constant rotation rate will follow the evolution of
their orbital mean motion, and will be denoted here as ωo. The
algorithm is designed to damp the normal modes around all axes,
while preserving this constant rotation.

For this, a virtual torque is added to the dynamics of the
moon, which is known to oppose its rotation. This virtual torque
Γd is computed as in Eq. (B.1).

Γd = −
1
τd

I (ω − ωo) (B.1)

In this equation, τd is a given dissipation time that is provided
by the user, I is the body’s inertia tensor (in body axes), ω =
[ωx , ωy , ωz] is the rotational velocity of the moon (expressed in
body axes) and ωo = [0 , 0 , ωo] is the constant angular velocity
of a moon in pure synchronous rotation.

In order to obtain the damped dynamics of the moon, the
algorithm propagates the dynamics with the torque forward in
time for a time of 10τd. The final state is used to start a propaga-
tion backward in time and without the virtual torque. The result
of this forward-backward propagation is a damped initial state
at t = 0 that, if propagated forward in time without the virtual
torque, the dynamics will not contain the normal modes.

Or at least, not in such a strong way as before the two
propagations. The damping provided by the virtual torque
is not perfect, so the process is repeated several times with
ever-increasing dissipation times. Each iteration, the damped
initial state from the previous iteration is used to propagate the
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Fig. B.1: Damping algorithm explained in figures. Vertical lines indicate (integer multiples/divisors of) the mean motion (solid) and all three
normal modes: longitudinal (dotted), latitudinal (dashed) and wobble (dash-dot-dot). Panel a: Comparison between damped and undamped tidal
librations. Panel b: Frequency content of Phobos-fixed longitude of Mars for both the damped and undamped dynamics. Panel c: Frequency content
of Phobos-fixed latitude of Mars for both the damped and undamped dynamics. Panel d: Damping process of the latitudinal librations close to the
latitudinal normal mode.

dynamics forward with the damping torque. This way, the initial
state is damped even further in each iteration.

The process and result of this damping algorithm is por-
trayed in Fig. B.1. In this work, an initial value of τd = 4h has
been used, and each iteration of the damping algorithm doubles
this damping time, up to a final damping time of τd = 8192h.
Note that a value of τd = ∞ means there is no damping at all.
In Fig. B.1a, the Phobos-fixed angular coordinates of Mars –
i.e., the moon-to-planet line – are plotted in a longitude-latitude
map, where the (0,0) coordinate is identified with the Phobos’s
long axis. Here the overall effect of the full damping algorithm
is very well represented. Pre-algorithm dynamics feature Pho-
bos’s x-axis deviating from the moon-to-planet line about 4.5º
in longitude and almost 0.04º in latitude, product of a mixture
of normal modes together with resonant forcings. The damping
algorithm removes all oscillations occurring at the frequencies
of the normal modes while leaving all librations due to forcings
behind, as well as the once-per-orbit longitudinal libration.

The difference in the frequency spectra of the damped and
undamped librational motions of Phobos are presented in Fig.
B.1b and Fig. B.1c respectively. Recall that the virtual torque
(Eq. (B.1)) is designed to oppose all rotational motion except the
constant, uniform rotation at the orbital frequency. The motion
after backward propagation (without damping torque) reintro-
duces all forced librations, as they are excited by the naturally
occurring torques. Since the free librations are largely damped
in the forward propagation (just like the forced ones), and no
mechanism to re-excite them is included in the backward propa-
gation, their amplitudes are substantially diminished. Repetition
of this forward-backward propagation will thus damp free libra-
tions over increasingly long timescales, while maintaining the
forced librations.

Note, however, that each of these iterations involves the re-
propagation of the full translational-rotational dynamics with an
initial state adjusted to reduce the amplitude of the free modes. A
reduction in free libration amplitude at the initial condition will
impact the full translational-rotational state, and consequently
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the orbital and rotational forcing, leading to a change in the full
resulting coupled state history. Therefore, the damping algorithm
does not influence only the terms at the free libration frequen-
cies, but the entire libration spectrum. For the case of Phobos,
this is particularly important because normal modes are very
close to these frequencies, leading to strong coupling between
free and forced rotational motion. This is clearly observed in Fig.
B.1b, where it can be seen that the once-per-orbit forced libra-
tion is significantly different in the undamped case. Crucially,
this forced libration amplitude differs significantly from the the-
oretically predicted value, while the amplitude in the damped
case matches expectations very closely (see Sect. 4.1.2). This
shows that the damping algorithm is crucial to make the full
librati onal spectrum (not just the amplitudes at the free modes)
representative of the real situation.

For illustration, the progressive damping of one of the lat-
itudinal librations can be seen in Fig. B.1d. A first, undamped
simulation (τ = ∞) contains both free and forced librations
around the frequency of the latitudinal normal mode. Subsequent
iterations of the damping algorithm described here reduce the
amplitude of most of these peaks to ∼ 0.1 mdeg – what we have
considered floor noise level in our coupled model. These libra-
tions that disappear over the course of the damping algorithm are
therefore interpreted as free librations, while the peak that retains
its full amplitude over the whole damping process is interpreted
as a forced libration. As a matter of fact, this is the forced libra-
tion occurring at ∼ 27.15 rad/day that is reported in Table 1 and
attributed to the twice-synodic frequency between Phobos’s orbit
and the Martian rotation (see Sect. 4.1.2).
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