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ABSTRACT

One of the trends in the aviation world is to work towards an increasingly more computer-aided approach to
flying. Over the course of the last decades, this idea has been fueled by the growth in available computational
power and the concurrent decrease in hardware ownership costs. Thanks to modern-day architectures, sev-
eral types of embedded functions can be integrated in aircraft cockpits, automating and simplifying most of
the actions of the pilot.
Despite these improvements, limitations still inevitably exist in terms of power and storage capabilities. To
overcome this problem, different solutions have been proposed. A data-driven approach is applied in this
work, centered on the implementation of surrogate models. Embedded functions, in fact, typically rely on
the use of various mathematical models, which describe the behaviour of some part of reality. As the models
often represent a considerable burden in terms of storage and computational requirements, replacing them
with surrogate models can represent a viable solution.
The analysis is focused on aircraft performance functions, whose typical scope is the computation of perfor-
mance indexes such as takeoff and landing distances, rate of climb, range, fuel consumption, cost estimation
or noise level. A standard performance model is composed of aerodynamics, propulsion and atmosphere
submodels, which allow for the computation of the forces acting on the aircraft. These are coupled with the
equations of flight mechanics and additional submodels accounting for further application-specific features.
In this work, specific focus is given to landing performance functions, as the literature on the subject is still
in the early stages.
A function integrated in the avionics of single-aisle Airbus aircraft is selected as a case study. The objective
of the software is to calculate the state of contamination of the runway (e.g. water or soil) from information
gained during landing. The idea is to send the results to the airport traffic services, to make the information
available to ensuing aircraft approaching the runway. In this way, pilots of incoming aircraft are enabled to
appropriately manage the landing and possibly avoid situations of runway overrun. The function is built on
multiple levels and relies on various submodels for its internal calculations. The aerodynamics and engine
models have been chosen as the target of the surrogate modeling activity, due to their high contribution to
the complexity of the function. The reduction is performed at submodel level, though the possibility of cre-
ating a common aero-propulsive model is also explored.
As a model structure, feedforward neural networks are chosen for their flexibility, parsimony and capacity of
modeling non linear systems. Polynomial models are also implemented as a means for comparison. Neural
networks are trained with the Bayesian Regularization algorithm, with training and validation data retrieved
from landing simulations. The selection of input features is carried out based on engineering judgement and
a correlation study on the available variables. Furthermore, the work aims at enhancing the portability of
the function by training models on different instances of aircraft and engines, which are modeled by a set of
categorical inputs.
The objective of the activity is to investigate possible compromises between reduction of model complexity
and accuracy of the obtained surrogate models. Neural networks with as little as one hidden layer are shown
to achieve substantially low memory requirements while retaining satisfactory modeling accuracy, with note-
worthy differences between the results on aerodynamics and engine model. It is demonstrated how several
compromises can be achieved by choosing different model architectures, with different levels of impact on
the chosen performance function. The applicability of each solution, however, remains a case-specific issue,
depending on the given requirements in terms of model accuracy and complexity.
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1
INTRODUCTION

1.1. PROBLEM BACKGROUND
Since the early years of powered flight, the need for information about the environment and the state of the
aircraft itself led to the development of various forms of instruments. Fueled by military demands during the
1930’s, a wide range of tools were developed for various purposes. It is during this period that the first analog
computers made their appearance on boarded systems, mainly as an aid for weapon operation.
The following decades saw a dramatic evolution in accuracy and scope of flight instruments. A few mile-
stones worth mentioning are the introduction of radio navigation and on board electronics (hence the term
"avionics"), the deployment of digital computers in the 1970’s and of the FMS (Flight Management System)
in the 1980’s. This process brought a profound change in the architecture of the aircraft, especially to the
cockpit, which evolved from a complex series of switches and indicators to the so called "glass cockpit" that
we know today. [1] [2]
In this context, the use of software on board has taken a more and more prominent role, with the result of
automating and simplifying most of the actions of the pilot, and introducing completely new possibilities.
Some examples are: flight controls, engine monitoring, navigation, flight planning, communications and
safety. The trend has been even more pronounced over the last 20 years, which saw a dramatic growth in
extent and complexity of the implemented software. [3] Such growth is largely ascribable to the concurrent
improvements in reliability and affordability of hardware (also in terms of boarded weight), thus allowing for
an increase of available computational power on board. Modern aircraft rely on a complex network of com-
puters and buses which elaborate and share information to serve their diverse purposes.
Notwithstanding these improvements in the means, it is clear that limitations still exist in terms of power and
data storage capabilities. [4] [5] In fact, not all applications can be implemented and used on board in any
given form. Moreover, the question is expected to become more and more central as we approach a natural
limit in the miniaturization of transistors as traditionally given by Moore’s law. [6] [7]

1.2. PERFORMANCE FUNCTIONS AND MODELS
Among the different pieces of software that are integrated in aircraft cockpits, a relevant part falls under the
category of performance functions. The purpose of these tools can be stated as the computation and de-
tection of aircraft performance characteristics. Such characteristics are synthesized by calculation of perfor-
mance indexes describing, for instance, takeoff and landing distances, rate of climb, range, fuel consumption,
cost estimation or noise level.
For the calculation of the mentioned parameters, a number of specific models and algorithms are required,
as they often derive from the combination of several aircraft features. Under a theoretical point of view, a
performance model (as intended when integrated within a larger function) is made up of other submodels,
typically: aerodynamics, engine (propulsion) and atmosphere. These, which allow for the computation of the
forces acting on the aircraft, are coupled with (some form of) the equations of flight mechanics for predic-
tion of the trajectory. Additional submodels accounting for other characteristics (e.g. environmental impact)
may be featured, according to the specifically sought performance index. Performance models are essential
in several moments of the aircraft life-cycle. The implementation starts from conceptual and preliminary
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2 1. INTRODUCTION

assessments during the design phase, through flight test campaigns, then up to the whole operational phase
under the form of embedded functions and customer service investigations.
Performance functions and models, similarly to other types of software, represent a considerable burden for
aircraft systems. On one hand, there is an inherent complexity of certain function modules that determines
a high computational cost, especially in real-time applications. On the other hand, all the abovementioned
models are often based on a high number of given values representing, typically, the peculiar features of
each aircraft and engine type the function is integrated into. The more elements the function is intended to
include, the higher will be its storage requirements. [4]

1.3. PROPOSED SOLUTION
To overcome the problem of function integration, different procedures have been proposed and in some
cases implemented. Notable solutions include: development of standards, integrated system architectures,
memory optimization, data compression, parallel and distributed computing. [8] [9] [10] [5] [11]
This work is focused on a fundamentally different approach that, in contrast with those just mentioned, is
application-specific and model-oriented. The idea behind this solution is to exploit the potential of surrogate
modeling techniques, in order to reduce the complexity of aircraft performance functions. As described more
in detail in the next chapters, surrogate modeling has been successfully implemented in several fields over
the last decades, to serve the most diverse purposes and applications. The use of surrogate models for the
reduction of aircraft cockpit functions, however, is still in its earlier phases and a consistent body of literature
on the topic is missing.
The scope of this work is to investigate potential solutions in the reduction of aircraft performance functions,
by finding suitable compromises between complexity and accuracy of the surrogate models. The specific
technique implemented here is that of artificial neural networks, a versatile and efficient model structure
that has been long identified as a suitable solution for this problem. [12] Neural networks will be trained by
using different algorithms and architectures, and an additional comparison will be made with multivariate
polynomial models.
A specific case study has been selected for the research, a prototype performance function developed by
Airbus. The function computes the state of runway contamination during the landing phase, by estimating
the aerodynamic, propulsive and ground forces on the aircraft. The reduction is thus performed at submodel
level, taking into account the individual aerodynamics and engine model separately. Moreover, in order to
enhance the portability and efficiency of the proposed solution, the reduced models will be trained on data
from all single-aisle aircraft that implement the function.

1.4. REPORT STRUCTURE
Following the present introductory chapter, a review of the main literature on the topic of interest is pre-
sented. This will show what aspects have already been investigated and what points are still lacking a full
clarification in the available literature. The chapter will additionally clarify the scope of the proposed re-
search and underline its main aspects of innovation and relevance for the body of science.
A full chapter is then dedicated to the topic of surrogate modeling, due to the relative novelty of the subject.
Special attention is given to neural networks, which is the main model structure implemented in this work.
The following chapter will provide theoretical information regarding the specific case study taken into ac-
count in the research. Elements of landing performance are provided, to provide the grounding for latter
phases of the work. Moreover, given the characteristics of the prototype function under examination, an
overview of the main aspects and problems of braking will also be provided. A description of the prototype
function is thus outlined, focusing on the scope, structure and working principle of the function.
The Methodology chapter extensively describes how the research has been structured, as well as the rationale
behind the choice of the techniques and processes implemented the investigation. The chapter has been or-
ganized in sections that follow tightly the different phases of the work, in the order that they were carried out.
The Results chapter is dedicated to the outcomes of the research. This part will first consider the different
proposed solutions separately, then provide a final overview to compare the main features of each solution.
The last chapter of the thesis will provide some meaningful conclusions about the outcomes the work. Here
an analysis of the results will be made in the light of the objectives set at the beginning of the work. Lastly, a
set of recommendations will be made for potential future studies on the topic.
Additional details on various topics are provided in the Appendixes at the end of the document. This includes
all aspects that may still be of interest for the reader, though not strictly relevant to the research itself.



2
LITERATURE REVIEW

Prior to carrying out the master thesis project presented in the previous chapter, a detailed exploration of the
literature available on the topic of interest has been performed. The outcomes of this investigation have been
summarised in the high-level analysis presented in the following sections.
The goal of the literature review is twofold. On one hand, it allows for a comprehension of the state of the art
in the field. This means that both the content and the methodology of the currently available knowledge are
highlighted and understood. On the other hand such review shows, by contrast, what areas have not yet been
extensively researched.
Based on these considerations, it is then possible to clearly state a set of objectives for project. Particular
stress is laid on the aspects of novelty of the work, which are deemed to expand the currently available body
of knowledge on the topic.

2.1. RESEARCH TOPIC DEFINITION
A crucial aspect to be defined ahead of the literature study, is the exact topic of research. In this case the
question is not trivial, as the work is at the crossing point of different disciplines. Moreover, the matter is
fundamental in order to have a clear idea of what literature is relevant to the work.
A systematic way to go about this problem is by breaking down the general definition of the project activity,
which can be stated as:

Reduction of aircraft performance functions by means of neural networks for integration in aircraft systems

A first consideration can be made on the term "reduction". In the whole document, this will be intended as
(equivalent to "surrogate modeling" or "metamodeling") the activity of creating surrogate models of a preex-
isting model, with the goal of reducing its original complexity. It could be argued that the project be rather
revolving around a task of system identification, based on the eminent description of "the determination, on
the basis of observation of input and output, of a system within a specified class of systems to which the sys-
tem under test is equivalent". [13] It is evident from this statement how such activity can be closely compared
to that of the present work. For that reason and because of the several common techniques and procedures
that are used in system identification applications, works of this category are also included in the literature
review.
The review will thus include applications of metamodeling techniques in the aerospace industry. The re-
search on the literature has been mostly limited to such domain, with the notable exception of a set of doc-
uments that make the foundations of modern surrogate modeling activities, and hence represent an unde-
niable reference for the project. Specific stress is given to works that include the implementation of neural
networks as a metamodel structure, whose examples are certainly not lacking in the literature.
As a last consideration, the focus of the present work is on the aerodynamics and engine models within an
existing landing performance function. It is clear that any work dealing with the reduction of either of the
two models, regardless of their specific form, is a valid source of information. These models, as it will be
shown in the following paragraphs, can be found as: standalone systems, models inside a function or even
submodels of, typically, an aircraft performance model. Hence all works that involve the reduction of aircraft
performance functions or models are of interest for this review.

3



4 2. LITERATURE REVIEW

2.2. STATE OF THE ART REVIEW

The use of surrogate modeling in aerospace applications has seen a substantial increment over the last 20
years, which is the time frame where most of the works examined here are found. The relative delay between
theoretical conception of the techniques and their large-scale implementation, is mainly due to the recent
hardware and software improvements mentioned in 1.1. The objectives targeted by these applications are
quite diverse and could be grouped under the categories of: function integration, parameter monitoring, de-
sign space exploration, optimization and system identification.
The set of works that most closely deal with the topic of the present research is indeed that of Bondouy et
al. [4] [14] [15] In their investigation, in fact, the central subject matter is the development of reduction pro-
cedures for integration of aircraft performance models within avionics. Three requirements are identified to
assess a surrogate model resulting from a proposed solution: its accuracy, standard computational time and
memory size. RS-HDMR (random sampling-high dimensional model reduction) and neural networks are
chosen as metamodel structures because of, respectively, their capability of dealing with high-dimensional
problems and the reduced number of parameters required to approximate any given function. To overcome
the arising curse of dimensionality observed in the construction of HDMR models, an original approach is
thus proposed and successfully tested on the real case of the Fuel Consumption Model, which is embedded in
the FMS. The idea is to exploit the structure of the model itself, which is made up of a number of submodels
and analytical functions organized in a hierarchical multilevel architecture. Each submodel is thus replaced
by a corresponding metamodel with no more than 4 input features, either HDMR (up to second order) or
a single-layered feedforward neural network. The process is thus formulated as an optimization problem
where the objective function is the overall memory size, under the constraints of a set level of accuracy and
computational time. Configurations resulting from an optimization process are shown to be hardly ever in-
tuitive, thus justifying the complex approach undertaken.
Similar objectives, though at system level, are found in Ghazi et al. [16] The aim of the work is to build an
aero-propulsive model for implementation in the FMS trajectory optimization function [17], which is con-
strained by the processing capacity of the device and thus needs to be of low complexity. Excellent results
were obtained by creating a model based on simulated data and physical laws, rather than via a black box
approach. In this case in fact, the fitting is performed by estimating the values of the Oswald factor, CDmi n

and engine thrust in the proposed model, by means of the Nelder-Mead [18] minimization algorithm. Gong
and Chan [19], as well as Trani and Wing-Ho [20], later implemented analogous approaches, though using
flight manuals as a source of data. An interesting application of deep feedforward neural networks (FFNN)
on the reduction of full aircraft functions is given by the work of Julian et al. [21] on aircraft collision avoid-
ance systems. In this study, networks with 6 hidden layers approximate the optimal avoidance decision out
of 5 available choices (output scores), based on 7 discretized input states. Julian et al. successfully test differ-
ent network configurations to dramatically decrease computational time and notably storage requirements
of the application by a factor 1000. It is also worth mentioning the work of Pytka et al. [22] on ground perfor-
mance measurement by means of convolutional neural networks, based on flight test data of a utility aircraft.
A field of research where the use of metamodels has seen an exponential growth in the last years is indeed that
of design and optimization. The interest here is in the possibility of expediting functional evaluations, so that
efficient explorations of the design space can be performed in reasonable time. Moreover, sometimes a sur-
rogate model can be useful in gaining a deeper insight into the features of a certain system, before effectively
establishing a specific design problem. In the context of aircraft performance, significant reduction studies
have been performed either at model or (especially) submodel level. The need for such investigations is often
due to the complexity in simulating specific systems, notably when considering global aircraft performance,
where multiple disciplines come into play and MDO (multidisciplinary design optimization) activities are re-
quired. A very powerful example in this sense is the work of Jules and Lin [23], where an innovative MDO tool
for aircraft-engine system multi-objective optimization is presented. Metamodeling methods are applied at
different levels: Taguchi techniques compute a parameter significance index, neural networks effectively map
the single disciplines and fuzzy logic is implemented to manage conflicts between different objectives. A dif-
ferent approach is implemented by Paiva et al. [24], who rather attempt at generating a metamodel of the
whole MDO tool via interpolating quadratic response surfaces, regression Kriging and single-layered feedfor-
ward neural networks.
Several investigations have been carried out at submodel level for design or monitoring purposes. Due to its
complexity and limited accessibility, the engine is a frequently explored system. A work of great interest is
that of Corman and German [25] on the reduction of engine cycle models for faster design explorations. Here
polynomial regression, FFNN and radial basis functions are chosen to build surrogate models of the cruise
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thrust specific fuel consumption (TSFC) with neural networks outperforming the other two techniques by a
great margin. Various metrics are implemented to evaluate the results: R2

adj (adjusted coefficient of deter-
mination), RMSE (root mean square error) and MAE (mean absolute error), as well as the required number
of parameters in the model structure. The excellent capability of neural networks in predicting engine per-
formance is also confirmed by Lee et al. [26] in their computation of engine performance parameters (gross
thrust, ram drag, fuel flow, nitrogen oxide emission index) via FFNN. Principal component analysis (PCA) is
implemented in Lee’s work to perform feature selection, which is a problem that has been dealt with in dif-
ferent complex ways. [27] Additional works worth mentioning are those of Ji [28] on engine fuel flow, Yildirim
and Kurt [29] and Zhang and Wang [30] on exhaust gas temperature (EGT) and engine revolutions, Meyer [31]
and Gao [32] on engine dynamic performance, Zavoli [33] on hybrid rocket engines.
Among the main works on aerodynamic metamodeling is found that of Nørgaard et al. [34] who employ
wind tunnel test data to minimize the number of required wind tunnel measurements during design. Here
four FFNN are trained to predict the coefficients CL , CD , CM and aerodynamic efficiency. Wallach et al. [35]
instead perform an extensive investigation on aerodynamic coefficient modeling by means of various multi-
layer FFNN structures, for both full aircraft configurations and airfoils. The latter, though not being the focus
of the present document, is indeed a frequent target of surrogate modeling activities. [36] [37] [38] [39] [40]
[41] Lastly, as an example of application in anomaly detection, it is worth mentioning Raol’s investigation [42]
on lift and moment coefficient calculation by means of FFNN, based on data generated from simple laws of
aerodynamics.
Additional implementations of metamodeling techniques have been studied for this project, in order to gain
a full knowledge of the available methods and resources in the field. These include, for instance, applications
in air traffic control (ATC) [43], aircraft control systems [44] [45] [46], combustion flowfield analysis [47] and
avionics fault diagnosis. [48]

2.3. CONSIDERATIONS AND OPEN PROBLEMS
The literature research presented in the previous section has assessed the state of the art in the topic of inter-
est, identifying the methods that could prove useful for a novel research project. One of the main difficulties
in building such review was given by the lack of a coherent body of work in the available literature. This is due
to a number of factors, including the relative newness of the topic. Moreover, the field of metamodeling is a
hybrid area of research, where theories, methods and techniques coming from various sources of knowledge
are applied together. In addition to that, the construction of surrogate models is a process that (as seen in
the above) can be applied to many different areas of expertise. It doesn’t help in this context, that the topic of
flight performance is itself the point of synthesis of diverse fields of knowledge. Because of all these aspects,
finding a common thread and drawing some meaningful conclusions from the available material is indeed a
challenging task.
Nonetheless, several valuable insights have been gained from this activity, including what points are still open
in the research. A concise list of the main elements that were identified is given in the following:

1. There is an undeniably growing interest in the field of metamodeling, especially for what concerns
aviation. The last decade in particular has seen a steady impulse in the application and research on
surrogate models. For the moment, the vast majority of works are focused on applying already well
tested solutions while a small part is effectively trying to stretch the current range of known possibilities.

2. The availability of data is a real issue in a domain of research where the central approach is data-driven.
Several authors point out the reluctance of manufacturing companies and organizations in sharing
proprietary data. [16] [19] [20] The problem is often solved by implementing other means to retrieve
raw data, such as simulators and manuals.

3. The specific topic of research has been investigated by a small number of productions so far. This can
be due on one hand to the limitations outlined at point 2. and on the other hand to the relative novelty
of the concept. The only work that effectively aims at providing a solution to the identified problem is
that of Bondouy et al. [4]. Other investigations focused on very similar scopes have however different
objectives, which leads to establishing different criteria for assessing the results of the research. In most
works, in fact, the baseline objective is to obtain a surrogate model with an acceptable accuracy. In the
present project instead, additional constraints are set regarding the integrability of the created models
within specific operational frameworks.
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4. An understanding of the subject matter, where surrogate models are implemented, is paramount to
set up such activity. This reveals necessary for a sound choice of the data to be used for model fitting
and to discern whether the results are acceptable for the relevant framework. Moreover, this prevents
unnecessary iteration over the steps of the metamodeling process.

5. Concerning aircraft performance problems, the metamodeling activity is mostly carried out at perfor-
mance model level. To find investigations that deal specifically with performance submodels it is nec-
essary to refer to works that are dedicated specifically to that aspect. The productions of Bondouy et al.
are again the only exception to this finding. Moreover, the possibility of creating combined surrogate
models of multiple performance submodels seems not to have been widely explored by the research so
far.

6. The vast majority of works in this field are focused on specific case studies to test out some new tech-
nique or simply apply the current knowledge to solve a problem. The data on which the surrogate
models are fitted, are hence relative to precise contexts, which can be for instance a certain type of
aircraft or engine model. The possibility of training models that could work in more heterogeneous
contexts seems to have not been investigated at full scale by the research in the field, probably be-
cause of the higher degree of difficulty bound to such an effort. The main blocking point appears to be
the definition of relevant "categorical data", representing different operational settings, as well as their
suitable numerical representation for model training. Moreover, this means that the models will have
to be fitted on both discrete and continuous inputs, leading to several practical issues. [49]

7. Neural networks are indeed the model structure that has been most widely implemented, with several
notable examples of feedforward networks with a single hidden layer. The reason for this trend is found
in the great flexibility and relative ease of implementation represented by neural networks. In addition,
the possibility of approximating any function with only one hidden layer of neurons is indeed an attrac-
tive perspective for any type of metamodeling activity. The accuracy demonstrated by this technique
in the works presented here confirms these theoretical intuitions.
Fuzzy logic models are also gaining recognition thanks to their ability of dealing with uncertainty in
the data. This is particularly interesting for real-world applications where data come from several raw
sources. It is lastly worth mentioning polynomial models (RSM), which remain a valid alternative to
more cutting-edge methods. Though significantly less accurate, polynomials are still being success-
fully applied in approximation of low-dimensional functions and as a fast means of comparison for
performance assessment.

8. The sampling of data to build a suitable dataset for training is mostly carried out via techniques that
guarantee a uniform distribution of points (space filling), in particular methods such as Latin Hyper-
cube Sampling and random space filling.

9. For what concerns the validation of models, the most typical approach is to split the main dataset
into two different blocks, where one is used for training and the other for validation. The proportions
between the two can vary substantially, though it is strongly suggested to provide diverse and complete
datasets for both purposes. Several statistical means are available to assess the accuracy of a model.
Measurements such as RMSE and other fit coefficients (R2) have been extensively implemented for this
purpose.

10. The choice of input variables is mostly performed via engineering judgement, correlation studies or
simply by keeping the same parameters of the original model. The choice of input features is often
done in a suboptimal way, presumably due to the high cost in terms of time compared to the expected
benefits.

2.4. PROJECT FEATURES AND ELEMENTS OF NOVELTY
Based on the observations drawn in the previous section, it is possible to outline the main characteristics of
the proposed thesis project. It will also be highlighted what aspects effectively attempt to overcome the gaps
that have been found in the body of research.
As already pointed out in the above considerations, the research on the topic of metamodeling for aircraft
function integration is still in the early phases. A notable exception is the work of Bondouy, which also re-
volves around aircraft performance functions. The present work, however, aims at investigating the problem
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under a different light. The main characteristics of the research project can be summarised in the following
points:

• A landing performance function is taken as a case study for an investigation on the reduction of aircraft
performance functions. The main objective is to find a set of possible solutions for the problem of
function integration, by testing various metamodel configurations trained with different algorithms,
then assessing their performance. Such assessment is carried out through both accuracy and memory
requirement indexes.

• The data used for model training and validation is obtained via a simulator, which is provided by the air-
craft manufacturer. This aspect is not to underestimate, in the light of point 2. in the previous section.
Moreover, the simulator is implemented along with a sampling process, in order to obtain balanced
and complete datasets that fit the specific operational needs of the case study.

• Artificial neural networks are chosen as the main surrogate model structure because of their high flexi-
bility, accuracy in nonlinear modeling and parsimony in the number of parameters. These characteris-
tics are well demonstrated in the practice, as seen with the works examined in 2.2 and will be justified
more in depth in the next chapter. Multivariate polynomial models are also implemented for compari-
son with the main metamodel structure, as done for instance in [25].

• Surrogate modeling is carried out at performance submodel level. Hence the aerodynamics and engine
model being reduced are explicitly a part of an aircraft performance framework, which dictates their
general characteristics. This is in contrast with the vast majority of the works described in 2.2, including
that of Bondouy, which is based on an optimal reorganization of the modules. An additional possibility
is also tested in this project, by attempting a reduction of the two performance submodels together in
a single metamodel, with common input and output features.

• One of the most interesting traits of novelty is indeed that of training metamodels that are valid for
different operational contexts. In the present case, the models will be trained on data coming from
multiple (single-aisle) aircraft versions and engine manufacturers. For this type of investigation, spe-
cific "categorical inputs" will have to be wisely chosen in order to describe, in mathematical terms, the
specific configuration on which the models are operated. This feature meets the needs of portability
and efficiency that may be demanded by aircraft manufacturers.

• The choice of input variables is based on specific studies that are explained more in detail in Chapter
5. Furthermore, a feature selection process is implemented, to achieve a further degree of variation in
the range of proposed metamodeling solutions.

• The outcomes of this project are assessed in the light of the set objectives and limitations of the work.
This is done by comparing all the different solutions, but also taking into account the specific context
in which the models are meant to be deployed.





3
SURROGATE MODELING AND

INTRODUCTION TO NEURAL NETWORKS

The current chapter aims to provide the reader with the essential background for an understanding of the
project. This regards the concept of surrogate modeling, which springs from the more general idea of system
simplification. Artificial neural networks are then introduced, drawing from an intuitive comprehension of
the technique, to then give a more rigorous mathematical description. The chapter will also present a high-
level classification of neural network architectures, along with the main aspects of model training.

3.1. REDUCING MODEL COMPLEXITY
All models that are embedded in aircraft functions are the result of a systematic process. Typically, the more
steps the model has to go through, the less accurate it will be in the end with respect to the original physical
model. This procedure is however necessary both to create a model that is closer to the machine language,
but also to obtain a piece of software with limited burden for the aircraft systems.
The need for model simplification can be dated back to the early 19th century with Fourier’s studies on
trigonometric series [50]. A formal, comprehensive study is given in this regard by Chwif et al. in [51] and
[52] where the subject of model complexity is discussed for reduction of simulation models.
Computational complexity is a concept that can be directly related to the amount of resources required to
run a certain algorithm. The exact definition of "resources" is also a subject of debate but typically three
main measures are considered: computational time, required memory and number of arithmetic operations
(hence the common definition of "arithmetic complexity"). These features are at times considered separately
or together, according to the specific application. [53] [54] [55] For the problem tackled in this work, the time
component is clearly a remarkable feature, though not the most prominent. On the other hand, the aspect of
memory requirements is indeed a crucial one, as the computational memory of avionics has been shown to
be overloaded by a great amount of highly demanding applications. If volatile memory is central, not less im-
portant is the aspect of secondary memory, which is deemed critical in aircraft systems. Both aspects place a
considerable burden both in the operation of cockpit systems and in the possibility of introducing additional
applications on board.
In the work of Brooks and Tobias [56] a distinction is made between three categories of reduction methods:
rearrangement of the code, techniques maintaining the original model output and techniques that approxi-
mate the original output. With the third category it is possible to associate the concept of metamodeling.

3.2. SURROGATE MODELS
A metamodel, or surrogate model, can be simply defined as "model of a model" [57], that is, a mathematical
entity approximating the input/output behaviour of another model.
The reasons why the implementation of a surrogate model may be preferred to the original one can be quite
diverse. Intuitively, as it is impractical to recreate a physical phenomenon each time a simulation is needed
for research or operational purpose, in the same way a metamodel can be advantageous with respect to its
original version. For engineering applications, metamodels are typically built when operation of the origi-
nal model presents a high computational cost. In this sense, surrogate models are constructed to reduce the

9
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Figure 3.1: Workflow for construction of an embedded model, including a metamodeling phase.

computational complexity of the original model. This can be very valuable in engineering research, where
faster (and rougher) design space explorations are eased by the use of metamodels. [58] [59] Several further
examples can be found in the literature review of Chapter 2. In the context of aircraft embedded functions, an
essential aspect of interest in metamodels is the possibility of reducing the storage requirements of a model.
These models are essentially based on functional evaluations and interpolation of data tables. Performing a
reduction through metamodeling can in some way be interpreted as the exploitation of the latter principle.
The storage cost of a metamodel, in fact, is essentially the integration of a set of parameters that characterize
the specific features of the model. The application of a metamodel then only consists in its evaluation on a
set of inputs. Hence, an additional cost is given by integration of a model structure under the form of an em-
bedded function, which is evaluated on the stored parameters and the inputs provided by the aircraft systems
upon call of the model.
This procedure thus presents a twofold advantage with respect to a standard integration method. On one
hand the computational effort is minimized, since it consists in only one functional evaluation. On the other
hand the storage cost is also dramatically reduced, as only a (small) set of coefficients and one function need
to be integrated in the cockpit. These advantages, however, have to be judged in the light of a reduced ac-
curacy in the metamodel, which is the result of an approximation process. A trade-off is therefore always
sought in the implementation of metamodels, between the relative benefits of simplification and approxima-
tion power. [25]
The scope of the reduction activity within a broader modeling process can be seen in Figure 3.1. The well-
known model life cycle starts from the observation of physical phenomena and subsequent formulation of
conceptual (physical) laws [60]. A mathematical description of the laws, along with contingent simplifying
hypotheses, results in a mathematical model. At this stage, the original system is described through a series
of more or less complex equations in a certain number of variables. A so-called "numerical model" (which
will still be indicated here as "mathematical") of the original phenomenon is finally obtained by translating
the mathematical model into a form that can be understood by a computer and can be solved within ac-
ceptable time. To achieve this, numerical methods such as discretization of variable domains and functional
approximation are implemented. Metamodeling is included as an additional step before the final integration
procedure (e.g. writing the model in a programming language).

3.2.1. CONSTRUCTION OF SURROGATE MODELS

Having introduced the concept of surrogate modeling and its relevance for this work, it is worthwhile to
briefly elaborate on the procedure of constructing a metamodel. Following the notation proposed by Simp-
son et al. [61] (where vectors are here represented by underlined symbols), if the "true" functional relation-
ship between inputs and outputs (x and y) in a given model is

y = f (x) (3.1)
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then a surrogate model can be built in the form

ŷ = g (x) (3.2)

such that between original and approximated output variables holds the relationship

y = ŷ +ε (3.3)

where the deviation ε is due to both approximation and measurement errors.
The core of the metamodeling activity is thus the construction of a suitable function g (x). The way this is
achieved depends on the choices made at several steps of the process, whose structure is generally agreed
upon in the literature. In this sense, a very detailed analysis is given by Kleijnen [62], who proposes the
following standard procedure:

1. Determine the goal of the metamodel

2. Identify the inputs and their characteristics

3. Specify the domain of applicability (experimental region)

4. Identify the output variables and their characteristics

5. Specify the accuracy required of the metamodel

6. Specify the metamodel’s validity measures and their required values

7. Specify the metamodel, and review this specification

8. Specify a design including tactical issues, and review the DOE

9. Fit the metamodel

10. Determine the validity of the fitted metamodel

While most of the above points are self-explanatory and can be related to the discussion of previous sections,
more attention is required for numbers 2., 7. and 8. As for the first, the choice of the inputs to a certain
metamodel is not a trivial task. Feature selection and extraction are the processes by means of which a set
of relevant parameters are chosen as inputs for a surrogate model. Several techniques are included under
this definition and the topic is still an open point for research. Methods range in complexity from sensitivity
studies and engineering judgement to iterative procedures based on sequential model training. [63]
Point 8. essentially refers to the definition of a suitable set of input-output data to be collected by running
the original model. These are the data on which the surrogate model is built at point 9. The theory of de-
sign of experiments (DOE) thus plays a crucial role in determining a statistically optimal set of simulations
(experiments) from which the data is extracted. Several techniques are available for an optimal design of ex-
periments and the choice of the best method is contingent on the specific requirements of the problem. It is
not guaranteed, for instance, that the choice of a uniform spacing will always yield the best results [64]. More-
over, the optimal selection of data must also be pondered based on the demanded accuracy and operating
conditions of the implemented surrogate model. This is particularly critical for applications on hierarchical
model structures, where cross-level error propagation can dramatically impact reliability. [65]
Similar considerations can be made on point 7. with respect to the selection of convenient surrogate model
structures. This aspect is not trivial and in most cases it is inherent to the specific nature and requirements
of the problem under examination, as well as the way the first 6 points of the process have been carried out.
[58] [61] [62] [66] Furthermore, it can be argued that this point also include the selection of a fitting method
(interpolation or minimization of a residual), which is in turn subject to the choice of the metamodel.
Several model structures are available for the activity, whose relevance for the present application has been
outlined with examples in 2.2. Among the main surrogate structures it is worth mentioning neural networks
(which will be examined in detail in the remainder of the chapter), multivariate polynomial functions [25] [36]
[61], splines [58] [67] [68] [69], Kriging [59] [70] [71] [72], High dimensional model representation (HDMR) [15]
[73], support vector machines [37] [74], fuzzy regression [75] [76] [77] [78] and hybrid model structures. [4]
[79] [80] [81] [82]
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Figure 3.2: Representation of a biological neuron with synaptic connections. [83]
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Figure 3.3: Formal representation of a neuron, with inputs sk−1,i and output sk, j .

3.3. NEURAL NETWORKS
Of all metamodel structures presented above, artificial neural networks (here often shortened as NN) clearly
deserve special attention, being the focus of the reduction activity in the project. The technique, as the name
says, draws inspiration from its direct biological counterpart in the human brain (Figure 3.2). Just as with
neurons and synapses exchanging information through electrical impulses, artificial networks are made up
of nodes (or neurons) that are connected by logical relationships. Neurons are typically organized in layers
and the simplest form of network consists in an input layer, an output layer and one hidden layer between
the first two. This is called a shallow neural network. When more than one hidden layer is present between
the input and output ones, this is generally defined as a deep network. There is no limitation to the quantity
of nodes and layers in a network, as well as the number of inputs and outputs.
The first conception of neural network models dates as back as the 1940s, with the work of McCulloch and
Pitts on the mathematical modeling of neurons. [84] Since then, theoretical investigation and practical ap-
plication have grown together in response to technological advancement and need for new modeling meth-
ods. Neural networks are in fact currently implemented in a number of approximation and classification
problems. The range of applications is nowadays very broad and concerns the most diverse fields, such as
automotive, banking, finance, entertainment, manufacturing, medical and telecommunications. Several ex-
amples of implementation in the aerospace sector have also been provided in the previous chapter.

3.3.1. FORMAL DEFINITION

For a more rigorous introduction to the idea of neural network modeling, it is useful to first define its fun-
damental unit: the neuron. Such element is modeled such that, as shown in Figure 3.3, it accepts numerical
inputs from one or more sources and forwards an output to one or more targets. In a structured network,
these sources and targets are typically other neurons. The only exception holds for neurons in external layers
(input and output layer), whose function is to accept inputs from or forward outputs to the outside environ-
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ment. Still with reference to Figure 3.3, it can be seen how the indexes k, j and i iterate respectively on the
network layers, the nodes in the currently considered layer and those of the previous layer.
A fundamental property of a neuron is the logical relationship that links inputs and outputs. As a general rule,
the following mathematical expression can be given for the output of a node:

sk j =ϕk

(
bk j +

Nk−1∑
i=1

wk j i s(k−1)i

)
(3.4)

In other words, the output of a neuron is given by a linear combination of its Nk−1 inputs sk−1,i , weighted by
a set of coefficients wk j i . A bias term bk j is typically added to the expression as well.
A crucial element is the operator ϕk , which is called activation (or transfer) function and is usually chosen
as the same in every neuron of a layer. The role of the activation function is to provide a neural network
with nonlinear characteristics (and hence justify the use of multiple layers), which is the reason why hidden
layer functions are typically chosen as nonlinear. In fact, if a neural network were implemented with only
linear transfer functions in its nodes, that would be equivalent to a single linear expression of the outputs in
terms of the inputs. Several types of activation functions are available depending on the sought behaviour,
with popular choices being radial basis functions, rectified linear unit (ReLU) and notably sigmoids. [85] The
output value of a transfer function is usually scaled to produce results between 0 and 1. [86]
Having defined the characteristics of a neuron, it is thus possible to combine these elements to create virtually
endless types of architectures. In Figure 3.4, an example of feed forward network (better defined further
below) has been provided. The notation used in the definition 3.4 strictly applies to this type of structure,
though it can be easily generalized to other types of network, which may integrate more complex elements
in their architectures. Moreover, the choice of a linear transfer function in the input layer is motivated: this
means that the layer is simply accepting input values from the environment and passing them on to the next
layer without further elaboration. [87] [88]
Lastly, it can be noted how neural networks are an extremely flexible model structure, presenting a number
of features that can be adjusted in quantity and characteristics. It is therefore possible to identify several
different categories of networks based on various (sometimes overlapping) criteria, where the following are
some of the most common:

• Feed forward neural networks (FFNN) have already been mentioned multiple times without being for-
mally defined, as they represent by all means the most popular type of network. The naming comes
from the way information propagates within their structure. Information can only flow "from left to
right", that is, from the input layer towards the output layer. This can be clearly seen in Figure 3.4,
showing how connections between nodes cannot occur in loops.

• Radial basis function neural networks (RBFNN) are feed forward networks that implement radial basis
functions, typically Gaussian, as transfer functions. They usually have one hidden layer and are imple-
mented in problems requiring good local approximation. The performance of RBFNN is in fact high in
regression tasks even with noisy data, but tends to degrade for larger problems. Training RBFNN can
be significantly more expensive than sigmoid-based FFNN and may require the support of additional
techniques to simplify the problem.

• Autoencoders are a specific class of networks that aim to learn representations of input data, typically
to reduce the complexity of a problem. The simplest form of autoencoder is a FFNN, where data are
coded and then decoded by passing through one or more hidden layers. The training of an autoencoder
is unsupervised: data are first encoded and then reconstructed with a degree of approximation, which
is the variable to be minimized. The process of decoding, after encoding, ensures the validity of the
trained representation. Different types of encodings can be chosen, depending on the characteristics
sought to retain from the input data (e.g. removing noise during image processing).

• Convolutional neural networks (CNN) are feed forward networks that use the linear convolution oper-
ation within at least one of their layers. These network structures implement the concept of receptive
field, which effectively acts as a means to regularize the model (i.e. assigning a certain weight to some
chosen nodes). This behaviour emulates the biological processes taking place within the visual cortex.
CNN are in fact ideal candidates for applications such as image, video and language processing.

• Recurrent neural networks (RNN) essentially break the main rule of feed forward networks, allowing for
loops and free flow of information among nodes. These networks are capable of exhibiting a dynamic
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Figure 3.4: Deep feed forward network with d input features and m output variables. Note that a linear activation function has been set
for the input layer.

behaviour through a mechanism of internal memory, allowing for different sets of computations to
influence each other over time. These characteristics make RNN suitable for problems involving se-
quential data, such as timeseries.

3.3.2. NEURAL NETWORK TRAINING
In a regression problem the training of a model is supervised, which means that the model is presented with
sets of input-output data that are known to correspond to each other (i.e. the data are "labeled"). As shown in
the previous paragraphs, neural networks are based on a considerable number of adaptable features: number
of layers, number of nodes, transfer functions, working principles, weights and biases. Once the other param-
eters are fixed, training a neural network is the process of solving an optimization problem where weights and
biases are the parameters to be tuned. The goal of a training, just like any other surrogate model fitting, is to
obtain a network that approximates a certain (unknown) function with arbitrary accuracy. The function that
has to be approximated is represented by the set of input-output samples, called "training dataset", which
can be obtained in different ways according to the specific application. In more formal terms, a training
process can be formulated as:

(ŵ , b̂) = ar g mi n(J (ε)) (3.5)

where the optimal network parameters are obtained from the minimization of a cost function J , which is in
turn dependent on the model residual ε (the cumulative error on all training samples). Out of the various
types of cost functions that can be implemented, quadratic forms are a common choice, thanks to the capac-
ity of highlighting small deviations (outliers are however also given more weight).
Training algorithms can widely vary in terms of capabilities and complexity. The results, however, can greatly
depend on the settings chosen for training and the characteristics of the problem at hand.
One of the simplest training algorithms, which also shows very clearly the principles behind network fitting,
is gradient descent. As shown in equation 3.5, the training process aims at finding the optimal combination
of weights and biases that minimize a cost function J . In other words, the minimum of J should be found
in a domain where the independent variables are w and b. With gradient descent, the algorithm starts its
search in an arbitrary point of the domain (usually random). At every iteration the algorithm will take a step
in the direction of decrease of the cost function J . In mathematical terms, the gradient descent is based on
the following update rule for weights and biases:

(w ,b)t+1 = (w ,b)t −γ∇J
(
(w ,b)t

)
(3.6)

According to the above formula, the network’s weights and biases are thus updated at each iteration t by a
term that is based on the gradient of the cost function ∇J . The factor γ is called step size or learning rate
and, in principle, it can be adjusted during training according to the current confidence in the direction of
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descent. Smaller steps will typically be taken as the algorithm moves closer to a (local) minimum.
Gradient descent is indicated as a first-order method, in the sense that it employs only first-order derivatives
in its functioning. Computation of the gradient, which is in turn the set of partial derivatives of J , is always
a crucial point in every training implementation and can be based on a number of methods. One of these
is the well-known backpropagation algorithm or, in simple terms, the application of the chain rule to trace
back partial derivatives with respect to weights and biases in each layer of a neural network. This algorithm
is based on the knowledge of the network’s structure and essentially considers the model as a set of nested
functions where weights, biases and input parameters are the independent variables.
In the present study, two training algorithms have been implemented: Levenberg-Marquardt and Bayesian
regularization. These can effectively be regarded as more complex forms of the gradient descent algorithm
and are better described in section 5.3.3.

3.4. CONCLUSIONS
In the present chapter, the main theoretical elements about surrogate modeling have been provided, with
specific focus on neural networks. The latter model structures have been proven to be universal approxima-
tors [89] [90]: a neural network with at least one hidden layer and arbitrary activation functions can approx-
imate a nonlinear function with any degree of accuracy, provided a suitable number of neurons. Moreover,
it has been demonstrated that the properties of FFNN can be further exploited by increasing the number of
layers. [91] Because of their flexibility, tolerance to error, ability to handle high-dimensional problems and
parsimony in the number of parameters [92], neural networks have found application in many problems of
function approximation and classification. Based on these characteristics and the evaluation of the problem
at hand, neural networks have been selected as the main surrogate model structure for the present investi-
gation. On the other hand, it is not simple to determine a priori the best network architecture for a certain
problem. Moreover, training a network on a very complex problem can require substantial time and memory
resources. The following chapters will provide details on how these problems have been dealt with, from the
choice of network architecture until the evaluation of the trained metamodels. [4] [61] [67] [87]
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CASE STUDY: AIRCRAFT PERFORMANCE

AND LANDING

As already stated in the previous chapters, the area of investigation of the project is the application of sur-
rogate modeling on aircraft functions for integration within avionics. The specific field of interest, among
the many that are associated with the implementation of embedded functions and models, is that of air-
craft performance. Having previously introduced the context of the work and the fundamental theory of
metamodeling, the present chapter thus aims to specify the topic of interest by providing information on the
chosen case study. This is done by introducing the topic of landing performance and presenting a prototype
function, which will be the focus of the reduction study.

4.1. INTRODUCTION TO LANDING PERFORMANCE
Landing is the last phase of the flight mission, which aims to bring the aircraft from a steady descent towards
the airport until a (close to) complete halt on the runway. The process itself can be divided into various parts,
as shown in Figure 4.1, which are characterised by different speeds, configurations and flight attitudes.
The landing phase takes place after the one of approach, which is usually intended as the segment of flight fol-
lowing the descent from cruise altitude. An aircraft conventionally starts its landing at screen height hscr een ,
when crossing an ideal 50 ft obstacle at the runway threshold. After this point, the aircraft is supposed to
follow an almost straight descending path, with the engines in idle power.
This program is kept until the pilot eventually pulls up the nose of the aircraft to prepare for touch down (TD).
Such manoeuvre is named flare and it serves the function of letting the main landing gear wheels touch the
ground first. Moreover, the new aircraft attitude increases the lift and slows down the aircraft, thus alleviating
the impact on the runway. Flare is a crucial part of the landing which, if not correctly executed, can lead to
cases of hard landing, tail strike or runway overrun.
Once the main landing gear has touched the ground, the aircraft enters the segment of rotation (or de-
rotation) where pitch decreases until the nose gear also touches the ground (nose down, ND). It is in this
time frame that the braking actions are initiated, with different delays from TD according to the braking con-
figuration. Spoilers are normally deployed as soon as the main landing gear hits the ground. They contribute
to braking by increasing form drag and reducing lift, hence improving the adherence of the wheels to the
ground and enhancing their friction characteristics.
The remainder of the landing procedure, called ground or braking roll, takes place between the moment of
ND and the point where the aircraft achieves full stop or a conveniently low speed. The sole objective of
this phase is to decelerate the aircraft, which is achieved by a combination of mechanical braking, spoilers
and thrust reverser action. Special attention is given to when the latter two are used together. Depending
on aircraft geometry and attitude, the flow created from thrust reversers around the wing can in fact hinder
the efficiency of spoilers. [93] Aircraft landing performance is directly measured by the distance effectively
covered during landing. A breakdown of its components is given in Figure 4.1. A shorter landing distance is
preferable, as it both cuts down time for airline operations and prevents any circumstance of runway overrun.
Further context on this topic can be found in Appendix A, which also includes an introduction to the main
governing equations.
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Figure 4.1: Scheme of the landing phase, with breakdown of its components and landing distances.

4.2. CASE STUDY: PROTOTYPE PERFORMANCE FUNCTION
In order to investigate the reduction of aircraft performance functions, a specific case study has been selected
and analyzed for the purpose. The target of the study is a prototype function developed by Airbus which is
embedded in the ATSU (Air Traffic Services Unit) [94] [95] of single-aisle aircraft. The objective of the func-
tion is to calculate the state of contamination of the runway (e.g. water or soil) from the information gained
during landing. The idea is to then send the output to the airport traffic services, so that they could forward it
to the next aircraft approaching the runway. In this way, pilots of incoming aircraft are enabled to appropri-
ately manage the landing and possibly avoid a situation of runway overrun. The approach offers a reliable,
physics-based, objective, real-time and automatically-updated solution to the problem of runway contami-
nation assessment. These characteristics make the application of such a function significantly preferable to
an evaluation by simple visual inspection of the runway state.
The function relies on Airbus’ aircraft performance models for its internal calculations and is built on mul-
tiple levels of models and submodels. Of notable interest for this project, are the aerodynamics and engine
performance models, which will be the object of metamodeling in the next chapters.

4.2.1. WORKING PRINCIPLE
In the prototype function, the runway state identification is based on comparison of the landing distance
actually covered by the aircraft with the simulated reference distances that would be covered in each of the 6
TALPA (Take-Off And Landing Performance Assessment) runway states: [96]

• TALPA6: DRY

• TALPA5: GOOD/WET

• TALPA4: GOODTOMED/COMPACTED SNOW

• TALPA3: MEDIUM/SNOW

• TALPA2: MEDTOPOOR/WATER SLUSH

• TALPA1: POOR/ICE

The whole process is run in differed time, as all information is gathered from the data recorded in the avionics
during the landing phase. By implementing such landing data, it is hence possible to compute the traveled
distance dr eal (one single value) and dr e fi (one value for each of the 6 TALPA states). The runway state is thus
conservatively identified as the one corresponding to the worst of the two dr e fi between which the value of
dr eal is estimated. It should be noted how this results from a comparison of distances rather than friction
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Figure 4.2: Conceptual scheme of the runway condition assessment. The arrows between different modules are meant
to indicate a data flow, with different colours according to the module of origin.

characteristics, as the latter remain an unknown of the problem.
An essential aspect of the runway state identification is that the calculation is only active within suitable
regions of the landing envelope. This is the case with friction-limited braking phases, which in most cases
correspond to when the anti-skid is active and controlling the deceleration. This represents a critical require-
ment in the computation, as it makes possible to establish a direct physical relationship between friction and
normal force. Including non friction-limited braking segments would introduce a physical bias in the calcu-
lation, as the braking force would be representative of the delivered torque, rather than the friction between
runway and tyres.
The logics to detect such time frames are fairly complex and heavily depend on the specific braking settings
and high-lift configuration. As a consequence of the above, the algorithm will not be available when the brak-
ing level is not high enough. That is the case, for instance, in an Autobrake MED setting with thrust reversers
on (we are not friction-limited). For different reasons the computation won’t run in a full-pedal deceleration
manoeuvre on dry surface, as in this situation the braking will be limited by torque rather than friction.

4.2.2. GLOBAL FUNCTION STRUCTURE

The calculation of dr eal and dr e fi requires a number of parameters, which are retrieved within the ATSU en-
vironment. While some of these are directly available, others have to be computed from available quantities.
For this reason, the core part of the function includes the use of physical models which enable the computa-
tion of all necessary parameters.
A conceptual scheme of the function is provided in Figure 4.2. Here the main processing components im-
plemented by the function are provided, along with the data flows exchanged between them. From a global
standpoint, the inputs of the function essentially consist in avionics data, while the output (as explained in
the previous section) is a runway state expressed according to TALPA standards. Between these two points,
a set of physical models and processing units are implemented, including a pre-processing module which is
meant to provide a set of coherent and clean data.
The physical computations, as previously mentioned, are largely based on Airbus performance models and
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the overall structure is akin to that of a standard aircraft performance model. This includes the modeling of
atmospheric, loads, braking, aerodynamics and engine parameters. Out of all of these modules, the two latter
ones present a more complex set of features and are of special interest for this study.
The aerodynamics block has its inputs coming from the atmospheric and engine model, as well as additional
data retrieved from the avionics. The objective of the model is to compute the global aerodynamic character-
istics of the landing, that is the total drag and lift forces acting on the aircraft, along with their corresponding
normalized aerodynamic coefficients. On the other hand, the engine model computes the outputs of total
thrust, expressed in net and gross values, as well as the projection of the latter on the air-path axes. An addi-
tional important aspect that the propulsion module takes care of is the transient state occurring during the
activation (or deactivation) of thrust reversers, which cannot be modeled with simple, direct laws due to the
dynamic nature of the phenomenon. Both the aerodynamics and the engine model show a degree of com-
plexity higher than the rest of the modules of the function, in that they rely on a number of input parameters,
aircraft tables and internal calculations.

4.3. CONCLUSIONS
The aim of the master thesis project presented in this document is to investigate the feasibility of reducing
flight performance models by means of neural networks. Within this context, a specific case study has been
examined in this chapter. A prototype function has been introduced as a potential candidate for the project,
as it presents the essential features of a landing performance function.
Based on the information gathered about the function, an investigation on the chosen topic of neural network
metamodeling is thus proposed for this case study. The analysis will tackle the reduction of two specific
physical models (or performance submodels) within the function: aerodynamics and engine. The interest
in reducing these two models is driven by their considerable degree of complexity, which makes them ideal
candidates for a reduction process.
The aim of the analysis will be that of investigating whether a reduction in terms of model complexity, in
the light of various proposed solutions, can be reached with acceptable compromise on the approximation
capacity of a surrogate model.
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The present chapter outlines the procedure implemented to investigate the chosen research topic. A detailed
explanation of the various phases of the work is provided, along with a theoretical and practical justification
of the methods and means applied in the process.
The project workflow has been structured in four major phases in order to carry out the set research objec-
tives. Each phase is in turn divided into multiple steps that tackle the lower-level research tasks. An overview
of this organization is formally provided in Figure 5.1.
In the first phase, a preliminary analysis is performed to set up the work. A thorough study of the charac-
teristics of the models and their parameters is done, so as to be able to perform the next steps of the work.
This process is crucial to get acquainted with the problem and its main features, as well as to point out which
aspects need to be taken under special consideration.
The second phase makes use of the results of the latter step, to build the datasets used for training and val-
idation. The data are first retrieved by means of a simulator, then they are sampled to acquire a specified
experimental design.
The following phase is the core of the whole work. This includes all training and validation activities to obtain
the sought reduced models. The proposed approach consists in building a set of baseline models, which are
then compared to another set of models with different architectures, to assess the research objectives of the
project.
The final phase consists in assessing the limitations of the work performed. This is done in two different ways:
first by comparing the obtained networks with a set of polynomial models, then by analyzing their framework
of operability.
The following sections will describe the main body of the work by examining each of the phases presented
above. The aim is to elaborate on the specific choices and the methods implemented, along with the rationale
behind them.

5.1. PRELIMINARY STUDIES
The first fundamental phase in the research process consists in identifying the critical features of the problem
in question. Before performing any investigation on model reduction, in fact, it is paramount to have a clear
view of the subject matter, so as to give a proper direction to the metamodeling process.

5.1.1. STUDY OF THE PROBLEM FEATURES
The first part of the project encompasses the acquaintance with the problem and its main aspects of interest.
This includes the means implemented in the work, whose features and limitations play a non negligible role
in the whole project deployment.

Experimental set-up
The whole set of tools necessary for the activity, which is fully software-based, have been provided by the host
company Altran Technologies. Various specific means have been implemented for the different tasks set in
the research.
A considerable part of the work, including the initial exploratory study, has been carried out on a Unix system.
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Figure 5.1: Scheme of the research workflow.
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In this environment, an Airbus certified software has been implemented to perform landing simulations for
generation of training and validation datasets. The working principle is quite straightforward: the user de-
fines all the environmental characteristics (e.g. temperature, Mach, runway condition) for a certain initial
point and the software performs a simulation of the full landing in compliance with airworthiness regula-
tions. The output of a calculation is thus a number of time series computed over the course of a landing
simulation, one for each relevant parameter of the problem. The software’s broad capabilities allow to simu-
late essentially any situation, even component failures and adverse weather conditions.
Transient effects are accounted for in the simulations, as is the case with the reverse transition in the engine
model. Since the modeling of transients is out of the scope of the work, samples including these effects have
been cut out from the obtained datasets before the sampling phase.
Matlab has been applied to carry out all remaining tasks of the work. This concerns all processing of the
simulator outputs, sampling of the data, feature selection and training and validation of the metamodels. For
these objectives, several Matlab default tools including statistical and plotting functions have been used. As
for the training of neural networks in particular, the Neural Network Toolbox of Matlab has been selected for
the task. Indeed, the same activity could have been carried out by means of other (open source) software
packages. This choice has been made because of the reliability, stability and completeness of the toolbox.
Matlab is also proposed as the main means for visualization and analysis of the results.
Lastly, it is worth highlighting that industrial data has been implemented in the project, representing a con-
siderable benefit with respect to other works in the field. In fact, as pointed out in the literature review, access
to proprietary, consolidated data for research purposes is seldom allowed by aircraft manufacturers.

5.1.2. ANALYSIS OF PROBLEM PARAMETERS
The simulation software is run on a number of landing cases, with the objectives of:

• Gaining further insight into the physics of the problem

• Verifying consistency with the known theory

• Identifying potentially crucial aspects for the creation of datasets

• Analyzing the effect of input and non-input parameters (for the simulator) on the variables of the prob-
lem

The study is performed by first identifying a representative landing test case, which is used as a baseline
configuration. A set of input parameters are then varied individually from the baseline, to determine the
effects of the single variables. The set of inputs whose effects have been investigated in this analysis included:

• Aircraft type

• Engine type

• Runway condition

• Pressure altitude (PA)

• Runway slope

• Outside air temperature (OAT)

• Wind speed

• Center of gravity position (CG)

• Weight

• Calibrated air speed (CAS) at touch down

• Pitch attitude at touch down

• Thrust reverser status
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For the most part, the findings of this study are in close agreement with the theory and what could be inferred
by an a priori investigation on the problem. Some aspects are however less trivial and are worth mentioning.
One point that stands out is the analogy between the effects brought by a change in the runway condition and
those due to a change in touch down speed or runway slope. This means that comparable landing conditions
can be created by acting on these three input parameters, which will hence be relevant for the next phase of
the work.
The type of aircraft and engine, as expected, heavily affect the results of the simulation. After nose down,
the aircraft settles to a constant angle of attack for the remainder of the ground roll. Such value depends on
the combination of aircraft and engine type set in the simulation. In this context, by aircraft type it is meant
a generic model such as A321, while engine type is a certain model produced by an engine manufacturer
with a specific power rating. These details are better explained in Figure 5.2, which specifies the common
designation of Airbus aircraft models.
The aircraft performs a steady de-rotation as soon as it touches the ground with the main landing gear, with
a rate of pitch down that is not affected by the aircraft speed. Concerning the aerodynamic forces, drag and
lift start decreasing at TD. As the spoilers are deployed, the value of drag continues to grow, while the lift falls
considerably. After ND both variables start to steadily decrease, due to the corresponding deceleration of the
aircraft on the runway. Engine thrust forces, on the other hand, are essentially determined by the controlling
variables N1 (low pressure spool speed) and EPR (pressure ratio).

A 123 - 456
AC family or general model

AC variant

Engine power rating

Engine manufacturer

Figure 5.2: Explanation of Airbus aircraft designation, where AC stands for Aircraft.

5.2. DATASET BUILDING
The results of the previous investigations form the foundations of the crucial phase of dataset building. At
this point of the project, some important directions are given to the analysis by building a specific dataset
from simulations and post-processing. The whole process can be roughly divided into two steps: first the
production of a comprehensive dataset from simulator runs, followed by a refinement towards a certain ex-
perimental design.

5.2.1. DATASET RETRIEVAL
In order to gather a first, coarse dataset, the simulation software is run on a number of specific landing cases,
where each case is identified by different values of the input parameters to the simulation. The simulator is
run in sequence on each distinct case by means of a software sovrastructure within the Unix system, which is
also responsible for producing the result files.

Data pipeline
At this stage of the work, the problem is defining a suitable set of values for a chosen group of input param-
eters, so as to obtain the sought dataset. It is not yet essential to have defined a specific design, but rather a
sensible choice on the range and number of values provided for each input to the simulator. Since the whole
simulation process is cloud-based, the only real constraint here is on the time required for the computation.
This time can easily escalate, as the number of landing cases grows with the amount of given input parame-
ters and values for each of them.
The problem that is faced here is explained more intuitively in Figure 5.3. The diagram illustrates a simplified
view of the main elements coming into play over the whole course of the reduction process, highlighting the
data of interest in each specific point. Four stages have been identified in particular and have been marked
in the figure with grey circles. At stage 1, which is the instance analyzed in the present paragraph, a set of
inputs and their values are chosen and fed to the simulator. In this way an initial coarse dataset is obtained
(stage 2) which is made up of all time series produced via simulation for all landings. The available variables
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Figure 5.3: Key elements and availability of data throughout the reduction process.
The purpose of the scheme is to show the state and scope of the data at each stage of the workflow,

pointing out at the transformations it goes through.

here are those that can be obtained as output of the simulator. Stage 3 is where a refined dataset has been
produced, thanks to a sampling process on the coarse dataset aimed at obtaining a specified design of ex-
periments. Data are thus ready to enter a training process to obtain the reduced models. For the purpose, a
set of features is selected as the input variables to the trained model. The logic of sampling is thus linked to
the characteristics sought for the training and validation datasets and will have an influence on the compu-
tational accuracy of the obtained model (stage 4).
As it stands out from Figure 5.3, the characteristics of the data at each point of the process are always affected
by the choices made at previous stages. The problem at stake in this paragraph can be hence formulated as:
choosing a good set of inputs and values at stage 1, so as to retrieve a dataset at stage 2 that can be suitably
sampled to obtain a training dataset (stage 3) with satisfactory characteristics. Solving the problem within
the abovementioned time constraints is not trivial and requires a high amount of foreplanning.

Choice of simulation inputs
The approach taken in this work is based on the consideration that the simulator always produces time series
results for all output variables. Therefore, any selection on the parameters that will be sampled, can be di-
rectly made at stage 2. Moreover, in the view of a later sampling, the only general requirement on the dataset
at stage 2 is set with respect to its completeness. As a consequence, the objective of the simulation process
will only be that of filling an adequate operation envelope with arbitrary refinement.
Such envelope should reflect the whole set of landing situations that could be presented to a reduced model
during its deployment on board. It should be kept in mind however that the targeted envelope corresponds
to (a first version of) the domain of training of the reduced models. Hence, the choices made in its creation
should not be simply aiming at covering every landing instance, but rather all conditions that could be rele-
vant to those specific models during operation.
In the choice of the input set, the study on the problem parameters described in 5.1 comes useful. Thanks to
that, it is also possible to exclude variations that would have resulted in the same effects, thus saving signifi-
cant computing time both at simulation and postprocessing level. For what concerns the ranges of each input
variable, the target of a landing envelope for standard single-aisle aircraft has been followed. The process is
performed in an iterative manner to adjust the dataset to the sought characteristics, especially concerning
those parameters that are outputs but not inputs to the simulator, and hence require a specific calibration.
The resulting setting is thus a compromise between considerations of completeness, refinement and con-
straints on the problem.
Table 5.1 reports the values set for each selected input to the simulations. Where only one value is given, it
means that it was kept fixed through all simulations, hence representing a baseline standard condition that
is complemented by the variation of other variables. This is the case with the runway slope and condition,
as well as pitch angle at touch down, whose variations can be fairly well covered by those on TD speed. The
aircraft model here is intended as a specific combination of aircraft and engine type. The parameter CONF
stands for high-lift configuration, qualitatively indicating the position of such devices on the wing. The only
configurations allowed for landing are 3 and Full, where the latter effectively corresponds to both flaps and
slats being completely extended. For what concerns landing mass and CG position, specific values have been
set in order to cover the complete range of values allowed in each situation. The maximum and minimum
values of mass are in fact dependent on the maximum landing weight and operating empty weight of each
aircraft model. Half of the values have been chosen as overweight cases, thus including emergency situations
in the analysis. The allowed CG positions are instead dependent on both the aircraft mass and the high-
lift configuration, since these are related to requirements on longitudinal stability and controllability during
landing.
It is worth specifying that the Runway Condition parameter is set according to the runway states recognized
by TALPA (Dry, Wet, Compacted Snow, Snow, Water Slush and Ice) which are the ones that the prototype
function attempts at detecting. For what concerns the Brake mode variable, which defines the intensity of
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Input parameter Values
Aircraft model 10 Airbus single-aisle models

Runway condition Dry
PA [ft] -2000, 1000, 4000, 7000, 10000

Runway slope [%] 0
OAT [◦C] -25, -5, 15, 35
Wind [kt] 0

CONF Full, 3
Gross mass [t] 6 values per aircraft model

CG [%] 3 values per each value of mass
Brake mode Med
GS at TD [kt] 100, 125, 150, 175, 200

Pitch attitude at TD [◦] 2
Thrust reverser status Inoperative, Max reverse, Idle

Table 5.1: Input parameters and values used in the landing simulations.

the braking action and the way it is distributed over the manoeuvre, this was set to the average condition
MED.
While the choices on most values reasonably cover the operational range of the problem, others represent a
limitation. The exclusion of a wind component falls in this category, as well as the choice of not including
system failure cases. Because of the latter choice, the engine model will be trained on values of half the whole
thrust, so as to model only one engine system. In this way, when the model is implemented in the cockpit,
the output will be doubled in normal conditions, while it will be taken only once in case of engine failure.
Both limitations have been introduced in order not to excessively complicate the problem but rather work
towards a solid baseline dataset, retaining representativity over the whole domain.

5.2.2. SAMPLING
The output of the study described in the previous paragraph is a total of 108000 landing simulations starting
from touch down until full stop on the runway. Each simulation bears the whole set of output parameters
given in the form of time series sampled at 10 Hz. It is clear that a sampling process is needed to reduce the
millions of available points to a dataset of reasonable size.
Matlab has a limited capacity in handling large datasets, thus some preliminary tests have been made to
check the training efficiency of the software against varying dataset size. Based on that, a target of around
50000 training points has been set as a reasonable compromise between completeness and memory limita-
tions. An equivalent validation dataset for independent testing is also set as an objective, thus raising the
amount of required samples to approximately 100000.
The sampling procedure has multiple goals, which can be summarized as:

1. Remove points that will not be modeled by the reduced models

2. Reduce the size of the dataset

3. Maintain the representativeness of each simulation

4. Obtain a uniform distribution of values

Removal of non-modeled points
The first task of those identified above effectively corresponds to the first step made in this phase of the work.
Notably, points lying in three (possibly overlapping) zones have to be removed from each time series:

• Before nose down

• Low speed timezones

• Engine transition from direct to reverse thrust
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The first two segments are out of the scope of the function, since the physics of the problem does not allow
a suitable assessment of the runway condition. Removing these samples is required since all simulations
have been performed with non-zero pitch attitudes at touch down and are recorded until full stop on the
runway. The third point concerns all cases of Max or Idle Reverse, where there is a transition of the engine
from a direct to reverse law. During this transient, the thrust does not follow the usual relationships that link
engine operation and power output. That is why specific laws are used in these phases, which are modeled
individually for each engine model. These samples are removed here since feedforward networks are not
capable of modeling transients and are trained on static samples rather than time series.

First dataset reduction
Before implementing an effective sampling process towards a specific experimental design, a further reduc-
tion on the dataset is performed. This is necessary, since the number of points is still very high and may make
the sampling algorithm practically inoperable due to computing time. The reduction is made by retaining
10 samples from each simulation, so as to guarantee their representativeness (point 2 of the sampling goals).
These samples are selected uniformly according to the values of GS (ground speed). The choice is not made
on specific values of GS, but rather by dividing the (remaining parts of) time series in 10 sections (uniform on
GS) and taking one random point from each section. This is done to avoid redundancies of points from time
series that have similar inputs or happen to result in the same effects.
The choice of GS as a reference rather than the time variable is due to the fact that, for the problem in ques-
tion, time does not have a particular meaning. The unfolding of the landing manoeuvre does not follow
regular timely steps, but rather it changes according to how fast the aircraft manages to decelerate on the
ground.

Sampling procedure
The main sampling phase aims to obtain a dataset as complete and uniform as possible, so as to enable a
training and validation of metamodels that are representative of their corresponding originals. A stratified
sampling approach [97] based on equal allocations on the discrete variables has been implemented. The
choice is deemed to serve the following purposes:

• Provided that previous steps of the process have retained full coverage of the relevant domain, this
sampling approach retains the full observed range of the variables.

• Areas of the domain with high redundancy of sample points are reduced in weight. The presence of
these areas (e.g. low speed) is due to the commonalities between simulations with similar starting
parameters.

• A space filling design is sought to produce uniformity in an N-dimensional sense, in order to implement
a balanced dataset in the training process. N-dimensional uniformity is much harder to achieve than
1-dimensional uniformity. Moreover, some variables of the problem cannot be controlled during the
simulations and their effect is only mitigated.

• The natural tendency of the physical phenomenon, represented by the patterns of the continuous vari-
ables, is retained. This ensures higher metamodel performance in those parts of the operation envelope
where the model is likely to work more often.

As a result of the sampling process, the dataset distributions are essentially unaffected, except being scaled
down by a factor 10. A constraint was introduced on some discrete variables to make sure that the different
aircraft types are equally represented in the dataset, in order to enhance the portability of the surrogate mod-
els. Additional details on the rationale behind the chosen sampling procedure and an overview of the results
is provided in Appendix B.

Training and validation datasets
The sampling process was performed separately on four pieces of the dataset retrieved from simulations, in
order not to overload the postprocessing phase. Once the procedure is completed, the four parts are rejoined
together and then randomly split into two subsets: one for training and the other for independent validation.
The two sets possess analogous characteristics and the distributions are conform to the ones they have been
sampled from. The number of points in each dataset is 54000, hence achieving the goal set earlier to perform
efficient model trainings with Matlab.
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To ensure that a good randomization had been obtained, a set of model trainings was performed with differ-
ent draws for the two datasets. Having obtained no remarkable difference in the results of such trainings, it
can be concluded that a representative splitting of the datasets has been attained.

5.3. MODEL BUILDING AND ASSESSMENT
Once the necessary data has been collected and reduced to an acceptable amount, it can be eventually im-
plemented in a model building process. The present section deals with the choice of various elements that
are relevant to this procedure: the input features, model structures, training algorithms and the criteria to
assess the quality of the trained models.

5.3.1. SELECTION OF INPUT PARAMETERS
According to the literature on the subject, various approaches can be taken in the choice of a set of input vari-
ables to a reduced model. Most of the works in the field seem to rely on engineering judgement, based on the
knowledge of the problem. However, more structured and complex methods are available and are generally
identified under the category of feature selection and extraction techniques. [63]
The issue plays a central role in this project, as the number of input features has a direct influence on the com-
plexity of the model. The problem is thus finding a minimal set of inputs that would still sufficiently describe
the essential features of the model being reduced, concurrently avoiding to excessively hinder its accuracy.
The only hard constraint on the process is given by the availability of data within the aircraft avionics envi-
ronment, where the models are implemented. Moreover, the data retrieved via the simulator in 5.2.1 already
include all potentially relevant parameters and hence only require to be selected before model training.

Correlation study
A statistical analysis has been performed to help in this selection process. A Pearson correlation coefficient is
computed for each possible pair of parameters available at this stage of the work. The data obtained from the
processes described in 5.2.2 has been implemented for the purpose. The Pearson coefficient for two generic
variables x and y is defined as:

ρx y = cov(x, y)

σxσy
(5.1)

where the covariance and standard deviation of the variable x can be expressed as

cov(x, y) = 1

n

n∑
i=1

(xi − x̄)(yi − ȳ) (5.2)

σx =
√

var (x) =
√∑n

i=1(xi − x̄)2

n −1
(5.3)

These definitions are valid for a population of n samples, iterated on by the index i , with mean values in-
dicated as x̄ and ȳ . In a feature selection process, such correlation coefficient can be used for two different
purposes. On one hand, redundant inputs can be screened out based on high mutual correlation, as they
would provide similar information to the model. On the other hand, the correlation between potential input
variables and the (defined) output parameters can provide important information on the relevance of each
input feature. The two aspects are thus taken into account when analysing the correlation matrix displayed
in Table 5.2.
With respect to the latter point, it is notably useful to inspect the values in the last four columns, where the
coefficients are referred to the output variables of the models. Coefficients are normalized between -1 and 1,
thus a value close to the two extremes hints a strong correlation or anticorrelation between the parameters. A
value close to zero should be interpreted as a weak interdependence, thus the parameter may not represent
an added value for the reduced model.
Overall, the study does not produce substantial discoveries, but rather proves what the known physics and
features of the problem already suggest. Some results might however not be intuitive, as is the case with the
correlation indexes found for the angle of attack. This is especially true for values of correlation with the
aerodynamic forces, which are normally expected to be substantially affected by the angle of attack. The
explanation for this behaviour is found in 5.1.2, where the angle of attack was shown to follow a linear trend
between TD and ND and then set to a constant value for the remainder of the roll. Such value only depends on
structural features of the aircraft, which are here represented by the variables of aircraft and engine type. As a
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Input parameter Baseline set Aerodynamics set Engine set
Angle of attack α [◦] ✓

Mach [-] ✓ ✓ ✓
N1 [%] ✓ ✓ ✓

Gross mass m [kg] ✓ ✓
CG position [%] ✓

OAT [◦C] ✓ ✓ ✓
Air pressure [Pa] ✓ ✓ ✓

CONF [-] ✓ ✓
Rev [boolean] ✓ ✓ ✓

Aircraft type [-] ✓ ✓ ✓
Engine type [-] ✓ ✓ ✓

Table 5.3: Input features chosen for the work: a common baseline set and two reduced sets specifically selected for each model.

consequence, lower correlation is found with the aerodynamic forces, since these are not primarily affected
(in a single flight) by changes in angle of attack but rather by other variables.

Input selection
The approach taken in the selection of input features relies on one hand on engineering judgement coming
from knowledge of the problem, and on the other hand on the results of the above correlation study. Two
input sets are defined for each model: a baseline set of variables, that is implemented in most of the analyses,
and a reduced secondary one whose performance is compared to the baseline. In the first case, the inputs are
essentially taken as a subset of those of the original models. Since the aerodynamics and engine model are
coupled by the effect of spoilers, a common set of inputs can be taken, exhaustively describing the problem
characteristics in both cases. For what concerns the secondary sets, these are selected separately for each
model, taking into account their specific features. A summary of the input variables chosen in either case
is provided in Table 5.3. An important clarification must be made here with reference to Figure 5.2, on the
categorical parameters of aircraft and engine type. Here and in the remainder of the document, an aircraft
type will be intended as a precise aircraft variant within a general family or model of aircraft. This is necessary,
as different variants often have very different geometric and mass characteristics. As for the engine type, this
will refer to the manufacturer of the specific engine model.
As a last consideration, it should be noted that the engine performance quantities of N1 and Reverse have
been considered for one engine only. This follows the choices explained in 5.2.1, where it was stated that cases
of system failure have not been taken into account in the analysis. Because of that, the problem is studied
in ideally symmetrical conditions, and it is assumed that the same aerodynamic and propulsive phenomena
are taking place on both sides of the aircraft.

5.3.2. NEURAL NETWORK STRUCTURES
The main metamodel structure implemented in this project is feedforward neural networks. These, however,
can be built in a variety of specific architectures that adapt at best to the characteristics of each specific
problem. In order to give a coherent organisation to the work, it was chosen to establish a baseline network
structure on which variations are then applied in the various studies of interest.

Baseline model structure
Based on their property of universal approximators [89] [90] single hidden layer networks can be safely cho-
sen as a starting point for the analysis. Linear transfer functions are set in the input and output layers, while
a hyperbolic tangent function is chosen for the hidden layer. Such sigmoid function is essentially a logistic
function scaled and shifted to output values between -1 and 1. As for bias coefficients, these are set both in
the hidden and output layers. A last aspect is that of the number of neurons, which is effectively dictated for
input and output layers by the number of parameters. The choice is less trivial in the case of hidden layers,
for which various rules of thumb exist in the literature on the topic. A number of 20 neurons is established as
a baseline for the hidden layer, reflecting the standard structural requirements of aircraft embedded models.
Clearly, since some of the choices specified above are purely arbitrary, the selected baseline model only rep-
resents a starting point for the analysis. As it will be described in the next chapter, variations on the model
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Figure 5.4: Two approaches to dealing with categorical inputs.
In this example, a variable is provided with 5 different categories. A corresponding input can be fed to a network via

1) a single neuron with integer value 3 or 2) a set of 5 boolean neurons where the third one is activated.

structure (number of layers and neurons) will be tested to assess the optimal characteristics in terms of mem-
ory and accuracy performance.

Categorical input variables
A further aspect deserving particular attention concerns the way input features are provided to a reduced
model. In the present analysis, it is possible to distinguish two kinds of input features: numerical and cate-
gorical. The former refers to actual data such as aircraft mass or speed, which are normally related to a unit of
measurement and thus express a quantity that can be directly provided to a model. The latter kind of inputs,
instead, consists in all parameters that rather express non-quantifiable information (a quality) and hence re-
quire a specific treatment. [88]
Examples of the latter, are the four last variables in Table 5.3, although there are important differences be-
tween them. It is clear nonetheless, how neither of these parameters refer to a scale, as they represent dif-
ferent situations instead of quantities. In this case the high-lift configuration and reverse variable can only
represent two states each, thus they are simply provided to the model in the form of a single binary input. The
situation is more complex for the parameters of aircraft and engine type, as they are supposed to represent 3
and 4 categories respectively.
Two solutions, of which an example is provided in Figure 5.4, are available to solve the problem. On the same
lines of what has been done with binary variables, a first approach consists in providing the model with as
many boolean inputs as the number of categories that the parameter should represent. In this way each cat-
egory can be expressed by activating single boolean inputs with a 1, keeping the remaining inputs (of that
specific categorical variable) to a null value. This is often referred to as one-hot encoding.
The second proposed solution only requires one model input per categorical feature. In this case each cate-
gory is assigned to a specific numerical value (usually ordered integers), which is then provided to the model
via the single input feature. This approach is clearly less accurate than the previous one as it implies a nu-
merical meaning in the scale and order of the chosen values, which may provide misleading information to
the model. This might in turn make it harder to fit on the data or simply lead to learning fictitious patterns.
Despite this flaw, the latter solution is still preferred for its efficiency in the amount of inputs, which is an
aspect of strong interest with regards to the objectives of the project. Arbitrarily ordered integers for single
categorical input features are thus implemented throughout the investigation. However, considering the ex-
pected benefits in terms of accuracy in the use of multiple binary inputs, this solution is also explored in the
next chapter.

5.3.3. TRAINING ALGORITHMS
Following a set of preliminary tests on various training algorithms, two of them were found suitable for the
problem. The first method is the well-known Levenberg-Marquardt optimization algorithm [98] which is
based on the update rule:

w t+1 = w t − (J T J +µI )−1 J T ε (5.4)

where w t is the vector of the network weights and biases at time step t , ε is the output error vector, J its Ja-
cobian with respect to all the weights (normally computed by standard backpropagation) and I the identity
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matrix. The quantity µ in the formula is called damping factor. This coefficient is adapted during training
according to the current level of confidence in the step direction, adjusting the algorithm between a Gauss-
Newton method (small µ) and a first order gradient descent approach (large values of µ). This is considered
as a pseudo-second-order algorithm, as the Hessian matrix H (which holds the second derivatives of the ob-
jective function) is approximated by the term J T J .
The method attempts at minimizing an objective function assumed to be a combination of squared devia-
tions in the form:

E = εT ε (5.5)

Levenberg-Marquardt has been proven as a fast and reliable method for most small to medium sized prob-
lems. Despite the present work not making exception, the second training method implemented still resulted
in consistently better results.
Bayesian Regularization [99][100] applies the same rules as Levenberg-Marquardt in the update of the net-
work parameters. The fundamental difference, however, is that the objective function is now a linear combi-
nation of errors and weights:

E =βED +αEW =β(εT ε)+α(wT w) (5.6)

Here the regularization parameters α and β are computed by applying Bayes’ theorem on conditional proba-
bility and assuming Gaussian distributions for all parameters in the problem:

α= γ

2EW
(5.7)

β= nT −γ
2ED

(5.8)

with nT the number of training samples and γ the "effective number of parameters" defined as

γ= NP −2α(H−1)T (5.9)

The latter coefficient, defined against the number NP of parameters (weights and biases) in the model and
the Hessian matrix H of the error function, is a measure of the current efficiency in the use of the chosen pa-
rameters in the model. In essence, the algorithm seeks to push the values of unnecessary parameters towards
zero, in what is commonly called a "pruning" mechanism. In this way the model is prevented from overfit-
ting on the data, without the need of extensively cross-checking training performance with a validation set.
To stop the process, in fact, the convergence of the cost function E is normally taken as a reference point.
As mentioned before, Bayesian Regularization provided better results in the vast majority of network train-
ings. For this reason the method was implemented in nearly all studies as a benchmark, comparing the results
with those of Levenberg-Marquardt only in very specific instances. Indeed this improved performance came
with a cost, as Bayesian Regularization would take on average approximately three times the training time
required with Levenberg-Marquardt.

5.3.4. TRAINING SETTINGS AND STOPPING CRITERIA
Having defined the surrogate model structures and fitting algorithms, there are several parameters that have
to be set in order to perform each training. These have been adjusted through repeated tests to find consis-
tency and good accuracy of results and have been kept constant throughout the whole analysis.
Trainings were repeated 10 times per single model architecture, retaining the best performance in terms of
mean absolute error on the validation dataset. This was done to mitigate the elements of randomness in-
troduced in the every training: the starting point of the optimization and the extraction of a validation and
test subsets from the training dataset built in 5.2.2. The validation dataset (which is clearly independent of
that obtained in 5.2.2) is used in the Levenberg-Marquardt algorithm as one of the stopping criteria, by cross-
checking performance during training in order to detect overfitting. The test dataset, instead, provides an
independent measure of the model generalization achieved during and after training with both algorithms.
An essential point of the process is the normalization of inputs, since those selected in 5.3.1 range over very
different magnitudes. The purpose here is served by a mapminmax function, scaling all inputs between -1
and 1 before training.
More numerical information about the specific training settings is reported in Table 5.4. These focus in par-
ticular on partitioning of the training set, stopping criteria and handling of the damping factorµ. Each setting
has a correspondence in the Matlab environment where the models were built, which provides reliable tools
to manage each specific aspect of the process. In the table, MSE stands for Mean Squared Error.
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Setting Levenberg-Marquardt Bayesian Regularization
Validation subset size 20% -

Test subset size 10% 20%
Training performance function MSE MSE

Maximum training epochs 1000 1000
Performance goal 0 0

Maximum validation failures 6 -
Minimum performance gradient 1e-7 1e-7

Initial damping factor µ 0.001 0.005
µ increase factor 10 10
µ decrease factor 0.1 0.1

Maximum allowed µ 1e10 1e10

Table 5.4: Training settings implemented with the Levenberg-Marquardt and Bayesian Regularization algorithms.

5.3.5. PERFORMANCE EVALUATION
One essential feature of the study is the method of assessment of the obtained models. As previously dis-
cussed, this has to take into account both the accuracy of the metamodel and the degree of storage require-
ments achieved.
For what concerns the accuracy, various indexes can be computed on the training and validation datasets,
such as mean absolute error (MAE) and root mean square error (RMSE). These are defined as:

M AE =
∑n

i=1 |εi |
n

(5.10)

RMSE =
√∑n

i=1 εi
2

n
(5.11)

where εi is the error on sample i and n the number of given samples. Both indexes are provided in the same
unit as the output variables, thus representing a convenient way to understand the physical nature of the
results. The value of MAE is sometimes chosen as the main accuracy index due to its easier interpretation
and reduced sensitivity to outliers, compared to other coefficients such as RMSE. This is due to the intrinsic
nature of MAE, in which all errors have a proportionally weighted impact on the end result. [101]
The benefit of having performance indexes in the same unit as the output, comes unfortunately with the
disadvantage that results from different models and datasets cannot be directly compared. In fact, absolute
measurements of the error on engine data have a different meaning than those computed on aerodynamic
data. Even more importantly, the issue is present when comparing results for the same model but with dif-
ferent training or validation datasets. A relative quantity is hence introduced as the global accuracy index for
this study, the normalized MAE:

N M AE = M AE

ȳ
(5.12)

ȳ =
∑n

i=1 |yi |
n

(5.13)

which is merely the mean absolute error over a normalization coefficient ȳ , here chosen as the average of
absolute target values in the output dataset. In the present report, this index will be provided in percentage
terms.
A last point worth mentioning is that the evaluation of model accuracy on the validation dataset is preferred
over that on the training dataset. The former, in fact, provides an independent measurement of the model
accuracy, which is not given by the latter.
The second aspect in the evaluation of the surrogate models is that of reduction of model complexity. In the
work of Bondouy [15] on the selection of surrogates for multilevel structures, both memory size and compu-
tational time are implemented as performance measurements. Since the current project is a feasibility study
focusing on several aspects of the reduction of aircraft models, it has been chosen to only retain the mem-
ory size as a second performance index, provided in terms of numerical coefficients within the model. Such
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approach is also implemented by Corman [25] in the assessment of metamodel complexity. This is deemed
to be a good compromise, as the computational time is expected to follow a comparable reduction to that
observed in memory size.

5.4. ADDITIONAL EVALUATIONS
The last phase of the project consists in establishing the validity of the work done through further evaluations.
As a first means of assessment, it was chosen to compare the performance of the obtained networks to those
of alternative metamodel structures. This is common practice in the field and various types of surrogate
model are available for the job. In this case, polynomial models have been selected for comparison.
Moreover, in order to provide a practical criterion to evaluate the results of the work, an additional study was
carried out to assess the impact of the integration of the trained model architectures on the performance of
aircraft functions.

5.4.1. POLYNOMIAL MODELS

Multivariate polynomial models of low degree (response surfaces [25]) have been implemented for their ease
of application and accuracy in local approximation. Some tests were run on Matlab to assess the practical
limitations of the process, which led to the decision of training models of up to degree 3. Both training and
validation dataset obtained in 5.2.2 were scaled down by a factor of approximately 2.5, following the sampling
method described in the same section. Each dataset thus featured slightly less than 21000 samples before
fitting.
The polynomial models were built for specific key cases, as a benchmark for comparison with the neural
network models. The specific rationale behind the construction of these models is provided in Appendix D.
Results in terms of accuracy and required coefficients will be provided in the next chapter in parallel to those
of the network models.

5.4.2. FEASIBILITY STUDY

As explained in the beginning of the document, the aim of the project is to investigate the possibility of in-
troducing neural network-reduced models within aircraft functions. The methods and tools presented so far
are all aimed at producing a set of surrogate models that could represent a valid alternative to the original
functional modules. What is still missing, in order to be able to answer this project’s research question, is a
framework against which the obtained models can be assessed by means of the indexes presented in 5.3.5.
With this objective in mind, a study is performed on the prototype function to determine how the accuracy
of a reduced model could impact the final assessment of runway contamination. As shown in Chapter 4, the
computation of runway condition is achieved by comparing a dr eal with 6 reference distances dr e f that cor-
respond to the TALPA levels of contamination. The critical aspect in this method is that the 6 dr e f , which will
eventually be computed by implementing the reduced models, should be accurate enough not to result in
the dr eal being on the wrong side of a dr e fi .
This concept is better explained by looking at Figure 5.5, where the hypothetical result of a runway condition
analysis is represented in an intuitive way. As shown, the function would normally compute a set of dr e f (on
the left) and assess the contamination level as the lower of the two closest to dr eal . In this case, however, a
set of estimates d est

r e f is introduced to represent the values that would be computed (with lower accuracy) by

implementing surrogate models. A positive or negative difference between the two values,∆dr e fi , is therefore
normally expected. In this example, the contamination assessment would lead to a wrong result, as d est

r e fi
is

higher than both dr e fi and dr eal , hence resulting in a contamination level corresponding to dr e fi−1 instead of
dr e fi .
Moreover, a worse case could be thought of, where d est

r e fi
and dr eal would be symmetrically placed on the

other side of dr e fi . In such situation the assessment would not only be wrong, but also result in an underes-
timation of the runway contamination level.
Based on the above, the requirement on the accuracy of runway condition assessment can thus be stated:

∆dr e fi <∆dr eali (5.14)

where the two quantities are given as

∆dr e fi =
∣∣∣d est

r e fi
−dr e fi

∣∣∣ (5.15)
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POOR/ICE

DRY

Figure 5.5: Hypothetical result of a runway condition analysis. The reported variables are the actual reference distances dr e fi
, the same

distances as computed with reduced models dest
r e f and the actual traveled distance dr eal . The absolute deviations ∆dr e fi

and ∆dr eali

are also shown. In this example the assessment leads to a wrong result, since dest
r e fi

is higher than dr e fi
and dr eal .

∆dr eali =
∣∣dr eal −dr e fi

∣∣ (5.16)

This expression provides a good indication on what characteristics should be sought in the reduced models
under examination. It is evident that the parameter on which the analysis needs to be focused is∆dr e fi , which
should be kept as low as possible.
A target relative accuracy can thus be set here, with a tentative value of 0.5%. This figure will be referred to a
normalized measurement of the error on dr e fi , defined as:

∆d %
r e fi

= 100 · ∆dr e fi

dr e fi

(5.17)

Having set this objective, the study is focused on finding the relationship between the above error and the
accuracy of the reduced aerodynamic and engine models. In this context, the variables of interest will be
aircraft drag and XPROP , as these have a direct impact on the calculation of the reference landing distances.

Numerical assessment
The approach taken here consists in a numerical assessment of the errors made on dr e fi within the working
domain of the surrogate models. In order to give a clear idea of the process, the sequence of steps is shown in
Figure 5.6. A further breakdown of the algorithm, which was implemented in Matlab, is given in the following:

1. Data for the analysis are retrieved from a set of landings which is analogous to those employed in 5.1.
The essential difference with the study of the previous chapter is that data will be considered as full
time series, rather than single sample points.

2. The algorithm starts by considering each landing timeseries separately. The first step in this sense is to
compute dr e fi with the available data, which are considered "correct" as they’re output of simulations.

3. Having set a specific landing and computed the landing distance, steps 3 to 6 aim to compute an equiv-
alent distance but with "real" data. In order to do that, an artificial error distribution is introduced in
the values of D and XPROP , as if surrogate models were used to produce them. Modeling errors, how-
ever, can have very different distributions (which could be generally described by their average and
standard deviation) hence the need to establish a process to simulate this aspect.
The approach taken here will assume normal error distributions, which is deemed as a good compro-
mise based on the initial study performed in 5.1.2. A specific combination of NMAE values for D and
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1. Load landing
timeseries data

For each landing

For each
(NMAED, NMAEXPROP)

50 iterations

3. Generate error
 from NMAE

4. Compute:
Dest, XPROP

est

2. Compute from
 data: drefi

5. Compute from
estimated data: drefi

est

6. Average,
normalize: Δdrefi

%

7. Error surface for
single landing

8. Median surface of
all landings

9. Level curves of
error function

Figure 5.6: Workflow of the numerical feasibility study.
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XPROP is set at this step of the algorithm. This accuracy measure is chosen as it allows to compare
results from different instances and is extensively used for this goal in the remainder of the work. An er-
ror distribution with zero average is thus randomly generated for each variable, having set the standard
deviation from the relationship [102] for Gaussian distributions:

σ=
√
π

2
M AE (5.18)

4. The error distribution generated for a specific combination of NMAE on D and XPROP is applied on the
timeseries of both variables. Thus the estimated data Dest and X est

PROP are obtained.

5. The computation of step 2 is executed again, but this time on the perturbed timeseries, resulting in an
estimated reference distance d est

r e fi
. Steps 3-5 are repeated 50 times, computing an equivalent number

of approximated reference distances.

6. Having obtained an acceptable level of randomization with 50 iterations (the amount has been ad-
justed through several tests), the average reference distance can be calculated. An absolute deviation is
computed with the unbiased value obtained at step 2, then normalized to obtain a ∆d %

r e fi
as in (5.17),

which is valid for the set values of NMAE on D and XPROP .

7. Steps 3-6 are repeated over a domain of NMAE combinations, in order to cover all values relevant to the
study with sufficient granularity. In this way, a complete error surface of ∆d %

r e fi
can be built for a single

landing instance.

8. All error surfaces obtained by iteration of steps 2-7 are reduced to a unique median surface, in order
to provide a universal tool for the evaluation of metamodels, independent of the specific landing char-
acteristics. An error volume could have been retained, rather than an average surface, however this
would have made the final assessment more complex and not as easily interpretable. This choice has
the additional benefit of reducing the influence of outliers and highlighting the main underlying trend,
on the same lines of the sampling philosophy discussed in 5.2.2.

9. From the global error surface obtained, it is possible to trace heatmaps or (as done here) a set of level
curves for constant values of ∆d %

r e fi
. Based on these results, we can evaluate the performance of surro-

gate models for any combination of NMAE on the variables D and XPROP .

The resulting error surface mentioned at point 8. of the above process is visualized in the top of Figure 5.7.
This shape has been obtained consistently throughout several repetitions of the process and is therefore not
affected by the randomization elements introduced. In the bottom part of the same figure, a set of level curves
of the error surface are reported (as hinted at step 9.). Such levels have been taken arbitrarily in this case, only
to give an idea of the trend of the error function.
It certainly stands out how the relative error on drag has a higher effect than the one on longitudinal thrust.
In fact, after a comparable initial increase, the error on dr e fi starts to grow more rapidly along the N M AED

dimension. For reference, a relative error of around 11% on XPROP corresponds to a 0.5% difference in landing
distance, if the error on thrust is the only contributor. For the same 11% error, if only caused by drag, the
error on dr e fi is doubled to approximately 1%. Having said that, however, these values already show how the
present application has a good level of resilience with respect to the error on these variables.
In the context of this work, the obtained global surface and especially a corresponding set of level curves, can
be used to evaluate any surrogate model with outputs D and XPROP . Based on the tentative target accuracy
of 0.5% proposed in the previous paragraphs, any combination of modeling errors N M AED and N M AEXPROP

falling below the 0.5% level curve in Figure 5.7 (bottom) would be considered accurate. This framework will
be applied, with appropriate adjustments, to the trained models that are presented in the next chapter.
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Figure 5.7: Global error surface resulting from the numerical feasibility study (top)
and level curves of the same surface taken at relevant constant values (bottom).



6
RESULTS

The current chapter reports the outcomes of the machine learning process introduced in 5.3. The overall
structure of the chapter is established on the comparison between a baseline surrogate model and several
variations on this main architecture. A further assessment is performed on comparable polynomial models
for a selected number of neural networks. The evaluation of all obtained models is accomplished by means
of the performance indexes presented in 5.3.5, and in the light of the impact on the function of interest.

6.1. BASELINE MODEL
The first results presented in this chapter concern the baseline network described in 5.3.2, which is used as a
standard for comparison with several other metamodel structures. An intuitive representation of the model
is provided in Figure 6.1. The image shows the number of nodes in each layer, the chosen activation functions
and the input and output variables of the network.

6.1.1. GLOBAL RESULTS

The baseline network structure has been applied to reduce both aerodynamics and engine model, resulting
in the global performance indexes reported in Table 6.1.
The reduction achieved in memory requirements (282 coefficients for each model) comes with an inevitable
decrease in accuracy of the models with respect to all output variables. An evident trait is that the accuracy
is always worse when computed on the validation dataset. This is a reasonable outcome that will be verified
throughout all results, since a metamodel is expected to perform better on the data it has been trained with.
Moreover, since this deviation between datasets is not high in comparison with the values presented, it can
be concluded that the two models have reached a good generalization on the available data.
The data shown in Table 6.1 are referred to neural networks that have been trained with the Bayesian Regular-
ization algorithm [99][100], which will be held as the reference training method in the remainder of the docu-
ment. As already pointed out in the previous chapter, Levenberg-Marquardt [98] has also been implemented
throughout this project, producing overall consistently poorer results. To prove this fact, the performance of
the baseline models trained with Levenberg-Marquardt has also been reported in Table 6.2.

6.1.2. ERROR ANALYSIS

In order for the results of Table 6.1 to be fully comprehensible, a comparison of the errors with the scale of
the measurements involved is required. The plots provided in Figures 6.2 and 6.3 can help in this task. Here
the error computed on each sample in the training and validation dataset is traced against the corresponding
target value. Such representation is given for both pairs of output variables in the two models. Ideally, the
points in the graphs would remain within certain error limits along the whole domain of the output variable.
It is reasonable to expect however, for a still acceptable surrogate model, to have the errors grow in proportion
with the target value, hence maintaining a roughly constant relative error. Additional details and plots on the
analysis of the relative error are provided in Appendix C.
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Figure 6.1: Baseline neural network structure: 11 input neurons, 20 in the hidden layer and 2 in the output layer. Input and output
nodes follow a linear law, while the hidden neurons are given a sigmoid transfer function.
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Aerodynamics model Engine model

Index Drag Lift XPROP ZPROP

Number of inputs [-] 11 11
Number of coefficients [-] 282 282
N M AEtr ai n [%] 2.99 12.91 2.06 15.62
N M AEval [%] 3.00 12.87 2.05 15.63

Table 6.1: Performance indexes computed on the results of the baseline neural network models trained with Bayesian Regularization.

Aerodynamics model Engine model

Index Drag Lift XPROP ZPROP

Number of inputs [-] 11 11
Number of coefficients [-] 282 282
N M AEtr ai n [%] 3.38 13.00 2.01 13.34
N M AEval [%] 3.37 13.24 2.03 13.33

Table 6.2: Performance indexes computed on the results of the baseline neural network models trained with Levenberg-Marquardt.

Aerodynamics model
The expected trends are found, to a certain extent, for the results of the aerodynamics model in Figure 6.2. For
what concerns drag, the error is limited in nearly every part of the domain. A notable exception, other than
some inevitable outliers, is represented by the area of lower target values, where the errors grow considerably
in a relative sense. However, this aspect is of minor importance for the present study, as the model is less
likely to work in these conditions.
Similar considerations can be made with respect to the results of lift, which is however characterized by the
presence of several outliers. An interesting detail is the linear growth of the error for a subset of samples,
which is a behaviour found at lower scale also in the drag plot. This characteristic (and in general any evident
pattern in the error representation) is a classic signal for the neural network not being able to recognize some
trait in the original model. In other words, the data provided to train and evaluate the metamodel contain
some features that were not effectively taken into account during training. The issue is therefore ascribable
to either a non ideal choice of metamodel architecture (in which case the network is simply not able to model
some phenomena because it lacks structural flexibility) or an inadequately performed training (which can be
excluded here given the carefully-thought measures described in 5.3.4).

Engine model
The issue of unrecognized patterns is found at a noticeably higher level in the results of the engine model,
given in Figure 6.3 for both variables. This is particularly evident in the plot of the ZPROP variable where,
since the values are of a low order compared to the horizontal component of thrust, local phenomena appear
more clearly. Concerning the error on XPROP (which is the variable of real interest for the engine model) the
values obtained are globally not as contained as what is achieved in the aerodynamics model. High errors are
observed for low values of thrust, both in absolute and relative sense. Contrarily to the aerodynamics model,
this aspect represents a problem here, since the engine is often operated in low-thrust regimes during the
landing manoeuvre.
A last interesting feature that stands out in the plot is the absence of samples for slightly negative values of
thrust. Such gap is readily explained, as it corresponds to the area of transient operation of the engine, which
was removed from the analysis as described in 5.2.2.

6.1.3. CONCLUSIONS
Based on all considerations made above, it can be concluded that the baseline neural network represents a
promising starting point for the reduction of both aerodynamics and engine model. Overall, the aerodynam-
ics model seems more reliable for standard aircraft operation, with satisfying results achieved also in terms of
storage requirements. The latter consideration can also be made with respect to the engine model, although
its relatively poor accuracy prompts the need for further investigations before making it an actual candidate



44 6. RESULTS

for deployment. The main direction in which to conduct the study, as already pointed out in the above, is
towards possible improvements of surrogate model structure. The next sections will examine various op-
tions that have been considered in this project, trying to find acceptable compromises between accuracy and
memory requirements.

6.2. IMPROVEMENTS OF NEURAL NETWORK STRUCTURE
As already pointed out in this work, one of the most interesting features of feedforward neural network mod-
els is the ability of fitting any nonlinear function with arbitrary degree of accuracy. This can be achieved with
as few as one hidden layer, provided that enough neurons are given in the model. Moreover, a network with
more than one hidden layer is expected to achieve better performance, given the same total number of neu-
rons. The presence of multiple layers in fact, allows the network to process the input information in a more
complex way. [91]
Based on these theoretical considerations, a study has been performed on the effect of modifying both the
number of neurons and layers of the baseline model, while maintaining unaltered its remaining character-
istics. Network architectures featuring at most three hidden layers were considered. In the single-layered
case, the number of neurons in the hidden layer was varied between 5 and 30. With multiple layers instead,
combinations of 3, 5 and 10 neurons were tested. All these choices were made by considering the range of
characteristics sought for an accurate and well-reduced metamodel. The aim of the analysis is in fact that of
studying potential trends in the results and identifying the most promising traits in the surrogate models.
The global outcomes of the investigation are given in Figures 6.4 and 6.5, where the accuracy in terms of
NMAE of every trained metamodel is plotted against the required number of coefficients. The graphs are pro-
vided separately for each variable in the two models and the values are computed on the validation dataset.
Moreover, the points corresponding to the baseline model structure of the previous section have been high-
lighted, showing no significant difference with the results of the analogous 20 neuron single-layered model
of this study.

6.2.1. GENERAL REMARKS

Overall, a set of trends resembling an exponential decay is observed in almost every case. This result is in
good agreement with the literature [25] and is also a reasonable one: the more complex a metamodel is,
the better its approximation of the original model, at the cost of a higher memory requirement. However,
this aspect seems to be strictly valid only for what concerns the total number of neurons in the networks,
as different numbers of layers instead introduce more complex features in the results. A higher number of
layers, even for the same number of coefficients, does not necessarily correspond to better performance (as
also confirmed by the literature) and the way neurons are distributed among the layers has a heavy effect on
the accuracy. To highlight this fact, the lines in each graph were not only rendered with different colors based
on the number of layers, but also different lines were traced according to the number of neurons in the first
layer. This latter characteristic seems to play an important role in defining different levels of reduction: for
the same number of layers, a higher number of neurons in the first layer pushes the exponential-like trend
closer to the axes of the graph. The same effect is observed, though to a lower extent and coherence, for what
concerns the number of layers. Such aspect is paramount for the present analysis, as curves that approach
the bottom left of the graphs identify better compromises of accuracy and storage requirements.
From a general point of view, the analysis provides valuable hints as to the type of models that are suitable for
the problem at hand. These have been investigated separately for the results of the two models.

6.2.2. AERODYNAMICS MODEL

Concerning the aerodynamics model, shown in Figure 6.4, good reductions are obtained even with one hid-
den layer. A number of 15 and 20 neurons (where the latter corresponds to the baseline of 6.1) may represent
an interesting compromise depending on the specific requirements involved. However, the real power of the
neural network technique is clearly better exploited when more hidden layers are considered. Quite surpris-
ingly, the set of 2-layered models appears to offer a consistently wider range of candidates compared to those
with 3 layers. Taking into account the results on both Drag and Lift calculation, the models identified as (10,5)
and (10,5,5) represent the best compromises for the aerodynamics model. These in fact show substantially
better approximation characteristics than the baseline model, at the same time achieving good levels of stor-
age requirements. Of the two, the former model can be regarded as the preferred choice, given its higher
reduction, structural simplicity and marginal accuracy penalization compared to the 3-layered network.
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Figure 6.4: Study of neural network structure modification for the aerodynamics model, with values of NMAE computed on the
validation dataset. The number of neurons in the hidden layers is reported between brackets next to each point in the graph.
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Figure 6.5: Study of neural network structure modification for the engine model, with values of NMAE computed on the validation
dataset. The number of neurons in the hidden layers is reported between brackets next to each point in the graph.
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Single model

Index Drag Lift XPROP ZPROP

Number of inputs [-] 11
Number of coefficients [-] 324
N M AEtr ai n [%] 3.31 13.85 4.65 19.94
N M AEval [%] 3.28 13.84 4.64 19.94

Table 6.3: Performance indexes computed on the results of the single neural network for both aerodynamics and engine model.

6.2.3. ENGINE MODEL

Similar considerations are made with respect to the results of the engine model in Figure 6.5. In this case
the baseline model could indeed benefit from an additional reduction, as shown by the positive performance
of the 15 neuron model. Concerning networks with multiple hidden layers, the situation is more difficult to
judge compared to the aerodynamics model. Here the results for the XPROP variable should be considered
the more reliable source of information. The variable ZPROP in fact, due to its lower magnitude, generates
more erratic patterns that are relatively reliable for the analysis.
In the choice of the best candidate model, here the requirements of the specific application play a fundamen-
tal role. Several options are available according to whether the accuracy or the size reduction of the network
is given more importance. For the sake of consistency, the models (10,5) and (10,5,5) are chosen also in this
case as the preferred compromises. For the same ideas seen with the aerodynamics model, the 2-layered
network can be picked as the overall best choice in the set of results.

6.3. SINGLE REDUCED MODEL
The feasibility of a profoundly different approach to the problem has also been tested in the project. In this
investigation the aerodynamics and engine model are reduced together in one unique neural network, with
common inputs and outputs. The major advantage with this solution, is that the storage requirements of
such global metamodel is lower than that of the two separate reduced models summed together. This con-
sideration obviously holds if the same network architecture is implemented.
Based on the above idea, a neural network model with a single 20-neuron hidden layer has been imple-
mented, reducing both the aerodynamics and engine model together. The input parameters are the same
as the baseline model structure shown in 6.1, while the four outputs are the combination of those found in
the two models. The performance achieved by the best trained network is reported in Table 6.3. Given the
model structured considered here, only one value is provided for the number of coefficients in the network.
A few considerations can be made by comparing the obtained results with those of the baseline models in
Table 6.1. Concerning the accuracy, it stands out clearly how the separate baseline models outperform the
single model, notably for the engine variables. In terms of memory reduction, however, the single model
achieves a significant improvement compared to the equivalent aggregate index of the baseline models.
If a choice were to be made based uniquely on the above results, the solution of a single model would be dis-
carded. This is an inevitable consequence of the excessively poor accuracy obtained in the computation of
engine thrust, especially when compared to the fairly good performance on the aerodynamic outputs. It is ex-
pected that smoothing out such disparity would require heavy adjustments of model structure, conceivably
leading to a substantially higher number of coefficients. A more complete study, which is out of the scope
of this project, would focus on testing different architectures for the single model against combinations of
separate models having likewise different architectures.

6.4. NEURAL NETWORK WITH SELECTED FEATURES
An additional investigation has been performed, based on the already described idea of feature selection of
5.3.1. In this case the aerodynamics and engine model have been approximated by means of baseline neural
networks, only with reduced sets of input variables. The two input sets are reported in Table 5.3 and were
chosen according to a correlation study between input and output parameters in the original models. The
analysis is particularly interesting for the topic in question, as it directly tackles the problem of memory load.
The benefit however, comes at an unavoidable cost in terms of accuracy, as the reduced model is provided
with less information about the phenomena of the system.
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Aerodynamics model Engine model

Index Drag Lift XPROP ZPROP

Number of inputs [-] 9 7
Number of coefficients [-] 242 202
N M AEtr ai n [%] 3.39 24.90 2.17 12.99
N M AEval [%] 3.37 24.74 2.16 12.96

Table 6.4: Performance indexes computed on the results of neural network models with selected features.

Aerodynamics model Engine model

Index Drag Lift XPROP ZPROP

Number of inputs [-] 16 16
Number of coefficients [-] 382 382
N M AEtr ai n [%] 2.96 15.23 2.10 12.80
N M AEval [%] 2.88 15.17 2.12 12.75

Table 6.5: Performance indexes computed on the results of neural network models with boolean categorical inputs.

The results of the investigation, provided in Table 6.4, show some remarkable characteristics when compared
to those of the baseline. On one hand, the reduction ratings achieved for both models are indeed substantial
and outperform the baseline models in both cases. On the other hand, the loss of accuracy occurs with very
different extent in the two models. The aerodynamics model shows a significant decrease in approximation
power, with poor performance especially in the computation of lift. Conversely, despite being built with a
lower number of input features (7 against 9), the engine model attains a considerably better performance
than the aerodynamics one. This aspect suggests how the input set of the baseline model structure is more
redundant for the description of the propulsion problem, while the aerodynamic phenomena indeed require
more variables to be properly modeled.

6.5. BOOLEAN CATEGORICAL INPUTS
The problem of providing a reduced model with categorical information has been thoroughly treated in 5.3.2.
The preferred solution was reported as that of single inputs with integer values, which is the one implemented
in all the models presented so far in the chapter. For the models under examination, this aspect concerns the
variables of aircraft and engine type (high-lift configuration and reverse are binary inputs).
The present section is focused on the alternative approach, consisting in sets of binary variables where only
one is active at a time. This possibility has been applied in the construction of the baseline neural network
structure, where the only difference is thus a higher number of input features.
The overall results of the study on the aerodynamics and engine model are given in Table 6.5. In both cases,
no significant improvement in performance is observed with respect to the baseline model of section 6.1.
Moreover, this outcome is obtained at a substantial cost in terms of memory requirements, making it an
unfavourable solution for the study. A larger or deeper network would be required to fully take advantage
of the more accurate categorical description, however that would also come at an additional cost in terms
of storage. These results lead to the conclusion that, for the problem at hand, the choice of integer values
for categorical inputs represents a satisfactory compromise which does not hinder the performance of the
surrogate models.

6.6. POLYNOMIAL MODELS
As already mentioned in the previous chapter, it is common practice in metamodeling studies to compare
different surrogate model structures. In this project, multivariate polynomial models have been chosen as a
means for comparison with the results achieved by artificial neural networks.
In this case, the surrogate models are always fitted with ordinary least squares and the number of available
samples is reduced by a factor 2.5 compared to the neural network training datasets. A further important
difference is that polynomial models can only output one variable, hence two separate metamodels have to
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Aerodynamics model Engine model

Index Drag Lift XPROP ZPROP

Polynomial degree [-] 2 2 3 3
Number of inputs [-] 11 11 7 7
Number of coefficients [-] 78 78 120 120
N M AEtr ai n [%] 7.01 60.65 11.74 19.30
N M AEval [%] 6.98 60.74 11.70 19.40

Table 6.6: Performance indexes computed on the results of the polynomial models.

be fitted for both aerodynamics and engine model.
Polynomial models of degree up to 4 have been trained, where however the highest degree has only been im-
plemented in the case of selected features for the engine variables. Additional models would have required
an excessive number of coefficients, with no added benefit to the study.
Both baseline and selected input sets (cf. Table 5.3) have been tested and the overall results are reported in
Table 6.6. Based on the observed performance across different polynomial structures, second degree polyno-
mials are chosen for the aerodynamic variables, while third degree polynomials are retained for the engine
model as the best solutions. Despite the satisfactory reduction levels obtained, the accuracy provided by
polynomial models is still far from acceptable for real-world application in aircraft systems.

6.7. OVERVIEW
The last section of this chapter aims to summarise the essential aspects of the results of the different analyses
previously presented, in order to identify the most promising compromises between accuracy and storage
requirements.
On a general level it can be pointed out that all metamodeling solutions presented in this chapter achieve
considerable reduction ratings based on the required number of coefficients. The only notable exception
here are the models trained with boolean categorical inputs, whose memory requirements are far greater
than all other solutions.
The baseline neural network has been shown to be a satisfactory starting point for the further refinement
performed in the work. The extension of the model to multiple layers led to the best overall compromises
between accuracy and memory requirements, confirming the intuition that an investigation on the model
structure should be sought for an optimal construction of an embedded model.
Lastly, among the main underperforming solutions are polynomial models and feature-selected models,
where the latter only being a viable option for the engine variables.

6.7.1. ASSESSMENT AGAINST ACCURACY FRAMEWORK
The last step in the analysis, as mentioned in 5.4.2, is to evaluate the performance of the obtained models
against the accuracy framework developed in the same section of this work. In this case, the accuracy is as-
sessed on the final calculation of the function under consideration (the landing distance), hence evaluating
the effect of introducing surrogate models in the function.
In Figure 6.6, the NMAE validation results of the previously selected most relevant models are placed within
the abovementioned framework, given in terms of error level curves. It is worth noting that, as the graph
is given in terms of NMAE on Drag and Xprop, combinations of separately-trained models are here consid-
ered only with same model structure. Obviously more combinations are available by implementing different
model structures to compute the two variables, with varying results.
The neural network structure with 3 hidden layers marks the only point below the 0.2% threshold, even
though this clearly comes at a cost in terms of memory requirements. Nonetheless, for all selected mod-
els, the resulting effect on the chosen index ∆d %

r e fi
appears to be limited, with values well below the tentative

threshold of 0.5% previously selected in 5.4.2.
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Figure 6.6: Level curves obtained in section 5.4.2 for landing distance computation error,
compared with the estimated performance of the best trained models in the study.



7
CONCLUSION AND RECOMMENDATIONS

The present document has reported on the work of a master thesis project whose subject matter is the im-
plementation of neural networks within aircraft performance function. An outline of the fundamental theory
behind the topic, as well as a literature review on the state of the art in the field have been provided. Based
on that, the general aims of the project have been formulated, which can be stated as the investigation of
different solutions for the reduction of aircraft performance submodels within the case study of a landing
performance function. A detailed overview of the methodology implemented in the work has been given,
justifying the choices made at each step of the process. The overall procedure has been summarised as: a
study of the problem, retrieval and sampling of datasets from a simulator, training and validation of surro-
gate models on such data, assessment of the various proposed solutions. The models are evaluated on an
accuracy index against a reduction index, accounting for the degree of model simplification. Moreover, the
most promising solutions are assessed against their estimated performance within the target function. An
additional comparison is made with polynomial models, which act as a benchmark for the assessment of the
neural network models.

7.1. EVALUATION OF THE RESULTS
Overall, the investigation produced very promising outcomes, confirming the potential of the various tech-
niques tested on the case study. This concerns the dataset construction, including choices made on the
definition of a training and validation domain, but also the training algorithms implemented. Moreover, the
analysis has given important hints as to which directions hold validity in the reduction process examined
here. This aspect is especially important for what concerns the architectural choices made in the various
neural network structures proposed.
One of the main results that stands out, is the substantial advantage in the use of multilayer networks, which
leads to interesting compromises between accuracy and reduction. This is a clear conclusion from the analy-
ses presented in 6.2. What is not obvious, however, is whether an even higher number of layers would neces-
sarily produce better performance. To support this statement, it is observed how the results of the Bayesian
Regularization algorithm have outperformed those of the Levenberg-Marquardt algorithm. This might be
due to, among the various reasons, the notable "pruning" process of the algorithm, which can be seen as a
rudimentary optimization of the network. Moreover, since only a set of fixed number of neurons (3, 5, 10
per layer) have been tested, it is possible that smarter choices in this sense could lead to better performance
even with only 3 hidden layers. With respect to the network architectures, the 20 neuron single-layer baseline
models have been proven as an interesting starting point, representing a robust means for benchmarking.
Its validity in the assessment of different solutions is, however, purely indicative and is used as a reference
for the whole body of results. This is especially true in the light of the huge potential proven by other design
solutions.
Concerning the aspect of feature selection, the study has demonstrated a considerable difference in sensi-
tivity between the aerodynamics and engine submodels, with the former being an evidently more complex
problem to approximate. Conversely, the latter model has definitely shown some wider margins in terms of
input refinement. It has to be noted, however, that the choice of input parameters made in this project is not
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an optimal one, being only based on correlation indexes and engineering judgement.
The idea of reducing both performance submodels in a single surrogate model has led to very poor outcomes.
This has been observed especially for what concerns the engine outputs. Moreover, this conclusion is made
in comparison with the baseline model structure, taking into account the relative proportions in reduction
ratings. Even with such approach, however, the resulting accuracy does not justify the construction of a single
model. It is paramount to note, nonetheless, that only one network structure has been tested for this solution.
It is not to exclude that different architectures with more layers and nodes could lead to better performance
and thus prove the validity of the solution.
An aspect that is deemed as one of the strongest points in the project, is that of including multiple instances
of aircraft and engine types within the training process. The generalization of the obtained metamodels thus
holds a special value in terms of portability of the solutions. In this light, the results shown in this document
are particularly interesting, especially for aircraft systems that do not allow the integration of case-specific
functions. The problem of categorical inputs has been solved in two ways. Interestingly, the simpler solution
of providing the models with integer values for different situations has produced the best outcomes. The
other solution of providing sets of boolean inputs to the networks instead, resulted in sensibly poorer ac-
curacy, especially when considered its higher requirements in terms of input nodes (and hence number of
network coefficients).
The additional study based on comparison with multivariate polynomial structures has led to the expected
results. Polynomial models are not able to follow the complex patterns of the aerodynamics and engine phe-
nomena, leading to low accuracy and high storage requirements. This conclusion can be confidently made,
given that the models have been tested in a range of requirements that is comparable to that of the neural
networks.
In terms of feasibility of the proposed solution, the retained models have been assessed against a framework
to estimate the impact on the calculation of the objective function. The results show how the approxima-
tion introduced by the surrogate models has a low impact, measured in terms of relative error on the landing
performance calculation, well contained within the 0.5% threshold set as a baseline. This result confirms the
overall feasibility of a neural network-based approach to the problem of flight performance function sub-
model reduction.
A last element worth mentioning, is that none of the solutions proposed above is "the best" in an absolute
sense. The whole point of the project has been that to explore and compare different solutions for the integra-
tion of reduced models within aircraft systems. The activity does not account for the peculiar limitations and
requirements that should be considered for the specific application, as that needs to be evaluated on a case-
by-case basis. Optimal compromises cannot be given a priori, but are rather dependent on the objectives of
the application and the nature of the chosen solution.

7.2. LIMITATIONS AND FURTHER STUDIES
The previous section has provided an outline of the quality and most remarkable trends within the results of
the project. As an additional, last step, it is useful to describe the main limitations that these results present
in terms of extent and applicability in different contexts. Based on these observations, some ideas can thus
be suggested for the development of further investigations on the topic of interest.
In this regard, the following points have been identified:

• One of the main limitations in the thesis project can be found in its general approach to the task. As
already said in various contexts, the work has been structured as an exploration of the different possi-
bilities that are available in the reduction of performance models. It is not the purpose of this activity
to examine one specific solution in depth, but rather compare the efficacy of various approaches to
the same problem. The idea is then to pave the way for detailed investigations in the directions that
have been open, based on the demonstrated potential of some solutions. This idea mainly concerns
the implementation of training algorithms and metamodel structures, while steps of dataset retrieval
and sampling are more heavily related to the specific context of application.

• An approach that could build on this project would be focused on a specific subset of modeling tech-
niques, given that some characteristics have been fixed thanks to existing results. An investigation
would thus be conducted in order to make a set of optimal choices and get to results that are specific
for the defined scope. An example of that, as a consequence of the observations made in 7.1, could
be an optimization study on the number of layers and neurons in a multilayer network. Even more
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innovative approaches could be applied, such as evolutionary algorithms (as already mentioned with
[37]) which are a smarter way to optimize a model with various parameters. A similar reasoning can
be made with respect to the number of input parameters, which have been the target of a suboptimal
feature selection process. This could be conducted in various ways, by applying one of the available
algorithms with an arbitrary degree of complexity. [63]
It must be noticed however, that for problems of integration within aircraft systems, specific software
or hardware structures are typically required to embed any model or function. Therefore, the impact
that reprogramming or rebuilding of these structures may have on the overall integration costs is not a
negligible aspect. Despite being a purely operational observation, this is however a point that, in some
cases, might lead to the decision of retaining non-optimal characteristics within a certain model or
function.

• The assessment of the proposed metamodels has been based on the pure research for compromises
between approximation accuracy and storage requirements. The latter parameter, quantified by the
number of coefficients in a model, is held as an index for its inner complexity. A third variable, such
as standard computational time (see [15]) could also be implemented in further investigations. This
might be an essential indication, according to the specific application at hand.

• The present case study has indeed been simplified in order to have a manageable yet exhaustively ex-
plored problem. Among the simplifications introduced, the problem has been studied as symmetrical.
This has led to a sensibly reduced set of variables in the problem, including angles of drift and roll and
any type of system failure. In addition to that, it was chosen not to include the effect of wind. Such
features are the result of compromises on the size and level of detail of the analysis. These would def-
initely have to be included in a future complementary study before effective implementation in real
operational applications.
Concerning the missing inclusion of engine transient data in the study, as already observed, this was a
necessary choice since the type of models implemented do not allow for time series processing. With
respect to the specific case, this does not represent a real problem, as this phase can be approximated
with simpler functions and is thus not worth of a reduction study. For more complex applications with
engine transition, recurrent neural networks may be taken into account as a possible modeling solu-
tion. [103]

• The whole training and validation process has been carried out on data obtained from simulations.
Moreover, the procedures implemented by the simulator comply with the requirements set by airwor-
thiness regulations for a "correct" landing. Before effective deployment of any tool based on the results
this project, it would be appropriate to perform an additional validation on real-life data. As a further
idea, a possible future study would test the same methods implemented here by performing the whole
training of reduced models with only this type of data.

• An important limitation to the project, is that the activity has been performed on the specific case study
of a landing function. Hence, even though the formulation of the aerodynamics and engine model is
fairly generic, the problem has been indeed tackled in a heavily contextualized setting. The results
shown in the previous chapters are therefore to be interpreted, in a possible further study on perfor-
mance functions, in the light of such limitation. The concern is especially valid for high-speed applica-
tions (out of the takeoff and landing envelope) where the same physical laws are clearly not applicable.
It is essential to keep in mind, moreover, that the reduction has been carried out at performance sub-
model level. Any possible coupling with the equations of motion has not been considered and this
would represent a whole additional level of complexity to take into account.
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APPENDIX A
ELEMENTS OF LANDING MECHANICS AND

PERFORMANCE

Definitions of landing distance
Aircraft landing performance is directly measured by the distance effectively covered during landing. This
parameter, as seen in Figure A.1, is made up of two components. It is in fact the sum of an airborne distance,
covered between screen height and touch down, and a ground roll distance, which refers to the whole part of
landing where the aircraft is on ground. A shorter landing distance is clearly preferable, as it both cuts down
time for airline operations and prevents any circumstance of runway overrun.
The ideal landing distance as given in flight manuals for each aircraft model, is calculated in ideal conditions,
with the aircraft at the correct speed at screen height. This is called the actual landing distance (ALD) or cal-
culated landing distance. Depending on external conditions, a required landing distance (RLD) is computed
from the ALD by taking into account a suitable safety margin. This measurement must be known before
landing and it is essential to ensure it to be smaller than the landing distance available (LDA), which basically
corresponds to the runway length. [105] [106] [107]
Several factors can have an impact on the effective landing distance:

• Aircraft weight increases stall speed and the inertia of the aircraft during braking.

• Head wind can be beneficial within certain limits, as it increases true airspeed. The opposite goes for
tail wind.

• Landing surface contamination decreases the efficacy of mechanical braking.

• A positive runway slope is beneficial, as there is an additional gravity component during ground brak-
ing. Negative runway slope instead delays touch down and adds a harmful gravitational component
during ground roll.

• High-lift devices can greatly affect the landing procedure according to the chosen configuration.

• System failures can have several negative effects, including the loss of symmetry in the landing path.

Governing equations
In the study of landing mechanics, it is convenient to make a breakdown of the forces along the air-path axis
and its perpendicular direction. With this idea in mind, diagrams of the forces acting on the aircraft during
landing can be identified in Figures A.2 and A.3. From these, the governing equations of flight mechanics can
be obtained and implemented in the calculation of aircraft landing performance.
The first diagram is referred to the airborne phase of landing. It is valid for both descent and flare, with the
only difference of a continuously varying flight path angleγ in the latter segment. Here the only forces coming
into play are those due to aerodynamics, engine thrust and gravity. The sum of forces along both axes can be
thus expressed: ∑

FX = XPROP −D −m · g · si n(γ) (1)

∑
FZ = ZPROP +L−m · g · cos(γ) (2)

where XPROP and ZPROP are the longitudinal and vertical components of engine thrust, D and L are the
aerodynamic drag and lift, while the last term in each equation is the relative contribution of the gravitational
force on each axis.
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Figure A.1: Scheme of the landing phase, with breakdown of its components and landing distances.

During the ground phase, identified in Figure A.3, additional forces due to the interaction of the landing gear
with the runway surface have to be taken into account. The sums of forces in this case are given as:∑

FX = XPROP −D −FBR AK E −FROLL −m · g · si n(γ) (3)

∑
FZ = ZPROP +L+RM AI N +RNOSE −m · g · cos(γ) (4)

where FBR AK E is the friction force between the runway and the braking wheels of the landing gear, while
FROLL is the rolling resistance on the non-braking wheels. A gravity component is usually required in both
equations as, having assumed that the aircraft is moving parallel to the ground, it accounts for a possible
slope in the runway shape. The choice of splitting the ground forces between main landing gear and nose
wheel has been made in view of the application presented in the next section.
Friction forces can be calculated by the well-known Coulomb model of friction, generally expressed as

T =µ ·R (5)

with the tangential force T being given as the product of a friction coefficient µ and a reaction force R that is
perpendicular to the surfaces in contact. This law hence provides an useful relationship between the ground
forces in equations (3) and (4), which can be differently exploited according to the specific case study.

Braking performance
Under a physical point of view, as seen in the previous paragraph, the landing problem is relatively straight-
forward. However, the features of the braking action and hence the performance of such manoeuvre are
heavily dependent on (auto) pilot choices and state of the runway.
Concerning the first aspect, the main parameters that the pilot can control are landing speed, aircraft atti-
tude, high-lift device configuration and intensity of the braking action. The first two are bound by constraints
on stall characteristics and structural requirements. Furthermore, only high-lift configurations 3 and Full,
corresponding to the two most extended positions of flaps and slats, are allowed during landing.
With respect to the braking action, there are normally three increasing levels of intensity that can be selected
during landing: LOW, MED and MAX. These correspond to effectively increasing braking levels, as well as
different activation delays from deployment of the spoilers. With LOW and MED, braking intensity is in-
creased by steps towards a maximum value, where in the latter case a check on pitch angle is also performed.
Conversely, the MAX setting directly increases the braking action to the maximum level available, as soon as
spoilers are out. Whether the braking action is performed by mechanical torque on the landing gear wheels,
by reverse thrust or a combination of both, it is usually left as an automatic choice of the aircraft systems.
The state of the runway is a crucial parameter that heavily affects the performance of a landing. Runway
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Figure A.2: Diagram of the forces acting on an aircraft during the airborne phase of landing.
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Figure A.3: Diagram of the forces acting on an aircraft during landing roll after the moment of nose down, with a runway slope γ.

surfaces can be contaminated by a number of environmental agents such as soil, mud, water and ice whose
specific characteristics are not always easy to identify before a landing takes place. From a physical point of
view, this translates into a varying value of friction coefficient between the runway surface and the landing
gear wheels, in turn affecting the aircraft braking performance.
The identification of the friction coefficient, however, is a complex problem. Additional parameters such as
aircraft speed and tire pressure lead to strongly nonlinear dependencies whose investigation is out of the
scope of this work. One variable that needs to be mentioned, however, is indeed slip ratio. Such parame-
ter quantifies the relative sliding occurring between a rotating wheel and the surface it rolls on. Though no
universal definition exists, an intuitive description of longitudinal slip ratio is given by [108]:

λS = V − reω

V
(6)

where V is the aircraft forward speed and ω the wheel rotational speed. The radius re is the effective wheel
radius, which takes into account for deformation of the pneumatic, due to both the rolling motion and the
weight of the aircraft itself. From the above definition it is clear that a total absence of slipping could only
be attained in the case of a pure rolling motion (where forward speed equals the external tangential speed)
without any wheel deformation.
Slip ratio is always kept under control, in order to achieve an optimal value of friction coefficient (see Figure
A.4) and hence braking distance. For that reason, anti-skid systems are implemented to monitor the value of
slip ratio and consequently adjust the braking torque on landing gear wheels. This action not only optimizes
the rolling phase, especially on slippery surfaces, but also prevents the brakes from overheating.
In the context of braking performance, there are different definitions of braking action according to the fac-
tors that determine its efficiency. It is referred to torque-limited braking when, for a set pressure in the hy-
draulic system, the braking torque generated is not sufficient to bring the wheels to a halt. A more frequent
scenario is when the supplied torque is effectively high enough to spin down the wheels, but the obtained
braking force between runway surface and tyre is lower than the one targeted by the braking system. This
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Figure A.4: Relationship between slip ratio and tire friction coefficient, as found in [112] for different types of surfaces.

case can be referred to as a friction-limited braking, since the limiting factor of the manoeuvre is the friction
force. In these situations, which are typical of contaminated runways, an anti-skid system is thus activated
to efficiently manage the roll phase (hence the alternative naming of anti-skid-limited braking). [109] [110]
[111]



APPENDIX B
SAMPLING PROCESS

This Appendix expands the content of Section 5.2.2, which reported the main aspects of the sampling pro-
cess. Here more details are provided on the link between the observed sampling domain and the chosen
methodology, as well as on the results of the process itself.

Analysis of the sampling domain
The objective of the sampling phase is to obtain a dataset as complete and uniform as possible, so as to enable
a training and validation of metamodels that are representative of their corresponding originals. Complete-
ness of the data has been provided in previous steps with sound choices on each step of the process, hence the
sampling should simply make sure that the value ranges covered by each variable be sufficiently represented.
For what concerns the uniformity, several approaches are possible according to the type of design desired for
the dataset. In principle, it is reasonable to seek a space filling design that would produce uniformity in an
N-dimensional sense, in order to implement a balanced dataset in the training process.

Figure B.1: Distribution of Mach number and engine rating values before final sampling.

There are two separate aspects to take into account in the choice of a sampling method. The first is the high
redundancy of points in certain zones of the N-dimensional space of samples. This does not come as a sur-
prise, since all simulations are performed between the same two moments of a landing and sometimes only
slightly differ by their initial conditions. For instance, it is expected to find a high number of points corre-
sponding to a low speed rather than those at high speeds, where the initial values have a higher variability. A
visual clue of this fact is provided by Figure B.1, where all points available at this stage of sampling are plot-
ted for the two variables Mach and N1. Evident variations in density of samples can be spotted across the
2-dimensional domain, highlighting zones where different amounts of data are available. This is due to the
nature of the problem itself, which leads to uneven patterns throughout the domain. In particular it is possi-
ble to follow, in the middle of the graph, the drops in engine rating corresponding to different initial speeds

65



66 APPENDIX B: SAMPLING PROCESS

X2

0
x11 X1x12

x21

x22

X2

0
x11 X1x12

x21

x22

Figure B.2: Comparison of equal (left) and proportional (right) allocation in stratified sampling on a 2-dimensional domain.

at ND. Above that, instead, it can be observed how the trends corresponding to Max Reverse are constant in
N1 for most of the pattern, to then drop at a lower speed.
The second aspect to take into account is the difference between one-dimensional and N-dimensional uni-
formity. An ideally balanced training dataset would cover the whole range of values that might be input to
the models throughout their operation, and the samples would be given at a step that guarantees the sought
modeling accuracy. A 1-dimensional uniformity would mean that each variable in the dataset has an uniform
distribution on its range of values. Multidimensional uniform distributions instead, should be understood as
groups of N-dimensional points that are equally spaced in an N-dimensional space. The problem is that uni-
formity in dimension 1 (on each variable) does not guarantee N-dimensional uniformity in the same dataset
(on all variables). This is the case with the current work, due to the uncontrollable nature of some variables
of the problem. These are the ”continuous” parameters of speed (GS, TAS, Mach) and those of engine rating
(N1, EPR) that could not be discretely set when launching landing simulations. This aspect is clarified by Fig-
ure B.1, which shows some significant gaps in the domain formed by Mach and N1. Therefore, even obtaining
a uniform distribution on the two single variables (which is still not the case here) would never result in an
overall uniform domain with the two variables combined.

Sampling methodology
Several sampling techniques are available in the literature and the selection of a suitable method depends
on both the characteristics of the problem and the features sought in the sampled dataset. Techniques such
as random, latin hypercube and orthogonal sampling [113] were discarded, to avoid the risk of a scattered
dataset and allow for a tighter control over its characteristics. The procedure implemented here is rather
based on the concept of stratified sampling [97], which is often applied in order to reduce variance in the
dataset, compared to a simple random sampling. According to this method, an N-dimensional space is di-
vided into an arbitrary number of N-dimensional cells (strata) and a certain number of samples is taken from
every cell. As explained more intuitively in Figure B.2, different strategies can be adopted for the number of
points that are selected in each cell. With an equal allocation strategy, a fixed number of samples is taken
per cell. Proportional allocation instead aims at selecting a number of samples proportional to the amount
of points that is found in the cell. After several tests, a hybrid stratified approach was implemented. The pro-
cess was performed by only sampling the domains of the discrete variables with equal allocations, effectively
excluding those representing speed (GS, TAS, Mach) and engine rating (N1, EPR).
The approach serves two main objectives. On one hand uniformity is maintained in the dataset for the single
discrete variables, but also for the continuous ones whose features already displayed in Figure B.1 make it
very complex to achieve a better distribution. On the other hand, such complex dispersion of the continu-
ous variables is the expression of a natural tendency of the physical phenomenon, which was decided to be
maintained in the process. Indeed the choice is partially arbitrary: it would have been equally reasonable
to demand a perfectly balanced dataset, in order to produce a model with (ideally) constant performance in
the whole domain of definition. Here an engineering choice was rather made to ensure a higher number of
points (hence better metamodel performance) in those parts of the operation envelope where the model is
likely to work more often.
The sampling process was performed on four separate batches of data, which were retrieved from simula-
tions and sampled individually. These were split according to high-lift configuration (3 and Full) and whether
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a case of overweight landing, in order not to overload the postprocessing phase.

Results
The histograms of dataset distributions for the relevant parameters are reported in Figure B.3 to B.5, for both
before and after sampling. It can be observed how the shape of the distributions is essentially unaffected,
except being scaled down by a factor 10.
The evident non uniformities obtained on some parameters are only apparent and are due to different rea-
sons. The parameter Rev, which indicates whether the engine is in operating in reverse, is explained by the
choice on the variable Rev type, which instead tells whether it is a case of direct thrust, maximum reverse or
idle reverse. It has been chosen, in fact, to give an equal distribution of the three cases to the dataset, which
in turn explains the distribution on Rev.
The other clear disconformities are in Weight and CG. In both cases this is justified by the choices on the two
variables, which are given specific values for each aircraft and engine type. The last two features are sum-
marized by the variable AC model, which refers to the aircraft model used in the simulation software (hence
a specific combination of aircraft type and engine type). This parameter has also been kept uniformly dis-
tributed not to give a specific (and unjustified) importance to certain aircraft models during training. As a
matter of fact, this objective was a driving feature of the sampling process.
Lastly, the distributions of GS and N1 remain unchanged. The natural trend of the problem is essentially left
untouched and the models will be trained more in depth in the areas of more frequent operation.
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Figure B.3: Distribution before (top) and after (bottom) sampling: outside air temperature, pressure, angle of attack, Mach and GS.
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Figure B.4: Distribution before (top) and after (bottom) sampling: AC model, engine rating, reverser activation, mass and CG.
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Figure B.5: Distribution before (top) and after (bottom) sampling: high-lift configuration and thrust reverser status.



APPENDIX C
RELATIVE ERROR OF THE BASELINE MODEL

The results shown in 6.1 on the performance of the baseline neural networks demonstrate that the model
structure is already capable of achieving acceptable approximation behaviour across the domain of interest,
with some differences between the output variables. The results are here expanded by providing the plots of
relative error for the four variables.
Outliers represent an issue for the interpretation of the results, as it can be seen from the scale of the plot of
relative error in Figures C.1 and C.3. To mitigate this problem, the same plots have been traced for a subset of
the training and validation datasets, which have been selected with the interquartile range rule. According to
this method, outliers can be detected as any points lying outside of the range [Q1-1.5*IQR, Q3+1.5*IQR], with
Q1 and Q3 the lower and upper quartiles and IQR the difference between the two (interquartile range). The
1.5 multiplier, which would allow to include approximately 99% of points for a normal distribution, has been
adjusted here to show a meaningful portion of the error distributions.
A 3.5 IQR multiplier has been implemented to obtain the results shown in Figure C.2 (for reference, a multi-
plier of 3 is normally considered to identify extreme outliers). As already pointed out in 6.1, the error on drag
is observed to be contained within 10% in most of the domain. Moreover, a better interpretation can now be
given on the results of lift, where the very long tails of the distribution have been limited to values of around
125%. It is worth highlighting that the current choice of IQR multiplier leads to a coverage of approximately
98% and 91% of the Drag and Lift distributions respectively.
In the same way as for the aerodynamic model, the plots shown in Figure C.4 have been obtained via the
application of the IQR rule to limit the presence of long tails in the error distributions of the engine model.
A multiplier of 4.5 has been implemented here, covering approximately 97.5% and 92% of the XPROP and
ZPROP distributions respectively, thus allowing for a more meaningful interpretation of the results.
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APPENDIX D
POLYNOMIAL MODELS

Background
Given an input vector x of dimensionality d and a set of (unknown) real coefficients cα, a polynomial of degree
k and monomials xα is defined as:

ŷ = ∑
∥α∥1≤k

cαxα (7)

with

∥α∥1 =
d∑

i=1
αi (8)

xα =
d∏

i=1
xi
αi (9)

One of the main disadvantages of such models is that the number of terms grows rapidly with the number of
inputs and degree of the polynomial, following to the relationship

NT = (k +d)!

k !d !
(10)

An excessive increase of polynomial degree to overcome accuracy issues is generally discouraged, as local os-
cillations (Runge’s phenomenon) are likely to occur at higher order. Moreover, according to Simpson [61],
polynomial models should not be used for applications with more than around 10 input variables. The
present study is hence a limit case in these terms.
Polynomial models are linear in the parameters (model coefficients) and therefore allow for linear regression
techniques. An ordinary least squares method has been implemented based on the consolidated work of Ce-
cen, mentioned in [104]. As the technique has the property of scale invariance, meaning that the constant
coefficients of the model can act as scaling factors, normalization of inputs was not required for training.
The advantages and limitations mentioned so far, as well as the memory constraints faced with Matlab, thus
led to the need of using polynomials of maximum degree 3. Only specific cases, with a selected number of
input features, also allowed the fitting of polynomials of degree 4. Additional models of higher degree could
have been obtained, however the number of coefficients required (equation (10)) would considerably exceed
the memory targets expected in the work. This aspect is especially true when considering that a polynomial
model can only output one variable, in contrast with neural networks. In fact, two different polynomials have
to be fitted for each Aerodynamics and Engine model.

Performance of the trained models
The results of the trained polynomial models in terms of validation NMAE against required number of coef-
ficients (or polynomial terms) are shown in Figures D.1 and D.2.
With respect to the results of neural network models, a substantially poorer performance is obtained in all
cases, with the accuracy of first degree models standing out negatively over the others. Second and third
degree polynomials, on the other hand, achieve similar approximation levels, especially in the case of aero-
dynamic modeling. Stronger deviations are observed for the engine variables when selected input features
are implemented. It is interesting to notice how the same aerodynamic modeling difficulties found in 6.4
are encountered here with the selected input cases. The baseline input set is, in fact, sensibly outperformed
only in the engine modeling. Lastly it can be seen how the fourth degree polynomials, despite a considerable
number of terms, lead to worse results than those of degree 3. This can be ascribed to the phenomenon of
unwanted oscillations in high-degree fitting functions.
As explained in the main body of the report, these results led to the conclusion that the above models only
stand as a means for comparison with the trained neural networks, without any practical viability in aircraft
applications.
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Figure D.1: Study of polynomial models for the aerodynamic model, with polynomial degrees reported between brackets.
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Figure D.2: Study of polynomial models for the engine model, with polynomial degrees reported between brackets.





APPENDIX E
COMPARISON OF RESULTS ACROSS MODEL

STRUCTURE

In this Appendix, more details are provided on the comparison between the different model structures trained
in the work, as already treated in 6.7. In Figures E.1 and E.2 the results in terms of validation NMAE and
number of required coefficients are reported for a chosen set of surrogate models. The set includes, other
than the baseline model, the most relevant results of each study presented in the report. It is reminded here
that all neural networks featured in this overview have been trained with Bayesian Regularization, while the
fitting of polynomial models is carried out with ordinary least squares regression.
The polynomial models reported in the graphs are the ones identified as best compromises among those
tested in section 6.6. However, the intrinsic characteristics of such model structure represent a limitation for
the current study. Despite the remarkable reduction capacity, in fact, the very poor performance in terms of
accuracy makes the technique an unfeasible approach to build aerodynamics or engine metamodels.
The process of feature selection produces interesting results in the computation of the engine model outputs.
Contrarily to what might be expected, the substantial decrease in memory requirements corresponds to a
negligible deterioration of accuracy. Obviously, this consideration holds when comparing two models with
the same fundamental network structure. Conversely, the approach does not lead to a gain over the baseline
structure in the case of the aerodynamic modeling, which clearly requires more information to attain an
accuracy comparable to other solutions.
The approach that effectively marks a strong improvement from the baseline metamodels is that of exploring
multilayered neural networks. Both the presented best solutions with 2 and 3 hidden layers undoubtedly
outperform the results of the other reported models. The baseline network model nonetheless represents a
satisfactory starting compromise with substantial room for improvement.
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Figure E.1: Overview of the validation NMAE performance obtained with different types of metamodels for the aerodynamic variables.
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Figure E.2: Overview of the validation NMAE performance obtained with different types of metamodels for the engine variables.
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